SemaDeclCXX.cpp revision 32f2fb53d9d7c28c94d8569fd0fcf06cccee0c3d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1108                                               R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1127                                               R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool IsImplicitConstructor,
1433                                  bool AnyErrors) {
1434  // We need to build the initializer AST according to order of construction
1435  // and not what user specified in the Initializers list.
1436  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1437  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1438  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1439  bool HasDependentBaseInit = false;
1440  bool HadError = false;
1441
1442  for (unsigned i = 0; i < NumInitializers; i++) {
1443    CXXBaseOrMemberInitializer *Member = Initializers[i];
1444    if (Member->isBaseInitializer()) {
1445      if (Member->getBaseClass()->isDependentType())
1446        HasDependentBaseInit = true;
1447      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1448    } else {
1449      AllBaseFields[Member->getMember()] = Member;
1450    }
1451  }
1452
1453  if (HasDependentBaseInit) {
1454    // FIXME. This does not preserve the ordering of the initializers.
1455    // Try (with -Wreorder)
1456    // template<class X> struct A {};
1457    // template<class X> struct B : A<X> {
1458    //   B() : x1(10), A<X>() {}
1459    //   int x1;
1460    // };
1461    // B<int> x;
1462    // On seeing one dependent type, we should essentially exit this routine
1463    // while preserving user-declared initializer list. When this routine is
1464    // called during instantiatiation process, this routine will rebuild the
1465    // ordered initializer list correctly.
1466
1467    // If we have a dependent base initialization, we can't determine the
1468    // association between initializers and bases; just dump the known
1469    // initializers into the list, and don't try to deal with other bases.
1470    for (unsigned i = 0; i < NumInitializers; i++) {
1471      CXXBaseOrMemberInitializer *Member = Initializers[i];
1472      if (Member->isBaseInitializer())
1473        AllToInit.push_back(Member);
1474    }
1475  } else {
1476    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1477
1478    // Push virtual bases before others.
1479    for (CXXRecordDecl::base_class_iterator VBase =
1480         ClassDecl->vbases_begin(),
1481         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1482      if (VBase->getType()->isDependentType())
1483        continue;
1484      if (CXXBaseOrMemberInitializer *Value
1485            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1486        AllToInit.push_back(Value);
1487      } else if (!AnyErrors) {
1488        InitializedEntity InitEntity
1489          = InitializedEntity::InitializeBase(Context, VBase);
1490        InitializationKind InitKind
1491          = InitializationKind::CreateDefault(Constructor->getLocation());
1492        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1493        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1494                                                    MultiExprArg(*this, 0, 0));
1495        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1496        if (BaseInit.isInvalid()) {
1497          HadError = true;
1498          continue;
1499        }
1500
1501        // Don't attach synthesized base initializers in a dependent
1502        // context; they'll be checked again at template instantiation
1503        // time.
1504        if (CurContext->isDependentContext())
1505          continue;
1506
1507        CXXBaseOrMemberInitializer *CXXBaseInit =
1508          new (Context) CXXBaseOrMemberInitializer(Context,
1509                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1510                                                              SourceLocation()),
1511                                                   SourceLocation(),
1512                                                   BaseInit.takeAs<Expr>(),
1513                                                   SourceLocation());
1514        AllToInit.push_back(CXXBaseInit);
1515      }
1516    }
1517
1518    for (CXXRecordDecl::base_class_iterator Base =
1519         ClassDecl->bases_begin(),
1520         E = ClassDecl->bases_end(); Base != E; ++Base) {
1521      // Virtuals are in the virtual base list and already constructed.
1522      if (Base->isVirtual())
1523        continue;
1524      // Skip dependent types.
1525      if (Base->getType()->isDependentType())
1526        continue;
1527      if (CXXBaseOrMemberInitializer *Value
1528            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1529        AllToInit.push_back(Value);
1530      }
1531      else if (!AnyErrors) {
1532        InitializedEntity InitEntity
1533          = InitializedEntity::InitializeBase(Context, Base);
1534        InitializationKind InitKind
1535          = InitializationKind::CreateDefault(Constructor->getLocation());
1536        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1537        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1538                                                    MultiExprArg(*this, 0, 0));
1539        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1540        if (BaseInit.isInvalid()) {
1541          HadError = true;
1542          continue;
1543        }
1544
1545        // Don't attach synthesized base initializers in a dependent
1546        // context; they'll be regenerated at template instantiation
1547        // time.
1548        if (CurContext->isDependentContext())
1549          continue;
1550
1551        CXXBaseOrMemberInitializer *CXXBaseInit =
1552          new (Context) CXXBaseOrMemberInitializer(Context,
1553                             Context.getTrivialTypeSourceInfo(Base->getType(),
1554                                                              SourceLocation()),
1555                                                   SourceLocation(),
1556                                                   BaseInit.takeAs<Expr>(),
1557                                                   SourceLocation());
1558        AllToInit.push_back(CXXBaseInit);
1559      }
1560    }
1561  }
1562
1563  // non-static data members.
1564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1565       E = ClassDecl->field_end(); Field != E; ++Field) {
1566    if ((*Field)->isAnonymousStructOrUnion()) {
1567      if (const RecordType *FieldClassType =
1568          Field->getType()->getAs<RecordType>()) {
1569        CXXRecordDecl *FieldClassDecl
1570          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1571        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1572            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1573          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1574            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1575            // set to the anonymous union data member used in the initializer
1576            // list.
1577            Value->setMember(*Field);
1578            Value->setAnonUnionMember(*FA);
1579            AllToInit.push_back(Value);
1580            break;
1581          }
1582        }
1583      }
1584      continue;
1585    }
1586    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1587      AllToInit.push_back(Value);
1588      continue;
1589    }
1590
1591    if ((*Field)->getType()->isDependentType() || AnyErrors)
1592      continue;
1593
1594    QualType FT = Context.getBaseElementType((*Field)->getType());
1595    if (FT->getAs<RecordType>()) {
1596      InitializedEntity InitEntity
1597        = InitializedEntity::InitializeMember(*Field);
1598      InitializationKind InitKind
1599        = InitializationKind::CreateDefault(Constructor->getLocation());
1600
1601      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1602      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1603                                                    MultiExprArg(*this, 0, 0));
1604      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1605      if (MemberInit.isInvalid()) {
1606        HadError = true;
1607        continue;
1608      }
1609
1610      // Don't attach synthesized member initializers in a dependent
1611      // context; they'll be regenerated a template instantiation
1612      // time.
1613      if (CurContext->isDependentContext())
1614        continue;
1615
1616      CXXBaseOrMemberInitializer *Member =
1617        new (Context) CXXBaseOrMemberInitializer(Context,
1618                                                 *Field, SourceLocation(),
1619                                                 SourceLocation(),
1620                                                 MemberInit.takeAs<Expr>(),
1621                                                 SourceLocation());
1622
1623      AllToInit.push_back(Member);
1624    }
1625    else if (FT->isReferenceType()) {
1626      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1627        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1628        << 0 << (*Field)->getDeclName();
1629      Diag((*Field)->getLocation(), diag::note_declared_at);
1630      HadError = true;
1631    }
1632    else if (FT.isConstQualified()) {
1633      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1634        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1635        << 1 << (*Field)->getDeclName();
1636      Diag((*Field)->getLocation(), diag::note_declared_at);
1637      HadError = true;
1638    }
1639  }
1640
1641  NumInitializers = AllToInit.size();
1642  if (NumInitializers > 0) {
1643    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1644    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1645      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1646    memcpy(baseOrMemberInitializers, AllToInit.data(),
1647           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1648    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1649
1650    // Constructors implicitly reference the base and member
1651    // destructors.
1652    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1653                                           Constructor->getParent());
1654  }
1655
1656  return HadError;
1657}
1658
1659static void *GetKeyForTopLevelField(FieldDecl *Field) {
1660  // For anonymous unions, use the class declaration as the key.
1661  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1662    if (RT->getDecl()->isAnonymousStructOrUnion())
1663      return static_cast<void *>(RT->getDecl());
1664  }
1665  return static_cast<void *>(Field);
1666}
1667
1668static void *GetKeyForBase(QualType BaseType) {
1669  if (const RecordType *RT = BaseType->getAs<RecordType>())
1670    return (void *)RT;
1671
1672  assert(0 && "Unexpected base type!");
1673  return 0;
1674}
1675
1676static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1677                             bool MemberMaybeAnon = false) {
1678  // For fields injected into the class via declaration of an anonymous union,
1679  // use its anonymous union class declaration as the unique key.
1680  if (Member->isMemberInitializer()) {
1681    FieldDecl *Field = Member->getMember();
1682
1683    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1684    // data member of the class. Data member used in the initializer list is
1685    // in AnonUnionMember field.
1686    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1687      Field = Member->getAnonUnionMember();
1688    if (Field->getDeclContext()->isRecord()) {
1689      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1690      if (RD->isAnonymousStructOrUnion())
1691        return static_cast<void *>(RD);
1692    }
1693    return static_cast<void *>(Field);
1694  }
1695
1696  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1697}
1698
1699/// ActOnMemInitializers - Handle the member initializers for a constructor.
1700void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1701                                SourceLocation ColonLoc,
1702                                MemInitTy **MemInits, unsigned NumMemInits,
1703                                bool AnyErrors) {
1704  if (!ConstructorDecl)
1705    return;
1706
1707  AdjustDeclIfTemplate(ConstructorDecl);
1708
1709  CXXConstructorDecl *Constructor
1710    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1711
1712  if (!Constructor) {
1713    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1714    return;
1715  }
1716
1717  if (!Constructor->isDependentContext()) {
1718    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1719    bool err = false;
1720    for (unsigned i = 0; i < NumMemInits; i++) {
1721      CXXBaseOrMemberInitializer *Member =
1722        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1723      void *KeyToMember = GetKeyForMember(Member);
1724      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1725      if (!PrevMember) {
1726        PrevMember = Member;
1727        continue;
1728      }
1729      if (FieldDecl *Field = Member->getMember())
1730        Diag(Member->getSourceLocation(),
1731             diag::error_multiple_mem_initialization)
1732          << Field->getNameAsString()
1733          << Member->getSourceRange();
1734      else {
1735        Type *BaseClass = Member->getBaseClass();
1736        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1737        Diag(Member->getSourceLocation(),
1738             diag::error_multiple_base_initialization)
1739          << QualType(BaseClass, 0)
1740          << Member->getSourceRange();
1741      }
1742      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1743        << 0;
1744      err = true;
1745    }
1746
1747    if (err)
1748      return;
1749  }
1750
1751  SetBaseOrMemberInitializers(Constructor,
1752                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1753                      NumMemInits, false, AnyErrors);
1754
1755  if (Constructor->isDependentContext())
1756    return;
1757
1758  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1759      Diagnostic::Ignored &&
1760      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1761      Diagnostic::Ignored)
1762    return;
1763
1764  // Also issue warning if order of ctor-initializer list does not match order
1765  // of 1) base class declarations and 2) order of non-static data members.
1766  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1767
1768  CXXRecordDecl *ClassDecl
1769    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1770  // Push virtual bases before others.
1771  for (CXXRecordDecl::base_class_iterator VBase =
1772       ClassDecl->vbases_begin(),
1773       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1774    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1775
1776  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1777       E = ClassDecl->bases_end(); Base != E; ++Base) {
1778    // Virtuals are alread in the virtual base list and are constructed
1779    // first.
1780    if (Base->isVirtual())
1781      continue;
1782    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1783  }
1784
1785  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1786       E = ClassDecl->field_end(); Field != E; ++Field)
1787    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1788
1789  int Last = AllBaseOrMembers.size();
1790  int curIndex = 0;
1791  CXXBaseOrMemberInitializer *PrevMember = 0;
1792  for (unsigned i = 0; i < NumMemInits; i++) {
1793    CXXBaseOrMemberInitializer *Member =
1794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1795    void *MemberInCtorList = GetKeyForMember(Member, true);
1796
1797    for (; curIndex < Last; curIndex++)
1798      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1799        break;
1800    if (curIndex == Last) {
1801      assert(PrevMember && "Member not in member list?!");
1802      // Initializer as specified in ctor-initializer list is out of order.
1803      // Issue a warning diagnostic.
1804      if (PrevMember->isBaseInitializer()) {
1805        // Diagnostics is for an initialized base class.
1806        Type *BaseClass = PrevMember->getBaseClass();
1807        Diag(PrevMember->getSourceLocation(),
1808             diag::warn_base_initialized)
1809          << QualType(BaseClass, 0);
1810      } else {
1811        FieldDecl *Field = PrevMember->getMember();
1812        Diag(PrevMember->getSourceLocation(),
1813             diag::warn_field_initialized)
1814          << Field->getNameAsString();
1815      }
1816      // Also the note!
1817      if (FieldDecl *Field = Member->getMember())
1818        Diag(Member->getSourceLocation(),
1819             diag::note_fieldorbase_initialized_here) << 0
1820          << Field->getNameAsString();
1821      else {
1822        Type *BaseClass = Member->getBaseClass();
1823        Diag(Member->getSourceLocation(),
1824             diag::note_fieldorbase_initialized_here) << 1
1825          << QualType(BaseClass, 0);
1826      }
1827      for (curIndex = 0; curIndex < Last; curIndex++)
1828        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1829          break;
1830    }
1831    PrevMember = Member;
1832  }
1833}
1834
1835void
1836Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1837                                             CXXRecordDecl *ClassDecl) {
1838  // Ignore dependent contexts.
1839  if (ClassDecl->isDependentContext())
1840    return;
1841
1842  // FIXME: all the access-control diagnostics are positioned on the
1843  // field/base declaration.  That's probably good; that said, the
1844  // user might reasonably want to know why the destructor is being
1845  // emitted, and we currently don't say.
1846
1847  // Non-static data members.
1848  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1849       E = ClassDecl->field_end(); I != E; ++I) {
1850    FieldDecl *Field = *I;
1851
1852    QualType FieldType = Context.getBaseElementType(Field->getType());
1853
1854    const RecordType* RT = FieldType->getAs<RecordType>();
1855    if (!RT)
1856      continue;
1857
1858    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1859    if (FieldClassDecl->hasTrivialDestructor())
1860      continue;
1861
1862    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1863    CheckDestructorAccess(Field->getLocation(), Dtor,
1864                          PartialDiagnostic(diag::err_access_dtor_field)
1865                            << Field->getDeclName()
1866                            << FieldType);
1867
1868    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1869  }
1870
1871  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1872
1873  // Bases.
1874  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); Base != E; ++Base) {
1876    // Bases are always records in a well-formed non-dependent class.
1877    const RecordType *RT = Base->getType()->getAs<RecordType>();
1878
1879    // Remember direct virtual bases.
1880    if (Base->isVirtual())
1881      DirectVirtualBases.insert(RT);
1882
1883    // Ignore trivial destructors.
1884    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1885    if (BaseClassDecl->hasTrivialDestructor())
1886      continue;
1887
1888    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1889
1890    // FIXME: caret should be on the start of the class name
1891    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1892                          PartialDiagnostic(diag::err_access_dtor_base)
1893                            << Base->getType()
1894                            << Base->getSourceRange());
1895
1896    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1897  }
1898
1899  // Virtual bases.
1900  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1901       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1902
1903    // Bases are always records in a well-formed non-dependent class.
1904    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1905
1906    // Ignore direct virtual bases.
1907    if (DirectVirtualBases.count(RT))
1908      continue;
1909
1910    // Ignore trivial destructors.
1911    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1912    if (BaseClassDecl->hasTrivialDestructor())
1913      continue;
1914
1915    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1916    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1917                          PartialDiagnostic(diag::err_access_dtor_vbase)
1918                            << VBase->getType());
1919
1920    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1921  }
1922}
1923
1924void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1925  if (!CDtorDecl)
1926    return;
1927
1928  AdjustDeclIfTemplate(CDtorDecl);
1929
1930  if (CXXConstructorDecl *Constructor
1931      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1932    SetBaseOrMemberInitializers(Constructor, 0, 0, false, false);
1933}
1934
1935bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1936                                  unsigned DiagID, AbstractDiagSelID SelID,
1937                                  const CXXRecordDecl *CurrentRD) {
1938  if (SelID == -1)
1939    return RequireNonAbstractType(Loc, T,
1940                                  PDiag(DiagID), CurrentRD);
1941  else
1942    return RequireNonAbstractType(Loc, T,
1943                                  PDiag(DiagID) << SelID, CurrentRD);
1944}
1945
1946bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1947                                  const PartialDiagnostic &PD,
1948                                  const CXXRecordDecl *CurrentRD) {
1949  if (!getLangOptions().CPlusPlus)
1950    return false;
1951
1952  if (const ArrayType *AT = Context.getAsArrayType(T))
1953    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1954                                  CurrentRD);
1955
1956  if (const PointerType *PT = T->getAs<PointerType>()) {
1957    // Find the innermost pointer type.
1958    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1959      PT = T;
1960
1961    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1962      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1963  }
1964
1965  const RecordType *RT = T->getAs<RecordType>();
1966  if (!RT)
1967    return false;
1968
1969  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1970
1971  if (CurrentRD && CurrentRD != RD)
1972    return false;
1973
1974  // FIXME: is this reasonable?  It matches current behavior, but....
1975  if (!RD->getDefinition())
1976    return false;
1977
1978  if (!RD->isAbstract())
1979    return false;
1980
1981  Diag(Loc, PD) << RD->getDeclName();
1982
1983  // Check if we've already emitted the list of pure virtual functions for this
1984  // class.
1985  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1986    return true;
1987
1988  CXXFinalOverriderMap FinalOverriders;
1989  RD->getFinalOverriders(FinalOverriders);
1990
1991  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
1992                                   MEnd = FinalOverriders.end();
1993       M != MEnd;
1994       ++M) {
1995    for (OverridingMethods::iterator SO = M->second.begin(),
1996                                  SOEnd = M->second.end();
1997         SO != SOEnd; ++SO) {
1998      // C++ [class.abstract]p4:
1999      //   A class is abstract if it contains or inherits at least one
2000      //   pure virtual function for which the final overrider is pure
2001      //   virtual.
2002
2003      //
2004      if (SO->second.size() != 1)
2005        continue;
2006
2007      if (!SO->second.front().Method->isPure())
2008        continue;
2009
2010      Diag(SO->second.front().Method->getLocation(),
2011           diag::note_pure_virtual_function)
2012        << SO->second.front().Method->getDeclName();
2013    }
2014  }
2015
2016  if (!PureVirtualClassDiagSet)
2017    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2018  PureVirtualClassDiagSet->insert(RD);
2019
2020  return true;
2021}
2022
2023namespace {
2024  class AbstractClassUsageDiagnoser
2025    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2026    Sema &SemaRef;
2027    CXXRecordDecl *AbstractClass;
2028
2029    bool VisitDeclContext(const DeclContext *DC) {
2030      bool Invalid = false;
2031
2032      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2033           E = DC->decls_end(); I != E; ++I)
2034        Invalid |= Visit(*I);
2035
2036      return Invalid;
2037    }
2038
2039  public:
2040    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2041      : SemaRef(SemaRef), AbstractClass(ac) {
2042        Visit(SemaRef.Context.getTranslationUnitDecl());
2043    }
2044
2045    bool VisitFunctionDecl(const FunctionDecl *FD) {
2046      if (FD->isThisDeclarationADefinition()) {
2047        // No need to do the check if we're in a definition, because it requires
2048        // that the return/param types are complete.
2049        // because that requires
2050        return VisitDeclContext(FD);
2051      }
2052
2053      // Check the return type.
2054      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2055      bool Invalid =
2056        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2057                                       diag::err_abstract_type_in_decl,
2058                                       Sema::AbstractReturnType,
2059                                       AbstractClass);
2060
2061      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2062           E = FD->param_end(); I != E; ++I) {
2063        const ParmVarDecl *VD = *I;
2064        Invalid |=
2065          SemaRef.RequireNonAbstractType(VD->getLocation(),
2066                                         VD->getOriginalType(),
2067                                         diag::err_abstract_type_in_decl,
2068                                         Sema::AbstractParamType,
2069                                         AbstractClass);
2070      }
2071
2072      return Invalid;
2073    }
2074
2075    bool VisitDecl(const Decl* D) {
2076      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2077        return VisitDeclContext(DC);
2078
2079      return false;
2080    }
2081  };
2082}
2083
2084/// \brief Perform semantic checks on a class definition that has been
2085/// completing, introducing implicitly-declared members, checking for
2086/// abstract types, etc.
2087void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2088  if (!Record || Record->isInvalidDecl())
2089    return;
2090
2091  if (!Record->isDependentType())
2092    AddImplicitlyDeclaredMembersToClass(Record);
2093
2094  if (Record->isInvalidDecl())
2095    return;
2096
2097  // Set access bits correctly on the directly-declared conversions.
2098  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2099  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2100    Convs->setAccess(I, (*I)->getAccess());
2101
2102  // Determine whether we need to check for final overriders. We do
2103  // this either when there are virtual base classes (in which case we
2104  // may end up finding multiple final overriders for a given virtual
2105  // function) or any of the base classes is abstract (in which case
2106  // we might detect that this class is abstract).
2107  bool CheckFinalOverriders = false;
2108  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2109      !Record->isDependentType()) {
2110    if (Record->getNumVBases())
2111      CheckFinalOverriders = true;
2112    else if (!Record->isAbstract()) {
2113      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2114                                                 BEnd = Record->bases_end();
2115           B != BEnd; ++B) {
2116        CXXRecordDecl *BaseDecl
2117          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2118        if (BaseDecl->isAbstract()) {
2119          CheckFinalOverriders = true;
2120          break;
2121        }
2122      }
2123    }
2124  }
2125
2126  if (CheckFinalOverriders) {
2127    CXXFinalOverriderMap FinalOverriders;
2128    Record->getFinalOverriders(FinalOverriders);
2129
2130    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2131                                     MEnd = FinalOverriders.end();
2132         M != MEnd; ++M) {
2133      for (OverridingMethods::iterator SO = M->second.begin(),
2134                                    SOEnd = M->second.end();
2135           SO != SOEnd; ++SO) {
2136        assert(SO->second.size() > 0 &&
2137               "All virtual functions have overridding virtual functions");
2138        if (SO->second.size() == 1) {
2139          // C++ [class.abstract]p4:
2140          //   A class is abstract if it contains or inherits at least one
2141          //   pure virtual function for which the final overrider is pure
2142          //   virtual.
2143          if (SO->second.front().Method->isPure())
2144            Record->setAbstract(true);
2145          continue;
2146        }
2147
2148        // C++ [class.virtual]p2:
2149        //   In a derived class, if a virtual member function of a base
2150        //   class subobject has more than one final overrider the
2151        //   program is ill-formed.
2152        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2153          << (NamedDecl *)M->first << Record;
2154        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2155        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2156                                                 OMEnd = SO->second.end();
2157             OM != OMEnd; ++OM)
2158          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2159            << (NamedDecl *)M->first << OM->Method->getParent();
2160
2161        Record->setInvalidDecl();
2162      }
2163    }
2164  }
2165
2166  if (Record->isAbstract() && !Record->isInvalidDecl())
2167    (void)AbstractClassUsageDiagnoser(*this, Record);
2168}
2169
2170void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2171                                             DeclPtrTy TagDecl,
2172                                             SourceLocation LBrac,
2173                                             SourceLocation RBrac) {
2174  if (!TagDecl)
2175    return;
2176
2177  AdjustDeclIfTemplate(TagDecl);
2178
2179  ActOnFields(S, RLoc, TagDecl,
2180              (DeclPtrTy*)FieldCollector->getCurFields(),
2181              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2182
2183  CheckCompletedCXXClass(
2184                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2185}
2186
2187/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2188/// special functions, such as the default constructor, copy
2189/// constructor, or destructor, to the given C++ class (C++
2190/// [special]p1).  This routine can only be executed just before the
2191/// definition of the class is complete.
2192void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2193  CanQualType ClassType
2194    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2195
2196  // FIXME: Implicit declarations have exception specifications, which are
2197  // the union of the specifications of the implicitly called functions.
2198
2199  if (!ClassDecl->hasUserDeclaredConstructor()) {
2200    // C++ [class.ctor]p5:
2201    //   A default constructor for a class X is a constructor of class X
2202    //   that can be called without an argument. If there is no
2203    //   user-declared constructor for class X, a default constructor is
2204    //   implicitly declared. An implicitly-declared default constructor
2205    //   is an inline public member of its class.
2206    DeclarationName Name
2207      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2208    CXXConstructorDecl *DefaultCon =
2209      CXXConstructorDecl::Create(Context, ClassDecl,
2210                                 ClassDecl->getLocation(), Name,
2211                                 Context.getFunctionType(Context.VoidTy,
2212                                                         0, 0, false, 0,
2213                                                         /*FIXME*/false, false,
2214                                                         0, 0, false,
2215                                                         CC_Default),
2216                                 /*TInfo=*/0,
2217                                 /*isExplicit=*/false,
2218                                 /*isInline=*/true,
2219                                 /*isImplicitlyDeclared=*/true);
2220    DefaultCon->setAccess(AS_public);
2221    DefaultCon->setImplicit();
2222    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2223    ClassDecl->addDecl(DefaultCon);
2224  }
2225
2226  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2227    // C++ [class.copy]p4:
2228    //   If the class definition does not explicitly declare a copy
2229    //   constructor, one is declared implicitly.
2230
2231    // C++ [class.copy]p5:
2232    //   The implicitly-declared copy constructor for a class X will
2233    //   have the form
2234    //
2235    //       X::X(const X&)
2236    //
2237    //   if
2238    bool HasConstCopyConstructor = true;
2239
2240    //     -- each direct or virtual base class B of X has a copy
2241    //        constructor whose first parameter is of type const B& or
2242    //        const volatile B&, and
2243    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2244         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2245      const CXXRecordDecl *BaseClassDecl
2246        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2247      HasConstCopyConstructor
2248        = BaseClassDecl->hasConstCopyConstructor(Context);
2249    }
2250
2251    //     -- for all the nonstatic data members of X that are of a
2252    //        class type M (or array thereof), each such class type
2253    //        has a copy constructor whose first parameter is of type
2254    //        const M& or const volatile M&.
2255    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2256         HasConstCopyConstructor && Field != ClassDecl->field_end();
2257         ++Field) {
2258      QualType FieldType = (*Field)->getType();
2259      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2260        FieldType = Array->getElementType();
2261      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2262        const CXXRecordDecl *FieldClassDecl
2263          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2264        HasConstCopyConstructor
2265          = FieldClassDecl->hasConstCopyConstructor(Context);
2266      }
2267    }
2268
2269    //   Otherwise, the implicitly declared copy constructor will have
2270    //   the form
2271    //
2272    //       X::X(X&)
2273    QualType ArgType = ClassType;
2274    if (HasConstCopyConstructor)
2275      ArgType = ArgType.withConst();
2276    ArgType = Context.getLValueReferenceType(ArgType);
2277
2278    //   An implicitly-declared copy constructor is an inline public
2279    //   member of its class.
2280    DeclarationName Name
2281      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2282    CXXConstructorDecl *CopyConstructor
2283      = CXXConstructorDecl::Create(Context, ClassDecl,
2284                                   ClassDecl->getLocation(), Name,
2285                                   Context.getFunctionType(Context.VoidTy,
2286                                                           &ArgType, 1,
2287                                                           false, 0,
2288                                                           /*FIXME:*/false,
2289                                                           false, 0, 0, false,
2290                                                           CC_Default),
2291                                   /*TInfo=*/0,
2292                                   /*isExplicit=*/false,
2293                                   /*isInline=*/true,
2294                                   /*isImplicitlyDeclared=*/true);
2295    CopyConstructor->setAccess(AS_public);
2296    CopyConstructor->setImplicit();
2297    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2298
2299    // Add the parameter to the constructor.
2300    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2301                                                 ClassDecl->getLocation(),
2302                                                 /*IdentifierInfo=*/0,
2303                                                 ArgType, /*TInfo=*/0,
2304                                                 VarDecl::None, 0);
2305    CopyConstructor->setParams(&FromParam, 1);
2306    ClassDecl->addDecl(CopyConstructor);
2307  }
2308
2309  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2310    // Note: The following rules are largely analoguous to the copy
2311    // constructor rules. Note that virtual bases are not taken into account
2312    // for determining the argument type of the operator. Note also that
2313    // operators taking an object instead of a reference are allowed.
2314    //
2315    // C++ [class.copy]p10:
2316    //   If the class definition does not explicitly declare a copy
2317    //   assignment operator, one is declared implicitly.
2318    //   The implicitly-defined copy assignment operator for a class X
2319    //   will have the form
2320    //
2321    //       X& X::operator=(const X&)
2322    //
2323    //   if
2324    bool HasConstCopyAssignment = true;
2325
2326    //       -- each direct base class B of X has a copy assignment operator
2327    //          whose parameter is of type const B&, const volatile B& or B,
2328    //          and
2329    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2330         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2331      assert(!Base->getType()->isDependentType() &&
2332            "Cannot generate implicit members for class with dependent bases.");
2333      const CXXRecordDecl *BaseClassDecl
2334        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2335      const CXXMethodDecl *MD = 0;
2336      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2337                                                                     MD);
2338    }
2339
2340    //       -- for all the nonstatic data members of X that are of a class
2341    //          type M (or array thereof), each such class type has a copy
2342    //          assignment operator whose parameter is of type const M&,
2343    //          const volatile M& or M.
2344    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2345         HasConstCopyAssignment && Field != ClassDecl->field_end();
2346         ++Field) {
2347      QualType FieldType = (*Field)->getType();
2348      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2349        FieldType = Array->getElementType();
2350      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2351        const CXXRecordDecl *FieldClassDecl
2352          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2353        const CXXMethodDecl *MD = 0;
2354        HasConstCopyAssignment
2355          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2356      }
2357    }
2358
2359    //   Otherwise, the implicitly declared copy assignment operator will
2360    //   have the form
2361    //
2362    //       X& X::operator=(X&)
2363    QualType ArgType = ClassType;
2364    QualType RetType = Context.getLValueReferenceType(ArgType);
2365    if (HasConstCopyAssignment)
2366      ArgType = ArgType.withConst();
2367    ArgType = Context.getLValueReferenceType(ArgType);
2368
2369    //   An implicitly-declared copy assignment operator is an inline public
2370    //   member of its class.
2371    DeclarationName Name =
2372      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2373    CXXMethodDecl *CopyAssignment =
2374      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2375                            Context.getFunctionType(RetType, &ArgType, 1,
2376                                                    false, 0,
2377                                                    /*FIXME:*/false,
2378                                                    false, 0, 0, false,
2379                                                    CC_Default),
2380                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2381    CopyAssignment->setAccess(AS_public);
2382    CopyAssignment->setImplicit();
2383    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2384    CopyAssignment->setCopyAssignment(true);
2385
2386    // Add the parameter to the operator.
2387    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2388                                                 ClassDecl->getLocation(),
2389                                                 /*IdentifierInfo=*/0,
2390                                                 ArgType, /*TInfo=*/0,
2391                                                 VarDecl::None, 0);
2392    CopyAssignment->setParams(&FromParam, 1);
2393
2394    // Don't call addedAssignmentOperator. There is no way to distinguish an
2395    // implicit from an explicit assignment operator.
2396    ClassDecl->addDecl(CopyAssignment);
2397    AddOverriddenMethods(ClassDecl, CopyAssignment);
2398  }
2399
2400  if (!ClassDecl->hasUserDeclaredDestructor()) {
2401    // C++ [class.dtor]p2:
2402    //   If a class has no user-declared destructor, a destructor is
2403    //   declared implicitly. An implicitly-declared destructor is an
2404    //   inline public member of its class.
2405    QualType Ty = Context.getFunctionType(Context.VoidTy,
2406                                          0, 0, false, 0,
2407                                          /*FIXME:*/false,
2408                                          false, 0, 0, false,
2409                                          CC_Default);
2410
2411    DeclarationName Name
2412      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2413    CXXDestructorDecl *Destructor
2414      = CXXDestructorDecl::Create(Context, ClassDecl,
2415                                  ClassDecl->getLocation(), Name, Ty,
2416                                  /*isInline=*/true,
2417                                  /*isImplicitlyDeclared=*/true);
2418    Destructor->setAccess(AS_public);
2419    Destructor->setImplicit();
2420    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2421    ClassDecl->addDecl(Destructor);
2422
2423    // This could be uniqued if it ever proves significant.
2424    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2425
2426    AddOverriddenMethods(ClassDecl, Destructor);
2427  }
2428}
2429
2430void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2431  Decl *D = TemplateD.getAs<Decl>();
2432  if (!D)
2433    return;
2434
2435  TemplateParameterList *Params = 0;
2436  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2437    Params = Template->getTemplateParameters();
2438  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2439           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2440    Params = PartialSpec->getTemplateParameters();
2441  else
2442    return;
2443
2444  for (TemplateParameterList::iterator Param = Params->begin(),
2445                                    ParamEnd = Params->end();
2446       Param != ParamEnd; ++Param) {
2447    NamedDecl *Named = cast<NamedDecl>(*Param);
2448    if (Named->getDeclName()) {
2449      S->AddDecl(DeclPtrTy::make(Named));
2450      IdResolver.AddDecl(Named);
2451    }
2452  }
2453}
2454
2455void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2456  if (!RecordD) return;
2457  AdjustDeclIfTemplate(RecordD);
2458  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2459  PushDeclContext(S, Record);
2460}
2461
2462void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2463  if (!RecordD) return;
2464  PopDeclContext();
2465}
2466
2467/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2468/// parsing a top-level (non-nested) C++ class, and we are now
2469/// parsing those parts of the given Method declaration that could
2470/// not be parsed earlier (C++ [class.mem]p2), such as default
2471/// arguments. This action should enter the scope of the given
2472/// Method declaration as if we had just parsed the qualified method
2473/// name. However, it should not bring the parameters into scope;
2474/// that will be performed by ActOnDelayedCXXMethodParameter.
2475void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2476}
2477
2478/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2479/// C++ method declaration. We're (re-)introducing the given
2480/// function parameter into scope for use in parsing later parts of
2481/// the method declaration. For example, we could see an
2482/// ActOnParamDefaultArgument event for this parameter.
2483void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2484  if (!ParamD)
2485    return;
2486
2487  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2488
2489  // If this parameter has an unparsed default argument, clear it out
2490  // to make way for the parsed default argument.
2491  if (Param->hasUnparsedDefaultArg())
2492    Param->setDefaultArg(0);
2493
2494  S->AddDecl(DeclPtrTy::make(Param));
2495  if (Param->getDeclName())
2496    IdResolver.AddDecl(Param);
2497}
2498
2499/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2500/// processing the delayed method declaration for Method. The method
2501/// declaration is now considered finished. There may be a separate
2502/// ActOnStartOfFunctionDef action later (not necessarily
2503/// immediately!) for this method, if it was also defined inside the
2504/// class body.
2505void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2506  if (!MethodD)
2507    return;
2508
2509  AdjustDeclIfTemplate(MethodD);
2510
2511  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2512
2513  // Now that we have our default arguments, check the constructor
2514  // again. It could produce additional diagnostics or affect whether
2515  // the class has implicitly-declared destructors, among other
2516  // things.
2517  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2518    CheckConstructor(Constructor);
2519
2520  // Check the default arguments, which we may have added.
2521  if (!Method->isInvalidDecl())
2522    CheckCXXDefaultArguments(Method);
2523}
2524
2525/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2526/// the well-formedness of the constructor declarator @p D with type @p
2527/// R. If there are any errors in the declarator, this routine will
2528/// emit diagnostics and set the invalid bit to true.  In any case, the type
2529/// will be updated to reflect a well-formed type for the constructor and
2530/// returned.
2531QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2532                                          FunctionDecl::StorageClass &SC) {
2533  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2534
2535  // C++ [class.ctor]p3:
2536  //   A constructor shall not be virtual (10.3) or static (9.4). A
2537  //   constructor can be invoked for a const, volatile or const
2538  //   volatile object. A constructor shall not be declared const,
2539  //   volatile, or const volatile (9.3.2).
2540  if (isVirtual) {
2541    if (!D.isInvalidType())
2542      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2543        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2544        << SourceRange(D.getIdentifierLoc());
2545    D.setInvalidType();
2546  }
2547  if (SC == FunctionDecl::Static) {
2548    if (!D.isInvalidType())
2549      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2550        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2551        << SourceRange(D.getIdentifierLoc());
2552    D.setInvalidType();
2553    SC = FunctionDecl::None;
2554  }
2555
2556  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2557  if (FTI.TypeQuals != 0) {
2558    if (FTI.TypeQuals & Qualifiers::Const)
2559      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2560        << "const" << SourceRange(D.getIdentifierLoc());
2561    if (FTI.TypeQuals & Qualifiers::Volatile)
2562      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2563        << "volatile" << SourceRange(D.getIdentifierLoc());
2564    if (FTI.TypeQuals & Qualifiers::Restrict)
2565      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2566        << "restrict" << SourceRange(D.getIdentifierLoc());
2567  }
2568
2569  // Rebuild the function type "R" without any type qualifiers (in
2570  // case any of the errors above fired) and with "void" as the
2571  // return type, since constructors don't have return types. We
2572  // *always* have to do this, because GetTypeForDeclarator will
2573  // put in a result type of "int" when none was specified.
2574  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2575  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2576                                 Proto->getNumArgs(),
2577                                 Proto->isVariadic(), 0,
2578                                 Proto->hasExceptionSpec(),
2579                                 Proto->hasAnyExceptionSpec(),
2580                                 Proto->getNumExceptions(),
2581                                 Proto->exception_begin(),
2582                                 Proto->getNoReturnAttr(),
2583                                 Proto->getCallConv());
2584}
2585
2586/// CheckConstructor - Checks a fully-formed constructor for
2587/// well-formedness, issuing any diagnostics required. Returns true if
2588/// the constructor declarator is invalid.
2589void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2590  CXXRecordDecl *ClassDecl
2591    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2592  if (!ClassDecl)
2593    return Constructor->setInvalidDecl();
2594
2595  // C++ [class.copy]p3:
2596  //   A declaration of a constructor for a class X is ill-formed if
2597  //   its first parameter is of type (optionally cv-qualified) X and
2598  //   either there are no other parameters or else all other
2599  //   parameters have default arguments.
2600  if (!Constructor->isInvalidDecl() &&
2601      ((Constructor->getNumParams() == 1) ||
2602       (Constructor->getNumParams() > 1 &&
2603        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2604      Constructor->getTemplateSpecializationKind()
2605                                              != TSK_ImplicitInstantiation) {
2606    QualType ParamType = Constructor->getParamDecl(0)->getType();
2607    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2608    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2609      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2610      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2611        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2612
2613      // FIXME: Rather that making the constructor invalid, we should endeavor
2614      // to fix the type.
2615      Constructor->setInvalidDecl();
2616    }
2617  }
2618
2619  // Notify the class that we've added a constructor.
2620  ClassDecl->addedConstructor(Context, Constructor);
2621}
2622
2623/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2624/// issuing any diagnostics required. Returns true on error.
2625bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2626  CXXRecordDecl *RD = Destructor->getParent();
2627
2628  if (Destructor->isVirtual()) {
2629    SourceLocation Loc;
2630
2631    if (!Destructor->isImplicit())
2632      Loc = Destructor->getLocation();
2633    else
2634      Loc = RD->getLocation();
2635
2636    // If we have a virtual destructor, look up the deallocation function
2637    FunctionDecl *OperatorDelete = 0;
2638    DeclarationName Name =
2639    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2640    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2641      return true;
2642
2643    Destructor->setOperatorDelete(OperatorDelete);
2644  }
2645
2646  return false;
2647}
2648
2649static inline bool
2650FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2651  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2652          FTI.ArgInfo[0].Param &&
2653          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2654}
2655
2656/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2657/// the well-formednes of the destructor declarator @p D with type @p
2658/// R. If there are any errors in the declarator, this routine will
2659/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2660/// will be updated to reflect a well-formed type for the destructor and
2661/// returned.
2662QualType Sema::CheckDestructorDeclarator(Declarator &D,
2663                                         FunctionDecl::StorageClass& SC) {
2664  // C++ [class.dtor]p1:
2665  //   [...] A typedef-name that names a class is a class-name
2666  //   (7.1.3); however, a typedef-name that names a class shall not
2667  //   be used as the identifier in the declarator for a destructor
2668  //   declaration.
2669  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2670  if (isa<TypedefType>(DeclaratorType)) {
2671    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2672      << DeclaratorType;
2673    D.setInvalidType();
2674  }
2675
2676  // C++ [class.dtor]p2:
2677  //   A destructor is used to destroy objects of its class type. A
2678  //   destructor takes no parameters, and no return type can be
2679  //   specified for it (not even void). The address of a destructor
2680  //   shall not be taken. A destructor shall not be static. A
2681  //   destructor can be invoked for a const, volatile or const
2682  //   volatile object. A destructor shall not be declared const,
2683  //   volatile or const volatile (9.3.2).
2684  if (SC == FunctionDecl::Static) {
2685    if (!D.isInvalidType())
2686      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2687        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2688        << SourceRange(D.getIdentifierLoc());
2689    SC = FunctionDecl::None;
2690    D.setInvalidType();
2691  }
2692  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2693    // Destructors don't have return types, but the parser will
2694    // happily parse something like:
2695    //
2696    //   class X {
2697    //     float ~X();
2698    //   };
2699    //
2700    // The return type will be eliminated later.
2701    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2702      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2703      << SourceRange(D.getIdentifierLoc());
2704  }
2705
2706  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2707  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2708    if (FTI.TypeQuals & Qualifiers::Const)
2709      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2710        << "const" << SourceRange(D.getIdentifierLoc());
2711    if (FTI.TypeQuals & Qualifiers::Volatile)
2712      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2713        << "volatile" << SourceRange(D.getIdentifierLoc());
2714    if (FTI.TypeQuals & Qualifiers::Restrict)
2715      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2716        << "restrict" << SourceRange(D.getIdentifierLoc());
2717    D.setInvalidType();
2718  }
2719
2720  // Make sure we don't have any parameters.
2721  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2722    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2723
2724    // Delete the parameters.
2725    FTI.freeArgs();
2726    D.setInvalidType();
2727  }
2728
2729  // Make sure the destructor isn't variadic.
2730  if (FTI.isVariadic) {
2731    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2732    D.setInvalidType();
2733  }
2734
2735  // Rebuild the function type "R" without any type qualifiers or
2736  // parameters (in case any of the errors above fired) and with
2737  // "void" as the return type, since destructors don't have return
2738  // types. We *always* have to do this, because GetTypeForDeclarator
2739  // will put in a result type of "int" when none was specified.
2740  // FIXME: Exceptions!
2741  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2742                                 false, false, 0, 0, false, CC_Default);
2743}
2744
2745/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2746/// well-formednes of the conversion function declarator @p D with
2747/// type @p R. If there are any errors in the declarator, this routine
2748/// will emit diagnostics and return true. Otherwise, it will return
2749/// false. Either way, the type @p R will be updated to reflect a
2750/// well-formed type for the conversion operator.
2751void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2752                                     FunctionDecl::StorageClass& SC) {
2753  // C++ [class.conv.fct]p1:
2754  //   Neither parameter types nor return type can be specified. The
2755  //   type of a conversion function (8.3.5) is "function taking no
2756  //   parameter returning conversion-type-id."
2757  if (SC == FunctionDecl::Static) {
2758    if (!D.isInvalidType())
2759      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2760        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2761        << SourceRange(D.getIdentifierLoc());
2762    D.setInvalidType();
2763    SC = FunctionDecl::None;
2764  }
2765  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2766    // Conversion functions don't have return types, but the parser will
2767    // happily parse something like:
2768    //
2769    //   class X {
2770    //     float operator bool();
2771    //   };
2772    //
2773    // The return type will be changed later anyway.
2774    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2775      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2776      << SourceRange(D.getIdentifierLoc());
2777  }
2778
2779  // Make sure we don't have any parameters.
2780  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2781    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2782
2783    // Delete the parameters.
2784    D.getTypeObject(0).Fun.freeArgs();
2785    D.setInvalidType();
2786  }
2787
2788  // Make sure the conversion function isn't variadic.
2789  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2790    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2791    D.setInvalidType();
2792  }
2793
2794  // C++ [class.conv.fct]p4:
2795  //   The conversion-type-id shall not represent a function type nor
2796  //   an array type.
2797  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2798  if (ConvType->isArrayType()) {
2799    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2800    ConvType = Context.getPointerType(ConvType);
2801    D.setInvalidType();
2802  } else if (ConvType->isFunctionType()) {
2803    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2804    ConvType = Context.getPointerType(ConvType);
2805    D.setInvalidType();
2806  }
2807
2808  // Rebuild the function type "R" without any parameters (in case any
2809  // of the errors above fired) and with the conversion type as the
2810  // return type.
2811  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2812  R = Context.getFunctionType(ConvType, 0, 0, false,
2813                              Proto->getTypeQuals(),
2814                              Proto->hasExceptionSpec(),
2815                              Proto->hasAnyExceptionSpec(),
2816                              Proto->getNumExceptions(),
2817                              Proto->exception_begin(),
2818                              Proto->getNoReturnAttr(),
2819                              Proto->getCallConv());
2820
2821  // C++0x explicit conversion operators.
2822  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2823    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2824         diag::warn_explicit_conversion_functions)
2825      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2826}
2827
2828/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2829/// the declaration of the given C++ conversion function. This routine
2830/// is responsible for recording the conversion function in the C++
2831/// class, if possible.
2832Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2833  assert(Conversion && "Expected to receive a conversion function declaration");
2834
2835  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2836
2837  // Make sure we aren't redeclaring the conversion function.
2838  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2839
2840  // C++ [class.conv.fct]p1:
2841  //   [...] A conversion function is never used to convert a
2842  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2843  //   same object type (or a reference to it), to a (possibly
2844  //   cv-qualified) base class of that type (or a reference to it),
2845  //   or to (possibly cv-qualified) void.
2846  // FIXME: Suppress this warning if the conversion function ends up being a
2847  // virtual function that overrides a virtual function in a base class.
2848  QualType ClassType
2849    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2850  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2851    ConvType = ConvTypeRef->getPointeeType();
2852  if (ConvType->isRecordType()) {
2853    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2854    if (ConvType == ClassType)
2855      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2856        << ClassType;
2857    else if (IsDerivedFrom(ClassType, ConvType))
2858      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2859        <<  ClassType << ConvType;
2860  } else if (ConvType->isVoidType()) {
2861    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2862      << ClassType << ConvType;
2863  }
2864
2865  if (Conversion->getPrimaryTemplate()) {
2866    // ignore specializations
2867  } else if (Conversion->getPreviousDeclaration()) {
2868    if (FunctionTemplateDecl *ConversionTemplate
2869                                  = Conversion->getDescribedFunctionTemplate()) {
2870      if (ClassDecl->replaceConversion(
2871                                   ConversionTemplate->getPreviousDeclaration(),
2872                                       ConversionTemplate))
2873        return DeclPtrTy::make(ConversionTemplate);
2874    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2875                                            Conversion))
2876      return DeclPtrTy::make(Conversion);
2877    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2878  } else if (FunctionTemplateDecl *ConversionTemplate
2879               = Conversion->getDescribedFunctionTemplate())
2880    ClassDecl->addConversionFunction(ConversionTemplate);
2881  else
2882    ClassDecl->addConversionFunction(Conversion);
2883
2884  return DeclPtrTy::make(Conversion);
2885}
2886
2887//===----------------------------------------------------------------------===//
2888// Namespace Handling
2889//===----------------------------------------------------------------------===//
2890
2891/// ActOnStartNamespaceDef - This is called at the start of a namespace
2892/// definition.
2893Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2894                                             SourceLocation IdentLoc,
2895                                             IdentifierInfo *II,
2896                                             SourceLocation LBrace,
2897                                             AttributeList *AttrList) {
2898  NamespaceDecl *Namespc =
2899      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2900  Namespc->setLBracLoc(LBrace);
2901
2902  Scope *DeclRegionScope = NamespcScope->getParent();
2903
2904  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2905
2906  if (II) {
2907    // C++ [namespace.def]p2:
2908    // The identifier in an original-namespace-definition shall not have been
2909    // previously defined in the declarative region in which the
2910    // original-namespace-definition appears. The identifier in an
2911    // original-namespace-definition is the name of the namespace. Subsequently
2912    // in that declarative region, it is treated as an original-namespace-name.
2913
2914    NamedDecl *PrevDecl
2915      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2916                         ForRedeclaration);
2917
2918    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2919      // This is an extended namespace definition.
2920      // Attach this namespace decl to the chain of extended namespace
2921      // definitions.
2922      OrigNS->setNextNamespace(Namespc);
2923      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2924
2925      // Remove the previous declaration from the scope.
2926      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2927        IdResolver.RemoveDecl(OrigNS);
2928        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2929      }
2930    } else if (PrevDecl) {
2931      // This is an invalid name redefinition.
2932      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2933       << Namespc->getDeclName();
2934      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2935      Namespc->setInvalidDecl();
2936      // Continue on to push Namespc as current DeclContext and return it.
2937    } else if (II->isStr("std") &&
2938               CurContext->getLookupContext()->isTranslationUnit()) {
2939      // This is the first "real" definition of the namespace "std", so update
2940      // our cache of the "std" namespace to point at this definition.
2941      if (StdNamespace) {
2942        // We had already defined a dummy namespace "std". Link this new
2943        // namespace definition to the dummy namespace "std".
2944        StdNamespace->setNextNamespace(Namespc);
2945        StdNamespace->setLocation(IdentLoc);
2946        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2947      }
2948
2949      // Make our StdNamespace cache point at the first real definition of the
2950      // "std" namespace.
2951      StdNamespace = Namespc;
2952    }
2953
2954    PushOnScopeChains(Namespc, DeclRegionScope);
2955  } else {
2956    // Anonymous namespaces.
2957    assert(Namespc->isAnonymousNamespace());
2958
2959    // Link the anonymous namespace into its parent.
2960    NamespaceDecl *PrevDecl;
2961    DeclContext *Parent = CurContext->getLookupContext();
2962    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2963      PrevDecl = TU->getAnonymousNamespace();
2964      TU->setAnonymousNamespace(Namespc);
2965    } else {
2966      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2967      PrevDecl = ND->getAnonymousNamespace();
2968      ND->setAnonymousNamespace(Namespc);
2969    }
2970
2971    // Link the anonymous namespace with its previous declaration.
2972    if (PrevDecl) {
2973      assert(PrevDecl->isAnonymousNamespace());
2974      assert(!PrevDecl->getNextNamespace());
2975      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2976      PrevDecl->setNextNamespace(Namespc);
2977    }
2978
2979    CurContext->addDecl(Namespc);
2980
2981    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2982    //   behaves as if it were replaced by
2983    //     namespace unique { /* empty body */ }
2984    //     using namespace unique;
2985    //     namespace unique { namespace-body }
2986    //   where all occurrences of 'unique' in a translation unit are
2987    //   replaced by the same identifier and this identifier differs
2988    //   from all other identifiers in the entire program.
2989
2990    // We just create the namespace with an empty name and then add an
2991    // implicit using declaration, just like the standard suggests.
2992    //
2993    // CodeGen enforces the "universally unique" aspect by giving all
2994    // declarations semantically contained within an anonymous
2995    // namespace internal linkage.
2996
2997    if (!PrevDecl) {
2998      UsingDirectiveDecl* UD
2999        = UsingDirectiveDecl::Create(Context, CurContext,
3000                                     /* 'using' */ LBrace,
3001                                     /* 'namespace' */ SourceLocation(),
3002                                     /* qualifier */ SourceRange(),
3003                                     /* NNS */ NULL,
3004                                     /* identifier */ SourceLocation(),
3005                                     Namespc,
3006                                     /* Ancestor */ CurContext);
3007      UD->setImplicit();
3008      CurContext->addDecl(UD);
3009    }
3010  }
3011
3012  // Although we could have an invalid decl (i.e. the namespace name is a
3013  // redefinition), push it as current DeclContext and try to continue parsing.
3014  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3015  // for the namespace has the declarations that showed up in that particular
3016  // namespace definition.
3017  PushDeclContext(NamespcScope, Namespc);
3018  return DeclPtrTy::make(Namespc);
3019}
3020
3021/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3022/// is a namespace alias, returns the namespace it points to.
3023static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3024  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3025    return AD->getNamespace();
3026  return dyn_cast_or_null<NamespaceDecl>(D);
3027}
3028
3029/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3030/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3031void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3032  Decl *Dcl = D.getAs<Decl>();
3033  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3034  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3035  Namespc->setRBracLoc(RBrace);
3036  PopDeclContext();
3037}
3038
3039Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3040                                          SourceLocation UsingLoc,
3041                                          SourceLocation NamespcLoc,
3042                                          const CXXScopeSpec &SS,
3043                                          SourceLocation IdentLoc,
3044                                          IdentifierInfo *NamespcName,
3045                                          AttributeList *AttrList) {
3046  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3047  assert(NamespcName && "Invalid NamespcName.");
3048  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3049  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3050
3051  UsingDirectiveDecl *UDir = 0;
3052
3053  // Lookup namespace name.
3054  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3055  LookupParsedName(R, S, &SS);
3056  if (R.isAmbiguous())
3057    return DeclPtrTy();
3058
3059  if (!R.empty()) {
3060    NamedDecl *Named = R.getFoundDecl();
3061    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3062        && "expected namespace decl");
3063    // C++ [namespace.udir]p1:
3064    //   A using-directive specifies that the names in the nominated
3065    //   namespace can be used in the scope in which the
3066    //   using-directive appears after the using-directive. During
3067    //   unqualified name lookup (3.4.1), the names appear as if they
3068    //   were declared in the nearest enclosing namespace which
3069    //   contains both the using-directive and the nominated
3070    //   namespace. [Note: in this context, "contains" means "contains
3071    //   directly or indirectly". ]
3072
3073    // Find enclosing context containing both using-directive and
3074    // nominated namespace.
3075    NamespaceDecl *NS = getNamespaceDecl(Named);
3076    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3077    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3078      CommonAncestor = CommonAncestor->getParent();
3079
3080    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3081                                      SS.getRange(),
3082                                      (NestedNameSpecifier *)SS.getScopeRep(),
3083                                      IdentLoc, Named, CommonAncestor);
3084    PushUsingDirective(S, UDir);
3085  } else {
3086    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3087  }
3088
3089  // FIXME: We ignore attributes for now.
3090  delete AttrList;
3091  return DeclPtrTy::make(UDir);
3092}
3093
3094void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3095  // If scope has associated entity, then using directive is at namespace
3096  // or translation unit scope. We add UsingDirectiveDecls, into
3097  // it's lookup structure.
3098  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3099    Ctx->addDecl(UDir);
3100  else
3101    // Otherwise it is block-sope. using-directives will affect lookup
3102    // only to the end of scope.
3103    S->PushUsingDirective(DeclPtrTy::make(UDir));
3104}
3105
3106
3107Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3108                                            AccessSpecifier AS,
3109                                            bool HasUsingKeyword,
3110                                            SourceLocation UsingLoc,
3111                                            const CXXScopeSpec &SS,
3112                                            UnqualifiedId &Name,
3113                                            AttributeList *AttrList,
3114                                            bool IsTypeName,
3115                                            SourceLocation TypenameLoc) {
3116  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3117
3118  switch (Name.getKind()) {
3119  case UnqualifiedId::IK_Identifier:
3120  case UnqualifiedId::IK_OperatorFunctionId:
3121  case UnqualifiedId::IK_LiteralOperatorId:
3122  case UnqualifiedId::IK_ConversionFunctionId:
3123    break;
3124
3125  case UnqualifiedId::IK_ConstructorName:
3126  case UnqualifiedId::IK_ConstructorTemplateId:
3127    // C++0x inherited constructors.
3128    if (getLangOptions().CPlusPlus0x) break;
3129
3130    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3131      << SS.getRange();
3132    return DeclPtrTy();
3133
3134  case UnqualifiedId::IK_DestructorName:
3135    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3136      << SS.getRange();
3137    return DeclPtrTy();
3138
3139  case UnqualifiedId::IK_TemplateId:
3140    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3141      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3142    return DeclPtrTy();
3143  }
3144
3145  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3146  if (!TargetName)
3147    return DeclPtrTy();
3148
3149  // Warn about using declarations.
3150  // TODO: store that the declaration was written without 'using' and
3151  // talk about access decls instead of using decls in the
3152  // diagnostics.
3153  if (!HasUsingKeyword) {
3154    UsingLoc = Name.getSourceRange().getBegin();
3155
3156    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3157      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3158                                               "using ");
3159  }
3160
3161  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3162                                        Name.getSourceRange().getBegin(),
3163                                        TargetName, AttrList,
3164                                        /* IsInstantiation */ false,
3165                                        IsTypeName, TypenameLoc);
3166  if (UD)
3167    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3168
3169  return DeclPtrTy::make(UD);
3170}
3171
3172/// Determines whether to create a using shadow decl for a particular
3173/// decl, given the set of decls existing prior to this using lookup.
3174bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3175                                const LookupResult &Previous) {
3176  // Diagnose finding a decl which is not from a base class of the
3177  // current class.  We do this now because there are cases where this
3178  // function will silently decide not to build a shadow decl, which
3179  // will pre-empt further diagnostics.
3180  //
3181  // We don't need to do this in C++0x because we do the check once on
3182  // the qualifier.
3183  //
3184  // FIXME: diagnose the following if we care enough:
3185  //   struct A { int foo; };
3186  //   struct B : A { using A::foo; };
3187  //   template <class T> struct C : A {};
3188  //   template <class T> struct D : C<T> { using B::foo; } // <---
3189  // This is invalid (during instantiation) in C++03 because B::foo
3190  // resolves to the using decl in B, which is not a base class of D<T>.
3191  // We can't diagnose it immediately because C<T> is an unknown
3192  // specialization.  The UsingShadowDecl in D<T> then points directly
3193  // to A::foo, which will look well-formed when we instantiate.
3194  // The right solution is to not collapse the shadow-decl chain.
3195  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3196    DeclContext *OrigDC = Orig->getDeclContext();
3197
3198    // Handle enums and anonymous structs.
3199    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3200    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3201    while (OrigRec->isAnonymousStructOrUnion())
3202      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3203
3204    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3205      if (OrigDC == CurContext) {
3206        Diag(Using->getLocation(),
3207             diag::err_using_decl_nested_name_specifier_is_current_class)
3208          << Using->getNestedNameRange();
3209        Diag(Orig->getLocation(), diag::note_using_decl_target);
3210        return true;
3211      }
3212
3213      Diag(Using->getNestedNameRange().getBegin(),
3214           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3215        << Using->getTargetNestedNameDecl()
3216        << cast<CXXRecordDecl>(CurContext)
3217        << Using->getNestedNameRange();
3218      Diag(Orig->getLocation(), diag::note_using_decl_target);
3219      return true;
3220    }
3221  }
3222
3223  if (Previous.empty()) return false;
3224
3225  NamedDecl *Target = Orig;
3226  if (isa<UsingShadowDecl>(Target))
3227    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3228
3229  // If the target happens to be one of the previous declarations, we
3230  // don't have a conflict.
3231  //
3232  // FIXME: but we might be increasing its access, in which case we
3233  // should redeclare it.
3234  NamedDecl *NonTag = 0, *Tag = 0;
3235  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3236         I != E; ++I) {
3237    NamedDecl *D = (*I)->getUnderlyingDecl();
3238    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3239      return false;
3240
3241    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3242  }
3243
3244  if (Target->isFunctionOrFunctionTemplate()) {
3245    FunctionDecl *FD;
3246    if (isa<FunctionTemplateDecl>(Target))
3247      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3248    else
3249      FD = cast<FunctionDecl>(Target);
3250
3251    NamedDecl *OldDecl = 0;
3252    switch (CheckOverload(FD, Previous, OldDecl)) {
3253    case Ovl_Overload:
3254      return false;
3255
3256    case Ovl_NonFunction:
3257      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3258      break;
3259
3260    // We found a decl with the exact signature.
3261    case Ovl_Match:
3262      if (isa<UsingShadowDecl>(OldDecl)) {
3263        // Silently ignore the possible conflict.
3264        return false;
3265      }
3266
3267      // If we're in a record, we want to hide the target, so we
3268      // return true (without a diagnostic) to tell the caller not to
3269      // build a shadow decl.
3270      if (CurContext->isRecord())
3271        return true;
3272
3273      // If we're not in a record, this is an error.
3274      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3275      break;
3276    }
3277
3278    Diag(Target->getLocation(), diag::note_using_decl_target);
3279    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3280    return true;
3281  }
3282
3283  // Target is not a function.
3284
3285  if (isa<TagDecl>(Target)) {
3286    // No conflict between a tag and a non-tag.
3287    if (!Tag) return false;
3288
3289    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3290    Diag(Target->getLocation(), diag::note_using_decl_target);
3291    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3292    return true;
3293  }
3294
3295  // No conflict between a tag and a non-tag.
3296  if (!NonTag) return false;
3297
3298  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3299  Diag(Target->getLocation(), diag::note_using_decl_target);
3300  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3301  return true;
3302}
3303
3304/// Builds a shadow declaration corresponding to a 'using' declaration.
3305UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3306                                            UsingDecl *UD,
3307                                            NamedDecl *Orig) {
3308
3309  // If we resolved to another shadow declaration, just coalesce them.
3310  NamedDecl *Target = Orig;
3311  if (isa<UsingShadowDecl>(Target)) {
3312    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3313    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3314  }
3315
3316  UsingShadowDecl *Shadow
3317    = UsingShadowDecl::Create(Context, CurContext,
3318                              UD->getLocation(), UD, Target);
3319  UD->addShadowDecl(Shadow);
3320
3321  if (S)
3322    PushOnScopeChains(Shadow, S);
3323  else
3324    CurContext->addDecl(Shadow);
3325  Shadow->setAccess(UD->getAccess());
3326
3327  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3328    Shadow->setInvalidDecl();
3329
3330  return Shadow;
3331}
3332
3333/// Hides a using shadow declaration.  This is required by the current
3334/// using-decl implementation when a resolvable using declaration in a
3335/// class is followed by a declaration which would hide or override
3336/// one or more of the using decl's targets; for example:
3337///
3338///   struct Base { void foo(int); };
3339///   struct Derived : Base {
3340///     using Base::foo;
3341///     void foo(int);
3342///   };
3343///
3344/// The governing language is C++03 [namespace.udecl]p12:
3345///
3346///   When a using-declaration brings names from a base class into a
3347///   derived class scope, member functions in the derived class
3348///   override and/or hide member functions with the same name and
3349///   parameter types in a base class (rather than conflicting).
3350///
3351/// There are two ways to implement this:
3352///   (1) optimistically create shadow decls when they're not hidden
3353///       by existing declarations, or
3354///   (2) don't create any shadow decls (or at least don't make them
3355///       visible) until we've fully parsed/instantiated the class.
3356/// The problem with (1) is that we might have to retroactively remove
3357/// a shadow decl, which requires several O(n) operations because the
3358/// decl structures are (very reasonably) not designed for removal.
3359/// (2) avoids this but is very fiddly and phase-dependent.
3360void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3361  // Remove it from the DeclContext...
3362  Shadow->getDeclContext()->removeDecl(Shadow);
3363
3364  // ...and the scope, if applicable...
3365  if (S) {
3366    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3367    IdResolver.RemoveDecl(Shadow);
3368  }
3369
3370  // ...and the using decl.
3371  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3372
3373  // TODO: complain somehow if Shadow was used.  It shouldn't
3374  // be possible for this to happen, because
3375}
3376
3377/// Builds a using declaration.
3378///
3379/// \param IsInstantiation - Whether this call arises from an
3380///   instantiation of an unresolved using declaration.  We treat
3381///   the lookup differently for these declarations.
3382NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3383                                       SourceLocation UsingLoc,
3384                                       const CXXScopeSpec &SS,
3385                                       SourceLocation IdentLoc,
3386                                       DeclarationName Name,
3387                                       AttributeList *AttrList,
3388                                       bool IsInstantiation,
3389                                       bool IsTypeName,
3390                                       SourceLocation TypenameLoc) {
3391  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3392  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3393
3394  // FIXME: We ignore attributes for now.
3395  delete AttrList;
3396
3397  if (SS.isEmpty()) {
3398    Diag(IdentLoc, diag::err_using_requires_qualname);
3399    return 0;
3400  }
3401
3402  // Do the redeclaration lookup in the current scope.
3403  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3404                        ForRedeclaration);
3405  Previous.setHideTags(false);
3406  if (S) {
3407    LookupName(Previous, S);
3408
3409    // It is really dumb that we have to do this.
3410    LookupResult::Filter F = Previous.makeFilter();
3411    while (F.hasNext()) {
3412      NamedDecl *D = F.next();
3413      if (!isDeclInScope(D, CurContext, S))
3414        F.erase();
3415    }
3416    F.done();
3417  } else {
3418    assert(IsInstantiation && "no scope in non-instantiation");
3419    assert(CurContext->isRecord() && "scope not record in instantiation");
3420    LookupQualifiedName(Previous, CurContext);
3421  }
3422
3423  NestedNameSpecifier *NNS =
3424    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3425
3426  // Check for invalid redeclarations.
3427  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3428    return 0;
3429
3430  // Check for bad qualifiers.
3431  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3432    return 0;
3433
3434  DeclContext *LookupContext = computeDeclContext(SS);
3435  NamedDecl *D;
3436  if (!LookupContext) {
3437    if (IsTypeName) {
3438      // FIXME: not all declaration name kinds are legal here
3439      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3440                                              UsingLoc, TypenameLoc,
3441                                              SS.getRange(), NNS,
3442                                              IdentLoc, Name);
3443    } else {
3444      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3445                                           UsingLoc, SS.getRange(), NNS,
3446                                           IdentLoc, Name);
3447    }
3448  } else {
3449    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3450                          SS.getRange(), UsingLoc, NNS, Name,
3451                          IsTypeName);
3452  }
3453  D->setAccess(AS);
3454  CurContext->addDecl(D);
3455
3456  if (!LookupContext) return D;
3457  UsingDecl *UD = cast<UsingDecl>(D);
3458
3459  if (RequireCompleteDeclContext(SS)) {
3460    UD->setInvalidDecl();
3461    return UD;
3462  }
3463
3464  // Look up the target name.
3465
3466  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3467
3468  // Unlike most lookups, we don't always want to hide tag
3469  // declarations: tag names are visible through the using declaration
3470  // even if hidden by ordinary names, *except* in a dependent context
3471  // where it's important for the sanity of two-phase lookup.
3472  if (!IsInstantiation)
3473    R.setHideTags(false);
3474
3475  LookupQualifiedName(R, LookupContext);
3476
3477  if (R.empty()) {
3478    Diag(IdentLoc, diag::err_no_member)
3479      << Name << LookupContext << SS.getRange();
3480    UD->setInvalidDecl();
3481    return UD;
3482  }
3483
3484  if (R.isAmbiguous()) {
3485    UD->setInvalidDecl();
3486    return UD;
3487  }
3488
3489  if (IsTypeName) {
3490    // If we asked for a typename and got a non-type decl, error out.
3491    if (!R.getAsSingle<TypeDecl>()) {
3492      Diag(IdentLoc, diag::err_using_typename_non_type);
3493      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3494        Diag((*I)->getUnderlyingDecl()->getLocation(),
3495             diag::note_using_decl_target);
3496      UD->setInvalidDecl();
3497      return UD;
3498    }
3499  } else {
3500    // If we asked for a non-typename and we got a type, error out,
3501    // but only if this is an instantiation of an unresolved using
3502    // decl.  Otherwise just silently find the type name.
3503    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3504      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3505      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3506      UD->setInvalidDecl();
3507      return UD;
3508    }
3509  }
3510
3511  // C++0x N2914 [namespace.udecl]p6:
3512  // A using-declaration shall not name a namespace.
3513  if (R.getAsSingle<NamespaceDecl>()) {
3514    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3515      << SS.getRange();
3516    UD->setInvalidDecl();
3517    return UD;
3518  }
3519
3520  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3521    if (!CheckUsingShadowDecl(UD, *I, Previous))
3522      BuildUsingShadowDecl(S, UD, *I);
3523  }
3524
3525  return UD;
3526}
3527
3528/// Checks that the given using declaration is not an invalid
3529/// redeclaration.  Note that this is checking only for the using decl
3530/// itself, not for any ill-formedness among the UsingShadowDecls.
3531bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3532                                       bool isTypeName,
3533                                       const CXXScopeSpec &SS,
3534                                       SourceLocation NameLoc,
3535                                       const LookupResult &Prev) {
3536  // C++03 [namespace.udecl]p8:
3537  // C++0x [namespace.udecl]p10:
3538  //   A using-declaration is a declaration and can therefore be used
3539  //   repeatedly where (and only where) multiple declarations are
3540  //   allowed.
3541  // That's only in file contexts.
3542  if (CurContext->getLookupContext()->isFileContext())
3543    return false;
3544
3545  NestedNameSpecifier *Qual
3546    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3547
3548  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3549    NamedDecl *D = *I;
3550
3551    bool DTypename;
3552    NestedNameSpecifier *DQual;
3553    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3554      DTypename = UD->isTypeName();
3555      DQual = UD->getTargetNestedNameDecl();
3556    } else if (UnresolvedUsingValueDecl *UD
3557                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3558      DTypename = false;
3559      DQual = UD->getTargetNestedNameSpecifier();
3560    } else if (UnresolvedUsingTypenameDecl *UD
3561                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3562      DTypename = true;
3563      DQual = UD->getTargetNestedNameSpecifier();
3564    } else continue;
3565
3566    // using decls differ if one says 'typename' and the other doesn't.
3567    // FIXME: non-dependent using decls?
3568    if (isTypeName != DTypename) continue;
3569
3570    // using decls differ if they name different scopes (but note that
3571    // template instantiation can cause this check to trigger when it
3572    // didn't before instantiation).
3573    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3574        Context.getCanonicalNestedNameSpecifier(DQual))
3575      continue;
3576
3577    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3578    Diag(D->getLocation(), diag::note_using_decl) << 1;
3579    return true;
3580  }
3581
3582  return false;
3583}
3584
3585
3586/// Checks that the given nested-name qualifier used in a using decl
3587/// in the current context is appropriately related to the current
3588/// scope.  If an error is found, diagnoses it and returns true.
3589bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3590                                   const CXXScopeSpec &SS,
3591                                   SourceLocation NameLoc) {
3592  DeclContext *NamedContext = computeDeclContext(SS);
3593
3594  if (!CurContext->isRecord()) {
3595    // C++03 [namespace.udecl]p3:
3596    // C++0x [namespace.udecl]p8:
3597    //   A using-declaration for a class member shall be a member-declaration.
3598
3599    // If we weren't able to compute a valid scope, it must be a
3600    // dependent class scope.
3601    if (!NamedContext || NamedContext->isRecord()) {
3602      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3603        << SS.getRange();
3604      return true;
3605    }
3606
3607    // Otherwise, everything is known to be fine.
3608    return false;
3609  }
3610
3611  // The current scope is a record.
3612
3613  // If the named context is dependent, we can't decide much.
3614  if (!NamedContext) {
3615    // FIXME: in C++0x, we can diagnose if we can prove that the
3616    // nested-name-specifier does not refer to a base class, which is
3617    // still possible in some cases.
3618
3619    // Otherwise we have to conservatively report that things might be
3620    // okay.
3621    return false;
3622  }
3623
3624  if (!NamedContext->isRecord()) {
3625    // Ideally this would point at the last name in the specifier,
3626    // but we don't have that level of source info.
3627    Diag(SS.getRange().getBegin(),
3628         diag::err_using_decl_nested_name_specifier_is_not_class)
3629      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3630    return true;
3631  }
3632
3633  if (getLangOptions().CPlusPlus0x) {
3634    // C++0x [namespace.udecl]p3:
3635    //   In a using-declaration used as a member-declaration, the
3636    //   nested-name-specifier shall name a base class of the class
3637    //   being defined.
3638
3639    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3640                                 cast<CXXRecordDecl>(NamedContext))) {
3641      if (CurContext == NamedContext) {
3642        Diag(NameLoc,
3643             diag::err_using_decl_nested_name_specifier_is_current_class)
3644          << SS.getRange();
3645        return true;
3646      }
3647
3648      Diag(SS.getRange().getBegin(),
3649           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3650        << (NestedNameSpecifier*) SS.getScopeRep()
3651        << cast<CXXRecordDecl>(CurContext)
3652        << SS.getRange();
3653      return true;
3654    }
3655
3656    return false;
3657  }
3658
3659  // C++03 [namespace.udecl]p4:
3660  //   A using-declaration used as a member-declaration shall refer
3661  //   to a member of a base class of the class being defined [etc.].
3662
3663  // Salient point: SS doesn't have to name a base class as long as
3664  // lookup only finds members from base classes.  Therefore we can
3665  // diagnose here only if we can prove that that can't happen,
3666  // i.e. if the class hierarchies provably don't intersect.
3667
3668  // TODO: it would be nice if "definitely valid" results were cached
3669  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3670  // need to be repeated.
3671
3672  struct UserData {
3673    llvm::DenseSet<const CXXRecordDecl*> Bases;
3674
3675    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3676      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3677      Data->Bases.insert(Base);
3678      return true;
3679    }
3680
3681    bool hasDependentBases(const CXXRecordDecl *Class) {
3682      return !Class->forallBases(collect, this);
3683    }
3684
3685    /// Returns true if the base is dependent or is one of the
3686    /// accumulated base classes.
3687    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3688      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3689      return !Data->Bases.count(Base);
3690    }
3691
3692    bool mightShareBases(const CXXRecordDecl *Class) {
3693      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3694    }
3695  };
3696
3697  UserData Data;
3698
3699  // Returns false if we find a dependent base.
3700  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3701    return false;
3702
3703  // Returns false if the class has a dependent base or if it or one
3704  // of its bases is present in the base set of the current context.
3705  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3706    return false;
3707
3708  Diag(SS.getRange().getBegin(),
3709       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3710    << (NestedNameSpecifier*) SS.getScopeRep()
3711    << cast<CXXRecordDecl>(CurContext)
3712    << SS.getRange();
3713
3714  return true;
3715}
3716
3717Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3718                                             SourceLocation NamespaceLoc,
3719                                             SourceLocation AliasLoc,
3720                                             IdentifierInfo *Alias,
3721                                             const CXXScopeSpec &SS,
3722                                             SourceLocation IdentLoc,
3723                                             IdentifierInfo *Ident) {
3724
3725  // Lookup the namespace name.
3726  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3727  LookupParsedName(R, S, &SS);
3728
3729  // Check if we have a previous declaration with the same name.
3730  if (NamedDecl *PrevDecl
3731        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3732    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3733      // We already have an alias with the same name that points to the same
3734      // namespace, so don't create a new one.
3735      if (!R.isAmbiguous() && !R.empty() &&
3736          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3737        return DeclPtrTy();
3738    }
3739
3740    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3741      diag::err_redefinition_different_kind;
3742    Diag(AliasLoc, DiagID) << Alias;
3743    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3744    return DeclPtrTy();
3745  }
3746
3747  if (R.isAmbiguous())
3748    return DeclPtrTy();
3749
3750  if (R.empty()) {
3751    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3752    return DeclPtrTy();
3753  }
3754
3755  NamespaceAliasDecl *AliasDecl =
3756    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3757                               Alias, SS.getRange(),
3758                               (NestedNameSpecifier *)SS.getScopeRep(),
3759                               IdentLoc, R.getFoundDecl());
3760
3761  PushOnScopeChains(AliasDecl, S);
3762  return DeclPtrTy::make(AliasDecl);
3763}
3764
3765void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3766                                            CXXConstructorDecl *Constructor) {
3767  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3768          !Constructor->isUsed()) &&
3769    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3770
3771  CXXRecordDecl *ClassDecl
3772    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3773  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3774
3775  DeclContext *PreviousContext = CurContext;
3776  CurContext = Constructor;
3777  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true, false)) {
3778    Diag(CurrentLocation, diag::note_member_synthesized_at)
3779      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3780    Constructor->setInvalidDecl();
3781  } else {
3782    Constructor->setUsed();
3783  }
3784  CurContext = PreviousContext;
3785}
3786
3787void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3788                                    CXXDestructorDecl *Destructor) {
3789  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3790         "DefineImplicitDestructor - call it for implicit default dtor");
3791  CXXRecordDecl *ClassDecl = Destructor->getParent();
3792  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3793
3794  DeclContext *PreviousContext = CurContext;
3795  CurContext = Destructor;
3796
3797  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3798                                         Destructor->getParent());
3799
3800  // FIXME: If CheckDestructor fails, we should emit a note about where the
3801  // implicit destructor was needed.
3802  if (CheckDestructor(Destructor)) {
3803    Diag(CurrentLocation, diag::note_member_synthesized_at)
3804      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3805
3806    Destructor->setInvalidDecl();
3807    CurContext = PreviousContext;
3808
3809    return;
3810  }
3811  CurContext = PreviousContext;
3812
3813  Destructor->setUsed();
3814}
3815
3816void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3817                                          CXXMethodDecl *MethodDecl) {
3818  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3819          MethodDecl->getOverloadedOperator() == OO_Equal &&
3820          !MethodDecl->isUsed()) &&
3821         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3822
3823  CXXRecordDecl *ClassDecl
3824    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3825
3826  DeclContext *PreviousContext = CurContext;
3827  CurContext = MethodDecl;
3828
3829  // C++[class.copy] p12
3830  // Before the implicitly-declared copy assignment operator for a class is
3831  // implicitly defined, all implicitly-declared copy assignment operators
3832  // for its direct base classes and its nonstatic data members shall have
3833  // been implicitly defined.
3834  bool err = false;
3835  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3836       E = ClassDecl->bases_end(); Base != E; ++Base) {
3837    CXXRecordDecl *BaseClassDecl
3838      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3839    if (CXXMethodDecl *BaseAssignOpMethod =
3840          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3841                                  BaseClassDecl)) {
3842      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3843                              BaseAssignOpMethod,
3844                              PartialDiagnostic(diag::err_access_assign_base)
3845                                << Base->getType());
3846
3847      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3848    }
3849  }
3850  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3851       E = ClassDecl->field_end(); Field != E; ++Field) {
3852    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3853    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3854      FieldType = Array->getElementType();
3855    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3856      CXXRecordDecl *FieldClassDecl
3857        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3858      if (CXXMethodDecl *FieldAssignOpMethod =
3859          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3860                                  FieldClassDecl)) {
3861        CheckDirectMemberAccess(Field->getLocation(),
3862                                FieldAssignOpMethod,
3863                                PartialDiagnostic(diag::err_access_assign_field)
3864                                  << Field->getDeclName() << Field->getType());
3865
3866        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3867      }
3868    } else if (FieldType->isReferenceType()) {
3869      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3870      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3871      Diag(Field->getLocation(), diag::note_declared_at);
3872      Diag(CurrentLocation, diag::note_first_required_here);
3873      err = true;
3874    } else if (FieldType.isConstQualified()) {
3875      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3876      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3877      Diag(Field->getLocation(), diag::note_declared_at);
3878      Diag(CurrentLocation, diag::note_first_required_here);
3879      err = true;
3880    }
3881  }
3882  if (!err)
3883    MethodDecl->setUsed();
3884
3885  CurContext = PreviousContext;
3886}
3887
3888CXXMethodDecl *
3889Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3890                              ParmVarDecl *ParmDecl,
3891                              CXXRecordDecl *ClassDecl) {
3892  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3893  QualType RHSType(LHSType);
3894  // If class's assignment operator argument is const/volatile qualified,
3895  // look for operator = (const/volatile B&). Otherwise, look for
3896  // operator = (B&).
3897  RHSType = Context.getCVRQualifiedType(RHSType,
3898                                     ParmDecl->getType().getCVRQualifiers());
3899  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3900                                                           LHSType,
3901                                                           SourceLocation()));
3902  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3903                                                           RHSType,
3904                                                           CurrentLocation));
3905  Expr *Args[2] = { &*LHS, &*RHS };
3906  OverloadCandidateSet CandidateSet(CurrentLocation);
3907  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3908                              CandidateSet);
3909  OverloadCandidateSet::iterator Best;
3910  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3911    return cast<CXXMethodDecl>(Best->Function);
3912  assert(false &&
3913         "getAssignOperatorMethod - copy assignment operator method not found");
3914  return 0;
3915}
3916
3917void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3918                                   CXXConstructorDecl *CopyConstructor,
3919                                   unsigned TypeQuals) {
3920  assert((CopyConstructor->isImplicit() &&
3921          CopyConstructor->isCopyConstructor(TypeQuals) &&
3922          !CopyConstructor->isUsed()) &&
3923         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3924
3925  CXXRecordDecl *ClassDecl
3926    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3927  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3928
3929  DeclContext *PreviousContext = CurContext;
3930  CurContext = CopyConstructor;
3931
3932  // C++ [class.copy] p209
3933  // Before the implicitly-declared copy constructor for a class is
3934  // implicitly defined, all the implicitly-declared copy constructors
3935  // for its base class and its non-static data members shall have been
3936  // implicitly defined.
3937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3938       Base != ClassDecl->bases_end(); ++Base) {
3939    CXXRecordDecl *BaseClassDecl
3940      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3941    if (CXXConstructorDecl *BaseCopyCtor =
3942        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3943      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3944                              BaseCopyCtor,
3945                              PartialDiagnostic(diag::err_access_copy_base)
3946                                << Base->getType());
3947
3948      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3949    }
3950  }
3951  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3952                                  FieldEnd = ClassDecl->field_end();
3953       Field != FieldEnd; ++Field) {
3954    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3955    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3956      FieldType = Array->getElementType();
3957    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3958      CXXRecordDecl *FieldClassDecl
3959        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3960      if (CXXConstructorDecl *FieldCopyCtor =
3961          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3962        CheckDirectMemberAccess(Field->getLocation(),
3963                                FieldCopyCtor,
3964                                PartialDiagnostic(diag::err_access_copy_field)
3965                                  << Field->getDeclName() << Field->getType());
3966
3967        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3968      }
3969    }
3970  }
3971  CopyConstructor->setUsed();
3972
3973  CurContext = PreviousContext;
3974}
3975
3976Sema::OwningExprResult
3977Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3978                            CXXConstructorDecl *Constructor,
3979                            MultiExprArg ExprArgs,
3980                            bool RequiresZeroInit,
3981                            bool BaseInitialization) {
3982  bool Elidable = false;
3983
3984  // C++ [class.copy]p15:
3985  //   Whenever a temporary class object is copied using a copy constructor, and
3986  //   this object and the copy have the same cv-unqualified type, an
3987  //   implementation is permitted to treat the original and the copy as two
3988  //   different ways of referring to the same object and not perform a copy at
3989  //   all, even if the class copy constructor or destructor have side effects.
3990
3991  // FIXME: Is this enough?
3992  if (Constructor->isCopyConstructor()) {
3993    Expr *E = ((Expr **)ExprArgs.get())[0];
3994    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3995      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3996        E = ICE->getSubExpr();
3997    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3998      E = FCE->getSubExpr();
3999    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
4000      E = BE->getSubExpr();
4001    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4002      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4003        E = ICE->getSubExpr();
4004
4005    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4006      Elidable = !CE->getCallReturnType()->isReferenceType();
4007    else if (isa<CXXTemporaryObjectExpr>(E))
4008      Elidable = true;
4009    else if (isa<CXXConstructExpr>(E))
4010      Elidable = true;
4011  }
4012
4013  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4014                               Elidable, move(ExprArgs), RequiresZeroInit,
4015                               BaseInitialization);
4016}
4017
4018/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4019/// including handling of its default argument expressions.
4020Sema::OwningExprResult
4021Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4022                            CXXConstructorDecl *Constructor, bool Elidable,
4023                            MultiExprArg ExprArgs,
4024                            bool RequiresZeroInit,
4025                            bool BaseInitialization) {
4026  unsigned NumExprs = ExprArgs.size();
4027  Expr **Exprs = (Expr **)ExprArgs.release();
4028
4029  MarkDeclarationReferenced(ConstructLoc, Constructor);
4030  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4031                                        Constructor, Elidable, Exprs, NumExprs,
4032                                        RequiresZeroInit, BaseInitialization));
4033}
4034
4035bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4036                                        CXXConstructorDecl *Constructor,
4037                                        MultiExprArg Exprs) {
4038  OwningExprResult TempResult =
4039    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4040                          move(Exprs));
4041  if (TempResult.isInvalid())
4042    return true;
4043
4044  Expr *Temp = TempResult.takeAs<Expr>();
4045  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4046  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4047  VD->setInit(Temp);
4048
4049  return false;
4050}
4051
4052void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4053  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4054  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4055      !ClassDecl->hasTrivialDestructor()) {
4056    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4057    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4058    CheckDestructorAccess(VD->getLocation(), Destructor,
4059                          PartialDiagnostic(diag::err_access_dtor_var)
4060                            << VD->getDeclName()
4061                            << VD->getType());
4062  }
4063}
4064
4065/// AddCXXDirectInitializerToDecl - This action is called immediately after
4066/// ActOnDeclarator, when a C++ direct initializer is present.
4067/// e.g: "int x(1);"
4068void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4069                                         SourceLocation LParenLoc,
4070                                         MultiExprArg Exprs,
4071                                         SourceLocation *CommaLocs,
4072                                         SourceLocation RParenLoc) {
4073  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4074  Decl *RealDecl = Dcl.getAs<Decl>();
4075
4076  // If there is no declaration, there was an error parsing it.  Just ignore
4077  // the initializer.
4078  if (RealDecl == 0)
4079    return;
4080
4081  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4082  if (!VDecl) {
4083    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4084    RealDecl->setInvalidDecl();
4085    return;
4086  }
4087
4088  // We will represent direct-initialization similarly to copy-initialization:
4089  //    int x(1);  -as-> int x = 1;
4090  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4091  //
4092  // Clients that want to distinguish between the two forms, can check for
4093  // direct initializer using VarDecl::hasCXXDirectInitializer().
4094  // A major benefit is that clients that don't particularly care about which
4095  // exactly form was it (like the CodeGen) can handle both cases without
4096  // special case code.
4097
4098  // C++ 8.5p11:
4099  // The form of initialization (using parentheses or '=') is generally
4100  // insignificant, but does matter when the entity being initialized has a
4101  // class type.
4102  QualType DeclInitType = VDecl->getType();
4103  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4104    DeclInitType = Context.getBaseElementType(Array);
4105
4106  if (!VDecl->getType()->isDependentType() &&
4107      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4108                          diag::err_typecheck_decl_incomplete_type)) {
4109    VDecl->setInvalidDecl();
4110    return;
4111  }
4112
4113  // The variable can not have an abstract class type.
4114  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4115                             diag::err_abstract_type_in_decl,
4116                             AbstractVariableType))
4117    VDecl->setInvalidDecl();
4118
4119  const VarDecl *Def;
4120  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4121    Diag(VDecl->getLocation(), diag::err_redefinition)
4122    << VDecl->getDeclName();
4123    Diag(Def->getLocation(), diag::note_previous_definition);
4124    VDecl->setInvalidDecl();
4125    return;
4126  }
4127
4128  // If either the declaration has a dependent type or if any of the
4129  // expressions is type-dependent, we represent the initialization
4130  // via a ParenListExpr for later use during template instantiation.
4131  if (VDecl->getType()->isDependentType() ||
4132      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4133    // Let clients know that initialization was done with a direct initializer.
4134    VDecl->setCXXDirectInitializer(true);
4135
4136    // Store the initialization expressions as a ParenListExpr.
4137    unsigned NumExprs = Exprs.size();
4138    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4139                                               (Expr **)Exprs.release(),
4140                                               NumExprs, RParenLoc));
4141    return;
4142  }
4143
4144  // Capture the variable that is being initialized and the style of
4145  // initialization.
4146  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4147
4148  // FIXME: Poor source location information.
4149  InitializationKind Kind
4150    = InitializationKind::CreateDirect(VDecl->getLocation(),
4151                                       LParenLoc, RParenLoc);
4152
4153  InitializationSequence InitSeq(*this, Entity, Kind,
4154                                 (Expr**)Exprs.get(), Exprs.size());
4155  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4156  if (Result.isInvalid()) {
4157    VDecl->setInvalidDecl();
4158    return;
4159  }
4160
4161  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4162  VDecl->setInit(Result.takeAs<Expr>());
4163  VDecl->setCXXDirectInitializer(true);
4164
4165  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4166    FinalizeVarWithDestructor(VDecl, Record);
4167}
4168
4169/// \brief Add the applicable constructor candidates for an initialization
4170/// by constructor.
4171static void AddConstructorInitializationCandidates(Sema &SemaRef,
4172                                                   QualType ClassType,
4173                                                   Expr **Args,
4174                                                   unsigned NumArgs,
4175                                                   InitializationKind Kind,
4176                                           OverloadCandidateSet &CandidateSet) {
4177  // C++ [dcl.init]p14:
4178  //   If the initialization is direct-initialization, or if it is
4179  //   copy-initialization where the cv-unqualified version of the
4180  //   source type is the same class as, or a derived class of, the
4181  //   class of the destination, constructors are considered. The
4182  //   applicable constructors are enumerated (13.3.1.3), and the
4183  //   best one is chosen through overload resolution (13.3). The
4184  //   constructor so selected is called to initialize the object,
4185  //   with the initializer expression(s) as its argument(s). If no
4186  //   constructor applies, or the overload resolution is ambiguous,
4187  //   the initialization is ill-formed.
4188  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4189  assert(ClassRec && "Can only initialize a class type here");
4190
4191  // FIXME: When we decide not to synthesize the implicitly-declared
4192  // constructors, we'll need to make them appear here.
4193
4194  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4195  DeclarationName ConstructorName
4196    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4197              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4198  DeclContext::lookup_const_iterator Con, ConEnd;
4199  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4200       Con != ConEnd; ++Con) {
4201    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4202
4203    // Find the constructor (which may be a template).
4204    CXXConstructorDecl *Constructor = 0;
4205    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4206    if (ConstructorTmpl)
4207      Constructor
4208      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4209    else
4210      Constructor = cast<CXXConstructorDecl>(*Con);
4211
4212    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4213        (Kind.getKind() == InitializationKind::IK_Value) ||
4214        (Kind.getKind() == InitializationKind::IK_Copy &&
4215         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4216        ((Kind.getKind() == InitializationKind::IK_Default) &&
4217         Constructor->isDefaultConstructor())) {
4218      if (ConstructorTmpl)
4219        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4220                                             /*ExplicitArgs*/ 0,
4221                                             Args, NumArgs, CandidateSet);
4222      else
4223        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4224                                     Args, NumArgs, CandidateSet);
4225    }
4226  }
4227}
4228
4229/// \brief Attempt to perform initialization by constructor
4230/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4231/// copy-initialization.
4232///
4233/// This routine determines whether initialization by constructor is possible,
4234/// but it does not emit any diagnostics in the case where the initialization
4235/// is ill-formed.
4236///
4237/// \param ClassType the type of the object being initialized, which must have
4238/// class type.
4239///
4240/// \param Args the arguments provided to initialize the object
4241///
4242/// \param NumArgs the number of arguments provided to initialize the object
4243///
4244/// \param Kind the type of initialization being performed
4245///
4246/// \returns the constructor used to initialize the object, if successful.
4247/// Otherwise, emits a diagnostic and returns NULL.
4248CXXConstructorDecl *
4249Sema::TryInitializationByConstructor(QualType ClassType,
4250                                     Expr **Args, unsigned NumArgs,
4251                                     SourceLocation Loc,
4252                                     InitializationKind Kind) {
4253  // Build the overload candidate set
4254  OverloadCandidateSet CandidateSet(Loc);
4255  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4256                                         CandidateSet);
4257
4258  // Determine whether we found a constructor we can use.
4259  OverloadCandidateSet::iterator Best;
4260  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4261    case OR_Success:
4262    case OR_Deleted:
4263      // We found a constructor. Return it.
4264      return cast<CXXConstructorDecl>(Best->Function);
4265
4266    case OR_No_Viable_Function:
4267    case OR_Ambiguous:
4268      // Overload resolution failed. Return nothing.
4269      return 0;
4270  }
4271
4272  // Silence GCC warning
4273  return 0;
4274}
4275
4276/// \brief Given a constructor and the set of arguments provided for the
4277/// constructor, convert the arguments and add any required default arguments
4278/// to form a proper call to this constructor.
4279///
4280/// \returns true if an error occurred, false otherwise.
4281bool
4282Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4283                              MultiExprArg ArgsPtr,
4284                              SourceLocation Loc,
4285                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4286  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4287  unsigned NumArgs = ArgsPtr.size();
4288  Expr **Args = (Expr **)ArgsPtr.get();
4289
4290  const FunctionProtoType *Proto
4291    = Constructor->getType()->getAs<FunctionProtoType>();
4292  assert(Proto && "Constructor without a prototype?");
4293  unsigned NumArgsInProto = Proto->getNumArgs();
4294
4295  // If too few arguments are available, we'll fill in the rest with defaults.
4296  if (NumArgs < NumArgsInProto)
4297    ConvertedArgs.reserve(NumArgsInProto);
4298  else
4299    ConvertedArgs.reserve(NumArgs);
4300
4301  VariadicCallType CallType =
4302    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4303  llvm::SmallVector<Expr *, 8> AllArgs;
4304  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4305                                        Proto, 0, Args, NumArgs, AllArgs,
4306                                        CallType);
4307  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4308    ConvertedArgs.push_back(AllArgs[i]);
4309  return Invalid;
4310}
4311
4312/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4313/// determine whether they are reference-related,
4314/// reference-compatible, reference-compatible with added
4315/// qualification, or incompatible, for use in C++ initialization by
4316/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4317/// type, and the first type (T1) is the pointee type of the reference
4318/// type being initialized.
4319Sema::ReferenceCompareResult
4320Sema::CompareReferenceRelationship(SourceLocation Loc,
4321                                   QualType OrigT1, QualType OrigT2,
4322                                   bool& DerivedToBase) {
4323  assert(!OrigT1->isReferenceType() &&
4324    "T1 must be the pointee type of the reference type");
4325  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4326
4327  QualType T1 = Context.getCanonicalType(OrigT1);
4328  QualType T2 = Context.getCanonicalType(OrigT2);
4329  Qualifiers T1Quals, T2Quals;
4330  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4331  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4332
4333  // C++ [dcl.init.ref]p4:
4334  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4335  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4336  //   T1 is a base class of T2.
4337  if (UnqualT1 == UnqualT2)
4338    DerivedToBase = false;
4339  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4340           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4341           IsDerivedFrom(UnqualT2, UnqualT1))
4342    DerivedToBase = true;
4343  else
4344    return Ref_Incompatible;
4345
4346  // At this point, we know that T1 and T2 are reference-related (at
4347  // least).
4348
4349  // If the type is an array type, promote the element qualifiers to the type
4350  // for comparison.
4351  if (isa<ArrayType>(T1) && T1Quals)
4352    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4353  if (isa<ArrayType>(T2) && T2Quals)
4354    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4355
4356  // C++ [dcl.init.ref]p4:
4357  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4358  //   reference-related to T2 and cv1 is the same cv-qualification
4359  //   as, or greater cv-qualification than, cv2. For purposes of
4360  //   overload resolution, cases for which cv1 is greater
4361  //   cv-qualification than cv2 are identified as
4362  //   reference-compatible with added qualification (see 13.3.3.2).
4363  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4364    return Ref_Compatible;
4365  else if (T1.isMoreQualifiedThan(T2))
4366    return Ref_Compatible_With_Added_Qualification;
4367  else
4368    return Ref_Related;
4369}
4370
4371/// CheckReferenceInit - Check the initialization of a reference
4372/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4373/// the initializer (either a simple initializer or an initializer
4374/// list), and DeclType is the type of the declaration. When ICS is
4375/// non-null, this routine will compute the implicit conversion
4376/// sequence according to C++ [over.ics.ref] and will not produce any
4377/// diagnostics; when ICS is null, it will emit diagnostics when any
4378/// errors are found. Either way, a return value of true indicates
4379/// that there was a failure, a return value of false indicates that
4380/// the reference initialization succeeded.
4381///
4382/// When @p SuppressUserConversions, user-defined conversions are
4383/// suppressed.
4384/// When @p AllowExplicit, we also permit explicit user-defined
4385/// conversion functions.
4386/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4387/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4388/// This is used when this is called from a C-style cast.
4389bool
4390Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4391                         SourceLocation DeclLoc,
4392                         bool SuppressUserConversions,
4393                         bool AllowExplicit, bool ForceRValue,
4394                         ImplicitConversionSequence *ICS,
4395                         bool IgnoreBaseAccess) {
4396  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4397
4398  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4399  QualType T2 = Init->getType();
4400
4401  // If the initializer is the address of an overloaded function, try
4402  // to resolve the overloaded function. If all goes well, T2 is the
4403  // type of the resulting function.
4404  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4405    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4406                                                          ICS != 0);
4407    if (Fn) {
4408      // Since we're performing this reference-initialization for
4409      // real, update the initializer with the resulting function.
4410      if (!ICS) {
4411        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4412          return true;
4413
4414        Init = FixOverloadedFunctionReference(Init, Fn);
4415      }
4416
4417      T2 = Fn->getType();
4418    }
4419  }
4420
4421  // Compute some basic properties of the types and the initializer.
4422  bool isRValRef = DeclType->isRValueReferenceType();
4423  bool DerivedToBase = false;
4424  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4425                                                  Init->isLvalue(Context);
4426  ReferenceCompareResult RefRelationship
4427    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4428
4429  // Most paths end in a failed conversion.
4430  if (ICS) {
4431    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4432  }
4433
4434  // C++ [dcl.init.ref]p5:
4435  //   A reference to type "cv1 T1" is initialized by an expression
4436  //   of type "cv2 T2" as follows:
4437
4438  //     -- If the initializer expression
4439
4440  // Rvalue references cannot bind to lvalues (N2812).
4441  // There is absolutely no situation where they can. In particular, note that
4442  // this is ill-formed, even if B has a user-defined conversion to A&&:
4443  //   B b;
4444  //   A&& r = b;
4445  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4446    if (!ICS)
4447      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4448        << Init->getSourceRange();
4449    return true;
4450  }
4451
4452  bool BindsDirectly = false;
4453  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4454  //          reference-compatible with "cv2 T2," or
4455  //
4456  // Note that the bit-field check is skipped if we are just computing
4457  // the implicit conversion sequence (C++ [over.best.ics]p2).
4458  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4459      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4460    BindsDirectly = true;
4461
4462    if (ICS) {
4463      // C++ [over.ics.ref]p1:
4464      //   When a parameter of reference type binds directly (8.5.3)
4465      //   to an argument expression, the implicit conversion sequence
4466      //   is the identity conversion, unless the argument expression
4467      //   has a type that is a derived class of the parameter type,
4468      //   in which case the implicit conversion sequence is a
4469      //   derived-to-base Conversion (13.3.3.1).
4470      ICS->setStandard();
4471      ICS->Standard.First = ICK_Identity;
4472      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4473      ICS->Standard.Third = ICK_Identity;
4474      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4475      ICS->Standard.setToType(0, T2);
4476      ICS->Standard.setToType(1, T1);
4477      ICS->Standard.setToType(2, T1);
4478      ICS->Standard.ReferenceBinding = true;
4479      ICS->Standard.DirectBinding = true;
4480      ICS->Standard.RRefBinding = false;
4481      ICS->Standard.CopyConstructor = 0;
4482
4483      // Nothing more to do: the inaccessibility/ambiguity check for
4484      // derived-to-base conversions is suppressed when we're
4485      // computing the implicit conversion sequence (C++
4486      // [over.best.ics]p2).
4487      return false;
4488    } else {
4489      // Perform the conversion.
4490      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4491      if (DerivedToBase)
4492        CK = CastExpr::CK_DerivedToBase;
4493      else if(CheckExceptionSpecCompatibility(Init, T1))
4494        return true;
4495      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4496    }
4497  }
4498
4499  //       -- has a class type (i.e., T2 is a class type) and can be
4500  //          implicitly converted to an lvalue of type "cv3 T3,"
4501  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4502  //          92) (this conversion is selected by enumerating the
4503  //          applicable conversion functions (13.3.1.6) and choosing
4504  //          the best one through overload resolution (13.3)),
4505  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4506      !RequireCompleteType(DeclLoc, T2, 0)) {
4507    CXXRecordDecl *T2RecordDecl
4508      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4509
4510    OverloadCandidateSet CandidateSet(DeclLoc);
4511    const UnresolvedSetImpl *Conversions
4512      = T2RecordDecl->getVisibleConversionFunctions();
4513    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4514           E = Conversions->end(); I != E; ++I) {
4515      NamedDecl *D = *I;
4516      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4517      if (isa<UsingShadowDecl>(D))
4518        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4519
4520      FunctionTemplateDecl *ConvTemplate
4521        = dyn_cast<FunctionTemplateDecl>(D);
4522      CXXConversionDecl *Conv;
4523      if (ConvTemplate)
4524        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4525      else
4526        Conv = cast<CXXConversionDecl>(D);
4527
4528      // If the conversion function doesn't return a reference type,
4529      // it can't be considered for this conversion.
4530      if (Conv->getConversionType()->isLValueReferenceType() &&
4531          (AllowExplicit || !Conv->isExplicit())) {
4532        if (ConvTemplate)
4533          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4534                                         Init, DeclType, CandidateSet);
4535        else
4536          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4537                                 DeclType, CandidateSet);
4538      }
4539    }
4540
4541    OverloadCandidateSet::iterator Best;
4542    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4543    case OR_Success:
4544      // C++ [over.ics.ref]p1:
4545      //
4546      //   [...] If the parameter binds directly to the result of
4547      //   applying a conversion function to the argument
4548      //   expression, the implicit conversion sequence is a
4549      //   user-defined conversion sequence (13.3.3.1.2), with the
4550      //   second standard conversion sequence either an identity
4551      //   conversion or, if the conversion function returns an
4552      //   entity of a type that is a derived class of the parameter
4553      //   type, a derived-to-base Conversion.
4554      if (!Best->FinalConversion.DirectBinding)
4555        break;
4556
4557      // This is a direct binding.
4558      BindsDirectly = true;
4559
4560      if (ICS) {
4561        ICS->setUserDefined();
4562        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4563        ICS->UserDefined.After = Best->FinalConversion;
4564        ICS->UserDefined.ConversionFunction = Best->Function;
4565        ICS->UserDefined.EllipsisConversion = false;
4566        assert(ICS->UserDefined.After.ReferenceBinding &&
4567               ICS->UserDefined.After.DirectBinding &&
4568               "Expected a direct reference binding!");
4569        return false;
4570      } else {
4571        OwningExprResult InitConversion =
4572          BuildCXXCastArgument(DeclLoc, QualType(),
4573                               CastExpr::CK_UserDefinedConversion,
4574                               cast<CXXMethodDecl>(Best->Function),
4575                               Owned(Init));
4576        Init = InitConversion.takeAs<Expr>();
4577
4578        if (CheckExceptionSpecCompatibility(Init, T1))
4579          return true;
4580        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4581                          /*isLvalue=*/true);
4582      }
4583      break;
4584
4585    case OR_Ambiguous:
4586      if (ICS) {
4587        ICS->setAmbiguous();
4588        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4589             Cand != CandidateSet.end(); ++Cand)
4590          if (Cand->Viable)
4591            ICS->Ambiguous.addConversion(Cand->Function);
4592        break;
4593      }
4594      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4595            << Init->getSourceRange();
4596      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4597      return true;
4598
4599    case OR_No_Viable_Function:
4600    case OR_Deleted:
4601      // There was no suitable conversion, or we found a deleted
4602      // conversion; continue with other checks.
4603      break;
4604    }
4605  }
4606
4607  if (BindsDirectly) {
4608    // C++ [dcl.init.ref]p4:
4609    //   [...] In all cases where the reference-related or
4610    //   reference-compatible relationship of two types is used to
4611    //   establish the validity of a reference binding, and T1 is a
4612    //   base class of T2, a program that necessitates such a binding
4613    //   is ill-formed if T1 is an inaccessible (clause 11) or
4614    //   ambiguous (10.2) base class of T2.
4615    //
4616    // Note that we only check this condition when we're allowed to
4617    // complain about errors, because we should not be checking for
4618    // ambiguity (or inaccessibility) unless the reference binding
4619    // actually happens.
4620    if (DerivedToBase)
4621      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4622                                          Init->getSourceRange(),
4623                                          IgnoreBaseAccess);
4624    else
4625      return false;
4626  }
4627
4628  //     -- Otherwise, the reference shall be to a non-volatile const
4629  //        type (i.e., cv1 shall be const), or the reference shall be an
4630  //        rvalue reference and the initializer expression shall be an rvalue.
4631  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4632    if (!ICS)
4633      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4634        << T1.isVolatileQualified()
4635        << T1 << int(InitLvalue != Expr::LV_Valid)
4636        << T2 << Init->getSourceRange();
4637    return true;
4638  }
4639
4640  //       -- If the initializer expression is an rvalue, with T2 a
4641  //          class type, and "cv1 T1" is reference-compatible with
4642  //          "cv2 T2," the reference is bound in one of the
4643  //          following ways (the choice is implementation-defined):
4644  //
4645  //          -- The reference is bound to the object represented by
4646  //             the rvalue (see 3.10) or to a sub-object within that
4647  //             object.
4648  //
4649  //          -- A temporary of type "cv1 T2" [sic] is created, and
4650  //             a constructor is called to copy the entire rvalue
4651  //             object into the temporary. The reference is bound to
4652  //             the temporary or to a sub-object within the
4653  //             temporary.
4654  //
4655  //          The constructor that would be used to make the copy
4656  //          shall be callable whether or not the copy is actually
4657  //          done.
4658  //
4659  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4660  // freedom, so we will always take the first option and never build
4661  // a temporary in this case. FIXME: We will, however, have to check
4662  // for the presence of a copy constructor in C++98/03 mode.
4663  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4664      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4665    if (ICS) {
4666      ICS->setStandard();
4667      ICS->Standard.First = ICK_Identity;
4668      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4669      ICS->Standard.Third = ICK_Identity;
4670      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4671      ICS->Standard.setToType(0, T2);
4672      ICS->Standard.setToType(1, T1);
4673      ICS->Standard.setToType(2, T1);
4674      ICS->Standard.ReferenceBinding = true;
4675      ICS->Standard.DirectBinding = false;
4676      ICS->Standard.RRefBinding = isRValRef;
4677      ICS->Standard.CopyConstructor = 0;
4678    } else {
4679      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4680      if (DerivedToBase)
4681        CK = CastExpr::CK_DerivedToBase;
4682      else if(CheckExceptionSpecCompatibility(Init, T1))
4683        return true;
4684      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4685    }
4686    return false;
4687  }
4688
4689  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4690  //          initialized from the initializer expression using the
4691  //          rules for a non-reference copy initialization (8.5). The
4692  //          reference is then bound to the temporary. If T1 is
4693  //          reference-related to T2, cv1 must be the same
4694  //          cv-qualification as, or greater cv-qualification than,
4695  //          cv2; otherwise, the program is ill-formed.
4696  if (RefRelationship == Ref_Related) {
4697    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4698    // we would be reference-compatible or reference-compatible with
4699    // added qualification. But that wasn't the case, so the reference
4700    // initialization fails.
4701    if (!ICS)
4702      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4703        << T1 << int(InitLvalue != Expr::LV_Valid)
4704        << T2 << Init->getSourceRange();
4705    return true;
4706  }
4707
4708  // If at least one of the types is a class type, the types are not
4709  // related, and we aren't allowed any user conversions, the
4710  // reference binding fails. This case is important for breaking
4711  // recursion, since TryImplicitConversion below will attempt to
4712  // create a temporary through the use of a copy constructor.
4713  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4714      (T1->isRecordType() || T2->isRecordType())) {
4715    if (!ICS)
4716      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4717        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4718    return true;
4719  }
4720
4721  // Actually try to convert the initializer to T1.
4722  if (ICS) {
4723    // C++ [over.ics.ref]p2:
4724    //
4725    //   When a parameter of reference type is not bound directly to
4726    //   an argument expression, the conversion sequence is the one
4727    //   required to convert the argument expression to the
4728    //   underlying type of the reference according to
4729    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4730    //   to copy-initializing a temporary of the underlying type with
4731    //   the argument expression. Any difference in top-level
4732    //   cv-qualification is subsumed by the initialization itself
4733    //   and does not constitute a conversion.
4734    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4735                                 /*AllowExplicit=*/false,
4736                                 /*ForceRValue=*/false,
4737                                 /*InOverloadResolution=*/false);
4738
4739    // Of course, that's still a reference binding.
4740    if (ICS->isStandard()) {
4741      ICS->Standard.ReferenceBinding = true;
4742      ICS->Standard.RRefBinding = isRValRef;
4743    } else if (ICS->isUserDefined()) {
4744      ICS->UserDefined.After.ReferenceBinding = true;
4745      ICS->UserDefined.After.RRefBinding = isRValRef;
4746    }
4747    return ICS->isBad();
4748  } else {
4749    ImplicitConversionSequence Conversions;
4750    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4751                                                   false, false,
4752                                                   Conversions);
4753    if (badConversion) {
4754      if (Conversions.isAmbiguous()) {
4755        Diag(DeclLoc,
4756             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4757        for (int j = Conversions.Ambiguous.conversions().size()-1;
4758             j >= 0; j--) {
4759          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4760          NoteOverloadCandidate(Func);
4761        }
4762      }
4763      else {
4764        if (isRValRef)
4765          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4766            << Init->getSourceRange();
4767        else
4768          Diag(DeclLoc, diag::err_invalid_initialization)
4769            << DeclType << Init->getType() << Init->getSourceRange();
4770      }
4771    }
4772    return badConversion;
4773  }
4774}
4775
4776static inline bool
4777CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4778                                       const FunctionDecl *FnDecl) {
4779  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4780  if (isa<NamespaceDecl>(DC)) {
4781    return SemaRef.Diag(FnDecl->getLocation(),
4782                        diag::err_operator_new_delete_declared_in_namespace)
4783      << FnDecl->getDeclName();
4784  }
4785
4786  if (isa<TranslationUnitDecl>(DC) &&
4787      FnDecl->getStorageClass() == FunctionDecl::Static) {
4788    return SemaRef.Diag(FnDecl->getLocation(),
4789                        diag::err_operator_new_delete_declared_static)
4790      << FnDecl->getDeclName();
4791  }
4792
4793  return false;
4794}
4795
4796static inline bool
4797CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4798                            CanQualType ExpectedResultType,
4799                            CanQualType ExpectedFirstParamType,
4800                            unsigned DependentParamTypeDiag,
4801                            unsigned InvalidParamTypeDiag) {
4802  QualType ResultType =
4803    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4804
4805  // Check that the result type is not dependent.
4806  if (ResultType->isDependentType())
4807    return SemaRef.Diag(FnDecl->getLocation(),
4808                        diag::err_operator_new_delete_dependent_result_type)
4809    << FnDecl->getDeclName() << ExpectedResultType;
4810
4811  // Check that the result type is what we expect.
4812  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4813    return SemaRef.Diag(FnDecl->getLocation(),
4814                        diag::err_operator_new_delete_invalid_result_type)
4815    << FnDecl->getDeclName() << ExpectedResultType;
4816
4817  // A function template must have at least 2 parameters.
4818  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4819    return SemaRef.Diag(FnDecl->getLocation(),
4820                      diag::err_operator_new_delete_template_too_few_parameters)
4821        << FnDecl->getDeclName();
4822
4823  // The function decl must have at least 1 parameter.
4824  if (FnDecl->getNumParams() == 0)
4825    return SemaRef.Diag(FnDecl->getLocation(),
4826                        diag::err_operator_new_delete_too_few_parameters)
4827      << FnDecl->getDeclName();
4828
4829  // Check the the first parameter type is not dependent.
4830  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4831  if (FirstParamType->isDependentType())
4832    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4833      << FnDecl->getDeclName() << ExpectedFirstParamType;
4834
4835  // Check that the first parameter type is what we expect.
4836  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4837      ExpectedFirstParamType)
4838    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4839    << FnDecl->getDeclName() << ExpectedFirstParamType;
4840
4841  return false;
4842}
4843
4844static bool
4845CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4846  // C++ [basic.stc.dynamic.allocation]p1:
4847  //   A program is ill-formed if an allocation function is declared in a
4848  //   namespace scope other than global scope or declared static in global
4849  //   scope.
4850  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4851    return true;
4852
4853  CanQualType SizeTy =
4854    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4855
4856  // C++ [basic.stc.dynamic.allocation]p1:
4857  //  The return type shall be void*. The first parameter shall have type
4858  //  std::size_t.
4859  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4860                                  SizeTy,
4861                                  diag::err_operator_new_dependent_param_type,
4862                                  diag::err_operator_new_param_type))
4863    return true;
4864
4865  // C++ [basic.stc.dynamic.allocation]p1:
4866  //  The first parameter shall not have an associated default argument.
4867  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4868    return SemaRef.Diag(FnDecl->getLocation(),
4869                        diag::err_operator_new_default_arg)
4870      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4871
4872  return false;
4873}
4874
4875static bool
4876CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4877  // C++ [basic.stc.dynamic.deallocation]p1:
4878  //   A program is ill-formed if deallocation functions are declared in a
4879  //   namespace scope other than global scope or declared static in global
4880  //   scope.
4881  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4882    return true;
4883
4884  // C++ [basic.stc.dynamic.deallocation]p2:
4885  //   Each deallocation function shall return void and its first parameter
4886  //   shall be void*.
4887  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4888                                  SemaRef.Context.VoidPtrTy,
4889                                 diag::err_operator_delete_dependent_param_type,
4890                                 diag::err_operator_delete_param_type))
4891    return true;
4892
4893  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4894  if (FirstParamType->isDependentType())
4895    return SemaRef.Diag(FnDecl->getLocation(),
4896                        diag::err_operator_delete_dependent_param_type)
4897    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4898
4899  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4900      SemaRef.Context.VoidPtrTy)
4901    return SemaRef.Diag(FnDecl->getLocation(),
4902                        diag::err_operator_delete_param_type)
4903      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4904
4905  return false;
4906}
4907
4908/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4909/// of this overloaded operator is well-formed. If so, returns false;
4910/// otherwise, emits appropriate diagnostics and returns true.
4911bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4912  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4913         "Expected an overloaded operator declaration");
4914
4915  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4916
4917  // C++ [over.oper]p5:
4918  //   The allocation and deallocation functions, operator new,
4919  //   operator new[], operator delete and operator delete[], are
4920  //   described completely in 3.7.3. The attributes and restrictions
4921  //   found in the rest of this subclause do not apply to them unless
4922  //   explicitly stated in 3.7.3.
4923  if (Op == OO_Delete || Op == OO_Array_Delete)
4924    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4925
4926  if (Op == OO_New || Op == OO_Array_New)
4927    return CheckOperatorNewDeclaration(*this, FnDecl);
4928
4929  // C++ [over.oper]p6:
4930  //   An operator function shall either be a non-static member
4931  //   function or be a non-member function and have at least one
4932  //   parameter whose type is a class, a reference to a class, an
4933  //   enumeration, or a reference to an enumeration.
4934  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4935    if (MethodDecl->isStatic())
4936      return Diag(FnDecl->getLocation(),
4937                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4938  } else {
4939    bool ClassOrEnumParam = false;
4940    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4941                                   ParamEnd = FnDecl->param_end();
4942         Param != ParamEnd; ++Param) {
4943      QualType ParamType = (*Param)->getType().getNonReferenceType();
4944      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4945          ParamType->isEnumeralType()) {
4946        ClassOrEnumParam = true;
4947        break;
4948      }
4949    }
4950
4951    if (!ClassOrEnumParam)
4952      return Diag(FnDecl->getLocation(),
4953                  diag::err_operator_overload_needs_class_or_enum)
4954        << FnDecl->getDeclName();
4955  }
4956
4957  // C++ [over.oper]p8:
4958  //   An operator function cannot have default arguments (8.3.6),
4959  //   except where explicitly stated below.
4960  //
4961  // Only the function-call operator allows default arguments
4962  // (C++ [over.call]p1).
4963  if (Op != OO_Call) {
4964    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4965         Param != FnDecl->param_end(); ++Param) {
4966      if ((*Param)->hasDefaultArg())
4967        return Diag((*Param)->getLocation(),
4968                    diag::err_operator_overload_default_arg)
4969          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4970    }
4971  }
4972
4973  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4974    { false, false, false }
4975#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4976    , { Unary, Binary, MemberOnly }
4977#include "clang/Basic/OperatorKinds.def"
4978  };
4979
4980  bool CanBeUnaryOperator = OperatorUses[Op][0];
4981  bool CanBeBinaryOperator = OperatorUses[Op][1];
4982  bool MustBeMemberOperator = OperatorUses[Op][2];
4983
4984  // C++ [over.oper]p8:
4985  //   [...] Operator functions cannot have more or fewer parameters
4986  //   than the number required for the corresponding operator, as
4987  //   described in the rest of this subclause.
4988  unsigned NumParams = FnDecl->getNumParams()
4989                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4990  if (Op != OO_Call &&
4991      ((NumParams == 1 && !CanBeUnaryOperator) ||
4992       (NumParams == 2 && !CanBeBinaryOperator) ||
4993       (NumParams < 1) || (NumParams > 2))) {
4994    // We have the wrong number of parameters.
4995    unsigned ErrorKind;
4996    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4997      ErrorKind = 2;  // 2 -> unary or binary.
4998    } else if (CanBeUnaryOperator) {
4999      ErrorKind = 0;  // 0 -> unary
5000    } else {
5001      assert(CanBeBinaryOperator &&
5002             "All non-call overloaded operators are unary or binary!");
5003      ErrorKind = 1;  // 1 -> binary
5004    }
5005
5006    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5007      << FnDecl->getDeclName() << NumParams << ErrorKind;
5008  }
5009
5010  // Overloaded operators other than operator() cannot be variadic.
5011  if (Op != OO_Call &&
5012      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5013    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5014      << FnDecl->getDeclName();
5015  }
5016
5017  // Some operators must be non-static member functions.
5018  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5019    return Diag(FnDecl->getLocation(),
5020                diag::err_operator_overload_must_be_member)
5021      << FnDecl->getDeclName();
5022  }
5023
5024  // C++ [over.inc]p1:
5025  //   The user-defined function called operator++ implements the
5026  //   prefix and postfix ++ operator. If this function is a member
5027  //   function with no parameters, or a non-member function with one
5028  //   parameter of class or enumeration type, it defines the prefix
5029  //   increment operator ++ for objects of that type. If the function
5030  //   is a member function with one parameter (which shall be of type
5031  //   int) or a non-member function with two parameters (the second
5032  //   of which shall be of type int), it defines the postfix
5033  //   increment operator ++ for objects of that type.
5034  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5035    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5036    bool ParamIsInt = false;
5037    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5038      ParamIsInt = BT->getKind() == BuiltinType::Int;
5039
5040    if (!ParamIsInt)
5041      return Diag(LastParam->getLocation(),
5042                  diag::err_operator_overload_post_incdec_must_be_int)
5043        << LastParam->getType() << (Op == OO_MinusMinus);
5044  }
5045
5046  // Notify the class if it got an assignment operator.
5047  if (Op == OO_Equal) {
5048    // Would have returned earlier otherwise.
5049    assert(isa<CXXMethodDecl>(FnDecl) &&
5050      "Overloaded = not member, but not filtered.");
5051    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5052    Method->getParent()->addedAssignmentOperator(Context, Method);
5053  }
5054
5055  return false;
5056}
5057
5058/// CheckLiteralOperatorDeclaration - Check whether the declaration
5059/// of this literal operator function is well-formed. If so, returns
5060/// false; otherwise, emits appropriate diagnostics and returns true.
5061bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5062  DeclContext *DC = FnDecl->getDeclContext();
5063  Decl::Kind Kind = DC->getDeclKind();
5064  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5065      Kind != Decl::LinkageSpec) {
5066    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5067      << FnDecl->getDeclName();
5068    return true;
5069  }
5070
5071  bool Valid = false;
5072
5073  // FIXME: Check for the one valid template signature
5074  // template <char...> type operator "" name();
5075
5076  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5077    // Check the first parameter
5078    QualType T = (*Param)->getType();
5079
5080    // unsigned long long int and long double are allowed, but only
5081    // alone.
5082    // We also allow any character type; their omission seems to be a bug
5083    // in n3000
5084    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5085        Context.hasSameType(T, Context.LongDoubleTy) ||
5086        Context.hasSameType(T, Context.CharTy) ||
5087        Context.hasSameType(T, Context.WCharTy) ||
5088        Context.hasSameType(T, Context.Char16Ty) ||
5089        Context.hasSameType(T, Context.Char32Ty)) {
5090      if (++Param == FnDecl->param_end())
5091        Valid = true;
5092      goto FinishedParams;
5093    }
5094
5095    // Otherwise it must be a pointer to const; let's strip those.
5096    const PointerType *PT = T->getAs<PointerType>();
5097    if (!PT)
5098      goto FinishedParams;
5099    T = PT->getPointeeType();
5100    if (!T.isConstQualified())
5101      goto FinishedParams;
5102    T = T.getUnqualifiedType();
5103
5104    // Move on to the second parameter;
5105    ++Param;
5106
5107    // If there is no second parameter, the first must be a const char *
5108    if (Param == FnDecl->param_end()) {
5109      if (Context.hasSameType(T, Context.CharTy))
5110        Valid = true;
5111      goto FinishedParams;
5112    }
5113
5114    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5115    // are allowed as the first parameter to a two-parameter function
5116    if (!(Context.hasSameType(T, Context.CharTy) ||
5117          Context.hasSameType(T, Context.WCharTy) ||
5118          Context.hasSameType(T, Context.Char16Ty) ||
5119          Context.hasSameType(T, Context.Char32Ty)))
5120      goto FinishedParams;
5121
5122    // The second and final parameter must be an std::size_t
5123    T = (*Param)->getType().getUnqualifiedType();
5124    if (Context.hasSameType(T, Context.getSizeType()) &&
5125        ++Param == FnDecl->param_end())
5126      Valid = true;
5127  }
5128
5129  // FIXME: This diagnostic is absolutely terrible.
5130FinishedParams:
5131  if (!Valid) {
5132    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5133      << FnDecl->getDeclName();
5134    return true;
5135  }
5136
5137  return false;
5138}
5139
5140/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5141/// linkage specification, including the language and (if present)
5142/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5143/// the location of the language string literal, which is provided
5144/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5145/// the '{' brace. Otherwise, this linkage specification does not
5146/// have any braces.
5147Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5148                                                     SourceLocation ExternLoc,
5149                                                     SourceLocation LangLoc,
5150                                                     const char *Lang,
5151                                                     unsigned StrSize,
5152                                                     SourceLocation LBraceLoc) {
5153  LinkageSpecDecl::LanguageIDs Language;
5154  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5155    Language = LinkageSpecDecl::lang_c;
5156  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5157    Language = LinkageSpecDecl::lang_cxx;
5158  else {
5159    Diag(LangLoc, diag::err_bad_language);
5160    return DeclPtrTy();
5161  }
5162
5163  // FIXME: Add all the various semantics of linkage specifications
5164
5165  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5166                                               LangLoc, Language,
5167                                               LBraceLoc.isValid());
5168  CurContext->addDecl(D);
5169  PushDeclContext(S, D);
5170  return DeclPtrTy::make(D);
5171}
5172
5173/// ActOnFinishLinkageSpecification - Completely the definition of
5174/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5175/// valid, it's the position of the closing '}' brace in a linkage
5176/// specification that uses braces.
5177Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5178                                                      DeclPtrTy LinkageSpec,
5179                                                      SourceLocation RBraceLoc) {
5180  if (LinkageSpec)
5181    PopDeclContext();
5182  return LinkageSpec;
5183}
5184
5185/// \brief Perform semantic analysis for the variable declaration that
5186/// occurs within a C++ catch clause, returning the newly-created
5187/// variable.
5188VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5189                                         TypeSourceInfo *TInfo,
5190                                         IdentifierInfo *Name,
5191                                         SourceLocation Loc,
5192                                         SourceRange Range) {
5193  bool Invalid = false;
5194
5195  // Arrays and functions decay.
5196  if (ExDeclType->isArrayType())
5197    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5198  else if (ExDeclType->isFunctionType())
5199    ExDeclType = Context.getPointerType(ExDeclType);
5200
5201  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5202  // The exception-declaration shall not denote a pointer or reference to an
5203  // incomplete type, other than [cv] void*.
5204  // N2844 forbids rvalue references.
5205  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5206    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5207    Invalid = true;
5208  }
5209
5210  // GCC allows catching pointers and references to incomplete types
5211  // as an extension; so do we, but we warn by default.
5212
5213  QualType BaseType = ExDeclType;
5214  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5215  unsigned DK = diag::err_catch_incomplete;
5216  bool IncompleteCatchIsInvalid = true;
5217  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5218    BaseType = Ptr->getPointeeType();
5219    Mode = 1;
5220    DK = diag::ext_catch_incomplete_ptr;
5221    IncompleteCatchIsInvalid = false;
5222  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5223    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5224    BaseType = Ref->getPointeeType();
5225    Mode = 2;
5226    DK = diag::ext_catch_incomplete_ref;
5227    IncompleteCatchIsInvalid = false;
5228  }
5229  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5230      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5231      IncompleteCatchIsInvalid)
5232    Invalid = true;
5233
5234  if (!Invalid && !ExDeclType->isDependentType() &&
5235      RequireNonAbstractType(Loc, ExDeclType,
5236                             diag::err_abstract_type_in_decl,
5237                             AbstractVariableType))
5238    Invalid = true;
5239
5240  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5241                                    Name, ExDeclType, TInfo, VarDecl::None);
5242
5243  if (!Invalid) {
5244    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5245      // C++ [except.handle]p16:
5246      //   The object declared in an exception-declaration or, if the
5247      //   exception-declaration does not specify a name, a temporary (12.2) is
5248      //   copy-initialized (8.5) from the exception object. [...]
5249      //   The object is destroyed when the handler exits, after the destruction
5250      //   of any automatic objects initialized within the handler.
5251      //
5252      // We just pretend to initialize the object with itself, then make sure
5253      // it can be destroyed later.
5254      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5255      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5256                                            Loc, ExDeclType, 0);
5257      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5258                                                               SourceLocation());
5259      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5260      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5261                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5262      if (Result.isInvalid())
5263        Invalid = true;
5264      else
5265        FinalizeVarWithDestructor(ExDecl, RecordTy);
5266    }
5267  }
5268
5269  if (Invalid)
5270    ExDecl->setInvalidDecl();
5271
5272  return ExDecl;
5273}
5274
5275/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5276/// handler.
5277Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5278  TypeSourceInfo *TInfo = 0;
5279  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5280
5281  bool Invalid = D.isInvalidType();
5282  IdentifierInfo *II = D.getIdentifier();
5283  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5284    // The scope should be freshly made just for us. There is just no way
5285    // it contains any previous declaration.
5286    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5287    if (PrevDecl->isTemplateParameter()) {
5288      // Maybe we will complain about the shadowed template parameter.
5289      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5290    }
5291  }
5292
5293  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5294    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5295      << D.getCXXScopeSpec().getRange();
5296    Invalid = true;
5297  }
5298
5299  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5300                                              D.getIdentifier(),
5301                                              D.getIdentifierLoc(),
5302                                            D.getDeclSpec().getSourceRange());
5303
5304  if (Invalid)
5305    ExDecl->setInvalidDecl();
5306
5307  // Add the exception declaration into this scope.
5308  if (II)
5309    PushOnScopeChains(ExDecl, S);
5310  else
5311    CurContext->addDecl(ExDecl);
5312
5313  ProcessDeclAttributes(S, ExDecl, D);
5314  return DeclPtrTy::make(ExDecl);
5315}
5316
5317Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5318                                                   ExprArg assertexpr,
5319                                                   ExprArg assertmessageexpr) {
5320  Expr *AssertExpr = (Expr *)assertexpr.get();
5321  StringLiteral *AssertMessage =
5322    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5323
5324  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5325    llvm::APSInt Value(32);
5326    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5327      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5328        AssertExpr->getSourceRange();
5329      return DeclPtrTy();
5330    }
5331
5332    if (Value == 0) {
5333      Diag(AssertLoc, diag::err_static_assert_failed)
5334        << AssertMessage->getString() << AssertExpr->getSourceRange();
5335    }
5336  }
5337
5338  assertexpr.release();
5339  assertmessageexpr.release();
5340  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5341                                        AssertExpr, AssertMessage);
5342
5343  CurContext->addDecl(Decl);
5344  return DeclPtrTy::make(Decl);
5345}
5346
5347/// Handle a friend type declaration.  This works in tandem with
5348/// ActOnTag.
5349///
5350/// Notes on friend class templates:
5351///
5352/// We generally treat friend class declarations as if they were
5353/// declaring a class.  So, for example, the elaborated type specifier
5354/// in a friend declaration is required to obey the restrictions of a
5355/// class-head (i.e. no typedefs in the scope chain), template
5356/// parameters are required to match up with simple template-ids, &c.
5357/// However, unlike when declaring a template specialization, it's
5358/// okay to refer to a template specialization without an empty
5359/// template parameter declaration, e.g.
5360///   friend class A<T>::B<unsigned>;
5361/// We permit this as a special case; if there are any template
5362/// parameters present at all, require proper matching, i.e.
5363///   template <> template <class T> friend class A<int>::B;
5364Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5365                                          MultiTemplateParamsArg TempParams) {
5366  SourceLocation Loc = DS.getSourceRange().getBegin();
5367
5368  assert(DS.isFriendSpecified());
5369  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5370
5371  // Try to convert the decl specifier to a type.  This works for
5372  // friend templates because ActOnTag never produces a ClassTemplateDecl
5373  // for a TUK_Friend.
5374  Declarator TheDeclarator(DS, Declarator::MemberContext);
5375  TypeSourceInfo *TSI;
5376  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5377  if (TheDeclarator.isInvalidType())
5378    return DeclPtrTy();
5379
5380  // This is definitely an error in C++98.  It's probably meant to
5381  // be forbidden in C++0x, too, but the specification is just
5382  // poorly written.
5383  //
5384  // The problem is with declarations like the following:
5385  //   template <T> friend A<T>::foo;
5386  // where deciding whether a class C is a friend or not now hinges
5387  // on whether there exists an instantiation of A that causes
5388  // 'foo' to equal C.  There are restrictions on class-heads
5389  // (which we declare (by fiat) elaborated friend declarations to
5390  // be) that makes this tractable.
5391  //
5392  // FIXME: handle "template <> friend class A<T>;", which
5393  // is possibly well-formed?  Who even knows?
5394  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5395    Diag(Loc, diag::err_tagless_friend_type_template)
5396      << DS.getSourceRange();
5397    return DeclPtrTy();
5398  }
5399
5400  // C++ [class.friend]p2:
5401  //   An elaborated-type-specifier shall be used in a friend declaration
5402  //   for a class.*
5403  //   * The class-key of the elaborated-type-specifier is required.
5404  // This is one of the rare places in Clang where it's legitimate to
5405  // ask about the "spelling" of the type.
5406  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5407    // If we evaluated the type to a record type, suggest putting
5408    // a tag in front.
5409    if (const RecordType *RT = T->getAs<RecordType>()) {
5410      RecordDecl *RD = RT->getDecl();
5411
5412      std::string InsertionText = std::string(" ") + RD->getKindName();
5413
5414      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5415        << (unsigned) RD->getTagKind()
5416        << T
5417        << SourceRange(DS.getFriendSpecLoc())
5418        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5419                                                 InsertionText);
5420      return DeclPtrTy();
5421    }else {
5422      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5423          << DS.getSourceRange();
5424      return DeclPtrTy();
5425    }
5426  }
5427
5428  // Enum types cannot be friends.
5429  if (T->getAs<EnumType>()) {
5430    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5431      << SourceRange(DS.getFriendSpecLoc());
5432    return DeclPtrTy();
5433  }
5434
5435  // C++98 [class.friend]p1: A friend of a class is a function
5436  //   or class that is not a member of the class . . .
5437  // This is fixed in DR77, which just barely didn't make the C++03
5438  // deadline.  It's also a very silly restriction that seriously
5439  // affects inner classes and which nobody else seems to implement;
5440  // thus we never diagnose it, not even in -pedantic.
5441  //
5442  // But note that we could warn about it: it's always useless to
5443  // friend one of your own members (it's not, however, worthless to
5444  // friend a member of an arbitrary specialization of your template).
5445
5446  Decl *D;
5447  if (TempParams.size())
5448    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5449                                   TempParams.size(),
5450                                 (TemplateParameterList**) TempParams.release(),
5451                                   TSI,
5452                                   DS.getFriendSpecLoc());
5453  else
5454    D = FriendDecl::Create(Context, CurContext, Loc, TSI,
5455                           DS.getFriendSpecLoc());
5456  D->setAccess(AS_public);
5457  CurContext->addDecl(D);
5458
5459  return DeclPtrTy::make(D);
5460}
5461
5462Sema::DeclPtrTy
5463Sema::ActOnFriendFunctionDecl(Scope *S,
5464                              Declarator &D,
5465                              bool IsDefinition,
5466                              MultiTemplateParamsArg TemplateParams) {
5467  const DeclSpec &DS = D.getDeclSpec();
5468
5469  assert(DS.isFriendSpecified());
5470  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5471
5472  SourceLocation Loc = D.getIdentifierLoc();
5473  TypeSourceInfo *TInfo = 0;
5474  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5475
5476  // C++ [class.friend]p1
5477  //   A friend of a class is a function or class....
5478  // Note that this sees through typedefs, which is intended.
5479  // It *doesn't* see through dependent types, which is correct
5480  // according to [temp.arg.type]p3:
5481  //   If a declaration acquires a function type through a
5482  //   type dependent on a template-parameter and this causes
5483  //   a declaration that does not use the syntactic form of a
5484  //   function declarator to have a function type, the program
5485  //   is ill-formed.
5486  if (!T->isFunctionType()) {
5487    Diag(Loc, diag::err_unexpected_friend);
5488
5489    // It might be worthwhile to try to recover by creating an
5490    // appropriate declaration.
5491    return DeclPtrTy();
5492  }
5493
5494  // C++ [namespace.memdef]p3
5495  //  - If a friend declaration in a non-local class first declares a
5496  //    class or function, the friend class or function is a member
5497  //    of the innermost enclosing namespace.
5498  //  - The name of the friend is not found by simple name lookup
5499  //    until a matching declaration is provided in that namespace
5500  //    scope (either before or after the class declaration granting
5501  //    friendship).
5502  //  - If a friend function is called, its name may be found by the
5503  //    name lookup that considers functions from namespaces and
5504  //    classes associated with the types of the function arguments.
5505  //  - When looking for a prior declaration of a class or a function
5506  //    declared as a friend, scopes outside the innermost enclosing
5507  //    namespace scope are not considered.
5508
5509  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5510  DeclarationName Name = GetNameForDeclarator(D);
5511  assert(Name);
5512
5513  // The context we found the declaration in, or in which we should
5514  // create the declaration.
5515  DeclContext *DC;
5516
5517  // FIXME: handle local classes
5518
5519  // Recover from invalid scope qualifiers as if they just weren't there.
5520  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5521                        ForRedeclaration);
5522  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5523    // FIXME: RequireCompleteDeclContext
5524    DC = computeDeclContext(ScopeQual);
5525
5526    // FIXME: handle dependent contexts
5527    if (!DC) return DeclPtrTy();
5528
5529    LookupQualifiedName(Previous, DC);
5530
5531    // If searching in that context implicitly found a declaration in
5532    // a different context, treat it like it wasn't found at all.
5533    // TODO: better diagnostics for this case.  Suggesting the right
5534    // qualified scope would be nice...
5535    // FIXME: getRepresentativeDecl() is not right here at all
5536    if (Previous.empty() ||
5537        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5538      D.setInvalidType();
5539      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5540      return DeclPtrTy();
5541    }
5542
5543    // C++ [class.friend]p1: A friend of a class is a function or
5544    //   class that is not a member of the class . . .
5545    if (DC->Equals(CurContext))
5546      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5547
5548  // Otherwise walk out to the nearest namespace scope looking for matches.
5549  } else {
5550    // TODO: handle local class contexts.
5551
5552    DC = CurContext;
5553    while (true) {
5554      // Skip class contexts.  If someone can cite chapter and verse
5555      // for this behavior, that would be nice --- it's what GCC and
5556      // EDG do, and it seems like a reasonable intent, but the spec
5557      // really only says that checks for unqualified existing
5558      // declarations should stop at the nearest enclosing namespace,
5559      // not that they should only consider the nearest enclosing
5560      // namespace.
5561      while (DC->isRecord())
5562        DC = DC->getParent();
5563
5564      LookupQualifiedName(Previous, DC);
5565
5566      // TODO: decide what we think about using declarations.
5567      if (!Previous.empty())
5568        break;
5569
5570      if (DC->isFileContext()) break;
5571      DC = DC->getParent();
5572    }
5573
5574    // C++ [class.friend]p1: A friend of a class is a function or
5575    //   class that is not a member of the class . . .
5576    // C++0x changes this for both friend types and functions.
5577    // Most C++ 98 compilers do seem to give an error here, so
5578    // we do, too.
5579    if (!Previous.empty() && DC->Equals(CurContext)
5580        && !getLangOptions().CPlusPlus0x)
5581      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5582  }
5583
5584  if (DC->isFileContext()) {
5585    // This implies that it has to be an operator or function.
5586    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5587        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5588        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5589      Diag(Loc, diag::err_introducing_special_friend) <<
5590        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5591         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5592      return DeclPtrTy();
5593    }
5594  }
5595
5596  bool Redeclaration = false;
5597  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5598                                          move(TemplateParams),
5599                                          IsDefinition,
5600                                          Redeclaration);
5601  if (!ND) return DeclPtrTy();
5602
5603  assert(ND->getDeclContext() == DC);
5604  assert(ND->getLexicalDeclContext() == CurContext);
5605
5606  // Add the function declaration to the appropriate lookup tables,
5607  // adjusting the redeclarations list as necessary.  We don't
5608  // want to do this yet if the friending class is dependent.
5609  //
5610  // Also update the scope-based lookup if the target context's
5611  // lookup context is in lexical scope.
5612  if (!CurContext->isDependentContext()) {
5613    DC = DC->getLookupContext();
5614    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5615    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5616      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5617  }
5618
5619  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5620                                       D.getIdentifierLoc(), ND,
5621                                       DS.getFriendSpecLoc());
5622  FrD->setAccess(AS_public);
5623  CurContext->addDecl(FrD);
5624
5625  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5626    FrD->setSpecialization(true);
5627
5628  return DeclPtrTy::make(ND);
5629}
5630
5631void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5632  AdjustDeclIfTemplate(dcl);
5633
5634  Decl *Dcl = dcl.getAs<Decl>();
5635  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5636  if (!Fn) {
5637    Diag(DelLoc, diag::err_deleted_non_function);
5638    return;
5639  }
5640  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5641    Diag(DelLoc, diag::err_deleted_decl_not_first);
5642    Diag(Prev->getLocation(), diag::note_previous_declaration);
5643    // If the declaration wasn't the first, we delete the function anyway for
5644    // recovery.
5645  }
5646  Fn->setDeleted();
5647}
5648
5649static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5650  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5651       ++CI) {
5652    Stmt *SubStmt = *CI;
5653    if (!SubStmt)
5654      continue;
5655    if (isa<ReturnStmt>(SubStmt))
5656      Self.Diag(SubStmt->getSourceRange().getBegin(),
5657           diag::err_return_in_constructor_handler);
5658    if (!isa<Expr>(SubStmt))
5659      SearchForReturnInStmt(Self, SubStmt);
5660  }
5661}
5662
5663void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5664  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5665    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5666    SearchForReturnInStmt(*this, Handler);
5667  }
5668}
5669
5670bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5671                                             const CXXMethodDecl *Old) {
5672  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5673  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5674
5675  if (Context.hasSameType(NewTy, OldTy) ||
5676      NewTy->isDependentType() || OldTy->isDependentType())
5677    return false;
5678
5679  // Check if the return types are covariant
5680  QualType NewClassTy, OldClassTy;
5681
5682  /// Both types must be pointers or references to classes.
5683  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5684    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5685      NewClassTy = NewPT->getPointeeType();
5686      OldClassTy = OldPT->getPointeeType();
5687    }
5688  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5689    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5690      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5691        NewClassTy = NewRT->getPointeeType();
5692        OldClassTy = OldRT->getPointeeType();
5693      }
5694    }
5695  }
5696
5697  // The return types aren't either both pointers or references to a class type.
5698  if (NewClassTy.isNull()) {
5699    Diag(New->getLocation(),
5700         diag::err_different_return_type_for_overriding_virtual_function)
5701      << New->getDeclName() << NewTy << OldTy;
5702    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5703
5704    return true;
5705  }
5706
5707  // C++ [class.virtual]p6:
5708  //   If the return type of D::f differs from the return type of B::f, the
5709  //   class type in the return type of D::f shall be complete at the point of
5710  //   declaration of D::f or shall be the class type D.
5711  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5712    if (!RT->isBeingDefined() &&
5713        RequireCompleteType(New->getLocation(), NewClassTy,
5714                            PDiag(diag::err_covariant_return_incomplete)
5715                              << New->getDeclName()))
5716    return true;
5717  }
5718
5719  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5720    // Check if the new class derives from the old class.
5721    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5722      Diag(New->getLocation(),
5723           diag::err_covariant_return_not_derived)
5724      << New->getDeclName() << NewTy << OldTy;
5725      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5726      return true;
5727    }
5728
5729    // Check if we the conversion from derived to base is valid.
5730    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5731                      diag::err_covariant_return_inaccessible_base,
5732                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5733                      // FIXME: Should this point to the return type?
5734                      New->getLocation(), SourceRange(), New->getDeclName())) {
5735      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5736      return true;
5737    }
5738  }
5739
5740  // The qualifiers of the return types must be the same.
5741  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5742    Diag(New->getLocation(),
5743         diag::err_covariant_return_type_different_qualifications)
5744    << New->getDeclName() << NewTy << OldTy;
5745    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5746    return true;
5747  };
5748
5749
5750  // The new class type must have the same or less qualifiers as the old type.
5751  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5752    Diag(New->getLocation(),
5753         diag::err_covariant_return_type_class_type_more_qualified)
5754    << New->getDeclName() << NewTy << OldTy;
5755    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5756    return true;
5757  };
5758
5759  return false;
5760}
5761
5762bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5763                                             const CXXMethodDecl *Old)
5764{
5765  if (Old->hasAttr<FinalAttr>()) {
5766    Diag(New->getLocation(), diag::err_final_function_overridden)
5767      << New->getDeclName();
5768    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5769    return true;
5770  }
5771
5772  return false;
5773}
5774
5775/// \brief Mark the given method pure.
5776///
5777/// \param Method the method to be marked pure.
5778///
5779/// \param InitRange the source range that covers the "0" initializer.
5780bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5781  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5782    Method->setPure();
5783
5784    // A class is abstract if at least one function is pure virtual.
5785    Method->getParent()->setAbstract(true);
5786    return false;
5787  }
5788
5789  if (!Method->isInvalidDecl())
5790    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5791      << Method->getDeclName() << InitRange;
5792  return true;
5793}
5794
5795/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5796/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5797/// is a fresh scope pushed for just this purpose.
5798///
5799/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5800/// static data member of class X, names should be looked up in the scope of
5801/// class X.
5802void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5803  // If there is no declaration, there was an error parsing it.
5804  Decl *D = Dcl.getAs<Decl>();
5805  if (D == 0) return;
5806
5807  // We should only get called for declarations with scope specifiers, like:
5808  //   int foo::bar;
5809  assert(D->isOutOfLine());
5810  EnterDeclaratorContext(S, D->getDeclContext());
5811}
5812
5813/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5814/// initializer for the out-of-line declaration 'Dcl'.
5815void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5816  // If there is no declaration, there was an error parsing it.
5817  Decl *D = Dcl.getAs<Decl>();
5818  if (D == 0) return;
5819
5820  assert(D->isOutOfLine());
5821  ExitDeclaratorContext(S);
5822}
5823
5824/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5825/// C++ if/switch/while/for statement.
5826/// e.g: "if (int x = f()) {...}"
5827Action::DeclResult
5828Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5829  // C++ 6.4p2:
5830  // The declarator shall not specify a function or an array.
5831  // The type-specifier-seq shall not contain typedef and shall not declare a
5832  // new class or enumeration.
5833  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5834         "Parser allowed 'typedef' as storage class of condition decl.");
5835
5836  TypeSourceInfo *TInfo = 0;
5837  TagDecl *OwnedTag = 0;
5838  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5839
5840  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5841                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5842                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5843    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5844      << D.getSourceRange();
5845    return DeclResult();
5846  } else if (OwnedTag && OwnedTag->isDefinition()) {
5847    // The type-specifier-seq shall not declare a new class or enumeration.
5848    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5849  }
5850
5851  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5852  if (!Dcl)
5853    return DeclResult();
5854
5855  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5856  VD->setDeclaredInCondition(true);
5857  return Dcl;
5858}
5859
5860static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5861  // Ignore dependent types.
5862  if (MD->isDependentContext())
5863    return false;
5864
5865  // Ignore declarations that are not definitions.
5866  if (!MD->isThisDeclarationADefinition())
5867    return false;
5868
5869  CXXRecordDecl *RD = MD->getParent();
5870
5871  // Ignore classes without a vtable.
5872  if (!RD->isDynamicClass())
5873    return false;
5874
5875  switch (MD->getParent()->getTemplateSpecializationKind()) {
5876  case TSK_Undeclared:
5877  case TSK_ExplicitSpecialization:
5878    // Classes that aren't instantiations of templates don't need their
5879    // virtual methods marked until we see the definition of the key
5880    // function.
5881    break;
5882
5883  case TSK_ImplicitInstantiation:
5884    // This is a constructor of a class template; mark all of the virtual
5885    // members as referenced to ensure that they get instantiatied.
5886    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5887      return true;
5888    break;
5889
5890  case TSK_ExplicitInstantiationDeclaration:
5891    return false;
5892
5893  case TSK_ExplicitInstantiationDefinition:
5894    // This is method of a explicit instantiation; mark all of the virtual
5895    // members as referenced to ensure that they get instantiatied.
5896    return true;
5897  }
5898
5899  // Consider only out-of-line definitions of member functions. When we see
5900  // an inline definition, it's too early to compute the key function.
5901  if (!MD->isOutOfLine())
5902    return false;
5903
5904  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5905
5906  // If there is no key function, we will need a copy of the vtable.
5907  if (!KeyFunction)
5908    return true;
5909
5910  // If this is the key function, we need to mark virtual members.
5911  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5912    return true;
5913
5914  return false;
5915}
5916
5917void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5918                                             CXXMethodDecl *MD) {
5919  CXXRecordDecl *RD = MD->getParent();
5920
5921  // We will need to mark all of the virtual members as referenced to build the
5922  // vtable.
5923  if (!needsVtable(MD, Context))
5924    return;
5925
5926  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5927  if (kind == TSK_ImplicitInstantiation)
5928    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5929  else
5930    MarkVirtualMembersReferenced(Loc, RD);
5931}
5932
5933bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5934  if (ClassesWithUnmarkedVirtualMembers.empty())
5935    return false;
5936
5937  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5938    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5939    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5940    ClassesWithUnmarkedVirtualMembers.pop_back();
5941    MarkVirtualMembersReferenced(Loc, RD);
5942  }
5943
5944  return true;
5945}
5946
5947void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5948  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5949       e = RD->method_end(); i != e; ++i) {
5950    CXXMethodDecl *MD = *i;
5951
5952    // C++ [basic.def.odr]p2:
5953    //   [...] A virtual member function is used if it is not pure. [...]
5954    if (MD->isVirtual() && !MD->isPure())
5955      MarkDeclarationReferenced(Loc, MD);
5956  }
5957}
5958