SemaDeclCXX.cpp revision 1d87fbaeea4a9fbbd73b3a53641f59f1673098e5
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68  };
69
70  /// VisitExpr - Visit all of the children of this expression.
71  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
72    bool IsInvalid = false;
73    for (Stmt::child_range I = Node->children(); I; ++I)
74      IsInvalid |= Visit(*I);
75    return IsInvalid;
76  }
77
78  /// VisitDeclRefExpr - Visit a reference to a declaration, to
79  /// determine whether this declaration can be used in the default
80  /// argument expression.
81  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
82    NamedDecl *Decl = DRE->getDecl();
83    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p9
85      //   Default arguments are evaluated each time the function is
86      //   called. The order of evaluation of function arguments is
87      //   unspecified. Consequently, parameters of a function shall not
88      //   be used in default argument expressions, even if they are not
89      //   evaluated. Parameters of a function declared before a default
90      //   argument expression are in scope and can hide namespace and
91      //   class member names.
92      return S->Diag(DRE->getLocStart(),
93                     diag::err_param_default_argument_references_param)
94         << Param->getDeclName() << DefaultArg->getSourceRange();
95    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
96      // C++ [dcl.fct.default]p7
97      //   Local variables shall not be used in default argument
98      //   expressions.
99      if (VDecl->isLocalVarDecl())
100        return S->Diag(DRE->getLocStart(),
101                       diag::err_param_default_argument_references_local)
102          << VDecl->getDeclName() << DefaultArg->getSourceRange();
103    }
104
105    return false;
106  }
107
108  /// VisitCXXThisExpr - Visit a C++ "this" expression.
109  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
110    // C++ [dcl.fct.default]p8:
111    //   The keyword this shall not be used in a default argument of a
112    //   member function.
113    return S->Diag(ThisE->getLocStart(),
114                   diag::err_param_default_argument_references_this)
115               << ThisE->getSourceRange();
116  }
117
118  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
119    // C++11 [expr.lambda.prim]p13:
120    //   A lambda-expression appearing in a default argument shall not
121    //   implicitly or explicitly capture any entity.
122    if (Lambda->capture_begin() == Lambda->capture_end())
123      return false;
124
125    return S->Diag(Lambda->getLocStart(),
126                   diag::err_lambda_capture_default_arg);
127  }
128}
129
130void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
131                                                      CXXMethodDecl *Method) {
132  // If we have an MSAny spec already, don't bother.
133  if (!Method || ComputedEST == EST_MSAny)
134    return;
135
136  const FunctionProtoType *Proto
137    = Method->getType()->getAs<FunctionProtoType>();
138  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
139  if (!Proto)
140    return;
141
142  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
143
144  // If this function can throw any exceptions, make a note of that.
145  if (EST == EST_MSAny || EST == EST_None) {
146    ClearExceptions();
147    ComputedEST = EST;
148    return;
149  }
150
151  // FIXME: If the call to this decl is using any of its default arguments, we
152  // need to search them for potentially-throwing calls.
153
154  // If this function has a basic noexcept, it doesn't affect the outcome.
155  if (EST == EST_BasicNoexcept)
156    return;
157
158  // If we have a throw-all spec at this point, ignore the function.
159  if (ComputedEST == EST_None)
160    return;
161
162  // If we're still at noexcept(true) and there's a nothrow() callee,
163  // change to that specification.
164  if (EST == EST_DynamicNone) {
165    if (ComputedEST == EST_BasicNoexcept)
166      ComputedEST = EST_DynamicNone;
167    return;
168  }
169
170  // Check out noexcept specs.
171  if (EST == EST_ComputedNoexcept) {
172    FunctionProtoType::NoexceptResult NR =
173        Proto->getNoexceptSpec(Self->Context);
174    assert(NR != FunctionProtoType::NR_NoNoexcept &&
175           "Must have noexcept result for EST_ComputedNoexcept.");
176    assert(NR != FunctionProtoType::NR_Dependent &&
177           "Should not generate implicit declarations for dependent cases, "
178           "and don't know how to handle them anyway.");
179
180    // noexcept(false) -> no spec on the new function
181    if (NR == FunctionProtoType::NR_Throw) {
182      ClearExceptions();
183      ComputedEST = EST_None;
184    }
185    // noexcept(true) won't change anything either.
186    return;
187  }
188
189  assert(EST == EST_Dynamic && "EST case not considered earlier.");
190  assert(ComputedEST != EST_None &&
191         "Shouldn't collect exceptions when throw-all is guaranteed.");
192  ComputedEST = EST_Dynamic;
193  // Record the exceptions in this function's exception specification.
194  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
195                                          EEnd = Proto->exception_end();
196       E != EEnd; ++E)
197    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
198      Exceptions.push_back(*E);
199}
200
201void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
202  if (!E || ComputedEST == EST_MSAny)
203    return;
204
205  // FIXME:
206  //
207  // C++0x [except.spec]p14:
208  //   [An] implicit exception-specification specifies the type-id T if and
209  // only if T is allowed by the exception-specification of a function directly
210  // invoked by f's implicit definition; f shall allow all exceptions if any
211  // function it directly invokes allows all exceptions, and f shall allow no
212  // exceptions if every function it directly invokes allows no exceptions.
213  //
214  // Note in particular that if an implicit exception-specification is generated
215  // for a function containing a throw-expression, that specification can still
216  // be noexcept(true).
217  //
218  // Note also that 'directly invoked' is not defined in the standard, and there
219  // is no indication that we should only consider potentially-evaluated calls.
220  //
221  // Ultimately we should implement the intent of the standard: the exception
222  // specification should be the set of exceptions which can be thrown by the
223  // implicit definition. For now, we assume that any non-nothrow expression can
224  // throw any exception.
225
226  if (Self->canThrow(E))
227    ComputedEST = EST_None;
228}
229
230bool
231Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
232                              SourceLocation EqualLoc) {
233  if (RequireCompleteType(Param->getLocation(), Param->getType(),
234                          diag::err_typecheck_decl_incomplete_type)) {
235    Param->setInvalidDecl();
236    return true;
237  }
238
239  // C++ [dcl.fct.default]p5
240  //   A default argument expression is implicitly converted (clause
241  //   4) to the parameter type. The default argument expression has
242  //   the same semantic constraints as the initializer expression in
243  //   a declaration of a variable of the parameter type, using the
244  //   copy-initialization semantics (8.5).
245  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
246                                                                    Param);
247  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
248                                                           EqualLoc);
249  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
250  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckCompletedExpr(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
356    DeclaratorChunk &chunk = D.getTypeObject(i);
357    if (chunk.Kind == DeclaratorChunk::Function) {
358      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
359        ParmVarDecl *Param =
360          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
361        if (Param->hasUnparsedDefaultArg()) {
362          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
365          delete Toks;
366          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
367        } else if (Param->getDefaultArg()) {
368          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
369            << Param->getDefaultArg()->getSourceRange();
370          Param->setDefaultArg(0);
371        }
372      }
373    }
374  }
375}
376
377/// MergeCXXFunctionDecl - Merge two declarations of the same C++
378/// function, once we already know that they have the same
379/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
380/// error, false otherwise.
381bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
382                                Scope *S) {
383  bool Invalid = false;
384
385  // C++ [dcl.fct.default]p4:
386  //   For non-template functions, default arguments can be added in
387  //   later declarations of a function in the same
388  //   scope. Declarations in different scopes have completely
389  //   distinct sets of default arguments. That is, declarations in
390  //   inner scopes do not acquire default arguments from
391  //   declarations in outer scopes, and vice versa. In a given
392  //   function declaration, all parameters subsequent to a
393  //   parameter with a default argument shall have default
394  //   arguments supplied in this or previous declarations. A
395  //   default argument shall not be redefined by a later
396  //   declaration (not even to the same value).
397  //
398  // C++ [dcl.fct.default]p6:
399  //   Except for member functions of class templates, the default arguments
400  //   in a member function definition that appears outside of the class
401  //   definition are added to the set of default arguments provided by the
402  //   member function declaration in the class definition.
403  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
404    ParmVarDecl *OldParam = Old->getParamDecl(p);
405    ParmVarDecl *NewParam = New->getParamDecl(p);
406
407    bool OldParamHasDfl = OldParam->hasDefaultArg();
408    bool NewParamHasDfl = NewParam->hasDefaultArg();
409
410    NamedDecl *ND = Old;
411    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
412      // Ignore default parameters of old decl if they are not in
413      // the same scope.
414      OldParamHasDfl = false;
415
416    if (OldParamHasDfl && NewParamHasDfl) {
417
418      unsigned DiagDefaultParamID =
419        diag::err_param_default_argument_redefinition;
420
421      // MSVC accepts that default parameters be redefined for member functions
422      // of template class. The new default parameter's value is ignored.
423      Invalid = true;
424      if (getLangOpts().MicrosoftExt) {
425        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
426        if (MD && MD->getParent()->getDescribedClassTemplate()) {
427          // Merge the old default argument into the new parameter.
428          NewParam->setHasInheritedDefaultArg();
429          if (OldParam->hasUninstantiatedDefaultArg())
430            NewParam->setUninstantiatedDefaultArg(
431                                      OldParam->getUninstantiatedDefaultArg());
432          else
433            NewParam->setDefaultArg(OldParam->getInit());
434          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
435          Invalid = false;
436        }
437      }
438
439      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
440      // hint here. Alternatively, we could walk the type-source information
441      // for NewParam to find the last source location in the type... but it
442      // isn't worth the effort right now. This is the kind of test case that
443      // is hard to get right:
444      //   int f(int);
445      //   void g(int (*fp)(int) = f);
446      //   void g(int (*fp)(int) = &f);
447      Diag(NewParam->getLocation(), DiagDefaultParamID)
448        << NewParam->getDefaultArgRange();
449
450      // Look for the function declaration where the default argument was
451      // actually written, which may be a declaration prior to Old.
452      for (FunctionDecl *Older = Old->getPreviousDecl();
453           Older; Older = Older->getPreviousDecl()) {
454        if (!Older->getParamDecl(p)->hasDefaultArg())
455          break;
456
457        OldParam = Older->getParamDecl(p);
458      }
459
460      Diag(OldParam->getLocation(), diag::note_previous_definition)
461        << OldParam->getDefaultArgRange();
462    } else if (OldParamHasDfl) {
463      // Merge the old default argument into the new parameter.
464      // It's important to use getInit() here;  getDefaultArg()
465      // strips off any top-level ExprWithCleanups.
466      NewParam->setHasInheritedDefaultArg();
467      if (OldParam->hasUninstantiatedDefaultArg())
468        NewParam->setUninstantiatedDefaultArg(
469                                      OldParam->getUninstantiatedDefaultArg());
470      else
471        NewParam->setDefaultArg(OldParam->getInit());
472    } else if (NewParamHasDfl) {
473      if (New->getDescribedFunctionTemplate()) {
474        // Paragraph 4, quoted above, only applies to non-template functions.
475        Diag(NewParam->getLocation(),
476             diag::err_param_default_argument_template_redecl)
477          << NewParam->getDefaultArgRange();
478        Diag(Old->getLocation(), diag::note_template_prev_declaration)
479          << false;
480      } else if (New->getTemplateSpecializationKind()
481                   != TSK_ImplicitInstantiation &&
482                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
483        // C++ [temp.expr.spec]p21:
484        //   Default function arguments shall not be specified in a declaration
485        //   or a definition for one of the following explicit specializations:
486        //     - the explicit specialization of a function template;
487        //     - the explicit specialization of a member function template;
488        //     - the explicit specialization of a member function of a class
489        //       template where the class template specialization to which the
490        //       member function specialization belongs is implicitly
491        //       instantiated.
492        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
493          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
494          << New->getDeclName()
495          << NewParam->getDefaultArgRange();
496      } else if (New->getDeclContext()->isDependentContext()) {
497        // C++ [dcl.fct.default]p6 (DR217):
498        //   Default arguments for a member function of a class template shall
499        //   be specified on the initial declaration of the member function
500        //   within the class template.
501        //
502        // Reading the tea leaves a bit in DR217 and its reference to DR205
503        // leads me to the conclusion that one cannot add default function
504        // arguments for an out-of-line definition of a member function of a
505        // dependent type.
506        int WhichKind = 2;
507        if (CXXRecordDecl *Record
508              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
509          if (Record->getDescribedClassTemplate())
510            WhichKind = 0;
511          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
512            WhichKind = 1;
513          else
514            WhichKind = 2;
515        }
516
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_member_template_redecl)
519          << WhichKind
520          << NewParam->getDefaultArgRange();
521      }
522    }
523  }
524
525  // DR1344: If a default argument is added outside a class definition and that
526  // default argument makes the function a special member function, the program
527  // is ill-formed. This can only happen for constructors.
528  if (isa<CXXConstructorDecl>(New) &&
529      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
530    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
531                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
532    if (NewSM != OldSM) {
533      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
534      assert(NewParam->hasDefaultArg());
535      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
536        << NewParam->getDefaultArgRange() << NewSM;
537      Diag(Old->getLocation(), diag::note_previous_declaration);
538    }
539  }
540
541  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
542  // template has a constexpr specifier then all its declarations shall
543  // contain the constexpr specifier.
544  if (New->isConstexpr() != Old->isConstexpr()) {
545    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
546      << New << New->isConstexpr();
547    Diag(Old->getLocation(), diag::note_previous_declaration);
548    Invalid = true;
549  }
550
551  if (CheckEquivalentExceptionSpec(Old, New))
552    Invalid = true;
553
554  return Invalid;
555}
556
557/// \brief Merge the exception specifications of two variable declarations.
558///
559/// This is called when there's a redeclaration of a VarDecl. The function
560/// checks if the redeclaration might have an exception specification and
561/// validates compatibility and merges the specs if necessary.
562void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
563  // Shortcut if exceptions are disabled.
564  if (!getLangOpts().CXXExceptions)
565    return;
566
567  assert(Context.hasSameType(New->getType(), Old->getType()) &&
568         "Should only be called if types are otherwise the same.");
569
570  QualType NewType = New->getType();
571  QualType OldType = Old->getType();
572
573  // We're only interested in pointers and references to functions, as well
574  // as pointers to member functions.
575  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
576    NewType = R->getPointeeType();
577    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
578  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
579    NewType = P->getPointeeType();
580    OldType = OldType->getAs<PointerType>()->getPointeeType();
581  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
582    NewType = M->getPointeeType();
583    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
584  }
585
586  if (!NewType->isFunctionProtoType())
587    return;
588
589  // There's lots of special cases for functions. For function pointers, system
590  // libraries are hopefully not as broken so that we don't need these
591  // workarounds.
592  if (CheckEquivalentExceptionSpec(
593        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
594        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
595    New->setInvalidDecl();
596  }
597}
598
599/// CheckCXXDefaultArguments - Verify that the default arguments for a
600/// function declaration are well-formed according to C++
601/// [dcl.fct.default].
602void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
603  unsigned NumParams = FD->getNumParams();
604  unsigned p;
605
606  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
607                  isa<CXXMethodDecl>(FD) &&
608                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
609
610  // Find first parameter with a default argument
611  for (p = 0; p < NumParams; ++p) {
612    ParmVarDecl *Param = FD->getParamDecl(p);
613    if (Param->hasDefaultArg()) {
614      // C++11 [expr.prim.lambda]p5:
615      //   [...] Default arguments (8.3.6) shall not be specified in the
616      //   parameter-declaration-clause of a lambda-declarator.
617      //
618      // FIXME: Core issue 974 strikes this sentence, we only provide an
619      // extension warning.
620      if (IsLambda)
621        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
622          << Param->getDefaultArgRange();
623      break;
624    }
625  }
626
627  // C++ [dcl.fct.default]p4:
628  //   In a given function declaration, all parameters
629  //   subsequent to a parameter with a default argument shall
630  //   have default arguments supplied in this or previous
631  //   declarations. A default argument shall not be redefined
632  //   by a later declaration (not even to the same value).
633  unsigned LastMissingDefaultArg = 0;
634  for (; p < NumParams; ++p) {
635    ParmVarDecl *Param = FD->getParamDecl(p);
636    if (!Param->hasDefaultArg()) {
637      if (Param->isInvalidDecl())
638        /* We already complained about this parameter. */;
639      else if (Param->getIdentifier())
640        Diag(Param->getLocation(),
641             diag::err_param_default_argument_missing_name)
642          << Param->getIdentifier();
643      else
644        Diag(Param->getLocation(),
645             diag::err_param_default_argument_missing);
646
647      LastMissingDefaultArg = p;
648    }
649  }
650
651  if (LastMissingDefaultArg > 0) {
652    // Some default arguments were missing. Clear out all of the
653    // default arguments up to (and including) the last missing
654    // default argument, so that we leave the function parameters
655    // in a semantically valid state.
656    for (p = 0; p <= LastMissingDefaultArg; ++p) {
657      ParmVarDecl *Param = FD->getParamDecl(p);
658      if (Param->hasDefaultArg()) {
659        Param->setDefaultArg(0);
660      }
661    }
662  }
663}
664
665// CheckConstexprParameterTypes - Check whether a function's parameter types
666// are all literal types. If so, return true. If not, produce a suitable
667// diagnostic and return false.
668static bool CheckConstexprParameterTypes(Sema &SemaRef,
669                                         const FunctionDecl *FD) {
670  unsigned ArgIndex = 0;
671  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
672  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
673       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
674    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
675    SourceLocation ParamLoc = PD->getLocation();
676    if (!(*i)->isDependentType() &&
677        SemaRef.RequireLiteralType(ParamLoc, *i,
678                                   diag::err_constexpr_non_literal_param,
679                                   ArgIndex+1, PD->getSourceRange(),
680                                   isa<CXXConstructorDecl>(FD)))
681      return false;
682  }
683  return true;
684}
685
686/// \brief Get diagnostic %select index for tag kind for
687/// record diagnostic message.
688/// WARNING: Indexes apply to particular diagnostics only!
689///
690/// \returns diagnostic %select index.
691static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
692  switch (Tag) {
693  case TTK_Struct: return 0;
694  case TTK_Interface: return 1;
695  case TTK_Class:  return 2;
696  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
697  }
698}
699
700// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
701// the requirements of a constexpr function definition or a constexpr
702// constructor definition. If so, return true. If not, produce appropriate
703// diagnostics and return false.
704//
705// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
706bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
707  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
708  if (MD && MD->isInstance()) {
709    // C++11 [dcl.constexpr]p4:
710    //  The definition of a constexpr constructor shall satisfy the following
711    //  constraints:
712    //  - the class shall not have any virtual base classes;
713    const CXXRecordDecl *RD = MD->getParent();
714    if (RD->getNumVBases()) {
715      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
716        << isa<CXXConstructorDecl>(NewFD)
717        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
718      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
719             E = RD->vbases_end(); I != E; ++I)
720        Diag(I->getLocStart(),
721             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
722      return false;
723    }
724  }
725
726  if (!isa<CXXConstructorDecl>(NewFD)) {
727    // C++11 [dcl.constexpr]p3:
728    //  The definition of a constexpr function shall satisfy the following
729    //  constraints:
730    // - it shall not be virtual;
731    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
732    if (Method && Method->isVirtual()) {
733      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
734
735      // If it's not obvious why this function is virtual, find an overridden
736      // function which uses the 'virtual' keyword.
737      const CXXMethodDecl *WrittenVirtual = Method;
738      while (!WrittenVirtual->isVirtualAsWritten())
739        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
740      if (WrittenVirtual != Method)
741        Diag(WrittenVirtual->getLocation(),
742             diag::note_overridden_virtual_function);
743      return false;
744    }
745
746    // - its return type shall be a literal type;
747    QualType RT = NewFD->getResultType();
748    if (!RT->isDependentType() &&
749        RequireLiteralType(NewFD->getLocation(), RT,
750                           diag::err_constexpr_non_literal_return))
751      return false;
752  }
753
754  // - each of its parameter types shall be a literal type;
755  if (!CheckConstexprParameterTypes(*this, NewFD))
756    return false;
757
758  return true;
759}
760
761/// Check the given declaration statement is legal within a constexpr function
762/// body. C++0x [dcl.constexpr]p3,p4.
763///
764/// \return true if the body is OK, false if we have diagnosed a problem.
765static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
766                                   DeclStmt *DS) {
767  // C++0x [dcl.constexpr]p3 and p4:
768  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
769  //  contain only
770  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
771         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
772    switch ((*DclIt)->getKind()) {
773    case Decl::StaticAssert:
774    case Decl::Using:
775    case Decl::UsingShadow:
776    case Decl::UsingDirective:
777    case Decl::UnresolvedUsingTypename:
778      //   - static_assert-declarations
779      //   - using-declarations,
780      //   - using-directives,
781      continue;
782
783    case Decl::Typedef:
784    case Decl::TypeAlias: {
785      //   - typedef declarations and alias-declarations that do not define
786      //     classes or enumerations,
787      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
788      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
789        // Don't allow variably-modified types in constexpr functions.
790        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
791        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
792          << TL.getSourceRange() << TL.getType()
793          << isa<CXXConstructorDecl>(Dcl);
794        return false;
795      }
796      continue;
797    }
798
799    case Decl::Enum:
800    case Decl::CXXRecord:
801      // As an extension, we allow the declaration (but not the definition) of
802      // classes and enumerations in all declarations, not just in typedef and
803      // alias declarations.
804      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
805        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
806          << isa<CXXConstructorDecl>(Dcl);
807        return false;
808      }
809      continue;
810
811    case Decl::Var:
812      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
813        << isa<CXXConstructorDecl>(Dcl);
814      return false;
815
816    default:
817      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
818        << isa<CXXConstructorDecl>(Dcl);
819      return false;
820    }
821  }
822
823  return true;
824}
825
826/// Check that the given field is initialized within a constexpr constructor.
827///
828/// \param Dcl The constexpr constructor being checked.
829/// \param Field The field being checked. This may be a member of an anonymous
830///        struct or union nested within the class being checked.
831/// \param Inits All declarations, including anonymous struct/union members and
832///        indirect members, for which any initialization was provided.
833/// \param Diagnosed Set to true if an error is produced.
834static void CheckConstexprCtorInitializer(Sema &SemaRef,
835                                          const FunctionDecl *Dcl,
836                                          FieldDecl *Field,
837                                          llvm::SmallSet<Decl*, 16> &Inits,
838                                          bool &Diagnosed) {
839  if (Field->isUnnamedBitfield())
840    return;
841
842  if (Field->isAnonymousStructOrUnion() &&
843      Field->getType()->getAsCXXRecordDecl()->isEmpty())
844    return;
845
846  if (!Inits.count(Field)) {
847    if (!Diagnosed) {
848      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
849      Diagnosed = true;
850    }
851    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
852  } else if (Field->isAnonymousStructOrUnion()) {
853    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
854    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
855         I != E; ++I)
856      // If an anonymous union contains an anonymous struct of which any member
857      // is initialized, all members must be initialized.
858      if (!RD->isUnion() || Inits.count(*I))
859        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
860  }
861}
862
863/// Check the body for the given constexpr function declaration only contains
864/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
865///
866/// \return true if the body is OK, false if we have diagnosed a problem.
867bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
868  if (isa<CXXTryStmt>(Body)) {
869    // C++11 [dcl.constexpr]p3:
870    //  The definition of a constexpr function shall satisfy the following
871    //  constraints: [...]
872    // - its function-body shall be = delete, = default, or a
873    //   compound-statement
874    //
875    // C++11 [dcl.constexpr]p4:
876    //  In the definition of a constexpr constructor, [...]
877    // - its function-body shall not be a function-try-block;
878    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
879      << isa<CXXConstructorDecl>(Dcl);
880    return false;
881  }
882
883  // - its function-body shall be [...] a compound-statement that contains only
884  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
885
886  SmallVector<SourceLocation, 4> ReturnStmts;
887  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
888         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
889    switch ((*BodyIt)->getStmtClass()) {
890    case Stmt::NullStmtClass:
891      //   - null statements,
892      continue;
893
894    case Stmt::DeclStmtClass:
895      //   - static_assert-declarations
896      //   - using-declarations,
897      //   - using-directives,
898      //   - typedef declarations and alias-declarations that do not define
899      //     classes or enumerations,
900      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
901        return false;
902      continue;
903
904    case Stmt::ReturnStmtClass:
905      //   - and exactly one return statement;
906      if (isa<CXXConstructorDecl>(Dcl))
907        break;
908
909      ReturnStmts.push_back((*BodyIt)->getLocStart());
910      continue;
911
912    default:
913      break;
914    }
915
916    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
917      << isa<CXXConstructorDecl>(Dcl);
918    return false;
919  }
920
921  if (const CXXConstructorDecl *Constructor
922        = dyn_cast<CXXConstructorDecl>(Dcl)) {
923    const CXXRecordDecl *RD = Constructor->getParent();
924    // DR1359:
925    // - every non-variant non-static data member and base class sub-object
926    //   shall be initialized;
927    // - if the class is a non-empty union, or for each non-empty anonymous
928    //   union member of a non-union class, exactly one non-static data member
929    //   shall be initialized;
930    if (RD->isUnion()) {
931      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
932        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
933        return false;
934      }
935    } else if (!Constructor->isDependentContext() &&
936               !Constructor->isDelegatingConstructor()) {
937      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
938
939      // Skip detailed checking if we have enough initializers, and we would
940      // allow at most one initializer per member.
941      bool AnyAnonStructUnionMembers = false;
942      unsigned Fields = 0;
943      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
944           E = RD->field_end(); I != E; ++I, ++Fields) {
945        if (I->isAnonymousStructOrUnion()) {
946          AnyAnonStructUnionMembers = true;
947          break;
948        }
949      }
950      if (AnyAnonStructUnionMembers ||
951          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
952        // Check initialization of non-static data members. Base classes are
953        // always initialized so do not need to be checked. Dependent bases
954        // might not have initializers in the member initializer list.
955        llvm::SmallSet<Decl*, 16> Inits;
956        for (CXXConstructorDecl::init_const_iterator
957               I = Constructor->init_begin(), E = Constructor->init_end();
958             I != E; ++I) {
959          if (FieldDecl *FD = (*I)->getMember())
960            Inits.insert(FD);
961          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
962            Inits.insert(ID->chain_begin(), ID->chain_end());
963        }
964
965        bool Diagnosed = false;
966        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
967             E = RD->field_end(); I != E; ++I)
968          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
969        if (Diagnosed)
970          return false;
971      }
972    }
973  } else {
974    if (ReturnStmts.empty()) {
975      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
976      return false;
977    }
978    if (ReturnStmts.size() > 1) {
979      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
980      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
981        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
982      return false;
983    }
984  }
985
986  // C++11 [dcl.constexpr]p5:
987  //   if no function argument values exist such that the function invocation
988  //   substitution would produce a constant expression, the program is
989  //   ill-formed; no diagnostic required.
990  // C++11 [dcl.constexpr]p3:
991  //   - every constructor call and implicit conversion used in initializing the
992  //     return value shall be one of those allowed in a constant expression.
993  // C++11 [dcl.constexpr]p4:
994  //   - every constructor involved in initializing non-static data members and
995  //     base class sub-objects shall be a constexpr constructor.
996  SmallVector<PartialDiagnosticAt, 8> Diags;
997  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
998    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
999      << isa<CXXConstructorDecl>(Dcl);
1000    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1001      Diag(Diags[I].first, Diags[I].second);
1002    // Don't return false here: we allow this for compatibility in
1003    // system headers.
1004  }
1005
1006  return true;
1007}
1008
1009/// isCurrentClassName - Determine whether the identifier II is the
1010/// name of the class type currently being defined. In the case of
1011/// nested classes, this will only return true if II is the name of
1012/// the innermost class.
1013bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1014                              const CXXScopeSpec *SS) {
1015  assert(getLangOpts().CPlusPlus && "No class names in C!");
1016
1017  CXXRecordDecl *CurDecl;
1018  if (SS && SS->isSet() && !SS->isInvalid()) {
1019    DeclContext *DC = computeDeclContext(*SS, true);
1020    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1021  } else
1022    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1023
1024  if (CurDecl && CurDecl->getIdentifier())
1025    return &II == CurDecl->getIdentifier();
1026  else
1027    return false;
1028}
1029
1030/// \brief Determine whether the given class is a base class of the given
1031/// class, including looking at dependent bases.
1032static bool findCircularInheritance(const CXXRecordDecl *Class,
1033                                    const CXXRecordDecl *Current) {
1034  SmallVector<const CXXRecordDecl*, 8> Queue;
1035
1036  Class = Class->getCanonicalDecl();
1037  while (true) {
1038    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1039                                                  E = Current->bases_end();
1040         I != E; ++I) {
1041      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1042      if (!Base)
1043        continue;
1044
1045      Base = Base->getDefinition();
1046      if (!Base)
1047        continue;
1048
1049      if (Base->getCanonicalDecl() == Class)
1050        return true;
1051
1052      Queue.push_back(Base);
1053    }
1054
1055    if (Queue.empty())
1056      return false;
1057
1058    Current = Queue.back();
1059    Queue.pop_back();
1060  }
1061
1062  return false;
1063}
1064
1065/// \brief Check the validity of a C++ base class specifier.
1066///
1067/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1068/// and returns NULL otherwise.
1069CXXBaseSpecifier *
1070Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1071                         SourceRange SpecifierRange,
1072                         bool Virtual, AccessSpecifier Access,
1073                         TypeSourceInfo *TInfo,
1074                         SourceLocation EllipsisLoc) {
1075  QualType BaseType = TInfo->getType();
1076
1077  // C++ [class.union]p1:
1078  //   A union shall not have base classes.
1079  if (Class->isUnion()) {
1080    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1081      << SpecifierRange;
1082    return 0;
1083  }
1084
1085  if (EllipsisLoc.isValid() &&
1086      !TInfo->getType()->containsUnexpandedParameterPack()) {
1087    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1088      << TInfo->getTypeLoc().getSourceRange();
1089    EllipsisLoc = SourceLocation();
1090  }
1091
1092  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1093
1094  if (BaseType->isDependentType()) {
1095    // Make sure that we don't have circular inheritance among our dependent
1096    // bases. For non-dependent bases, the check for completeness below handles
1097    // this.
1098    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1099      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1100          ((BaseDecl = BaseDecl->getDefinition()) &&
1101           findCircularInheritance(Class, BaseDecl))) {
1102        Diag(BaseLoc, diag::err_circular_inheritance)
1103          << BaseType << Context.getTypeDeclType(Class);
1104
1105        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1106          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1107            << BaseType;
1108
1109        return 0;
1110      }
1111    }
1112
1113    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1114                                          Class->getTagKind() == TTK_Class,
1115                                          Access, TInfo, EllipsisLoc);
1116  }
1117
1118  // Base specifiers must be record types.
1119  if (!BaseType->isRecordType()) {
1120    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1121    return 0;
1122  }
1123
1124  // C++ [class.union]p1:
1125  //   A union shall not be used as a base class.
1126  if (BaseType->isUnionType()) {
1127    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1128    return 0;
1129  }
1130
1131  // C++ [class.derived]p2:
1132  //   The class-name in a base-specifier shall not be an incompletely
1133  //   defined class.
1134  if (RequireCompleteType(BaseLoc, BaseType,
1135                          diag::err_incomplete_base_class, SpecifierRange)) {
1136    Class->setInvalidDecl();
1137    return 0;
1138  }
1139
1140  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1141  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1142  assert(BaseDecl && "Record type has no declaration");
1143  BaseDecl = BaseDecl->getDefinition();
1144  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1145  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1146  assert(CXXBaseDecl && "Base type is not a C++ type");
1147
1148  // C++ [class]p3:
1149  //   If a class is marked final and it appears as a base-type-specifier in
1150  //   base-clause, the program is ill-formed.
1151  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1152    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1153      << CXXBaseDecl->getDeclName();
1154    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1155      << CXXBaseDecl->getDeclName();
1156    return 0;
1157  }
1158
1159  if (BaseDecl->isInvalidDecl())
1160    Class->setInvalidDecl();
1161
1162  // Create the base specifier.
1163  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1164                                        Class->getTagKind() == TTK_Class,
1165                                        Access, TInfo, EllipsisLoc);
1166}
1167
1168/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1169/// one entry in the base class list of a class specifier, for
1170/// example:
1171///    class foo : public bar, virtual private baz {
1172/// 'public bar' and 'virtual private baz' are each base-specifiers.
1173BaseResult
1174Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1175                         bool Virtual, AccessSpecifier Access,
1176                         ParsedType basetype, SourceLocation BaseLoc,
1177                         SourceLocation EllipsisLoc) {
1178  if (!classdecl)
1179    return true;
1180
1181  AdjustDeclIfTemplate(classdecl);
1182  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1183  if (!Class)
1184    return true;
1185
1186  TypeSourceInfo *TInfo = 0;
1187  GetTypeFromParser(basetype, &TInfo);
1188
1189  if (EllipsisLoc.isInvalid() &&
1190      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1191                                      UPPC_BaseType))
1192    return true;
1193
1194  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1195                                                      Virtual, Access, TInfo,
1196                                                      EllipsisLoc))
1197    return BaseSpec;
1198  else
1199    Class->setInvalidDecl();
1200
1201  return true;
1202}
1203
1204/// \brief Performs the actual work of attaching the given base class
1205/// specifiers to a C++ class.
1206bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1207                                unsigned NumBases) {
1208 if (NumBases == 0)
1209    return false;
1210
1211  // Used to keep track of which base types we have already seen, so
1212  // that we can properly diagnose redundant direct base types. Note
1213  // that the key is always the unqualified canonical type of the base
1214  // class.
1215  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1216
1217  // Copy non-redundant base specifiers into permanent storage.
1218  unsigned NumGoodBases = 0;
1219  bool Invalid = false;
1220  for (unsigned idx = 0; idx < NumBases; ++idx) {
1221    QualType NewBaseType
1222      = Context.getCanonicalType(Bases[idx]->getType());
1223    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1224
1225    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1226    if (KnownBase) {
1227      // C++ [class.mi]p3:
1228      //   A class shall not be specified as a direct base class of a
1229      //   derived class more than once.
1230      Diag(Bases[idx]->getLocStart(),
1231           diag::err_duplicate_base_class)
1232        << KnownBase->getType()
1233        << Bases[idx]->getSourceRange();
1234
1235      // Delete the duplicate base class specifier; we're going to
1236      // overwrite its pointer later.
1237      Context.Deallocate(Bases[idx]);
1238
1239      Invalid = true;
1240    } else {
1241      // Okay, add this new base class.
1242      KnownBase = Bases[idx];
1243      Bases[NumGoodBases++] = Bases[idx];
1244      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1245        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1246        if (Class->isInterface() &&
1247              (!RD->isInterface() ||
1248               KnownBase->getAccessSpecifier() != AS_public)) {
1249          // The Microsoft extension __interface does not permit bases that
1250          // are not themselves public interfaces.
1251          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1252            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1253            << RD->getSourceRange();
1254          Invalid = true;
1255        }
1256        if (RD->hasAttr<WeakAttr>())
1257          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1258      }
1259    }
1260  }
1261
1262  // Attach the remaining base class specifiers to the derived class.
1263  Class->setBases(Bases, NumGoodBases);
1264
1265  // Delete the remaining (good) base class specifiers, since their
1266  // data has been copied into the CXXRecordDecl.
1267  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1268    Context.Deallocate(Bases[idx]);
1269
1270  return Invalid;
1271}
1272
1273/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1274/// class, after checking whether there are any duplicate base
1275/// classes.
1276void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1277                               unsigned NumBases) {
1278  if (!ClassDecl || !Bases || !NumBases)
1279    return;
1280
1281  AdjustDeclIfTemplate(ClassDecl);
1282  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1283                       (CXXBaseSpecifier**)(Bases), NumBases);
1284}
1285
1286static CXXRecordDecl *GetClassForType(QualType T) {
1287  if (const RecordType *RT = T->getAs<RecordType>())
1288    return cast<CXXRecordDecl>(RT->getDecl());
1289  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1290    return ICT->getDecl();
1291  else
1292    return 0;
1293}
1294
1295/// \brief Determine whether the type \p Derived is a C++ class that is
1296/// derived from the type \p Base.
1297bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1298  if (!getLangOpts().CPlusPlus)
1299    return false;
1300
1301  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1302  if (!DerivedRD)
1303    return false;
1304
1305  CXXRecordDecl *BaseRD = GetClassForType(Base);
1306  if (!BaseRD)
1307    return false;
1308
1309  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1310  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1311}
1312
1313/// \brief Determine whether the type \p Derived is a C++ class that is
1314/// derived from the type \p Base.
1315bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1316  if (!getLangOpts().CPlusPlus)
1317    return false;
1318
1319  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1320  if (!DerivedRD)
1321    return false;
1322
1323  CXXRecordDecl *BaseRD = GetClassForType(Base);
1324  if (!BaseRD)
1325    return false;
1326
1327  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1328}
1329
1330void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1331                              CXXCastPath &BasePathArray) {
1332  assert(BasePathArray.empty() && "Base path array must be empty!");
1333  assert(Paths.isRecordingPaths() && "Must record paths!");
1334
1335  const CXXBasePath &Path = Paths.front();
1336
1337  // We first go backward and check if we have a virtual base.
1338  // FIXME: It would be better if CXXBasePath had the base specifier for
1339  // the nearest virtual base.
1340  unsigned Start = 0;
1341  for (unsigned I = Path.size(); I != 0; --I) {
1342    if (Path[I - 1].Base->isVirtual()) {
1343      Start = I - 1;
1344      break;
1345    }
1346  }
1347
1348  // Now add all bases.
1349  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1350    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1351}
1352
1353/// \brief Determine whether the given base path includes a virtual
1354/// base class.
1355bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1356  for (CXXCastPath::const_iterator B = BasePath.begin(),
1357                                BEnd = BasePath.end();
1358       B != BEnd; ++B)
1359    if ((*B)->isVirtual())
1360      return true;
1361
1362  return false;
1363}
1364
1365/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1366/// conversion (where Derived and Base are class types) is
1367/// well-formed, meaning that the conversion is unambiguous (and
1368/// that all of the base classes are accessible). Returns true
1369/// and emits a diagnostic if the code is ill-formed, returns false
1370/// otherwise. Loc is the location where this routine should point to
1371/// if there is an error, and Range is the source range to highlight
1372/// if there is an error.
1373bool
1374Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1375                                   unsigned InaccessibleBaseID,
1376                                   unsigned AmbigiousBaseConvID,
1377                                   SourceLocation Loc, SourceRange Range,
1378                                   DeclarationName Name,
1379                                   CXXCastPath *BasePath) {
1380  // First, determine whether the path from Derived to Base is
1381  // ambiguous. This is slightly more expensive than checking whether
1382  // the Derived to Base conversion exists, because here we need to
1383  // explore multiple paths to determine if there is an ambiguity.
1384  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1385                     /*DetectVirtual=*/false);
1386  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1387  assert(DerivationOkay &&
1388         "Can only be used with a derived-to-base conversion");
1389  (void)DerivationOkay;
1390
1391  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1392    if (InaccessibleBaseID) {
1393      // Check that the base class can be accessed.
1394      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1395                                   InaccessibleBaseID)) {
1396        case AR_inaccessible:
1397          return true;
1398        case AR_accessible:
1399        case AR_dependent:
1400        case AR_delayed:
1401          break;
1402      }
1403    }
1404
1405    // Build a base path if necessary.
1406    if (BasePath)
1407      BuildBasePathArray(Paths, *BasePath);
1408    return false;
1409  }
1410
1411  // We know that the derived-to-base conversion is ambiguous, and
1412  // we're going to produce a diagnostic. Perform the derived-to-base
1413  // search just one more time to compute all of the possible paths so
1414  // that we can print them out. This is more expensive than any of
1415  // the previous derived-to-base checks we've done, but at this point
1416  // performance isn't as much of an issue.
1417  Paths.clear();
1418  Paths.setRecordingPaths(true);
1419  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1420  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1421  (void)StillOkay;
1422
1423  // Build up a textual representation of the ambiguous paths, e.g.,
1424  // D -> B -> A, that will be used to illustrate the ambiguous
1425  // conversions in the diagnostic. We only print one of the paths
1426  // to each base class subobject.
1427  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1428
1429  Diag(Loc, AmbigiousBaseConvID)
1430  << Derived << Base << PathDisplayStr << Range << Name;
1431  return true;
1432}
1433
1434bool
1435Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1436                                   SourceLocation Loc, SourceRange Range,
1437                                   CXXCastPath *BasePath,
1438                                   bool IgnoreAccess) {
1439  return CheckDerivedToBaseConversion(Derived, Base,
1440                                      IgnoreAccess ? 0
1441                                       : diag::err_upcast_to_inaccessible_base,
1442                                      diag::err_ambiguous_derived_to_base_conv,
1443                                      Loc, Range, DeclarationName(),
1444                                      BasePath);
1445}
1446
1447
1448/// @brief Builds a string representing ambiguous paths from a
1449/// specific derived class to different subobjects of the same base
1450/// class.
1451///
1452/// This function builds a string that can be used in error messages
1453/// to show the different paths that one can take through the
1454/// inheritance hierarchy to go from the derived class to different
1455/// subobjects of a base class. The result looks something like this:
1456/// @code
1457/// struct D -> struct B -> struct A
1458/// struct D -> struct C -> struct A
1459/// @endcode
1460std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1461  std::string PathDisplayStr;
1462  std::set<unsigned> DisplayedPaths;
1463  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1464       Path != Paths.end(); ++Path) {
1465    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1466      // We haven't displayed a path to this particular base
1467      // class subobject yet.
1468      PathDisplayStr += "\n    ";
1469      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1470      for (CXXBasePath::const_iterator Element = Path->begin();
1471           Element != Path->end(); ++Element)
1472        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1473    }
1474  }
1475
1476  return PathDisplayStr;
1477}
1478
1479//===----------------------------------------------------------------------===//
1480// C++ class member Handling
1481//===----------------------------------------------------------------------===//
1482
1483/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1484bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1485                                SourceLocation ASLoc,
1486                                SourceLocation ColonLoc,
1487                                AttributeList *Attrs) {
1488  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1489  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1490                                                  ASLoc, ColonLoc);
1491  CurContext->addHiddenDecl(ASDecl);
1492  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1493}
1494
1495/// CheckOverrideControl - Check C++11 override control semantics.
1496void Sema::CheckOverrideControl(Decl *D) {
1497  if (D->isInvalidDecl())
1498    return;
1499
1500  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1501
1502  // Do we know which functions this declaration might be overriding?
1503  bool OverridesAreKnown = !MD ||
1504      (!MD->getParent()->hasAnyDependentBases() &&
1505       !MD->getType()->isDependentType());
1506
1507  if (!MD || !MD->isVirtual()) {
1508    if (OverridesAreKnown) {
1509      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1510        Diag(OA->getLocation(),
1511             diag::override_keyword_only_allowed_on_virtual_member_functions)
1512          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1513        D->dropAttr<OverrideAttr>();
1514      }
1515      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1516        Diag(FA->getLocation(),
1517             diag::override_keyword_only_allowed_on_virtual_member_functions)
1518          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1519        D->dropAttr<FinalAttr>();
1520      }
1521    }
1522    return;
1523  }
1524
1525  if (!OverridesAreKnown)
1526    return;
1527
1528  // C++11 [class.virtual]p5:
1529  //   If a virtual function is marked with the virt-specifier override and
1530  //   does not override a member function of a base class, the program is
1531  //   ill-formed.
1532  bool HasOverriddenMethods =
1533    MD->begin_overridden_methods() != MD->end_overridden_methods();
1534  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1535    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1536      << MD->getDeclName();
1537}
1538
1539/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1540/// function overrides a virtual member function marked 'final', according to
1541/// C++11 [class.virtual]p4.
1542bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1543                                                  const CXXMethodDecl *Old) {
1544  if (!Old->hasAttr<FinalAttr>())
1545    return false;
1546
1547  Diag(New->getLocation(), diag::err_final_function_overridden)
1548    << New->getDeclName();
1549  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1550  return true;
1551}
1552
1553static bool InitializationHasSideEffects(const FieldDecl &FD) {
1554  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1555  // FIXME: Destruction of ObjC lifetime types has side-effects.
1556  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1557    return !RD->isCompleteDefinition() ||
1558           !RD->hasTrivialDefaultConstructor() ||
1559           !RD->hasTrivialDestructor();
1560  return false;
1561}
1562
1563/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1564/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1565/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1566/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1567/// present (but parsing it has been deferred).
1568NamedDecl *
1569Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1570                               MultiTemplateParamsArg TemplateParameterLists,
1571                               Expr *BW, const VirtSpecifiers &VS,
1572                               InClassInitStyle InitStyle) {
1573  const DeclSpec &DS = D.getDeclSpec();
1574  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1575  DeclarationName Name = NameInfo.getName();
1576  SourceLocation Loc = NameInfo.getLoc();
1577
1578  // For anonymous bitfields, the location should point to the type.
1579  if (Loc.isInvalid())
1580    Loc = D.getLocStart();
1581
1582  Expr *BitWidth = static_cast<Expr*>(BW);
1583
1584  assert(isa<CXXRecordDecl>(CurContext));
1585  assert(!DS.isFriendSpecified());
1586
1587  bool isFunc = D.isDeclarationOfFunction();
1588
1589  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1590    // The Microsoft extension __interface only permits public member functions
1591    // and prohibits constructors, destructors, operators, non-public member
1592    // functions, static methods and data members.
1593    unsigned InvalidDecl;
1594    bool ShowDeclName = true;
1595    if (!isFunc)
1596      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1597    else if (AS != AS_public)
1598      InvalidDecl = 2;
1599    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1600      InvalidDecl = 3;
1601    else switch (Name.getNameKind()) {
1602      case DeclarationName::CXXConstructorName:
1603        InvalidDecl = 4;
1604        ShowDeclName = false;
1605        break;
1606
1607      case DeclarationName::CXXDestructorName:
1608        InvalidDecl = 5;
1609        ShowDeclName = false;
1610        break;
1611
1612      case DeclarationName::CXXOperatorName:
1613      case DeclarationName::CXXConversionFunctionName:
1614        InvalidDecl = 6;
1615        break;
1616
1617      default:
1618        InvalidDecl = 0;
1619        break;
1620    }
1621
1622    if (InvalidDecl) {
1623      if (ShowDeclName)
1624        Diag(Loc, diag::err_invalid_member_in_interface)
1625          << (InvalidDecl-1) << Name;
1626      else
1627        Diag(Loc, diag::err_invalid_member_in_interface)
1628          << (InvalidDecl-1) << "";
1629      return 0;
1630    }
1631  }
1632
1633  // C++ 9.2p6: A member shall not be declared to have automatic storage
1634  // duration (auto, register) or with the extern storage-class-specifier.
1635  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1636  // data members and cannot be applied to names declared const or static,
1637  // and cannot be applied to reference members.
1638  switch (DS.getStorageClassSpec()) {
1639    case DeclSpec::SCS_unspecified:
1640    case DeclSpec::SCS_typedef:
1641    case DeclSpec::SCS_static:
1642      // FALL THROUGH.
1643      break;
1644    case DeclSpec::SCS_mutable:
1645      if (isFunc) {
1646        if (DS.getStorageClassSpecLoc().isValid())
1647          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1648        else
1649          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1650
1651        // FIXME: It would be nicer if the keyword was ignored only for this
1652        // declarator. Otherwise we could get follow-up errors.
1653        D.getMutableDeclSpec().ClearStorageClassSpecs();
1654      }
1655      break;
1656    default:
1657      if (DS.getStorageClassSpecLoc().isValid())
1658        Diag(DS.getStorageClassSpecLoc(),
1659             diag::err_storageclass_invalid_for_member);
1660      else
1661        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1662      D.getMutableDeclSpec().ClearStorageClassSpecs();
1663  }
1664
1665  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1666                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1667                      !isFunc);
1668
1669  if (DS.isConstexprSpecified() && isInstField) {
1670    SemaDiagnosticBuilder B =
1671        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1672    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1673    if (InitStyle == ICIS_NoInit) {
1674      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1675      D.getMutableDeclSpec().ClearConstexprSpec();
1676      const char *PrevSpec;
1677      unsigned DiagID;
1678      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1679                                         PrevSpec, DiagID, getLangOpts());
1680      assert(!Failed && "Making a constexpr member const shouldn't fail");
1681    } else {
1682      B << 1;
1683      const char *PrevSpec;
1684      unsigned DiagID;
1685      DeclSpec::SCS PrevSCS = DS.getStorageClassSpec();
1686      if (D.getMutableDeclSpec().SetStorageClassSpec(
1687          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1688        assert(PrevSCS == DeclSpec::SCS_mutable &&
1689               "This is the only DeclSpec that should fail to be applied");
1690        B << 1;
1691      } else {
1692        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1693        isInstField = false;
1694      }
1695    }
1696  }
1697
1698  NamedDecl *Member;
1699  if (isInstField) {
1700    CXXScopeSpec &SS = D.getCXXScopeSpec();
1701
1702    // Data members must have identifiers for names.
1703    if (!Name.isIdentifier()) {
1704      Diag(Loc, diag::err_bad_variable_name)
1705        << Name;
1706      return 0;
1707    }
1708
1709    IdentifierInfo *II = Name.getAsIdentifierInfo();
1710
1711    // Member field could not be with "template" keyword.
1712    // So TemplateParameterLists should be empty in this case.
1713    if (TemplateParameterLists.size()) {
1714      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1715      if (TemplateParams->size()) {
1716        // There is no such thing as a member field template.
1717        Diag(D.getIdentifierLoc(), diag::err_template_member)
1718            << II
1719            << SourceRange(TemplateParams->getTemplateLoc(),
1720                TemplateParams->getRAngleLoc());
1721      } else {
1722        // There is an extraneous 'template<>' for this member.
1723        Diag(TemplateParams->getTemplateLoc(),
1724            diag::err_template_member_noparams)
1725            << II
1726            << SourceRange(TemplateParams->getTemplateLoc(),
1727                TemplateParams->getRAngleLoc());
1728      }
1729      return 0;
1730    }
1731
1732    if (SS.isSet() && !SS.isInvalid()) {
1733      // The user provided a superfluous scope specifier inside a class
1734      // definition:
1735      //
1736      // class X {
1737      //   int X::member;
1738      // };
1739      if (DeclContext *DC = computeDeclContext(SS, false))
1740        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1741      else
1742        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1743          << Name << SS.getRange();
1744
1745      SS.clear();
1746    }
1747
1748    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1749                         InitStyle, AS);
1750    assert(Member && "HandleField never returns null");
1751  } else {
1752    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1753
1754    Member = HandleDeclarator(S, D, TemplateParameterLists);
1755    if (!Member) {
1756      return 0;
1757    }
1758
1759    // Non-instance-fields can't have a bitfield.
1760    if (BitWidth) {
1761      if (Member->isInvalidDecl()) {
1762        // don't emit another diagnostic.
1763      } else if (isa<VarDecl>(Member)) {
1764        // C++ 9.6p3: A bit-field shall not be a static member.
1765        // "static member 'A' cannot be a bit-field"
1766        Diag(Loc, diag::err_static_not_bitfield)
1767          << Name << BitWidth->getSourceRange();
1768      } else if (isa<TypedefDecl>(Member)) {
1769        // "typedef member 'x' cannot be a bit-field"
1770        Diag(Loc, diag::err_typedef_not_bitfield)
1771          << Name << BitWidth->getSourceRange();
1772      } else {
1773        // A function typedef ("typedef int f(); f a;").
1774        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1775        Diag(Loc, diag::err_not_integral_type_bitfield)
1776          << Name << cast<ValueDecl>(Member)->getType()
1777          << BitWidth->getSourceRange();
1778      }
1779
1780      BitWidth = 0;
1781      Member->setInvalidDecl();
1782    }
1783
1784    Member->setAccess(AS);
1785
1786    // If we have declared a member function template, set the access of the
1787    // templated declaration as well.
1788    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1789      FunTmpl->getTemplatedDecl()->setAccess(AS);
1790  }
1791
1792  if (VS.isOverrideSpecified())
1793    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1794  if (VS.isFinalSpecified())
1795    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1796
1797  if (VS.getLastLocation().isValid()) {
1798    // Update the end location of a method that has a virt-specifiers.
1799    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1800      MD->setRangeEnd(VS.getLastLocation());
1801  }
1802
1803  CheckOverrideControl(Member);
1804
1805  assert((Name || isInstField) && "No identifier for non-field ?");
1806
1807  if (isInstField) {
1808    FieldDecl *FD = cast<FieldDecl>(Member);
1809    FieldCollector->Add(FD);
1810
1811    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1812                                 FD->getLocation())
1813          != DiagnosticsEngine::Ignored) {
1814      // Remember all explicit private FieldDecls that have a name, no side
1815      // effects and are not part of a dependent type declaration.
1816      if (!FD->isImplicit() && FD->getDeclName() &&
1817          FD->getAccess() == AS_private &&
1818          !FD->hasAttr<UnusedAttr>() &&
1819          !FD->getParent()->isDependentContext() &&
1820          !InitializationHasSideEffects(*FD))
1821        UnusedPrivateFields.insert(FD);
1822    }
1823  }
1824
1825  return Member;
1826}
1827
1828namespace {
1829  class UninitializedFieldVisitor
1830      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1831    Sema &S;
1832    ValueDecl *VD;
1833  public:
1834    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1835    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1836                                                        S(S) {
1837      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1838        this->VD = IFD->getAnonField();
1839      else
1840        this->VD = VD;
1841    }
1842
1843    void HandleExpr(Expr *E) {
1844      if (!E) return;
1845
1846      // Expressions like x(x) sometimes lack the surrounding expressions
1847      // but need to be checked anyways.
1848      HandleValue(E);
1849      Visit(E);
1850    }
1851
1852    void HandleValue(Expr *E) {
1853      E = E->IgnoreParens();
1854
1855      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1856        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1857          return;
1858
1859        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1860        // or union.
1861        MemberExpr *FieldME = ME;
1862
1863        Expr *Base = E;
1864        while (isa<MemberExpr>(Base)) {
1865          ME = cast<MemberExpr>(Base);
1866
1867          if (isa<VarDecl>(ME->getMemberDecl()))
1868            return;
1869
1870          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1871            if (!FD->isAnonymousStructOrUnion())
1872              FieldME = ME;
1873
1874          Base = ME->getBase();
1875        }
1876
1877        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1878          unsigned diag = VD->getType()->isReferenceType()
1879              ? diag::warn_reference_field_is_uninit
1880              : diag::warn_field_is_uninit;
1881          S.Diag(FieldME->getExprLoc(), diag) << VD;
1882        }
1883        return;
1884      }
1885
1886      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1887        HandleValue(CO->getTrueExpr());
1888        HandleValue(CO->getFalseExpr());
1889        return;
1890      }
1891
1892      if (BinaryConditionalOperator *BCO =
1893              dyn_cast<BinaryConditionalOperator>(E)) {
1894        HandleValue(BCO->getCommon());
1895        HandleValue(BCO->getFalseExpr());
1896        return;
1897      }
1898
1899      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1900        switch (BO->getOpcode()) {
1901        default:
1902          return;
1903        case(BO_PtrMemD):
1904        case(BO_PtrMemI):
1905          HandleValue(BO->getLHS());
1906          return;
1907        case(BO_Comma):
1908          HandleValue(BO->getRHS());
1909          return;
1910        }
1911      }
1912    }
1913
1914    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1915      if (E->getCastKind() == CK_LValueToRValue)
1916        HandleValue(E->getSubExpr());
1917
1918      Inherited::VisitImplicitCastExpr(E);
1919    }
1920
1921    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1922      Expr *Callee = E->getCallee();
1923      if (isa<MemberExpr>(Callee))
1924        HandleValue(Callee);
1925
1926      Inherited::VisitCXXMemberCallExpr(E);
1927    }
1928  };
1929  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1930                                                       ValueDecl *VD) {
1931    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1932  }
1933} // namespace
1934
1935/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1936/// in-class initializer for a non-static C++ class member, and after
1937/// instantiating an in-class initializer in a class template. Such actions
1938/// are deferred until the class is complete.
1939void
1940Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1941                                       Expr *InitExpr) {
1942  FieldDecl *FD = cast<FieldDecl>(D);
1943  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1944         "must set init style when field is created");
1945
1946  if (!InitExpr) {
1947    FD->setInvalidDecl();
1948    FD->removeInClassInitializer();
1949    return;
1950  }
1951
1952  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1953    FD->setInvalidDecl();
1954    FD->removeInClassInitializer();
1955    return;
1956  }
1957
1958  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1959      != DiagnosticsEngine::Ignored) {
1960    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1961  }
1962
1963  ExprResult Init = InitExpr;
1964  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1965    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1966      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1967        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1968    }
1969    Expr **Inits = &InitExpr;
1970    unsigned NumInits = 1;
1971    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1972    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1973        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1974        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1975    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1976    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1977    if (Init.isInvalid()) {
1978      FD->setInvalidDecl();
1979      return;
1980    }
1981  }
1982
1983  // C++11 [class.base.init]p7:
1984  //   The initialization of each base and member constitutes a
1985  //   full-expression.
1986  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
1987  if (Init.isInvalid()) {
1988    FD->setInvalidDecl();
1989    return;
1990  }
1991
1992  InitExpr = Init.release();
1993
1994  FD->setInClassInitializer(InitExpr);
1995}
1996
1997/// \brief Find the direct and/or virtual base specifiers that
1998/// correspond to the given base type, for use in base initialization
1999/// within a constructor.
2000static bool FindBaseInitializer(Sema &SemaRef,
2001                                CXXRecordDecl *ClassDecl,
2002                                QualType BaseType,
2003                                const CXXBaseSpecifier *&DirectBaseSpec,
2004                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2005  // First, check for a direct base class.
2006  DirectBaseSpec = 0;
2007  for (CXXRecordDecl::base_class_const_iterator Base
2008         = ClassDecl->bases_begin();
2009       Base != ClassDecl->bases_end(); ++Base) {
2010    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2011      // We found a direct base of this type. That's what we're
2012      // initializing.
2013      DirectBaseSpec = &*Base;
2014      break;
2015    }
2016  }
2017
2018  // Check for a virtual base class.
2019  // FIXME: We might be able to short-circuit this if we know in advance that
2020  // there are no virtual bases.
2021  VirtualBaseSpec = 0;
2022  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2023    // We haven't found a base yet; search the class hierarchy for a
2024    // virtual base class.
2025    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2026                       /*DetectVirtual=*/false);
2027    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2028                              BaseType, Paths)) {
2029      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2030           Path != Paths.end(); ++Path) {
2031        if (Path->back().Base->isVirtual()) {
2032          VirtualBaseSpec = Path->back().Base;
2033          break;
2034        }
2035      }
2036    }
2037  }
2038
2039  return DirectBaseSpec || VirtualBaseSpec;
2040}
2041
2042/// \brief Handle a C++ member initializer using braced-init-list syntax.
2043MemInitResult
2044Sema::ActOnMemInitializer(Decl *ConstructorD,
2045                          Scope *S,
2046                          CXXScopeSpec &SS,
2047                          IdentifierInfo *MemberOrBase,
2048                          ParsedType TemplateTypeTy,
2049                          const DeclSpec &DS,
2050                          SourceLocation IdLoc,
2051                          Expr *InitList,
2052                          SourceLocation EllipsisLoc) {
2053  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2054                             DS, IdLoc, InitList,
2055                             EllipsisLoc);
2056}
2057
2058/// \brief Handle a C++ member initializer using parentheses syntax.
2059MemInitResult
2060Sema::ActOnMemInitializer(Decl *ConstructorD,
2061                          Scope *S,
2062                          CXXScopeSpec &SS,
2063                          IdentifierInfo *MemberOrBase,
2064                          ParsedType TemplateTypeTy,
2065                          const DeclSpec &DS,
2066                          SourceLocation IdLoc,
2067                          SourceLocation LParenLoc,
2068                          Expr **Args, unsigned NumArgs,
2069                          SourceLocation RParenLoc,
2070                          SourceLocation EllipsisLoc) {
2071  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2072                                           llvm::makeArrayRef(Args, NumArgs),
2073                                           RParenLoc);
2074  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2075                             DS, IdLoc, List, EllipsisLoc);
2076}
2077
2078namespace {
2079
2080// Callback to only accept typo corrections that can be a valid C++ member
2081// intializer: either a non-static field member or a base class.
2082class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2083 public:
2084  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2085      : ClassDecl(ClassDecl) {}
2086
2087  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2088    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2089      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2090        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2091      else
2092        return isa<TypeDecl>(ND);
2093    }
2094    return false;
2095  }
2096
2097 private:
2098  CXXRecordDecl *ClassDecl;
2099};
2100
2101}
2102
2103/// \brief Handle a C++ member initializer.
2104MemInitResult
2105Sema::BuildMemInitializer(Decl *ConstructorD,
2106                          Scope *S,
2107                          CXXScopeSpec &SS,
2108                          IdentifierInfo *MemberOrBase,
2109                          ParsedType TemplateTypeTy,
2110                          const DeclSpec &DS,
2111                          SourceLocation IdLoc,
2112                          Expr *Init,
2113                          SourceLocation EllipsisLoc) {
2114  if (!ConstructorD)
2115    return true;
2116
2117  AdjustDeclIfTemplate(ConstructorD);
2118
2119  CXXConstructorDecl *Constructor
2120    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2121  if (!Constructor) {
2122    // The user wrote a constructor initializer on a function that is
2123    // not a C++ constructor. Ignore the error for now, because we may
2124    // have more member initializers coming; we'll diagnose it just
2125    // once in ActOnMemInitializers.
2126    return true;
2127  }
2128
2129  CXXRecordDecl *ClassDecl = Constructor->getParent();
2130
2131  // C++ [class.base.init]p2:
2132  //   Names in a mem-initializer-id are looked up in the scope of the
2133  //   constructor's class and, if not found in that scope, are looked
2134  //   up in the scope containing the constructor's definition.
2135  //   [Note: if the constructor's class contains a member with the
2136  //   same name as a direct or virtual base class of the class, a
2137  //   mem-initializer-id naming the member or base class and composed
2138  //   of a single identifier refers to the class member. A
2139  //   mem-initializer-id for the hidden base class may be specified
2140  //   using a qualified name. ]
2141  if (!SS.getScopeRep() && !TemplateTypeTy) {
2142    // Look for a member, first.
2143    DeclContext::lookup_result Result
2144      = ClassDecl->lookup(MemberOrBase);
2145    if (!Result.empty()) {
2146      ValueDecl *Member;
2147      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2148          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2149        if (EllipsisLoc.isValid())
2150          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2151            << MemberOrBase
2152            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2153
2154        return BuildMemberInitializer(Member, Init, IdLoc);
2155      }
2156    }
2157  }
2158  // It didn't name a member, so see if it names a class.
2159  QualType BaseType;
2160  TypeSourceInfo *TInfo = 0;
2161
2162  if (TemplateTypeTy) {
2163    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2164  } else if (DS.getTypeSpecType() == TST_decltype) {
2165    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2166  } else {
2167    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2168    LookupParsedName(R, S, &SS);
2169
2170    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2171    if (!TyD) {
2172      if (R.isAmbiguous()) return true;
2173
2174      // We don't want access-control diagnostics here.
2175      R.suppressDiagnostics();
2176
2177      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2178        bool NotUnknownSpecialization = false;
2179        DeclContext *DC = computeDeclContext(SS, false);
2180        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2181          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2182
2183        if (!NotUnknownSpecialization) {
2184          // When the scope specifier can refer to a member of an unknown
2185          // specialization, we take it as a type name.
2186          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2187                                       SS.getWithLocInContext(Context),
2188                                       *MemberOrBase, IdLoc);
2189          if (BaseType.isNull())
2190            return true;
2191
2192          R.clear();
2193          R.setLookupName(MemberOrBase);
2194        }
2195      }
2196
2197      // If no results were found, try to correct typos.
2198      TypoCorrection Corr;
2199      MemInitializerValidatorCCC Validator(ClassDecl);
2200      if (R.empty() && BaseType.isNull() &&
2201          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2202                              Validator, ClassDecl))) {
2203        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2204        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2205        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2206          // We have found a non-static data member with a similar
2207          // name to what was typed; complain and initialize that
2208          // member.
2209          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2210            << MemberOrBase << true << CorrectedQuotedStr
2211            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2212          Diag(Member->getLocation(), diag::note_previous_decl)
2213            << CorrectedQuotedStr;
2214
2215          return BuildMemberInitializer(Member, Init, IdLoc);
2216        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2217          const CXXBaseSpecifier *DirectBaseSpec;
2218          const CXXBaseSpecifier *VirtualBaseSpec;
2219          if (FindBaseInitializer(*this, ClassDecl,
2220                                  Context.getTypeDeclType(Type),
2221                                  DirectBaseSpec, VirtualBaseSpec)) {
2222            // We have found a direct or virtual base class with a
2223            // similar name to what was typed; complain and initialize
2224            // that base class.
2225            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2226              << MemberOrBase << false << CorrectedQuotedStr
2227              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2228
2229            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2230                                                             : VirtualBaseSpec;
2231            Diag(BaseSpec->getLocStart(),
2232                 diag::note_base_class_specified_here)
2233              << BaseSpec->getType()
2234              << BaseSpec->getSourceRange();
2235
2236            TyD = Type;
2237          }
2238        }
2239      }
2240
2241      if (!TyD && BaseType.isNull()) {
2242        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2243          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2244        return true;
2245      }
2246    }
2247
2248    if (BaseType.isNull()) {
2249      BaseType = Context.getTypeDeclType(TyD);
2250      if (SS.isSet()) {
2251        NestedNameSpecifier *Qualifier =
2252          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2253
2254        // FIXME: preserve source range information
2255        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2256      }
2257    }
2258  }
2259
2260  if (!TInfo)
2261    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2262
2263  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2264}
2265
2266/// Checks a member initializer expression for cases where reference (or
2267/// pointer) members are bound to by-value parameters (or their addresses).
2268static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2269                                               Expr *Init,
2270                                               SourceLocation IdLoc) {
2271  QualType MemberTy = Member->getType();
2272
2273  // We only handle pointers and references currently.
2274  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2275  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2276    return;
2277
2278  const bool IsPointer = MemberTy->isPointerType();
2279  if (IsPointer) {
2280    if (const UnaryOperator *Op
2281          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2282      // The only case we're worried about with pointers requires taking the
2283      // address.
2284      if (Op->getOpcode() != UO_AddrOf)
2285        return;
2286
2287      Init = Op->getSubExpr();
2288    } else {
2289      // We only handle address-of expression initializers for pointers.
2290      return;
2291    }
2292  }
2293
2294  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2295    // Taking the address of a temporary will be diagnosed as a hard error.
2296    if (IsPointer)
2297      return;
2298
2299    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2300      << Member << Init->getSourceRange();
2301  } else if (const DeclRefExpr *DRE
2302               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2303    // We only warn when referring to a non-reference parameter declaration.
2304    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2305    if (!Parameter || Parameter->getType()->isReferenceType())
2306      return;
2307
2308    S.Diag(Init->getExprLoc(),
2309           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2310                     : diag::warn_bind_ref_member_to_parameter)
2311      << Member << Parameter << Init->getSourceRange();
2312  } else {
2313    // Other initializers are fine.
2314    return;
2315  }
2316
2317  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2318    << (unsigned)IsPointer;
2319}
2320
2321MemInitResult
2322Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2323                             SourceLocation IdLoc) {
2324  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2325  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2326  assert((DirectMember || IndirectMember) &&
2327         "Member must be a FieldDecl or IndirectFieldDecl");
2328
2329  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2330    return true;
2331
2332  if (Member->isInvalidDecl())
2333    return true;
2334
2335  // Diagnose value-uses of fields to initialize themselves, e.g.
2336  //   foo(foo)
2337  // where foo is not also a parameter to the constructor.
2338  // TODO: implement -Wuninitialized and fold this into that framework.
2339  Expr **Args;
2340  unsigned NumArgs;
2341  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2342    Args = ParenList->getExprs();
2343    NumArgs = ParenList->getNumExprs();
2344  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2345    Args = InitList->getInits();
2346    NumArgs = InitList->getNumInits();
2347  } else {
2348    // Template instantiation doesn't reconstruct ParenListExprs for us.
2349    Args = &Init;
2350    NumArgs = 1;
2351  }
2352
2353  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2354        != DiagnosticsEngine::Ignored)
2355    for (unsigned i = 0; i < NumArgs; ++i)
2356      // FIXME: Warn about the case when other fields are used before being
2357      // initialized. For example, let this field be the i'th field. When
2358      // initializing the i'th field, throw a warning if any of the >= i'th
2359      // fields are used, as they are not yet initialized.
2360      // Right now we are only handling the case where the i'th field uses
2361      // itself in its initializer.
2362      // Also need to take into account that some fields may be initialized by
2363      // in-class initializers, see C++11 [class.base.init]p9.
2364      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2365
2366  SourceRange InitRange = Init->getSourceRange();
2367
2368  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2369    // Can't check initialization for a member of dependent type or when
2370    // any of the arguments are type-dependent expressions.
2371    DiscardCleanupsInEvaluationContext();
2372  } else {
2373    bool InitList = false;
2374    if (isa<InitListExpr>(Init)) {
2375      InitList = true;
2376      Args = &Init;
2377      NumArgs = 1;
2378
2379      if (isStdInitializerList(Member->getType(), 0)) {
2380        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2381            << /*at end of ctor*/1 << InitRange;
2382      }
2383    }
2384
2385    // Initialize the member.
2386    InitializedEntity MemberEntity =
2387      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2388                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2389    InitializationKind Kind =
2390      InitList ? InitializationKind::CreateDirectList(IdLoc)
2391               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2392                                                  InitRange.getEnd());
2393
2394    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2395    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2396                                            MultiExprArg(Args, NumArgs),
2397                                            0);
2398    if (MemberInit.isInvalid())
2399      return true;
2400
2401    // C++11 [class.base.init]p7:
2402    //   The initialization of each base and member constitutes a
2403    //   full-expression.
2404    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2405    if (MemberInit.isInvalid())
2406      return true;
2407
2408    Init = MemberInit.get();
2409    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2410  }
2411
2412  if (DirectMember) {
2413    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2414                                            InitRange.getBegin(), Init,
2415                                            InitRange.getEnd());
2416  } else {
2417    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2418                                            InitRange.getBegin(), Init,
2419                                            InitRange.getEnd());
2420  }
2421}
2422
2423MemInitResult
2424Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2425                                 CXXRecordDecl *ClassDecl) {
2426  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2427  if (!LangOpts.CPlusPlus11)
2428    return Diag(NameLoc, diag::err_delegating_ctor)
2429      << TInfo->getTypeLoc().getLocalSourceRange();
2430  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2431
2432  bool InitList = true;
2433  Expr **Args = &Init;
2434  unsigned NumArgs = 1;
2435  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2436    InitList = false;
2437    Args = ParenList->getExprs();
2438    NumArgs = ParenList->getNumExprs();
2439  }
2440
2441  SourceRange InitRange = Init->getSourceRange();
2442  // Initialize the object.
2443  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2444                                     QualType(ClassDecl->getTypeForDecl(), 0));
2445  InitializationKind Kind =
2446    InitList ? InitializationKind::CreateDirectList(NameLoc)
2447             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2448                                                InitRange.getEnd());
2449  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2450  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2451                                              MultiExprArg(Args, NumArgs),
2452                                              0);
2453  if (DelegationInit.isInvalid())
2454    return true;
2455
2456  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2457         "Delegating constructor with no target?");
2458
2459  // C++11 [class.base.init]p7:
2460  //   The initialization of each base and member constitutes a
2461  //   full-expression.
2462  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2463                                       InitRange.getBegin());
2464  if (DelegationInit.isInvalid())
2465    return true;
2466
2467  // If we are in a dependent context, template instantiation will
2468  // perform this type-checking again. Just save the arguments that we
2469  // received in a ParenListExpr.
2470  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2471  // of the information that we have about the base
2472  // initializer. However, deconstructing the ASTs is a dicey process,
2473  // and this approach is far more likely to get the corner cases right.
2474  if (CurContext->isDependentContext())
2475    DelegationInit = Owned(Init);
2476
2477  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2478                                          DelegationInit.takeAs<Expr>(),
2479                                          InitRange.getEnd());
2480}
2481
2482MemInitResult
2483Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2484                           Expr *Init, CXXRecordDecl *ClassDecl,
2485                           SourceLocation EllipsisLoc) {
2486  SourceLocation BaseLoc
2487    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2488
2489  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2490    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2491             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2492
2493  // C++ [class.base.init]p2:
2494  //   [...] Unless the mem-initializer-id names a nonstatic data
2495  //   member of the constructor's class or a direct or virtual base
2496  //   of that class, the mem-initializer is ill-formed. A
2497  //   mem-initializer-list can initialize a base class using any
2498  //   name that denotes that base class type.
2499  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2500
2501  SourceRange InitRange = Init->getSourceRange();
2502  if (EllipsisLoc.isValid()) {
2503    // This is a pack expansion.
2504    if (!BaseType->containsUnexpandedParameterPack())  {
2505      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2506        << SourceRange(BaseLoc, InitRange.getEnd());
2507
2508      EllipsisLoc = SourceLocation();
2509    }
2510  } else {
2511    // Check for any unexpanded parameter packs.
2512    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2513      return true;
2514
2515    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2516      return true;
2517  }
2518
2519  // Check for direct and virtual base classes.
2520  const CXXBaseSpecifier *DirectBaseSpec = 0;
2521  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2522  if (!Dependent) {
2523    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2524                                       BaseType))
2525      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2526
2527    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2528                        VirtualBaseSpec);
2529
2530    // C++ [base.class.init]p2:
2531    // Unless the mem-initializer-id names a nonstatic data member of the
2532    // constructor's class or a direct or virtual base of that class, the
2533    // mem-initializer is ill-formed.
2534    if (!DirectBaseSpec && !VirtualBaseSpec) {
2535      // If the class has any dependent bases, then it's possible that
2536      // one of those types will resolve to the same type as
2537      // BaseType. Therefore, just treat this as a dependent base
2538      // class initialization.  FIXME: Should we try to check the
2539      // initialization anyway? It seems odd.
2540      if (ClassDecl->hasAnyDependentBases())
2541        Dependent = true;
2542      else
2543        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2544          << BaseType << Context.getTypeDeclType(ClassDecl)
2545          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2546    }
2547  }
2548
2549  if (Dependent) {
2550    DiscardCleanupsInEvaluationContext();
2551
2552    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2553                                            /*IsVirtual=*/false,
2554                                            InitRange.getBegin(), Init,
2555                                            InitRange.getEnd(), EllipsisLoc);
2556  }
2557
2558  // C++ [base.class.init]p2:
2559  //   If a mem-initializer-id is ambiguous because it designates both
2560  //   a direct non-virtual base class and an inherited virtual base
2561  //   class, the mem-initializer is ill-formed.
2562  if (DirectBaseSpec && VirtualBaseSpec)
2563    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2564      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2565
2566  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2567  if (!BaseSpec)
2568    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2569
2570  // Initialize the base.
2571  bool InitList = true;
2572  Expr **Args = &Init;
2573  unsigned NumArgs = 1;
2574  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2575    InitList = false;
2576    Args = ParenList->getExprs();
2577    NumArgs = ParenList->getNumExprs();
2578  }
2579
2580  InitializedEntity BaseEntity =
2581    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2582  InitializationKind Kind =
2583    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2584             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2585                                                InitRange.getEnd());
2586  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2587  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2588                                        MultiExprArg(Args, NumArgs), 0);
2589  if (BaseInit.isInvalid())
2590    return true;
2591
2592  // C++11 [class.base.init]p7:
2593  //   The initialization of each base and member constitutes a
2594  //   full-expression.
2595  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2596  if (BaseInit.isInvalid())
2597    return true;
2598
2599  // If we are in a dependent context, template instantiation will
2600  // perform this type-checking again. Just save the arguments that we
2601  // received in a ParenListExpr.
2602  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2603  // of the information that we have about the base
2604  // initializer. However, deconstructing the ASTs is a dicey process,
2605  // and this approach is far more likely to get the corner cases right.
2606  if (CurContext->isDependentContext())
2607    BaseInit = Owned(Init);
2608
2609  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2610                                          BaseSpec->isVirtual(),
2611                                          InitRange.getBegin(),
2612                                          BaseInit.takeAs<Expr>(),
2613                                          InitRange.getEnd(), EllipsisLoc);
2614}
2615
2616// Create a static_cast\<T&&>(expr).
2617static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2618  QualType ExprType = E->getType();
2619  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2620  SourceLocation ExprLoc = E->getLocStart();
2621  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2622      TargetType, ExprLoc);
2623
2624  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2625                                   SourceRange(ExprLoc, ExprLoc),
2626                                   E->getSourceRange()).take();
2627}
2628
2629/// ImplicitInitializerKind - How an implicit base or member initializer should
2630/// initialize its base or member.
2631enum ImplicitInitializerKind {
2632  IIK_Default,
2633  IIK_Copy,
2634  IIK_Move
2635};
2636
2637static bool
2638BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2639                             ImplicitInitializerKind ImplicitInitKind,
2640                             CXXBaseSpecifier *BaseSpec,
2641                             bool IsInheritedVirtualBase,
2642                             CXXCtorInitializer *&CXXBaseInit) {
2643  InitializedEntity InitEntity
2644    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2645                                        IsInheritedVirtualBase);
2646
2647  ExprResult BaseInit;
2648
2649  switch (ImplicitInitKind) {
2650  case IIK_Default: {
2651    InitializationKind InitKind
2652      = InitializationKind::CreateDefault(Constructor->getLocation());
2653    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2654    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2655    break;
2656  }
2657
2658  case IIK_Move:
2659  case IIK_Copy: {
2660    bool Moving = ImplicitInitKind == IIK_Move;
2661    ParmVarDecl *Param = Constructor->getParamDecl(0);
2662    QualType ParamType = Param->getType().getNonReferenceType();
2663
2664    Expr *CopyCtorArg =
2665      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2666                          SourceLocation(), Param, false,
2667                          Constructor->getLocation(), ParamType,
2668                          VK_LValue, 0);
2669
2670    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2671
2672    // Cast to the base class to avoid ambiguities.
2673    QualType ArgTy =
2674      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2675                                       ParamType.getQualifiers());
2676
2677    if (Moving) {
2678      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2679    }
2680
2681    CXXCastPath BasePath;
2682    BasePath.push_back(BaseSpec);
2683    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2684                                            CK_UncheckedDerivedToBase,
2685                                            Moving ? VK_XValue : VK_LValue,
2686                                            &BasePath).take();
2687
2688    InitializationKind InitKind
2689      = InitializationKind::CreateDirect(Constructor->getLocation(),
2690                                         SourceLocation(), SourceLocation());
2691    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2692                                   &CopyCtorArg, 1);
2693    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2694                               MultiExprArg(&CopyCtorArg, 1));
2695    break;
2696  }
2697  }
2698
2699  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2700  if (BaseInit.isInvalid())
2701    return true;
2702
2703  CXXBaseInit =
2704    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2705               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2706                                                        SourceLocation()),
2707                                             BaseSpec->isVirtual(),
2708                                             SourceLocation(),
2709                                             BaseInit.takeAs<Expr>(),
2710                                             SourceLocation(),
2711                                             SourceLocation());
2712
2713  return false;
2714}
2715
2716static bool RefersToRValueRef(Expr *MemRef) {
2717  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2718  return Referenced->getType()->isRValueReferenceType();
2719}
2720
2721static bool
2722BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2723                               ImplicitInitializerKind ImplicitInitKind,
2724                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2725                               CXXCtorInitializer *&CXXMemberInit) {
2726  if (Field->isInvalidDecl())
2727    return true;
2728
2729  SourceLocation Loc = Constructor->getLocation();
2730
2731  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2732    bool Moving = ImplicitInitKind == IIK_Move;
2733    ParmVarDecl *Param = Constructor->getParamDecl(0);
2734    QualType ParamType = Param->getType().getNonReferenceType();
2735
2736    // Suppress copying zero-width bitfields.
2737    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2738      return false;
2739
2740    Expr *MemberExprBase =
2741      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2742                          SourceLocation(), Param, false,
2743                          Loc, ParamType, VK_LValue, 0);
2744
2745    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2746
2747    if (Moving) {
2748      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2749    }
2750
2751    // Build a reference to this field within the parameter.
2752    CXXScopeSpec SS;
2753    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2754                              Sema::LookupMemberName);
2755    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2756                                  : cast<ValueDecl>(Field), AS_public);
2757    MemberLookup.resolveKind();
2758    ExprResult CtorArg
2759      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2760                                         ParamType, Loc,
2761                                         /*IsArrow=*/false,
2762                                         SS,
2763                                         /*TemplateKWLoc=*/SourceLocation(),
2764                                         /*FirstQualifierInScope=*/0,
2765                                         MemberLookup,
2766                                         /*TemplateArgs=*/0);
2767    if (CtorArg.isInvalid())
2768      return true;
2769
2770    // C++11 [class.copy]p15:
2771    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2772    //     with static_cast<T&&>(x.m);
2773    if (RefersToRValueRef(CtorArg.get())) {
2774      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2775    }
2776
2777    // When the field we are copying is an array, create index variables for
2778    // each dimension of the array. We use these index variables to subscript
2779    // the source array, and other clients (e.g., CodeGen) will perform the
2780    // necessary iteration with these index variables.
2781    SmallVector<VarDecl *, 4> IndexVariables;
2782    QualType BaseType = Field->getType();
2783    QualType SizeType = SemaRef.Context.getSizeType();
2784    bool InitializingArray = false;
2785    while (const ConstantArrayType *Array
2786                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2787      InitializingArray = true;
2788      // Create the iteration variable for this array index.
2789      IdentifierInfo *IterationVarName = 0;
2790      {
2791        SmallString<8> Str;
2792        llvm::raw_svector_ostream OS(Str);
2793        OS << "__i" << IndexVariables.size();
2794        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2795      }
2796      VarDecl *IterationVar
2797        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2798                          IterationVarName, SizeType,
2799                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2800                          SC_None, SC_None);
2801      IndexVariables.push_back(IterationVar);
2802
2803      // Create a reference to the iteration variable.
2804      ExprResult IterationVarRef
2805        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2806      assert(!IterationVarRef.isInvalid() &&
2807             "Reference to invented variable cannot fail!");
2808      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2809      assert(!IterationVarRef.isInvalid() &&
2810             "Conversion of invented variable cannot fail!");
2811
2812      // Subscript the array with this iteration variable.
2813      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2814                                                        IterationVarRef.take(),
2815                                                        Loc);
2816      if (CtorArg.isInvalid())
2817        return true;
2818
2819      BaseType = Array->getElementType();
2820    }
2821
2822    // The array subscript expression is an lvalue, which is wrong for moving.
2823    if (Moving && InitializingArray)
2824      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2825
2826    // Construct the entity that we will be initializing. For an array, this
2827    // will be first element in the array, which may require several levels
2828    // of array-subscript entities.
2829    SmallVector<InitializedEntity, 4> Entities;
2830    Entities.reserve(1 + IndexVariables.size());
2831    if (Indirect)
2832      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2833    else
2834      Entities.push_back(InitializedEntity::InitializeMember(Field));
2835    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2836      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2837                                                              0,
2838                                                              Entities.back()));
2839
2840    // Direct-initialize to use the copy constructor.
2841    InitializationKind InitKind =
2842      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2843
2844    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2845    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2846                                   &CtorArgE, 1);
2847
2848    ExprResult MemberInit
2849      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2850                        MultiExprArg(&CtorArgE, 1));
2851    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2852    if (MemberInit.isInvalid())
2853      return true;
2854
2855    if (Indirect) {
2856      assert(IndexVariables.size() == 0 &&
2857             "Indirect field improperly initialized");
2858      CXXMemberInit
2859        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2860                                                   Loc, Loc,
2861                                                   MemberInit.takeAs<Expr>(),
2862                                                   Loc);
2863    } else
2864      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2865                                                 Loc, MemberInit.takeAs<Expr>(),
2866                                                 Loc,
2867                                                 IndexVariables.data(),
2868                                                 IndexVariables.size());
2869    return false;
2870  }
2871
2872  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2873
2874  QualType FieldBaseElementType =
2875    SemaRef.Context.getBaseElementType(Field->getType());
2876
2877  if (FieldBaseElementType->isRecordType()) {
2878    InitializedEntity InitEntity
2879      = Indirect? InitializedEntity::InitializeMember(Indirect)
2880                : InitializedEntity::InitializeMember(Field);
2881    InitializationKind InitKind =
2882      InitializationKind::CreateDefault(Loc);
2883
2884    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2885    ExprResult MemberInit =
2886      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2887
2888    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2889    if (MemberInit.isInvalid())
2890      return true;
2891
2892    if (Indirect)
2893      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2894                                                               Indirect, Loc,
2895                                                               Loc,
2896                                                               MemberInit.get(),
2897                                                               Loc);
2898    else
2899      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2900                                                               Field, Loc, Loc,
2901                                                               MemberInit.get(),
2902                                                               Loc);
2903    return false;
2904  }
2905
2906  if (!Field->getParent()->isUnion()) {
2907    if (FieldBaseElementType->isReferenceType()) {
2908      SemaRef.Diag(Constructor->getLocation(),
2909                   diag::err_uninitialized_member_in_ctor)
2910      << (int)Constructor->isImplicit()
2911      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2912      << 0 << Field->getDeclName();
2913      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2914      return true;
2915    }
2916
2917    if (FieldBaseElementType.isConstQualified()) {
2918      SemaRef.Diag(Constructor->getLocation(),
2919                   diag::err_uninitialized_member_in_ctor)
2920      << (int)Constructor->isImplicit()
2921      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2922      << 1 << Field->getDeclName();
2923      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2924      return true;
2925    }
2926  }
2927
2928  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2929      FieldBaseElementType->isObjCRetainableType() &&
2930      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2931      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2932    // ARC:
2933    //   Default-initialize Objective-C pointers to NULL.
2934    CXXMemberInit
2935      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2936                                                 Loc, Loc,
2937                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2938                                                 Loc);
2939    return false;
2940  }
2941
2942  // Nothing to initialize.
2943  CXXMemberInit = 0;
2944  return false;
2945}
2946
2947namespace {
2948struct BaseAndFieldInfo {
2949  Sema &S;
2950  CXXConstructorDecl *Ctor;
2951  bool AnyErrorsInInits;
2952  ImplicitInitializerKind IIK;
2953  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2954  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2955
2956  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2957    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2958    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2959    if (Generated && Ctor->isCopyConstructor())
2960      IIK = IIK_Copy;
2961    else if (Generated && Ctor->isMoveConstructor())
2962      IIK = IIK_Move;
2963    else
2964      IIK = IIK_Default;
2965  }
2966
2967  bool isImplicitCopyOrMove() const {
2968    switch (IIK) {
2969    case IIK_Copy:
2970    case IIK_Move:
2971      return true;
2972
2973    case IIK_Default:
2974      return false;
2975    }
2976
2977    llvm_unreachable("Invalid ImplicitInitializerKind!");
2978  }
2979
2980  bool addFieldInitializer(CXXCtorInitializer *Init) {
2981    AllToInit.push_back(Init);
2982
2983    // Check whether this initializer makes the field "used".
2984    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2985      S.UnusedPrivateFields.remove(Init->getAnyMember());
2986
2987    return false;
2988  }
2989};
2990}
2991
2992/// \brief Determine whether the given indirect field declaration is somewhere
2993/// within an anonymous union.
2994static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2995  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2996                                      CEnd = F->chain_end();
2997       C != CEnd; ++C)
2998    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2999      if (Record->isUnion())
3000        return true;
3001
3002  return false;
3003}
3004
3005/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3006/// array type.
3007static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3008  if (T->isIncompleteArrayType())
3009    return true;
3010
3011  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3012    if (!ArrayT->getSize())
3013      return true;
3014
3015    T = ArrayT->getElementType();
3016  }
3017
3018  return false;
3019}
3020
3021static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3022                                    FieldDecl *Field,
3023                                    IndirectFieldDecl *Indirect = 0) {
3024
3025  // Overwhelmingly common case: we have a direct initializer for this field.
3026  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3027    return Info.addFieldInitializer(Init);
3028
3029  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3030  // has a brace-or-equal-initializer, the entity is initialized as specified
3031  // in [dcl.init].
3032  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3033    CXXCtorInitializer *Init;
3034    if (Indirect)
3035      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3036                                                      SourceLocation(),
3037                                                      SourceLocation(), 0,
3038                                                      SourceLocation());
3039    else
3040      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3041                                                      SourceLocation(),
3042                                                      SourceLocation(), 0,
3043                                                      SourceLocation());
3044    return Info.addFieldInitializer(Init);
3045  }
3046
3047  // Don't build an implicit initializer for union members if none was
3048  // explicitly specified.
3049  if (Field->getParent()->isUnion() ||
3050      (Indirect && isWithinAnonymousUnion(Indirect)))
3051    return false;
3052
3053  // Don't initialize incomplete or zero-length arrays.
3054  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3055    return false;
3056
3057  // Don't try to build an implicit initializer if there were semantic
3058  // errors in any of the initializers (and therefore we might be
3059  // missing some that the user actually wrote).
3060  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3061    return false;
3062
3063  CXXCtorInitializer *Init = 0;
3064  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3065                                     Indirect, Init))
3066    return true;
3067
3068  if (!Init)
3069    return false;
3070
3071  return Info.addFieldInitializer(Init);
3072}
3073
3074bool
3075Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3076                               CXXCtorInitializer *Initializer) {
3077  assert(Initializer->isDelegatingInitializer());
3078  Constructor->setNumCtorInitializers(1);
3079  CXXCtorInitializer **initializer =
3080    new (Context) CXXCtorInitializer*[1];
3081  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3082  Constructor->setCtorInitializers(initializer);
3083
3084  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3085    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3086    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3087  }
3088
3089  DelegatingCtorDecls.push_back(Constructor);
3090
3091  return false;
3092}
3093
3094bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3095                               ArrayRef<CXXCtorInitializer *> Initializers) {
3096  if (Constructor->isDependentContext()) {
3097    // Just store the initializers as written, they will be checked during
3098    // instantiation.
3099    if (!Initializers.empty()) {
3100      Constructor->setNumCtorInitializers(Initializers.size());
3101      CXXCtorInitializer **baseOrMemberInitializers =
3102        new (Context) CXXCtorInitializer*[Initializers.size()];
3103      memcpy(baseOrMemberInitializers, Initializers.data(),
3104             Initializers.size() * sizeof(CXXCtorInitializer*));
3105      Constructor->setCtorInitializers(baseOrMemberInitializers);
3106    }
3107
3108    // Let template instantiation know whether we had errors.
3109    if (AnyErrors)
3110      Constructor->setInvalidDecl();
3111
3112    return false;
3113  }
3114
3115  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3116
3117  // We need to build the initializer AST according to order of construction
3118  // and not what user specified in the Initializers list.
3119  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3120  if (!ClassDecl)
3121    return true;
3122
3123  bool HadError = false;
3124
3125  for (unsigned i = 0; i < Initializers.size(); i++) {
3126    CXXCtorInitializer *Member = Initializers[i];
3127
3128    if (Member->isBaseInitializer())
3129      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3130    else
3131      Info.AllBaseFields[Member->getAnyMember()] = Member;
3132  }
3133
3134  // Keep track of the direct virtual bases.
3135  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3136  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3137       E = ClassDecl->bases_end(); I != E; ++I) {
3138    if (I->isVirtual())
3139      DirectVBases.insert(I);
3140  }
3141
3142  // Push virtual bases before others.
3143  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3144       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3145
3146    if (CXXCtorInitializer *Value
3147        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3148      Info.AllToInit.push_back(Value);
3149    } else if (!AnyErrors) {
3150      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3151      CXXCtorInitializer *CXXBaseInit;
3152      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3153                                       VBase, IsInheritedVirtualBase,
3154                                       CXXBaseInit)) {
3155        HadError = true;
3156        continue;
3157      }
3158
3159      Info.AllToInit.push_back(CXXBaseInit);
3160    }
3161  }
3162
3163  // Non-virtual bases.
3164  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3165       E = ClassDecl->bases_end(); Base != E; ++Base) {
3166    // Virtuals are in the virtual base list and already constructed.
3167    if (Base->isVirtual())
3168      continue;
3169
3170    if (CXXCtorInitializer *Value
3171          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3172      Info.AllToInit.push_back(Value);
3173    } else if (!AnyErrors) {
3174      CXXCtorInitializer *CXXBaseInit;
3175      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3176                                       Base, /*IsInheritedVirtualBase=*/false,
3177                                       CXXBaseInit)) {
3178        HadError = true;
3179        continue;
3180      }
3181
3182      Info.AllToInit.push_back(CXXBaseInit);
3183    }
3184  }
3185
3186  // Fields.
3187  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3188                               MemEnd = ClassDecl->decls_end();
3189       Mem != MemEnd; ++Mem) {
3190    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3191      // C++ [class.bit]p2:
3192      //   A declaration for a bit-field that omits the identifier declares an
3193      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3194      //   initialized.
3195      if (F->isUnnamedBitfield())
3196        continue;
3197
3198      // If we're not generating the implicit copy/move constructor, then we'll
3199      // handle anonymous struct/union fields based on their individual
3200      // indirect fields.
3201      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3202        continue;
3203
3204      if (CollectFieldInitializer(*this, Info, F))
3205        HadError = true;
3206      continue;
3207    }
3208
3209    // Beyond this point, we only consider default initialization.
3210    if (Info.IIK != IIK_Default)
3211      continue;
3212
3213    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3214      if (F->getType()->isIncompleteArrayType()) {
3215        assert(ClassDecl->hasFlexibleArrayMember() &&
3216               "Incomplete array type is not valid");
3217        continue;
3218      }
3219
3220      // Initialize each field of an anonymous struct individually.
3221      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3222        HadError = true;
3223
3224      continue;
3225    }
3226  }
3227
3228  unsigned NumInitializers = Info.AllToInit.size();
3229  if (NumInitializers > 0) {
3230    Constructor->setNumCtorInitializers(NumInitializers);
3231    CXXCtorInitializer **baseOrMemberInitializers =
3232      new (Context) CXXCtorInitializer*[NumInitializers];
3233    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3234           NumInitializers * sizeof(CXXCtorInitializer*));
3235    Constructor->setCtorInitializers(baseOrMemberInitializers);
3236
3237    // Constructors implicitly reference the base and member
3238    // destructors.
3239    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3240                                           Constructor->getParent());
3241  }
3242
3243  return HadError;
3244}
3245
3246static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3247  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3248    const RecordDecl *RD = RT->getDecl();
3249    if (RD->isAnonymousStructOrUnion()) {
3250      for (RecordDecl::field_iterator Field = RD->field_begin(),
3251          E = RD->field_end(); Field != E; ++Field)
3252        PopulateKeysForFields(*Field, IdealInits);
3253      return;
3254    }
3255  }
3256  IdealInits.push_back(Field);
3257}
3258
3259static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3260  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3261}
3262
3263static void *GetKeyForMember(ASTContext &Context,
3264                             CXXCtorInitializer *Member) {
3265  if (!Member->isAnyMemberInitializer())
3266    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3267
3268  return Member->getAnyMember();
3269}
3270
3271static void DiagnoseBaseOrMemInitializerOrder(
3272    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3273    ArrayRef<CXXCtorInitializer *> Inits) {
3274  if (Constructor->getDeclContext()->isDependentContext())
3275    return;
3276
3277  // Don't check initializers order unless the warning is enabled at the
3278  // location of at least one initializer.
3279  bool ShouldCheckOrder = false;
3280  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3281    CXXCtorInitializer *Init = Inits[InitIndex];
3282    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3283                                         Init->getSourceLocation())
3284          != DiagnosticsEngine::Ignored) {
3285      ShouldCheckOrder = true;
3286      break;
3287    }
3288  }
3289  if (!ShouldCheckOrder)
3290    return;
3291
3292  // Build the list of bases and members in the order that they'll
3293  // actually be initialized.  The explicit initializers should be in
3294  // this same order but may be missing things.
3295  SmallVector<const void*, 32> IdealInitKeys;
3296
3297  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3298
3299  // 1. Virtual bases.
3300  for (CXXRecordDecl::base_class_const_iterator VBase =
3301       ClassDecl->vbases_begin(),
3302       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3303    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3304
3305  // 2. Non-virtual bases.
3306  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3307       E = ClassDecl->bases_end(); Base != E; ++Base) {
3308    if (Base->isVirtual())
3309      continue;
3310    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3311  }
3312
3313  // 3. Direct fields.
3314  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3315       E = ClassDecl->field_end(); Field != E; ++Field) {
3316    if (Field->isUnnamedBitfield())
3317      continue;
3318
3319    PopulateKeysForFields(*Field, IdealInitKeys);
3320  }
3321
3322  unsigned NumIdealInits = IdealInitKeys.size();
3323  unsigned IdealIndex = 0;
3324
3325  CXXCtorInitializer *PrevInit = 0;
3326  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3327    CXXCtorInitializer *Init = Inits[InitIndex];
3328    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3329
3330    // Scan forward to try to find this initializer in the idealized
3331    // initializers list.
3332    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3333      if (InitKey == IdealInitKeys[IdealIndex])
3334        break;
3335
3336    // If we didn't find this initializer, it must be because we
3337    // scanned past it on a previous iteration.  That can only
3338    // happen if we're out of order;  emit a warning.
3339    if (IdealIndex == NumIdealInits && PrevInit) {
3340      Sema::SemaDiagnosticBuilder D =
3341        SemaRef.Diag(PrevInit->getSourceLocation(),
3342                     diag::warn_initializer_out_of_order);
3343
3344      if (PrevInit->isAnyMemberInitializer())
3345        D << 0 << PrevInit->getAnyMember()->getDeclName();
3346      else
3347        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3348
3349      if (Init->isAnyMemberInitializer())
3350        D << 0 << Init->getAnyMember()->getDeclName();
3351      else
3352        D << 1 << Init->getTypeSourceInfo()->getType();
3353
3354      // Move back to the initializer's location in the ideal list.
3355      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3356        if (InitKey == IdealInitKeys[IdealIndex])
3357          break;
3358
3359      assert(IdealIndex != NumIdealInits &&
3360             "initializer not found in initializer list");
3361    }
3362
3363    PrevInit = Init;
3364  }
3365}
3366
3367namespace {
3368bool CheckRedundantInit(Sema &S,
3369                        CXXCtorInitializer *Init,
3370                        CXXCtorInitializer *&PrevInit) {
3371  if (!PrevInit) {
3372    PrevInit = Init;
3373    return false;
3374  }
3375
3376  if (FieldDecl *Field = Init->getMember())
3377    S.Diag(Init->getSourceLocation(),
3378           diag::err_multiple_mem_initialization)
3379      << Field->getDeclName()
3380      << Init->getSourceRange();
3381  else {
3382    const Type *BaseClass = Init->getBaseClass();
3383    assert(BaseClass && "neither field nor base");
3384    S.Diag(Init->getSourceLocation(),
3385           diag::err_multiple_base_initialization)
3386      << QualType(BaseClass, 0)
3387      << Init->getSourceRange();
3388  }
3389  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3390    << 0 << PrevInit->getSourceRange();
3391
3392  return true;
3393}
3394
3395typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3396typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3397
3398bool CheckRedundantUnionInit(Sema &S,
3399                             CXXCtorInitializer *Init,
3400                             RedundantUnionMap &Unions) {
3401  FieldDecl *Field = Init->getAnyMember();
3402  RecordDecl *Parent = Field->getParent();
3403  NamedDecl *Child = Field;
3404
3405  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3406    if (Parent->isUnion()) {
3407      UnionEntry &En = Unions[Parent];
3408      if (En.first && En.first != Child) {
3409        S.Diag(Init->getSourceLocation(),
3410               diag::err_multiple_mem_union_initialization)
3411          << Field->getDeclName()
3412          << Init->getSourceRange();
3413        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3414          << 0 << En.second->getSourceRange();
3415        return true;
3416      }
3417      if (!En.first) {
3418        En.first = Child;
3419        En.second = Init;
3420      }
3421      if (!Parent->isAnonymousStructOrUnion())
3422        return false;
3423    }
3424
3425    Child = Parent;
3426    Parent = cast<RecordDecl>(Parent->getDeclContext());
3427  }
3428
3429  return false;
3430}
3431}
3432
3433/// ActOnMemInitializers - Handle the member initializers for a constructor.
3434void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3435                                SourceLocation ColonLoc,
3436                                ArrayRef<CXXCtorInitializer*> MemInits,
3437                                bool AnyErrors) {
3438  if (!ConstructorDecl)
3439    return;
3440
3441  AdjustDeclIfTemplate(ConstructorDecl);
3442
3443  CXXConstructorDecl *Constructor
3444    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3445
3446  if (!Constructor) {
3447    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3448    return;
3449  }
3450
3451  // Mapping for the duplicate initializers check.
3452  // For member initializers, this is keyed with a FieldDecl*.
3453  // For base initializers, this is keyed with a Type*.
3454  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3455
3456  // Mapping for the inconsistent anonymous-union initializers check.
3457  RedundantUnionMap MemberUnions;
3458
3459  bool HadError = false;
3460  for (unsigned i = 0; i < MemInits.size(); i++) {
3461    CXXCtorInitializer *Init = MemInits[i];
3462
3463    // Set the source order index.
3464    Init->setSourceOrder(i);
3465
3466    if (Init->isAnyMemberInitializer()) {
3467      FieldDecl *Field = Init->getAnyMember();
3468      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3469          CheckRedundantUnionInit(*this, Init, MemberUnions))
3470        HadError = true;
3471    } else if (Init->isBaseInitializer()) {
3472      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3473      if (CheckRedundantInit(*this, Init, Members[Key]))
3474        HadError = true;
3475    } else {
3476      assert(Init->isDelegatingInitializer());
3477      // This must be the only initializer
3478      if (MemInits.size() != 1) {
3479        Diag(Init->getSourceLocation(),
3480             diag::err_delegating_initializer_alone)
3481          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3482        // We will treat this as being the only initializer.
3483      }
3484      SetDelegatingInitializer(Constructor, MemInits[i]);
3485      // Return immediately as the initializer is set.
3486      return;
3487    }
3488  }
3489
3490  if (HadError)
3491    return;
3492
3493  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3494
3495  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3496}
3497
3498void
3499Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3500                                             CXXRecordDecl *ClassDecl) {
3501  // Ignore dependent contexts. Also ignore unions, since their members never
3502  // have destructors implicitly called.
3503  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3504    return;
3505
3506  // FIXME: all the access-control diagnostics are positioned on the
3507  // field/base declaration.  That's probably good; that said, the
3508  // user might reasonably want to know why the destructor is being
3509  // emitted, and we currently don't say.
3510
3511  // Non-static data members.
3512  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3513       E = ClassDecl->field_end(); I != E; ++I) {
3514    FieldDecl *Field = *I;
3515    if (Field->isInvalidDecl())
3516      continue;
3517
3518    // Don't destroy incomplete or zero-length arrays.
3519    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3520      continue;
3521
3522    QualType FieldType = Context.getBaseElementType(Field->getType());
3523
3524    const RecordType* RT = FieldType->getAs<RecordType>();
3525    if (!RT)
3526      continue;
3527
3528    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3529    if (FieldClassDecl->isInvalidDecl())
3530      continue;
3531    if (FieldClassDecl->hasIrrelevantDestructor())
3532      continue;
3533    // The destructor for an implicit anonymous union member is never invoked.
3534    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3535      continue;
3536
3537    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3538    assert(Dtor && "No dtor found for FieldClassDecl!");
3539    CheckDestructorAccess(Field->getLocation(), Dtor,
3540                          PDiag(diag::err_access_dtor_field)
3541                            << Field->getDeclName()
3542                            << FieldType);
3543
3544    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3545    DiagnoseUseOfDecl(Dtor, Location);
3546  }
3547
3548  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3549
3550  // Bases.
3551  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3552       E = ClassDecl->bases_end(); Base != E; ++Base) {
3553    // Bases are always records in a well-formed non-dependent class.
3554    const RecordType *RT = Base->getType()->getAs<RecordType>();
3555
3556    // Remember direct virtual bases.
3557    if (Base->isVirtual())
3558      DirectVirtualBases.insert(RT);
3559
3560    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3561    // If our base class is invalid, we probably can't get its dtor anyway.
3562    if (BaseClassDecl->isInvalidDecl())
3563      continue;
3564    if (BaseClassDecl->hasIrrelevantDestructor())
3565      continue;
3566
3567    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3568    assert(Dtor && "No dtor found for BaseClassDecl!");
3569
3570    // FIXME: caret should be on the start of the class name
3571    CheckDestructorAccess(Base->getLocStart(), Dtor,
3572                          PDiag(diag::err_access_dtor_base)
3573                            << Base->getType()
3574                            << Base->getSourceRange(),
3575                          Context.getTypeDeclType(ClassDecl));
3576
3577    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3578    DiagnoseUseOfDecl(Dtor, Location);
3579  }
3580
3581  // Virtual bases.
3582  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3583       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3584
3585    // Bases are always records in a well-formed non-dependent class.
3586    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3587
3588    // Ignore direct virtual bases.
3589    if (DirectVirtualBases.count(RT))
3590      continue;
3591
3592    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3593    // If our base class is invalid, we probably can't get its dtor anyway.
3594    if (BaseClassDecl->isInvalidDecl())
3595      continue;
3596    if (BaseClassDecl->hasIrrelevantDestructor())
3597      continue;
3598
3599    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3600    assert(Dtor && "No dtor found for BaseClassDecl!");
3601    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3602                          PDiag(diag::err_access_dtor_vbase)
3603                            << VBase->getType(),
3604                          Context.getTypeDeclType(ClassDecl));
3605
3606    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3607    DiagnoseUseOfDecl(Dtor, Location);
3608  }
3609}
3610
3611void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3612  if (!CDtorDecl)
3613    return;
3614
3615  if (CXXConstructorDecl *Constructor
3616      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3617    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3618}
3619
3620bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3621                                  unsigned DiagID, AbstractDiagSelID SelID) {
3622  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3623    unsigned DiagID;
3624    AbstractDiagSelID SelID;
3625
3626  public:
3627    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3628      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3629
3630    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3631      if (Suppressed) return;
3632      if (SelID == -1)
3633        S.Diag(Loc, DiagID) << T;
3634      else
3635        S.Diag(Loc, DiagID) << SelID << T;
3636    }
3637  } Diagnoser(DiagID, SelID);
3638
3639  return RequireNonAbstractType(Loc, T, Diagnoser);
3640}
3641
3642bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3643                                  TypeDiagnoser &Diagnoser) {
3644  if (!getLangOpts().CPlusPlus)
3645    return false;
3646
3647  if (const ArrayType *AT = Context.getAsArrayType(T))
3648    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3649
3650  if (const PointerType *PT = T->getAs<PointerType>()) {
3651    // Find the innermost pointer type.
3652    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3653      PT = T;
3654
3655    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3656      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3657  }
3658
3659  const RecordType *RT = T->getAs<RecordType>();
3660  if (!RT)
3661    return false;
3662
3663  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3664
3665  // We can't answer whether something is abstract until it has a
3666  // definition.  If it's currently being defined, we'll walk back
3667  // over all the declarations when we have a full definition.
3668  const CXXRecordDecl *Def = RD->getDefinition();
3669  if (!Def || Def->isBeingDefined())
3670    return false;
3671
3672  if (!RD->isAbstract())
3673    return false;
3674
3675  Diagnoser.diagnose(*this, Loc, T);
3676  DiagnoseAbstractType(RD);
3677
3678  return true;
3679}
3680
3681void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3682  // Check if we've already emitted the list of pure virtual functions
3683  // for this class.
3684  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3685    return;
3686
3687  CXXFinalOverriderMap FinalOverriders;
3688  RD->getFinalOverriders(FinalOverriders);
3689
3690  // Keep a set of seen pure methods so we won't diagnose the same method
3691  // more than once.
3692  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3693
3694  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3695                                   MEnd = FinalOverriders.end();
3696       M != MEnd;
3697       ++M) {
3698    for (OverridingMethods::iterator SO = M->second.begin(),
3699                                  SOEnd = M->second.end();
3700         SO != SOEnd; ++SO) {
3701      // C++ [class.abstract]p4:
3702      //   A class is abstract if it contains or inherits at least one
3703      //   pure virtual function for which the final overrider is pure
3704      //   virtual.
3705
3706      //
3707      if (SO->second.size() != 1)
3708        continue;
3709
3710      if (!SO->second.front().Method->isPure())
3711        continue;
3712
3713      if (!SeenPureMethods.insert(SO->second.front().Method))
3714        continue;
3715
3716      Diag(SO->second.front().Method->getLocation(),
3717           diag::note_pure_virtual_function)
3718        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3719    }
3720  }
3721
3722  if (!PureVirtualClassDiagSet)
3723    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3724  PureVirtualClassDiagSet->insert(RD);
3725}
3726
3727namespace {
3728struct AbstractUsageInfo {
3729  Sema &S;
3730  CXXRecordDecl *Record;
3731  CanQualType AbstractType;
3732  bool Invalid;
3733
3734  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3735    : S(S), Record(Record),
3736      AbstractType(S.Context.getCanonicalType(
3737                   S.Context.getTypeDeclType(Record))),
3738      Invalid(false) {}
3739
3740  void DiagnoseAbstractType() {
3741    if (Invalid) return;
3742    S.DiagnoseAbstractType(Record);
3743    Invalid = true;
3744  }
3745
3746  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3747};
3748
3749struct CheckAbstractUsage {
3750  AbstractUsageInfo &Info;
3751  const NamedDecl *Ctx;
3752
3753  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3754    : Info(Info), Ctx(Ctx) {}
3755
3756  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3757    switch (TL.getTypeLocClass()) {
3758#define ABSTRACT_TYPELOC(CLASS, PARENT)
3759#define TYPELOC(CLASS, PARENT) \
3760    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3761#include "clang/AST/TypeLocNodes.def"
3762    }
3763  }
3764
3765  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3766    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3767    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3768      if (!TL.getArg(I))
3769        continue;
3770
3771      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3772      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3773    }
3774  }
3775
3776  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3777    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3778  }
3779
3780  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3781    // Visit the type parameters from a permissive context.
3782    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3783      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3784      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3785        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3786          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3787      // TODO: other template argument types?
3788    }
3789  }
3790
3791  // Visit pointee types from a permissive context.
3792#define CheckPolymorphic(Type) \
3793  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3794    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3795  }
3796  CheckPolymorphic(PointerTypeLoc)
3797  CheckPolymorphic(ReferenceTypeLoc)
3798  CheckPolymorphic(MemberPointerTypeLoc)
3799  CheckPolymorphic(BlockPointerTypeLoc)
3800  CheckPolymorphic(AtomicTypeLoc)
3801
3802  /// Handle all the types we haven't given a more specific
3803  /// implementation for above.
3804  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3805    // Every other kind of type that we haven't called out already
3806    // that has an inner type is either (1) sugar or (2) contains that
3807    // inner type in some way as a subobject.
3808    if (TypeLoc Next = TL.getNextTypeLoc())
3809      return Visit(Next, Sel);
3810
3811    // If there's no inner type and we're in a permissive context,
3812    // don't diagnose.
3813    if (Sel == Sema::AbstractNone) return;
3814
3815    // Check whether the type matches the abstract type.
3816    QualType T = TL.getType();
3817    if (T->isArrayType()) {
3818      Sel = Sema::AbstractArrayType;
3819      T = Info.S.Context.getBaseElementType(T);
3820    }
3821    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3822    if (CT != Info.AbstractType) return;
3823
3824    // It matched; do some magic.
3825    if (Sel == Sema::AbstractArrayType) {
3826      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3827        << T << TL.getSourceRange();
3828    } else {
3829      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3830        << Sel << T << TL.getSourceRange();
3831    }
3832    Info.DiagnoseAbstractType();
3833  }
3834};
3835
3836void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3837                                  Sema::AbstractDiagSelID Sel) {
3838  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3839}
3840
3841}
3842
3843/// Check for invalid uses of an abstract type in a method declaration.
3844static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3845                                    CXXMethodDecl *MD) {
3846  // No need to do the check on definitions, which require that
3847  // the return/param types be complete.
3848  if (MD->doesThisDeclarationHaveABody())
3849    return;
3850
3851  // For safety's sake, just ignore it if we don't have type source
3852  // information.  This should never happen for non-implicit methods,
3853  // but...
3854  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3855    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3856}
3857
3858/// Check for invalid uses of an abstract type within a class definition.
3859static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3860                                    CXXRecordDecl *RD) {
3861  for (CXXRecordDecl::decl_iterator
3862         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3863    Decl *D = *I;
3864    if (D->isImplicit()) continue;
3865
3866    // Methods and method templates.
3867    if (isa<CXXMethodDecl>(D)) {
3868      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3869    } else if (isa<FunctionTemplateDecl>(D)) {
3870      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3871      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3872
3873    // Fields and static variables.
3874    } else if (isa<FieldDecl>(D)) {
3875      FieldDecl *FD = cast<FieldDecl>(D);
3876      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3877        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3878    } else if (isa<VarDecl>(D)) {
3879      VarDecl *VD = cast<VarDecl>(D);
3880      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3881        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3882
3883    // Nested classes and class templates.
3884    } else if (isa<CXXRecordDecl>(D)) {
3885      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3886    } else if (isa<ClassTemplateDecl>(D)) {
3887      CheckAbstractClassUsage(Info,
3888                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3889    }
3890  }
3891}
3892
3893/// \brief Perform semantic checks on a class definition that has been
3894/// completing, introducing implicitly-declared members, checking for
3895/// abstract types, etc.
3896void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3897  if (!Record)
3898    return;
3899
3900  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3901    AbstractUsageInfo Info(*this, Record);
3902    CheckAbstractClassUsage(Info, Record);
3903  }
3904
3905  // If this is not an aggregate type and has no user-declared constructor,
3906  // complain about any non-static data members of reference or const scalar
3907  // type, since they will never get initializers.
3908  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3909      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3910      !Record->isLambda()) {
3911    bool Complained = false;
3912    for (RecordDecl::field_iterator F = Record->field_begin(),
3913                                 FEnd = Record->field_end();
3914         F != FEnd; ++F) {
3915      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3916        continue;
3917
3918      if (F->getType()->isReferenceType() ||
3919          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3920        if (!Complained) {
3921          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3922            << Record->getTagKind() << Record;
3923          Complained = true;
3924        }
3925
3926        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3927          << F->getType()->isReferenceType()
3928          << F->getDeclName();
3929      }
3930    }
3931  }
3932
3933  if (Record->isDynamicClass() && !Record->isDependentType())
3934    DynamicClasses.push_back(Record);
3935
3936  if (Record->getIdentifier()) {
3937    // C++ [class.mem]p13:
3938    //   If T is the name of a class, then each of the following shall have a
3939    //   name different from T:
3940    //     - every member of every anonymous union that is a member of class T.
3941    //
3942    // C++ [class.mem]p14:
3943    //   In addition, if class T has a user-declared constructor (12.1), every
3944    //   non-static data member of class T shall have a name different from T.
3945    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3946    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
3947         ++I) {
3948      NamedDecl *D = *I;
3949      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3950          isa<IndirectFieldDecl>(D)) {
3951        Diag(D->getLocation(), diag::err_member_name_of_class)
3952          << D->getDeclName();
3953        break;
3954      }
3955    }
3956  }
3957
3958  // Warn if the class has virtual methods but non-virtual public destructor.
3959  if (Record->isPolymorphic() && !Record->isDependentType()) {
3960    CXXDestructorDecl *dtor = Record->getDestructor();
3961    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3962      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3963           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3964  }
3965
3966  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
3967    Diag(Record->getLocation(), diag::warn_abstract_final_class);
3968    DiagnoseAbstractType(Record);
3969  }
3970
3971  if (!Record->isDependentType()) {
3972    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3973                                     MEnd = Record->method_end();
3974         M != MEnd; ++M) {
3975      // See if a method overloads virtual methods in a base
3976      // class without overriding any.
3977      if (!M->isStatic())
3978        DiagnoseHiddenVirtualMethods(Record, *M);
3979
3980      // Check whether the explicitly-defaulted special members are valid.
3981      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
3982        CheckExplicitlyDefaultedSpecialMember(*M);
3983
3984      // For an explicitly defaulted or deleted special member, we defer
3985      // determining triviality until the class is complete. That time is now!
3986      if (!M->isImplicit() && !M->isUserProvided()) {
3987        CXXSpecialMember CSM = getSpecialMember(*M);
3988        if (CSM != CXXInvalid) {
3989          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
3990
3991          // Inform the class that we've finished declaring this member.
3992          Record->finishedDefaultedOrDeletedMember(*M);
3993        }
3994      }
3995    }
3996  }
3997
3998  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
3999  // function that is not a constructor declares that member function to be
4000  // const. [...] The class of which that function is a member shall be
4001  // a literal type.
4002  //
4003  // If the class has virtual bases, any constexpr members will already have
4004  // been diagnosed by the checks performed on the member declaration, so
4005  // suppress this (less useful) diagnostic.
4006  //
4007  // We delay this until we know whether an explicitly-defaulted (or deleted)
4008  // destructor for the class is trivial.
4009  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4010      !Record->isLiteral() && !Record->getNumVBases()) {
4011    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4012                                     MEnd = Record->method_end();
4013         M != MEnd; ++M) {
4014      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4015        switch (Record->getTemplateSpecializationKind()) {
4016        case TSK_ImplicitInstantiation:
4017        case TSK_ExplicitInstantiationDeclaration:
4018        case TSK_ExplicitInstantiationDefinition:
4019          // If a template instantiates to a non-literal type, but its members
4020          // instantiate to constexpr functions, the template is technically
4021          // ill-formed, but we allow it for sanity.
4022          continue;
4023
4024        case TSK_Undeclared:
4025        case TSK_ExplicitSpecialization:
4026          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4027                             diag::err_constexpr_method_non_literal);
4028          break;
4029        }
4030
4031        // Only produce one error per class.
4032        break;
4033      }
4034    }
4035  }
4036
4037  // Declare inherited constructors. We do this eagerly here because:
4038  // - The standard requires an eager diagnostic for conflicting inherited
4039  //   constructors from different classes.
4040  // - The lazy declaration of the other implicit constructors is so as to not
4041  //   waste space and performance on classes that are not meant to be
4042  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4043  //   have inherited constructors.
4044  DeclareInheritedConstructors(Record);
4045}
4046
4047/// Is the special member function which would be selected to perform the
4048/// specified operation on the specified class type a constexpr constructor?
4049static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4050                                     Sema::CXXSpecialMember CSM,
4051                                     bool ConstArg) {
4052  Sema::SpecialMemberOverloadResult *SMOR =
4053      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4054                            false, false, false, false);
4055  if (!SMOR || !SMOR->getMethod())
4056    // A constructor we wouldn't select can't be "involved in initializing"
4057    // anything.
4058    return true;
4059  return SMOR->getMethod()->isConstexpr();
4060}
4061
4062/// Determine whether the specified special member function would be constexpr
4063/// if it were implicitly defined.
4064static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4065                                              Sema::CXXSpecialMember CSM,
4066                                              bool ConstArg) {
4067  if (!S.getLangOpts().CPlusPlus11)
4068    return false;
4069
4070  // C++11 [dcl.constexpr]p4:
4071  // In the definition of a constexpr constructor [...]
4072  switch (CSM) {
4073  case Sema::CXXDefaultConstructor:
4074    // Since default constructor lookup is essentially trivial (and cannot
4075    // involve, for instance, template instantiation), we compute whether a
4076    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4077    //
4078    // This is important for performance; we need to know whether the default
4079    // constructor is constexpr to determine whether the type is a literal type.
4080    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4081
4082  case Sema::CXXCopyConstructor:
4083  case Sema::CXXMoveConstructor:
4084    // For copy or move constructors, we need to perform overload resolution.
4085    break;
4086
4087  case Sema::CXXCopyAssignment:
4088  case Sema::CXXMoveAssignment:
4089  case Sema::CXXDestructor:
4090  case Sema::CXXInvalid:
4091    return false;
4092  }
4093
4094  //   -- if the class is a non-empty union, or for each non-empty anonymous
4095  //      union member of a non-union class, exactly one non-static data member
4096  //      shall be initialized; [DR1359]
4097  //
4098  // If we squint, this is guaranteed, since exactly one non-static data member
4099  // will be initialized (if the constructor isn't deleted), we just don't know
4100  // which one.
4101  if (ClassDecl->isUnion())
4102    return true;
4103
4104  //   -- the class shall not have any virtual base classes;
4105  if (ClassDecl->getNumVBases())
4106    return false;
4107
4108  //   -- every constructor involved in initializing [...] base class
4109  //      sub-objects shall be a constexpr constructor;
4110  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4111                                       BEnd = ClassDecl->bases_end();
4112       B != BEnd; ++B) {
4113    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4114    if (!BaseType) continue;
4115
4116    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4117    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4118      return false;
4119  }
4120
4121  //   -- every constructor involved in initializing non-static data members
4122  //      [...] shall be a constexpr constructor;
4123  //   -- every non-static data member and base class sub-object shall be
4124  //      initialized
4125  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4126                               FEnd = ClassDecl->field_end();
4127       F != FEnd; ++F) {
4128    if (F->isInvalidDecl())
4129      continue;
4130    if (const RecordType *RecordTy =
4131            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4132      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4133      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4134        return false;
4135    }
4136  }
4137
4138  // All OK, it's constexpr!
4139  return true;
4140}
4141
4142static Sema::ImplicitExceptionSpecification
4143computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4144  switch (S.getSpecialMember(MD)) {
4145  case Sema::CXXDefaultConstructor:
4146    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4147  case Sema::CXXCopyConstructor:
4148    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4149  case Sema::CXXCopyAssignment:
4150    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4151  case Sema::CXXMoveConstructor:
4152    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4153  case Sema::CXXMoveAssignment:
4154    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4155  case Sema::CXXDestructor:
4156    return S.ComputeDefaultedDtorExceptionSpec(MD);
4157  case Sema::CXXInvalid:
4158    break;
4159  }
4160  llvm_unreachable("only special members have implicit exception specs");
4161}
4162
4163static void
4164updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4165                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4166  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4167  ExceptSpec.getEPI(EPI);
4168  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4169    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4170                              FPT->getNumArgs(), EPI));
4171  FD->setType(QualType(NewFPT, 0));
4172}
4173
4174void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4175  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4176  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4177    return;
4178
4179  // Evaluate the exception specification.
4180  ImplicitExceptionSpecification ExceptSpec =
4181      computeImplicitExceptionSpec(*this, Loc, MD);
4182
4183  // Update the type of the special member to use it.
4184  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4185
4186  // A user-provided destructor can be defined outside the class. When that
4187  // happens, be sure to update the exception specification on both
4188  // declarations.
4189  const FunctionProtoType *CanonicalFPT =
4190    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4191  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4192    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4193                        CanonicalFPT, ExceptSpec);
4194}
4195
4196void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4197  CXXRecordDecl *RD = MD->getParent();
4198  CXXSpecialMember CSM = getSpecialMember(MD);
4199
4200  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4201         "not an explicitly-defaulted special member");
4202
4203  // Whether this was the first-declared instance of the constructor.
4204  // This affects whether we implicitly add an exception spec and constexpr.
4205  bool First = MD == MD->getCanonicalDecl();
4206
4207  bool HadError = false;
4208
4209  // C++11 [dcl.fct.def.default]p1:
4210  //   A function that is explicitly defaulted shall
4211  //     -- be a special member function (checked elsewhere),
4212  //     -- have the same type (except for ref-qualifiers, and except that a
4213  //        copy operation can take a non-const reference) as an implicit
4214  //        declaration, and
4215  //     -- not have default arguments.
4216  unsigned ExpectedParams = 1;
4217  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4218    ExpectedParams = 0;
4219  if (MD->getNumParams() != ExpectedParams) {
4220    // This also checks for default arguments: a copy or move constructor with a
4221    // default argument is classified as a default constructor, and assignment
4222    // operations and destructors can't have default arguments.
4223    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4224      << CSM << MD->getSourceRange();
4225    HadError = true;
4226  } else if (MD->isVariadic()) {
4227    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4228      << CSM << MD->getSourceRange();
4229    HadError = true;
4230  }
4231
4232  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4233
4234  bool CanHaveConstParam = false;
4235  if (CSM == CXXCopyConstructor)
4236    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4237  else if (CSM == CXXCopyAssignment)
4238    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4239
4240  QualType ReturnType = Context.VoidTy;
4241  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4242    // Check for return type matching.
4243    ReturnType = Type->getResultType();
4244    QualType ExpectedReturnType =
4245        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4246    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4247      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4248        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4249      HadError = true;
4250    }
4251
4252    // A defaulted special member cannot have cv-qualifiers.
4253    if (Type->getTypeQuals()) {
4254      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4255        << (CSM == CXXMoveAssignment);
4256      HadError = true;
4257    }
4258  }
4259
4260  // Check for parameter type matching.
4261  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4262  bool HasConstParam = false;
4263  if (ExpectedParams && ArgType->isReferenceType()) {
4264    // Argument must be reference to possibly-const T.
4265    QualType ReferentType = ArgType->getPointeeType();
4266    HasConstParam = ReferentType.isConstQualified();
4267
4268    if (ReferentType.isVolatileQualified()) {
4269      Diag(MD->getLocation(),
4270           diag::err_defaulted_special_member_volatile_param) << CSM;
4271      HadError = true;
4272    }
4273
4274    if (HasConstParam && !CanHaveConstParam) {
4275      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4276        Diag(MD->getLocation(),
4277             diag::err_defaulted_special_member_copy_const_param)
4278          << (CSM == CXXCopyAssignment);
4279        // FIXME: Explain why this special member can't be const.
4280      } else {
4281        Diag(MD->getLocation(),
4282             diag::err_defaulted_special_member_move_const_param)
4283          << (CSM == CXXMoveAssignment);
4284      }
4285      HadError = true;
4286    }
4287  } else if (ExpectedParams) {
4288    // A copy assignment operator can take its argument by value, but a
4289    // defaulted one cannot.
4290    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4291    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4292    HadError = true;
4293  }
4294
4295  // C++11 [dcl.fct.def.default]p2:
4296  //   An explicitly-defaulted function may be declared constexpr only if it
4297  //   would have been implicitly declared as constexpr,
4298  // Do not apply this rule to members of class templates, since core issue 1358
4299  // makes such functions always instantiate to constexpr functions. For
4300  // non-constructors, this is checked elsewhere.
4301  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4302                                                     HasConstParam);
4303  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4304      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4305    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4306    // FIXME: Explain why the constructor can't be constexpr.
4307    HadError = true;
4308  }
4309
4310  //   and may have an explicit exception-specification only if it is compatible
4311  //   with the exception-specification on the implicit declaration.
4312  if (Type->hasExceptionSpec()) {
4313    // Delay the check if this is the first declaration of the special member,
4314    // since we may not have parsed some necessary in-class initializers yet.
4315    if (First)
4316      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4317    else
4318      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4319  }
4320
4321  //   If a function is explicitly defaulted on its first declaration,
4322  if (First) {
4323    //  -- it is implicitly considered to be constexpr if the implicit
4324    //     definition would be,
4325    MD->setConstexpr(Constexpr);
4326
4327    //  -- it is implicitly considered to have the same exception-specification
4328    //     as if it had been implicitly declared,
4329    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4330    EPI.ExceptionSpecType = EST_Unevaluated;
4331    EPI.ExceptionSpecDecl = MD;
4332    MD->setType(Context.getFunctionType(ReturnType, &ArgType,
4333                                        ExpectedParams, EPI));
4334  }
4335
4336  if (ShouldDeleteSpecialMember(MD, CSM)) {
4337    if (First) {
4338      MD->setDeletedAsWritten();
4339    } else {
4340      // C++11 [dcl.fct.def.default]p4:
4341      //   [For a] user-provided explicitly-defaulted function [...] if such a
4342      //   function is implicitly defined as deleted, the program is ill-formed.
4343      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4344      HadError = true;
4345    }
4346  }
4347
4348  if (HadError)
4349    MD->setInvalidDecl();
4350}
4351
4352/// Check whether the exception specification provided for an
4353/// explicitly-defaulted special member matches the exception specification
4354/// that would have been generated for an implicit special member, per
4355/// C++11 [dcl.fct.def.default]p2.
4356void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4357    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4358  // Compute the implicit exception specification.
4359  FunctionProtoType::ExtProtoInfo EPI;
4360  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4361  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4362    Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4363
4364  // Ensure that it matches.
4365  CheckEquivalentExceptionSpec(
4366    PDiag(diag::err_incorrect_defaulted_exception_spec)
4367      << getSpecialMember(MD), PDiag(),
4368    ImplicitType, SourceLocation(),
4369    SpecifiedType, MD->getLocation());
4370}
4371
4372void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4373  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4374       I != N; ++I)
4375    CheckExplicitlyDefaultedMemberExceptionSpec(
4376      DelayedDefaultedMemberExceptionSpecs[I].first,
4377      DelayedDefaultedMemberExceptionSpecs[I].second);
4378
4379  DelayedDefaultedMemberExceptionSpecs.clear();
4380}
4381
4382namespace {
4383struct SpecialMemberDeletionInfo {
4384  Sema &S;
4385  CXXMethodDecl *MD;
4386  Sema::CXXSpecialMember CSM;
4387  bool Diagnose;
4388
4389  // Properties of the special member, computed for convenience.
4390  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4391  SourceLocation Loc;
4392
4393  bool AllFieldsAreConst;
4394
4395  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4396                            Sema::CXXSpecialMember CSM, bool Diagnose)
4397    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4398      IsConstructor(false), IsAssignment(false), IsMove(false),
4399      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4400      AllFieldsAreConst(true) {
4401    switch (CSM) {
4402      case Sema::CXXDefaultConstructor:
4403      case Sema::CXXCopyConstructor:
4404        IsConstructor = true;
4405        break;
4406      case Sema::CXXMoveConstructor:
4407        IsConstructor = true;
4408        IsMove = true;
4409        break;
4410      case Sema::CXXCopyAssignment:
4411        IsAssignment = true;
4412        break;
4413      case Sema::CXXMoveAssignment:
4414        IsAssignment = true;
4415        IsMove = true;
4416        break;
4417      case Sema::CXXDestructor:
4418        break;
4419      case Sema::CXXInvalid:
4420        llvm_unreachable("invalid special member kind");
4421    }
4422
4423    if (MD->getNumParams()) {
4424      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4425      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4426    }
4427  }
4428
4429  bool inUnion() const { return MD->getParent()->isUnion(); }
4430
4431  /// Look up the corresponding special member in the given class.
4432  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4433                                              unsigned Quals) {
4434    unsigned TQ = MD->getTypeQualifiers();
4435    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4436    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4437      Quals = 0;
4438    return S.LookupSpecialMember(Class, CSM,
4439                                 ConstArg || (Quals & Qualifiers::Const),
4440                                 VolatileArg || (Quals & Qualifiers::Volatile),
4441                                 MD->getRefQualifier() == RQ_RValue,
4442                                 TQ & Qualifiers::Const,
4443                                 TQ & Qualifiers::Volatile);
4444  }
4445
4446  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4447
4448  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4449  bool shouldDeleteForField(FieldDecl *FD);
4450  bool shouldDeleteForAllConstMembers();
4451
4452  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4453                                     unsigned Quals);
4454  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4455                                    Sema::SpecialMemberOverloadResult *SMOR,
4456                                    bool IsDtorCallInCtor);
4457
4458  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4459};
4460}
4461
4462/// Is the given special member inaccessible when used on the given
4463/// sub-object.
4464bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4465                                             CXXMethodDecl *target) {
4466  /// If we're operating on a base class, the object type is the
4467  /// type of this special member.
4468  QualType objectTy;
4469  AccessSpecifier access = target->getAccess();
4470  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4471    objectTy = S.Context.getTypeDeclType(MD->getParent());
4472    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4473
4474  // If we're operating on a field, the object type is the type of the field.
4475  } else {
4476    objectTy = S.Context.getTypeDeclType(target->getParent());
4477  }
4478
4479  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4480}
4481
4482/// Check whether we should delete a special member due to the implicit
4483/// definition containing a call to a special member of a subobject.
4484bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4485    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4486    bool IsDtorCallInCtor) {
4487  CXXMethodDecl *Decl = SMOR->getMethod();
4488  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4489
4490  int DiagKind = -1;
4491
4492  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4493    DiagKind = !Decl ? 0 : 1;
4494  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4495    DiagKind = 2;
4496  else if (!isAccessible(Subobj, Decl))
4497    DiagKind = 3;
4498  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4499           !Decl->isTrivial()) {
4500    // A member of a union must have a trivial corresponding special member.
4501    // As a weird special case, a destructor call from a union's constructor
4502    // must be accessible and non-deleted, but need not be trivial. Such a
4503    // destructor is never actually called, but is semantically checked as
4504    // if it were.
4505    DiagKind = 4;
4506  }
4507
4508  if (DiagKind == -1)
4509    return false;
4510
4511  if (Diagnose) {
4512    if (Field) {
4513      S.Diag(Field->getLocation(),
4514             diag::note_deleted_special_member_class_subobject)
4515        << CSM << MD->getParent() << /*IsField*/true
4516        << Field << DiagKind << IsDtorCallInCtor;
4517    } else {
4518      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4519      S.Diag(Base->getLocStart(),
4520             diag::note_deleted_special_member_class_subobject)
4521        << CSM << MD->getParent() << /*IsField*/false
4522        << Base->getType() << DiagKind << IsDtorCallInCtor;
4523    }
4524
4525    if (DiagKind == 1)
4526      S.NoteDeletedFunction(Decl);
4527    // FIXME: Explain inaccessibility if DiagKind == 3.
4528  }
4529
4530  return true;
4531}
4532
4533/// Check whether we should delete a special member function due to having a
4534/// direct or virtual base class or non-static data member of class type M.
4535bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4536    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4537  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4538
4539  // C++11 [class.ctor]p5:
4540  // -- any direct or virtual base class, or non-static data member with no
4541  //    brace-or-equal-initializer, has class type M (or array thereof) and
4542  //    either M has no default constructor or overload resolution as applied
4543  //    to M's default constructor results in an ambiguity or in a function
4544  //    that is deleted or inaccessible
4545  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4546  // -- a direct or virtual base class B that cannot be copied/moved because
4547  //    overload resolution, as applied to B's corresponding special member,
4548  //    results in an ambiguity or a function that is deleted or inaccessible
4549  //    from the defaulted special member
4550  // C++11 [class.dtor]p5:
4551  // -- any direct or virtual base class [...] has a type with a destructor
4552  //    that is deleted or inaccessible
4553  if (!(CSM == Sema::CXXDefaultConstructor &&
4554        Field && Field->hasInClassInitializer()) &&
4555      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4556    return true;
4557
4558  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4559  // -- any direct or virtual base class or non-static data member has a
4560  //    type with a destructor that is deleted or inaccessible
4561  if (IsConstructor) {
4562    Sema::SpecialMemberOverloadResult *SMOR =
4563        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4564                              false, false, false, false, false);
4565    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4566      return true;
4567  }
4568
4569  return false;
4570}
4571
4572/// Check whether we should delete a special member function due to the class
4573/// having a particular direct or virtual base class.
4574bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4575  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4576  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4577}
4578
4579/// Check whether we should delete a special member function due to the class
4580/// having a particular non-static data member.
4581bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4582  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4583  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4584
4585  if (CSM == Sema::CXXDefaultConstructor) {
4586    // For a default constructor, all references must be initialized in-class
4587    // and, if a union, it must have a non-const member.
4588    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4589      if (Diagnose)
4590        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4591          << MD->getParent() << FD << FieldType << /*Reference*/0;
4592      return true;
4593    }
4594    // C++11 [class.ctor]p5: any non-variant non-static data member of
4595    // const-qualified type (or array thereof) with no
4596    // brace-or-equal-initializer does not have a user-provided default
4597    // constructor.
4598    if (!inUnion() && FieldType.isConstQualified() &&
4599        !FD->hasInClassInitializer() &&
4600        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4601      if (Diagnose)
4602        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4603          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4604      return true;
4605    }
4606
4607    if (inUnion() && !FieldType.isConstQualified())
4608      AllFieldsAreConst = false;
4609  } else if (CSM == Sema::CXXCopyConstructor) {
4610    // For a copy constructor, data members must not be of rvalue reference
4611    // type.
4612    if (FieldType->isRValueReferenceType()) {
4613      if (Diagnose)
4614        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4615          << MD->getParent() << FD << FieldType;
4616      return true;
4617    }
4618  } else if (IsAssignment) {
4619    // For an assignment operator, data members must not be of reference type.
4620    if (FieldType->isReferenceType()) {
4621      if (Diagnose)
4622        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4623          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4624      return true;
4625    }
4626    if (!FieldRecord && FieldType.isConstQualified()) {
4627      // C++11 [class.copy]p23:
4628      // -- a non-static data member of const non-class type (or array thereof)
4629      if (Diagnose)
4630        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4631          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4632      return true;
4633    }
4634  }
4635
4636  if (FieldRecord) {
4637    // Some additional restrictions exist on the variant members.
4638    if (!inUnion() && FieldRecord->isUnion() &&
4639        FieldRecord->isAnonymousStructOrUnion()) {
4640      bool AllVariantFieldsAreConst = true;
4641
4642      // FIXME: Handle anonymous unions declared within anonymous unions.
4643      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4644                                         UE = FieldRecord->field_end();
4645           UI != UE; ++UI) {
4646        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4647
4648        if (!UnionFieldType.isConstQualified())
4649          AllVariantFieldsAreConst = false;
4650
4651        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4652        if (UnionFieldRecord &&
4653            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4654                                          UnionFieldType.getCVRQualifiers()))
4655          return true;
4656      }
4657
4658      // At least one member in each anonymous union must be non-const
4659      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4660          FieldRecord->field_begin() != FieldRecord->field_end()) {
4661        if (Diagnose)
4662          S.Diag(FieldRecord->getLocation(),
4663                 diag::note_deleted_default_ctor_all_const)
4664            << MD->getParent() << /*anonymous union*/1;
4665        return true;
4666      }
4667
4668      // Don't check the implicit member of the anonymous union type.
4669      // This is technically non-conformant, but sanity demands it.
4670      return false;
4671    }
4672
4673    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4674                                      FieldType.getCVRQualifiers()))
4675      return true;
4676  }
4677
4678  return false;
4679}
4680
4681/// C++11 [class.ctor] p5:
4682///   A defaulted default constructor for a class X is defined as deleted if
4683/// X is a union and all of its variant members are of const-qualified type.
4684bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4685  // This is a silly definition, because it gives an empty union a deleted
4686  // default constructor. Don't do that.
4687  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4688      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4689    if (Diagnose)
4690      S.Diag(MD->getParent()->getLocation(),
4691             diag::note_deleted_default_ctor_all_const)
4692        << MD->getParent() << /*not anonymous union*/0;
4693    return true;
4694  }
4695  return false;
4696}
4697
4698/// Determine whether a defaulted special member function should be defined as
4699/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4700/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4701bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4702                                     bool Diagnose) {
4703  if (MD->isInvalidDecl())
4704    return false;
4705  CXXRecordDecl *RD = MD->getParent();
4706  assert(!RD->isDependentType() && "do deletion after instantiation");
4707  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4708    return false;
4709
4710  // C++11 [expr.lambda.prim]p19:
4711  //   The closure type associated with a lambda-expression has a
4712  //   deleted (8.4.3) default constructor and a deleted copy
4713  //   assignment operator.
4714  if (RD->isLambda() &&
4715      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4716    if (Diagnose)
4717      Diag(RD->getLocation(), diag::note_lambda_decl);
4718    return true;
4719  }
4720
4721  // For an anonymous struct or union, the copy and assignment special members
4722  // will never be used, so skip the check. For an anonymous union declared at
4723  // namespace scope, the constructor and destructor are used.
4724  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4725      RD->isAnonymousStructOrUnion())
4726    return false;
4727
4728  // C++11 [class.copy]p7, p18:
4729  //   If the class definition declares a move constructor or move assignment
4730  //   operator, an implicitly declared copy constructor or copy assignment
4731  //   operator is defined as deleted.
4732  if (MD->isImplicit() &&
4733      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4734    CXXMethodDecl *UserDeclaredMove = 0;
4735
4736    // In Microsoft mode, a user-declared move only causes the deletion of the
4737    // corresponding copy operation, not both copy operations.
4738    if (RD->hasUserDeclaredMoveConstructor() &&
4739        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4740      if (!Diagnose) return true;
4741
4742      // Find any user-declared move constructor.
4743      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4744                                        E = RD->ctor_end(); I != E; ++I) {
4745        if (I->isMoveConstructor()) {
4746          UserDeclaredMove = *I;
4747          break;
4748        }
4749      }
4750      assert(UserDeclaredMove);
4751    } else if (RD->hasUserDeclaredMoveAssignment() &&
4752               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4753      if (!Diagnose) return true;
4754
4755      // Find any user-declared move assignment operator.
4756      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4757                                          E = RD->method_end(); I != E; ++I) {
4758        if (I->isMoveAssignmentOperator()) {
4759          UserDeclaredMove = *I;
4760          break;
4761        }
4762      }
4763      assert(UserDeclaredMove);
4764    }
4765
4766    if (UserDeclaredMove) {
4767      Diag(UserDeclaredMove->getLocation(),
4768           diag::note_deleted_copy_user_declared_move)
4769        << (CSM == CXXCopyAssignment) << RD
4770        << UserDeclaredMove->isMoveAssignmentOperator();
4771      return true;
4772    }
4773  }
4774
4775  // Do access control from the special member function
4776  ContextRAII MethodContext(*this, MD);
4777
4778  // C++11 [class.dtor]p5:
4779  // -- for a virtual destructor, lookup of the non-array deallocation function
4780  //    results in an ambiguity or in a function that is deleted or inaccessible
4781  if (CSM == CXXDestructor && MD->isVirtual()) {
4782    FunctionDecl *OperatorDelete = 0;
4783    DeclarationName Name =
4784      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4785    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4786                                 OperatorDelete, false)) {
4787      if (Diagnose)
4788        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4789      return true;
4790    }
4791  }
4792
4793  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4794
4795  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4796                                          BE = RD->bases_end(); BI != BE; ++BI)
4797    if (!BI->isVirtual() &&
4798        SMI.shouldDeleteForBase(BI))
4799      return true;
4800
4801  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4802                                          BE = RD->vbases_end(); BI != BE; ++BI)
4803    if (SMI.shouldDeleteForBase(BI))
4804      return true;
4805
4806  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4807                                     FE = RD->field_end(); FI != FE; ++FI)
4808    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4809        SMI.shouldDeleteForField(*FI))
4810      return true;
4811
4812  if (SMI.shouldDeleteForAllConstMembers())
4813    return true;
4814
4815  return false;
4816}
4817
4818/// Perform lookup for a special member of the specified kind, and determine
4819/// whether it is trivial. If the triviality can be determined without the
4820/// lookup, skip it. This is intended for use when determining whether a
4821/// special member of a containing object is trivial, and thus does not ever
4822/// perform overload resolution for default constructors.
4823///
4824/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4825/// member that was most likely to be intended to be trivial, if any.
4826static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4827                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4828                                     CXXMethodDecl **Selected) {
4829  if (Selected)
4830    *Selected = 0;
4831
4832  switch (CSM) {
4833  case Sema::CXXInvalid:
4834    llvm_unreachable("not a special member");
4835
4836  case Sema::CXXDefaultConstructor:
4837    // C++11 [class.ctor]p5:
4838    //   A default constructor is trivial if:
4839    //    - all the [direct subobjects] have trivial default constructors
4840    //
4841    // Note, no overload resolution is performed in this case.
4842    if (RD->hasTrivialDefaultConstructor())
4843      return true;
4844
4845    if (Selected) {
4846      // If there's a default constructor which could have been trivial, dig it
4847      // out. Otherwise, if there's any user-provided default constructor, point
4848      // to that as an example of why there's not a trivial one.
4849      CXXConstructorDecl *DefCtor = 0;
4850      if (RD->needsImplicitDefaultConstructor())
4851        S.DeclareImplicitDefaultConstructor(RD);
4852      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4853                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4854        if (!CI->isDefaultConstructor())
4855          continue;
4856        DefCtor = *CI;
4857        if (!DefCtor->isUserProvided())
4858          break;
4859      }
4860
4861      *Selected = DefCtor;
4862    }
4863
4864    return false;
4865
4866  case Sema::CXXDestructor:
4867    // C++11 [class.dtor]p5:
4868    //   A destructor is trivial if:
4869    //    - all the direct [subobjects] have trivial destructors
4870    if (RD->hasTrivialDestructor())
4871      return true;
4872
4873    if (Selected) {
4874      if (RD->needsImplicitDestructor())
4875        S.DeclareImplicitDestructor(RD);
4876      *Selected = RD->getDestructor();
4877    }
4878
4879    return false;
4880
4881  case Sema::CXXCopyConstructor:
4882    // C++11 [class.copy]p12:
4883    //   A copy constructor is trivial if:
4884    //    - the constructor selected to copy each direct [subobject] is trivial
4885    if (RD->hasTrivialCopyConstructor()) {
4886      if (Quals == Qualifiers::Const)
4887        // We must either select the trivial copy constructor or reach an
4888        // ambiguity; no need to actually perform overload resolution.
4889        return true;
4890    } else if (!Selected) {
4891      return false;
4892    }
4893    // In C++98, we are not supposed to perform overload resolution here, but we
4894    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4895    // cases like B as having a non-trivial copy constructor:
4896    //   struct A { template<typename T> A(T&); };
4897    //   struct B { mutable A a; };
4898    goto NeedOverloadResolution;
4899
4900  case Sema::CXXCopyAssignment:
4901    // C++11 [class.copy]p25:
4902    //   A copy assignment operator is trivial if:
4903    //    - the assignment operator selected to copy each direct [subobject] is
4904    //      trivial
4905    if (RD->hasTrivialCopyAssignment()) {
4906      if (Quals == Qualifiers::Const)
4907        return true;
4908    } else if (!Selected) {
4909      return false;
4910    }
4911    // In C++98, we are not supposed to perform overload resolution here, but we
4912    // treat that as a language defect.
4913    goto NeedOverloadResolution;
4914
4915  case Sema::CXXMoveConstructor:
4916  case Sema::CXXMoveAssignment:
4917  NeedOverloadResolution:
4918    Sema::SpecialMemberOverloadResult *SMOR =
4919      S.LookupSpecialMember(RD, CSM,
4920                            Quals & Qualifiers::Const,
4921                            Quals & Qualifiers::Volatile,
4922                            /*RValueThis*/false, /*ConstThis*/false,
4923                            /*VolatileThis*/false);
4924
4925    // The standard doesn't describe how to behave if the lookup is ambiguous.
4926    // We treat it as not making the member non-trivial, just like the standard
4927    // mandates for the default constructor. This should rarely matter, because
4928    // the member will also be deleted.
4929    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4930      return true;
4931
4932    if (!SMOR->getMethod()) {
4933      assert(SMOR->getKind() ==
4934             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
4935      return false;
4936    }
4937
4938    // We deliberately don't check if we found a deleted special member. We're
4939    // not supposed to!
4940    if (Selected)
4941      *Selected = SMOR->getMethod();
4942    return SMOR->getMethod()->isTrivial();
4943  }
4944
4945  llvm_unreachable("unknown special method kind");
4946}
4947
4948CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
4949  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
4950       CI != CE; ++CI)
4951    if (!CI->isImplicit())
4952      return *CI;
4953
4954  // Look for constructor templates.
4955  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
4956  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
4957    if (CXXConstructorDecl *CD =
4958          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
4959      return CD;
4960  }
4961
4962  return 0;
4963}
4964
4965/// The kind of subobject we are checking for triviality. The values of this
4966/// enumeration are used in diagnostics.
4967enum TrivialSubobjectKind {
4968  /// The subobject is a base class.
4969  TSK_BaseClass,
4970  /// The subobject is a non-static data member.
4971  TSK_Field,
4972  /// The object is actually the complete object.
4973  TSK_CompleteObject
4974};
4975
4976/// Check whether the special member selected for a given type would be trivial.
4977static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
4978                                      QualType SubType,
4979                                      Sema::CXXSpecialMember CSM,
4980                                      TrivialSubobjectKind Kind,
4981                                      bool Diagnose) {
4982  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
4983  if (!SubRD)
4984    return true;
4985
4986  CXXMethodDecl *Selected;
4987  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
4988                               Diagnose ? &Selected : 0))
4989    return true;
4990
4991  if (Diagnose) {
4992    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
4993      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
4994        << Kind << SubType.getUnqualifiedType();
4995      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
4996        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
4997    } else if (!Selected)
4998      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
4999        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5000    else if (Selected->isUserProvided()) {
5001      if (Kind == TSK_CompleteObject)
5002        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5003          << Kind << SubType.getUnqualifiedType() << CSM;
5004      else {
5005        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5006          << Kind << SubType.getUnqualifiedType() << CSM;
5007        S.Diag(Selected->getLocation(), diag::note_declared_at);
5008      }
5009    } else {
5010      if (Kind != TSK_CompleteObject)
5011        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5012          << Kind << SubType.getUnqualifiedType() << CSM;
5013
5014      // Explain why the defaulted or deleted special member isn't trivial.
5015      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5016    }
5017  }
5018
5019  return false;
5020}
5021
5022/// Check whether the members of a class type allow a special member to be
5023/// trivial.
5024static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5025                                     Sema::CXXSpecialMember CSM,
5026                                     bool ConstArg, bool Diagnose) {
5027  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5028                                     FE = RD->field_end(); FI != FE; ++FI) {
5029    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5030      continue;
5031
5032    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5033
5034    // Pretend anonymous struct or union members are members of this class.
5035    if (FI->isAnonymousStructOrUnion()) {
5036      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5037                                    CSM, ConstArg, Diagnose))
5038        return false;
5039      continue;
5040    }
5041
5042    // C++11 [class.ctor]p5:
5043    //   A default constructor is trivial if [...]
5044    //    -- no non-static data member of its class has a
5045    //       brace-or-equal-initializer
5046    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5047      if (Diagnose)
5048        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5049      return false;
5050    }
5051
5052    // Objective C ARC 4.3.5:
5053    //   [...] nontrivally ownership-qualified types are [...] not trivially
5054    //   default constructible, copy constructible, move constructible, copy
5055    //   assignable, move assignable, or destructible [...]
5056    if (S.getLangOpts().ObjCAutoRefCount &&
5057        FieldType.hasNonTrivialObjCLifetime()) {
5058      if (Diagnose)
5059        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5060          << RD << FieldType.getObjCLifetime();
5061      return false;
5062    }
5063
5064    if (ConstArg && !FI->isMutable())
5065      FieldType.addConst();
5066    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5067                                   TSK_Field, Diagnose))
5068      return false;
5069  }
5070
5071  return true;
5072}
5073
5074/// Diagnose why the specified class does not have a trivial special member of
5075/// the given kind.
5076void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5077  QualType Ty = Context.getRecordType(RD);
5078  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5079    Ty.addConst();
5080
5081  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5082                            TSK_CompleteObject, /*Diagnose*/true);
5083}
5084
5085/// Determine whether a defaulted or deleted special member function is trivial,
5086/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5087/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5088bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5089                                  bool Diagnose) {
5090  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5091
5092  CXXRecordDecl *RD = MD->getParent();
5093
5094  bool ConstArg = false;
5095  ParmVarDecl *Param0 = MD->getNumParams() ? MD->getParamDecl(0) : 0;
5096
5097  // C++11 [class.copy]p12, p25:
5098  //   A [special member] is trivial if its declared parameter type is the same
5099  //   as if it had been implicitly declared [...]
5100  switch (CSM) {
5101  case CXXDefaultConstructor:
5102  case CXXDestructor:
5103    // Trivial default constructors and destructors cannot have parameters.
5104    break;
5105
5106  case CXXCopyConstructor:
5107  case CXXCopyAssignment: {
5108    // Trivial copy operations always have const, non-volatile parameter types.
5109    ConstArg = true;
5110    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5111    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5112      if (Diagnose)
5113        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5114          << Param0->getSourceRange() << Param0->getType()
5115          << Context.getLValueReferenceType(
5116               Context.getRecordType(RD).withConst());
5117      return false;
5118    }
5119    break;
5120  }
5121
5122  case CXXMoveConstructor:
5123  case CXXMoveAssignment: {
5124    // Trivial move operations always have non-cv-qualified parameters.
5125    const RValueReferenceType *RT =
5126      Param0->getType()->getAs<RValueReferenceType>();
5127    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5128      if (Diagnose)
5129        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5130          << Param0->getSourceRange() << Param0->getType()
5131          << Context.getRValueReferenceType(Context.getRecordType(RD));
5132      return false;
5133    }
5134    break;
5135  }
5136
5137  case CXXInvalid:
5138    llvm_unreachable("not a special member");
5139  }
5140
5141  // FIXME: We require that the parameter-declaration-clause is equivalent to
5142  // that of an implicit declaration, not just that the declared parameter type
5143  // matches, in order to prevent absuridities like a function simultaneously
5144  // being a trivial copy constructor and a non-trivial default constructor.
5145  // This issue has not yet been assigned a core issue number.
5146  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5147    if (Diagnose)
5148      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5149           diag::note_nontrivial_default_arg)
5150        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5151    return false;
5152  }
5153  if (MD->isVariadic()) {
5154    if (Diagnose)
5155      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5156    return false;
5157  }
5158
5159  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5160  //   A copy/move [constructor or assignment operator] is trivial if
5161  //    -- the [member] selected to copy/move each direct base class subobject
5162  //       is trivial
5163  //
5164  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5165  //   A [default constructor or destructor] is trivial if
5166  //    -- all the direct base classes have trivial [default constructors or
5167  //       destructors]
5168  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5169                                          BE = RD->bases_end(); BI != BE; ++BI)
5170    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5171                                   ConstArg ? BI->getType().withConst()
5172                                            : BI->getType(),
5173                                   CSM, TSK_BaseClass, Diagnose))
5174      return false;
5175
5176  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5177  //   A copy/move [constructor or assignment operator] for a class X is
5178  //   trivial if
5179  //    -- for each non-static data member of X that is of class type (or array
5180  //       thereof), the constructor selected to copy/move that member is
5181  //       trivial
5182  //
5183  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5184  //   A [default constructor or destructor] is trivial if
5185  //    -- for all of the non-static data members of its class that are of class
5186  //       type (or array thereof), each such class has a trivial [default
5187  //       constructor or destructor]
5188  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5189    return false;
5190
5191  // C++11 [class.dtor]p5:
5192  //   A destructor is trivial if [...]
5193  //    -- the destructor is not virtual
5194  if (CSM == CXXDestructor && MD->isVirtual()) {
5195    if (Diagnose)
5196      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5197    return false;
5198  }
5199
5200  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5201  //   A [special member] for class X is trivial if [...]
5202  //    -- class X has no virtual functions and no virtual base classes
5203  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5204    if (!Diagnose)
5205      return false;
5206
5207    if (RD->getNumVBases()) {
5208      // Check for virtual bases. We already know that the corresponding
5209      // member in all bases is trivial, so vbases must all be direct.
5210      CXXBaseSpecifier &BS = *RD->vbases_begin();
5211      assert(BS.isVirtual());
5212      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5213      return false;
5214    }
5215
5216    // Must have a virtual method.
5217    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5218                                        ME = RD->method_end(); MI != ME; ++MI) {
5219      if (MI->isVirtual()) {
5220        SourceLocation MLoc = MI->getLocStart();
5221        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5222        return false;
5223      }
5224    }
5225
5226    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5227  }
5228
5229  // Looks like it's trivial!
5230  return true;
5231}
5232
5233/// \brief Data used with FindHiddenVirtualMethod
5234namespace {
5235  struct FindHiddenVirtualMethodData {
5236    Sema *S;
5237    CXXMethodDecl *Method;
5238    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5239    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5240  };
5241}
5242
5243/// \brief Check whether any most overriden method from MD in Methods
5244static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5245                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5246  if (MD->size_overridden_methods() == 0)
5247    return Methods.count(MD->getCanonicalDecl());
5248  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5249                                      E = MD->end_overridden_methods();
5250       I != E; ++I)
5251    if (CheckMostOverridenMethods(*I, Methods))
5252      return true;
5253  return false;
5254}
5255
5256/// \brief Member lookup function that determines whether a given C++
5257/// method overloads virtual methods in a base class without overriding any,
5258/// to be used with CXXRecordDecl::lookupInBases().
5259static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5260                                    CXXBasePath &Path,
5261                                    void *UserData) {
5262  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5263
5264  FindHiddenVirtualMethodData &Data
5265    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5266
5267  DeclarationName Name = Data.Method->getDeclName();
5268  assert(Name.getNameKind() == DeclarationName::Identifier);
5269
5270  bool foundSameNameMethod = false;
5271  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5272  for (Path.Decls = BaseRecord->lookup(Name);
5273       !Path.Decls.empty();
5274       Path.Decls = Path.Decls.slice(1)) {
5275    NamedDecl *D = Path.Decls.front();
5276    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5277      MD = MD->getCanonicalDecl();
5278      foundSameNameMethod = true;
5279      // Interested only in hidden virtual methods.
5280      if (!MD->isVirtual())
5281        continue;
5282      // If the method we are checking overrides a method from its base
5283      // don't warn about the other overloaded methods.
5284      if (!Data.S->IsOverload(Data.Method, MD, false))
5285        return true;
5286      // Collect the overload only if its hidden.
5287      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5288        overloadedMethods.push_back(MD);
5289    }
5290  }
5291
5292  if (foundSameNameMethod)
5293    Data.OverloadedMethods.append(overloadedMethods.begin(),
5294                                   overloadedMethods.end());
5295  return foundSameNameMethod;
5296}
5297
5298/// \brief Add the most overriden methods from MD to Methods
5299static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5300                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5301  if (MD->size_overridden_methods() == 0)
5302    Methods.insert(MD->getCanonicalDecl());
5303  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5304                                      E = MD->end_overridden_methods();
5305       I != E; ++I)
5306    AddMostOverridenMethods(*I, Methods);
5307}
5308
5309/// \brief See if a method overloads virtual methods in a base class without
5310/// overriding any.
5311void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5312  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5313                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5314    return;
5315  if (!MD->getDeclName().isIdentifier())
5316    return;
5317
5318  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5319                     /*bool RecordPaths=*/false,
5320                     /*bool DetectVirtual=*/false);
5321  FindHiddenVirtualMethodData Data;
5322  Data.Method = MD;
5323  Data.S = this;
5324
5325  // Keep the base methods that were overriden or introduced in the subclass
5326  // by 'using' in a set. A base method not in this set is hidden.
5327  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5328  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5329    NamedDecl *ND = *I;
5330    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5331      ND = shad->getTargetDecl();
5332    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5333      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5334  }
5335
5336  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5337      !Data.OverloadedMethods.empty()) {
5338    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5339      << MD << (Data.OverloadedMethods.size() > 1);
5340
5341    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5342      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5343      Diag(overloadedMD->getLocation(),
5344           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5345    }
5346  }
5347}
5348
5349void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5350                                             Decl *TagDecl,
5351                                             SourceLocation LBrac,
5352                                             SourceLocation RBrac,
5353                                             AttributeList *AttrList) {
5354  if (!TagDecl)
5355    return;
5356
5357  AdjustDeclIfTemplate(TagDecl);
5358
5359  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5360    if (l->getKind() != AttributeList::AT_Visibility)
5361      continue;
5362    l->setInvalid();
5363    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5364      l->getName();
5365  }
5366
5367  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5368              // strict aliasing violation!
5369              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5370              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5371
5372  CheckCompletedCXXClass(
5373                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5374}
5375
5376/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5377/// special functions, such as the default constructor, copy
5378/// constructor, or destructor, to the given C++ class (C++
5379/// [special]p1).  This routine can only be executed just before the
5380/// definition of the class is complete.
5381void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5382  if (!ClassDecl->hasUserDeclaredConstructor())
5383    ++ASTContext::NumImplicitDefaultConstructors;
5384
5385  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5386    ++ASTContext::NumImplicitCopyConstructors;
5387
5388    // If the properties or semantics of the copy constructor couldn't be
5389    // determined while the class was being declared, force a declaration
5390    // of it now.
5391    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5392      DeclareImplicitCopyConstructor(ClassDecl);
5393  }
5394
5395  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5396    ++ASTContext::NumImplicitMoveConstructors;
5397
5398    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5399      DeclareImplicitMoveConstructor(ClassDecl);
5400  }
5401
5402  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5403    ++ASTContext::NumImplicitCopyAssignmentOperators;
5404
5405    // If we have a dynamic class, then the copy assignment operator may be
5406    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5407    // it shows up in the right place in the vtable and that we diagnose
5408    // problems with the implicit exception specification.
5409    if (ClassDecl->isDynamicClass() ||
5410        ClassDecl->needsOverloadResolutionForCopyAssignment())
5411      DeclareImplicitCopyAssignment(ClassDecl);
5412  }
5413
5414  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5415    ++ASTContext::NumImplicitMoveAssignmentOperators;
5416
5417    // Likewise for the move assignment operator.
5418    if (ClassDecl->isDynamicClass() ||
5419        ClassDecl->needsOverloadResolutionForMoveAssignment())
5420      DeclareImplicitMoveAssignment(ClassDecl);
5421  }
5422
5423  if (!ClassDecl->hasUserDeclaredDestructor()) {
5424    ++ASTContext::NumImplicitDestructors;
5425
5426    // If we have a dynamic class, then the destructor may be virtual, so we
5427    // have to declare the destructor immediately. This ensures that, e.g., it
5428    // shows up in the right place in the vtable and that we diagnose problems
5429    // with the implicit exception specification.
5430    if (ClassDecl->isDynamicClass() ||
5431        ClassDecl->needsOverloadResolutionForDestructor())
5432      DeclareImplicitDestructor(ClassDecl);
5433  }
5434}
5435
5436void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5437  if (!D)
5438    return;
5439
5440  int NumParamList = D->getNumTemplateParameterLists();
5441  for (int i = 0; i < NumParamList; i++) {
5442    TemplateParameterList* Params = D->getTemplateParameterList(i);
5443    for (TemplateParameterList::iterator Param = Params->begin(),
5444                                      ParamEnd = Params->end();
5445          Param != ParamEnd; ++Param) {
5446      NamedDecl *Named = cast<NamedDecl>(*Param);
5447      if (Named->getDeclName()) {
5448        S->AddDecl(Named);
5449        IdResolver.AddDecl(Named);
5450      }
5451    }
5452  }
5453}
5454
5455void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5456  if (!D)
5457    return;
5458
5459  TemplateParameterList *Params = 0;
5460  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5461    Params = Template->getTemplateParameters();
5462  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5463           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5464    Params = PartialSpec->getTemplateParameters();
5465  else
5466    return;
5467
5468  for (TemplateParameterList::iterator Param = Params->begin(),
5469                                    ParamEnd = Params->end();
5470       Param != ParamEnd; ++Param) {
5471    NamedDecl *Named = cast<NamedDecl>(*Param);
5472    if (Named->getDeclName()) {
5473      S->AddDecl(Named);
5474      IdResolver.AddDecl(Named);
5475    }
5476  }
5477}
5478
5479void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5480  if (!RecordD) return;
5481  AdjustDeclIfTemplate(RecordD);
5482  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5483  PushDeclContext(S, Record);
5484}
5485
5486void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5487  if (!RecordD) return;
5488  PopDeclContext();
5489}
5490
5491/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5492/// parsing a top-level (non-nested) C++ class, and we are now
5493/// parsing those parts of the given Method declaration that could
5494/// not be parsed earlier (C++ [class.mem]p2), such as default
5495/// arguments. This action should enter the scope of the given
5496/// Method declaration as if we had just parsed the qualified method
5497/// name. However, it should not bring the parameters into scope;
5498/// that will be performed by ActOnDelayedCXXMethodParameter.
5499void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5500}
5501
5502/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5503/// C++ method declaration. We're (re-)introducing the given
5504/// function parameter into scope for use in parsing later parts of
5505/// the method declaration. For example, we could see an
5506/// ActOnParamDefaultArgument event for this parameter.
5507void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5508  if (!ParamD)
5509    return;
5510
5511  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5512
5513  // If this parameter has an unparsed default argument, clear it out
5514  // to make way for the parsed default argument.
5515  if (Param->hasUnparsedDefaultArg())
5516    Param->setDefaultArg(0);
5517
5518  S->AddDecl(Param);
5519  if (Param->getDeclName())
5520    IdResolver.AddDecl(Param);
5521}
5522
5523/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5524/// processing the delayed method declaration for Method. The method
5525/// declaration is now considered finished. There may be a separate
5526/// ActOnStartOfFunctionDef action later (not necessarily
5527/// immediately!) for this method, if it was also defined inside the
5528/// class body.
5529void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5530  if (!MethodD)
5531    return;
5532
5533  AdjustDeclIfTemplate(MethodD);
5534
5535  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5536
5537  // Now that we have our default arguments, check the constructor
5538  // again. It could produce additional diagnostics or affect whether
5539  // the class has implicitly-declared destructors, among other
5540  // things.
5541  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5542    CheckConstructor(Constructor);
5543
5544  // Check the default arguments, which we may have added.
5545  if (!Method->isInvalidDecl())
5546    CheckCXXDefaultArguments(Method);
5547}
5548
5549/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5550/// the well-formedness of the constructor declarator @p D with type @p
5551/// R. If there are any errors in the declarator, this routine will
5552/// emit diagnostics and set the invalid bit to true.  In any case, the type
5553/// will be updated to reflect a well-formed type for the constructor and
5554/// returned.
5555QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5556                                          StorageClass &SC) {
5557  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5558
5559  // C++ [class.ctor]p3:
5560  //   A constructor shall not be virtual (10.3) or static (9.4). A
5561  //   constructor can be invoked for a const, volatile or const
5562  //   volatile object. A constructor shall not be declared const,
5563  //   volatile, or const volatile (9.3.2).
5564  if (isVirtual) {
5565    if (!D.isInvalidType())
5566      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5567        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5568        << SourceRange(D.getIdentifierLoc());
5569    D.setInvalidType();
5570  }
5571  if (SC == SC_Static) {
5572    if (!D.isInvalidType())
5573      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5574        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5575        << SourceRange(D.getIdentifierLoc());
5576    D.setInvalidType();
5577    SC = SC_None;
5578  }
5579
5580  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5581  if (FTI.TypeQuals != 0) {
5582    if (FTI.TypeQuals & Qualifiers::Const)
5583      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5584        << "const" << SourceRange(D.getIdentifierLoc());
5585    if (FTI.TypeQuals & Qualifiers::Volatile)
5586      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5587        << "volatile" << SourceRange(D.getIdentifierLoc());
5588    if (FTI.TypeQuals & Qualifiers::Restrict)
5589      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5590        << "restrict" << SourceRange(D.getIdentifierLoc());
5591    D.setInvalidType();
5592  }
5593
5594  // C++0x [class.ctor]p4:
5595  //   A constructor shall not be declared with a ref-qualifier.
5596  if (FTI.hasRefQualifier()) {
5597    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5598      << FTI.RefQualifierIsLValueRef
5599      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5600    D.setInvalidType();
5601  }
5602
5603  // Rebuild the function type "R" without any type qualifiers (in
5604  // case any of the errors above fired) and with "void" as the
5605  // return type, since constructors don't have return types.
5606  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5607  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5608    return R;
5609
5610  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5611  EPI.TypeQuals = 0;
5612  EPI.RefQualifier = RQ_None;
5613
5614  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5615                                 Proto->getNumArgs(), EPI);
5616}
5617
5618/// CheckConstructor - Checks a fully-formed constructor for
5619/// well-formedness, issuing any diagnostics required. Returns true if
5620/// the constructor declarator is invalid.
5621void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5622  CXXRecordDecl *ClassDecl
5623    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5624  if (!ClassDecl)
5625    return Constructor->setInvalidDecl();
5626
5627  // C++ [class.copy]p3:
5628  //   A declaration of a constructor for a class X is ill-formed if
5629  //   its first parameter is of type (optionally cv-qualified) X and
5630  //   either there are no other parameters or else all other
5631  //   parameters have default arguments.
5632  if (!Constructor->isInvalidDecl() &&
5633      ((Constructor->getNumParams() == 1) ||
5634       (Constructor->getNumParams() > 1 &&
5635        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5636      Constructor->getTemplateSpecializationKind()
5637                                              != TSK_ImplicitInstantiation) {
5638    QualType ParamType = Constructor->getParamDecl(0)->getType();
5639    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5640    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5641      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5642      const char *ConstRef
5643        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5644                                                        : " const &";
5645      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5646        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5647
5648      // FIXME: Rather that making the constructor invalid, we should endeavor
5649      // to fix the type.
5650      Constructor->setInvalidDecl();
5651    }
5652  }
5653}
5654
5655/// CheckDestructor - Checks a fully-formed destructor definition for
5656/// well-formedness, issuing any diagnostics required.  Returns true
5657/// on error.
5658bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5659  CXXRecordDecl *RD = Destructor->getParent();
5660
5661  if (Destructor->isVirtual()) {
5662    SourceLocation Loc;
5663
5664    if (!Destructor->isImplicit())
5665      Loc = Destructor->getLocation();
5666    else
5667      Loc = RD->getLocation();
5668
5669    // If we have a virtual destructor, look up the deallocation function
5670    FunctionDecl *OperatorDelete = 0;
5671    DeclarationName Name =
5672    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5673    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5674      return true;
5675
5676    MarkFunctionReferenced(Loc, OperatorDelete);
5677
5678    Destructor->setOperatorDelete(OperatorDelete);
5679  }
5680
5681  return false;
5682}
5683
5684static inline bool
5685FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5686  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5687          FTI.ArgInfo[0].Param &&
5688          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5689}
5690
5691/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5692/// the well-formednes of the destructor declarator @p D with type @p
5693/// R. If there are any errors in the declarator, this routine will
5694/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5695/// will be updated to reflect a well-formed type for the destructor and
5696/// returned.
5697QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5698                                         StorageClass& SC) {
5699  // C++ [class.dtor]p1:
5700  //   [...] A typedef-name that names a class is a class-name
5701  //   (7.1.3); however, a typedef-name that names a class shall not
5702  //   be used as the identifier in the declarator for a destructor
5703  //   declaration.
5704  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5705  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5706    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5707      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5708  else if (const TemplateSpecializationType *TST =
5709             DeclaratorType->getAs<TemplateSpecializationType>())
5710    if (TST->isTypeAlias())
5711      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5712        << DeclaratorType << 1;
5713
5714  // C++ [class.dtor]p2:
5715  //   A destructor is used to destroy objects of its class type. A
5716  //   destructor takes no parameters, and no return type can be
5717  //   specified for it (not even void). The address of a destructor
5718  //   shall not be taken. A destructor shall not be static. A
5719  //   destructor can be invoked for a const, volatile or const
5720  //   volatile object. A destructor shall not be declared const,
5721  //   volatile or const volatile (9.3.2).
5722  if (SC == SC_Static) {
5723    if (!D.isInvalidType())
5724      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5725        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5726        << SourceRange(D.getIdentifierLoc())
5727        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5728
5729    SC = SC_None;
5730  }
5731  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5732    // Destructors don't have return types, but the parser will
5733    // happily parse something like:
5734    //
5735    //   class X {
5736    //     float ~X();
5737    //   };
5738    //
5739    // The return type will be eliminated later.
5740    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5741      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5742      << SourceRange(D.getIdentifierLoc());
5743  }
5744
5745  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5746  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5747    if (FTI.TypeQuals & Qualifiers::Const)
5748      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5749        << "const" << SourceRange(D.getIdentifierLoc());
5750    if (FTI.TypeQuals & Qualifiers::Volatile)
5751      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5752        << "volatile" << SourceRange(D.getIdentifierLoc());
5753    if (FTI.TypeQuals & Qualifiers::Restrict)
5754      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5755        << "restrict" << SourceRange(D.getIdentifierLoc());
5756    D.setInvalidType();
5757  }
5758
5759  // C++0x [class.dtor]p2:
5760  //   A destructor shall not be declared with a ref-qualifier.
5761  if (FTI.hasRefQualifier()) {
5762    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5763      << FTI.RefQualifierIsLValueRef
5764      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5765    D.setInvalidType();
5766  }
5767
5768  // Make sure we don't have any parameters.
5769  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5770    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5771
5772    // Delete the parameters.
5773    FTI.freeArgs();
5774    D.setInvalidType();
5775  }
5776
5777  // Make sure the destructor isn't variadic.
5778  if (FTI.isVariadic) {
5779    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5780    D.setInvalidType();
5781  }
5782
5783  // Rebuild the function type "R" without any type qualifiers or
5784  // parameters (in case any of the errors above fired) and with
5785  // "void" as the return type, since destructors don't have return
5786  // types.
5787  if (!D.isInvalidType())
5788    return R;
5789
5790  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5791  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5792  EPI.Variadic = false;
5793  EPI.TypeQuals = 0;
5794  EPI.RefQualifier = RQ_None;
5795  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5796}
5797
5798/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5799/// well-formednes of the conversion function declarator @p D with
5800/// type @p R. If there are any errors in the declarator, this routine
5801/// will emit diagnostics and return true. Otherwise, it will return
5802/// false. Either way, the type @p R will be updated to reflect a
5803/// well-formed type for the conversion operator.
5804void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5805                                     StorageClass& SC) {
5806  // C++ [class.conv.fct]p1:
5807  //   Neither parameter types nor return type can be specified. The
5808  //   type of a conversion function (8.3.5) is "function taking no
5809  //   parameter returning conversion-type-id."
5810  if (SC == SC_Static) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5813        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5814        << SourceRange(D.getIdentifierLoc());
5815    D.setInvalidType();
5816    SC = SC_None;
5817  }
5818
5819  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5820
5821  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5822    // Conversion functions don't have return types, but the parser will
5823    // happily parse something like:
5824    //
5825    //   class X {
5826    //     float operator bool();
5827    //   };
5828    //
5829    // The return type will be changed later anyway.
5830    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5831      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5832      << SourceRange(D.getIdentifierLoc());
5833    D.setInvalidType();
5834  }
5835
5836  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5837
5838  // Make sure we don't have any parameters.
5839  if (Proto->getNumArgs() > 0) {
5840    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5841
5842    // Delete the parameters.
5843    D.getFunctionTypeInfo().freeArgs();
5844    D.setInvalidType();
5845  } else if (Proto->isVariadic()) {
5846    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5847    D.setInvalidType();
5848  }
5849
5850  // Diagnose "&operator bool()" and other such nonsense.  This
5851  // is actually a gcc extension which we don't support.
5852  if (Proto->getResultType() != ConvType) {
5853    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5854      << Proto->getResultType();
5855    D.setInvalidType();
5856    ConvType = Proto->getResultType();
5857  }
5858
5859  // C++ [class.conv.fct]p4:
5860  //   The conversion-type-id shall not represent a function type nor
5861  //   an array type.
5862  if (ConvType->isArrayType()) {
5863    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5864    ConvType = Context.getPointerType(ConvType);
5865    D.setInvalidType();
5866  } else if (ConvType->isFunctionType()) {
5867    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5868    ConvType = Context.getPointerType(ConvType);
5869    D.setInvalidType();
5870  }
5871
5872  // Rebuild the function type "R" without any parameters (in case any
5873  // of the errors above fired) and with the conversion type as the
5874  // return type.
5875  if (D.isInvalidType())
5876    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5877
5878  // C++0x explicit conversion operators.
5879  if (D.getDeclSpec().isExplicitSpecified())
5880    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5881         getLangOpts().CPlusPlus11 ?
5882           diag::warn_cxx98_compat_explicit_conversion_functions :
5883           diag::ext_explicit_conversion_functions)
5884      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5885}
5886
5887/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5888/// the declaration of the given C++ conversion function. This routine
5889/// is responsible for recording the conversion function in the C++
5890/// class, if possible.
5891Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5892  assert(Conversion && "Expected to receive a conversion function declaration");
5893
5894  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5895
5896  // Make sure we aren't redeclaring the conversion function.
5897  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5898
5899  // C++ [class.conv.fct]p1:
5900  //   [...] A conversion function is never used to convert a
5901  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5902  //   same object type (or a reference to it), to a (possibly
5903  //   cv-qualified) base class of that type (or a reference to it),
5904  //   or to (possibly cv-qualified) void.
5905  // FIXME: Suppress this warning if the conversion function ends up being a
5906  // virtual function that overrides a virtual function in a base class.
5907  QualType ClassType
5908    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5909  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5910    ConvType = ConvTypeRef->getPointeeType();
5911  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5912      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5913    /* Suppress diagnostics for instantiations. */;
5914  else if (ConvType->isRecordType()) {
5915    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5916    if (ConvType == ClassType)
5917      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5918        << ClassType;
5919    else if (IsDerivedFrom(ClassType, ConvType))
5920      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5921        <<  ClassType << ConvType;
5922  } else if (ConvType->isVoidType()) {
5923    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5924      << ClassType << ConvType;
5925  }
5926
5927  if (FunctionTemplateDecl *ConversionTemplate
5928                                = Conversion->getDescribedFunctionTemplate())
5929    return ConversionTemplate;
5930
5931  return Conversion;
5932}
5933
5934//===----------------------------------------------------------------------===//
5935// Namespace Handling
5936//===----------------------------------------------------------------------===//
5937
5938/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
5939/// reopened.
5940static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
5941                                            SourceLocation Loc,
5942                                            IdentifierInfo *II, bool *IsInline,
5943                                            NamespaceDecl *PrevNS) {
5944  assert(*IsInline != PrevNS->isInline());
5945
5946  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
5947  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
5948  // inline namespaces, with the intention of bringing names into namespace std.
5949  //
5950  // We support this just well enough to get that case working; this is not
5951  // sufficient to support reopening namespaces as inline in general.
5952  if (*IsInline && II && II->getName().startswith("__atomic") &&
5953      S.getSourceManager().isInSystemHeader(Loc)) {
5954    // Mark all prior declarations of the namespace as inline.
5955    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
5956         NS = NS->getPreviousDecl())
5957      NS->setInline(*IsInline);
5958    // Patch up the lookup table for the containing namespace. This isn't really
5959    // correct, but it's good enough for this particular case.
5960    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
5961                                    E = PrevNS->decls_end(); I != E; ++I)
5962      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
5963        PrevNS->getParent()->makeDeclVisibleInContext(ND);
5964    return;
5965  }
5966
5967  if (PrevNS->isInline())
5968    // The user probably just forgot the 'inline', so suggest that it
5969    // be added back.
5970    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5971      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
5972  else
5973    S.Diag(Loc, diag::err_inline_namespace_mismatch)
5974      << IsInline;
5975
5976  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
5977  *IsInline = PrevNS->isInline();
5978}
5979
5980/// ActOnStartNamespaceDef - This is called at the start of a namespace
5981/// definition.
5982Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5983                                   SourceLocation InlineLoc,
5984                                   SourceLocation NamespaceLoc,
5985                                   SourceLocation IdentLoc,
5986                                   IdentifierInfo *II,
5987                                   SourceLocation LBrace,
5988                                   AttributeList *AttrList) {
5989  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5990  // For anonymous namespace, take the location of the left brace.
5991  SourceLocation Loc = II ? IdentLoc : LBrace;
5992  bool IsInline = InlineLoc.isValid();
5993  bool IsInvalid = false;
5994  bool IsStd = false;
5995  bool AddToKnown = false;
5996  Scope *DeclRegionScope = NamespcScope->getParent();
5997
5998  NamespaceDecl *PrevNS = 0;
5999  if (II) {
6000    // C++ [namespace.def]p2:
6001    //   The identifier in an original-namespace-definition shall not
6002    //   have been previously defined in the declarative region in
6003    //   which the original-namespace-definition appears. The
6004    //   identifier in an original-namespace-definition is the name of
6005    //   the namespace. Subsequently in that declarative region, it is
6006    //   treated as an original-namespace-name.
6007    //
6008    // Since namespace names are unique in their scope, and we don't
6009    // look through using directives, just look for any ordinary names.
6010
6011    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6012    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6013    Decl::IDNS_Namespace;
6014    NamedDecl *PrevDecl = 0;
6015    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6016    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6017         ++I) {
6018      if ((*I)->getIdentifierNamespace() & IDNS) {
6019        PrevDecl = *I;
6020        break;
6021      }
6022    }
6023
6024    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6025
6026    if (PrevNS) {
6027      // This is an extended namespace definition.
6028      if (IsInline != PrevNS->isInline())
6029        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6030                                        &IsInline, PrevNS);
6031    } else if (PrevDecl) {
6032      // This is an invalid name redefinition.
6033      Diag(Loc, diag::err_redefinition_different_kind)
6034        << II;
6035      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6036      IsInvalid = true;
6037      // Continue on to push Namespc as current DeclContext and return it.
6038    } else if (II->isStr("std") &&
6039               CurContext->getRedeclContext()->isTranslationUnit()) {
6040      // This is the first "real" definition of the namespace "std", so update
6041      // our cache of the "std" namespace to point at this definition.
6042      PrevNS = getStdNamespace();
6043      IsStd = true;
6044      AddToKnown = !IsInline;
6045    } else {
6046      // We've seen this namespace for the first time.
6047      AddToKnown = !IsInline;
6048    }
6049  } else {
6050    // Anonymous namespaces.
6051
6052    // Determine whether the parent already has an anonymous namespace.
6053    DeclContext *Parent = CurContext->getRedeclContext();
6054    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6055      PrevNS = TU->getAnonymousNamespace();
6056    } else {
6057      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6058      PrevNS = ND->getAnonymousNamespace();
6059    }
6060
6061    if (PrevNS && IsInline != PrevNS->isInline())
6062      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6063                                      &IsInline, PrevNS);
6064  }
6065
6066  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6067                                                 StartLoc, Loc, II, PrevNS);
6068  if (IsInvalid)
6069    Namespc->setInvalidDecl();
6070
6071  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6072
6073  // FIXME: Should we be merging attributes?
6074  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6075    PushNamespaceVisibilityAttr(Attr, Loc);
6076
6077  if (IsStd)
6078    StdNamespace = Namespc;
6079  if (AddToKnown)
6080    KnownNamespaces[Namespc] = false;
6081
6082  if (II) {
6083    PushOnScopeChains(Namespc, DeclRegionScope);
6084  } else {
6085    // Link the anonymous namespace into its parent.
6086    DeclContext *Parent = CurContext->getRedeclContext();
6087    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6088      TU->setAnonymousNamespace(Namespc);
6089    } else {
6090      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6091    }
6092
6093    CurContext->addDecl(Namespc);
6094
6095    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6096    //   behaves as if it were replaced by
6097    //     namespace unique { /* empty body */ }
6098    //     using namespace unique;
6099    //     namespace unique { namespace-body }
6100    //   where all occurrences of 'unique' in a translation unit are
6101    //   replaced by the same identifier and this identifier differs
6102    //   from all other identifiers in the entire program.
6103
6104    // We just create the namespace with an empty name and then add an
6105    // implicit using declaration, just like the standard suggests.
6106    //
6107    // CodeGen enforces the "universally unique" aspect by giving all
6108    // declarations semantically contained within an anonymous
6109    // namespace internal linkage.
6110
6111    if (!PrevNS) {
6112      UsingDirectiveDecl* UD
6113        = UsingDirectiveDecl::Create(Context, Parent,
6114                                     /* 'using' */ LBrace,
6115                                     /* 'namespace' */ SourceLocation(),
6116                                     /* qualifier */ NestedNameSpecifierLoc(),
6117                                     /* identifier */ SourceLocation(),
6118                                     Namespc,
6119                                     /* Ancestor */ Parent);
6120      UD->setImplicit();
6121      Parent->addDecl(UD);
6122    }
6123  }
6124
6125  ActOnDocumentableDecl(Namespc);
6126
6127  // Although we could have an invalid decl (i.e. the namespace name is a
6128  // redefinition), push it as current DeclContext and try to continue parsing.
6129  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6130  // for the namespace has the declarations that showed up in that particular
6131  // namespace definition.
6132  PushDeclContext(NamespcScope, Namespc);
6133  return Namespc;
6134}
6135
6136/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6137/// is a namespace alias, returns the namespace it points to.
6138static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6139  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6140    return AD->getNamespace();
6141  return dyn_cast_or_null<NamespaceDecl>(D);
6142}
6143
6144/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6145/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6146void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6147  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6148  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6149  Namespc->setRBraceLoc(RBrace);
6150  PopDeclContext();
6151  if (Namespc->hasAttr<VisibilityAttr>())
6152    PopPragmaVisibility(true, RBrace);
6153}
6154
6155CXXRecordDecl *Sema::getStdBadAlloc() const {
6156  return cast_or_null<CXXRecordDecl>(
6157                                  StdBadAlloc.get(Context.getExternalSource()));
6158}
6159
6160NamespaceDecl *Sema::getStdNamespace() const {
6161  return cast_or_null<NamespaceDecl>(
6162                                 StdNamespace.get(Context.getExternalSource()));
6163}
6164
6165/// \brief Retrieve the special "std" namespace, which may require us to
6166/// implicitly define the namespace.
6167NamespaceDecl *Sema::getOrCreateStdNamespace() {
6168  if (!StdNamespace) {
6169    // The "std" namespace has not yet been defined, so build one implicitly.
6170    StdNamespace = NamespaceDecl::Create(Context,
6171                                         Context.getTranslationUnitDecl(),
6172                                         /*Inline=*/false,
6173                                         SourceLocation(), SourceLocation(),
6174                                         &PP.getIdentifierTable().get("std"),
6175                                         /*PrevDecl=*/0);
6176    getStdNamespace()->setImplicit(true);
6177  }
6178
6179  return getStdNamespace();
6180}
6181
6182bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6183  assert(getLangOpts().CPlusPlus &&
6184         "Looking for std::initializer_list outside of C++.");
6185
6186  // We're looking for implicit instantiations of
6187  // template <typename E> class std::initializer_list.
6188
6189  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6190    return false;
6191
6192  ClassTemplateDecl *Template = 0;
6193  const TemplateArgument *Arguments = 0;
6194
6195  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6196
6197    ClassTemplateSpecializationDecl *Specialization =
6198        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6199    if (!Specialization)
6200      return false;
6201
6202    Template = Specialization->getSpecializedTemplate();
6203    Arguments = Specialization->getTemplateArgs().data();
6204  } else if (const TemplateSpecializationType *TST =
6205                 Ty->getAs<TemplateSpecializationType>()) {
6206    Template = dyn_cast_or_null<ClassTemplateDecl>(
6207        TST->getTemplateName().getAsTemplateDecl());
6208    Arguments = TST->getArgs();
6209  }
6210  if (!Template)
6211    return false;
6212
6213  if (!StdInitializerList) {
6214    // Haven't recognized std::initializer_list yet, maybe this is it.
6215    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6216    if (TemplateClass->getIdentifier() !=
6217            &PP.getIdentifierTable().get("initializer_list") ||
6218        !getStdNamespace()->InEnclosingNamespaceSetOf(
6219            TemplateClass->getDeclContext()))
6220      return false;
6221    // This is a template called std::initializer_list, but is it the right
6222    // template?
6223    TemplateParameterList *Params = Template->getTemplateParameters();
6224    if (Params->getMinRequiredArguments() != 1)
6225      return false;
6226    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6227      return false;
6228
6229    // It's the right template.
6230    StdInitializerList = Template;
6231  }
6232
6233  if (Template != StdInitializerList)
6234    return false;
6235
6236  // This is an instance of std::initializer_list. Find the argument type.
6237  if (Element)
6238    *Element = Arguments[0].getAsType();
6239  return true;
6240}
6241
6242static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6243  NamespaceDecl *Std = S.getStdNamespace();
6244  if (!Std) {
6245    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6246    return 0;
6247  }
6248
6249  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6250                      Loc, Sema::LookupOrdinaryName);
6251  if (!S.LookupQualifiedName(Result, Std)) {
6252    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6253    return 0;
6254  }
6255  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6256  if (!Template) {
6257    Result.suppressDiagnostics();
6258    // We found something weird. Complain about the first thing we found.
6259    NamedDecl *Found = *Result.begin();
6260    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6261    return 0;
6262  }
6263
6264  // We found some template called std::initializer_list. Now verify that it's
6265  // correct.
6266  TemplateParameterList *Params = Template->getTemplateParameters();
6267  if (Params->getMinRequiredArguments() != 1 ||
6268      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6269    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6270    return 0;
6271  }
6272
6273  return Template;
6274}
6275
6276QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6277  if (!StdInitializerList) {
6278    StdInitializerList = LookupStdInitializerList(*this, Loc);
6279    if (!StdInitializerList)
6280      return QualType();
6281  }
6282
6283  TemplateArgumentListInfo Args(Loc, Loc);
6284  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6285                                       Context.getTrivialTypeSourceInfo(Element,
6286                                                                        Loc)));
6287  return Context.getCanonicalType(
6288      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6289}
6290
6291bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6292  // C++ [dcl.init.list]p2:
6293  //   A constructor is an initializer-list constructor if its first parameter
6294  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6295  //   std::initializer_list<E> for some type E, and either there are no other
6296  //   parameters or else all other parameters have default arguments.
6297  if (Ctor->getNumParams() < 1 ||
6298      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6299    return false;
6300
6301  QualType ArgType = Ctor->getParamDecl(0)->getType();
6302  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6303    ArgType = RT->getPointeeType().getUnqualifiedType();
6304
6305  return isStdInitializerList(ArgType, 0);
6306}
6307
6308/// \brief Determine whether a using statement is in a context where it will be
6309/// apply in all contexts.
6310static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6311  switch (CurContext->getDeclKind()) {
6312    case Decl::TranslationUnit:
6313      return true;
6314    case Decl::LinkageSpec:
6315      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6316    default:
6317      return false;
6318  }
6319}
6320
6321namespace {
6322
6323// Callback to only accept typo corrections that are namespaces.
6324class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6325 public:
6326  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6327    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6328      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6329    }
6330    return false;
6331  }
6332};
6333
6334}
6335
6336static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6337                                       CXXScopeSpec &SS,
6338                                       SourceLocation IdentLoc,
6339                                       IdentifierInfo *Ident) {
6340  NamespaceValidatorCCC Validator;
6341  R.clear();
6342  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6343                                               R.getLookupKind(), Sc, &SS,
6344                                               Validator)) {
6345    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6346    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6347    if (DeclContext *DC = S.computeDeclContext(SS, false))
6348      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6349        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6350        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6351                                        CorrectedStr);
6352    else
6353      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6354        << Ident << CorrectedQuotedStr
6355        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6356
6357    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6358         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6359
6360    R.addDecl(Corrected.getCorrectionDecl());
6361    return true;
6362  }
6363  return false;
6364}
6365
6366Decl *Sema::ActOnUsingDirective(Scope *S,
6367                                          SourceLocation UsingLoc,
6368                                          SourceLocation NamespcLoc,
6369                                          CXXScopeSpec &SS,
6370                                          SourceLocation IdentLoc,
6371                                          IdentifierInfo *NamespcName,
6372                                          AttributeList *AttrList) {
6373  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6374  assert(NamespcName && "Invalid NamespcName.");
6375  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6376
6377  // This can only happen along a recovery path.
6378  while (S->getFlags() & Scope::TemplateParamScope)
6379    S = S->getParent();
6380  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6381
6382  UsingDirectiveDecl *UDir = 0;
6383  NestedNameSpecifier *Qualifier = 0;
6384  if (SS.isSet())
6385    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6386
6387  // Lookup namespace name.
6388  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6389  LookupParsedName(R, S, &SS);
6390  if (R.isAmbiguous())
6391    return 0;
6392
6393  if (R.empty()) {
6394    R.clear();
6395    // Allow "using namespace std;" or "using namespace ::std;" even if
6396    // "std" hasn't been defined yet, for GCC compatibility.
6397    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6398        NamespcName->isStr("std")) {
6399      Diag(IdentLoc, diag::ext_using_undefined_std);
6400      R.addDecl(getOrCreateStdNamespace());
6401      R.resolveKind();
6402    }
6403    // Otherwise, attempt typo correction.
6404    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6405  }
6406
6407  if (!R.empty()) {
6408    NamedDecl *Named = R.getFoundDecl();
6409    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6410        && "expected namespace decl");
6411    // C++ [namespace.udir]p1:
6412    //   A using-directive specifies that the names in the nominated
6413    //   namespace can be used in the scope in which the
6414    //   using-directive appears after the using-directive. During
6415    //   unqualified name lookup (3.4.1), the names appear as if they
6416    //   were declared in the nearest enclosing namespace which
6417    //   contains both the using-directive and the nominated
6418    //   namespace. [Note: in this context, "contains" means "contains
6419    //   directly or indirectly". ]
6420
6421    // Find enclosing context containing both using-directive and
6422    // nominated namespace.
6423    NamespaceDecl *NS = getNamespaceDecl(Named);
6424    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6425    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6426      CommonAncestor = CommonAncestor->getParent();
6427
6428    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6429                                      SS.getWithLocInContext(Context),
6430                                      IdentLoc, Named, CommonAncestor);
6431
6432    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6433        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6434      Diag(IdentLoc, diag::warn_using_directive_in_header);
6435    }
6436
6437    PushUsingDirective(S, UDir);
6438  } else {
6439    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6440  }
6441
6442  // FIXME: We ignore attributes for now.
6443  return UDir;
6444}
6445
6446void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6447  // If the scope has an associated entity and the using directive is at
6448  // namespace or translation unit scope, add the UsingDirectiveDecl into
6449  // its lookup structure so qualified name lookup can find it.
6450  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6451  if (Ctx && !Ctx->isFunctionOrMethod())
6452    Ctx->addDecl(UDir);
6453  else
6454    // Otherwise, it is at block sope. The using-directives will affect lookup
6455    // only to the end of the scope.
6456    S->PushUsingDirective(UDir);
6457}
6458
6459
6460Decl *Sema::ActOnUsingDeclaration(Scope *S,
6461                                  AccessSpecifier AS,
6462                                  bool HasUsingKeyword,
6463                                  SourceLocation UsingLoc,
6464                                  CXXScopeSpec &SS,
6465                                  UnqualifiedId &Name,
6466                                  AttributeList *AttrList,
6467                                  bool IsTypeName,
6468                                  SourceLocation TypenameLoc) {
6469  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6470
6471  switch (Name.getKind()) {
6472  case UnqualifiedId::IK_ImplicitSelfParam:
6473  case UnqualifiedId::IK_Identifier:
6474  case UnqualifiedId::IK_OperatorFunctionId:
6475  case UnqualifiedId::IK_LiteralOperatorId:
6476  case UnqualifiedId::IK_ConversionFunctionId:
6477    break;
6478
6479  case UnqualifiedId::IK_ConstructorName:
6480  case UnqualifiedId::IK_ConstructorTemplateId:
6481    // C++11 inheriting constructors.
6482    Diag(Name.getLocStart(),
6483         getLangOpts().CPlusPlus11 ?
6484           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
6485           //        instead once inheriting constructors work.
6486           diag::err_using_decl_constructor_unsupported :
6487           diag::err_using_decl_constructor)
6488      << SS.getRange();
6489
6490    if (getLangOpts().CPlusPlus11) break;
6491
6492    return 0;
6493
6494  case UnqualifiedId::IK_DestructorName:
6495    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6496      << SS.getRange();
6497    return 0;
6498
6499  case UnqualifiedId::IK_TemplateId:
6500    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6501      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6502    return 0;
6503  }
6504
6505  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6506  DeclarationName TargetName = TargetNameInfo.getName();
6507  if (!TargetName)
6508    return 0;
6509
6510  // Warn about using declarations.
6511  // TODO: store that the declaration was written without 'using' and
6512  // talk about access decls instead of using decls in the
6513  // diagnostics.
6514  if (!HasUsingKeyword) {
6515    UsingLoc = Name.getLocStart();
6516
6517    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6518      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6519  }
6520
6521  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6522      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6523    return 0;
6524
6525  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6526                                        TargetNameInfo, AttrList,
6527                                        /* IsInstantiation */ false,
6528                                        IsTypeName, TypenameLoc);
6529  if (UD)
6530    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6531
6532  return UD;
6533}
6534
6535/// \brief Determine whether a using declaration considers the given
6536/// declarations as "equivalent", e.g., if they are redeclarations of
6537/// the same entity or are both typedefs of the same type.
6538static bool
6539IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6540                         bool &SuppressRedeclaration) {
6541  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6542    SuppressRedeclaration = false;
6543    return true;
6544  }
6545
6546  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6547    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6548      SuppressRedeclaration = true;
6549      return Context.hasSameType(TD1->getUnderlyingType(),
6550                                 TD2->getUnderlyingType());
6551    }
6552
6553  return false;
6554}
6555
6556
6557/// Determines whether to create a using shadow decl for a particular
6558/// decl, given the set of decls existing prior to this using lookup.
6559bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6560                                const LookupResult &Previous) {
6561  // Diagnose finding a decl which is not from a base class of the
6562  // current class.  We do this now because there are cases where this
6563  // function will silently decide not to build a shadow decl, which
6564  // will pre-empt further diagnostics.
6565  //
6566  // We don't need to do this in C++0x because we do the check once on
6567  // the qualifier.
6568  //
6569  // FIXME: diagnose the following if we care enough:
6570  //   struct A { int foo; };
6571  //   struct B : A { using A::foo; };
6572  //   template <class T> struct C : A {};
6573  //   template <class T> struct D : C<T> { using B::foo; } // <---
6574  // This is invalid (during instantiation) in C++03 because B::foo
6575  // resolves to the using decl in B, which is not a base class of D<T>.
6576  // We can't diagnose it immediately because C<T> is an unknown
6577  // specialization.  The UsingShadowDecl in D<T> then points directly
6578  // to A::foo, which will look well-formed when we instantiate.
6579  // The right solution is to not collapse the shadow-decl chain.
6580  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6581    DeclContext *OrigDC = Orig->getDeclContext();
6582
6583    // Handle enums and anonymous structs.
6584    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6585    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6586    while (OrigRec->isAnonymousStructOrUnion())
6587      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6588
6589    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6590      if (OrigDC == CurContext) {
6591        Diag(Using->getLocation(),
6592             diag::err_using_decl_nested_name_specifier_is_current_class)
6593          << Using->getQualifierLoc().getSourceRange();
6594        Diag(Orig->getLocation(), diag::note_using_decl_target);
6595        return true;
6596      }
6597
6598      Diag(Using->getQualifierLoc().getBeginLoc(),
6599           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6600        << Using->getQualifier()
6601        << cast<CXXRecordDecl>(CurContext)
6602        << Using->getQualifierLoc().getSourceRange();
6603      Diag(Orig->getLocation(), diag::note_using_decl_target);
6604      return true;
6605    }
6606  }
6607
6608  if (Previous.empty()) return false;
6609
6610  NamedDecl *Target = Orig;
6611  if (isa<UsingShadowDecl>(Target))
6612    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6613
6614  // If the target happens to be one of the previous declarations, we
6615  // don't have a conflict.
6616  //
6617  // FIXME: but we might be increasing its access, in which case we
6618  // should redeclare it.
6619  NamedDecl *NonTag = 0, *Tag = 0;
6620  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6621         I != E; ++I) {
6622    NamedDecl *D = (*I)->getUnderlyingDecl();
6623    bool Result;
6624    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6625      return Result;
6626
6627    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6628  }
6629
6630  if (Target->isFunctionOrFunctionTemplate()) {
6631    FunctionDecl *FD;
6632    if (isa<FunctionTemplateDecl>(Target))
6633      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6634    else
6635      FD = cast<FunctionDecl>(Target);
6636
6637    NamedDecl *OldDecl = 0;
6638    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6639    case Ovl_Overload:
6640      return false;
6641
6642    case Ovl_NonFunction:
6643      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6644      break;
6645
6646    // We found a decl with the exact signature.
6647    case Ovl_Match:
6648      // If we're in a record, we want to hide the target, so we
6649      // return true (without a diagnostic) to tell the caller not to
6650      // build a shadow decl.
6651      if (CurContext->isRecord())
6652        return true;
6653
6654      // If we're not in a record, this is an error.
6655      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6656      break;
6657    }
6658
6659    Diag(Target->getLocation(), diag::note_using_decl_target);
6660    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6661    return true;
6662  }
6663
6664  // Target is not a function.
6665
6666  if (isa<TagDecl>(Target)) {
6667    // No conflict between a tag and a non-tag.
6668    if (!Tag) return false;
6669
6670    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6671    Diag(Target->getLocation(), diag::note_using_decl_target);
6672    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6673    return true;
6674  }
6675
6676  // No conflict between a tag and a non-tag.
6677  if (!NonTag) return false;
6678
6679  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6680  Diag(Target->getLocation(), diag::note_using_decl_target);
6681  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6682  return true;
6683}
6684
6685/// Builds a shadow declaration corresponding to a 'using' declaration.
6686UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6687                                            UsingDecl *UD,
6688                                            NamedDecl *Orig) {
6689
6690  // If we resolved to another shadow declaration, just coalesce them.
6691  NamedDecl *Target = Orig;
6692  if (isa<UsingShadowDecl>(Target)) {
6693    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6694    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6695  }
6696
6697  UsingShadowDecl *Shadow
6698    = UsingShadowDecl::Create(Context, CurContext,
6699                              UD->getLocation(), UD, Target);
6700  UD->addShadowDecl(Shadow);
6701
6702  Shadow->setAccess(UD->getAccess());
6703  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6704    Shadow->setInvalidDecl();
6705
6706  if (S)
6707    PushOnScopeChains(Shadow, S);
6708  else
6709    CurContext->addDecl(Shadow);
6710
6711
6712  return Shadow;
6713}
6714
6715/// Hides a using shadow declaration.  This is required by the current
6716/// using-decl implementation when a resolvable using declaration in a
6717/// class is followed by a declaration which would hide or override
6718/// one or more of the using decl's targets; for example:
6719///
6720///   struct Base { void foo(int); };
6721///   struct Derived : Base {
6722///     using Base::foo;
6723///     void foo(int);
6724///   };
6725///
6726/// The governing language is C++03 [namespace.udecl]p12:
6727///
6728///   When a using-declaration brings names from a base class into a
6729///   derived class scope, member functions in the derived class
6730///   override and/or hide member functions with the same name and
6731///   parameter types in a base class (rather than conflicting).
6732///
6733/// There are two ways to implement this:
6734///   (1) optimistically create shadow decls when they're not hidden
6735///       by existing declarations, or
6736///   (2) don't create any shadow decls (or at least don't make them
6737///       visible) until we've fully parsed/instantiated the class.
6738/// The problem with (1) is that we might have to retroactively remove
6739/// a shadow decl, which requires several O(n) operations because the
6740/// decl structures are (very reasonably) not designed for removal.
6741/// (2) avoids this but is very fiddly and phase-dependent.
6742void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6743  if (Shadow->getDeclName().getNameKind() ==
6744        DeclarationName::CXXConversionFunctionName)
6745    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6746
6747  // Remove it from the DeclContext...
6748  Shadow->getDeclContext()->removeDecl(Shadow);
6749
6750  // ...and the scope, if applicable...
6751  if (S) {
6752    S->RemoveDecl(Shadow);
6753    IdResolver.RemoveDecl(Shadow);
6754  }
6755
6756  // ...and the using decl.
6757  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6758
6759  // TODO: complain somehow if Shadow was used.  It shouldn't
6760  // be possible for this to happen, because...?
6761}
6762
6763/// Builds a using declaration.
6764///
6765/// \param IsInstantiation - Whether this call arises from an
6766///   instantiation of an unresolved using declaration.  We treat
6767///   the lookup differently for these declarations.
6768NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6769                                       SourceLocation UsingLoc,
6770                                       CXXScopeSpec &SS,
6771                                       const DeclarationNameInfo &NameInfo,
6772                                       AttributeList *AttrList,
6773                                       bool IsInstantiation,
6774                                       bool IsTypeName,
6775                                       SourceLocation TypenameLoc) {
6776  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6777  SourceLocation IdentLoc = NameInfo.getLoc();
6778  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6779
6780  // FIXME: We ignore attributes for now.
6781
6782  if (SS.isEmpty()) {
6783    Diag(IdentLoc, diag::err_using_requires_qualname);
6784    return 0;
6785  }
6786
6787  // Do the redeclaration lookup in the current scope.
6788  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6789                        ForRedeclaration);
6790  Previous.setHideTags(false);
6791  if (S) {
6792    LookupName(Previous, S);
6793
6794    // It is really dumb that we have to do this.
6795    LookupResult::Filter F = Previous.makeFilter();
6796    while (F.hasNext()) {
6797      NamedDecl *D = F.next();
6798      if (!isDeclInScope(D, CurContext, S))
6799        F.erase();
6800    }
6801    F.done();
6802  } else {
6803    assert(IsInstantiation && "no scope in non-instantiation");
6804    assert(CurContext->isRecord() && "scope not record in instantiation");
6805    LookupQualifiedName(Previous, CurContext);
6806  }
6807
6808  // Check for invalid redeclarations.
6809  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6810    return 0;
6811
6812  // Check for bad qualifiers.
6813  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6814    return 0;
6815
6816  DeclContext *LookupContext = computeDeclContext(SS);
6817  NamedDecl *D;
6818  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6819  if (!LookupContext) {
6820    if (IsTypeName) {
6821      // FIXME: not all declaration name kinds are legal here
6822      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6823                                              UsingLoc, TypenameLoc,
6824                                              QualifierLoc,
6825                                              IdentLoc, NameInfo.getName());
6826    } else {
6827      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6828                                           QualifierLoc, NameInfo);
6829    }
6830  } else {
6831    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6832                          NameInfo, IsTypeName);
6833  }
6834  D->setAccess(AS);
6835  CurContext->addDecl(D);
6836
6837  if (!LookupContext) return D;
6838  UsingDecl *UD = cast<UsingDecl>(D);
6839
6840  if (RequireCompleteDeclContext(SS, LookupContext)) {
6841    UD->setInvalidDecl();
6842    return UD;
6843  }
6844
6845  // The normal rules do not apply to inheriting constructor declarations.
6846  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6847    if (CheckInheritingConstructorUsingDecl(UD))
6848      UD->setInvalidDecl();
6849    return UD;
6850  }
6851
6852  // Otherwise, look up the target name.
6853
6854  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6855
6856  // Unlike most lookups, we don't always want to hide tag
6857  // declarations: tag names are visible through the using declaration
6858  // even if hidden by ordinary names, *except* in a dependent context
6859  // where it's important for the sanity of two-phase lookup.
6860  if (!IsInstantiation)
6861    R.setHideTags(false);
6862
6863  // For the purposes of this lookup, we have a base object type
6864  // equal to that of the current context.
6865  if (CurContext->isRecord()) {
6866    R.setBaseObjectType(
6867                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6868  }
6869
6870  LookupQualifiedName(R, LookupContext);
6871
6872  if (R.empty()) {
6873    Diag(IdentLoc, diag::err_no_member)
6874      << NameInfo.getName() << LookupContext << SS.getRange();
6875    UD->setInvalidDecl();
6876    return UD;
6877  }
6878
6879  if (R.isAmbiguous()) {
6880    UD->setInvalidDecl();
6881    return UD;
6882  }
6883
6884  if (IsTypeName) {
6885    // If we asked for a typename and got a non-type decl, error out.
6886    if (!R.getAsSingle<TypeDecl>()) {
6887      Diag(IdentLoc, diag::err_using_typename_non_type);
6888      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6889        Diag((*I)->getUnderlyingDecl()->getLocation(),
6890             diag::note_using_decl_target);
6891      UD->setInvalidDecl();
6892      return UD;
6893    }
6894  } else {
6895    // If we asked for a non-typename and we got a type, error out,
6896    // but only if this is an instantiation of an unresolved using
6897    // decl.  Otherwise just silently find the type name.
6898    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6899      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6900      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6901      UD->setInvalidDecl();
6902      return UD;
6903    }
6904  }
6905
6906  // C++0x N2914 [namespace.udecl]p6:
6907  // A using-declaration shall not name a namespace.
6908  if (R.getAsSingle<NamespaceDecl>()) {
6909    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6910      << SS.getRange();
6911    UD->setInvalidDecl();
6912    return UD;
6913  }
6914
6915  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6916    if (!CheckUsingShadowDecl(UD, *I, Previous))
6917      BuildUsingShadowDecl(S, UD, *I);
6918  }
6919
6920  return UD;
6921}
6922
6923/// Additional checks for a using declaration referring to a constructor name.
6924bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6925  assert(!UD->isTypeName() && "expecting a constructor name");
6926
6927  const Type *SourceType = UD->getQualifier()->getAsType();
6928  assert(SourceType &&
6929         "Using decl naming constructor doesn't have type in scope spec.");
6930  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6931
6932  // Check whether the named type is a direct base class.
6933  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6934  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6935  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6936       BaseIt != BaseE; ++BaseIt) {
6937    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6938    if (CanonicalSourceType == BaseType)
6939      break;
6940    if (BaseIt->getType()->isDependentType())
6941      break;
6942  }
6943
6944  if (BaseIt == BaseE) {
6945    // Did not find SourceType in the bases.
6946    Diag(UD->getUsingLocation(),
6947         diag::err_using_decl_constructor_not_in_direct_base)
6948      << UD->getNameInfo().getSourceRange()
6949      << QualType(SourceType, 0) << TargetClass;
6950    return true;
6951  }
6952
6953  if (!CurContext->isDependentContext())
6954    BaseIt->setInheritConstructors();
6955
6956  return false;
6957}
6958
6959/// Checks that the given using declaration is not an invalid
6960/// redeclaration.  Note that this is checking only for the using decl
6961/// itself, not for any ill-formedness among the UsingShadowDecls.
6962bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6963                                       bool isTypeName,
6964                                       const CXXScopeSpec &SS,
6965                                       SourceLocation NameLoc,
6966                                       const LookupResult &Prev) {
6967  // C++03 [namespace.udecl]p8:
6968  // C++0x [namespace.udecl]p10:
6969  //   A using-declaration is a declaration and can therefore be used
6970  //   repeatedly where (and only where) multiple declarations are
6971  //   allowed.
6972  //
6973  // That's in non-member contexts.
6974  if (!CurContext->getRedeclContext()->isRecord())
6975    return false;
6976
6977  NestedNameSpecifier *Qual
6978    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6979
6980  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6981    NamedDecl *D = *I;
6982
6983    bool DTypename;
6984    NestedNameSpecifier *DQual;
6985    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6986      DTypename = UD->isTypeName();
6987      DQual = UD->getQualifier();
6988    } else if (UnresolvedUsingValueDecl *UD
6989                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6990      DTypename = false;
6991      DQual = UD->getQualifier();
6992    } else if (UnresolvedUsingTypenameDecl *UD
6993                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6994      DTypename = true;
6995      DQual = UD->getQualifier();
6996    } else continue;
6997
6998    // using decls differ if one says 'typename' and the other doesn't.
6999    // FIXME: non-dependent using decls?
7000    if (isTypeName != DTypename) continue;
7001
7002    // using decls differ if they name different scopes (but note that
7003    // template instantiation can cause this check to trigger when it
7004    // didn't before instantiation).
7005    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7006        Context.getCanonicalNestedNameSpecifier(DQual))
7007      continue;
7008
7009    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7010    Diag(D->getLocation(), diag::note_using_decl) << 1;
7011    return true;
7012  }
7013
7014  return false;
7015}
7016
7017
7018/// Checks that the given nested-name qualifier used in a using decl
7019/// in the current context is appropriately related to the current
7020/// scope.  If an error is found, diagnoses it and returns true.
7021bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7022                                   const CXXScopeSpec &SS,
7023                                   SourceLocation NameLoc) {
7024  DeclContext *NamedContext = computeDeclContext(SS);
7025
7026  if (!CurContext->isRecord()) {
7027    // C++03 [namespace.udecl]p3:
7028    // C++0x [namespace.udecl]p8:
7029    //   A using-declaration for a class member shall be a member-declaration.
7030
7031    // If we weren't able to compute a valid scope, it must be a
7032    // dependent class scope.
7033    if (!NamedContext || NamedContext->isRecord()) {
7034      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7035        << SS.getRange();
7036      return true;
7037    }
7038
7039    // Otherwise, everything is known to be fine.
7040    return false;
7041  }
7042
7043  // The current scope is a record.
7044
7045  // If the named context is dependent, we can't decide much.
7046  if (!NamedContext) {
7047    // FIXME: in C++0x, we can diagnose if we can prove that the
7048    // nested-name-specifier does not refer to a base class, which is
7049    // still possible in some cases.
7050
7051    // Otherwise we have to conservatively report that things might be
7052    // okay.
7053    return false;
7054  }
7055
7056  if (!NamedContext->isRecord()) {
7057    // Ideally this would point at the last name in the specifier,
7058    // but we don't have that level of source info.
7059    Diag(SS.getRange().getBegin(),
7060         diag::err_using_decl_nested_name_specifier_is_not_class)
7061      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7062    return true;
7063  }
7064
7065  if (!NamedContext->isDependentContext() &&
7066      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7067    return true;
7068
7069  if (getLangOpts().CPlusPlus11) {
7070    // C++0x [namespace.udecl]p3:
7071    //   In a using-declaration used as a member-declaration, the
7072    //   nested-name-specifier shall name a base class of the class
7073    //   being defined.
7074
7075    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7076                                 cast<CXXRecordDecl>(NamedContext))) {
7077      if (CurContext == NamedContext) {
7078        Diag(NameLoc,
7079             diag::err_using_decl_nested_name_specifier_is_current_class)
7080          << SS.getRange();
7081        return true;
7082      }
7083
7084      Diag(SS.getRange().getBegin(),
7085           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7086        << (NestedNameSpecifier*) SS.getScopeRep()
7087        << cast<CXXRecordDecl>(CurContext)
7088        << SS.getRange();
7089      return true;
7090    }
7091
7092    return false;
7093  }
7094
7095  // C++03 [namespace.udecl]p4:
7096  //   A using-declaration used as a member-declaration shall refer
7097  //   to a member of a base class of the class being defined [etc.].
7098
7099  // Salient point: SS doesn't have to name a base class as long as
7100  // lookup only finds members from base classes.  Therefore we can
7101  // diagnose here only if we can prove that that can't happen,
7102  // i.e. if the class hierarchies provably don't intersect.
7103
7104  // TODO: it would be nice if "definitely valid" results were cached
7105  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7106  // need to be repeated.
7107
7108  struct UserData {
7109    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7110
7111    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7112      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7113      Data->Bases.insert(Base);
7114      return true;
7115    }
7116
7117    bool hasDependentBases(const CXXRecordDecl *Class) {
7118      return !Class->forallBases(collect, this);
7119    }
7120
7121    /// Returns true if the base is dependent or is one of the
7122    /// accumulated base classes.
7123    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7124      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7125      return !Data->Bases.count(Base);
7126    }
7127
7128    bool mightShareBases(const CXXRecordDecl *Class) {
7129      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7130    }
7131  };
7132
7133  UserData Data;
7134
7135  // Returns false if we find a dependent base.
7136  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7137    return false;
7138
7139  // Returns false if the class has a dependent base or if it or one
7140  // of its bases is present in the base set of the current context.
7141  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7142    return false;
7143
7144  Diag(SS.getRange().getBegin(),
7145       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7146    << (NestedNameSpecifier*) SS.getScopeRep()
7147    << cast<CXXRecordDecl>(CurContext)
7148    << SS.getRange();
7149
7150  return true;
7151}
7152
7153Decl *Sema::ActOnAliasDeclaration(Scope *S,
7154                                  AccessSpecifier AS,
7155                                  MultiTemplateParamsArg TemplateParamLists,
7156                                  SourceLocation UsingLoc,
7157                                  UnqualifiedId &Name,
7158                                  TypeResult Type) {
7159  // Skip up to the relevant declaration scope.
7160  while (S->getFlags() & Scope::TemplateParamScope)
7161    S = S->getParent();
7162  assert((S->getFlags() & Scope::DeclScope) &&
7163         "got alias-declaration outside of declaration scope");
7164
7165  if (Type.isInvalid())
7166    return 0;
7167
7168  bool Invalid = false;
7169  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7170  TypeSourceInfo *TInfo = 0;
7171  GetTypeFromParser(Type.get(), &TInfo);
7172
7173  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7174    return 0;
7175
7176  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7177                                      UPPC_DeclarationType)) {
7178    Invalid = true;
7179    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7180                                             TInfo->getTypeLoc().getBeginLoc());
7181  }
7182
7183  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7184  LookupName(Previous, S);
7185
7186  // Warn about shadowing the name of a template parameter.
7187  if (Previous.isSingleResult() &&
7188      Previous.getFoundDecl()->isTemplateParameter()) {
7189    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7190    Previous.clear();
7191  }
7192
7193  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7194         "name in alias declaration must be an identifier");
7195  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7196                                               Name.StartLocation,
7197                                               Name.Identifier, TInfo);
7198
7199  NewTD->setAccess(AS);
7200
7201  if (Invalid)
7202    NewTD->setInvalidDecl();
7203
7204  CheckTypedefForVariablyModifiedType(S, NewTD);
7205  Invalid |= NewTD->isInvalidDecl();
7206
7207  bool Redeclaration = false;
7208
7209  NamedDecl *NewND;
7210  if (TemplateParamLists.size()) {
7211    TypeAliasTemplateDecl *OldDecl = 0;
7212    TemplateParameterList *OldTemplateParams = 0;
7213
7214    if (TemplateParamLists.size() != 1) {
7215      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7216        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7217         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7218    }
7219    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7220
7221    // Only consider previous declarations in the same scope.
7222    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7223                         /*ExplicitInstantiationOrSpecialization*/false);
7224    if (!Previous.empty()) {
7225      Redeclaration = true;
7226
7227      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7228      if (!OldDecl && !Invalid) {
7229        Diag(UsingLoc, diag::err_redefinition_different_kind)
7230          << Name.Identifier;
7231
7232        NamedDecl *OldD = Previous.getRepresentativeDecl();
7233        if (OldD->getLocation().isValid())
7234          Diag(OldD->getLocation(), diag::note_previous_definition);
7235
7236        Invalid = true;
7237      }
7238
7239      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7240        if (TemplateParameterListsAreEqual(TemplateParams,
7241                                           OldDecl->getTemplateParameters(),
7242                                           /*Complain=*/true,
7243                                           TPL_TemplateMatch))
7244          OldTemplateParams = OldDecl->getTemplateParameters();
7245        else
7246          Invalid = true;
7247
7248        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7249        if (!Invalid &&
7250            !Context.hasSameType(OldTD->getUnderlyingType(),
7251                                 NewTD->getUnderlyingType())) {
7252          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7253          // but we can't reasonably accept it.
7254          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7255            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7256          if (OldTD->getLocation().isValid())
7257            Diag(OldTD->getLocation(), diag::note_previous_definition);
7258          Invalid = true;
7259        }
7260      }
7261    }
7262
7263    // Merge any previous default template arguments into our parameters,
7264    // and check the parameter list.
7265    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7266                                   TPC_TypeAliasTemplate))
7267      return 0;
7268
7269    TypeAliasTemplateDecl *NewDecl =
7270      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7271                                    Name.Identifier, TemplateParams,
7272                                    NewTD);
7273
7274    NewDecl->setAccess(AS);
7275
7276    if (Invalid)
7277      NewDecl->setInvalidDecl();
7278    else if (OldDecl)
7279      NewDecl->setPreviousDeclaration(OldDecl);
7280
7281    NewND = NewDecl;
7282  } else {
7283    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7284    NewND = NewTD;
7285  }
7286
7287  if (!Redeclaration)
7288    PushOnScopeChains(NewND, S);
7289
7290  ActOnDocumentableDecl(NewND);
7291  return NewND;
7292}
7293
7294Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7295                                             SourceLocation NamespaceLoc,
7296                                             SourceLocation AliasLoc,
7297                                             IdentifierInfo *Alias,
7298                                             CXXScopeSpec &SS,
7299                                             SourceLocation IdentLoc,
7300                                             IdentifierInfo *Ident) {
7301
7302  // Lookup the namespace name.
7303  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7304  LookupParsedName(R, S, &SS);
7305
7306  // Check if we have a previous declaration with the same name.
7307  NamedDecl *PrevDecl
7308    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7309                       ForRedeclaration);
7310  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7311    PrevDecl = 0;
7312
7313  if (PrevDecl) {
7314    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7315      // We already have an alias with the same name that points to the same
7316      // namespace, so don't create a new one.
7317      // FIXME: At some point, we'll want to create the (redundant)
7318      // declaration to maintain better source information.
7319      if (!R.isAmbiguous() && !R.empty() &&
7320          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7321        return 0;
7322    }
7323
7324    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7325      diag::err_redefinition_different_kind;
7326    Diag(AliasLoc, DiagID) << Alias;
7327    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7328    return 0;
7329  }
7330
7331  if (R.isAmbiguous())
7332    return 0;
7333
7334  if (R.empty()) {
7335    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7336      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7337      return 0;
7338    }
7339  }
7340
7341  NamespaceAliasDecl *AliasDecl =
7342    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7343                               Alias, SS.getWithLocInContext(Context),
7344                               IdentLoc, R.getFoundDecl());
7345
7346  PushOnScopeChains(AliasDecl, S);
7347  return AliasDecl;
7348}
7349
7350Sema::ImplicitExceptionSpecification
7351Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7352                                               CXXMethodDecl *MD) {
7353  CXXRecordDecl *ClassDecl = MD->getParent();
7354
7355  // C++ [except.spec]p14:
7356  //   An implicitly declared special member function (Clause 12) shall have an
7357  //   exception-specification. [...]
7358  ImplicitExceptionSpecification ExceptSpec(*this);
7359  if (ClassDecl->isInvalidDecl())
7360    return ExceptSpec;
7361
7362  // Direct base-class constructors.
7363  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7364                                       BEnd = ClassDecl->bases_end();
7365       B != BEnd; ++B) {
7366    if (B->isVirtual()) // Handled below.
7367      continue;
7368
7369    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7370      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7371      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7372      // If this is a deleted function, add it anyway. This might be conformant
7373      // with the standard. This might not. I'm not sure. It might not matter.
7374      if (Constructor)
7375        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7376    }
7377  }
7378
7379  // Virtual base-class constructors.
7380  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7381                                       BEnd = ClassDecl->vbases_end();
7382       B != BEnd; ++B) {
7383    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7384      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7385      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7386      // If this is a deleted function, add it anyway. This might be conformant
7387      // with the standard. This might not. I'm not sure. It might not matter.
7388      if (Constructor)
7389        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7390    }
7391  }
7392
7393  // Field constructors.
7394  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7395                               FEnd = ClassDecl->field_end();
7396       F != FEnd; ++F) {
7397    if (F->hasInClassInitializer()) {
7398      if (Expr *E = F->getInClassInitializer())
7399        ExceptSpec.CalledExpr(E);
7400      else if (!F->isInvalidDecl())
7401        // DR1351:
7402        //   If the brace-or-equal-initializer of a non-static data member
7403        //   invokes a defaulted default constructor of its class or of an
7404        //   enclosing class in a potentially evaluated subexpression, the
7405        //   program is ill-formed.
7406        //
7407        // This resolution is unworkable: the exception specification of the
7408        // default constructor can be needed in an unevaluated context, in
7409        // particular, in the operand of a noexcept-expression, and we can be
7410        // unable to compute an exception specification for an enclosed class.
7411        //
7412        // We do not allow an in-class initializer to require the evaluation
7413        // of the exception specification for any in-class initializer whose
7414        // definition is not lexically complete.
7415        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7416    } else if (const RecordType *RecordTy
7417              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7418      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7419      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7420      // If this is a deleted function, add it anyway. This might be conformant
7421      // with the standard. This might not. I'm not sure. It might not matter.
7422      // In particular, the problem is that this function never gets called. It
7423      // might just be ill-formed because this function attempts to refer to
7424      // a deleted function here.
7425      if (Constructor)
7426        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7427    }
7428  }
7429
7430  return ExceptSpec;
7431}
7432
7433namespace {
7434/// RAII object to register a special member as being currently declared.
7435struct DeclaringSpecialMember {
7436  Sema &S;
7437  Sema::SpecialMemberDecl D;
7438  bool WasAlreadyBeingDeclared;
7439
7440  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7441    : S(S), D(RD, CSM) {
7442    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7443    if (WasAlreadyBeingDeclared)
7444      // This almost never happens, but if it does, ensure that our cache
7445      // doesn't contain a stale result.
7446      S.SpecialMemberCache.clear();
7447
7448    // FIXME: Register a note to be produced if we encounter an error while
7449    // declaring the special member.
7450  }
7451  ~DeclaringSpecialMember() {
7452    if (!WasAlreadyBeingDeclared)
7453      S.SpecialMembersBeingDeclared.erase(D);
7454  }
7455
7456  /// \brief Are we already trying to declare this special member?
7457  bool isAlreadyBeingDeclared() const {
7458    return WasAlreadyBeingDeclared;
7459  }
7460};
7461}
7462
7463CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7464                                                     CXXRecordDecl *ClassDecl) {
7465  // C++ [class.ctor]p5:
7466  //   A default constructor for a class X is a constructor of class X
7467  //   that can be called without an argument. If there is no
7468  //   user-declared constructor for class X, a default constructor is
7469  //   implicitly declared. An implicitly-declared default constructor
7470  //   is an inline public member of its class.
7471  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7472         "Should not build implicit default constructor!");
7473
7474  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7475  if (DSM.isAlreadyBeingDeclared())
7476    return 0;
7477
7478  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7479                                                     CXXDefaultConstructor,
7480                                                     false);
7481
7482  // Create the actual constructor declaration.
7483  CanQualType ClassType
7484    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7485  SourceLocation ClassLoc = ClassDecl->getLocation();
7486  DeclarationName Name
7487    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7488  DeclarationNameInfo NameInfo(Name, ClassLoc);
7489  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7490      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7491      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7492      Constexpr);
7493  DefaultCon->setAccess(AS_public);
7494  DefaultCon->setDefaulted();
7495  DefaultCon->setImplicit();
7496
7497  // Build an exception specification pointing back at this constructor.
7498  FunctionProtoType::ExtProtoInfo EPI;
7499  EPI.ExceptionSpecType = EST_Unevaluated;
7500  EPI.ExceptionSpecDecl = DefaultCon;
7501  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7502
7503  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7504  // constructors is easy to compute.
7505  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7506
7507  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7508    DefaultCon->setDeletedAsWritten();
7509
7510  // Note that we have declared this constructor.
7511  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7512
7513  if (Scope *S = getScopeForContext(ClassDecl))
7514    PushOnScopeChains(DefaultCon, S, false);
7515  ClassDecl->addDecl(DefaultCon);
7516
7517  return DefaultCon;
7518}
7519
7520void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7521                                            CXXConstructorDecl *Constructor) {
7522  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7523          !Constructor->doesThisDeclarationHaveABody() &&
7524          !Constructor->isDeleted()) &&
7525    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7526
7527  CXXRecordDecl *ClassDecl = Constructor->getParent();
7528  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7529
7530  SynthesizedFunctionScope Scope(*this, Constructor);
7531  DiagnosticErrorTrap Trap(Diags);
7532  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7533      Trap.hasErrorOccurred()) {
7534    Diag(CurrentLocation, diag::note_member_synthesized_at)
7535      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7536    Constructor->setInvalidDecl();
7537    return;
7538  }
7539
7540  SourceLocation Loc = Constructor->getLocation();
7541  Constructor->setBody(new (Context) CompoundStmt(Loc));
7542
7543  Constructor->setUsed();
7544  MarkVTableUsed(CurrentLocation, ClassDecl);
7545
7546  if (ASTMutationListener *L = getASTMutationListener()) {
7547    L->CompletedImplicitDefinition(Constructor);
7548  }
7549}
7550
7551void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7552  // Check that any explicitly-defaulted methods have exception specifications
7553  // compatible with their implicit exception specifications.
7554  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7555}
7556
7557void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7558  // We start with an initial pass over the base classes to collect those that
7559  // inherit constructors from. If there are none, we can forgo all further
7560  // processing.
7561  typedef SmallVector<const RecordType *, 4> BasesVector;
7562  BasesVector BasesToInheritFrom;
7563  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7564                                          BaseE = ClassDecl->bases_end();
7565         BaseIt != BaseE; ++BaseIt) {
7566    if (BaseIt->getInheritConstructors()) {
7567      QualType Base = BaseIt->getType();
7568      if (Base->isDependentType()) {
7569        // If we inherit constructors from anything that is dependent, just
7570        // abort processing altogether. We'll get another chance for the
7571        // instantiations.
7572        return;
7573      }
7574      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7575    }
7576  }
7577  if (BasesToInheritFrom.empty())
7578    return;
7579
7580  // Now collect the constructors that we already have in the current class.
7581  // Those take precedence over inherited constructors.
7582  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7583  //   unless there is a user-declared constructor with the same signature in
7584  //   the class where the using-declaration appears.
7585  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7586  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7587                                    CtorE = ClassDecl->ctor_end();
7588       CtorIt != CtorE; ++CtorIt) {
7589    ExistingConstructors.insert(
7590        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7591  }
7592
7593  DeclarationName CreatedCtorName =
7594      Context.DeclarationNames.getCXXConstructorName(
7595          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7596
7597  // Now comes the true work.
7598  // First, we keep a map from constructor types to the base that introduced
7599  // them. Needed for finding conflicting constructors. We also keep the
7600  // actually inserted declarations in there, for pretty diagnostics.
7601  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7602  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7603  ConstructorToSourceMap InheritedConstructors;
7604  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7605                             BaseE = BasesToInheritFrom.end();
7606       BaseIt != BaseE; ++BaseIt) {
7607    const RecordType *Base = *BaseIt;
7608    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7609    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7610    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7611                                      CtorE = BaseDecl->ctor_end();
7612         CtorIt != CtorE; ++CtorIt) {
7613      // Find the using declaration for inheriting this base's constructors.
7614      // FIXME: Don't perform name lookup just to obtain a source location!
7615      DeclarationName Name =
7616          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7617      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7618      LookupQualifiedName(Result, CurContext);
7619      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7620      SourceLocation UsingLoc = UD ? UD->getLocation() :
7621                                     ClassDecl->getLocation();
7622
7623      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7624      //   from the class X named in the using-declaration consists of actual
7625      //   constructors and notional constructors that result from the
7626      //   transformation of defaulted parameters as follows:
7627      //   - all non-template default constructors of X, and
7628      //   - for each non-template constructor of X that has at least one
7629      //     parameter with a default argument, the set of constructors that
7630      //     results from omitting any ellipsis parameter specification and
7631      //     successively omitting parameters with a default argument from the
7632      //     end of the parameter-type-list.
7633      CXXConstructorDecl *BaseCtor = *CtorIt;
7634      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7635      const FunctionProtoType *BaseCtorType =
7636          BaseCtor->getType()->getAs<FunctionProtoType>();
7637
7638      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7639                    maxParams = BaseCtor->getNumParams();
7640           params <= maxParams; ++params) {
7641        // Skip default constructors. They're never inherited.
7642        if (params == 0)
7643          continue;
7644        // Skip copy and move constructors for the same reason.
7645        if (CanBeCopyOrMove && params == 1)
7646          continue;
7647
7648        // Build up a function type for this particular constructor.
7649        // FIXME: The working paper does not consider that the exception spec
7650        // for the inheriting constructor might be larger than that of the
7651        // source. This code doesn't yet, either. When it does, this code will
7652        // need to be delayed until after exception specifications and in-class
7653        // member initializers are attached.
7654        const Type *NewCtorType;
7655        if (params == maxParams)
7656          NewCtorType = BaseCtorType;
7657        else {
7658          SmallVector<QualType, 16> Args;
7659          for (unsigned i = 0; i < params; ++i) {
7660            Args.push_back(BaseCtorType->getArgType(i));
7661          }
7662          FunctionProtoType::ExtProtoInfo ExtInfo =
7663              BaseCtorType->getExtProtoInfo();
7664          ExtInfo.Variadic = false;
7665          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7666                                                Args.data(), params, ExtInfo)
7667                       .getTypePtr();
7668        }
7669        const Type *CanonicalNewCtorType =
7670            Context.getCanonicalType(NewCtorType);
7671
7672        // Now that we have the type, first check if the class already has a
7673        // constructor with this signature.
7674        if (ExistingConstructors.count(CanonicalNewCtorType))
7675          continue;
7676
7677        // Then we check if we have already declared an inherited constructor
7678        // with this signature.
7679        std::pair<ConstructorToSourceMap::iterator, bool> result =
7680            InheritedConstructors.insert(std::make_pair(
7681                CanonicalNewCtorType,
7682                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7683        if (!result.second) {
7684          // Already in the map. If it came from a different class, that's an
7685          // error. Not if it's from the same.
7686          CanQualType PreviousBase = result.first->second.first;
7687          if (CanonicalBase != PreviousBase) {
7688            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7689            const CXXConstructorDecl *PrevBaseCtor =
7690                PrevCtor->getInheritedConstructor();
7691            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7692
7693            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7694            Diag(BaseCtor->getLocation(),
7695                 diag::note_using_decl_constructor_conflict_current_ctor);
7696            Diag(PrevBaseCtor->getLocation(),
7697                 diag::note_using_decl_constructor_conflict_previous_ctor);
7698            Diag(PrevCtor->getLocation(),
7699                 diag::note_using_decl_constructor_conflict_previous_using);
7700          }
7701          continue;
7702        }
7703
7704        // OK, we're there, now add the constructor.
7705        // C++0x [class.inhctor]p8: [...] that would be performed by a
7706        //   user-written inline constructor [...]
7707        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7708        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7709            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7710            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7711            /*ImplicitlyDeclared=*/true,
7712            // FIXME: Due to a defect in the standard, we treat inherited
7713            // constructors as constexpr even if that makes them ill-formed.
7714            /*Constexpr=*/BaseCtor->isConstexpr());
7715        NewCtor->setAccess(BaseCtor->getAccess());
7716
7717        // Build up the parameter decls and add them.
7718        SmallVector<ParmVarDecl *, 16> ParamDecls;
7719        for (unsigned i = 0; i < params; ++i) {
7720          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7721                                                   UsingLoc, UsingLoc,
7722                                                   /*IdentifierInfo=*/0,
7723                                                   BaseCtorType->getArgType(i),
7724                                                   /*TInfo=*/0, SC_None,
7725                                                   SC_None, /*DefaultArg=*/0));
7726        }
7727        NewCtor->setParams(ParamDecls);
7728        NewCtor->setInheritedConstructor(BaseCtor);
7729
7730        ClassDecl->addDecl(NewCtor);
7731        result.first->second.second = NewCtor;
7732      }
7733    }
7734  }
7735}
7736
7737Sema::ImplicitExceptionSpecification
7738Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7739  CXXRecordDecl *ClassDecl = MD->getParent();
7740
7741  // C++ [except.spec]p14:
7742  //   An implicitly declared special member function (Clause 12) shall have
7743  //   an exception-specification.
7744  ImplicitExceptionSpecification ExceptSpec(*this);
7745  if (ClassDecl->isInvalidDecl())
7746    return ExceptSpec;
7747
7748  // Direct base-class destructors.
7749  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7750                                       BEnd = ClassDecl->bases_end();
7751       B != BEnd; ++B) {
7752    if (B->isVirtual()) // Handled below.
7753      continue;
7754
7755    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7756      ExceptSpec.CalledDecl(B->getLocStart(),
7757                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7758  }
7759
7760  // Virtual base-class destructors.
7761  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7762                                       BEnd = ClassDecl->vbases_end();
7763       B != BEnd; ++B) {
7764    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7765      ExceptSpec.CalledDecl(B->getLocStart(),
7766                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7767  }
7768
7769  // Field destructors.
7770  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7771                               FEnd = ClassDecl->field_end();
7772       F != FEnd; ++F) {
7773    if (const RecordType *RecordTy
7774        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7775      ExceptSpec.CalledDecl(F->getLocation(),
7776                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7777  }
7778
7779  return ExceptSpec;
7780}
7781
7782CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7783  // C++ [class.dtor]p2:
7784  //   If a class has no user-declared destructor, a destructor is
7785  //   declared implicitly. An implicitly-declared destructor is an
7786  //   inline public member of its class.
7787  assert(ClassDecl->needsImplicitDestructor());
7788
7789  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
7790  if (DSM.isAlreadyBeingDeclared())
7791    return 0;
7792
7793  // Create the actual destructor declaration.
7794  CanQualType ClassType
7795    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7796  SourceLocation ClassLoc = ClassDecl->getLocation();
7797  DeclarationName Name
7798    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7799  DeclarationNameInfo NameInfo(Name, ClassLoc);
7800  CXXDestructorDecl *Destructor
7801      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7802                                  QualType(), 0, /*isInline=*/true,
7803                                  /*isImplicitlyDeclared=*/true);
7804  Destructor->setAccess(AS_public);
7805  Destructor->setDefaulted();
7806  Destructor->setImplicit();
7807
7808  // Build an exception specification pointing back at this destructor.
7809  FunctionProtoType::ExtProtoInfo EPI;
7810  EPI.ExceptionSpecType = EST_Unevaluated;
7811  EPI.ExceptionSpecDecl = Destructor;
7812  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7813
7814  AddOverriddenMethods(ClassDecl, Destructor);
7815
7816  // We don't need to use SpecialMemberIsTrivial here; triviality for
7817  // destructors is easy to compute.
7818  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7819
7820  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7821    Destructor->setDeletedAsWritten();
7822
7823  // Note that we have declared this destructor.
7824  ++ASTContext::NumImplicitDestructorsDeclared;
7825
7826  // Introduce this destructor into its scope.
7827  if (Scope *S = getScopeForContext(ClassDecl))
7828    PushOnScopeChains(Destructor, S, false);
7829  ClassDecl->addDecl(Destructor);
7830
7831  return Destructor;
7832}
7833
7834void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7835                                    CXXDestructorDecl *Destructor) {
7836  assert((Destructor->isDefaulted() &&
7837          !Destructor->doesThisDeclarationHaveABody() &&
7838          !Destructor->isDeleted()) &&
7839         "DefineImplicitDestructor - call it for implicit default dtor");
7840  CXXRecordDecl *ClassDecl = Destructor->getParent();
7841  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7842
7843  if (Destructor->isInvalidDecl())
7844    return;
7845
7846  SynthesizedFunctionScope Scope(*this, Destructor);
7847
7848  DiagnosticErrorTrap Trap(Diags);
7849  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7850                                         Destructor->getParent());
7851
7852  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7853    Diag(CurrentLocation, diag::note_member_synthesized_at)
7854      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7855
7856    Destructor->setInvalidDecl();
7857    return;
7858  }
7859
7860  SourceLocation Loc = Destructor->getLocation();
7861  Destructor->setBody(new (Context) CompoundStmt(Loc));
7862  Destructor->setImplicitlyDefined(true);
7863  Destructor->setUsed();
7864  MarkVTableUsed(CurrentLocation, ClassDecl);
7865
7866  if (ASTMutationListener *L = getASTMutationListener()) {
7867    L->CompletedImplicitDefinition(Destructor);
7868  }
7869}
7870
7871/// \brief Perform any semantic analysis which needs to be delayed until all
7872/// pending class member declarations have been parsed.
7873void Sema::ActOnFinishCXXMemberDecls() {
7874  // Perform any deferred checking of exception specifications for virtual
7875  // destructors.
7876  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7877       i != e; ++i) {
7878    const CXXDestructorDecl *Dtor =
7879        DelayedDestructorExceptionSpecChecks[i].first;
7880    assert(!Dtor->getParent()->isDependentType() &&
7881           "Should not ever add destructors of templates into the list.");
7882    CheckOverridingFunctionExceptionSpec(Dtor,
7883        DelayedDestructorExceptionSpecChecks[i].second);
7884  }
7885  DelayedDestructorExceptionSpecChecks.clear();
7886}
7887
7888void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7889                                         CXXDestructorDecl *Destructor) {
7890  assert(getLangOpts().CPlusPlus11 &&
7891         "adjusting dtor exception specs was introduced in c++11");
7892
7893  // C++11 [class.dtor]p3:
7894  //   A declaration of a destructor that does not have an exception-
7895  //   specification is implicitly considered to have the same exception-
7896  //   specification as an implicit declaration.
7897  const FunctionProtoType *DtorType = Destructor->getType()->
7898                                        getAs<FunctionProtoType>();
7899  if (DtorType->hasExceptionSpec())
7900    return;
7901
7902  // Replace the destructor's type, building off the existing one. Fortunately,
7903  // the only thing of interest in the destructor type is its extended info.
7904  // The return and arguments are fixed.
7905  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7906  EPI.ExceptionSpecType = EST_Unevaluated;
7907  EPI.ExceptionSpecDecl = Destructor;
7908  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7909
7910  // FIXME: If the destructor has a body that could throw, and the newly created
7911  // spec doesn't allow exceptions, we should emit a warning, because this
7912  // change in behavior can break conforming C++03 programs at runtime.
7913  // However, we don't have a body or an exception specification yet, so it
7914  // needs to be done somewhere else.
7915}
7916
7917/// When generating a defaulted copy or move assignment operator, if a field
7918/// should be copied with __builtin_memcpy rather than via explicit assignments,
7919/// do so. This optimization only applies for arrays of scalars, and for arrays
7920/// of class type where the selected copy/move-assignment operator is trivial.
7921static StmtResult
7922buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
7923                           Expr *To, Expr *From) {
7924  // Compute the size of the memory buffer to be copied.
7925  QualType SizeType = S.Context.getSizeType();
7926  llvm::APInt Size(S.Context.getTypeSize(SizeType),
7927                   S.Context.getTypeSizeInChars(T).getQuantity());
7928
7929  // Take the address of the field references for "from" and "to". We
7930  // directly construct UnaryOperators here because semantic analysis
7931  // does not permit us to take the address of an xvalue.
7932  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
7933                         S.Context.getPointerType(From->getType()),
7934                         VK_RValue, OK_Ordinary, Loc);
7935  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
7936                       S.Context.getPointerType(To->getType()),
7937                       VK_RValue, OK_Ordinary, Loc);
7938
7939  const Type *E = T->getBaseElementTypeUnsafe();
7940  bool NeedsCollectableMemCpy =
7941    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
7942
7943  // Create a reference to the __builtin_objc_memmove_collectable function
7944  StringRef MemCpyName = NeedsCollectableMemCpy ?
7945    "__builtin_objc_memmove_collectable" :
7946    "__builtin_memcpy";
7947  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
7948                 Sema::LookupOrdinaryName);
7949  S.LookupName(R, S.TUScope, true);
7950
7951  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
7952  if (!MemCpy)
7953    // Something went horribly wrong earlier, and we will have complained
7954    // about it.
7955    return StmtError();
7956
7957  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
7958                                            VK_RValue, Loc, 0);
7959  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
7960
7961  Expr *CallArgs[] = {
7962    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
7963  };
7964  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
7965                                    Loc, CallArgs, Loc);
7966
7967  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7968  return S.Owned(Call.takeAs<Stmt>());
7969}
7970
7971/// \brief Builds a statement that copies/moves the given entity from \p From to
7972/// \c To.
7973///
7974/// This routine is used to copy/move the members of a class with an
7975/// implicitly-declared copy/move assignment operator. When the entities being
7976/// copied are arrays, this routine builds for loops to copy them.
7977///
7978/// \param S The Sema object used for type-checking.
7979///
7980/// \param Loc The location where the implicit copy/move is being generated.
7981///
7982/// \param T The type of the expressions being copied/moved. Both expressions
7983/// must have this type.
7984///
7985/// \param To The expression we are copying/moving to.
7986///
7987/// \param From The expression we are copying/moving from.
7988///
7989/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7990/// Otherwise, it's a non-static member subobject.
7991///
7992/// \param Copying Whether we're copying or moving.
7993///
7994/// \param Depth Internal parameter recording the depth of the recursion.
7995///
7996/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
7997/// if a memcpy should be used instead.
7998static StmtResult
7999buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8000                                 Expr *To, Expr *From,
8001                                 bool CopyingBaseSubobject, bool Copying,
8002                                 unsigned Depth = 0) {
8003  // C++11 [class.copy]p28:
8004  //   Each subobject is assigned in the manner appropriate to its type:
8005  //
8006  //     - if the subobject is of class type, as if by a call to operator= with
8007  //       the subobject as the object expression and the corresponding
8008  //       subobject of x as a single function argument (as if by explicit
8009  //       qualification; that is, ignoring any possible virtual overriding
8010  //       functions in more derived classes);
8011  //
8012  // C++03 [class.copy]p13:
8013  //     - if the subobject is of class type, the copy assignment operator for
8014  //       the class is used (as if by explicit qualification; that is,
8015  //       ignoring any possible virtual overriding functions in more derived
8016  //       classes);
8017  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8018    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8019
8020    // Look for operator=.
8021    DeclarationName Name
8022      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8023    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8024    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8025
8026    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8027    // operator.
8028    if (!S.getLangOpts().CPlusPlus11) {
8029      LookupResult::Filter F = OpLookup.makeFilter();
8030      while (F.hasNext()) {
8031        NamedDecl *D = F.next();
8032        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8033          if (Method->isCopyAssignmentOperator() ||
8034              (!Copying && Method->isMoveAssignmentOperator()))
8035            continue;
8036
8037        F.erase();
8038      }
8039      F.done();
8040    }
8041
8042    // Suppress the protected check (C++ [class.protected]) for each of the
8043    // assignment operators we found. This strange dance is required when
8044    // we're assigning via a base classes's copy-assignment operator. To
8045    // ensure that we're getting the right base class subobject (without
8046    // ambiguities), we need to cast "this" to that subobject type; to
8047    // ensure that we don't go through the virtual call mechanism, we need
8048    // to qualify the operator= name with the base class (see below). However,
8049    // this means that if the base class has a protected copy assignment
8050    // operator, the protected member access check will fail. So, we
8051    // rewrite "protected" access to "public" access in this case, since we
8052    // know by construction that we're calling from a derived class.
8053    if (CopyingBaseSubobject) {
8054      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8055           L != LEnd; ++L) {
8056        if (L.getAccess() == AS_protected)
8057          L.setAccess(AS_public);
8058      }
8059    }
8060
8061    // Create the nested-name-specifier that will be used to qualify the
8062    // reference to operator=; this is required to suppress the virtual
8063    // call mechanism.
8064    CXXScopeSpec SS;
8065    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8066    SS.MakeTrivial(S.Context,
8067                   NestedNameSpecifier::Create(S.Context, 0, false,
8068                                               CanonicalT),
8069                   Loc);
8070
8071    // Create the reference to operator=.
8072    ExprResult OpEqualRef
8073      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8074                                   /*TemplateKWLoc=*/SourceLocation(),
8075                                   /*FirstQualifierInScope=*/0,
8076                                   OpLookup,
8077                                   /*TemplateArgs=*/0,
8078                                   /*SuppressQualifierCheck=*/true);
8079    if (OpEqualRef.isInvalid())
8080      return StmtError();
8081
8082    // Build the call to the assignment operator.
8083
8084    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8085                                                  OpEqualRef.takeAs<Expr>(),
8086                                                  Loc, &From, 1, Loc);
8087    if (Call.isInvalid())
8088      return StmtError();
8089
8090    // If we built a call to a trivial 'operator=' while copying an array,
8091    // bail out. We'll replace the whole shebang with a memcpy.
8092    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8093    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8094      return StmtResult((Stmt*)0);
8095
8096    // Convert to an expression-statement, and clean up any produced
8097    // temporaries.
8098    return S.ActOnExprStmt(Call);
8099  }
8100
8101  //     - if the subobject is of scalar type, the built-in assignment
8102  //       operator is used.
8103  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8104  if (!ArrayTy) {
8105    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8106    if (Assignment.isInvalid())
8107      return StmtError();
8108    return S.ActOnExprStmt(Assignment);
8109  }
8110
8111  //     - if the subobject is an array, each element is assigned, in the
8112  //       manner appropriate to the element type;
8113
8114  // Construct a loop over the array bounds, e.g.,
8115  //
8116  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8117  //
8118  // that will copy each of the array elements.
8119  QualType SizeType = S.Context.getSizeType();
8120
8121  // Create the iteration variable.
8122  IdentifierInfo *IterationVarName = 0;
8123  {
8124    SmallString<8> Str;
8125    llvm::raw_svector_ostream OS(Str);
8126    OS << "__i" << Depth;
8127    IterationVarName = &S.Context.Idents.get(OS.str());
8128  }
8129  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8130                                          IterationVarName, SizeType,
8131                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8132                                          SC_None, SC_None);
8133
8134  // Initialize the iteration variable to zero.
8135  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8136  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8137
8138  // Create a reference to the iteration variable; we'll use this several
8139  // times throughout.
8140  Expr *IterationVarRef
8141    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8142  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8143  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8144  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8145
8146  // Create the DeclStmt that holds the iteration variable.
8147  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8148
8149  // Subscript the "from" and "to" expressions with the iteration variable.
8150  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8151                                                         IterationVarRefRVal,
8152                                                         Loc));
8153  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8154                                                       IterationVarRefRVal,
8155                                                       Loc));
8156  if (!Copying) // Cast to rvalue
8157    From = CastForMoving(S, From);
8158
8159  // Build the copy/move for an individual element of the array.
8160  StmtResult Copy =
8161    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8162                                     To, From, CopyingBaseSubobject,
8163                                     Copying, Depth + 1);
8164  // Bail out if copying fails or if we determined that we should use memcpy.
8165  if (Copy.isInvalid() || !Copy.get())
8166    return Copy;
8167
8168  // Create the comparison against the array bound.
8169  llvm::APInt Upper
8170    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8171  Expr *Comparison
8172    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8173                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8174                                     BO_NE, S.Context.BoolTy,
8175                                     VK_RValue, OK_Ordinary, Loc, false);
8176
8177  // Create the pre-increment of the iteration variable.
8178  Expr *Increment
8179    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8180                                    VK_LValue, OK_Ordinary, Loc);
8181
8182  // Construct the loop that copies all elements of this array.
8183  return S.ActOnForStmt(Loc, Loc, InitStmt,
8184                        S.MakeFullExpr(Comparison),
8185                        0, S.MakeFullDiscardedValueExpr(Increment),
8186                        Loc, Copy.take());
8187}
8188
8189static StmtResult
8190buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8191                      Expr *To, Expr *From,
8192                      bool CopyingBaseSubobject, bool Copying) {
8193  // Maybe we should use a memcpy?
8194  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8195      T.isTriviallyCopyableType(S.Context))
8196    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8197
8198  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8199                                                     CopyingBaseSubobject,
8200                                                     Copying, 0));
8201
8202  // If we ended up picking a trivial assignment operator for an array of a
8203  // non-trivially-copyable class type, just emit a memcpy.
8204  if (!Result.isInvalid() && !Result.get())
8205    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8206
8207  return Result;
8208}
8209
8210Sema::ImplicitExceptionSpecification
8211Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8212  CXXRecordDecl *ClassDecl = MD->getParent();
8213
8214  ImplicitExceptionSpecification ExceptSpec(*this);
8215  if (ClassDecl->isInvalidDecl())
8216    return ExceptSpec;
8217
8218  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8219  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8220  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8221
8222  // C++ [except.spec]p14:
8223  //   An implicitly declared special member function (Clause 12) shall have an
8224  //   exception-specification. [...]
8225
8226  // It is unspecified whether or not an implicit copy assignment operator
8227  // attempts to deduplicate calls to assignment operators of virtual bases are
8228  // made. As such, this exception specification is effectively unspecified.
8229  // Based on a similar decision made for constness in C++0x, we're erring on
8230  // the side of assuming such calls to be made regardless of whether they
8231  // actually happen.
8232  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8233                                       BaseEnd = ClassDecl->bases_end();
8234       Base != BaseEnd; ++Base) {
8235    if (Base->isVirtual())
8236      continue;
8237
8238    CXXRecordDecl *BaseClassDecl
8239      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8240    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8241                                                            ArgQuals, false, 0))
8242      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8243  }
8244
8245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8246                                       BaseEnd = ClassDecl->vbases_end();
8247       Base != BaseEnd; ++Base) {
8248    CXXRecordDecl *BaseClassDecl
8249      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8250    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8251                                                            ArgQuals, false, 0))
8252      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8253  }
8254
8255  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8256                                  FieldEnd = ClassDecl->field_end();
8257       Field != FieldEnd;
8258       ++Field) {
8259    QualType FieldType = Context.getBaseElementType(Field->getType());
8260    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8261      if (CXXMethodDecl *CopyAssign =
8262          LookupCopyingAssignment(FieldClassDecl,
8263                                  ArgQuals | FieldType.getCVRQualifiers(),
8264                                  false, 0))
8265        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8266    }
8267  }
8268
8269  return ExceptSpec;
8270}
8271
8272CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8273  // Note: The following rules are largely analoguous to the copy
8274  // constructor rules. Note that virtual bases are not taken into account
8275  // for determining the argument type of the operator. Note also that
8276  // operators taking an object instead of a reference are allowed.
8277  assert(ClassDecl->needsImplicitCopyAssignment());
8278
8279  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8280  if (DSM.isAlreadyBeingDeclared())
8281    return 0;
8282
8283  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8284  QualType RetType = Context.getLValueReferenceType(ArgType);
8285  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8286    ArgType = ArgType.withConst();
8287  ArgType = Context.getLValueReferenceType(ArgType);
8288
8289  //   An implicitly-declared copy assignment operator is an inline public
8290  //   member of its class.
8291  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8292  SourceLocation ClassLoc = ClassDecl->getLocation();
8293  DeclarationNameInfo NameInfo(Name, ClassLoc);
8294  CXXMethodDecl *CopyAssignment
8295    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8296                            /*TInfo=*/0, /*isStatic=*/false,
8297                            /*StorageClassAsWritten=*/SC_None,
8298                            /*isInline=*/true, /*isConstexpr=*/false,
8299                            SourceLocation());
8300  CopyAssignment->setAccess(AS_public);
8301  CopyAssignment->setDefaulted();
8302  CopyAssignment->setImplicit();
8303
8304  // Build an exception specification pointing back at this member.
8305  FunctionProtoType::ExtProtoInfo EPI;
8306  EPI.ExceptionSpecType = EST_Unevaluated;
8307  EPI.ExceptionSpecDecl = CopyAssignment;
8308  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8309
8310  // Add the parameter to the operator.
8311  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8312                                               ClassLoc, ClassLoc, /*Id=*/0,
8313                                               ArgType, /*TInfo=*/0,
8314                                               SC_None,
8315                                               SC_None, 0);
8316  CopyAssignment->setParams(FromParam);
8317
8318  AddOverriddenMethods(ClassDecl, CopyAssignment);
8319
8320  CopyAssignment->setTrivial(
8321    ClassDecl->needsOverloadResolutionForCopyAssignment()
8322      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8323      : ClassDecl->hasTrivialCopyAssignment());
8324
8325  // C++0x [class.copy]p19:
8326  //   ....  If the class definition does not explicitly declare a copy
8327  //   assignment operator, there is no user-declared move constructor, and
8328  //   there is no user-declared move assignment operator, a copy assignment
8329  //   operator is implicitly declared as defaulted.
8330  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8331    CopyAssignment->setDeletedAsWritten();
8332
8333  // Note that we have added this copy-assignment operator.
8334  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8335
8336  if (Scope *S = getScopeForContext(ClassDecl))
8337    PushOnScopeChains(CopyAssignment, S, false);
8338  ClassDecl->addDecl(CopyAssignment);
8339
8340  return CopyAssignment;
8341}
8342
8343void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8344                                        CXXMethodDecl *CopyAssignOperator) {
8345  assert((CopyAssignOperator->isDefaulted() &&
8346          CopyAssignOperator->isOverloadedOperator() &&
8347          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8348          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8349          !CopyAssignOperator->isDeleted()) &&
8350         "DefineImplicitCopyAssignment called for wrong function");
8351
8352  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8353
8354  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8355    CopyAssignOperator->setInvalidDecl();
8356    return;
8357  }
8358
8359  CopyAssignOperator->setUsed();
8360
8361  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8362  DiagnosticErrorTrap Trap(Diags);
8363
8364  // C++0x [class.copy]p30:
8365  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8366  //   for a non-union class X performs memberwise copy assignment of its
8367  //   subobjects. The direct base classes of X are assigned first, in the
8368  //   order of their declaration in the base-specifier-list, and then the
8369  //   immediate non-static data members of X are assigned, in the order in
8370  //   which they were declared in the class definition.
8371
8372  // The statements that form the synthesized function body.
8373  SmallVector<Stmt*, 8> Statements;
8374
8375  // The parameter for the "other" object, which we are copying from.
8376  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8377  Qualifiers OtherQuals = Other->getType().getQualifiers();
8378  QualType OtherRefType = Other->getType();
8379  if (const LValueReferenceType *OtherRef
8380                                = OtherRefType->getAs<LValueReferenceType>()) {
8381    OtherRefType = OtherRef->getPointeeType();
8382    OtherQuals = OtherRefType.getQualifiers();
8383  }
8384
8385  // Our location for everything implicitly-generated.
8386  SourceLocation Loc = CopyAssignOperator->getLocation();
8387
8388  // Construct a reference to the "other" object. We'll be using this
8389  // throughout the generated ASTs.
8390  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8391  assert(OtherRef && "Reference to parameter cannot fail!");
8392
8393  // Construct the "this" pointer. We'll be using this throughout the generated
8394  // ASTs.
8395  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8396  assert(This && "Reference to this cannot fail!");
8397
8398  // Assign base classes.
8399  bool Invalid = false;
8400  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8401       E = ClassDecl->bases_end(); Base != E; ++Base) {
8402    // Form the assignment:
8403    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8404    QualType BaseType = Base->getType().getUnqualifiedType();
8405    if (!BaseType->isRecordType()) {
8406      Invalid = true;
8407      continue;
8408    }
8409
8410    CXXCastPath BasePath;
8411    BasePath.push_back(Base);
8412
8413    // Construct the "from" expression, which is an implicit cast to the
8414    // appropriately-qualified base type.
8415    Expr *From = OtherRef;
8416    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8417                             CK_UncheckedDerivedToBase,
8418                             VK_LValue, &BasePath).take();
8419
8420    // Dereference "this".
8421    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8422
8423    // Implicitly cast "this" to the appropriately-qualified base type.
8424    To = ImpCastExprToType(To.take(),
8425                           Context.getCVRQualifiedType(BaseType,
8426                                     CopyAssignOperator->getTypeQualifiers()),
8427                           CK_UncheckedDerivedToBase,
8428                           VK_LValue, &BasePath);
8429
8430    // Build the copy.
8431    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8432                                            To.get(), From,
8433                                            /*CopyingBaseSubobject=*/true,
8434                                            /*Copying=*/true);
8435    if (Copy.isInvalid()) {
8436      Diag(CurrentLocation, diag::note_member_synthesized_at)
8437        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8438      CopyAssignOperator->setInvalidDecl();
8439      return;
8440    }
8441
8442    // Success! Record the copy.
8443    Statements.push_back(Copy.takeAs<Expr>());
8444  }
8445
8446  // Assign non-static members.
8447  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8448                                  FieldEnd = ClassDecl->field_end();
8449       Field != FieldEnd; ++Field) {
8450    if (Field->isUnnamedBitfield())
8451      continue;
8452
8453    // Check for members of reference type; we can't copy those.
8454    if (Field->getType()->isReferenceType()) {
8455      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8456        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8457      Diag(Field->getLocation(), diag::note_declared_at);
8458      Diag(CurrentLocation, diag::note_member_synthesized_at)
8459        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8460      Invalid = true;
8461      continue;
8462    }
8463
8464    // Check for members of const-qualified, non-class type.
8465    QualType BaseType = Context.getBaseElementType(Field->getType());
8466    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8467      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8468        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8469      Diag(Field->getLocation(), diag::note_declared_at);
8470      Diag(CurrentLocation, diag::note_member_synthesized_at)
8471        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8472      Invalid = true;
8473      continue;
8474    }
8475
8476    // Suppress assigning zero-width bitfields.
8477    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8478      continue;
8479
8480    QualType FieldType = Field->getType().getNonReferenceType();
8481    if (FieldType->isIncompleteArrayType()) {
8482      assert(ClassDecl->hasFlexibleArrayMember() &&
8483             "Incomplete array type is not valid");
8484      continue;
8485    }
8486
8487    // Build references to the field in the object we're copying from and to.
8488    CXXScopeSpec SS; // Intentionally empty
8489    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8490                              LookupMemberName);
8491    MemberLookup.addDecl(*Field);
8492    MemberLookup.resolveKind();
8493    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8494                                               Loc, /*IsArrow=*/false,
8495                                               SS, SourceLocation(), 0,
8496                                               MemberLookup, 0);
8497    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8498                                             Loc, /*IsArrow=*/true,
8499                                             SS, SourceLocation(), 0,
8500                                             MemberLookup, 0);
8501    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8502    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8503
8504    // Build the copy of this field.
8505    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8506                                            To.get(), From.get(),
8507                                            /*CopyingBaseSubobject=*/false,
8508                                            /*Copying=*/true);
8509    if (Copy.isInvalid()) {
8510      Diag(CurrentLocation, diag::note_member_synthesized_at)
8511        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8512      CopyAssignOperator->setInvalidDecl();
8513      return;
8514    }
8515
8516    // Success! Record the copy.
8517    Statements.push_back(Copy.takeAs<Stmt>());
8518  }
8519
8520  if (!Invalid) {
8521    // Add a "return *this;"
8522    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8523
8524    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8525    if (Return.isInvalid())
8526      Invalid = true;
8527    else {
8528      Statements.push_back(Return.takeAs<Stmt>());
8529
8530      if (Trap.hasErrorOccurred()) {
8531        Diag(CurrentLocation, diag::note_member_synthesized_at)
8532          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8533        Invalid = true;
8534      }
8535    }
8536  }
8537
8538  if (Invalid) {
8539    CopyAssignOperator->setInvalidDecl();
8540    return;
8541  }
8542
8543  StmtResult Body;
8544  {
8545    CompoundScopeRAII CompoundScope(*this);
8546    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8547                             /*isStmtExpr=*/false);
8548    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8549  }
8550  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8551
8552  if (ASTMutationListener *L = getASTMutationListener()) {
8553    L->CompletedImplicitDefinition(CopyAssignOperator);
8554  }
8555}
8556
8557Sema::ImplicitExceptionSpecification
8558Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8559  CXXRecordDecl *ClassDecl = MD->getParent();
8560
8561  ImplicitExceptionSpecification ExceptSpec(*this);
8562  if (ClassDecl->isInvalidDecl())
8563    return ExceptSpec;
8564
8565  // C++0x [except.spec]p14:
8566  //   An implicitly declared special member function (Clause 12) shall have an
8567  //   exception-specification. [...]
8568
8569  // It is unspecified whether or not an implicit move assignment operator
8570  // attempts to deduplicate calls to assignment operators of virtual bases are
8571  // made. As such, this exception specification is effectively unspecified.
8572  // Based on a similar decision made for constness in C++0x, we're erring on
8573  // the side of assuming such calls to be made regardless of whether they
8574  // actually happen.
8575  // Note that a move constructor is not implicitly declared when there are
8576  // virtual bases, but it can still be user-declared and explicitly defaulted.
8577  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8578                                       BaseEnd = ClassDecl->bases_end();
8579       Base != BaseEnd; ++Base) {
8580    if (Base->isVirtual())
8581      continue;
8582
8583    CXXRecordDecl *BaseClassDecl
8584      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8585    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8586                                                           0, false, 0))
8587      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8588  }
8589
8590  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8591                                       BaseEnd = ClassDecl->vbases_end();
8592       Base != BaseEnd; ++Base) {
8593    CXXRecordDecl *BaseClassDecl
8594      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8595    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8596                                                           0, false, 0))
8597      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8598  }
8599
8600  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8601                                  FieldEnd = ClassDecl->field_end();
8602       Field != FieldEnd;
8603       ++Field) {
8604    QualType FieldType = Context.getBaseElementType(Field->getType());
8605    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8606      if (CXXMethodDecl *MoveAssign =
8607              LookupMovingAssignment(FieldClassDecl,
8608                                     FieldType.getCVRQualifiers(),
8609                                     false, 0))
8610        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8611    }
8612  }
8613
8614  return ExceptSpec;
8615}
8616
8617/// Determine whether the class type has any direct or indirect virtual base
8618/// classes which have a non-trivial move assignment operator.
8619static bool
8620hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8621  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8622                                          BaseEnd = ClassDecl->vbases_end();
8623       Base != BaseEnd; ++Base) {
8624    CXXRecordDecl *BaseClass =
8625        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8626
8627    // Try to declare the move assignment. If it would be deleted, then the
8628    // class does not have a non-trivial move assignment.
8629    if (BaseClass->needsImplicitMoveAssignment())
8630      S.DeclareImplicitMoveAssignment(BaseClass);
8631
8632    if (BaseClass->hasNonTrivialMoveAssignment())
8633      return true;
8634  }
8635
8636  return false;
8637}
8638
8639/// Determine whether the given type either has a move constructor or is
8640/// trivially copyable.
8641static bool
8642hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8643  Type = S.Context.getBaseElementType(Type);
8644
8645  // FIXME: Technically, non-trivially-copyable non-class types, such as
8646  // reference types, are supposed to return false here, but that appears
8647  // to be a standard defect.
8648  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8649  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8650    return true;
8651
8652  if (Type.isTriviallyCopyableType(S.Context))
8653    return true;
8654
8655  if (IsConstructor) {
8656    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8657    // give the right answer.
8658    if (ClassDecl->needsImplicitMoveConstructor())
8659      S.DeclareImplicitMoveConstructor(ClassDecl);
8660    return ClassDecl->hasMoveConstructor();
8661  }
8662
8663  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8664  // give the right answer.
8665  if (ClassDecl->needsImplicitMoveAssignment())
8666    S.DeclareImplicitMoveAssignment(ClassDecl);
8667  return ClassDecl->hasMoveAssignment();
8668}
8669
8670/// Determine whether all non-static data members and direct or virtual bases
8671/// of class \p ClassDecl have either a move operation, or are trivially
8672/// copyable.
8673static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8674                                            bool IsConstructor) {
8675  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8676                                          BaseEnd = ClassDecl->bases_end();
8677       Base != BaseEnd; ++Base) {
8678    if (Base->isVirtual())
8679      continue;
8680
8681    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8682      return false;
8683  }
8684
8685  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8686                                          BaseEnd = ClassDecl->vbases_end();
8687       Base != BaseEnd; ++Base) {
8688    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8689      return false;
8690  }
8691
8692  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8693                                     FieldEnd = ClassDecl->field_end();
8694       Field != FieldEnd; ++Field) {
8695    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8696      return false;
8697  }
8698
8699  return true;
8700}
8701
8702CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8703  // C++11 [class.copy]p20:
8704  //   If the definition of a class X does not explicitly declare a move
8705  //   assignment operator, one will be implicitly declared as defaulted
8706  //   if and only if:
8707  //
8708  //   - [first 4 bullets]
8709  assert(ClassDecl->needsImplicitMoveAssignment());
8710
8711  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
8712  if (DSM.isAlreadyBeingDeclared())
8713    return 0;
8714
8715  // [Checked after we build the declaration]
8716  //   - the move assignment operator would not be implicitly defined as
8717  //     deleted,
8718
8719  // [DR1402]:
8720  //   - X has no direct or indirect virtual base class with a non-trivial
8721  //     move assignment operator, and
8722  //   - each of X's non-static data members and direct or virtual base classes
8723  //     has a type that either has a move assignment operator or is trivially
8724  //     copyable.
8725  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8726      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8727    ClassDecl->setFailedImplicitMoveAssignment();
8728    return 0;
8729  }
8730
8731  // Note: The following rules are largely analoguous to the move
8732  // constructor rules.
8733
8734  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8735  QualType RetType = Context.getLValueReferenceType(ArgType);
8736  ArgType = Context.getRValueReferenceType(ArgType);
8737
8738  //   An implicitly-declared move assignment operator is an inline public
8739  //   member of its class.
8740  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8741  SourceLocation ClassLoc = ClassDecl->getLocation();
8742  DeclarationNameInfo NameInfo(Name, ClassLoc);
8743  CXXMethodDecl *MoveAssignment
8744    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8745                            /*TInfo=*/0, /*isStatic=*/false,
8746                            /*StorageClassAsWritten=*/SC_None,
8747                            /*isInline=*/true,
8748                            /*isConstexpr=*/false,
8749                            SourceLocation());
8750  MoveAssignment->setAccess(AS_public);
8751  MoveAssignment->setDefaulted();
8752  MoveAssignment->setImplicit();
8753
8754  // Build an exception specification pointing back at this member.
8755  FunctionProtoType::ExtProtoInfo EPI;
8756  EPI.ExceptionSpecType = EST_Unevaluated;
8757  EPI.ExceptionSpecDecl = MoveAssignment;
8758  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8759
8760  // Add the parameter to the operator.
8761  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8762                                               ClassLoc, ClassLoc, /*Id=*/0,
8763                                               ArgType, /*TInfo=*/0,
8764                                               SC_None,
8765                                               SC_None, 0);
8766  MoveAssignment->setParams(FromParam);
8767
8768  AddOverriddenMethods(ClassDecl, MoveAssignment);
8769
8770  MoveAssignment->setTrivial(
8771    ClassDecl->needsOverloadResolutionForMoveAssignment()
8772      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
8773      : ClassDecl->hasTrivialMoveAssignment());
8774
8775  // C++0x [class.copy]p9:
8776  //   If the definition of a class X does not explicitly declare a move
8777  //   assignment operator, one will be implicitly declared as defaulted if and
8778  //   only if:
8779  //   [...]
8780  //   - the move assignment operator would not be implicitly defined as
8781  //     deleted.
8782  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8783    // Cache this result so that we don't try to generate this over and over
8784    // on every lookup, leaking memory and wasting time.
8785    ClassDecl->setFailedImplicitMoveAssignment();
8786    return 0;
8787  }
8788
8789  // Note that we have added this copy-assignment operator.
8790  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8791
8792  if (Scope *S = getScopeForContext(ClassDecl))
8793    PushOnScopeChains(MoveAssignment, S, false);
8794  ClassDecl->addDecl(MoveAssignment);
8795
8796  return MoveAssignment;
8797}
8798
8799void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8800                                        CXXMethodDecl *MoveAssignOperator) {
8801  assert((MoveAssignOperator->isDefaulted() &&
8802          MoveAssignOperator->isOverloadedOperator() &&
8803          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8804          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8805          !MoveAssignOperator->isDeleted()) &&
8806         "DefineImplicitMoveAssignment called for wrong function");
8807
8808  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8809
8810  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8811    MoveAssignOperator->setInvalidDecl();
8812    return;
8813  }
8814
8815  MoveAssignOperator->setUsed();
8816
8817  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8818  DiagnosticErrorTrap Trap(Diags);
8819
8820  // C++0x [class.copy]p28:
8821  //   The implicitly-defined or move assignment operator for a non-union class
8822  //   X performs memberwise move assignment of its subobjects. The direct base
8823  //   classes of X are assigned first, in the order of their declaration in the
8824  //   base-specifier-list, and then the immediate non-static data members of X
8825  //   are assigned, in the order in which they were declared in the class
8826  //   definition.
8827
8828  // The statements that form the synthesized function body.
8829  SmallVector<Stmt*, 8> Statements;
8830
8831  // The parameter for the "other" object, which we are move from.
8832  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8833  QualType OtherRefType = Other->getType()->
8834      getAs<RValueReferenceType>()->getPointeeType();
8835  assert(OtherRefType.getQualifiers() == 0 &&
8836         "Bad argument type of defaulted move assignment");
8837
8838  // Our location for everything implicitly-generated.
8839  SourceLocation Loc = MoveAssignOperator->getLocation();
8840
8841  // Construct a reference to the "other" object. We'll be using this
8842  // throughout the generated ASTs.
8843  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8844  assert(OtherRef && "Reference to parameter cannot fail!");
8845  // Cast to rvalue.
8846  OtherRef = CastForMoving(*this, OtherRef);
8847
8848  // Construct the "this" pointer. We'll be using this throughout the generated
8849  // ASTs.
8850  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8851  assert(This && "Reference to this cannot fail!");
8852
8853  // Assign base classes.
8854  bool Invalid = false;
8855  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8856       E = ClassDecl->bases_end(); Base != E; ++Base) {
8857    // Form the assignment:
8858    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8859    QualType BaseType = Base->getType().getUnqualifiedType();
8860    if (!BaseType->isRecordType()) {
8861      Invalid = true;
8862      continue;
8863    }
8864
8865    CXXCastPath BasePath;
8866    BasePath.push_back(Base);
8867
8868    // Construct the "from" expression, which is an implicit cast to the
8869    // appropriately-qualified base type.
8870    Expr *From = OtherRef;
8871    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8872                             VK_XValue, &BasePath).take();
8873
8874    // Dereference "this".
8875    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8876
8877    // Implicitly cast "this" to the appropriately-qualified base type.
8878    To = ImpCastExprToType(To.take(),
8879                           Context.getCVRQualifiedType(BaseType,
8880                                     MoveAssignOperator->getTypeQualifiers()),
8881                           CK_UncheckedDerivedToBase,
8882                           VK_LValue, &BasePath);
8883
8884    // Build the move.
8885    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
8886                                            To.get(), From,
8887                                            /*CopyingBaseSubobject=*/true,
8888                                            /*Copying=*/false);
8889    if (Move.isInvalid()) {
8890      Diag(CurrentLocation, diag::note_member_synthesized_at)
8891        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8892      MoveAssignOperator->setInvalidDecl();
8893      return;
8894    }
8895
8896    // Success! Record the move.
8897    Statements.push_back(Move.takeAs<Expr>());
8898  }
8899
8900  // Assign non-static members.
8901  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8902                                  FieldEnd = ClassDecl->field_end();
8903       Field != FieldEnd; ++Field) {
8904    if (Field->isUnnamedBitfield())
8905      continue;
8906
8907    // Check for members of reference type; we can't move those.
8908    if (Field->getType()->isReferenceType()) {
8909      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8910        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8911      Diag(Field->getLocation(), diag::note_declared_at);
8912      Diag(CurrentLocation, diag::note_member_synthesized_at)
8913        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8914      Invalid = true;
8915      continue;
8916    }
8917
8918    // Check for members of const-qualified, non-class type.
8919    QualType BaseType = Context.getBaseElementType(Field->getType());
8920    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8921      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8922        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8923      Diag(Field->getLocation(), diag::note_declared_at);
8924      Diag(CurrentLocation, diag::note_member_synthesized_at)
8925        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8926      Invalid = true;
8927      continue;
8928    }
8929
8930    // Suppress assigning zero-width bitfields.
8931    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8932      continue;
8933
8934    QualType FieldType = Field->getType().getNonReferenceType();
8935    if (FieldType->isIncompleteArrayType()) {
8936      assert(ClassDecl->hasFlexibleArrayMember() &&
8937             "Incomplete array type is not valid");
8938      continue;
8939    }
8940
8941    // Build references to the field in the object we're copying from and to.
8942    CXXScopeSpec SS; // Intentionally empty
8943    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8944                              LookupMemberName);
8945    MemberLookup.addDecl(*Field);
8946    MemberLookup.resolveKind();
8947    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8948                                               Loc, /*IsArrow=*/false,
8949                                               SS, SourceLocation(), 0,
8950                                               MemberLookup, 0);
8951    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8952                                             Loc, /*IsArrow=*/true,
8953                                             SS, SourceLocation(), 0,
8954                                             MemberLookup, 0);
8955    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8956    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8957
8958    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8959        "Member reference with rvalue base must be rvalue except for reference "
8960        "members, which aren't allowed for move assignment.");
8961
8962    // Build the move of this field.
8963    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
8964                                            To.get(), From.get(),
8965                                            /*CopyingBaseSubobject=*/false,
8966                                            /*Copying=*/false);
8967    if (Move.isInvalid()) {
8968      Diag(CurrentLocation, diag::note_member_synthesized_at)
8969        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8970      MoveAssignOperator->setInvalidDecl();
8971      return;
8972    }
8973
8974    // Success! Record the copy.
8975    Statements.push_back(Move.takeAs<Stmt>());
8976  }
8977
8978  if (!Invalid) {
8979    // Add a "return *this;"
8980    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8981
8982    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8983    if (Return.isInvalid())
8984      Invalid = true;
8985    else {
8986      Statements.push_back(Return.takeAs<Stmt>());
8987
8988      if (Trap.hasErrorOccurred()) {
8989        Diag(CurrentLocation, diag::note_member_synthesized_at)
8990          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8991        Invalid = true;
8992      }
8993    }
8994  }
8995
8996  if (Invalid) {
8997    MoveAssignOperator->setInvalidDecl();
8998    return;
8999  }
9000
9001  StmtResult Body;
9002  {
9003    CompoundScopeRAII CompoundScope(*this);
9004    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9005                             /*isStmtExpr=*/false);
9006    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9007  }
9008  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9009
9010  if (ASTMutationListener *L = getASTMutationListener()) {
9011    L->CompletedImplicitDefinition(MoveAssignOperator);
9012  }
9013}
9014
9015Sema::ImplicitExceptionSpecification
9016Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9017  CXXRecordDecl *ClassDecl = MD->getParent();
9018
9019  ImplicitExceptionSpecification ExceptSpec(*this);
9020  if (ClassDecl->isInvalidDecl())
9021    return ExceptSpec;
9022
9023  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9024  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9025  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9026
9027  // C++ [except.spec]p14:
9028  //   An implicitly declared special member function (Clause 12) shall have an
9029  //   exception-specification. [...]
9030  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9031                                       BaseEnd = ClassDecl->bases_end();
9032       Base != BaseEnd;
9033       ++Base) {
9034    // Virtual bases are handled below.
9035    if (Base->isVirtual())
9036      continue;
9037
9038    CXXRecordDecl *BaseClassDecl
9039      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9040    if (CXXConstructorDecl *CopyConstructor =
9041          LookupCopyingConstructor(BaseClassDecl, Quals))
9042      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9043  }
9044  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9045                                       BaseEnd = ClassDecl->vbases_end();
9046       Base != BaseEnd;
9047       ++Base) {
9048    CXXRecordDecl *BaseClassDecl
9049      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9050    if (CXXConstructorDecl *CopyConstructor =
9051          LookupCopyingConstructor(BaseClassDecl, Quals))
9052      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9053  }
9054  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9055                                  FieldEnd = ClassDecl->field_end();
9056       Field != FieldEnd;
9057       ++Field) {
9058    QualType FieldType = Context.getBaseElementType(Field->getType());
9059    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9060      if (CXXConstructorDecl *CopyConstructor =
9061              LookupCopyingConstructor(FieldClassDecl,
9062                                       Quals | FieldType.getCVRQualifiers()))
9063      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9064    }
9065  }
9066
9067  return ExceptSpec;
9068}
9069
9070CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9071                                                    CXXRecordDecl *ClassDecl) {
9072  // C++ [class.copy]p4:
9073  //   If the class definition does not explicitly declare a copy
9074  //   constructor, one is declared implicitly.
9075  assert(ClassDecl->needsImplicitCopyConstructor());
9076
9077  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9078  if (DSM.isAlreadyBeingDeclared())
9079    return 0;
9080
9081  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9082  QualType ArgType = ClassType;
9083  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9084  if (Const)
9085    ArgType = ArgType.withConst();
9086  ArgType = Context.getLValueReferenceType(ArgType);
9087
9088  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9089                                                     CXXCopyConstructor,
9090                                                     Const);
9091
9092  DeclarationName Name
9093    = Context.DeclarationNames.getCXXConstructorName(
9094                                           Context.getCanonicalType(ClassType));
9095  SourceLocation ClassLoc = ClassDecl->getLocation();
9096  DeclarationNameInfo NameInfo(Name, ClassLoc);
9097
9098  //   An implicitly-declared copy constructor is an inline public
9099  //   member of its class.
9100  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9101      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9102      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9103      Constexpr);
9104  CopyConstructor->setAccess(AS_public);
9105  CopyConstructor->setDefaulted();
9106
9107  // Build an exception specification pointing back at this member.
9108  FunctionProtoType::ExtProtoInfo EPI;
9109  EPI.ExceptionSpecType = EST_Unevaluated;
9110  EPI.ExceptionSpecDecl = CopyConstructor;
9111  CopyConstructor->setType(
9112      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
9113
9114  // Add the parameter to the constructor.
9115  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9116                                               ClassLoc, ClassLoc,
9117                                               /*IdentifierInfo=*/0,
9118                                               ArgType, /*TInfo=*/0,
9119                                               SC_None,
9120                                               SC_None, 0);
9121  CopyConstructor->setParams(FromParam);
9122
9123  CopyConstructor->setTrivial(
9124    ClassDecl->needsOverloadResolutionForCopyConstructor()
9125      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9126      : ClassDecl->hasTrivialCopyConstructor());
9127
9128  // C++11 [class.copy]p8:
9129  //   ... If the class definition does not explicitly declare a copy
9130  //   constructor, there is no user-declared move constructor, and there is no
9131  //   user-declared move assignment operator, a copy constructor is implicitly
9132  //   declared as defaulted.
9133  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9134    CopyConstructor->setDeletedAsWritten();
9135
9136  // Note that we have declared this constructor.
9137  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9138
9139  if (Scope *S = getScopeForContext(ClassDecl))
9140    PushOnScopeChains(CopyConstructor, S, false);
9141  ClassDecl->addDecl(CopyConstructor);
9142
9143  return CopyConstructor;
9144}
9145
9146void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9147                                   CXXConstructorDecl *CopyConstructor) {
9148  assert((CopyConstructor->isDefaulted() &&
9149          CopyConstructor->isCopyConstructor() &&
9150          !CopyConstructor->doesThisDeclarationHaveABody() &&
9151          !CopyConstructor->isDeleted()) &&
9152         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9153
9154  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9155  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9156
9157  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9158  DiagnosticErrorTrap Trap(Diags);
9159
9160  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9161      Trap.hasErrorOccurred()) {
9162    Diag(CurrentLocation, diag::note_member_synthesized_at)
9163      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9164    CopyConstructor->setInvalidDecl();
9165  }  else {
9166    Sema::CompoundScopeRAII CompoundScope(*this);
9167    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9168                                               CopyConstructor->getLocation(),
9169                                               MultiStmtArg(),
9170                                               /*isStmtExpr=*/false)
9171                                                              .takeAs<Stmt>());
9172    CopyConstructor->setImplicitlyDefined(true);
9173  }
9174
9175  CopyConstructor->setUsed();
9176  if (ASTMutationListener *L = getASTMutationListener()) {
9177    L->CompletedImplicitDefinition(CopyConstructor);
9178  }
9179}
9180
9181Sema::ImplicitExceptionSpecification
9182Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9183  CXXRecordDecl *ClassDecl = MD->getParent();
9184
9185  // C++ [except.spec]p14:
9186  //   An implicitly declared special member function (Clause 12) shall have an
9187  //   exception-specification. [...]
9188  ImplicitExceptionSpecification ExceptSpec(*this);
9189  if (ClassDecl->isInvalidDecl())
9190    return ExceptSpec;
9191
9192  // Direct base-class constructors.
9193  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9194                                       BEnd = ClassDecl->bases_end();
9195       B != BEnd; ++B) {
9196    if (B->isVirtual()) // Handled below.
9197      continue;
9198
9199    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9200      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9201      CXXConstructorDecl *Constructor =
9202          LookupMovingConstructor(BaseClassDecl, 0);
9203      // If this is a deleted function, add it anyway. This might be conformant
9204      // with the standard. This might not. I'm not sure. It might not matter.
9205      if (Constructor)
9206        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9207    }
9208  }
9209
9210  // Virtual base-class constructors.
9211  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9212                                       BEnd = ClassDecl->vbases_end();
9213       B != BEnd; ++B) {
9214    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9215      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9216      CXXConstructorDecl *Constructor =
9217          LookupMovingConstructor(BaseClassDecl, 0);
9218      // If this is a deleted function, add it anyway. This might be conformant
9219      // with the standard. This might not. I'm not sure. It might not matter.
9220      if (Constructor)
9221        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9222    }
9223  }
9224
9225  // Field constructors.
9226  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9227                               FEnd = ClassDecl->field_end();
9228       F != FEnd; ++F) {
9229    QualType FieldType = Context.getBaseElementType(F->getType());
9230    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9231      CXXConstructorDecl *Constructor =
9232          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9233      // If this is a deleted function, add it anyway. This might be conformant
9234      // with the standard. This might not. I'm not sure. It might not matter.
9235      // In particular, the problem is that this function never gets called. It
9236      // might just be ill-formed because this function attempts to refer to
9237      // a deleted function here.
9238      if (Constructor)
9239        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9240    }
9241  }
9242
9243  return ExceptSpec;
9244}
9245
9246CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9247                                                    CXXRecordDecl *ClassDecl) {
9248  // C++11 [class.copy]p9:
9249  //   If the definition of a class X does not explicitly declare a move
9250  //   constructor, one will be implicitly declared as defaulted if and only if:
9251  //
9252  //   - [first 4 bullets]
9253  assert(ClassDecl->needsImplicitMoveConstructor());
9254
9255  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9256  if (DSM.isAlreadyBeingDeclared())
9257    return 0;
9258
9259  // [Checked after we build the declaration]
9260  //   - the move assignment operator would not be implicitly defined as
9261  //     deleted,
9262
9263  // [DR1402]:
9264  //   - each of X's non-static data members and direct or virtual base classes
9265  //     has a type that either has a move constructor or is trivially copyable.
9266  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9267    ClassDecl->setFailedImplicitMoveConstructor();
9268    return 0;
9269  }
9270
9271  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9272  QualType ArgType = Context.getRValueReferenceType(ClassType);
9273
9274  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9275                                                     CXXMoveConstructor,
9276                                                     false);
9277
9278  DeclarationName Name
9279    = Context.DeclarationNames.getCXXConstructorName(
9280                                           Context.getCanonicalType(ClassType));
9281  SourceLocation ClassLoc = ClassDecl->getLocation();
9282  DeclarationNameInfo NameInfo(Name, ClassLoc);
9283
9284  // C++0x [class.copy]p11:
9285  //   An implicitly-declared copy/move constructor is an inline public
9286  //   member of its class.
9287  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9288      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9289      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9290      Constexpr);
9291  MoveConstructor->setAccess(AS_public);
9292  MoveConstructor->setDefaulted();
9293
9294  // Build an exception specification pointing back at this member.
9295  FunctionProtoType::ExtProtoInfo EPI;
9296  EPI.ExceptionSpecType = EST_Unevaluated;
9297  EPI.ExceptionSpecDecl = MoveConstructor;
9298  MoveConstructor->setType(
9299      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
9300
9301  // Add the parameter to the constructor.
9302  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9303                                               ClassLoc, ClassLoc,
9304                                               /*IdentifierInfo=*/0,
9305                                               ArgType, /*TInfo=*/0,
9306                                               SC_None,
9307                                               SC_None, 0);
9308  MoveConstructor->setParams(FromParam);
9309
9310  MoveConstructor->setTrivial(
9311    ClassDecl->needsOverloadResolutionForMoveConstructor()
9312      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9313      : ClassDecl->hasTrivialMoveConstructor());
9314
9315  // C++0x [class.copy]p9:
9316  //   If the definition of a class X does not explicitly declare a move
9317  //   constructor, one will be implicitly declared as defaulted if and only if:
9318  //   [...]
9319  //   - the move constructor would not be implicitly defined as deleted.
9320  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9321    // Cache this result so that we don't try to generate this over and over
9322    // on every lookup, leaking memory and wasting time.
9323    ClassDecl->setFailedImplicitMoveConstructor();
9324    return 0;
9325  }
9326
9327  // Note that we have declared this constructor.
9328  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9329
9330  if (Scope *S = getScopeForContext(ClassDecl))
9331    PushOnScopeChains(MoveConstructor, S, false);
9332  ClassDecl->addDecl(MoveConstructor);
9333
9334  return MoveConstructor;
9335}
9336
9337void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9338                                   CXXConstructorDecl *MoveConstructor) {
9339  assert((MoveConstructor->isDefaulted() &&
9340          MoveConstructor->isMoveConstructor() &&
9341          !MoveConstructor->doesThisDeclarationHaveABody() &&
9342          !MoveConstructor->isDeleted()) &&
9343         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9344
9345  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9346  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9347
9348  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9349  DiagnosticErrorTrap Trap(Diags);
9350
9351  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9352      Trap.hasErrorOccurred()) {
9353    Diag(CurrentLocation, diag::note_member_synthesized_at)
9354      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9355    MoveConstructor->setInvalidDecl();
9356  }  else {
9357    Sema::CompoundScopeRAII CompoundScope(*this);
9358    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9359                                               MoveConstructor->getLocation(),
9360                                               MultiStmtArg(),
9361                                               /*isStmtExpr=*/false)
9362                                                              .takeAs<Stmt>());
9363    MoveConstructor->setImplicitlyDefined(true);
9364  }
9365
9366  MoveConstructor->setUsed();
9367
9368  if (ASTMutationListener *L = getASTMutationListener()) {
9369    L->CompletedImplicitDefinition(MoveConstructor);
9370  }
9371}
9372
9373bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9374  return FD->isDeleted() &&
9375         (FD->isDefaulted() || FD->isImplicit()) &&
9376         isa<CXXMethodDecl>(FD);
9377}
9378
9379/// \brief Mark the call operator of the given lambda closure type as "used".
9380static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9381  CXXMethodDecl *CallOperator
9382    = cast<CXXMethodDecl>(
9383        Lambda->lookup(
9384          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9385  CallOperator->setReferenced();
9386  CallOperator->setUsed();
9387}
9388
9389void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9390       SourceLocation CurrentLocation,
9391       CXXConversionDecl *Conv)
9392{
9393  CXXRecordDecl *Lambda = Conv->getParent();
9394
9395  // Make sure that the lambda call operator is marked used.
9396  markLambdaCallOperatorUsed(*this, Lambda);
9397
9398  Conv->setUsed();
9399
9400  SynthesizedFunctionScope Scope(*this, Conv);
9401  DiagnosticErrorTrap Trap(Diags);
9402
9403  // Return the address of the __invoke function.
9404  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9405  CXXMethodDecl *Invoke
9406    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9407  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9408                                       VK_LValue, Conv->getLocation()).take();
9409  assert(FunctionRef && "Can't refer to __invoke function?");
9410  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9411  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9412                                           Conv->getLocation(),
9413                                           Conv->getLocation()));
9414
9415  // Fill in the __invoke function with a dummy implementation. IR generation
9416  // will fill in the actual details.
9417  Invoke->setUsed();
9418  Invoke->setReferenced();
9419  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9420
9421  if (ASTMutationListener *L = getASTMutationListener()) {
9422    L->CompletedImplicitDefinition(Conv);
9423    L->CompletedImplicitDefinition(Invoke);
9424  }
9425}
9426
9427void Sema::DefineImplicitLambdaToBlockPointerConversion(
9428       SourceLocation CurrentLocation,
9429       CXXConversionDecl *Conv)
9430{
9431  Conv->setUsed();
9432
9433  SynthesizedFunctionScope Scope(*this, Conv);
9434  DiagnosticErrorTrap Trap(Diags);
9435
9436  // Copy-initialize the lambda object as needed to capture it.
9437  Expr *This = ActOnCXXThis(CurrentLocation).take();
9438  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9439
9440  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9441                                                        Conv->getLocation(),
9442                                                        Conv, DerefThis);
9443
9444  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9445  // behavior.  Note that only the general conversion function does this
9446  // (since it's unusable otherwise); in the case where we inline the
9447  // block literal, it has block literal lifetime semantics.
9448  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9449    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9450                                          CK_CopyAndAutoreleaseBlockObject,
9451                                          BuildBlock.get(), 0, VK_RValue);
9452
9453  if (BuildBlock.isInvalid()) {
9454    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9455    Conv->setInvalidDecl();
9456    return;
9457  }
9458
9459  // Create the return statement that returns the block from the conversion
9460  // function.
9461  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9462  if (Return.isInvalid()) {
9463    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9464    Conv->setInvalidDecl();
9465    return;
9466  }
9467
9468  // Set the body of the conversion function.
9469  Stmt *ReturnS = Return.take();
9470  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9471                                           Conv->getLocation(),
9472                                           Conv->getLocation()));
9473
9474  // We're done; notify the mutation listener, if any.
9475  if (ASTMutationListener *L = getASTMutationListener()) {
9476    L->CompletedImplicitDefinition(Conv);
9477  }
9478}
9479
9480/// \brief Determine whether the given list arguments contains exactly one
9481/// "real" (non-default) argument.
9482static bool hasOneRealArgument(MultiExprArg Args) {
9483  switch (Args.size()) {
9484  case 0:
9485    return false;
9486
9487  default:
9488    if (!Args[1]->isDefaultArgument())
9489      return false;
9490
9491    // fall through
9492  case 1:
9493    return !Args[0]->isDefaultArgument();
9494  }
9495
9496  return false;
9497}
9498
9499ExprResult
9500Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9501                            CXXConstructorDecl *Constructor,
9502                            MultiExprArg ExprArgs,
9503                            bool HadMultipleCandidates,
9504                            bool IsListInitialization,
9505                            bool RequiresZeroInit,
9506                            unsigned ConstructKind,
9507                            SourceRange ParenRange) {
9508  bool Elidable = false;
9509
9510  // C++0x [class.copy]p34:
9511  //   When certain criteria are met, an implementation is allowed to
9512  //   omit the copy/move construction of a class object, even if the
9513  //   copy/move constructor and/or destructor for the object have
9514  //   side effects. [...]
9515  //     - when a temporary class object that has not been bound to a
9516  //       reference (12.2) would be copied/moved to a class object
9517  //       with the same cv-unqualified type, the copy/move operation
9518  //       can be omitted by constructing the temporary object
9519  //       directly into the target of the omitted copy/move
9520  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9521      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9522    Expr *SubExpr = ExprArgs[0];
9523    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9524  }
9525
9526  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9527                               Elidable, ExprArgs, HadMultipleCandidates,
9528                               IsListInitialization, RequiresZeroInit,
9529                               ConstructKind, ParenRange);
9530}
9531
9532/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9533/// including handling of its default argument expressions.
9534ExprResult
9535Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9536                            CXXConstructorDecl *Constructor, bool Elidable,
9537                            MultiExprArg ExprArgs,
9538                            bool HadMultipleCandidates,
9539                            bool IsListInitialization,
9540                            bool RequiresZeroInit,
9541                            unsigned ConstructKind,
9542                            SourceRange ParenRange) {
9543  MarkFunctionReferenced(ConstructLoc, Constructor);
9544  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9545                                        Constructor, Elidable, ExprArgs,
9546                                        HadMultipleCandidates,
9547                                        IsListInitialization, RequiresZeroInit,
9548              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9549                                        ParenRange));
9550}
9551
9552void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9553  if (VD->isInvalidDecl()) return;
9554
9555  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9556  if (ClassDecl->isInvalidDecl()) return;
9557  if (ClassDecl->hasIrrelevantDestructor()) return;
9558  if (ClassDecl->isDependentContext()) return;
9559
9560  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9561  MarkFunctionReferenced(VD->getLocation(), Destructor);
9562  CheckDestructorAccess(VD->getLocation(), Destructor,
9563                        PDiag(diag::err_access_dtor_var)
9564                        << VD->getDeclName()
9565                        << VD->getType());
9566  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9567
9568  if (!VD->hasGlobalStorage()) return;
9569
9570  // Emit warning for non-trivial dtor in global scope (a real global,
9571  // class-static, function-static).
9572  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9573
9574  // TODO: this should be re-enabled for static locals by !CXAAtExit
9575  if (!VD->isStaticLocal())
9576    Diag(VD->getLocation(), diag::warn_global_destructor);
9577}
9578
9579/// \brief Given a constructor and the set of arguments provided for the
9580/// constructor, convert the arguments and add any required default arguments
9581/// to form a proper call to this constructor.
9582///
9583/// \returns true if an error occurred, false otherwise.
9584bool
9585Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9586                              MultiExprArg ArgsPtr,
9587                              SourceLocation Loc,
9588                              SmallVectorImpl<Expr*> &ConvertedArgs,
9589                              bool AllowExplicit) {
9590  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9591  unsigned NumArgs = ArgsPtr.size();
9592  Expr **Args = ArgsPtr.data();
9593
9594  const FunctionProtoType *Proto
9595    = Constructor->getType()->getAs<FunctionProtoType>();
9596  assert(Proto && "Constructor without a prototype?");
9597  unsigned NumArgsInProto = Proto->getNumArgs();
9598
9599  // If too few arguments are available, we'll fill in the rest with defaults.
9600  if (NumArgs < NumArgsInProto)
9601    ConvertedArgs.reserve(NumArgsInProto);
9602  else
9603    ConvertedArgs.reserve(NumArgs);
9604
9605  VariadicCallType CallType =
9606    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9607  SmallVector<Expr *, 8> AllArgs;
9608  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9609                                        Proto, 0, Args, NumArgs, AllArgs,
9610                                        CallType, AllowExplicit);
9611  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9612
9613  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9614
9615  CheckConstructorCall(Constructor,
9616                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9617                                                        AllArgs.size()),
9618                       Proto, Loc);
9619
9620  return Invalid;
9621}
9622
9623static inline bool
9624CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9625                                       const FunctionDecl *FnDecl) {
9626  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9627  if (isa<NamespaceDecl>(DC)) {
9628    return SemaRef.Diag(FnDecl->getLocation(),
9629                        diag::err_operator_new_delete_declared_in_namespace)
9630      << FnDecl->getDeclName();
9631  }
9632
9633  if (isa<TranslationUnitDecl>(DC) &&
9634      FnDecl->getStorageClass() == SC_Static) {
9635    return SemaRef.Diag(FnDecl->getLocation(),
9636                        diag::err_operator_new_delete_declared_static)
9637      << FnDecl->getDeclName();
9638  }
9639
9640  return false;
9641}
9642
9643static inline bool
9644CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9645                            CanQualType ExpectedResultType,
9646                            CanQualType ExpectedFirstParamType,
9647                            unsigned DependentParamTypeDiag,
9648                            unsigned InvalidParamTypeDiag) {
9649  QualType ResultType =
9650    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9651
9652  // Check that the result type is not dependent.
9653  if (ResultType->isDependentType())
9654    return SemaRef.Diag(FnDecl->getLocation(),
9655                        diag::err_operator_new_delete_dependent_result_type)
9656    << FnDecl->getDeclName() << ExpectedResultType;
9657
9658  // Check that the result type is what we expect.
9659  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9660    return SemaRef.Diag(FnDecl->getLocation(),
9661                        diag::err_operator_new_delete_invalid_result_type)
9662    << FnDecl->getDeclName() << ExpectedResultType;
9663
9664  // A function template must have at least 2 parameters.
9665  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9666    return SemaRef.Diag(FnDecl->getLocation(),
9667                      diag::err_operator_new_delete_template_too_few_parameters)
9668        << FnDecl->getDeclName();
9669
9670  // The function decl must have at least 1 parameter.
9671  if (FnDecl->getNumParams() == 0)
9672    return SemaRef.Diag(FnDecl->getLocation(),
9673                        diag::err_operator_new_delete_too_few_parameters)
9674      << FnDecl->getDeclName();
9675
9676  // Check the first parameter type is not dependent.
9677  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9678  if (FirstParamType->isDependentType())
9679    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9680      << FnDecl->getDeclName() << ExpectedFirstParamType;
9681
9682  // Check that the first parameter type is what we expect.
9683  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9684      ExpectedFirstParamType)
9685    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9686    << FnDecl->getDeclName() << ExpectedFirstParamType;
9687
9688  return false;
9689}
9690
9691static bool
9692CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9693  // C++ [basic.stc.dynamic.allocation]p1:
9694  //   A program is ill-formed if an allocation function is declared in a
9695  //   namespace scope other than global scope or declared static in global
9696  //   scope.
9697  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9698    return true;
9699
9700  CanQualType SizeTy =
9701    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9702
9703  // C++ [basic.stc.dynamic.allocation]p1:
9704  //  The return type shall be void*. The first parameter shall have type
9705  //  std::size_t.
9706  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9707                                  SizeTy,
9708                                  diag::err_operator_new_dependent_param_type,
9709                                  diag::err_operator_new_param_type))
9710    return true;
9711
9712  // C++ [basic.stc.dynamic.allocation]p1:
9713  //  The first parameter shall not have an associated default argument.
9714  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9715    return SemaRef.Diag(FnDecl->getLocation(),
9716                        diag::err_operator_new_default_arg)
9717      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9718
9719  return false;
9720}
9721
9722static bool
9723CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9724  // C++ [basic.stc.dynamic.deallocation]p1:
9725  //   A program is ill-formed if deallocation functions are declared in a
9726  //   namespace scope other than global scope or declared static in global
9727  //   scope.
9728  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9729    return true;
9730
9731  // C++ [basic.stc.dynamic.deallocation]p2:
9732  //   Each deallocation function shall return void and its first parameter
9733  //   shall be void*.
9734  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9735                                  SemaRef.Context.VoidPtrTy,
9736                                 diag::err_operator_delete_dependent_param_type,
9737                                 diag::err_operator_delete_param_type))
9738    return true;
9739
9740  return false;
9741}
9742
9743/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9744/// of this overloaded operator is well-formed. If so, returns false;
9745/// otherwise, emits appropriate diagnostics and returns true.
9746bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9747  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9748         "Expected an overloaded operator declaration");
9749
9750  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9751
9752  // C++ [over.oper]p5:
9753  //   The allocation and deallocation functions, operator new,
9754  //   operator new[], operator delete and operator delete[], are
9755  //   described completely in 3.7.3. The attributes and restrictions
9756  //   found in the rest of this subclause do not apply to them unless
9757  //   explicitly stated in 3.7.3.
9758  if (Op == OO_Delete || Op == OO_Array_Delete)
9759    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9760
9761  if (Op == OO_New || Op == OO_Array_New)
9762    return CheckOperatorNewDeclaration(*this, FnDecl);
9763
9764  // C++ [over.oper]p6:
9765  //   An operator function shall either be a non-static member
9766  //   function or be a non-member function and have at least one
9767  //   parameter whose type is a class, a reference to a class, an
9768  //   enumeration, or a reference to an enumeration.
9769  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9770    if (MethodDecl->isStatic())
9771      return Diag(FnDecl->getLocation(),
9772                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9773  } else {
9774    bool ClassOrEnumParam = false;
9775    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9776                                   ParamEnd = FnDecl->param_end();
9777         Param != ParamEnd; ++Param) {
9778      QualType ParamType = (*Param)->getType().getNonReferenceType();
9779      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9780          ParamType->isEnumeralType()) {
9781        ClassOrEnumParam = true;
9782        break;
9783      }
9784    }
9785
9786    if (!ClassOrEnumParam)
9787      return Diag(FnDecl->getLocation(),
9788                  diag::err_operator_overload_needs_class_or_enum)
9789        << FnDecl->getDeclName();
9790  }
9791
9792  // C++ [over.oper]p8:
9793  //   An operator function cannot have default arguments (8.3.6),
9794  //   except where explicitly stated below.
9795  //
9796  // Only the function-call operator allows default arguments
9797  // (C++ [over.call]p1).
9798  if (Op != OO_Call) {
9799    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9800         Param != FnDecl->param_end(); ++Param) {
9801      if ((*Param)->hasDefaultArg())
9802        return Diag((*Param)->getLocation(),
9803                    diag::err_operator_overload_default_arg)
9804          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9805    }
9806  }
9807
9808  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9809    { false, false, false }
9810#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9811    , { Unary, Binary, MemberOnly }
9812#include "clang/Basic/OperatorKinds.def"
9813  };
9814
9815  bool CanBeUnaryOperator = OperatorUses[Op][0];
9816  bool CanBeBinaryOperator = OperatorUses[Op][1];
9817  bool MustBeMemberOperator = OperatorUses[Op][2];
9818
9819  // C++ [over.oper]p8:
9820  //   [...] Operator functions cannot have more or fewer parameters
9821  //   than the number required for the corresponding operator, as
9822  //   described in the rest of this subclause.
9823  unsigned NumParams = FnDecl->getNumParams()
9824                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9825  if (Op != OO_Call &&
9826      ((NumParams == 1 && !CanBeUnaryOperator) ||
9827       (NumParams == 2 && !CanBeBinaryOperator) ||
9828       (NumParams < 1) || (NumParams > 2))) {
9829    // We have the wrong number of parameters.
9830    unsigned ErrorKind;
9831    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9832      ErrorKind = 2;  // 2 -> unary or binary.
9833    } else if (CanBeUnaryOperator) {
9834      ErrorKind = 0;  // 0 -> unary
9835    } else {
9836      assert(CanBeBinaryOperator &&
9837             "All non-call overloaded operators are unary or binary!");
9838      ErrorKind = 1;  // 1 -> binary
9839    }
9840
9841    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9842      << FnDecl->getDeclName() << NumParams << ErrorKind;
9843  }
9844
9845  // Overloaded operators other than operator() cannot be variadic.
9846  if (Op != OO_Call &&
9847      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9848    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9849      << FnDecl->getDeclName();
9850  }
9851
9852  // Some operators must be non-static member functions.
9853  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9854    return Diag(FnDecl->getLocation(),
9855                diag::err_operator_overload_must_be_member)
9856      << FnDecl->getDeclName();
9857  }
9858
9859  // C++ [over.inc]p1:
9860  //   The user-defined function called operator++ implements the
9861  //   prefix and postfix ++ operator. If this function is a member
9862  //   function with no parameters, or a non-member function with one
9863  //   parameter of class or enumeration type, it defines the prefix
9864  //   increment operator ++ for objects of that type. If the function
9865  //   is a member function with one parameter (which shall be of type
9866  //   int) or a non-member function with two parameters (the second
9867  //   of which shall be of type int), it defines the postfix
9868  //   increment operator ++ for objects of that type.
9869  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9870    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9871    bool ParamIsInt = false;
9872    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9873      ParamIsInt = BT->getKind() == BuiltinType::Int;
9874
9875    if (!ParamIsInt)
9876      return Diag(LastParam->getLocation(),
9877                  diag::err_operator_overload_post_incdec_must_be_int)
9878        << LastParam->getType() << (Op == OO_MinusMinus);
9879  }
9880
9881  return false;
9882}
9883
9884/// CheckLiteralOperatorDeclaration - Check whether the declaration
9885/// of this literal operator function is well-formed. If so, returns
9886/// false; otherwise, emits appropriate diagnostics and returns true.
9887bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9888  if (isa<CXXMethodDecl>(FnDecl)) {
9889    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9890      << FnDecl->getDeclName();
9891    return true;
9892  }
9893
9894  if (FnDecl->isExternC()) {
9895    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9896    return true;
9897  }
9898
9899  bool Valid = false;
9900
9901  // This might be the definition of a literal operator template.
9902  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9903  // This might be a specialization of a literal operator template.
9904  if (!TpDecl)
9905    TpDecl = FnDecl->getPrimaryTemplate();
9906
9907  // template <char...> type operator "" name() is the only valid template
9908  // signature, and the only valid signature with no parameters.
9909  if (TpDecl) {
9910    if (FnDecl->param_size() == 0) {
9911      // Must have only one template parameter
9912      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9913      if (Params->size() == 1) {
9914        NonTypeTemplateParmDecl *PmDecl =
9915          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9916
9917        // The template parameter must be a char parameter pack.
9918        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9919            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9920          Valid = true;
9921      }
9922    }
9923  } else if (FnDecl->param_size()) {
9924    // Check the first parameter
9925    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9926
9927    QualType T = (*Param)->getType().getUnqualifiedType();
9928
9929    // unsigned long long int, long double, and any character type are allowed
9930    // as the only parameters.
9931    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9932        Context.hasSameType(T, Context.LongDoubleTy) ||
9933        Context.hasSameType(T, Context.CharTy) ||
9934        Context.hasSameType(T, Context.WCharTy) ||
9935        Context.hasSameType(T, Context.Char16Ty) ||
9936        Context.hasSameType(T, Context.Char32Ty)) {
9937      if (++Param == FnDecl->param_end())
9938        Valid = true;
9939      goto FinishedParams;
9940    }
9941
9942    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9943    const PointerType *PT = T->getAs<PointerType>();
9944    if (!PT)
9945      goto FinishedParams;
9946    T = PT->getPointeeType();
9947    if (!T.isConstQualified() || T.isVolatileQualified())
9948      goto FinishedParams;
9949    T = T.getUnqualifiedType();
9950
9951    // Move on to the second parameter;
9952    ++Param;
9953
9954    // If there is no second parameter, the first must be a const char *
9955    if (Param == FnDecl->param_end()) {
9956      if (Context.hasSameType(T, Context.CharTy))
9957        Valid = true;
9958      goto FinishedParams;
9959    }
9960
9961    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9962    // are allowed as the first parameter to a two-parameter function
9963    if (!(Context.hasSameType(T, Context.CharTy) ||
9964          Context.hasSameType(T, Context.WCharTy) ||
9965          Context.hasSameType(T, Context.Char16Ty) ||
9966          Context.hasSameType(T, Context.Char32Ty)))
9967      goto FinishedParams;
9968
9969    // The second and final parameter must be an std::size_t
9970    T = (*Param)->getType().getUnqualifiedType();
9971    if (Context.hasSameType(T, Context.getSizeType()) &&
9972        ++Param == FnDecl->param_end())
9973      Valid = true;
9974  }
9975
9976  // FIXME: This diagnostic is absolutely terrible.
9977FinishedParams:
9978  if (!Valid) {
9979    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9980      << FnDecl->getDeclName();
9981    return true;
9982  }
9983
9984  // A parameter-declaration-clause containing a default argument is not
9985  // equivalent to any of the permitted forms.
9986  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9987                                    ParamEnd = FnDecl->param_end();
9988       Param != ParamEnd; ++Param) {
9989    if ((*Param)->hasDefaultArg()) {
9990      Diag((*Param)->getDefaultArgRange().getBegin(),
9991           diag::err_literal_operator_default_argument)
9992        << (*Param)->getDefaultArgRange();
9993      break;
9994    }
9995  }
9996
9997  StringRef LiteralName
9998    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9999  if (LiteralName[0] != '_') {
10000    // C++11 [usrlit.suffix]p1:
10001    //   Literal suffix identifiers that do not start with an underscore
10002    //   are reserved for future standardization.
10003    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10004  }
10005
10006  return false;
10007}
10008
10009/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10010/// linkage specification, including the language and (if present)
10011/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10012/// the location of the language string literal, which is provided
10013/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10014/// the '{' brace. Otherwise, this linkage specification does not
10015/// have any braces.
10016Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10017                                           SourceLocation LangLoc,
10018                                           StringRef Lang,
10019                                           SourceLocation LBraceLoc) {
10020  LinkageSpecDecl::LanguageIDs Language;
10021  if (Lang == "\"C\"")
10022    Language = LinkageSpecDecl::lang_c;
10023  else if (Lang == "\"C++\"")
10024    Language = LinkageSpecDecl::lang_cxx;
10025  else {
10026    Diag(LangLoc, diag::err_bad_language);
10027    return 0;
10028  }
10029
10030  // FIXME: Add all the various semantics of linkage specifications
10031
10032  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10033                                               ExternLoc, LangLoc, Language);
10034  CurContext->addDecl(D);
10035  PushDeclContext(S, D);
10036  return D;
10037}
10038
10039/// ActOnFinishLinkageSpecification - Complete the definition of
10040/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10041/// valid, it's the position of the closing '}' brace in a linkage
10042/// specification that uses braces.
10043Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10044                                            Decl *LinkageSpec,
10045                                            SourceLocation RBraceLoc) {
10046  if (LinkageSpec) {
10047    if (RBraceLoc.isValid()) {
10048      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10049      LSDecl->setRBraceLoc(RBraceLoc);
10050    }
10051    PopDeclContext();
10052  }
10053  return LinkageSpec;
10054}
10055
10056/// \brief Perform semantic analysis for the variable declaration that
10057/// occurs within a C++ catch clause, returning the newly-created
10058/// variable.
10059VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10060                                         TypeSourceInfo *TInfo,
10061                                         SourceLocation StartLoc,
10062                                         SourceLocation Loc,
10063                                         IdentifierInfo *Name) {
10064  bool Invalid = false;
10065  QualType ExDeclType = TInfo->getType();
10066
10067  // Arrays and functions decay.
10068  if (ExDeclType->isArrayType())
10069    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10070  else if (ExDeclType->isFunctionType())
10071    ExDeclType = Context.getPointerType(ExDeclType);
10072
10073  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10074  // The exception-declaration shall not denote a pointer or reference to an
10075  // incomplete type, other than [cv] void*.
10076  // N2844 forbids rvalue references.
10077  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10078    Diag(Loc, diag::err_catch_rvalue_ref);
10079    Invalid = true;
10080  }
10081
10082  QualType BaseType = ExDeclType;
10083  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10084  unsigned DK = diag::err_catch_incomplete;
10085  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10086    BaseType = Ptr->getPointeeType();
10087    Mode = 1;
10088    DK = diag::err_catch_incomplete_ptr;
10089  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10090    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10091    BaseType = Ref->getPointeeType();
10092    Mode = 2;
10093    DK = diag::err_catch_incomplete_ref;
10094  }
10095  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10096      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10097    Invalid = true;
10098
10099  if (!Invalid && !ExDeclType->isDependentType() &&
10100      RequireNonAbstractType(Loc, ExDeclType,
10101                             diag::err_abstract_type_in_decl,
10102                             AbstractVariableType))
10103    Invalid = true;
10104
10105  // Only the non-fragile NeXT runtime currently supports C++ catches
10106  // of ObjC types, and no runtime supports catching ObjC types by value.
10107  if (!Invalid && getLangOpts().ObjC1) {
10108    QualType T = ExDeclType;
10109    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10110      T = RT->getPointeeType();
10111
10112    if (T->isObjCObjectType()) {
10113      Diag(Loc, diag::err_objc_object_catch);
10114      Invalid = true;
10115    } else if (T->isObjCObjectPointerType()) {
10116      // FIXME: should this be a test for macosx-fragile specifically?
10117      if (getLangOpts().ObjCRuntime.isFragile())
10118        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10119    }
10120  }
10121
10122  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10123                                    ExDeclType, TInfo, SC_None, SC_None);
10124  ExDecl->setExceptionVariable(true);
10125
10126  // In ARC, infer 'retaining' for variables of retainable type.
10127  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10128    Invalid = true;
10129
10130  if (!Invalid && !ExDeclType->isDependentType()) {
10131    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10132      // C++ [except.handle]p16:
10133      //   The object declared in an exception-declaration or, if the
10134      //   exception-declaration does not specify a name, a temporary (12.2) is
10135      //   copy-initialized (8.5) from the exception object. [...]
10136      //   The object is destroyed when the handler exits, after the destruction
10137      //   of any automatic objects initialized within the handler.
10138      //
10139      // We just pretend to initialize the object with itself, then make sure
10140      // it can be destroyed later.
10141      QualType initType = ExDeclType;
10142
10143      InitializedEntity entity =
10144        InitializedEntity::InitializeVariable(ExDecl);
10145      InitializationKind initKind =
10146        InitializationKind::CreateCopy(Loc, SourceLocation());
10147
10148      Expr *opaqueValue =
10149        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10150      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10151      ExprResult result = sequence.Perform(*this, entity, initKind,
10152                                           MultiExprArg(&opaqueValue, 1));
10153      if (result.isInvalid())
10154        Invalid = true;
10155      else {
10156        // If the constructor used was non-trivial, set this as the
10157        // "initializer".
10158        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10159        if (!construct->getConstructor()->isTrivial()) {
10160          Expr *init = MaybeCreateExprWithCleanups(construct);
10161          ExDecl->setInit(init);
10162        }
10163
10164        // And make sure it's destructable.
10165        FinalizeVarWithDestructor(ExDecl, recordType);
10166      }
10167    }
10168  }
10169
10170  if (Invalid)
10171    ExDecl->setInvalidDecl();
10172
10173  return ExDecl;
10174}
10175
10176/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10177/// handler.
10178Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10179  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10180  bool Invalid = D.isInvalidType();
10181
10182  // Check for unexpanded parameter packs.
10183  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10184                                               UPPC_ExceptionType)) {
10185    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10186                                             D.getIdentifierLoc());
10187    Invalid = true;
10188  }
10189
10190  IdentifierInfo *II = D.getIdentifier();
10191  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10192                                             LookupOrdinaryName,
10193                                             ForRedeclaration)) {
10194    // The scope should be freshly made just for us. There is just no way
10195    // it contains any previous declaration.
10196    assert(!S->isDeclScope(PrevDecl));
10197    if (PrevDecl->isTemplateParameter()) {
10198      // Maybe we will complain about the shadowed template parameter.
10199      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10200      PrevDecl = 0;
10201    }
10202  }
10203
10204  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10205    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10206      << D.getCXXScopeSpec().getRange();
10207    Invalid = true;
10208  }
10209
10210  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10211                                              D.getLocStart(),
10212                                              D.getIdentifierLoc(),
10213                                              D.getIdentifier());
10214  if (Invalid)
10215    ExDecl->setInvalidDecl();
10216
10217  // Add the exception declaration into this scope.
10218  if (II)
10219    PushOnScopeChains(ExDecl, S);
10220  else
10221    CurContext->addDecl(ExDecl);
10222
10223  ProcessDeclAttributes(S, ExDecl, D);
10224  return ExDecl;
10225}
10226
10227Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10228                                         Expr *AssertExpr,
10229                                         Expr *AssertMessageExpr,
10230                                         SourceLocation RParenLoc) {
10231  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10232
10233  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10234    return 0;
10235
10236  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10237                                      AssertMessage, RParenLoc, false);
10238}
10239
10240Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10241                                         Expr *AssertExpr,
10242                                         StringLiteral *AssertMessage,
10243                                         SourceLocation RParenLoc,
10244                                         bool Failed) {
10245  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10246      !Failed) {
10247    // In a static_assert-declaration, the constant-expression shall be a
10248    // constant expression that can be contextually converted to bool.
10249    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10250    if (Converted.isInvalid())
10251      Failed = true;
10252
10253    llvm::APSInt Cond;
10254    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10255          diag::err_static_assert_expression_is_not_constant,
10256          /*AllowFold=*/false).isInvalid())
10257      Failed = true;
10258
10259    if (!Failed && !Cond) {
10260      SmallString<256> MsgBuffer;
10261      llvm::raw_svector_ostream Msg(MsgBuffer);
10262      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10263      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10264        << Msg.str() << AssertExpr->getSourceRange();
10265      Failed = true;
10266    }
10267  }
10268
10269  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10270                                        AssertExpr, AssertMessage, RParenLoc,
10271                                        Failed);
10272
10273  CurContext->addDecl(Decl);
10274  return Decl;
10275}
10276
10277/// \brief Perform semantic analysis of the given friend type declaration.
10278///
10279/// \returns A friend declaration that.
10280FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10281                                      SourceLocation FriendLoc,
10282                                      TypeSourceInfo *TSInfo) {
10283  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10284
10285  QualType T = TSInfo->getType();
10286  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10287
10288  // C++03 [class.friend]p2:
10289  //   An elaborated-type-specifier shall be used in a friend declaration
10290  //   for a class.*
10291  //
10292  //   * The class-key of the elaborated-type-specifier is required.
10293  if (!ActiveTemplateInstantiations.empty()) {
10294    // Do not complain about the form of friend template types during
10295    // template instantiation; we will already have complained when the
10296    // template was declared.
10297  } else if (!T->isElaboratedTypeSpecifier()) {
10298    // If we evaluated the type to a record type, suggest putting
10299    // a tag in front.
10300    if (const RecordType *RT = T->getAs<RecordType>()) {
10301      RecordDecl *RD = RT->getDecl();
10302
10303      std::string InsertionText = std::string(" ") + RD->getKindName();
10304
10305      Diag(TypeRange.getBegin(),
10306           getLangOpts().CPlusPlus11 ?
10307             diag::warn_cxx98_compat_unelaborated_friend_type :
10308             diag::ext_unelaborated_friend_type)
10309        << (unsigned) RD->getTagKind()
10310        << T
10311        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10312                                      InsertionText);
10313    } else {
10314      Diag(FriendLoc,
10315           getLangOpts().CPlusPlus11 ?
10316             diag::warn_cxx98_compat_nonclass_type_friend :
10317             diag::ext_nonclass_type_friend)
10318        << T
10319        << TypeRange;
10320    }
10321  } else if (T->getAs<EnumType>()) {
10322    Diag(FriendLoc,
10323         getLangOpts().CPlusPlus11 ?
10324           diag::warn_cxx98_compat_enum_friend :
10325           diag::ext_enum_friend)
10326      << T
10327      << TypeRange;
10328  }
10329
10330  // C++11 [class.friend]p3:
10331  //   A friend declaration that does not declare a function shall have one
10332  //   of the following forms:
10333  //     friend elaborated-type-specifier ;
10334  //     friend simple-type-specifier ;
10335  //     friend typename-specifier ;
10336  if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10337    Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10338
10339  //   If the type specifier in a friend declaration designates a (possibly
10340  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10341  //   the friend declaration is ignored.
10342  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10343}
10344
10345/// Handle a friend tag declaration where the scope specifier was
10346/// templated.
10347Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10348                                    unsigned TagSpec, SourceLocation TagLoc,
10349                                    CXXScopeSpec &SS,
10350                                    IdentifierInfo *Name, SourceLocation NameLoc,
10351                                    AttributeList *Attr,
10352                                    MultiTemplateParamsArg TempParamLists) {
10353  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10354
10355  bool isExplicitSpecialization = false;
10356  bool Invalid = false;
10357
10358  if (TemplateParameterList *TemplateParams
10359        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10360                                                  TempParamLists.data(),
10361                                                  TempParamLists.size(),
10362                                                  /*friend*/ true,
10363                                                  isExplicitSpecialization,
10364                                                  Invalid)) {
10365    if (TemplateParams->size() > 0) {
10366      // This is a declaration of a class template.
10367      if (Invalid)
10368        return 0;
10369
10370      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10371                                SS, Name, NameLoc, Attr,
10372                                TemplateParams, AS_public,
10373                                /*ModulePrivateLoc=*/SourceLocation(),
10374                                TempParamLists.size() - 1,
10375                                TempParamLists.data()).take();
10376    } else {
10377      // The "template<>" header is extraneous.
10378      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10379        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10380      isExplicitSpecialization = true;
10381    }
10382  }
10383
10384  if (Invalid) return 0;
10385
10386  bool isAllExplicitSpecializations = true;
10387  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10388    if (TempParamLists[I]->size()) {
10389      isAllExplicitSpecializations = false;
10390      break;
10391    }
10392  }
10393
10394  // FIXME: don't ignore attributes.
10395
10396  // If it's explicit specializations all the way down, just forget
10397  // about the template header and build an appropriate non-templated
10398  // friend.  TODO: for source fidelity, remember the headers.
10399  if (isAllExplicitSpecializations) {
10400    if (SS.isEmpty()) {
10401      bool Owned = false;
10402      bool IsDependent = false;
10403      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10404                      Attr, AS_public,
10405                      /*ModulePrivateLoc=*/SourceLocation(),
10406                      MultiTemplateParamsArg(), Owned, IsDependent,
10407                      /*ScopedEnumKWLoc=*/SourceLocation(),
10408                      /*ScopedEnumUsesClassTag=*/false,
10409                      /*UnderlyingType=*/TypeResult());
10410    }
10411
10412    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10413    ElaboratedTypeKeyword Keyword
10414      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10415    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10416                                   *Name, NameLoc);
10417    if (T.isNull())
10418      return 0;
10419
10420    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10421    if (isa<DependentNameType>(T)) {
10422      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10423      TL.setElaboratedKeywordLoc(TagLoc);
10424      TL.setQualifierLoc(QualifierLoc);
10425      TL.setNameLoc(NameLoc);
10426    } else {
10427      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10428      TL.setElaboratedKeywordLoc(TagLoc);
10429      TL.setQualifierLoc(QualifierLoc);
10430      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10431    }
10432
10433    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10434                                            TSI, FriendLoc);
10435    Friend->setAccess(AS_public);
10436    CurContext->addDecl(Friend);
10437    return Friend;
10438  }
10439
10440  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10441
10442
10443
10444  // Handle the case of a templated-scope friend class.  e.g.
10445  //   template <class T> class A<T>::B;
10446  // FIXME: we don't support these right now.
10447  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10448  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10449  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10450  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10451  TL.setElaboratedKeywordLoc(TagLoc);
10452  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10453  TL.setNameLoc(NameLoc);
10454
10455  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10456                                          TSI, FriendLoc);
10457  Friend->setAccess(AS_public);
10458  Friend->setUnsupportedFriend(true);
10459  CurContext->addDecl(Friend);
10460  return Friend;
10461}
10462
10463
10464/// Handle a friend type declaration.  This works in tandem with
10465/// ActOnTag.
10466///
10467/// Notes on friend class templates:
10468///
10469/// We generally treat friend class declarations as if they were
10470/// declaring a class.  So, for example, the elaborated type specifier
10471/// in a friend declaration is required to obey the restrictions of a
10472/// class-head (i.e. no typedefs in the scope chain), template
10473/// parameters are required to match up with simple template-ids, &c.
10474/// However, unlike when declaring a template specialization, it's
10475/// okay to refer to a template specialization without an empty
10476/// template parameter declaration, e.g.
10477///   friend class A<T>::B<unsigned>;
10478/// We permit this as a special case; if there are any template
10479/// parameters present at all, require proper matching, i.e.
10480///   template <> template \<class T> friend class A<int>::B;
10481Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10482                                MultiTemplateParamsArg TempParams) {
10483  SourceLocation Loc = DS.getLocStart();
10484
10485  assert(DS.isFriendSpecified());
10486  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10487
10488  // Try to convert the decl specifier to a type.  This works for
10489  // friend templates because ActOnTag never produces a ClassTemplateDecl
10490  // for a TUK_Friend.
10491  Declarator TheDeclarator(DS, Declarator::MemberContext);
10492  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10493  QualType T = TSI->getType();
10494  if (TheDeclarator.isInvalidType())
10495    return 0;
10496
10497  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10498    return 0;
10499
10500  // This is definitely an error in C++98.  It's probably meant to
10501  // be forbidden in C++0x, too, but the specification is just
10502  // poorly written.
10503  //
10504  // The problem is with declarations like the following:
10505  //   template <T> friend A<T>::foo;
10506  // where deciding whether a class C is a friend or not now hinges
10507  // on whether there exists an instantiation of A that causes
10508  // 'foo' to equal C.  There are restrictions on class-heads
10509  // (which we declare (by fiat) elaborated friend declarations to
10510  // be) that makes this tractable.
10511  //
10512  // FIXME: handle "template <> friend class A<T>;", which
10513  // is possibly well-formed?  Who even knows?
10514  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10515    Diag(Loc, diag::err_tagless_friend_type_template)
10516      << DS.getSourceRange();
10517    return 0;
10518  }
10519
10520  // C++98 [class.friend]p1: A friend of a class is a function
10521  //   or class that is not a member of the class . . .
10522  // This is fixed in DR77, which just barely didn't make the C++03
10523  // deadline.  It's also a very silly restriction that seriously
10524  // affects inner classes and which nobody else seems to implement;
10525  // thus we never diagnose it, not even in -pedantic.
10526  //
10527  // But note that we could warn about it: it's always useless to
10528  // friend one of your own members (it's not, however, worthless to
10529  // friend a member of an arbitrary specialization of your template).
10530
10531  Decl *D;
10532  if (unsigned NumTempParamLists = TempParams.size())
10533    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10534                                   NumTempParamLists,
10535                                   TempParams.data(),
10536                                   TSI,
10537                                   DS.getFriendSpecLoc());
10538  else
10539    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10540
10541  if (!D)
10542    return 0;
10543
10544  D->setAccess(AS_public);
10545  CurContext->addDecl(D);
10546
10547  return D;
10548}
10549
10550NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10551                                        MultiTemplateParamsArg TemplateParams) {
10552  const DeclSpec &DS = D.getDeclSpec();
10553
10554  assert(DS.isFriendSpecified());
10555  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10556
10557  SourceLocation Loc = D.getIdentifierLoc();
10558  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10559
10560  // C++ [class.friend]p1
10561  //   A friend of a class is a function or class....
10562  // Note that this sees through typedefs, which is intended.
10563  // It *doesn't* see through dependent types, which is correct
10564  // according to [temp.arg.type]p3:
10565  //   If a declaration acquires a function type through a
10566  //   type dependent on a template-parameter and this causes
10567  //   a declaration that does not use the syntactic form of a
10568  //   function declarator to have a function type, the program
10569  //   is ill-formed.
10570  if (!TInfo->getType()->isFunctionType()) {
10571    Diag(Loc, diag::err_unexpected_friend);
10572
10573    // It might be worthwhile to try to recover by creating an
10574    // appropriate declaration.
10575    return 0;
10576  }
10577
10578  // C++ [namespace.memdef]p3
10579  //  - If a friend declaration in a non-local class first declares a
10580  //    class or function, the friend class or function is a member
10581  //    of the innermost enclosing namespace.
10582  //  - The name of the friend is not found by simple name lookup
10583  //    until a matching declaration is provided in that namespace
10584  //    scope (either before or after the class declaration granting
10585  //    friendship).
10586  //  - If a friend function is called, its name may be found by the
10587  //    name lookup that considers functions from namespaces and
10588  //    classes associated with the types of the function arguments.
10589  //  - When looking for a prior declaration of a class or a function
10590  //    declared as a friend, scopes outside the innermost enclosing
10591  //    namespace scope are not considered.
10592
10593  CXXScopeSpec &SS = D.getCXXScopeSpec();
10594  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10595  DeclarationName Name = NameInfo.getName();
10596  assert(Name);
10597
10598  // Check for unexpanded parameter packs.
10599  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10600      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10601      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10602    return 0;
10603
10604  // The context we found the declaration in, or in which we should
10605  // create the declaration.
10606  DeclContext *DC;
10607  Scope *DCScope = S;
10608  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10609                        ForRedeclaration);
10610
10611  // FIXME: there are different rules in local classes
10612
10613  // There are four cases here.
10614  //   - There's no scope specifier, in which case we just go to the
10615  //     appropriate scope and look for a function or function template
10616  //     there as appropriate.
10617  // Recover from invalid scope qualifiers as if they just weren't there.
10618  if (SS.isInvalid() || !SS.isSet()) {
10619    // C++0x [namespace.memdef]p3:
10620    //   If the name in a friend declaration is neither qualified nor
10621    //   a template-id and the declaration is a function or an
10622    //   elaborated-type-specifier, the lookup to determine whether
10623    //   the entity has been previously declared shall not consider
10624    //   any scopes outside the innermost enclosing namespace.
10625    // C++0x [class.friend]p11:
10626    //   If a friend declaration appears in a local class and the name
10627    //   specified is an unqualified name, a prior declaration is
10628    //   looked up without considering scopes that are outside the
10629    //   innermost enclosing non-class scope. For a friend function
10630    //   declaration, if there is no prior declaration, the program is
10631    //   ill-formed.
10632    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10633    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10634
10635    // Find the appropriate context according to the above.
10636    DC = CurContext;
10637    while (true) {
10638      // Skip class contexts.  If someone can cite chapter and verse
10639      // for this behavior, that would be nice --- it's what GCC and
10640      // EDG do, and it seems like a reasonable intent, but the spec
10641      // really only says that checks for unqualified existing
10642      // declarations should stop at the nearest enclosing namespace,
10643      // not that they should only consider the nearest enclosing
10644      // namespace.
10645      while (DC->isRecord() || DC->isTransparentContext())
10646        DC = DC->getParent();
10647
10648      LookupQualifiedName(Previous, DC);
10649
10650      // TODO: decide what we think about using declarations.
10651      if (isLocal || !Previous.empty())
10652        break;
10653
10654      if (isTemplateId) {
10655        if (isa<TranslationUnitDecl>(DC)) break;
10656      } else {
10657        if (DC->isFileContext()) break;
10658      }
10659      DC = DC->getParent();
10660    }
10661
10662    // C++ [class.friend]p1: A friend of a class is a function or
10663    //   class that is not a member of the class . . .
10664    // C++11 changes this for both friend types and functions.
10665    // Most C++ 98 compilers do seem to give an error here, so
10666    // we do, too.
10667    if (!Previous.empty() && DC->Equals(CurContext))
10668      Diag(DS.getFriendSpecLoc(),
10669           getLangOpts().CPlusPlus11 ?
10670             diag::warn_cxx98_compat_friend_is_member :
10671             diag::err_friend_is_member);
10672
10673    DCScope = getScopeForDeclContext(S, DC);
10674
10675    // C++ [class.friend]p6:
10676    //   A function can be defined in a friend declaration of a class if and
10677    //   only if the class is a non-local class (9.8), the function name is
10678    //   unqualified, and the function has namespace scope.
10679    if (isLocal && D.isFunctionDefinition()) {
10680      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10681    }
10682
10683  //   - There's a non-dependent scope specifier, in which case we
10684  //     compute it and do a previous lookup there for a function
10685  //     or function template.
10686  } else if (!SS.getScopeRep()->isDependent()) {
10687    DC = computeDeclContext(SS);
10688    if (!DC) return 0;
10689
10690    if (RequireCompleteDeclContext(SS, DC)) return 0;
10691
10692    LookupQualifiedName(Previous, DC);
10693
10694    // Ignore things found implicitly in the wrong scope.
10695    // TODO: better diagnostics for this case.  Suggesting the right
10696    // qualified scope would be nice...
10697    LookupResult::Filter F = Previous.makeFilter();
10698    while (F.hasNext()) {
10699      NamedDecl *D = F.next();
10700      if (!DC->InEnclosingNamespaceSetOf(
10701              D->getDeclContext()->getRedeclContext()))
10702        F.erase();
10703    }
10704    F.done();
10705
10706    if (Previous.empty()) {
10707      D.setInvalidType();
10708      Diag(Loc, diag::err_qualified_friend_not_found)
10709          << Name << TInfo->getType();
10710      return 0;
10711    }
10712
10713    // C++ [class.friend]p1: A friend of a class is a function or
10714    //   class that is not a member of the class . . .
10715    if (DC->Equals(CurContext))
10716      Diag(DS.getFriendSpecLoc(),
10717           getLangOpts().CPlusPlus11 ?
10718             diag::warn_cxx98_compat_friend_is_member :
10719             diag::err_friend_is_member);
10720
10721    if (D.isFunctionDefinition()) {
10722      // C++ [class.friend]p6:
10723      //   A function can be defined in a friend declaration of a class if and
10724      //   only if the class is a non-local class (9.8), the function name is
10725      //   unqualified, and the function has namespace scope.
10726      SemaDiagnosticBuilder DB
10727        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10728
10729      DB << SS.getScopeRep();
10730      if (DC->isFileContext())
10731        DB << FixItHint::CreateRemoval(SS.getRange());
10732      SS.clear();
10733    }
10734
10735  //   - There's a scope specifier that does not match any template
10736  //     parameter lists, in which case we use some arbitrary context,
10737  //     create a method or method template, and wait for instantiation.
10738  //   - There's a scope specifier that does match some template
10739  //     parameter lists, which we don't handle right now.
10740  } else {
10741    if (D.isFunctionDefinition()) {
10742      // C++ [class.friend]p6:
10743      //   A function can be defined in a friend declaration of a class if and
10744      //   only if the class is a non-local class (9.8), the function name is
10745      //   unqualified, and the function has namespace scope.
10746      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10747        << SS.getScopeRep();
10748    }
10749
10750    DC = CurContext;
10751    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10752  }
10753
10754  if (!DC->isRecord()) {
10755    // This implies that it has to be an operator or function.
10756    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10757        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10758        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10759      Diag(Loc, diag::err_introducing_special_friend) <<
10760        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10761         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10762      return 0;
10763    }
10764  }
10765
10766  // FIXME: This is an egregious hack to cope with cases where the scope stack
10767  // does not contain the declaration context, i.e., in an out-of-line
10768  // definition of a class.
10769  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10770  if (!DCScope) {
10771    FakeDCScope.setEntity(DC);
10772    DCScope = &FakeDCScope;
10773  }
10774
10775  bool AddToScope = true;
10776  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10777                                          TemplateParams, AddToScope);
10778  if (!ND) return 0;
10779
10780  assert(ND->getDeclContext() == DC);
10781  assert(ND->getLexicalDeclContext() == CurContext);
10782
10783  // Add the function declaration to the appropriate lookup tables,
10784  // adjusting the redeclarations list as necessary.  We don't
10785  // want to do this yet if the friending class is dependent.
10786  //
10787  // Also update the scope-based lookup if the target context's
10788  // lookup context is in lexical scope.
10789  if (!CurContext->isDependentContext()) {
10790    DC = DC->getRedeclContext();
10791    DC->makeDeclVisibleInContext(ND);
10792    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10793      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10794  }
10795
10796  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10797                                       D.getIdentifierLoc(), ND,
10798                                       DS.getFriendSpecLoc());
10799  FrD->setAccess(AS_public);
10800  CurContext->addDecl(FrD);
10801
10802  if (ND->isInvalidDecl()) {
10803    FrD->setInvalidDecl();
10804  } else {
10805    if (DC->isRecord()) CheckFriendAccess(ND);
10806
10807    FunctionDecl *FD;
10808    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10809      FD = FTD->getTemplatedDecl();
10810    else
10811      FD = cast<FunctionDecl>(ND);
10812
10813    // Mark templated-scope function declarations as unsupported.
10814    if (FD->getNumTemplateParameterLists())
10815      FrD->setUnsupportedFriend(true);
10816  }
10817
10818  return ND;
10819}
10820
10821void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10822  AdjustDeclIfTemplate(Dcl);
10823
10824  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
10825  if (!Fn) {
10826    Diag(DelLoc, diag::err_deleted_non_function);
10827    return;
10828  }
10829  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10830    // Don't consider the implicit declaration we generate for explicit
10831    // specializations. FIXME: Do not generate these implicit declarations.
10832    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10833        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10834      Diag(DelLoc, diag::err_deleted_decl_not_first);
10835      Diag(Prev->getLocation(), diag::note_previous_declaration);
10836    }
10837    // If the declaration wasn't the first, we delete the function anyway for
10838    // recovery.
10839  }
10840  Fn->setDeletedAsWritten();
10841}
10842
10843void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10844  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
10845
10846  if (MD) {
10847    if (MD->getParent()->isDependentType()) {
10848      MD->setDefaulted();
10849      MD->setExplicitlyDefaulted();
10850      return;
10851    }
10852
10853    CXXSpecialMember Member = getSpecialMember(MD);
10854    if (Member == CXXInvalid) {
10855      Diag(DefaultLoc, diag::err_default_special_members);
10856      return;
10857    }
10858
10859    MD->setDefaulted();
10860    MD->setExplicitlyDefaulted();
10861
10862    // If this definition appears within the record, do the checking when
10863    // the record is complete.
10864    const FunctionDecl *Primary = MD;
10865    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10866      // Find the uninstantiated declaration that actually had the '= default'
10867      // on it.
10868      Pattern->isDefined(Primary);
10869
10870    if (Primary == Primary->getCanonicalDecl())
10871      return;
10872
10873    CheckExplicitlyDefaultedSpecialMember(MD);
10874
10875    // The exception specification is needed because we are defining the
10876    // function.
10877    ResolveExceptionSpec(DefaultLoc,
10878                         MD->getType()->castAs<FunctionProtoType>());
10879
10880    switch (Member) {
10881    case CXXDefaultConstructor: {
10882      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10883      if (!CD->isInvalidDecl())
10884        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10885      break;
10886    }
10887
10888    case CXXCopyConstructor: {
10889      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10890      if (!CD->isInvalidDecl())
10891        DefineImplicitCopyConstructor(DefaultLoc, CD);
10892      break;
10893    }
10894
10895    case CXXCopyAssignment: {
10896      if (!MD->isInvalidDecl())
10897        DefineImplicitCopyAssignment(DefaultLoc, MD);
10898      break;
10899    }
10900
10901    case CXXDestructor: {
10902      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10903      if (!DD->isInvalidDecl())
10904        DefineImplicitDestructor(DefaultLoc, DD);
10905      break;
10906    }
10907
10908    case CXXMoveConstructor: {
10909      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10910      if (!CD->isInvalidDecl())
10911        DefineImplicitMoveConstructor(DefaultLoc, CD);
10912      break;
10913    }
10914
10915    case CXXMoveAssignment: {
10916      if (!MD->isInvalidDecl())
10917        DefineImplicitMoveAssignment(DefaultLoc, MD);
10918      break;
10919    }
10920
10921    case CXXInvalid:
10922      llvm_unreachable("Invalid special member.");
10923    }
10924  } else {
10925    Diag(DefaultLoc, diag::err_default_special_members);
10926  }
10927}
10928
10929static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10930  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10931    Stmt *SubStmt = *CI;
10932    if (!SubStmt)
10933      continue;
10934    if (isa<ReturnStmt>(SubStmt))
10935      Self.Diag(SubStmt->getLocStart(),
10936           diag::err_return_in_constructor_handler);
10937    if (!isa<Expr>(SubStmt))
10938      SearchForReturnInStmt(Self, SubStmt);
10939  }
10940}
10941
10942void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10943  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10944    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10945    SearchForReturnInStmt(*this, Handler);
10946  }
10947}
10948
10949bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
10950                                             const CXXMethodDecl *Old) {
10951  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
10952  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
10953
10954  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
10955
10956  // If the calling conventions match, everything is fine
10957  if (NewCC == OldCC)
10958    return false;
10959
10960  // If either of the calling conventions are set to "default", we need to pick
10961  // something more sensible based on the target. This supports code where the
10962  // one method explicitly sets thiscall, and another has no explicit calling
10963  // convention.
10964  CallingConv Default =
10965    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
10966  if (NewCC == CC_Default)
10967    NewCC = Default;
10968  if (OldCC == CC_Default)
10969    OldCC = Default;
10970
10971  // If the calling conventions still don't match, then report the error
10972  if (NewCC != OldCC) {
10973    Diag(New->getLocation(),
10974         diag::err_conflicting_overriding_cc_attributes)
10975      << New->getDeclName() << New->getType() << Old->getType();
10976    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10977    return true;
10978  }
10979
10980  return false;
10981}
10982
10983bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10984                                             const CXXMethodDecl *Old) {
10985  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10986  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10987
10988  if (Context.hasSameType(NewTy, OldTy) ||
10989      NewTy->isDependentType() || OldTy->isDependentType())
10990    return false;
10991
10992  // Check if the return types are covariant
10993  QualType NewClassTy, OldClassTy;
10994
10995  /// Both types must be pointers or references to classes.
10996  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10997    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10998      NewClassTy = NewPT->getPointeeType();
10999      OldClassTy = OldPT->getPointeeType();
11000    }
11001  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11002    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11003      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11004        NewClassTy = NewRT->getPointeeType();
11005        OldClassTy = OldRT->getPointeeType();
11006      }
11007    }
11008  }
11009
11010  // The return types aren't either both pointers or references to a class type.
11011  if (NewClassTy.isNull()) {
11012    Diag(New->getLocation(),
11013         diag::err_different_return_type_for_overriding_virtual_function)
11014      << New->getDeclName() << NewTy << OldTy;
11015    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11016
11017    return true;
11018  }
11019
11020  // C++ [class.virtual]p6:
11021  //   If the return type of D::f differs from the return type of B::f, the
11022  //   class type in the return type of D::f shall be complete at the point of
11023  //   declaration of D::f or shall be the class type D.
11024  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11025    if (!RT->isBeingDefined() &&
11026        RequireCompleteType(New->getLocation(), NewClassTy,
11027                            diag::err_covariant_return_incomplete,
11028                            New->getDeclName()))
11029    return true;
11030  }
11031
11032  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11033    // Check if the new class derives from the old class.
11034    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11035      Diag(New->getLocation(),
11036           diag::err_covariant_return_not_derived)
11037      << New->getDeclName() << NewTy << OldTy;
11038      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11039      return true;
11040    }
11041
11042    // Check if we the conversion from derived to base is valid.
11043    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11044                    diag::err_covariant_return_inaccessible_base,
11045                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11046                    // FIXME: Should this point to the return type?
11047                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11048      // FIXME: this note won't trigger for delayed access control
11049      // diagnostics, and it's impossible to get an undelayed error
11050      // here from access control during the original parse because
11051      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11052      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11053      return true;
11054    }
11055  }
11056
11057  // The qualifiers of the return types must be the same.
11058  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11059    Diag(New->getLocation(),
11060         diag::err_covariant_return_type_different_qualifications)
11061    << New->getDeclName() << NewTy << OldTy;
11062    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11063    return true;
11064  };
11065
11066
11067  // The new class type must have the same or less qualifiers as the old type.
11068  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11069    Diag(New->getLocation(),
11070         diag::err_covariant_return_type_class_type_more_qualified)
11071    << New->getDeclName() << NewTy << OldTy;
11072    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11073    return true;
11074  };
11075
11076  return false;
11077}
11078
11079/// \brief Mark the given method pure.
11080///
11081/// \param Method the method to be marked pure.
11082///
11083/// \param InitRange the source range that covers the "0" initializer.
11084bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11085  SourceLocation EndLoc = InitRange.getEnd();
11086  if (EndLoc.isValid())
11087    Method->setRangeEnd(EndLoc);
11088
11089  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11090    Method->setPure();
11091    return false;
11092  }
11093
11094  if (!Method->isInvalidDecl())
11095    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11096      << Method->getDeclName() << InitRange;
11097  return true;
11098}
11099
11100/// \brief Determine whether the given declaration is a static data member.
11101static bool isStaticDataMember(Decl *D) {
11102  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11103  if (!Var)
11104    return false;
11105
11106  return Var->isStaticDataMember();
11107}
11108/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11109/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11110/// is a fresh scope pushed for just this purpose.
11111///
11112/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11113/// static data member of class X, names should be looked up in the scope of
11114/// class X.
11115void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11116  // If there is no declaration, there was an error parsing it.
11117  if (D == 0 || D->isInvalidDecl()) return;
11118
11119  // We should only get called for declarations with scope specifiers, like:
11120  //   int foo::bar;
11121  assert(D->isOutOfLine());
11122  EnterDeclaratorContext(S, D->getDeclContext());
11123
11124  // If we are parsing the initializer for a static data member, push a
11125  // new expression evaluation context that is associated with this static
11126  // data member.
11127  if (isStaticDataMember(D))
11128    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11129}
11130
11131/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11132/// initializer for the out-of-line declaration 'D'.
11133void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11134  // If there is no declaration, there was an error parsing it.
11135  if (D == 0 || D->isInvalidDecl()) return;
11136
11137  if (isStaticDataMember(D))
11138    PopExpressionEvaluationContext();
11139
11140  assert(D->isOutOfLine());
11141  ExitDeclaratorContext(S);
11142}
11143
11144/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11145/// C++ if/switch/while/for statement.
11146/// e.g: "if (int x = f()) {...}"
11147DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11148  // C++ 6.4p2:
11149  // The declarator shall not specify a function or an array.
11150  // The type-specifier-seq shall not contain typedef and shall not declare a
11151  // new class or enumeration.
11152  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11153         "Parser allowed 'typedef' as storage class of condition decl.");
11154
11155  Decl *Dcl = ActOnDeclarator(S, D);
11156  if (!Dcl)
11157    return true;
11158
11159  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11160    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11161      << D.getSourceRange();
11162    return true;
11163  }
11164
11165  return Dcl;
11166}
11167
11168void Sema::LoadExternalVTableUses() {
11169  if (!ExternalSource)
11170    return;
11171
11172  SmallVector<ExternalVTableUse, 4> VTables;
11173  ExternalSource->ReadUsedVTables(VTables);
11174  SmallVector<VTableUse, 4> NewUses;
11175  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11176    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11177      = VTablesUsed.find(VTables[I].Record);
11178    // Even if a definition wasn't required before, it may be required now.
11179    if (Pos != VTablesUsed.end()) {
11180      if (!Pos->second && VTables[I].DefinitionRequired)
11181        Pos->second = true;
11182      continue;
11183    }
11184
11185    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11186    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11187  }
11188
11189  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11190}
11191
11192void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11193                          bool DefinitionRequired) {
11194  // Ignore any vtable uses in unevaluated operands or for classes that do
11195  // not have a vtable.
11196  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11197      CurContext->isDependentContext() ||
11198      ExprEvalContexts.back().Context == Unevaluated)
11199    return;
11200
11201  // Try to insert this class into the map.
11202  LoadExternalVTableUses();
11203  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11204  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11205    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11206  if (!Pos.second) {
11207    // If we already had an entry, check to see if we are promoting this vtable
11208    // to required a definition. If so, we need to reappend to the VTableUses
11209    // list, since we may have already processed the first entry.
11210    if (DefinitionRequired && !Pos.first->second) {
11211      Pos.first->second = true;
11212    } else {
11213      // Otherwise, we can early exit.
11214      return;
11215    }
11216  }
11217
11218  // Local classes need to have their virtual members marked
11219  // immediately. For all other classes, we mark their virtual members
11220  // at the end of the translation unit.
11221  if (Class->isLocalClass())
11222    MarkVirtualMembersReferenced(Loc, Class);
11223  else
11224    VTableUses.push_back(std::make_pair(Class, Loc));
11225}
11226
11227bool Sema::DefineUsedVTables() {
11228  LoadExternalVTableUses();
11229  if (VTableUses.empty())
11230    return false;
11231
11232  // Note: The VTableUses vector could grow as a result of marking
11233  // the members of a class as "used", so we check the size each
11234  // time through the loop and prefer indices (which are stable) to
11235  // iterators (which are not).
11236  bool DefinedAnything = false;
11237  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11238    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11239    if (!Class)
11240      continue;
11241
11242    SourceLocation Loc = VTableUses[I].second;
11243
11244    bool DefineVTable = true;
11245
11246    // If this class has a key function, but that key function is
11247    // defined in another translation unit, we don't need to emit the
11248    // vtable even though we're using it.
11249    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11250    if (KeyFunction && !KeyFunction->hasBody()) {
11251      switch (KeyFunction->getTemplateSpecializationKind()) {
11252      case TSK_Undeclared:
11253      case TSK_ExplicitSpecialization:
11254      case TSK_ExplicitInstantiationDeclaration:
11255        // The key function is in another translation unit.
11256        DefineVTable = false;
11257        break;
11258
11259      case TSK_ExplicitInstantiationDefinition:
11260      case TSK_ImplicitInstantiation:
11261        // We will be instantiating the key function.
11262        break;
11263      }
11264    } else if (!KeyFunction) {
11265      // If we have a class with no key function that is the subject
11266      // of an explicit instantiation declaration, suppress the
11267      // vtable; it will live with the explicit instantiation
11268      // definition.
11269      bool IsExplicitInstantiationDeclaration
11270        = Class->getTemplateSpecializationKind()
11271                                      == TSK_ExplicitInstantiationDeclaration;
11272      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11273                                 REnd = Class->redecls_end();
11274           R != REnd; ++R) {
11275        TemplateSpecializationKind TSK
11276          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11277        if (TSK == TSK_ExplicitInstantiationDeclaration)
11278          IsExplicitInstantiationDeclaration = true;
11279        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11280          IsExplicitInstantiationDeclaration = false;
11281          break;
11282        }
11283      }
11284
11285      if (IsExplicitInstantiationDeclaration)
11286        DefineVTable = false;
11287    }
11288
11289    // The exception specifications for all virtual members may be needed even
11290    // if we are not providing an authoritative form of the vtable in this TU.
11291    // We may choose to emit it available_externally anyway.
11292    if (!DefineVTable) {
11293      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11294      continue;
11295    }
11296
11297    // Mark all of the virtual members of this class as referenced, so
11298    // that we can build a vtable. Then, tell the AST consumer that a
11299    // vtable for this class is required.
11300    DefinedAnything = true;
11301    MarkVirtualMembersReferenced(Loc, Class);
11302    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11303    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11304
11305    // Optionally warn if we're emitting a weak vtable.
11306    if (Class->getLinkage() == ExternalLinkage &&
11307        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11308      const FunctionDecl *KeyFunctionDef = 0;
11309      if (!KeyFunction ||
11310          (KeyFunction->hasBody(KeyFunctionDef) &&
11311           KeyFunctionDef->isInlined()))
11312        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11313             TSK_ExplicitInstantiationDefinition
11314             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11315          << Class;
11316    }
11317  }
11318  VTableUses.clear();
11319
11320  return DefinedAnything;
11321}
11322
11323void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11324                                                 const CXXRecordDecl *RD) {
11325  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11326                                      E = RD->method_end(); I != E; ++I)
11327    if ((*I)->isVirtual() && !(*I)->isPure())
11328      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11329}
11330
11331void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11332                                        const CXXRecordDecl *RD) {
11333  // Mark all functions which will appear in RD's vtable as used.
11334  CXXFinalOverriderMap FinalOverriders;
11335  RD->getFinalOverriders(FinalOverriders);
11336  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11337                                            E = FinalOverriders.end();
11338       I != E; ++I) {
11339    for (OverridingMethods::const_iterator OI = I->second.begin(),
11340                                           OE = I->second.end();
11341         OI != OE; ++OI) {
11342      assert(OI->second.size() > 0 && "no final overrider");
11343      CXXMethodDecl *Overrider = OI->second.front().Method;
11344
11345      // C++ [basic.def.odr]p2:
11346      //   [...] A virtual member function is used if it is not pure. [...]
11347      if (!Overrider->isPure())
11348        MarkFunctionReferenced(Loc, Overrider);
11349    }
11350  }
11351
11352  // Only classes that have virtual bases need a VTT.
11353  if (RD->getNumVBases() == 0)
11354    return;
11355
11356  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11357           e = RD->bases_end(); i != e; ++i) {
11358    const CXXRecordDecl *Base =
11359        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11360    if (Base->getNumVBases() == 0)
11361      continue;
11362    MarkVirtualMembersReferenced(Loc, Base);
11363  }
11364}
11365
11366/// SetIvarInitializers - This routine builds initialization ASTs for the
11367/// Objective-C implementation whose ivars need be initialized.
11368void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11369  if (!getLangOpts().CPlusPlus)
11370    return;
11371  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11372    SmallVector<ObjCIvarDecl*, 8> ivars;
11373    CollectIvarsToConstructOrDestruct(OID, ivars);
11374    if (ivars.empty())
11375      return;
11376    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11377    for (unsigned i = 0; i < ivars.size(); i++) {
11378      FieldDecl *Field = ivars[i];
11379      if (Field->isInvalidDecl())
11380        continue;
11381
11382      CXXCtorInitializer *Member;
11383      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11384      InitializationKind InitKind =
11385        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11386
11387      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11388      ExprResult MemberInit =
11389        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11390      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11391      // Note, MemberInit could actually come back empty if no initialization
11392      // is required (e.g., because it would call a trivial default constructor)
11393      if (!MemberInit.get() || MemberInit.isInvalid())
11394        continue;
11395
11396      Member =
11397        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11398                                         SourceLocation(),
11399                                         MemberInit.takeAs<Expr>(),
11400                                         SourceLocation());
11401      AllToInit.push_back(Member);
11402
11403      // Be sure that the destructor is accessible and is marked as referenced.
11404      if (const RecordType *RecordTy
11405                  = Context.getBaseElementType(Field->getType())
11406                                                        ->getAs<RecordType>()) {
11407                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11408        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11409          MarkFunctionReferenced(Field->getLocation(), Destructor);
11410          CheckDestructorAccess(Field->getLocation(), Destructor,
11411                            PDiag(diag::err_access_dtor_ivar)
11412                              << Context.getBaseElementType(Field->getType()));
11413        }
11414      }
11415    }
11416    ObjCImplementation->setIvarInitializers(Context,
11417                                            AllToInit.data(), AllToInit.size());
11418  }
11419}
11420
11421static
11422void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11423                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11424                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11425                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11426                           Sema &S) {
11427  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11428                                                   CE = Current.end();
11429  if (Ctor->isInvalidDecl())
11430    return;
11431
11432  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11433
11434  // Target may not be determinable yet, for instance if this is a dependent
11435  // call in an uninstantiated template.
11436  if (Target) {
11437    const FunctionDecl *FNTarget = 0;
11438    (void)Target->hasBody(FNTarget);
11439    Target = const_cast<CXXConstructorDecl*>(
11440      cast_or_null<CXXConstructorDecl>(FNTarget));
11441  }
11442
11443  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11444                     // Avoid dereferencing a null pointer here.
11445                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11446
11447  if (!Current.insert(Canonical))
11448    return;
11449
11450  // We know that beyond here, we aren't chaining into a cycle.
11451  if (!Target || !Target->isDelegatingConstructor() ||
11452      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11453    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11454      Valid.insert(*CI);
11455    Current.clear();
11456  // We've hit a cycle.
11457  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11458             Current.count(TCanonical)) {
11459    // If we haven't diagnosed this cycle yet, do so now.
11460    if (!Invalid.count(TCanonical)) {
11461      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11462             diag::warn_delegating_ctor_cycle)
11463        << Ctor;
11464
11465      // Don't add a note for a function delegating directly to itself.
11466      if (TCanonical != Canonical)
11467        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11468
11469      CXXConstructorDecl *C = Target;
11470      while (C->getCanonicalDecl() != Canonical) {
11471        const FunctionDecl *FNTarget = 0;
11472        (void)C->getTargetConstructor()->hasBody(FNTarget);
11473        assert(FNTarget && "Ctor cycle through bodiless function");
11474
11475        C = const_cast<CXXConstructorDecl*>(
11476          cast<CXXConstructorDecl>(FNTarget));
11477        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11478      }
11479    }
11480
11481    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11482      Invalid.insert(*CI);
11483    Current.clear();
11484  } else {
11485    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11486  }
11487}
11488
11489
11490void Sema::CheckDelegatingCtorCycles() {
11491  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11492
11493  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11494                                                   CE = Current.end();
11495
11496  for (DelegatingCtorDeclsType::iterator
11497         I = DelegatingCtorDecls.begin(ExternalSource),
11498         E = DelegatingCtorDecls.end();
11499       I != E; ++I)
11500    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11501
11502  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11503    (*CI)->setInvalidDecl();
11504}
11505
11506namespace {
11507  /// \brief AST visitor that finds references to the 'this' expression.
11508  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11509    Sema &S;
11510
11511  public:
11512    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11513
11514    bool VisitCXXThisExpr(CXXThisExpr *E) {
11515      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11516        << E->isImplicit();
11517      return false;
11518    }
11519  };
11520}
11521
11522bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11523  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11524  if (!TSInfo)
11525    return false;
11526
11527  TypeLoc TL = TSInfo->getTypeLoc();
11528  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11529  if (!ProtoTL)
11530    return false;
11531
11532  // C++11 [expr.prim.general]p3:
11533  //   [The expression this] shall not appear before the optional
11534  //   cv-qualifier-seq and it shall not appear within the declaration of a
11535  //   static member function (although its type and value category are defined
11536  //   within a static member function as they are within a non-static member
11537  //   function). [ Note: this is because declaration matching does not occur
11538  //  until the complete declarator is known. - end note ]
11539  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11540  FindCXXThisExpr Finder(*this);
11541
11542  // If the return type came after the cv-qualifier-seq, check it now.
11543  if (Proto->hasTrailingReturn() &&
11544      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11545    return true;
11546
11547  // Check the exception specification.
11548  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11549    return true;
11550
11551  return checkThisInStaticMemberFunctionAttributes(Method);
11552}
11553
11554bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11555  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11556  if (!TSInfo)
11557    return false;
11558
11559  TypeLoc TL = TSInfo->getTypeLoc();
11560  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11561  if (!ProtoTL)
11562    return false;
11563
11564  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11565  FindCXXThisExpr Finder(*this);
11566
11567  switch (Proto->getExceptionSpecType()) {
11568  case EST_Uninstantiated:
11569  case EST_Unevaluated:
11570  case EST_BasicNoexcept:
11571  case EST_DynamicNone:
11572  case EST_MSAny:
11573  case EST_None:
11574    break;
11575
11576  case EST_ComputedNoexcept:
11577    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11578      return true;
11579
11580  case EST_Dynamic:
11581    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11582         EEnd = Proto->exception_end();
11583         E != EEnd; ++E) {
11584      if (!Finder.TraverseType(*E))
11585        return true;
11586    }
11587    break;
11588  }
11589
11590  return false;
11591}
11592
11593bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11594  FindCXXThisExpr Finder(*this);
11595
11596  // Check attributes.
11597  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11598       A != AEnd; ++A) {
11599    // FIXME: This should be emitted by tblgen.
11600    Expr *Arg = 0;
11601    ArrayRef<Expr *> Args;
11602    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11603      Arg = G->getArg();
11604    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11605      Arg = G->getArg();
11606    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11607      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11608    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11609      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11610    else if (ExclusiveLockFunctionAttr *ELF
11611               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11612      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11613    else if (SharedLockFunctionAttr *SLF
11614               = dyn_cast<SharedLockFunctionAttr>(*A))
11615      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11616    else if (ExclusiveTrylockFunctionAttr *ETLF
11617               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11618      Arg = ETLF->getSuccessValue();
11619      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11620    } else if (SharedTrylockFunctionAttr *STLF
11621                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11622      Arg = STLF->getSuccessValue();
11623      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11624    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11625      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11626    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11627      Arg = LR->getArg();
11628    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11629      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11630    else if (ExclusiveLocksRequiredAttr *ELR
11631               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11632      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11633    else if (SharedLocksRequiredAttr *SLR
11634               = dyn_cast<SharedLocksRequiredAttr>(*A))
11635      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11636
11637    if (Arg && !Finder.TraverseStmt(Arg))
11638      return true;
11639
11640    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11641      if (!Finder.TraverseStmt(Args[I]))
11642        return true;
11643    }
11644  }
11645
11646  return false;
11647}
11648
11649void
11650Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11651                                  ArrayRef<ParsedType> DynamicExceptions,
11652                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11653                                  Expr *NoexceptExpr,
11654                                  SmallVectorImpl<QualType> &Exceptions,
11655                                  FunctionProtoType::ExtProtoInfo &EPI) {
11656  Exceptions.clear();
11657  EPI.ExceptionSpecType = EST;
11658  if (EST == EST_Dynamic) {
11659    Exceptions.reserve(DynamicExceptions.size());
11660    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11661      // FIXME: Preserve type source info.
11662      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11663
11664      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11665      collectUnexpandedParameterPacks(ET, Unexpanded);
11666      if (!Unexpanded.empty()) {
11667        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11668                                         UPPC_ExceptionType,
11669                                         Unexpanded);
11670        continue;
11671      }
11672
11673      // Check that the type is valid for an exception spec, and
11674      // drop it if not.
11675      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11676        Exceptions.push_back(ET);
11677    }
11678    EPI.NumExceptions = Exceptions.size();
11679    EPI.Exceptions = Exceptions.data();
11680    return;
11681  }
11682
11683  if (EST == EST_ComputedNoexcept) {
11684    // If an error occurred, there's no expression here.
11685    if (NoexceptExpr) {
11686      assert((NoexceptExpr->isTypeDependent() ||
11687              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11688              Context.BoolTy) &&
11689             "Parser should have made sure that the expression is boolean");
11690      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11691        EPI.ExceptionSpecType = EST_BasicNoexcept;
11692        return;
11693      }
11694
11695      if (!NoexceptExpr->isValueDependent())
11696        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11697                         diag::err_noexcept_needs_constant_expression,
11698                         /*AllowFold*/ false).take();
11699      EPI.NoexceptExpr = NoexceptExpr;
11700    }
11701    return;
11702  }
11703}
11704
11705/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11706Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11707  // Implicitly declared functions (e.g. copy constructors) are
11708  // __host__ __device__
11709  if (D->isImplicit())
11710    return CFT_HostDevice;
11711
11712  if (D->hasAttr<CUDAGlobalAttr>())
11713    return CFT_Global;
11714
11715  if (D->hasAttr<CUDADeviceAttr>()) {
11716    if (D->hasAttr<CUDAHostAttr>())
11717      return CFT_HostDevice;
11718    else
11719      return CFT_Device;
11720  }
11721
11722  return CFT_Host;
11723}
11724
11725bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11726                           CUDAFunctionTarget CalleeTarget) {
11727  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11728  // Callable from the device only."
11729  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11730    return true;
11731
11732  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11733  // Callable from the host only."
11734  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11735  // Callable from the host only."
11736  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11737      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11738    return true;
11739
11740  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11741    return true;
11742
11743  return false;
11744}
11745