SemaDeclCXX.cpp revision 33deb35535aebe81bed0eaf5c14f3032276a086e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier.
522  if (New->isConstexpr() != Old->isConstexpr()) {
523    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
524      << New << New->isConstexpr();
525    Diag(Old->getLocation(), diag::note_previous_declaration);
526    Invalid = true;
527  }
528
529  if (CheckEquivalentExceptionSpec(Old, New))
530    Invalid = true;
531
532  return Invalid;
533}
534
535/// \brief Merge the exception specifications of two variable declarations.
536///
537/// This is called when there's a redeclaration of a VarDecl. The function
538/// checks if the redeclaration might have an exception specification and
539/// validates compatibility and merges the specs if necessary.
540void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
541  // Shortcut if exceptions are disabled.
542  if (!getLangOptions().CXXExceptions)
543    return;
544
545  assert(Context.hasSameType(New->getType(), Old->getType()) &&
546         "Should only be called if types are otherwise the same.");
547
548  QualType NewType = New->getType();
549  QualType OldType = Old->getType();
550
551  // We're only interested in pointers and references to functions, as well
552  // as pointers to member functions.
553  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
554    NewType = R->getPointeeType();
555    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
556  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
557    NewType = P->getPointeeType();
558    OldType = OldType->getAs<PointerType>()->getPointeeType();
559  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
560    NewType = M->getPointeeType();
561    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
562  }
563
564  if (!NewType->isFunctionProtoType())
565    return;
566
567  // There's lots of special cases for functions. For function pointers, system
568  // libraries are hopefully not as broken so that we don't need these
569  // workarounds.
570  if (CheckEquivalentExceptionSpec(
571        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
572        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
573    New->setInvalidDecl();
574  }
575}
576
577/// CheckCXXDefaultArguments - Verify that the default arguments for a
578/// function declaration are well-formed according to C++
579/// [dcl.fct.default].
580void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
581  unsigned NumParams = FD->getNumParams();
582  unsigned p;
583
584  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
585                  isa<CXXMethodDecl>(FD) &&
586                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg()) {
592      // C++11 [expr.prim.lambda]p5:
593      //   [...] Default arguments (8.3.6) shall not be specified in the
594      //   parameter-declaration-clause of a lambda-declarator.
595      //
596      // FIXME: Core issue 974 strikes this sentence, we only provide an
597      // extension warning.
598      if (IsLambda)
599        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
600          << Param->getDefaultArgRange();
601      break;
602    }
603  }
604
605  // C++ [dcl.fct.default]p4:
606  //   In a given function declaration, all parameters
607  //   subsequent to a parameter with a default argument shall
608  //   have default arguments supplied in this or previous
609  //   declarations. A default argument shall not be redefined
610  //   by a later declaration (not even to the same value).
611  unsigned LastMissingDefaultArg = 0;
612  for (; p < NumParams; ++p) {
613    ParmVarDecl *Param = FD->getParamDecl(p);
614    if (!Param->hasDefaultArg()) {
615      if (Param->isInvalidDecl())
616        /* We already complained about this parameter. */;
617      else if (Param->getIdentifier())
618        Diag(Param->getLocation(),
619             diag::err_param_default_argument_missing_name)
620          << Param->getIdentifier();
621      else
622        Diag(Param->getLocation(),
623             diag::err_param_default_argument_missing);
624
625      LastMissingDefaultArg = p;
626    }
627  }
628
629  if (LastMissingDefaultArg > 0) {
630    // Some default arguments were missing. Clear out all of the
631    // default arguments up to (and including) the last missing
632    // default argument, so that we leave the function parameters
633    // in a semantically valid state.
634    for (p = 0; p <= LastMissingDefaultArg; ++p) {
635      ParmVarDecl *Param = FD->getParamDecl(p);
636      if (Param->hasDefaultArg()) {
637        Param->setDefaultArg(0);
638      }
639    }
640  }
641}
642
643// CheckConstexprParameterTypes - Check whether a function's parameter types
644// are all literal types. If so, return true. If not, produce a suitable
645// diagnostic and return false.
646static bool CheckConstexprParameterTypes(Sema &SemaRef,
647                                         const FunctionDecl *FD) {
648  unsigned ArgIndex = 0;
649  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
650  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
651       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
652    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
653    SourceLocation ParamLoc = PD->getLocation();
654    if (!(*i)->isDependentType() &&
655        SemaRef.RequireLiteralType(ParamLoc, *i,
656                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
657                                     << ArgIndex+1 << PD->getSourceRange()
658                                     << isa<CXXConstructorDecl>(FD)))
659      return false;
660  }
661  return true;
662}
663
664// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
665// the requirements of a constexpr function definition or a constexpr
666// constructor definition. If so, return true. If not, produce appropriate
667// diagnostics and return false.
668//
669// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
670bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
671  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
672  if (MD && MD->isInstance()) {
673    // C++11 [dcl.constexpr]p4:
674    //  The definition of a constexpr constructor shall satisfy the following
675    //  constraints:
676    //  - the class shall not have any virtual base classes;
677    const CXXRecordDecl *RD = MD->getParent();
678    if (RD->getNumVBases()) {
679      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
680        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
681        << RD->getNumVBases();
682      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
683             E = RD->vbases_end(); I != E; ++I)
684        Diag(I->getSourceRange().getBegin(),
685             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
686      return false;
687    }
688  }
689
690  if (!isa<CXXConstructorDecl>(NewFD)) {
691    // C++11 [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
698
699      // If it's not obvious why this function is virtual, find an overridden
700      // function which uses the 'virtual' keyword.
701      const CXXMethodDecl *WrittenVirtual = Method;
702      while (!WrittenVirtual->isVirtualAsWritten())
703        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
704      if (WrittenVirtual != Method)
705        Diag(WrittenVirtual->getLocation(),
706             diag::note_overridden_virtual_function);
707      return false;
708    }
709
710    // - its return type shall be a literal type;
711    QualType RT = NewFD->getResultType();
712    if (!RT->isDependentType() &&
713        RequireLiteralType(NewFD->getLocation(), RT,
714                           PDiag(diag::err_constexpr_non_literal_return)))
715      return false;
716  }
717
718  // - each of its parameter types shall be a literal type;
719  if (!CheckConstexprParameterTypes(*this, NewFD))
720    return false;
721
722  return true;
723}
724
725/// Check the given declaration statement is legal within a constexpr function
726/// body. C++0x [dcl.constexpr]p3,p4.
727///
728/// \return true if the body is OK, false if we have diagnosed a problem.
729static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
730                                   DeclStmt *DS) {
731  // C++0x [dcl.constexpr]p3 and p4:
732  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
733  //  contain only
734  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
735         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
736    switch ((*DclIt)->getKind()) {
737    case Decl::StaticAssert:
738    case Decl::Using:
739    case Decl::UsingShadow:
740    case Decl::UsingDirective:
741    case Decl::UnresolvedUsingTypename:
742      //   - static_assert-declarations
743      //   - using-declarations,
744      //   - using-directives,
745      continue;
746
747    case Decl::Typedef:
748    case Decl::TypeAlias: {
749      //   - typedef declarations and alias-declarations that do not define
750      //     classes or enumerations,
751      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
752      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
753        // Don't allow variably-modified types in constexpr functions.
754        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
755        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
756          << TL.getSourceRange() << TL.getType()
757          << isa<CXXConstructorDecl>(Dcl);
758        return false;
759      }
760      continue;
761    }
762
763    case Decl::Enum:
764    case Decl::CXXRecord:
765      // As an extension, we allow the declaration (but not the definition) of
766      // classes and enumerations in all declarations, not just in typedef and
767      // alias declarations.
768      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
769        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
770          << isa<CXXConstructorDecl>(Dcl);
771        return false;
772      }
773      continue;
774
775    case Decl::Var:
776      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
777        << isa<CXXConstructorDecl>(Dcl);
778      return false;
779
780    default:
781      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
782        << isa<CXXConstructorDecl>(Dcl);
783      return false;
784    }
785  }
786
787  return true;
788}
789
790/// Check that the given field is initialized within a constexpr constructor.
791///
792/// \param Dcl The constexpr constructor being checked.
793/// \param Field The field being checked. This may be a member of an anonymous
794///        struct or union nested within the class being checked.
795/// \param Inits All declarations, including anonymous struct/union members and
796///        indirect members, for which any initialization was provided.
797/// \param Diagnosed Set to true if an error is produced.
798static void CheckConstexprCtorInitializer(Sema &SemaRef,
799                                          const FunctionDecl *Dcl,
800                                          FieldDecl *Field,
801                                          llvm::SmallSet<Decl*, 16> &Inits,
802                                          bool &Diagnosed) {
803  if (Field->isUnnamedBitfield())
804    return;
805
806  if (Field->isAnonymousStructOrUnion() &&
807      Field->getType()->getAsCXXRecordDecl()->isEmpty())
808    return;
809
810  if (!Inits.count(Field)) {
811    if (!Diagnosed) {
812      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
813      Diagnosed = true;
814    }
815    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
816  } else if (Field->isAnonymousStructOrUnion()) {
817    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
818    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
819         I != E; ++I)
820      // If an anonymous union contains an anonymous struct of which any member
821      // is initialized, all members must be initialized.
822      if (!RD->isUnion() || Inits.count(*I))
823        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
824  }
825}
826
827/// Check the body for the given constexpr function declaration only contains
828/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
829///
830/// \return true if the body is OK, false if we have diagnosed a problem.
831bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
832  if (isa<CXXTryStmt>(Body)) {
833    // C++11 [dcl.constexpr]p3:
834    //  The definition of a constexpr function shall satisfy the following
835    //  constraints: [...]
836    // - its function-body shall be = delete, = default, or a
837    //   compound-statement
838    //
839    // C++11 [dcl.constexpr]p4:
840    //  In the definition of a constexpr constructor, [...]
841    // - its function-body shall not be a function-try-block;
842    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
843      << isa<CXXConstructorDecl>(Dcl);
844    return false;
845  }
846
847  // - its function-body shall be [...] a compound-statement that contains only
848  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
849
850  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
851  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
852         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
853    switch ((*BodyIt)->getStmtClass()) {
854    case Stmt::NullStmtClass:
855      //   - null statements,
856      continue;
857
858    case Stmt::DeclStmtClass:
859      //   - static_assert-declarations
860      //   - using-declarations,
861      //   - using-directives,
862      //   - typedef declarations and alias-declarations that do not define
863      //     classes or enumerations,
864      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
865        return false;
866      continue;
867
868    case Stmt::ReturnStmtClass:
869      //   - and exactly one return statement;
870      if (isa<CXXConstructorDecl>(Dcl))
871        break;
872
873      ReturnStmts.push_back((*BodyIt)->getLocStart());
874      continue;
875
876    default:
877      break;
878    }
879
880    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
881      << isa<CXXConstructorDecl>(Dcl);
882    return false;
883  }
884
885  if (const CXXConstructorDecl *Constructor
886        = dyn_cast<CXXConstructorDecl>(Dcl)) {
887    const CXXRecordDecl *RD = Constructor->getParent();
888    // DR1359:
889    // - every non-variant non-static data member and base class sub-object
890    //   shall be initialized;
891    // - if the class is a non-empty union, or for each non-empty anonymous
892    //   union member of a non-union class, exactly one non-static data member
893    //   shall be initialized;
894    if (RD->isUnion()) {
895      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
896        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
897        return false;
898      }
899    } else if (!Constructor->isDependentContext() &&
900               !Constructor->isDelegatingConstructor()) {
901      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
902
903      // Skip detailed checking if we have enough initializers, and we would
904      // allow at most one initializer per member.
905      bool AnyAnonStructUnionMembers = false;
906      unsigned Fields = 0;
907      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
908           E = RD->field_end(); I != E; ++I, ++Fields) {
909        if ((*I)->isAnonymousStructOrUnion()) {
910          AnyAnonStructUnionMembers = true;
911          break;
912        }
913      }
914      if (AnyAnonStructUnionMembers ||
915          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
916        // Check initialization of non-static data members. Base classes are
917        // always initialized so do not need to be checked. Dependent bases
918        // might not have initializers in the member initializer list.
919        llvm::SmallSet<Decl*, 16> Inits;
920        for (CXXConstructorDecl::init_const_iterator
921               I = Constructor->init_begin(), E = Constructor->init_end();
922             I != E; ++I) {
923          if (FieldDecl *FD = (*I)->getMember())
924            Inits.insert(FD);
925          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
926            Inits.insert(ID->chain_begin(), ID->chain_end());
927        }
928
929        bool Diagnosed = false;
930        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
931             E = RD->field_end(); I != E; ++I)
932          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
933        if (Diagnosed)
934          return false;
935      }
936    }
937  } else {
938    if (ReturnStmts.empty()) {
939      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
940      return false;
941    }
942    if (ReturnStmts.size() > 1) {
943      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
944      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
945        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
946      return false;
947    }
948  }
949
950  // C++11 [dcl.constexpr]p5:
951  //   if no function argument values exist such that the function invocation
952  //   substitution would produce a constant expression, the program is
953  //   ill-formed; no diagnostic required.
954  // C++11 [dcl.constexpr]p3:
955  //   - every constructor call and implicit conversion used in initializing the
956  //     return value shall be one of those allowed in a constant expression.
957  // C++11 [dcl.constexpr]p4:
958  //   - every constructor involved in initializing non-static data members and
959  //     base class sub-objects shall be a constexpr constructor.
960  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
961  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
962    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
963      << isa<CXXConstructorDecl>(Dcl);
964    for (size_t I = 0, N = Diags.size(); I != N; ++I)
965      Diag(Diags[I].first, Diags[I].second);
966    return false;
967  }
968
969  return true;
970}
971
972/// isCurrentClassName - Determine whether the identifier II is the
973/// name of the class type currently being defined. In the case of
974/// nested classes, this will only return true if II is the name of
975/// the innermost class.
976bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
977                              const CXXScopeSpec *SS) {
978  assert(getLangOptions().CPlusPlus && "No class names in C!");
979
980  CXXRecordDecl *CurDecl;
981  if (SS && SS->isSet() && !SS->isInvalid()) {
982    DeclContext *DC = computeDeclContext(*SS, true);
983    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
984  } else
985    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
986
987  if (CurDecl && CurDecl->getIdentifier())
988    return &II == CurDecl->getIdentifier();
989  else
990    return false;
991}
992
993/// \brief Check the validity of a C++ base class specifier.
994///
995/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
996/// and returns NULL otherwise.
997CXXBaseSpecifier *
998Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
999                         SourceRange SpecifierRange,
1000                         bool Virtual, AccessSpecifier Access,
1001                         TypeSourceInfo *TInfo,
1002                         SourceLocation EllipsisLoc) {
1003  QualType BaseType = TInfo->getType();
1004
1005  // C++ [class.union]p1:
1006  //   A union shall not have base classes.
1007  if (Class->isUnion()) {
1008    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1009      << SpecifierRange;
1010    return 0;
1011  }
1012
1013  if (EllipsisLoc.isValid() &&
1014      !TInfo->getType()->containsUnexpandedParameterPack()) {
1015    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1016      << TInfo->getTypeLoc().getSourceRange();
1017    EllipsisLoc = SourceLocation();
1018  }
1019
1020  if (BaseType->isDependentType())
1021    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1022                                          Class->getTagKind() == TTK_Class,
1023                                          Access, TInfo, EllipsisLoc);
1024
1025  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1026
1027  // Base specifiers must be record types.
1028  if (!BaseType->isRecordType()) {
1029    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1030    return 0;
1031  }
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not be used as a base class.
1035  if (BaseType->isUnionType()) {
1036    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1037    return 0;
1038  }
1039
1040  // C++ [class.derived]p2:
1041  //   The class-name in a base-specifier shall not be an incompletely
1042  //   defined class.
1043  if (RequireCompleteType(BaseLoc, BaseType,
1044                          PDiag(diag::err_incomplete_base_class)
1045                            << SpecifierRange)) {
1046    Class->setInvalidDecl();
1047    return 0;
1048  }
1049
1050  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1051  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1052  assert(BaseDecl && "Record type has no declaration");
1053  BaseDecl = BaseDecl->getDefinition();
1054  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1055  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1056  assert(CXXBaseDecl && "Base type is not a C++ type");
1057
1058  // C++ [class]p3:
1059  //   If a class is marked final and it appears as a base-type-specifier in
1060  //   base-clause, the program is ill-formed.
1061  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1062    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1063      << CXXBaseDecl->getDeclName();
1064    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1065      << CXXBaseDecl->getDeclName();
1066    return 0;
1067  }
1068
1069  if (BaseDecl->isInvalidDecl())
1070    Class->setInvalidDecl();
1071
1072  // Create the base specifier.
1073  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1074                                        Class->getTagKind() == TTK_Class,
1075                                        Access, TInfo, EllipsisLoc);
1076}
1077
1078/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1079/// one entry in the base class list of a class specifier, for
1080/// example:
1081///    class foo : public bar, virtual private baz {
1082/// 'public bar' and 'virtual private baz' are each base-specifiers.
1083BaseResult
1084Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1085                         bool Virtual, AccessSpecifier Access,
1086                         ParsedType basetype, SourceLocation BaseLoc,
1087                         SourceLocation EllipsisLoc) {
1088  if (!classdecl)
1089    return true;
1090
1091  AdjustDeclIfTemplate(classdecl);
1092  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1093  if (!Class)
1094    return true;
1095
1096  TypeSourceInfo *TInfo = 0;
1097  GetTypeFromParser(basetype, &TInfo);
1098
1099  if (EllipsisLoc.isInvalid() &&
1100      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1101                                      UPPC_BaseType))
1102    return true;
1103
1104  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1105                                                      Virtual, Access, TInfo,
1106                                                      EllipsisLoc))
1107    return BaseSpec;
1108
1109  return true;
1110}
1111
1112/// \brief Performs the actual work of attaching the given base class
1113/// specifiers to a C++ class.
1114bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1115                                unsigned NumBases) {
1116 if (NumBases == 0)
1117    return false;
1118
1119  // Used to keep track of which base types we have already seen, so
1120  // that we can properly diagnose redundant direct base types. Note
1121  // that the key is always the unqualified canonical type of the base
1122  // class.
1123  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1124
1125  // Copy non-redundant base specifiers into permanent storage.
1126  unsigned NumGoodBases = 0;
1127  bool Invalid = false;
1128  for (unsigned idx = 0; idx < NumBases; ++idx) {
1129    QualType NewBaseType
1130      = Context.getCanonicalType(Bases[idx]->getType());
1131    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1132    if (KnownBaseTypes[NewBaseType]) {
1133      // C++ [class.mi]p3:
1134      //   A class shall not be specified as a direct base class of a
1135      //   derived class more than once.
1136      Diag(Bases[idx]->getSourceRange().getBegin(),
1137           diag::err_duplicate_base_class)
1138        << KnownBaseTypes[NewBaseType]->getType()
1139        << Bases[idx]->getSourceRange();
1140
1141      // Delete the duplicate base class specifier; we're going to
1142      // overwrite its pointer later.
1143      Context.Deallocate(Bases[idx]);
1144
1145      Invalid = true;
1146    } else {
1147      // Okay, add this new base class.
1148      KnownBaseTypes[NewBaseType] = Bases[idx];
1149      Bases[NumGoodBases++] = Bases[idx];
1150      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1151        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1152          if (RD->hasAttr<WeakAttr>())
1153            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1154    }
1155  }
1156
1157  // Attach the remaining base class specifiers to the derived class.
1158  Class->setBases(Bases, NumGoodBases);
1159
1160  // Delete the remaining (good) base class specifiers, since their
1161  // data has been copied into the CXXRecordDecl.
1162  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1163    Context.Deallocate(Bases[idx]);
1164
1165  return Invalid;
1166}
1167
1168/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1169/// class, after checking whether there are any duplicate base
1170/// classes.
1171void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1172                               unsigned NumBases) {
1173  if (!ClassDecl || !Bases || !NumBases)
1174    return;
1175
1176  AdjustDeclIfTemplate(ClassDecl);
1177  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1178                       (CXXBaseSpecifier**)(Bases), NumBases);
1179}
1180
1181static CXXRecordDecl *GetClassForType(QualType T) {
1182  if (const RecordType *RT = T->getAs<RecordType>())
1183    return cast<CXXRecordDecl>(RT->getDecl());
1184  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1185    return ICT->getDecl();
1186  else
1187    return 0;
1188}
1189
1190/// \brief Determine whether the type \p Derived is a C++ class that is
1191/// derived from the type \p Base.
1192bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1193  if (!getLangOptions().CPlusPlus)
1194    return false;
1195
1196  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1197  if (!DerivedRD)
1198    return false;
1199
1200  CXXRecordDecl *BaseRD = GetClassForType(Base);
1201  if (!BaseRD)
1202    return false;
1203
1204  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1205  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1211  if (!getLangOptions().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1223}
1224
1225void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1226                              CXXCastPath &BasePathArray) {
1227  assert(BasePathArray.empty() && "Base path array must be empty!");
1228  assert(Paths.isRecordingPaths() && "Must record paths!");
1229
1230  const CXXBasePath &Path = Paths.front();
1231
1232  // We first go backward and check if we have a virtual base.
1233  // FIXME: It would be better if CXXBasePath had the base specifier for
1234  // the nearest virtual base.
1235  unsigned Start = 0;
1236  for (unsigned I = Path.size(); I != 0; --I) {
1237    if (Path[I - 1].Base->isVirtual()) {
1238      Start = I - 1;
1239      break;
1240    }
1241  }
1242
1243  // Now add all bases.
1244  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1245    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1246}
1247
1248/// \brief Determine whether the given base path includes a virtual
1249/// base class.
1250bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1251  for (CXXCastPath::const_iterator B = BasePath.begin(),
1252                                BEnd = BasePath.end();
1253       B != BEnd; ++B)
1254    if ((*B)->isVirtual())
1255      return true;
1256
1257  return false;
1258}
1259
1260/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1261/// conversion (where Derived and Base are class types) is
1262/// well-formed, meaning that the conversion is unambiguous (and
1263/// that all of the base classes are accessible). Returns true
1264/// and emits a diagnostic if the code is ill-formed, returns false
1265/// otherwise. Loc is the location where this routine should point to
1266/// if there is an error, and Range is the source range to highlight
1267/// if there is an error.
1268bool
1269Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1270                                   unsigned InaccessibleBaseID,
1271                                   unsigned AmbigiousBaseConvID,
1272                                   SourceLocation Loc, SourceRange Range,
1273                                   DeclarationName Name,
1274                                   CXXCastPath *BasePath) {
1275  // First, determine whether the path from Derived to Base is
1276  // ambiguous. This is slightly more expensive than checking whether
1277  // the Derived to Base conversion exists, because here we need to
1278  // explore multiple paths to determine if there is an ambiguity.
1279  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1280                     /*DetectVirtual=*/false);
1281  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1282  assert(DerivationOkay &&
1283         "Can only be used with a derived-to-base conversion");
1284  (void)DerivationOkay;
1285
1286  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1287    if (InaccessibleBaseID) {
1288      // Check that the base class can be accessed.
1289      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1290                                   InaccessibleBaseID)) {
1291        case AR_inaccessible:
1292          return true;
1293        case AR_accessible:
1294        case AR_dependent:
1295        case AR_delayed:
1296          break;
1297      }
1298    }
1299
1300    // Build a base path if necessary.
1301    if (BasePath)
1302      BuildBasePathArray(Paths, *BasePath);
1303    return false;
1304  }
1305
1306  // We know that the derived-to-base conversion is ambiguous, and
1307  // we're going to produce a diagnostic. Perform the derived-to-base
1308  // search just one more time to compute all of the possible paths so
1309  // that we can print them out. This is more expensive than any of
1310  // the previous derived-to-base checks we've done, but at this point
1311  // performance isn't as much of an issue.
1312  Paths.clear();
1313  Paths.setRecordingPaths(true);
1314  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1315  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1316  (void)StillOkay;
1317
1318  // Build up a textual representation of the ambiguous paths, e.g.,
1319  // D -> B -> A, that will be used to illustrate the ambiguous
1320  // conversions in the diagnostic. We only print one of the paths
1321  // to each base class subobject.
1322  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1323
1324  Diag(Loc, AmbigiousBaseConvID)
1325  << Derived << Base << PathDisplayStr << Range << Name;
1326  return true;
1327}
1328
1329bool
1330Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1331                                   SourceLocation Loc, SourceRange Range,
1332                                   CXXCastPath *BasePath,
1333                                   bool IgnoreAccess) {
1334  return CheckDerivedToBaseConversion(Derived, Base,
1335                                      IgnoreAccess ? 0
1336                                       : diag::err_upcast_to_inaccessible_base,
1337                                      diag::err_ambiguous_derived_to_base_conv,
1338                                      Loc, Range, DeclarationName(),
1339                                      BasePath);
1340}
1341
1342
1343/// @brief Builds a string representing ambiguous paths from a
1344/// specific derived class to different subobjects of the same base
1345/// class.
1346///
1347/// This function builds a string that can be used in error messages
1348/// to show the different paths that one can take through the
1349/// inheritance hierarchy to go from the derived class to different
1350/// subobjects of a base class. The result looks something like this:
1351/// @code
1352/// struct D -> struct B -> struct A
1353/// struct D -> struct C -> struct A
1354/// @endcode
1355std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1356  std::string PathDisplayStr;
1357  std::set<unsigned> DisplayedPaths;
1358  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1359       Path != Paths.end(); ++Path) {
1360    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1361      // We haven't displayed a path to this particular base
1362      // class subobject yet.
1363      PathDisplayStr += "\n    ";
1364      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1365      for (CXXBasePath::const_iterator Element = Path->begin();
1366           Element != Path->end(); ++Element)
1367        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1368    }
1369  }
1370
1371  return PathDisplayStr;
1372}
1373
1374//===----------------------------------------------------------------------===//
1375// C++ class member Handling
1376//===----------------------------------------------------------------------===//
1377
1378/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1379bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1380                                SourceLocation ASLoc,
1381                                SourceLocation ColonLoc,
1382                                AttributeList *Attrs) {
1383  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1384  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1385                                                  ASLoc, ColonLoc);
1386  CurContext->addHiddenDecl(ASDecl);
1387  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1388}
1389
1390/// CheckOverrideControl - Check C++0x override control semantics.
1391void Sema::CheckOverrideControl(const Decl *D) {
1392  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1393  if (!MD || !MD->isVirtual())
1394    return;
1395
1396  if (MD->isDependentContext())
1397    return;
1398
1399  // C++0x [class.virtual]p3:
1400  //   If a virtual function is marked with the virt-specifier override and does
1401  //   not override a member function of a base class,
1402  //   the program is ill-formed.
1403  bool HasOverriddenMethods =
1404    MD->begin_overridden_methods() != MD->end_overridden_methods();
1405  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1406    Diag(MD->getLocation(),
1407                 diag::err_function_marked_override_not_overriding)
1408      << MD->getDeclName();
1409    return;
1410  }
1411}
1412
1413/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1414/// function overrides a virtual member function marked 'final', according to
1415/// C++0x [class.virtual]p3.
1416bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1417                                                  const CXXMethodDecl *Old) {
1418  if (!Old->hasAttr<FinalAttr>())
1419    return false;
1420
1421  Diag(New->getLocation(), diag::err_final_function_overridden)
1422    << New->getDeclName();
1423  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1424  return true;
1425}
1426
1427/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1428/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1429/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1430/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1431/// present but parsing it has been deferred.
1432Decl *
1433Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1434                               MultiTemplateParamsArg TemplateParameterLists,
1435                               Expr *BW, const VirtSpecifiers &VS,
1436                               bool HasDeferredInit) {
1437  const DeclSpec &DS = D.getDeclSpec();
1438  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1439  DeclarationName Name = NameInfo.getName();
1440  SourceLocation Loc = NameInfo.getLoc();
1441
1442  // For anonymous bitfields, the location should point to the type.
1443  if (Loc.isInvalid())
1444    Loc = D.getSourceRange().getBegin();
1445
1446  Expr *BitWidth = static_cast<Expr*>(BW);
1447
1448  assert(isa<CXXRecordDecl>(CurContext));
1449  assert(!DS.isFriendSpecified());
1450
1451  bool isFunc = D.isDeclarationOfFunction();
1452
1453  // C++ 9.2p6: A member shall not be declared to have automatic storage
1454  // duration (auto, register) or with the extern storage-class-specifier.
1455  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1456  // data members and cannot be applied to names declared const or static,
1457  // and cannot be applied to reference members.
1458  switch (DS.getStorageClassSpec()) {
1459    case DeclSpec::SCS_unspecified:
1460    case DeclSpec::SCS_typedef:
1461    case DeclSpec::SCS_static:
1462      // FALL THROUGH.
1463      break;
1464    case DeclSpec::SCS_mutable:
1465      if (isFunc) {
1466        if (DS.getStorageClassSpecLoc().isValid())
1467          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1468        else
1469          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1470
1471        // FIXME: It would be nicer if the keyword was ignored only for this
1472        // declarator. Otherwise we could get follow-up errors.
1473        D.getMutableDeclSpec().ClearStorageClassSpecs();
1474      }
1475      break;
1476    default:
1477      if (DS.getStorageClassSpecLoc().isValid())
1478        Diag(DS.getStorageClassSpecLoc(),
1479             diag::err_storageclass_invalid_for_member);
1480      else
1481        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1482      D.getMutableDeclSpec().ClearStorageClassSpecs();
1483  }
1484
1485  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1486                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1487                      !isFunc);
1488
1489  Decl *Member;
1490  if (isInstField) {
1491    CXXScopeSpec &SS = D.getCXXScopeSpec();
1492
1493    // Data members must have identifiers for names.
1494    if (Name.getNameKind() != DeclarationName::Identifier) {
1495      Diag(Loc, diag::err_bad_variable_name)
1496        << Name;
1497      return 0;
1498    }
1499
1500    IdentifierInfo *II = Name.getAsIdentifierInfo();
1501
1502    // Member field could not be with "template" keyword.
1503    // So TemplateParameterLists should be empty in this case.
1504    if (TemplateParameterLists.size()) {
1505      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1506      if (TemplateParams->size()) {
1507        // There is no such thing as a member field template.
1508        Diag(D.getIdentifierLoc(), diag::err_template_member)
1509            << II
1510            << SourceRange(TemplateParams->getTemplateLoc(),
1511                TemplateParams->getRAngleLoc());
1512      } else {
1513        // There is an extraneous 'template<>' for this member.
1514        Diag(TemplateParams->getTemplateLoc(),
1515            diag::err_template_member_noparams)
1516            << II
1517            << SourceRange(TemplateParams->getTemplateLoc(),
1518                TemplateParams->getRAngleLoc());
1519      }
1520      return 0;
1521    }
1522
1523    if (SS.isSet() && !SS.isInvalid()) {
1524      // The user provided a superfluous scope specifier inside a class
1525      // definition:
1526      //
1527      // class X {
1528      //   int X::member;
1529      // };
1530      DeclContext *DC = 0;
1531      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1532        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1533          << Name << FixItHint::CreateRemoval(SS.getRange());
1534      else
1535        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1536          << Name << SS.getRange();
1537
1538      SS.clear();
1539    }
1540
1541    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1542                         HasDeferredInit, AS);
1543    assert(Member && "HandleField never returns null");
1544  } else {
1545    assert(!HasDeferredInit);
1546
1547    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1548    if (!Member) {
1549      return 0;
1550    }
1551
1552    // Non-instance-fields can't have a bitfield.
1553    if (BitWidth) {
1554      if (Member->isInvalidDecl()) {
1555        // don't emit another diagnostic.
1556      } else if (isa<VarDecl>(Member)) {
1557        // C++ 9.6p3: A bit-field shall not be a static member.
1558        // "static member 'A' cannot be a bit-field"
1559        Diag(Loc, diag::err_static_not_bitfield)
1560          << Name << BitWidth->getSourceRange();
1561      } else if (isa<TypedefDecl>(Member)) {
1562        // "typedef member 'x' cannot be a bit-field"
1563        Diag(Loc, diag::err_typedef_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else {
1566        // A function typedef ("typedef int f(); f a;").
1567        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1568        Diag(Loc, diag::err_not_integral_type_bitfield)
1569          << Name << cast<ValueDecl>(Member)->getType()
1570          << BitWidth->getSourceRange();
1571      }
1572
1573      BitWidth = 0;
1574      Member->setInvalidDecl();
1575    }
1576
1577    Member->setAccess(AS);
1578
1579    // If we have declared a member function template, set the access of the
1580    // templated declaration as well.
1581    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1582      FunTmpl->getTemplatedDecl()->setAccess(AS);
1583  }
1584
1585  if (VS.isOverrideSpecified()) {
1586    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1587    if (!MD || !MD->isVirtual()) {
1588      Diag(Member->getLocStart(),
1589           diag::override_keyword_only_allowed_on_virtual_member_functions)
1590        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1591    } else
1592      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1593  }
1594  if (VS.isFinalSpecified()) {
1595    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1596    if (!MD || !MD->isVirtual()) {
1597      Diag(Member->getLocStart(),
1598           diag::override_keyword_only_allowed_on_virtual_member_functions)
1599      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1600    } else
1601      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1602  }
1603
1604  if (VS.getLastLocation().isValid()) {
1605    // Update the end location of a method that has a virt-specifiers.
1606    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1607      MD->setRangeEnd(VS.getLastLocation());
1608  }
1609
1610  CheckOverrideControl(Member);
1611
1612  assert((Name || isInstField) && "No identifier for non-field ?");
1613
1614  if (isInstField)
1615    FieldCollector->Add(cast<FieldDecl>(Member));
1616  return Member;
1617}
1618
1619/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1620/// in-class initializer for a non-static C++ class member, and after
1621/// instantiating an in-class initializer in a class template. Such actions
1622/// are deferred until the class is complete.
1623void
1624Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1625                                       Expr *InitExpr) {
1626  FieldDecl *FD = cast<FieldDecl>(D);
1627
1628  if (!InitExpr) {
1629    FD->setInvalidDecl();
1630    FD->removeInClassInitializer();
1631    return;
1632  }
1633
1634  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  ExprResult Init = InitExpr;
1641  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1642    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1643      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1644        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1645    }
1646    Expr **Inits = &InitExpr;
1647    unsigned NumInits = 1;
1648    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1649    InitializationKind Kind = EqualLoc.isInvalid()
1650        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1651        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1652    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1653    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1654    if (Init.isInvalid()) {
1655      FD->setInvalidDecl();
1656      return;
1657    }
1658
1659    CheckImplicitConversions(Init.get(), EqualLoc);
1660  }
1661
1662  // C++0x [class.base.init]p7:
1663  //   The initialization of each base and member constitutes a
1664  //   full-expression.
1665  Init = MaybeCreateExprWithCleanups(Init);
1666  if (Init.isInvalid()) {
1667    FD->setInvalidDecl();
1668    return;
1669  }
1670
1671  InitExpr = Init.release();
1672
1673  FD->setInClassInitializer(InitExpr);
1674}
1675
1676/// \brief Find the direct and/or virtual base specifiers that
1677/// correspond to the given base type, for use in base initialization
1678/// within a constructor.
1679static bool FindBaseInitializer(Sema &SemaRef,
1680                                CXXRecordDecl *ClassDecl,
1681                                QualType BaseType,
1682                                const CXXBaseSpecifier *&DirectBaseSpec,
1683                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1684  // First, check for a direct base class.
1685  DirectBaseSpec = 0;
1686  for (CXXRecordDecl::base_class_const_iterator Base
1687         = ClassDecl->bases_begin();
1688       Base != ClassDecl->bases_end(); ++Base) {
1689    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1690      // We found a direct base of this type. That's what we're
1691      // initializing.
1692      DirectBaseSpec = &*Base;
1693      break;
1694    }
1695  }
1696
1697  // Check for a virtual base class.
1698  // FIXME: We might be able to short-circuit this if we know in advance that
1699  // there are no virtual bases.
1700  VirtualBaseSpec = 0;
1701  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1702    // We haven't found a base yet; search the class hierarchy for a
1703    // virtual base class.
1704    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1705                       /*DetectVirtual=*/false);
1706    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1707                              BaseType, Paths)) {
1708      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1709           Path != Paths.end(); ++Path) {
1710        if (Path->back().Base->isVirtual()) {
1711          VirtualBaseSpec = Path->back().Base;
1712          break;
1713        }
1714      }
1715    }
1716  }
1717
1718  return DirectBaseSpec || VirtualBaseSpec;
1719}
1720
1721/// \brief Handle a C++ member initializer using braced-init-list syntax.
1722MemInitResult
1723Sema::ActOnMemInitializer(Decl *ConstructorD,
1724                          Scope *S,
1725                          CXXScopeSpec &SS,
1726                          IdentifierInfo *MemberOrBase,
1727                          ParsedType TemplateTypeTy,
1728                          const DeclSpec &DS,
1729                          SourceLocation IdLoc,
1730                          Expr *InitList,
1731                          SourceLocation EllipsisLoc) {
1732  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1733                             DS, IdLoc, InitList,
1734                             EllipsisLoc);
1735}
1736
1737/// \brief Handle a C++ member initializer using parentheses syntax.
1738MemInitResult
1739Sema::ActOnMemInitializer(Decl *ConstructorD,
1740                          Scope *S,
1741                          CXXScopeSpec &SS,
1742                          IdentifierInfo *MemberOrBase,
1743                          ParsedType TemplateTypeTy,
1744                          const DeclSpec &DS,
1745                          SourceLocation IdLoc,
1746                          SourceLocation LParenLoc,
1747                          Expr **Args, unsigned NumArgs,
1748                          SourceLocation RParenLoc,
1749                          SourceLocation EllipsisLoc) {
1750  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1751                                           RParenLoc);
1752  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1753                             DS, IdLoc, List, EllipsisLoc);
1754}
1755
1756namespace {
1757
1758// Callback to only accept typo corrections that can be a valid C++ member
1759// intializer: either a non-static field member or a base class.
1760class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1761 public:
1762  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1763      : ClassDecl(ClassDecl) {}
1764
1765  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1766    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1767      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1768        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1769      else
1770        return isa<TypeDecl>(ND);
1771    }
1772    return false;
1773  }
1774
1775 private:
1776  CXXRecordDecl *ClassDecl;
1777};
1778
1779}
1780
1781/// \brief Handle a C++ member initializer.
1782MemInitResult
1783Sema::BuildMemInitializer(Decl *ConstructorD,
1784                          Scope *S,
1785                          CXXScopeSpec &SS,
1786                          IdentifierInfo *MemberOrBase,
1787                          ParsedType TemplateTypeTy,
1788                          const DeclSpec &DS,
1789                          SourceLocation IdLoc,
1790                          Expr *Init,
1791                          SourceLocation EllipsisLoc) {
1792  if (!ConstructorD)
1793    return true;
1794
1795  AdjustDeclIfTemplate(ConstructorD);
1796
1797  CXXConstructorDecl *Constructor
1798    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1799  if (!Constructor) {
1800    // The user wrote a constructor initializer on a function that is
1801    // not a C++ constructor. Ignore the error for now, because we may
1802    // have more member initializers coming; we'll diagnose it just
1803    // once in ActOnMemInitializers.
1804    return true;
1805  }
1806
1807  CXXRecordDecl *ClassDecl = Constructor->getParent();
1808
1809  // C++ [class.base.init]p2:
1810  //   Names in a mem-initializer-id are looked up in the scope of the
1811  //   constructor's class and, if not found in that scope, are looked
1812  //   up in the scope containing the constructor's definition.
1813  //   [Note: if the constructor's class contains a member with the
1814  //   same name as a direct or virtual base class of the class, a
1815  //   mem-initializer-id naming the member or base class and composed
1816  //   of a single identifier refers to the class member. A
1817  //   mem-initializer-id for the hidden base class may be specified
1818  //   using a qualified name. ]
1819  if (!SS.getScopeRep() && !TemplateTypeTy) {
1820    // Look for a member, first.
1821    DeclContext::lookup_result Result
1822      = ClassDecl->lookup(MemberOrBase);
1823    if (Result.first != Result.second) {
1824      ValueDecl *Member;
1825      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1826          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1827        if (EllipsisLoc.isValid())
1828          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1829            << MemberOrBase
1830            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1831
1832        return BuildMemberInitializer(Member, Init, IdLoc);
1833      }
1834    }
1835  }
1836  // It didn't name a member, so see if it names a class.
1837  QualType BaseType;
1838  TypeSourceInfo *TInfo = 0;
1839
1840  if (TemplateTypeTy) {
1841    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1842  } else if (DS.getTypeSpecType() == TST_decltype) {
1843    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1844  } else {
1845    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1846    LookupParsedName(R, S, &SS);
1847
1848    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1849    if (!TyD) {
1850      if (R.isAmbiguous()) return true;
1851
1852      // We don't want access-control diagnostics here.
1853      R.suppressDiagnostics();
1854
1855      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1856        bool NotUnknownSpecialization = false;
1857        DeclContext *DC = computeDeclContext(SS, false);
1858        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1859          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1860
1861        if (!NotUnknownSpecialization) {
1862          // When the scope specifier can refer to a member of an unknown
1863          // specialization, we take it as a type name.
1864          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1865                                       SS.getWithLocInContext(Context),
1866                                       *MemberOrBase, IdLoc);
1867          if (BaseType.isNull())
1868            return true;
1869
1870          R.clear();
1871          R.setLookupName(MemberOrBase);
1872        }
1873      }
1874
1875      // If no results were found, try to correct typos.
1876      TypoCorrection Corr;
1877      MemInitializerValidatorCCC Validator(ClassDecl);
1878      if (R.empty() && BaseType.isNull() &&
1879          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1880                              Validator, ClassDecl))) {
1881        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1882        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1883        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1884          // We have found a non-static data member with a similar
1885          // name to what was typed; complain and initialize that
1886          // member.
1887          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1888            << MemberOrBase << true << CorrectedQuotedStr
1889            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1890          Diag(Member->getLocation(), diag::note_previous_decl)
1891            << CorrectedQuotedStr;
1892
1893          return BuildMemberInitializer(Member, Init, IdLoc);
1894        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1895          const CXXBaseSpecifier *DirectBaseSpec;
1896          const CXXBaseSpecifier *VirtualBaseSpec;
1897          if (FindBaseInitializer(*this, ClassDecl,
1898                                  Context.getTypeDeclType(Type),
1899                                  DirectBaseSpec, VirtualBaseSpec)) {
1900            // We have found a direct or virtual base class with a
1901            // similar name to what was typed; complain and initialize
1902            // that base class.
1903            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1904              << MemberOrBase << false << CorrectedQuotedStr
1905              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1906
1907            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1908                                                             : VirtualBaseSpec;
1909            Diag(BaseSpec->getSourceRange().getBegin(),
1910                 diag::note_base_class_specified_here)
1911              << BaseSpec->getType()
1912              << BaseSpec->getSourceRange();
1913
1914            TyD = Type;
1915          }
1916        }
1917      }
1918
1919      if (!TyD && BaseType.isNull()) {
1920        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1921          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1922        return true;
1923      }
1924    }
1925
1926    if (BaseType.isNull()) {
1927      BaseType = Context.getTypeDeclType(TyD);
1928      if (SS.isSet()) {
1929        NestedNameSpecifier *Qualifier =
1930          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1931
1932        // FIXME: preserve source range information
1933        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1934      }
1935    }
1936  }
1937
1938  if (!TInfo)
1939    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1940
1941  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1942}
1943
1944/// Checks a member initializer expression for cases where reference (or
1945/// pointer) members are bound to by-value parameters (or their addresses).
1946static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1947                                               Expr *Init,
1948                                               SourceLocation IdLoc) {
1949  QualType MemberTy = Member->getType();
1950
1951  // We only handle pointers and references currently.
1952  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1953  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1954    return;
1955
1956  const bool IsPointer = MemberTy->isPointerType();
1957  if (IsPointer) {
1958    if (const UnaryOperator *Op
1959          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1960      // The only case we're worried about with pointers requires taking the
1961      // address.
1962      if (Op->getOpcode() != UO_AddrOf)
1963        return;
1964
1965      Init = Op->getSubExpr();
1966    } else {
1967      // We only handle address-of expression initializers for pointers.
1968      return;
1969    }
1970  }
1971
1972  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1973    // Taking the address of a temporary will be diagnosed as a hard error.
1974    if (IsPointer)
1975      return;
1976
1977    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1978      << Member << Init->getSourceRange();
1979  } else if (const DeclRefExpr *DRE
1980               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1981    // We only warn when referring to a non-reference parameter declaration.
1982    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1983    if (!Parameter || Parameter->getType()->isReferenceType())
1984      return;
1985
1986    S.Diag(Init->getExprLoc(),
1987           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1988                     : diag::warn_bind_ref_member_to_parameter)
1989      << Member << Parameter << Init->getSourceRange();
1990  } else {
1991    // Other initializers are fine.
1992    return;
1993  }
1994
1995  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1996    << (unsigned)IsPointer;
1997}
1998
1999/// Checks an initializer expression for use of uninitialized fields, such as
2000/// containing the field that is being initialized. Returns true if there is an
2001/// uninitialized field was used an updates the SourceLocation parameter; false
2002/// otherwise.
2003static bool InitExprContainsUninitializedFields(const Stmt *S,
2004                                                const ValueDecl *LhsField,
2005                                                SourceLocation *L) {
2006  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2007
2008  if (isa<CallExpr>(S)) {
2009    // Do not descend into function calls or constructors, as the use
2010    // of an uninitialized field may be valid. One would have to inspect
2011    // the contents of the function/ctor to determine if it is safe or not.
2012    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2013    // may be safe, depending on what the function/ctor does.
2014    return false;
2015  }
2016  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2017    const NamedDecl *RhsField = ME->getMemberDecl();
2018
2019    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2020      // The member expression points to a static data member.
2021      assert(VD->isStaticDataMember() &&
2022             "Member points to non-static data member!");
2023      (void)VD;
2024      return false;
2025    }
2026
2027    if (isa<EnumConstantDecl>(RhsField)) {
2028      // The member expression points to an enum.
2029      return false;
2030    }
2031
2032    if (RhsField == LhsField) {
2033      // Initializing a field with itself. Throw a warning.
2034      // But wait; there are exceptions!
2035      // Exception #1:  The field may not belong to this record.
2036      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2037      const Expr *base = ME->getBase();
2038      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2039        // Even though the field matches, it does not belong to this record.
2040        return false;
2041      }
2042      // None of the exceptions triggered; return true to indicate an
2043      // uninitialized field was used.
2044      *L = ME->getMemberLoc();
2045      return true;
2046    }
2047  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2048    // sizeof/alignof doesn't reference contents, do not warn.
2049    return false;
2050  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2051    // address-of doesn't reference contents (the pointer may be dereferenced
2052    // in the same expression but it would be rare; and weird).
2053    if (UOE->getOpcode() == UO_AddrOf)
2054      return false;
2055  }
2056  for (Stmt::const_child_range it = S->children(); it; ++it) {
2057    if (!*it) {
2058      // An expression such as 'member(arg ?: "")' may trigger this.
2059      continue;
2060    }
2061    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2062      return true;
2063  }
2064  return false;
2065}
2066
2067MemInitResult
2068Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2069                             SourceLocation IdLoc) {
2070  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2071  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2072  assert((DirectMember || IndirectMember) &&
2073         "Member must be a FieldDecl or IndirectFieldDecl");
2074
2075  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2076    return true;
2077
2078  if (Member->isInvalidDecl())
2079    return true;
2080
2081  // Diagnose value-uses of fields to initialize themselves, e.g.
2082  //   foo(foo)
2083  // where foo is not also a parameter to the constructor.
2084  // TODO: implement -Wuninitialized and fold this into that framework.
2085  Expr **Args;
2086  unsigned NumArgs;
2087  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2088    Args = ParenList->getExprs();
2089    NumArgs = ParenList->getNumExprs();
2090  } else {
2091    InitListExpr *InitList = cast<InitListExpr>(Init);
2092    Args = InitList->getInits();
2093    NumArgs = InitList->getNumInits();
2094  }
2095  for (unsigned i = 0; i < NumArgs; ++i) {
2096    SourceLocation L;
2097    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2098      // FIXME: Return true in the case when other fields are used before being
2099      // uninitialized. For example, let this field be the i'th field. When
2100      // initializing the i'th field, throw a warning if any of the >= i'th
2101      // fields are used, as they are not yet initialized.
2102      // Right now we are only handling the case where the i'th field uses
2103      // itself in its initializer.
2104      Diag(L, diag::warn_field_is_uninit);
2105    }
2106  }
2107
2108  SourceRange InitRange = Init->getSourceRange();
2109
2110  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2111    // Can't check initialization for a member of dependent type or when
2112    // any of the arguments are type-dependent expressions.
2113    DiscardCleanupsInEvaluationContext();
2114  } else {
2115    bool InitList = false;
2116    if (isa<InitListExpr>(Init)) {
2117      InitList = true;
2118      Args = &Init;
2119      NumArgs = 1;
2120
2121      if (isStdInitializerList(Member->getType(), 0)) {
2122        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2123            << /*at end of ctor*/1 << InitRange;
2124      }
2125    }
2126
2127    // Initialize the member.
2128    InitializedEntity MemberEntity =
2129      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2130                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2131    InitializationKind Kind =
2132      InitList ? InitializationKind::CreateDirectList(IdLoc)
2133               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2134                                                  InitRange.getEnd());
2135
2136    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2137    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2138                                            MultiExprArg(*this, Args, NumArgs),
2139                                            0);
2140    if (MemberInit.isInvalid())
2141      return true;
2142
2143    CheckImplicitConversions(MemberInit.get(),
2144                             InitRange.getBegin());
2145
2146    // C++0x [class.base.init]p7:
2147    //   The initialization of each base and member constitutes a
2148    //   full-expression.
2149    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2150    if (MemberInit.isInvalid())
2151      return true;
2152
2153    // If we are in a dependent context, template instantiation will
2154    // perform this type-checking again. Just save the arguments that we
2155    // received.
2156    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2157    // of the information that we have about the member
2158    // initializer. However, deconstructing the ASTs is a dicey process,
2159    // and this approach is far more likely to get the corner cases right.
2160    if (CurContext->isDependentContext()) {
2161      // The existing Init will do fine.
2162    } else {
2163      Init = MemberInit.get();
2164      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2165    }
2166  }
2167
2168  if (DirectMember) {
2169    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2170                                            InitRange.getBegin(), Init,
2171                                            InitRange.getEnd());
2172  } else {
2173    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2174                                            InitRange.getBegin(), Init,
2175                                            InitRange.getEnd());
2176  }
2177}
2178
2179MemInitResult
2180Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2181                                 CXXRecordDecl *ClassDecl) {
2182  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2183  if (!LangOpts.CPlusPlus0x)
2184    return Diag(NameLoc, diag::err_delegating_ctor)
2185      << TInfo->getTypeLoc().getLocalSourceRange();
2186  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2187
2188  bool InitList = true;
2189  Expr **Args = &Init;
2190  unsigned NumArgs = 1;
2191  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2192    InitList = false;
2193    Args = ParenList->getExprs();
2194    NumArgs = ParenList->getNumExprs();
2195  }
2196
2197  SourceRange InitRange = Init->getSourceRange();
2198  // Initialize the object.
2199  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2200                                     QualType(ClassDecl->getTypeForDecl(), 0));
2201  InitializationKind Kind =
2202    InitList ? InitializationKind::CreateDirectList(NameLoc)
2203             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2204                                                InitRange.getEnd());
2205  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2206  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2207                                              MultiExprArg(*this, Args,NumArgs),
2208                                              0);
2209  if (DelegationInit.isInvalid())
2210    return true;
2211
2212  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2213         "Delegating constructor with no target?");
2214
2215  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2216
2217  // C++0x [class.base.init]p7:
2218  //   The initialization of each base and member constitutes a
2219  //   full-expression.
2220  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2221  if (DelegationInit.isInvalid())
2222    return true;
2223
2224  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2225                                          DelegationInit.takeAs<Expr>(),
2226                                          InitRange.getEnd());
2227}
2228
2229MemInitResult
2230Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2231                           Expr *Init, CXXRecordDecl *ClassDecl,
2232                           SourceLocation EllipsisLoc) {
2233  SourceLocation BaseLoc
2234    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2235
2236  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2237    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2238             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2239
2240  // C++ [class.base.init]p2:
2241  //   [...] Unless the mem-initializer-id names a nonstatic data
2242  //   member of the constructor's class or a direct or virtual base
2243  //   of that class, the mem-initializer is ill-formed. A
2244  //   mem-initializer-list can initialize a base class using any
2245  //   name that denotes that base class type.
2246  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2247
2248  SourceRange InitRange = Init->getSourceRange();
2249  if (EllipsisLoc.isValid()) {
2250    // This is a pack expansion.
2251    if (!BaseType->containsUnexpandedParameterPack())  {
2252      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2253        << SourceRange(BaseLoc, InitRange.getEnd());
2254
2255      EllipsisLoc = SourceLocation();
2256    }
2257  } else {
2258    // Check for any unexpanded parameter packs.
2259    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2260      return true;
2261
2262    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2263      return true;
2264  }
2265
2266  // Check for direct and virtual base classes.
2267  const CXXBaseSpecifier *DirectBaseSpec = 0;
2268  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2269  if (!Dependent) {
2270    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2271                                       BaseType))
2272      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2273
2274    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2275                        VirtualBaseSpec);
2276
2277    // C++ [base.class.init]p2:
2278    // Unless the mem-initializer-id names a nonstatic data member of the
2279    // constructor's class or a direct or virtual base of that class, the
2280    // mem-initializer is ill-formed.
2281    if (!DirectBaseSpec && !VirtualBaseSpec) {
2282      // If the class has any dependent bases, then it's possible that
2283      // one of those types will resolve to the same type as
2284      // BaseType. Therefore, just treat this as a dependent base
2285      // class initialization.  FIXME: Should we try to check the
2286      // initialization anyway? It seems odd.
2287      if (ClassDecl->hasAnyDependentBases())
2288        Dependent = true;
2289      else
2290        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2291          << BaseType << Context.getTypeDeclType(ClassDecl)
2292          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2293    }
2294  }
2295
2296  if (Dependent) {
2297    DiscardCleanupsInEvaluationContext();
2298
2299    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2300                                            /*IsVirtual=*/false,
2301                                            InitRange.getBegin(), Init,
2302                                            InitRange.getEnd(), EllipsisLoc);
2303  }
2304
2305  // C++ [base.class.init]p2:
2306  //   If a mem-initializer-id is ambiguous because it designates both
2307  //   a direct non-virtual base class and an inherited virtual base
2308  //   class, the mem-initializer is ill-formed.
2309  if (DirectBaseSpec && VirtualBaseSpec)
2310    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2311      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2312
2313  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2314  if (!BaseSpec)
2315    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2316
2317  // Initialize the base.
2318  bool InitList = true;
2319  Expr **Args = &Init;
2320  unsigned NumArgs = 1;
2321  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2322    InitList = false;
2323    Args = ParenList->getExprs();
2324    NumArgs = ParenList->getNumExprs();
2325  }
2326
2327  InitializedEntity BaseEntity =
2328    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2329  InitializationKind Kind =
2330    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2331             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2332                                                InitRange.getEnd());
2333  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2334  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2335                                          MultiExprArg(*this, Args, NumArgs),
2336                                          0);
2337  if (BaseInit.isInvalid())
2338    return true;
2339
2340  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2341
2342  // C++0x [class.base.init]p7:
2343  //   The initialization of each base and member constitutes a
2344  //   full-expression.
2345  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2346  if (BaseInit.isInvalid())
2347    return true;
2348
2349  // If we are in a dependent context, template instantiation will
2350  // perform this type-checking again. Just save the arguments that we
2351  // received in a ParenListExpr.
2352  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2353  // of the information that we have about the base
2354  // initializer. However, deconstructing the ASTs is a dicey process,
2355  // and this approach is far more likely to get the corner cases right.
2356  if (CurContext->isDependentContext())
2357    BaseInit = Owned(Init);
2358
2359  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2360                                          BaseSpec->isVirtual(),
2361                                          InitRange.getBegin(),
2362                                          BaseInit.takeAs<Expr>(),
2363                                          InitRange.getEnd(), EllipsisLoc);
2364}
2365
2366// Create a static_cast\<T&&>(expr).
2367static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2368  QualType ExprType = E->getType();
2369  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2370  SourceLocation ExprLoc = E->getLocStart();
2371  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2372      TargetType, ExprLoc);
2373
2374  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2375                                   SourceRange(ExprLoc, ExprLoc),
2376                                   E->getSourceRange()).take();
2377}
2378
2379/// ImplicitInitializerKind - How an implicit base or member initializer should
2380/// initialize its base or member.
2381enum ImplicitInitializerKind {
2382  IIK_Default,
2383  IIK_Copy,
2384  IIK_Move
2385};
2386
2387static bool
2388BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2389                             ImplicitInitializerKind ImplicitInitKind,
2390                             CXXBaseSpecifier *BaseSpec,
2391                             bool IsInheritedVirtualBase,
2392                             CXXCtorInitializer *&CXXBaseInit) {
2393  InitializedEntity InitEntity
2394    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2395                                        IsInheritedVirtualBase);
2396
2397  ExprResult BaseInit;
2398
2399  switch (ImplicitInitKind) {
2400  case IIK_Default: {
2401    InitializationKind InitKind
2402      = InitializationKind::CreateDefault(Constructor->getLocation());
2403    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2404    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2405                               MultiExprArg(SemaRef, 0, 0));
2406    break;
2407  }
2408
2409  case IIK_Move:
2410  case IIK_Copy: {
2411    bool Moving = ImplicitInitKind == IIK_Move;
2412    ParmVarDecl *Param = Constructor->getParamDecl(0);
2413    QualType ParamType = Param->getType().getNonReferenceType();
2414
2415    Expr *CopyCtorArg =
2416      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2417                          SourceLocation(), Param,
2418                          Constructor->getLocation(), ParamType,
2419                          VK_LValue, 0);
2420
2421    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2422
2423    // Cast to the base class to avoid ambiguities.
2424    QualType ArgTy =
2425      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2426                                       ParamType.getQualifiers());
2427
2428    if (Moving) {
2429      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2430    }
2431
2432    CXXCastPath BasePath;
2433    BasePath.push_back(BaseSpec);
2434    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2435                                            CK_UncheckedDerivedToBase,
2436                                            Moving ? VK_XValue : VK_LValue,
2437                                            &BasePath).take();
2438
2439    InitializationKind InitKind
2440      = InitializationKind::CreateDirect(Constructor->getLocation(),
2441                                         SourceLocation(), SourceLocation());
2442    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2443                                   &CopyCtorArg, 1);
2444    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2445                               MultiExprArg(&CopyCtorArg, 1));
2446    break;
2447  }
2448  }
2449
2450  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2451  if (BaseInit.isInvalid())
2452    return true;
2453
2454  CXXBaseInit =
2455    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2456               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2457                                                        SourceLocation()),
2458                                             BaseSpec->isVirtual(),
2459                                             SourceLocation(),
2460                                             BaseInit.takeAs<Expr>(),
2461                                             SourceLocation(),
2462                                             SourceLocation());
2463
2464  return false;
2465}
2466
2467static bool RefersToRValueRef(Expr *MemRef) {
2468  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2469  return Referenced->getType()->isRValueReferenceType();
2470}
2471
2472static bool
2473BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2474                               ImplicitInitializerKind ImplicitInitKind,
2475                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2476                               CXXCtorInitializer *&CXXMemberInit) {
2477  if (Field->isInvalidDecl())
2478    return true;
2479
2480  SourceLocation Loc = Constructor->getLocation();
2481
2482  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2483    bool Moving = ImplicitInitKind == IIK_Move;
2484    ParmVarDecl *Param = Constructor->getParamDecl(0);
2485    QualType ParamType = Param->getType().getNonReferenceType();
2486
2487    // Suppress copying zero-width bitfields.
2488    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2489      return false;
2490
2491    Expr *MemberExprBase =
2492      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2493                          SourceLocation(), Param,
2494                          Loc, ParamType, VK_LValue, 0);
2495
2496    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2497
2498    if (Moving) {
2499      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2500    }
2501
2502    // Build a reference to this field within the parameter.
2503    CXXScopeSpec SS;
2504    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2505                              Sema::LookupMemberName);
2506    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2507                                  : cast<ValueDecl>(Field), AS_public);
2508    MemberLookup.resolveKind();
2509    ExprResult CtorArg
2510      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2511                                         ParamType, Loc,
2512                                         /*IsArrow=*/false,
2513                                         SS,
2514                                         /*TemplateKWLoc=*/SourceLocation(),
2515                                         /*FirstQualifierInScope=*/0,
2516                                         MemberLookup,
2517                                         /*TemplateArgs=*/0);
2518    if (CtorArg.isInvalid())
2519      return true;
2520
2521    // C++11 [class.copy]p15:
2522    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2523    //     with static_cast<T&&>(x.m);
2524    if (RefersToRValueRef(CtorArg.get())) {
2525      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2526    }
2527
2528    // When the field we are copying is an array, create index variables for
2529    // each dimension of the array. We use these index variables to subscript
2530    // the source array, and other clients (e.g., CodeGen) will perform the
2531    // necessary iteration with these index variables.
2532    SmallVector<VarDecl *, 4> IndexVariables;
2533    QualType BaseType = Field->getType();
2534    QualType SizeType = SemaRef.Context.getSizeType();
2535    bool InitializingArray = false;
2536    while (const ConstantArrayType *Array
2537                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2538      InitializingArray = true;
2539      // Create the iteration variable for this array index.
2540      IdentifierInfo *IterationVarName = 0;
2541      {
2542        SmallString<8> Str;
2543        llvm::raw_svector_ostream OS(Str);
2544        OS << "__i" << IndexVariables.size();
2545        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2546      }
2547      VarDecl *IterationVar
2548        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2549                          IterationVarName, SizeType,
2550                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2551                          SC_None, SC_None);
2552      IndexVariables.push_back(IterationVar);
2553
2554      // Create a reference to the iteration variable.
2555      ExprResult IterationVarRef
2556        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2557      assert(!IterationVarRef.isInvalid() &&
2558             "Reference to invented variable cannot fail!");
2559      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2560      assert(!IterationVarRef.isInvalid() &&
2561             "Conversion of invented variable cannot fail!");
2562
2563      // Subscript the array with this iteration variable.
2564      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2565                                                        IterationVarRef.take(),
2566                                                        Loc);
2567      if (CtorArg.isInvalid())
2568        return true;
2569
2570      BaseType = Array->getElementType();
2571    }
2572
2573    // The array subscript expression is an lvalue, which is wrong for moving.
2574    if (Moving && InitializingArray)
2575      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2576
2577    // Construct the entity that we will be initializing. For an array, this
2578    // will be first element in the array, which may require several levels
2579    // of array-subscript entities.
2580    SmallVector<InitializedEntity, 4> Entities;
2581    Entities.reserve(1 + IndexVariables.size());
2582    if (Indirect)
2583      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2584    else
2585      Entities.push_back(InitializedEntity::InitializeMember(Field));
2586    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2587      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2588                                                              0,
2589                                                              Entities.back()));
2590
2591    // Direct-initialize to use the copy constructor.
2592    InitializationKind InitKind =
2593      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2594
2595    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2596    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2597                                   &CtorArgE, 1);
2598
2599    ExprResult MemberInit
2600      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2601                        MultiExprArg(&CtorArgE, 1));
2602    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2603    if (MemberInit.isInvalid())
2604      return true;
2605
2606    if (Indirect) {
2607      assert(IndexVariables.size() == 0 &&
2608             "Indirect field improperly initialized");
2609      CXXMemberInit
2610        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2611                                                   Loc, Loc,
2612                                                   MemberInit.takeAs<Expr>(),
2613                                                   Loc);
2614    } else
2615      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2616                                                 Loc, MemberInit.takeAs<Expr>(),
2617                                                 Loc,
2618                                                 IndexVariables.data(),
2619                                                 IndexVariables.size());
2620    return false;
2621  }
2622
2623  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2624
2625  QualType FieldBaseElementType =
2626    SemaRef.Context.getBaseElementType(Field->getType());
2627
2628  if (FieldBaseElementType->isRecordType()) {
2629    InitializedEntity InitEntity
2630      = Indirect? InitializedEntity::InitializeMember(Indirect)
2631                : InitializedEntity::InitializeMember(Field);
2632    InitializationKind InitKind =
2633      InitializationKind::CreateDefault(Loc);
2634
2635    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2636    ExprResult MemberInit =
2637      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2638
2639    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2640    if (MemberInit.isInvalid())
2641      return true;
2642
2643    if (Indirect)
2644      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2645                                                               Indirect, Loc,
2646                                                               Loc,
2647                                                               MemberInit.get(),
2648                                                               Loc);
2649    else
2650      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2651                                                               Field, Loc, Loc,
2652                                                               MemberInit.get(),
2653                                                               Loc);
2654    return false;
2655  }
2656
2657  if (!Field->getParent()->isUnion()) {
2658    if (FieldBaseElementType->isReferenceType()) {
2659      SemaRef.Diag(Constructor->getLocation(),
2660                   diag::err_uninitialized_member_in_ctor)
2661      << (int)Constructor->isImplicit()
2662      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2663      << 0 << Field->getDeclName();
2664      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2665      return true;
2666    }
2667
2668    if (FieldBaseElementType.isConstQualified()) {
2669      SemaRef.Diag(Constructor->getLocation(),
2670                   diag::err_uninitialized_member_in_ctor)
2671      << (int)Constructor->isImplicit()
2672      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2673      << 1 << Field->getDeclName();
2674      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2675      return true;
2676    }
2677  }
2678
2679  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2680      FieldBaseElementType->isObjCRetainableType() &&
2681      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2682      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2683    // Instant objects:
2684    //   Default-initialize Objective-C pointers to NULL.
2685    CXXMemberInit
2686      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2687                                                 Loc, Loc,
2688                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2689                                                 Loc);
2690    return false;
2691  }
2692
2693  // Nothing to initialize.
2694  CXXMemberInit = 0;
2695  return false;
2696}
2697
2698namespace {
2699struct BaseAndFieldInfo {
2700  Sema &S;
2701  CXXConstructorDecl *Ctor;
2702  bool AnyErrorsInInits;
2703  ImplicitInitializerKind IIK;
2704  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2705  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2706
2707  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2708    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2709    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2710    if (Generated && Ctor->isCopyConstructor())
2711      IIK = IIK_Copy;
2712    else if (Generated && Ctor->isMoveConstructor())
2713      IIK = IIK_Move;
2714    else
2715      IIK = IIK_Default;
2716  }
2717
2718  bool isImplicitCopyOrMove() const {
2719    switch (IIK) {
2720    case IIK_Copy:
2721    case IIK_Move:
2722      return true;
2723
2724    case IIK_Default:
2725      return false;
2726    }
2727
2728    llvm_unreachable("Invalid ImplicitInitializerKind!");
2729  }
2730};
2731}
2732
2733/// \brief Determine whether the given indirect field declaration is somewhere
2734/// within an anonymous union.
2735static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2736  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2737                                      CEnd = F->chain_end();
2738       C != CEnd; ++C)
2739    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2740      if (Record->isUnion())
2741        return true;
2742
2743  return false;
2744}
2745
2746/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2747/// array type.
2748static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2749  if (T->isIncompleteArrayType())
2750    return true;
2751
2752  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2753    if (!ArrayT->getSize())
2754      return true;
2755
2756    T = ArrayT->getElementType();
2757  }
2758
2759  return false;
2760}
2761
2762static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2763                                    FieldDecl *Field,
2764                                    IndirectFieldDecl *Indirect = 0) {
2765
2766  // Overwhelmingly common case: we have a direct initializer for this field.
2767  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2768    Info.AllToInit.push_back(Init);
2769    return false;
2770  }
2771
2772  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2773  // has a brace-or-equal-initializer, the entity is initialized as specified
2774  // in [dcl.init].
2775  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2776    CXXCtorInitializer *Init;
2777    if (Indirect)
2778      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2779                                                      SourceLocation(),
2780                                                      SourceLocation(), 0,
2781                                                      SourceLocation());
2782    else
2783      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2784                                                      SourceLocation(),
2785                                                      SourceLocation(), 0,
2786                                                      SourceLocation());
2787    Info.AllToInit.push_back(Init);
2788    return false;
2789  }
2790
2791  // Don't build an implicit initializer for union members if none was
2792  // explicitly specified.
2793  if (Field->getParent()->isUnion() ||
2794      (Indirect && isWithinAnonymousUnion(Indirect)))
2795    return false;
2796
2797  // Don't initialize incomplete or zero-length arrays.
2798  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2799    return false;
2800
2801  // Don't try to build an implicit initializer if there were semantic
2802  // errors in any of the initializers (and therefore we might be
2803  // missing some that the user actually wrote).
2804  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2805    return false;
2806
2807  CXXCtorInitializer *Init = 0;
2808  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2809                                     Indirect, Init))
2810    return true;
2811
2812  if (Init)
2813    Info.AllToInit.push_back(Init);
2814
2815  return false;
2816}
2817
2818bool
2819Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2820                               CXXCtorInitializer *Initializer) {
2821  assert(Initializer->isDelegatingInitializer());
2822  Constructor->setNumCtorInitializers(1);
2823  CXXCtorInitializer **initializer =
2824    new (Context) CXXCtorInitializer*[1];
2825  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2826  Constructor->setCtorInitializers(initializer);
2827
2828  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2829    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2830    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2831  }
2832
2833  DelegatingCtorDecls.push_back(Constructor);
2834
2835  return false;
2836}
2837
2838bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2839                               CXXCtorInitializer **Initializers,
2840                               unsigned NumInitializers,
2841                               bool AnyErrors) {
2842  if (Constructor->isDependentContext()) {
2843    // Just store the initializers as written, they will be checked during
2844    // instantiation.
2845    if (NumInitializers > 0) {
2846      Constructor->setNumCtorInitializers(NumInitializers);
2847      CXXCtorInitializer **baseOrMemberInitializers =
2848        new (Context) CXXCtorInitializer*[NumInitializers];
2849      memcpy(baseOrMemberInitializers, Initializers,
2850             NumInitializers * sizeof(CXXCtorInitializer*));
2851      Constructor->setCtorInitializers(baseOrMemberInitializers);
2852    }
2853
2854    return false;
2855  }
2856
2857  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2858
2859  // We need to build the initializer AST according to order of construction
2860  // and not what user specified in the Initializers list.
2861  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2862  if (!ClassDecl)
2863    return true;
2864
2865  bool HadError = false;
2866
2867  for (unsigned i = 0; i < NumInitializers; i++) {
2868    CXXCtorInitializer *Member = Initializers[i];
2869
2870    if (Member->isBaseInitializer())
2871      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2872    else
2873      Info.AllBaseFields[Member->getAnyMember()] = Member;
2874  }
2875
2876  // Keep track of the direct virtual bases.
2877  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2878  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2879       E = ClassDecl->bases_end(); I != E; ++I) {
2880    if (I->isVirtual())
2881      DirectVBases.insert(I);
2882  }
2883
2884  // Push virtual bases before others.
2885  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2886       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2887
2888    if (CXXCtorInitializer *Value
2889        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2890      Info.AllToInit.push_back(Value);
2891    } else if (!AnyErrors) {
2892      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2893      CXXCtorInitializer *CXXBaseInit;
2894      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2895                                       VBase, IsInheritedVirtualBase,
2896                                       CXXBaseInit)) {
2897        HadError = true;
2898        continue;
2899      }
2900
2901      Info.AllToInit.push_back(CXXBaseInit);
2902    }
2903  }
2904
2905  // Non-virtual bases.
2906  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2907       E = ClassDecl->bases_end(); Base != E; ++Base) {
2908    // Virtuals are in the virtual base list and already constructed.
2909    if (Base->isVirtual())
2910      continue;
2911
2912    if (CXXCtorInitializer *Value
2913          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2914      Info.AllToInit.push_back(Value);
2915    } else if (!AnyErrors) {
2916      CXXCtorInitializer *CXXBaseInit;
2917      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2918                                       Base, /*IsInheritedVirtualBase=*/false,
2919                                       CXXBaseInit)) {
2920        HadError = true;
2921        continue;
2922      }
2923
2924      Info.AllToInit.push_back(CXXBaseInit);
2925    }
2926  }
2927
2928  // Fields.
2929  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2930                               MemEnd = ClassDecl->decls_end();
2931       Mem != MemEnd; ++Mem) {
2932    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2933      // C++ [class.bit]p2:
2934      //   A declaration for a bit-field that omits the identifier declares an
2935      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2936      //   initialized.
2937      if (F->isUnnamedBitfield())
2938        continue;
2939
2940      // If we're not generating the implicit copy/move constructor, then we'll
2941      // handle anonymous struct/union fields based on their individual
2942      // indirect fields.
2943      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2944        continue;
2945
2946      if (CollectFieldInitializer(*this, Info, F))
2947        HadError = true;
2948      continue;
2949    }
2950
2951    // Beyond this point, we only consider default initialization.
2952    if (Info.IIK != IIK_Default)
2953      continue;
2954
2955    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2956      if (F->getType()->isIncompleteArrayType()) {
2957        assert(ClassDecl->hasFlexibleArrayMember() &&
2958               "Incomplete array type is not valid");
2959        continue;
2960      }
2961
2962      // Initialize each field of an anonymous struct individually.
2963      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2964        HadError = true;
2965
2966      continue;
2967    }
2968  }
2969
2970  NumInitializers = Info.AllToInit.size();
2971  if (NumInitializers > 0) {
2972    Constructor->setNumCtorInitializers(NumInitializers);
2973    CXXCtorInitializer **baseOrMemberInitializers =
2974      new (Context) CXXCtorInitializer*[NumInitializers];
2975    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2976           NumInitializers * sizeof(CXXCtorInitializer*));
2977    Constructor->setCtorInitializers(baseOrMemberInitializers);
2978
2979    // Constructors implicitly reference the base and member
2980    // destructors.
2981    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2982                                           Constructor->getParent());
2983  }
2984
2985  return HadError;
2986}
2987
2988static void *GetKeyForTopLevelField(FieldDecl *Field) {
2989  // For anonymous unions, use the class declaration as the key.
2990  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2991    if (RT->getDecl()->isAnonymousStructOrUnion())
2992      return static_cast<void *>(RT->getDecl());
2993  }
2994  return static_cast<void *>(Field);
2995}
2996
2997static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2998  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2999}
3000
3001static void *GetKeyForMember(ASTContext &Context,
3002                             CXXCtorInitializer *Member) {
3003  if (!Member->isAnyMemberInitializer())
3004    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3005
3006  // For fields injected into the class via declaration of an anonymous union,
3007  // use its anonymous union class declaration as the unique key.
3008  FieldDecl *Field = Member->getAnyMember();
3009
3010  // If the field is a member of an anonymous struct or union, our key
3011  // is the anonymous record decl that's a direct child of the class.
3012  RecordDecl *RD = Field->getParent();
3013  if (RD->isAnonymousStructOrUnion()) {
3014    while (true) {
3015      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3016      if (Parent->isAnonymousStructOrUnion())
3017        RD = Parent;
3018      else
3019        break;
3020    }
3021
3022    return static_cast<void *>(RD);
3023  }
3024
3025  return static_cast<void *>(Field);
3026}
3027
3028static void
3029DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3030                                  const CXXConstructorDecl *Constructor,
3031                                  CXXCtorInitializer **Inits,
3032                                  unsigned NumInits) {
3033  if (Constructor->getDeclContext()->isDependentContext())
3034    return;
3035
3036  // Don't check initializers order unless the warning is enabled at the
3037  // location of at least one initializer.
3038  bool ShouldCheckOrder = false;
3039  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3040    CXXCtorInitializer *Init = Inits[InitIndex];
3041    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3042                                         Init->getSourceLocation())
3043          != DiagnosticsEngine::Ignored) {
3044      ShouldCheckOrder = true;
3045      break;
3046    }
3047  }
3048  if (!ShouldCheckOrder)
3049    return;
3050
3051  // Build the list of bases and members in the order that they'll
3052  // actually be initialized.  The explicit initializers should be in
3053  // this same order but may be missing things.
3054  SmallVector<const void*, 32> IdealInitKeys;
3055
3056  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3057
3058  // 1. Virtual bases.
3059  for (CXXRecordDecl::base_class_const_iterator VBase =
3060       ClassDecl->vbases_begin(),
3061       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3062    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3063
3064  // 2. Non-virtual bases.
3065  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3066       E = ClassDecl->bases_end(); Base != E; ++Base) {
3067    if (Base->isVirtual())
3068      continue;
3069    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3070  }
3071
3072  // 3. Direct fields.
3073  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3074       E = ClassDecl->field_end(); Field != E; ++Field) {
3075    if (Field->isUnnamedBitfield())
3076      continue;
3077
3078    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3079  }
3080
3081  unsigned NumIdealInits = IdealInitKeys.size();
3082  unsigned IdealIndex = 0;
3083
3084  CXXCtorInitializer *PrevInit = 0;
3085  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3086    CXXCtorInitializer *Init = Inits[InitIndex];
3087    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3088
3089    // Scan forward to try to find this initializer in the idealized
3090    // initializers list.
3091    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3092      if (InitKey == IdealInitKeys[IdealIndex])
3093        break;
3094
3095    // If we didn't find this initializer, it must be because we
3096    // scanned past it on a previous iteration.  That can only
3097    // happen if we're out of order;  emit a warning.
3098    if (IdealIndex == NumIdealInits && PrevInit) {
3099      Sema::SemaDiagnosticBuilder D =
3100        SemaRef.Diag(PrevInit->getSourceLocation(),
3101                     diag::warn_initializer_out_of_order);
3102
3103      if (PrevInit->isAnyMemberInitializer())
3104        D << 0 << PrevInit->getAnyMember()->getDeclName();
3105      else
3106        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3107
3108      if (Init->isAnyMemberInitializer())
3109        D << 0 << Init->getAnyMember()->getDeclName();
3110      else
3111        D << 1 << Init->getTypeSourceInfo()->getType();
3112
3113      // Move back to the initializer's location in the ideal list.
3114      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3115        if (InitKey == IdealInitKeys[IdealIndex])
3116          break;
3117
3118      assert(IdealIndex != NumIdealInits &&
3119             "initializer not found in initializer list");
3120    }
3121
3122    PrevInit = Init;
3123  }
3124}
3125
3126namespace {
3127bool CheckRedundantInit(Sema &S,
3128                        CXXCtorInitializer *Init,
3129                        CXXCtorInitializer *&PrevInit) {
3130  if (!PrevInit) {
3131    PrevInit = Init;
3132    return false;
3133  }
3134
3135  if (FieldDecl *Field = Init->getMember())
3136    S.Diag(Init->getSourceLocation(),
3137           diag::err_multiple_mem_initialization)
3138      << Field->getDeclName()
3139      << Init->getSourceRange();
3140  else {
3141    const Type *BaseClass = Init->getBaseClass();
3142    assert(BaseClass && "neither field nor base");
3143    S.Diag(Init->getSourceLocation(),
3144           diag::err_multiple_base_initialization)
3145      << QualType(BaseClass, 0)
3146      << Init->getSourceRange();
3147  }
3148  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3149    << 0 << PrevInit->getSourceRange();
3150
3151  return true;
3152}
3153
3154typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3155typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3156
3157bool CheckRedundantUnionInit(Sema &S,
3158                             CXXCtorInitializer *Init,
3159                             RedundantUnionMap &Unions) {
3160  FieldDecl *Field = Init->getAnyMember();
3161  RecordDecl *Parent = Field->getParent();
3162  NamedDecl *Child = Field;
3163
3164  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3165    if (Parent->isUnion()) {
3166      UnionEntry &En = Unions[Parent];
3167      if (En.first && En.first != Child) {
3168        S.Diag(Init->getSourceLocation(),
3169               diag::err_multiple_mem_union_initialization)
3170          << Field->getDeclName()
3171          << Init->getSourceRange();
3172        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3173          << 0 << En.second->getSourceRange();
3174        return true;
3175      }
3176      if (!En.first) {
3177        En.first = Child;
3178        En.second = Init;
3179      }
3180      if (!Parent->isAnonymousStructOrUnion())
3181        return false;
3182    }
3183
3184    Child = Parent;
3185    Parent = cast<RecordDecl>(Parent->getDeclContext());
3186  }
3187
3188  return false;
3189}
3190}
3191
3192/// ActOnMemInitializers - Handle the member initializers for a constructor.
3193void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3194                                SourceLocation ColonLoc,
3195                                CXXCtorInitializer **meminits,
3196                                unsigned NumMemInits,
3197                                bool AnyErrors) {
3198  if (!ConstructorDecl)
3199    return;
3200
3201  AdjustDeclIfTemplate(ConstructorDecl);
3202
3203  CXXConstructorDecl *Constructor
3204    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3205
3206  if (!Constructor) {
3207    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3208    return;
3209  }
3210
3211  CXXCtorInitializer **MemInits =
3212    reinterpret_cast<CXXCtorInitializer **>(meminits);
3213
3214  // Mapping for the duplicate initializers check.
3215  // For member initializers, this is keyed with a FieldDecl*.
3216  // For base initializers, this is keyed with a Type*.
3217  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3218
3219  // Mapping for the inconsistent anonymous-union initializers check.
3220  RedundantUnionMap MemberUnions;
3221
3222  bool HadError = false;
3223  for (unsigned i = 0; i < NumMemInits; i++) {
3224    CXXCtorInitializer *Init = MemInits[i];
3225
3226    // Set the source order index.
3227    Init->setSourceOrder(i);
3228
3229    if (Init->isAnyMemberInitializer()) {
3230      FieldDecl *Field = Init->getAnyMember();
3231      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3232          CheckRedundantUnionInit(*this, Init, MemberUnions))
3233        HadError = true;
3234    } else if (Init->isBaseInitializer()) {
3235      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3236      if (CheckRedundantInit(*this, Init, Members[Key]))
3237        HadError = true;
3238    } else {
3239      assert(Init->isDelegatingInitializer());
3240      // This must be the only initializer
3241      if (i != 0 || NumMemInits > 1) {
3242        Diag(MemInits[0]->getSourceLocation(),
3243             diag::err_delegating_initializer_alone)
3244          << MemInits[0]->getSourceRange();
3245        HadError = true;
3246        // We will treat this as being the only initializer.
3247      }
3248      SetDelegatingInitializer(Constructor, MemInits[i]);
3249      // Return immediately as the initializer is set.
3250      return;
3251    }
3252  }
3253
3254  if (HadError)
3255    return;
3256
3257  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3258
3259  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3260}
3261
3262void
3263Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3264                                             CXXRecordDecl *ClassDecl) {
3265  // Ignore dependent contexts. Also ignore unions, since their members never
3266  // have destructors implicitly called.
3267  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3268    return;
3269
3270  // FIXME: all the access-control diagnostics are positioned on the
3271  // field/base declaration.  That's probably good; that said, the
3272  // user might reasonably want to know why the destructor is being
3273  // emitted, and we currently don't say.
3274
3275  // Non-static data members.
3276  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3277       E = ClassDecl->field_end(); I != E; ++I) {
3278    FieldDecl *Field = *I;
3279    if (Field->isInvalidDecl())
3280      continue;
3281
3282    // Don't destroy incomplete or zero-length arrays.
3283    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3284      continue;
3285
3286    QualType FieldType = Context.getBaseElementType(Field->getType());
3287
3288    const RecordType* RT = FieldType->getAs<RecordType>();
3289    if (!RT)
3290      continue;
3291
3292    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3293    if (FieldClassDecl->isInvalidDecl())
3294      continue;
3295    if (FieldClassDecl->hasIrrelevantDestructor())
3296      continue;
3297
3298    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3299    assert(Dtor && "No dtor found for FieldClassDecl!");
3300    CheckDestructorAccess(Field->getLocation(), Dtor,
3301                          PDiag(diag::err_access_dtor_field)
3302                            << Field->getDeclName()
3303                            << FieldType);
3304
3305    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3306    DiagnoseUseOfDecl(Dtor, Location);
3307  }
3308
3309  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3310
3311  // Bases.
3312  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3313       E = ClassDecl->bases_end(); Base != E; ++Base) {
3314    // Bases are always records in a well-formed non-dependent class.
3315    const RecordType *RT = Base->getType()->getAs<RecordType>();
3316
3317    // Remember direct virtual bases.
3318    if (Base->isVirtual())
3319      DirectVirtualBases.insert(RT);
3320
3321    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3322    // If our base class is invalid, we probably can't get its dtor anyway.
3323    if (BaseClassDecl->isInvalidDecl())
3324      continue;
3325    if (BaseClassDecl->hasIrrelevantDestructor())
3326      continue;
3327
3328    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3329    assert(Dtor && "No dtor found for BaseClassDecl!");
3330
3331    // FIXME: caret should be on the start of the class name
3332    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3333                          PDiag(diag::err_access_dtor_base)
3334                            << Base->getType()
3335                            << Base->getSourceRange());
3336
3337    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3338    DiagnoseUseOfDecl(Dtor, Location);
3339  }
3340
3341  // Virtual bases.
3342  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3343       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3344
3345    // Bases are always records in a well-formed non-dependent class.
3346    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3347
3348    // Ignore direct virtual bases.
3349    if (DirectVirtualBases.count(RT))
3350      continue;
3351
3352    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3353    // If our base class is invalid, we probably can't get its dtor anyway.
3354    if (BaseClassDecl->isInvalidDecl())
3355      continue;
3356    if (BaseClassDecl->hasIrrelevantDestructor())
3357      continue;
3358
3359    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3360    assert(Dtor && "No dtor found for BaseClassDecl!");
3361    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3362                          PDiag(diag::err_access_dtor_vbase)
3363                            << VBase->getType());
3364
3365    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3366    DiagnoseUseOfDecl(Dtor, Location);
3367  }
3368}
3369
3370void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3371  if (!CDtorDecl)
3372    return;
3373
3374  if (CXXConstructorDecl *Constructor
3375      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3376    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3377}
3378
3379bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3380                                  unsigned DiagID, AbstractDiagSelID SelID) {
3381  if (SelID == -1)
3382    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3383  else
3384    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3385}
3386
3387bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3388                                  const PartialDiagnostic &PD) {
3389  if (!getLangOptions().CPlusPlus)
3390    return false;
3391
3392  if (const ArrayType *AT = Context.getAsArrayType(T))
3393    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3394
3395  if (const PointerType *PT = T->getAs<PointerType>()) {
3396    // Find the innermost pointer type.
3397    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3398      PT = T;
3399
3400    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3401      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3402  }
3403
3404  const RecordType *RT = T->getAs<RecordType>();
3405  if (!RT)
3406    return false;
3407
3408  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3409
3410  // We can't answer whether something is abstract until it has a
3411  // definition.  If it's currently being defined, we'll walk back
3412  // over all the declarations when we have a full definition.
3413  const CXXRecordDecl *Def = RD->getDefinition();
3414  if (!Def || Def->isBeingDefined())
3415    return false;
3416
3417  if (!RD->isAbstract())
3418    return false;
3419
3420  Diag(Loc, PD) << RD->getDeclName();
3421  DiagnoseAbstractType(RD);
3422
3423  return true;
3424}
3425
3426void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3427  // Check if we've already emitted the list of pure virtual functions
3428  // for this class.
3429  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3430    return;
3431
3432  CXXFinalOverriderMap FinalOverriders;
3433  RD->getFinalOverriders(FinalOverriders);
3434
3435  // Keep a set of seen pure methods so we won't diagnose the same method
3436  // more than once.
3437  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3438
3439  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3440                                   MEnd = FinalOverriders.end();
3441       M != MEnd;
3442       ++M) {
3443    for (OverridingMethods::iterator SO = M->second.begin(),
3444                                  SOEnd = M->second.end();
3445         SO != SOEnd; ++SO) {
3446      // C++ [class.abstract]p4:
3447      //   A class is abstract if it contains or inherits at least one
3448      //   pure virtual function for which the final overrider is pure
3449      //   virtual.
3450
3451      //
3452      if (SO->second.size() != 1)
3453        continue;
3454
3455      if (!SO->second.front().Method->isPure())
3456        continue;
3457
3458      if (!SeenPureMethods.insert(SO->second.front().Method))
3459        continue;
3460
3461      Diag(SO->second.front().Method->getLocation(),
3462           diag::note_pure_virtual_function)
3463        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3464    }
3465  }
3466
3467  if (!PureVirtualClassDiagSet)
3468    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3469  PureVirtualClassDiagSet->insert(RD);
3470}
3471
3472namespace {
3473struct AbstractUsageInfo {
3474  Sema &S;
3475  CXXRecordDecl *Record;
3476  CanQualType AbstractType;
3477  bool Invalid;
3478
3479  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3480    : S(S), Record(Record),
3481      AbstractType(S.Context.getCanonicalType(
3482                   S.Context.getTypeDeclType(Record))),
3483      Invalid(false) {}
3484
3485  void DiagnoseAbstractType() {
3486    if (Invalid) return;
3487    S.DiagnoseAbstractType(Record);
3488    Invalid = true;
3489  }
3490
3491  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3492};
3493
3494struct CheckAbstractUsage {
3495  AbstractUsageInfo &Info;
3496  const NamedDecl *Ctx;
3497
3498  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3499    : Info(Info), Ctx(Ctx) {}
3500
3501  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3502    switch (TL.getTypeLocClass()) {
3503#define ABSTRACT_TYPELOC(CLASS, PARENT)
3504#define TYPELOC(CLASS, PARENT) \
3505    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3506#include "clang/AST/TypeLocNodes.def"
3507    }
3508  }
3509
3510  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3511    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3512    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3513      if (!TL.getArg(I))
3514        continue;
3515
3516      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3517      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3518    }
3519  }
3520
3521  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3522    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3523  }
3524
3525  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3526    // Visit the type parameters from a permissive context.
3527    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3528      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3529      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3530        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3531          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3532      // TODO: other template argument types?
3533    }
3534  }
3535
3536  // Visit pointee types from a permissive context.
3537#define CheckPolymorphic(Type) \
3538  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3539    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3540  }
3541  CheckPolymorphic(PointerTypeLoc)
3542  CheckPolymorphic(ReferenceTypeLoc)
3543  CheckPolymorphic(MemberPointerTypeLoc)
3544  CheckPolymorphic(BlockPointerTypeLoc)
3545  CheckPolymorphic(AtomicTypeLoc)
3546
3547  /// Handle all the types we haven't given a more specific
3548  /// implementation for above.
3549  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3550    // Every other kind of type that we haven't called out already
3551    // that has an inner type is either (1) sugar or (2) contains that
3552    // inner type in some way as a subobject.
3553    if (TypeLoc Next = TL.getNextTypeLoc())
3554      return Visit(Next, Sel);
3555
3556    // If there's no inner type and we're in a permissive context,
3557    // don't diagnose.
3558    if (Sel == Sema::AbstractNone) return;
3559
3560    // Check whether the type matches the abstract type.
3561    QualType T = TL.getType();
3562    if (T->isArrayType()) {
3563      Sel = Sema::AbstractArrayType;
3564      T = Info.S.Context.getBaseElementType(T);
3565    }
3566    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3567    if (CT != Info.AbstractType) return;
3568
3569    // It matched; do some magic.
3570    if (Sel == Sema::AbstractArrayType) {
3571      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3572        << T << TL.getSourceRange();
3573    } else {
3574      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3575        << Sel << T << TL.getSourceRange();
3576    }
3577    Info.DiagnoseAbstractType();
3578  }
3579};
3580
3581void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3582                                  Sema::AbstractDiagSelID Sel) {
3583  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3584}
3585
3586}
3587
3588/// Check for invalid uses of an abstract type in a method declaration.
3589static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3590                                    CXXMethodDecl *MD) {
3591  // No need to do the check on definitions, which require that
3592  // the return/param types be complete.
3593  if (MD->doesThisDeclarationHaveABody())
3594    return;
3595
3596  // For safety's sake, just ignore it if we don't have type source
3597  // information.  This should never happen for non-implicit methods,
3598  // but...
3599  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3600    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3601}
3602
3603/// Check for invalid uses of an abstract type within a class definition.
3604static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3605                                    CXXRecordDecl *RD) {
3606  for (CXXRecordDecl::decl_iterator
3607         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3608    Decl *D = *I;
3609    if (D->isImplicit()) continue;
3610
3611    // Methods and method templates.
3612    if (isa<CXXMethodDecl>(D)) {
3613      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3614    } else if (isa<FunctionTemplateDecl>(D)) {
3615      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3616      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3617
3618    // Fields and static variables.
3619    } else if (isa<FieldDecl>(D)) {
3620      FieldDecl *FD = cast<FieldDecl>(D);
3621      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3622        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3623    } else if (isa<VarDecl>(D)) {
3624      VarDecl *VD = cast<VarDecl>(D);
3625      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3626        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3627
3628    // Nested classes and class templates.
3629    } else if (isa<CXXRecordDecl>(D)) {
3630      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3631    } else if (isa<ClassTemplateDecl>(D)) {
3632      CheckAbstractClassUsage(Info,
3633                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3634    }
3635  }
3636}
3637
3638/// \brief Perform semantic checks on a class definition that has been
3639/// completing, introducing implicitly-declared members, checking for
3640/// abstract types, etc.
3641void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3642  if (!Record)
3643    return;
3644
3645  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3646    AbstractUsageInfo Info(*this, Record);
3647    CheckAbstractClassUsage(Info, Record);
3648  }
3649
3650  // If this is not an aggregate type and has no user-declared constructor,
3651  // complain about any non-static data members of reference or const scalar
3652  // type, since they will never get initializers.
3653  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3654      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3655      !Record->isLambda()) {
3656    bool Complained = false;
3657    for (RecordDecl::field_iterator F = Record->field_begin(),
3658                                 FEnd = Record->field_end();
3659         F != FEnd; ++F) {
3660      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3661        continue;
3662
3663      if (F->getType()->isReferenceType() ||
3664          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3665        if (!Complained) {
3666          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3667            << Record->getTagKind() << Record;
3668          Complained = true;
3669        }
3670
3671        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3672          << F->getType()->isReferenceType()
3673          << F->getDeclName();
3674      }
3675    }
3676  }
3677
3678  if (Record->isDynamicClass() && !Record->isDependentType())
3679    DynamicClasses.push_back(Record);
3680
3681  if (Record->getIdentifier()) {
3682    // C++ [class.mem]p13:
3683    //   If T is the name of a class, then each of the following shall have a
3684    //   name different from T:
3685    //     - every member of every anonymous union that is a member of class T.
3686    //
3687    // C++ [class.mem]p14:
3688    //   In addition, if class T has a user-declared constructor (12.1), every
3689    //   non-static data member of class T shall have a name different from T.
3690    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3691         R.first != R.second; ++R.first) {
3692      NamedDecl *D = *R.first;
3693      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3694          isa<IndirectFieldDecl>(D)) {
3695        Diag(D->getLocation(), diag::err_member_name_of_class)
3696          << D->getDeclName();
3697        break;
3698      }
3699    }
3700  }
3701
3702  // Warn if the class has virtual methods but non-virtual public destructor.
3703  if (Record->isPolymorphic() && !Record->isDependentType()) {
3704    CXXDestructorDecl *dtor = Record->getDestructor();
3705    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3706      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3707           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3708  }
3709
3710  // See if a method overloads virtual methods in a base
3711  /// class without overriding any.
3712  if (!Record->isDependentType()) {
3713    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3714                                     MEnd = Record->method_end();
3715         M != MEnd; ++M) {
3716      if (!(*M)->isStatic())
3717        DiagnoseHiddenVirtualMethods(Record, *M);
3718    }
3719  }
3720
3721  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3722  // function that is not a constructor declares that member function to be
3723  // const. [...] The class of which that function is a member shall be
3724  // a literal type.
3725  //
3726  // If the class has virtual bases, any constexpr members will already have
3727  // been diagnosed by the checks performed on the member declaration, so
3728  // suppress this (less useful) diagnostic.
3729  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3730      !Record->isLiteral() && !Record->getNumVBases()) {
3731    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3732                                     MEnd = Record->method_end();
3733         M != MEnd; ++M) {
3734      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3735        switch (Record->getTemplateSpecializationKind()) {
3736        case TSK_ImplicitInstantiation:
3737        case TSK_ExplicitInstantiationDeclaration:
3738        case TSK_ExplicitInstantiationDefinition:
3739          // If a template instantiates to a non-literal type, but its members
3740          // instantiate to constexpr functions, the template is technically
3741          // ill-formed, but we allow it for sanity.
3742          continue;
3743
3744        case TSK_Undeclared:
3745        case TSK_ExplicitSpecialization:
3746          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3747                             PDiag(diag::err_constexpr_method_non_literal));
3748          break;
3749        }
3750
3751        // Only produce one error per class.
3752        break;
3753      }
3754    }
3755  }
3756
3757  // Declare inherited constructors. We do this eagerly here because:
3758  // - The standard requires an eager diagnostic for conflicting inherited
3759  //   constructors from different classes.
3760  // - The lazy declaration of the other implicit constructors is so as to not
3761  //   waste space and performance on classes that are not meant to be
3762  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3763  //   have inherited constructors.
3764  DeclareInheritedConstructors(Record);
3765
3766  if (!Record->isDependentType())
3767    CheckExplicitlyDefaultedMethods(Record);
3768}
3769
3770void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3771  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3772                                      ME = Record->method_end();
3773       MI != ME; ++MI) {
3774    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3775      switch (getSpecialMember(*MI)) {
3776      case CXXDefaultConstructor:
3777        CheckExplicitlyDefaultedDefaultConstructor(
3778                                                  cast<CXXConstructorDecl>(*MI));
3779        break;
3780
3781      case CXXDestructor:
3782        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3783        break;
3784
3785      case CXXCopyConstructor:
3786        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3787        break;
3788
3789      case CXXCopyAssignment:
3790        CheckExplicitlyDefaultedCopyAssignment(*MI);
3791        break;
3792
3793      case CXXMoveConstructor:
3794        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3795        break;
3796
3797      case CXXMoveAssignment:
3798        CheckExplicitlyDefaultedMoveAssignment(*MI);
3799        break;
3800
3801      case CXXInvalid:
3802        llvm_unreachable("non-special member explicitly defaulted!");
3803      }
3804    }
3805  }
3806
3807}
3808
3809void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3810  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3811
3812  // Whether this was the first-declared instance of the constructor.
3813  // This affects whether we implicitly add an exception spec (and, eventually,
3814  // constexpr). It is also ill-formed to explicitly default a constructor such
3815  // that it would be deleted. (C++0x [decl.fct.def.default])
3816  bool First = CD == CD->getCanonicalDecl();
3817
3818  bool HadError = false;
3819  if (CD->getNumParams() != 0) {
3820    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3821      << CD->getSourceRange();
3822    HadError = true;
3823  }
3824
3825  ImplicitExceptionSpecification Spec
3826    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3827  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3828  if (EPI.ExceptionSpecType == EST_Delayed) {
3829    // Exception specification depends on some deferred part of the class. We'll
3830    // try again when the class's definition has been fully processed.
3831    return;
3832  }
3833  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3834                          *ExceptionType = Context.getFunctionType(
3835                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3836
3837  // C++11 [dcl.fct.def.default]p2:
3838  //   An explicitly-defaulted function may be declared constexpr only if it
3839  //   would have been implicitly declared as constexpr,
3840  // Do not apply this rule to templates, since core issue 1358 makes such
3841  // functions always instantiate to constexpr functions.
3842  if (CD->isConstexpr() &&
3843      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3844    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3845      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3846        << CXXDefaultConstructor;
3847      HadError = true;
3848    }
3849  }
3850  //   and may have an explicit exception-specification only if it is compatible
3851  //   with the exception-specification on the implicit declaration.
3852  if (CtorType->hasExceptionSpec()) {
3853    if (CheckEquivalentExceptionSpec(
3854          PDiag(diag::err_incorrect_defaulted_exception_spec)
3855            << CXXDefaultConstructor,
3856          PDiag(),
3857          ExceptionType, SourceLocation(),
3858          CtorType, CD->getLocation())) {
3859      HadError = true;
3860    }
3861  }
3862
3863  //   If a function is explicitly defaulted on its first declaration,
3864  if (First) {
3865    //  -- it is implicitly considered to be constexpr if the implicit
3866    //     definition would be,
3867    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3868
3869    //  -- it is implicitly considered to have the same
3870    //     exception-specification as if it had been implicitly declared
3871    //
3872    // FIXME: a compatible, but different, explicit exception specification
3873    // will be silently overridden. We should issue a warning if this happens.
3874    EPI.ExtInfo = CtorType->getExtInfo();
3875  }
3876
3877  if (HadError) {
3878    CD->setInvalidDecl();
3879    return;
3880  }
3881
3882  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3883    if (First) {
3884      CD->setDeletedAsWritten();
3885    } else {
3886      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3887        << CXXDefaultConstructor;
3888      CD->setInvalidDecl();
3889    }
3890  }
3891}
3892
3893void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3894  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3895
3896  // Whether this was the first-declared instance of the constructor.
3897  bool First = CD == CD->getCanonicalDecl();
3898
3899  bool HadError = false;
3900  if (CD->getNumParams() != 1) {
3901    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3902      << CD->getSourceRange();
3903    HadError = true;
3904  }
3905
3906  ImplicitExceptionSpecification Spec(Context);
3907  bool Const;
3908  llvm::tie(Spec, Const) =
3909    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3910
3911  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3912  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3913                          *ExceptionType = Context.getFunctionType(
3914                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3915
3916  // Check for parameter type matching.
3917  // This is a copy ctor so we know it's a cv-qualified reference to T.
3918  QualType ArgType = CtorType->getArgType(0);
3919  if (ArgType->getPointeeType().isVolatileQualified()) {
3920    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3921    HadError = true;
3922  }
3923  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3924    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3925    HadError = true;
3926  }
3927
3928  // C++11 [dcl.fct.def.default]p2:
3929  //   An explicitly-defaulted function may be declared constexpr only if it
3930  //   would have been implicitly declared as constexpr,
3931  // Do not apply this rule to templates, since core issue 1358 makes such
3932  // functions always instantiate to constexpr functions.
3933  if (CD->isConstexpr() &&
3934      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3935    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3936      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3937        << CXXCopyConstructor;
3938      HadError = true;
3939    }
3940  }
3941  //   and may have an explicit exception-specification only if it is compatible
3942  //   with the exception-specification on the implicit declaration.
3943  if (CtorType->hasExceptionSpec()) {
3944    if (CheckEquivalentExceptionSpec(
3945          PDiag(diag::err_incorrect_defaulted_exception_spec)
3946            << CXXCopyConstructor,
3947          PDiag(),
3948          ExceptionType, SourceLocation(),
3949          CtorType, CD->getLocation())) {
3950      HadError = true;
3951    }
3952  }
3953
3954  //   If a function is explicitly defaulted on its first declaration,
3955  if (First) {
3956    //  -- it is implicitly considered to be constexpr if the implicit
3957    //     definition would be,
3958    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3959
3960    //  -- it is implicitly considered to have the same
3961    //     exception-specification as if it had been implicitly declared, and
3962    //
3963    // FIXME: a compatible, but different, explicit exception specification
3964    // will be silently overridden. We should issue a warning if this happens.
3965    EPI.ExtInfo = CtorType->getExtInfo();
3966
3967    //  -- [...] it shall have the same parameter type as if it had been
3968    //     implicitly declared.
3969    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3970  }
3971
3972  if (HadError) {
3973    CD->setInvalidDecl();
3974    return;
3975  }
3976
3977  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3978    if (First) {
3979      CD->setDeletedAsWritten();
3980    } else {
3981      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3982        << CXXCopyConstructor;
3983      CD->setInvalidDecl();
3984    }
3985  }
3986}
3987
3988void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3989  assert(MD->isExplicitlyDefaulted());
3990
3991  // Whether this was the first-declared instance of the operator
3992  bool First = MD == MD->getCanonicalDecl();
3993
3994  bool HadError = false;
3995  if (MD->getNumParams() != 1) {
3996    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3997      << MD->getSourceRange();
3998    HadError = true;
3999  }
4000
4001  QualType ReturnType =
4002    MD->getType()->getAs<FunctionType>()->getResultType();
4003  if (!ReturnType->isLValueReferenceType() ||
4004      !Context.hasSameType(
4005        Context.getCanonicalType(ReturnType->getPointeeType()),
4006        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4007    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4008    HadError = true;
4009  }
4010
4011  ImplicitExceptionSpecification Spec(Context);
4012  bool Const;
4013  llvm::tie(Spec, Const) =
4014    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4015
4016  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4017  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4018                          *ExceptionType = Context.getFunctionType(
4019                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4020
4021  QualType ArgType = OperType->getArgType(0);
4022  if (!ArgType->isLValueReferenceType()) {
4023    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4024    HadError = true;
4025  } else {
4026    if (ArgType->getPointeeType().isVolatileQualified()) {
4027      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4028      HadError = true;
4029    }
4030    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4031      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4032      HadError = true;
4033    }
4034  }
4035
4036  if (OperType->getTypeQuals()) {
4037    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4038    HadError = true;
4039  }
4040
4041  if (OperType->hasExceptionSpec()) {
4042    if (CheckEquivalentExceptionSpec(
4043          PDiag(diag::err_incorrect_defaulted_exception_spec)
4044            << CXXCopyAssignment,
4045          PDiag(),
4046          ExceptionType, SourceLocation(),
4047          OperType, MD->getLocation())) {
4048      HadError = true;
4049    }
4050  }
4051  if (First) {
4052    // We set the declaration to have the computed exception spec here.
4053    // We duplicate the one parameter type.
4054    EPI.RefQualifier = OperType->getRefQualifier();
4055    EPI.ExtInfo = OperType->getExtInfo();
4056    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4057  }
4058
4059  if (HadError) {
4060    MD->setInvalidDecl();
4061    return;
4062  }
4063
4064  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4065    if (First) {
4066      MD->setDeletedAsWritten();
4067    } else {
4068      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4069        << CXXCopyAssignment;
4070      MD->setInvalidDecl();
4071    }
4072  }
4073}
4074
4075void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4076  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4077
4078  // Whether this was the first-declared instance of the constructor.
4079  bool First = CD == CD->getCanonicalDecl();
4080
4081  bool HadError = false;
4082  if (CD->getNumParams() != 1) {
4083    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4084      << CD->getSourceRange();
4085    HadError = true;
4086  }
4087
4088  ImplicitExceptionSpecification Spec(
4089      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4090
4091  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4092  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4093                          *ExceptionType = Context.getFunctionType(
4094                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4095
4096  // Check for parameter type matching.
4097  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4098  QualType ArgType = CtorType->getArgType(0);
4099  if (ArgType->getPointeeType().isVolatileQualified()) {
4100    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4101    HadError = true;
4102  }
4103  if (ArgType->getPointeeType().isConstQualified()) {
4104    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4105    HadError = true;
4106  }
4107
4108  // C++11 [dcl.fct.def.default]p2:
4109  //   An explicitly-defaulted function may be declared constexpr only if it
4110  //   would have been implicitly declared as constexpr,
4111  // Do not apply this rule to templates, since core issue 1358 makes such
4112  // functions always instantiate to constexpr functions.
4113  if (CD->isConstexpr() &&
4114      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4115    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4116      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4117        << CXXMoveConstructor;
4118      HadError = true;
4119    }
4120  }
4121  //   and may have an explicit exception-specification only if it is compatible
4122  //   with the exception-specification on the implicit declaration.
4123  if (CtorType->hasExceptionSpec()) {
4124    if (CheckEquivalentExceptionSpec(
4125          PDiag(diag::err_incorrect_defaulted_exception_spec)
4126            << CXXMoveConstructor,
4127          PDiag(),
4128          ExceptionType, SourceLocation(),
4129          CtorType, CD->getLocation())) {
4130      HadError = true;
4131    }
4132  }
4133
4134  //   If a function is explicitly defaulted on its first declaration,
4135  if (First) {
4136    //  -- it is implicitly considered to be constexpr if the implicit
4137    //     definition would be,
4138    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4139
4140    //  -- it is implicitly considered to have the same
4141    //     exception-specification as if it had been implicitly declared, and
4142    //
4143    // FIXME: a compatible, but different, explicit exception specification
4144    // will be silently overridden. We should issue a warning if this happens.
4145    EPI.ExtInfo = CtorType->getExtInfo();
4146
4147    //  -- [...] it shall have the same parameter type as if it had been
4148    //     implicitly declared.
4149    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4150  }
4151
4152  if (HadError) {
4153    CD->setInvalidDecl();
4154    return;
4155  }
4156
4157  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4158    if (First) {
4159      CD->setDeletedAsWritten();
4160    } else {
4161      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4162        << CXXMoveConstructor;
4163      CD->setInvalidDecl();
4164    }
4165  }
4166}
4167
4168void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4169  assert(MD->isExplicitlyDefaulted());
4170
4171  // Whether this was the first-declared instance of the operator
4172  bool First = MD == MD->getCanonicalDecl();
4173
4174  bool HadError = false;
4175  if (MD->getNumParams() != 1) {
4176    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4177      << MD->getSourceRange();
4178    HadError = true;
4179  }
4180
4181  QualType ReturnType =
4182    MD->getType()->getAs<FunctionType>()->getResultType();
4183  if (!ReturnType->isLValueReferenceType() ||
4184      !Context.hasSameType(
4185        Context.getCanonicalType(ReturnType->getPointeeType()),
4186        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4187    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4188    HadError = true;
4189  }
4190
4191  ImplicitExceptionSpecification Spec(
4192      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4193
4194  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4195  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4196                          *ExceptionType = Context.getFunctionType(
4197                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4198
4199  QualType ArgType = OperType->getArgType(0);
4200  if (!ArgType->isRValueReferenceType()) {
4201    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4202    HadError = true;
4203  } else {
4204    if (ArgType->getPointeeType().isVolatileQualified()) {
4205      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4206      HadError = true;
4207    }
4208    if (ArgType->getPointeeType().isConstQualified()) {
4209      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4210      HadError = true;
4211    }
4212  }
4213
4214  if (OperType->getTypeQuals()) {
4215    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4216    HadError = true;
4217  }
4218
4219  if (OperType->hasExceptionSpec()) {
4220    if (CheckEquivalentExceptionSpec(
4221          PDiag(diag::err_incorrect_defaulted_exception_spec)
4222            << CXXMoveAssignment,
4223          PDiag(),
4224          ExceptionType, SourceLocation(),
4225          OperType, MD->getLocation())) {
4226      HadError = true;
4227    }
4228  }
4229  if (First) {
4230    // We set the declaration to have the computed exception spec here.
4231    // We duplicate the one parameter type.
4232    EPI.RefQualifier = OperType->getRefQualifier();
4233    EPI.ExtInfo = OperType->getExtInfo();
4234    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4235  }
4236
4237  if (HadError) {
4238    MD->setInvalidDecl();
4239    return;
4240  }
4241
4242  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4243    if (First) {
4244      MD->setDeletedAsWritten();
4245    } else {
4246      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4247        << CXXMoveAssignment;
4248      MD->setInvalidDecl();
4249    }
4250  }
4251}
4252
4253void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4254  assert(DD->isExplicitlyDefaulted());
4255
4256  // Whether this was the first-declared instance of the destructor.
4257  bool First = DD == DD->getCanonicalDecl();
4258
4259  ImplicitExceptionSpecification Spec
4260    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4261  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4262  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4263                          *ExceptionType = Context.getFunctionType(
4264                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4265
4266  if (DtorType->hasExceptionSpec()) {
4267    if (CheckEquivalentExceptionSpec(
4268          PDiag(diag::err_incorrect_defaulted_exception_spec)
4269            << CXXDestructor,
4270          PDiag(),
4271          ExceptionType, SourceLocation(),
4272          DtorType, DD->getLocation())) {
4273      DD->setInvalidDecl();
4274      return;
4275    }
4276  }
4277  if (First) {
4278    // We set the declaration to have the computed exception spec here.
4279    // There are no parameters.
4280    EPI.ExtInfo = DtorType->getExtInfo();
4281    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4282  }
4283
4284  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4285    if (First) {
4286      DD->setDeletedAsWritten();
4287    } else {
4288      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4289        << CXXDestructor;
4290      DD->setInvalidDecl();
4291    }
4292  }
4293}
4294
4295namespace {
4296struct SpecialMemberDeletionInfo {
4297  Sema &S;
4298  CXXMethodDecl *MD;
4299  Sema::CXXSpecialMember CSM;
4300
4301  // Properties of the special member, computed for convenience.
4302  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4303  SourceLocation Loc;
4304
4305  bool AllFieldsAreConst;
4306
4307  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4308                            Sema::CXXSpecialMember CSM)
4309    : S(S), MD(MD), CSM(CSM),
4310      IsConstructor(false), IsAssignment(false), IsMove(false),
4311      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4312      AllFieldsAreConst(true) {
4313    switch (CSM) {
4314      case Sema::CXXDefaultConstructor:
4315      case Sema::CXXCopyConstructor:
4316        IsConstructor = true;
4317        break;
4318      case Sema::CXXMoveConstructor:
4319        IsConstructor = true;
4320        IsMove = true;
4321        break;
4322      case Sema::CXXCopyAssignment:
4323        IsAssignment = true;
4324        break;
4325      case Sema::CXXMoveAssignment:
4326        IsAssignment = true;
4327        IsMove = true;
4328        break;
4329      case Sema::CXXDestructor:
4330        break;
4331      case Sema::CXXInvalid:
4332        llvm_unreachable("invalid special member kind");
4333    }
4334
4335    if (MD->getNumParams()) {
4336      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4337      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4338    }
4339  }
4340
4341  bool inUnion() const { return MD->getParent()->isUnion(); }
4342
4343  /// Look up the corresponding special member in the given class.
4344  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4345    unsigned TQ = MD->getTypeQualifiers();
4346    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4347                                 MD->getRefQualifier() == RQ_RValue,
4348                                 TQ & Qualifiers::Const,
4349                                 TQ & Qualifiers::Volatile);
4350  }
4351
4352  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4353  bool shouldDeleteForField(FieldDecl *FD);
4354  bool shouldDeleteForAllConstMembers();
4355};
4356}
4357
4358/// Check whether we should delete a special member function due to the class
4359/// having a particular direct or virtual base class.
4360bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4361                                                    bool IsVirtualBase) {
4362  // C++11 [class.copy]p23:
4363  // -- for the move assignment operator, any direct or indirect virtual
4364  //    base class.
4365  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4366    return true;
4367
4368  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4369  // -- any direct or virtual base class [...] has a type with a destructor
4370  //    that is deleted or inaccessible
4371  if (!IsAssignment) {
4372    CXXDestructorDecl *BaseDtor = S.LookupDestructor(BaseDecl);
4373    if (BaseDtor->isDeleted())
4374      return true;
4375    if (S.CheckDestructorAccess(Loc, BaseDtor, S.PDiag())
4376          != Sema::AR_accessible)
4377      return true;
4378  }
4379
4380  // C++11 [class.ctor]p5:
4381  // -- any direct or virtual base class [...] has class type M [...] and
4382  //    either M has no default constructor or overload resolution as applied
4383  //    to M's default constructor results in an ambiguity or in a function
4384  //    that is deleted or inaccessible
4385  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4386  // -- a direct or virtual base class B that cannot be copied/moved because
4387  //    overload resolution, as applied to B's corresponding special member,
4388  //    results in an ambiguity or a function that is deleted or inaccessible
4389  //    from the defaulted special member
4390  if (CSM != Sema::CXXDestructor) {
4391    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(BaseDecl);
4392    if (!SMOR->hasSuccess())
4393      return true;
4394
4395    CXXMethodDecl *BaseMember = SMOR->getMethod();
4396    if (IsConstructor) {
4397      CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4398      if (S.CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4399                                   S.PDiag()) != Sema::AR_accessible)
4400        return true;
4401
4402      // -- for the move constructor, a [...] direct or virtual base class with
4403      //    a type that does not have a move constructor and is not trivially
4404      //    copyable.
4405      if (IsMove && !BaseCtor->isMoveConstructor() &&
4406          !BaseDecl->isTriviallyCopyable())
4407        return true;
4408    } else {
4409      assert(IsAssignment && "unexpected kind of special member");
4410      if (S.CheckDirectMemberAccess(Loc, BaseMember, S.PDiag())
4411            != Sema::AR_accessible)
4412        return true;
4413
4414      // -- for the move assignment operator, a direct base class with a type
4415      //    that does not have a move assignment operator and is not trivially
4416      //    copyable.
4417      if (IsMove && !BaseMember->isMoveAssignmentOperator() &&
4418          !BaseDecl->isTriviallyCopyable())
4419        return true;
4420    }
4421  }
4422
4423  // C++11 [class.dtor]p5:
4424  // -- for a virtual destructor, lookup of the non-array deallocation function
4425  //    results in an ambiguity or in a function that is deleted or inaccessible
4426  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4427    FunctionDecl *OperatorDelete = 0;
4428    DeclarationName Name =
4429      S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4430    if (S.FindDeallocationFunction(Loc, MD->getParent(), Name,
4431                                   OperatorDelete, false))
4432      return true;
4433  }
4434
4435  return false;
4436}
4437
4438/// Check whether we should delete a special member function due to the class
4439/// having a particular non-static data member.
4440bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4441  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4442  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4443
4444  if (CSM == Sema::CXXDefaultConstructor) {
4445    // For a default constructor, all references must be initialized in-class
4446    // and, if a union, it must have a non-const member.
4447    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4448      return true;
4449
4450    if (inUnion() && !FieldType.isConstQualified())
4451      AllFieldsAreConst = false;
4452  } else if (CSM == Sema::CXXCopyConstructor) {
4453    // For a copy constructor, data members must not be of rvalue reference
4454    // type.
4455    if (FieldType->isRValueReferenceType())
4456      return true;
4457  } else if (IsAssignment) {
4458    // For an assignment operator, data members must not be of reference type.
4459    if (FieldType->isReferenceType())
4460      return true;
4461  }
4462
4463  if (FieldRecord) {
4464    // For a default constructor, a const member must have a user-provided
4465    // default constructor or else be explicitly initialized.
4466    if (CSM == Sema::CXXDefaultConstructor && FieldType.isConstQualified() &&
4467        !FD->hasInClassInitializer() &&
4468        !FieldRecord->hasUserProvidedDefaultConstructor())
4469      return true;
4470
4471    // Some additional restrictions exist on the variant members.
4472    if (!inUnion() && FieldRecord->isUnion() &&
4473        FieldRecord->isAnonymousStructOrUnion()) {
4474      bool AllVariantFieldsAreConst = true;
4475
4476      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4477                                         UE = FieldRecord->field_end();
4478           UI != UE; ++UI) {
4479        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4480        CXXRecordDecl *UnionFieldRecord =
4481          UnionFieldType->getAsCXXRecordDecl();
4482
4483        if (!UnionFieldType.isConstQualified())
4484          AllVariantFieldsAreConst = false;
4485
4486        if (UnionFieldRecord) {
4487          // FIXME: Checking for accessibility and validity of this
4488          //        destructor is technically going beyond the
4489          //        standard, but this is believed to be a defect.
4490          if (!IsAssignment) {
4491            CXXDestructorDecl *FieldDtor = S.LookupDestructor(UnionFieldRecord);
4492            if (FieldDtor->isDeleted())
4493              return true;
4494            if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4495                Sema::AR_accessible)
4496              return true;
4497            if (!FieldDtor->isTrivial())
4498              return true;
4499          }
4500
4501          // FIXME: in-class initializers should be handled here
4502          if (CSM != Sema::CXXDestructor) {
4503            Sema::SpecialMemberOverloadResult *SMOR =
4504                lookupIn(UnionFieldRecord);
4505            // FIXME: Checking for accessibility and validity of this
4506            //        corresponding member is technically going beyond the
4507            //        standard, but this is believed to be a defect.
4508            if (!SMOR->hasSuccess())
4509              return true;
4510
4511            CXXMethodDecl *FieldMember = SMOR->getMethod();
4512            // A member of a union must have a trivial corresponding
4513            // special member.
4514            if (!FieldMember->isTrivial())
4515              return true;
4516
4517            if (IsConstructor) {
4518              CXXConstructorDecl *FieldCtor =
4519                  cast<CXXConstructorDecl>(FieldMember);
4520              if (S.CheckConstructorAccess(Loc, FieldCtor,
4521                                           FieldCtor->getAccess(),
4522                                           S.PDiag()) != Sema::AR_accessible)
4523              return true;
4524            } else {
4525              assert(IsAssignment && "unexpected kind of special member");
4526              if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4527                  != Sema::AR_accessible)
4528                return true;
4529            }
4530          }
4531        }
4532      }
4533
4534      // At least one member in each anonymous union must be non-const
4535      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst)
4536        return true;
4537
4538      // Don't try to initialize the anonymous union
4539      // This is technically non-conformant, but sanity demands it.
4540      return false;
4541    }
4542
4543    // Unless we're doing assignment, the field's destructor must be
4544    // accessible and not deleted.
4545    if (!IsAssignment) {
4546      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4547      if (FieldDtor->isDeleted())
4548        return true;
4549      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4550          Sema::AR_accessible)
4551        return true;
4552    }
4553
4554    // Check that the corresponding member of the field is accessible,
4555    // unique, and non-deleted. We don't do this if it has an explicit
4556    // initialization when default-constructing.
4557    if (CSM != Sema::CXXDestructor &&
4558        !(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4559      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4560      if (!SMOR->hasSuccess())
4561        return true;
4562
4563      CXXMethodDecl *FieldMember = SMOR->getMethod();
4564      if (IsConstructor) {
4565        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4566        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4567                                     S.PDiag()) != Sema::AR_accessible)
4568        return true;
4569
4570        // For a move operation, the corresponding operation must actually
4571        // be a move operation (and not a copy selected by overload
4572        // resolution) unless we are working on a trivially copyable class.
4573        if (IsMove && !FieldCtor->isMoveConstructor() &&
4574            !FieldRecord->isTriviallyCopyable())
4575          return true;
4576      } else {
4577        assert(IsAssignment && "unexpected kind of special member");
4578        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4579              != Sema::AR_accessible)
4580          return true;
4581
4582        // -- for the move assignment operator, a non-static data member with a
4583        //    type that does not have a move assignment operator and is not
4584        //    trivially copyable.
4585        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4586            !FieldRecord->isTriviallyCopyable())
4587          return true;
4588      }
4589
4590      // We need the corresponding member of a union to be trivial so that
4591      // we can safely copy them all simultaneously.
4592      // FIXME: Note that performing the check here (where we rely on the lack
4593      // of an in-class initializer) is technically ill-formed. However, this
4594      // seems most obviously to be a bug in the standard.
4595      if (inUnion() && !FieldMember->isTrivial())
4596        return true;
4597    }
4598  } else if (CSM == Sema::CXXDefaultConstructor && !inUnion() &&
4599             FieldType.isConstQualified() && !FD->hasInClassInitializer()) {
4600    // We can't initialize a const member of non-class type to any value.
4601    return true;
4602  } else if (IsAssignment && FieldType.isConstQualified()) {
4603    // C++11 [class.copy]p23:
4604    // -- a non-static data member of const non-class type (or array thereof)
4605    return true;
4606  }
4607
4608  return false;
4609}
4610
4611/// C++11 [class.ctor] p5:
4612///   A defaulted default constructor for a class X is defined as deleted if
4613/// X is a union and all of its variant members are of const-qualified type.
4614bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4615  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst;
4616}
4617
4618/// Determine whether a defaulted special member function should be defined as
4619/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4620/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4621bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4622  assert(!MD->isInvalidDecl());
4623  CXXRecordDecl *RD = MD->getParent();
4624  assert(!RD->isDependentType() && "do deletion after instantiation");
4625  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4626    return false;
4627
4628  // C++11 [expr.lambda.prim]p19:
4629  //   The closure type associated with a lambda-expression has a
4630  //   deleted (8.4.3) default constructor and a deleted copy
4631  //   assignment operator.
4632  if (RD->isLambda() &&
4633      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4634    return true;
4635
4636  // For an anonymous struct or union, the copy and assignment special members
4637  // will never be used, so skip the check. For an anonymous union declared at
4638  // namespace scope, the constructor and destructor are used.
4639  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4640      RD->isAnonymousStructOrUnion())
4641    return false;
4642
4643  // Do access control from the special member function
4644  ContextRAII MethodContext(*this, MD);
4645
4646  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4647
4648  // FIXME: We should put some diagnostic logic right into this function.
4649
4650  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4651                                          BE = RD->bases_end(); BI != BE; ++BI)
4652    if (!BI->isVirtual() &&
4653        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4654      return true;
4655
4656  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4657                                          BE = RD->vbases_end(); BI != BE; ++BI)
4658    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4659      return true;
4660
4661  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4662                                     FE = RD->field_end(); FI != FE; ++FI)
4663    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4664        SMI.shouldDeleteForField(*FI))
4665      return true;
4666
4667  if (SMI.shouldDeleteForAllConstMembers())
4668    return true;
4669
4670  return false;
4671}
4672
4673/// \brief Data used with FindHiddenVirtualMethod
4674namespace {
4675  struct FindHiddenVirtualMethodData {
4676    Sema *S;
4677    CXXMethodDecl *Method;
4678    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4679    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4680  };
4681}
4682
4683/// \brief Member lookup function that determines whether a given C++
4684/// method overloads virtual methods in a base class without overriding any,
4685/// to be used with CXXRecordDecl::lookupInBases().
4686static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4687                                    CXXBasePath &Path,
4688                                    void *UserData) {
4689  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4690
4691  FindHiddenVirtualMethodData &Data
4692    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4693
4694  DeclarationName Name = Data.Method->getDeclName();
4695  assert(Name.getNameKind() == DeclarationName::Identifier);
4696
4697  bool foundSameNameMethod = false;
4698  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4699  for (Path.Decls = BaseRecord->lookup(Name);
4700       Path.Decls.first != Path.Decls.second;
4701       ++Path.Decls.first) {
4702    NamedDecl *D = *Path.Decls.first;
4703    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4704      MD = MD->getCanonicalDecl();
4705      foundSameNameMethod = true;
4706      // Interested only in hidden virtual methods.
4707      if (!MD->isVirtual())
4708        continue;
4709      // If the method we are checking overrides a method from its base
4710      // don't warn about the other overloaded methods.
4711      if (!Data.S->IsOverload(Data.Method, MD, false))
4712        return true;
4713      // Collect the overload only if its hidden.
4714      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4715        overloadedMethods.push_back(MD);
4716    }
4717  }
4718
4719  if (foundSameNameMethod)
4720    Data.OverloadedMethods.append(overloadedMethods.begin(),
4721                                   overloadedMethods.end());
4722  return foundSameNameMethod;
4723}
4724
4725/// \brief See if a method overloads virtual methods in a base class without
4726/// overriding any.
4727void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4728  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4729                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4730    return;
4731  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4732    return;
4733
4734  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4735                     /*bool RecordPaths=*/false,
4736                     /*bool DetectVirtual=*/false);
4737  FindHiddenVirtualMethodData Data;
4738  Data.Method = MD;
4739  Data.S = this;
4740
4741  // Keep the base methods that were overriden or introduced in the subclass
4742  // by 'using' in a set. A base method not in this set is hidden.
4743  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4744       res.first != res.second; ++res.first) {
4745    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4746      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4747                                          E = MD->end_overridden_methods();
4748           I != E; ++I)
4749        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4750    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4751      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4752        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4753  }
4754
4755  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4756      !Data.OverloadedMethods.empty()) {
4757    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4758      << MD << (Data.OverloadedMethods.size() > 1);
4759
4760    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4761      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4762      Diag(overloadedMD->getLocation(),
4763           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4764    }
4765  }
4766}
4767
4768void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4769                                             Decl *TagDecl,
4770                                             SourceLocation LBrac,
4771                                             SourceLocation RBrac,
4772                                             AttributeList *AttrList) {
4773  if (!TagDecl)
4774    return;
4775
4776  AdjustDeclIfTemplate(TagDecl);
4777
4778  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4779              // strict aliasing violation!
4780              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4781              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4782
4783  CheckCompletedCXXClass(
4784                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4785}
4786
4787/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4788/// special functions, such as the default constructor, copy
4789/// constructor, or destructor, to the given C++ class (C++
4790/// [special]p1).  This routine can only be executed just before the
4791/// definition of the class is complete.
4792void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4793  if (!ClassDecl->hasUserDeclaredConstructor())
4794    ++ASTContext::NumImplicitDefaultConstructors;
4795
4796  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4797    ++ASTContext::NumImplicitCopyConstructors;
4798
4799  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4800    ++ASTContext::NumImplicitMoveConstructors;
4801
4802  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4803    ++ASTContext::NumImplicitCopyAssignmentOperators;
4804
4805    // If we have a dynamic class, then the copy assignment operator may be
4806    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4807    // it shows up in the right place in the vtable and that we diagnose
4808    // problems with the implicit exception specification.
4809    if (ClassDecl->isDynamicClass())
4810      DeclareImplicitCopyAssignment(ClassDecl);
4811  }
4812
4813  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4814    ++ASTContext::NumImplicitMoveAssignmentOperators;
4815
4816    // Likewise for the move assignment operator.
4817    if (ClassDecl->isDynamicClass())
4818      DeclareImplicitMoveAssignment(ClassDecl);
4819  }
4820
4821  if (!ClassDecl->hasUserDeclaredDestructor()) {
4822    ++ASTContext::NumImplicitDestructors;
4823
4824    // If we have a dynamic class, then the destructor may be virtual, so we
4825    // have to declare the destructor immediately. This ensures that, e.g., it
4826    // shows up in the right place in the vtable and that we diagnose problems
4827    // with the implicit exception specification.
4828    if (ClassDecl->isDynamicClass())
4829      DeclareImplicitDestructor(ClassDecl);
4830  }
4831}
4832
4833void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4834  if (!D)
4835    return;
4836
4837  int NumParamList = D->getNumTemplateParameterLists();
4838  for (int i = 0; i < NumParamList; i++) {
4839    TemplateParameterList* Params = D->getTemplateParameterList(i);
4840    for (TemplateParameterList::iterator Param = Params->begin(),
4841                                      ParamEnd = Params->end();
4842          Param != ParamEnd; ++Param) {
4843      NamedDecl *Named = cast<NamedDecl>(*Param);
4844      if (Named->getDeclName()) {
4845        S->AddDecl(Named);
4846        IdResolver.AddDecl(Named);
4847      }
4848    }
4849  }
4850}
4851
4852void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4853  if (!D)
4854    return;
4855
4856  TemplateParameterList *Params = 0;
4857  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4858    Params = Template->getTemplateParameters();
4859  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4860           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4861    Params = PartialSpec->getTemplateParameters();
4862  else
4863    return;
4864
4865  for (TemplateParameterList::iterator Param = Params->begin(),
4866                                    ParamEnd = Params->end();
4867       Param != ParamEnd; ++Param) {
4868    NamedDecl *Named = cast<NamedDecl>(*Param);
4869    if (Named->getDeclName()) {
4870      S->AddDecl(Named);
4871      IdResolver.AddDecl(Named);
4872    }
4873  }
4874}
4875
4876void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4877  if (!RecordD) return;
4878  AdjustDeclIfTemplate(RecordD);
4879  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4880  PushDeclContext(S, Record);
4881}
4882
4883void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4884  if (!RecordD) return;
4885  PopDeclContext();
4886}
4887
4888/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4889/// parsing a top-level (non-nested) C++ class, and we are now
4890/// parsing those parts of the given Method declaration that could
4891/// not be parsed earlier (C++ [class.mem]p2), such as default
4892/// arguments. This action should enter the scope of the given
4893/// Method declaration as if we had just parsed the qualified method
4894/// name. However, it should not bring the parameters into scope;
4895/// that will be performed by ActOnDelayedCXXMethodParameter.
4896void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4897}
4898
4899/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4900/// C++ method declaration. We're (re-)introducing the given
4901/// function parameter into scope for use in parsing later parts of
4902/// the method declaration. For example, we could see an
4903/// ActOnParamDefaultArgument event for this parameter.
4904void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4905  if (!ParamD)
4906    return;
4907
4908  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4909
4910  // If this parameter has an unparsed default argument, clear it out
4911  // to make way for the parsed default argument.
4912  if (Param->hasUnparsedDefaultArg())
4913    Param->setDefaultArg(0);
4914
4915  S->AddDecl(Param);
4916  if (Param->getDeclName())
4917    IdResolver.AddDecl(Param);
4918}
4919
4920/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4921/// processing the delayed method declaration for Method. The method
4922/// declaration is now considered finished. There may be a separate
4923/// ActOnStartOfFunctionDef action later (not necessarily
4924/// immediately!) for this method, if it was also defined inside the
4925/// class body.
4926void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4927  if (!MethodD)
4928    return;
4929
4930  AdjustDeclIfTemplate(MethodD);
4931
4932  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4933
4934  // Now that we have our default arguments, check the constructor
4935  // again. It could produce additional diagnostics or affect whether
4936  // the class has implicitly-declared destructors, among other
4937  // things.
4938  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4939    CheckConstructor(Constructor);
4940
4941  // Check the default arguments, which we may have added.
4942  if (!Method->isInvalidDecl())
4943    CheckCXXDefaultArguments(Method);
4944}
4945
4946/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4947/// the well-formedness of the constructor declarator @p D with type @p
4948/// R. If there are any errors in the declarator, this routine will
4949/// emit diagnostics and set the invalid bit to true.  In any case, the type
4950/// will be updated to reflect a well-formed type for the constructor and
4951/// returned.
4952QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4953                                          StorageClass &SC) {
4954  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4955
4956  // C++ [class.ctor]p3:
4957  //   A constructor shall not be virtual (10.3) or static (9.4). A
4958  //   constructor can be invoked for a const, volatile or const
4959  //   volatile object. A constructor shall not be declared const,
4960  //   volatile, or const volatile (9.3.2).
4961  if (isVirtual) {
4962    if (!D.isInvalidType())
4963      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4964        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4965        << SourceRange(D.getIdentifierLoc());
4966    D.setInvalidType();
4967  }
4968  if (SC == SC_Static) {
4969    if (!D.isInvalidType())
4970      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4971        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4972        << SourceRange(D.getIdentifierLoc());
4973    D.setInvalidType();
4974    SC = SC_None;
4975  }
4976
4977  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4978  if (FTI.TypeQuals != 0) {
4979    if (FTI.TypeQuals & Qualifiers::Const)
4980      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4981        << "const" << SourceRange(D.getIdentifierLoc());
4982    if (FTI.TypeQuals & Qualifiers::Volatile)
4983      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4984        << "volatile" << SourceRange(D.getIdentifierLoc());
4985    if (FTI.TypeQuals & Qualifiers::Restrict)
4986      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4987        << "restrict" << SourceRange(D.getIdentifierLoc());
4988    D.setInvalidType();
4989  }
4990
4991  // C++0x [class.ctor]p4:
4992  //   A constructor shall not be declared with a ref-qualifier.
4993  if (FTI.hasRefQualifier()) {
4994    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4995      << FTI.RefQualifierIsLValueRef
4996      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4997    D.setInvalidType();
4998  }
4999
5000  // Rebuild the function type "R" without any type qualifiers (in
5001  // case any of the errors above fired) and with "void" as the
5002  // return type, since constructors don't have return types.
5003  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5004  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5005    return R;
5006
5007  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5008  EPI.TypeQuals = 0;
5009  EPI.RefQualifier = RQ_None;
5010
5011  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5012                                 Proto->getNumArgs(), EPI);
5013}
5014
5015/// CheckConstructor - Checks a fully-formed constructor for
5016/// well-formedness, issuing any diagnostics required. Returns true if
5017/// the constructor declarator is invalid.
5018void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5019  CXXRecordDecl *ClassDecl
5020    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5021  if (!ClassDecl)
5022    return Constructor->setInvalidDecl();
5023
5024  // C++ [class.copy]p3:
5025  //   A declaration of a constructor for a class X is ill-formed if
5026  //   its first parameter is of type (optionally cv-qualified) X and
5027  //   either there are no other parameters or else all other
5028  //   parameters have default arguments.
5029  if (!Constructor->isInvalidDecl() &&
5030      ((Constructor->getNumParams() == 1) ||
5031       (Constructor->getNumParams() > 1 &&
5032        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5033      Constructor->getTemplateSpecializationKind()
5034                                              != TSK_ImplicitInstantiation) {
5035    QualType ParamType = Constructor->getParamDecl(0)->getType();
5036    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5037    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5038      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5039      const char *ConstRef
5040        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5041                                                        : " const &";
5042      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5043        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5044
5045      // FIXME: Rather that making the constructor invalid, we should endeavor
5046      // to fix the type.
5047      Constructor->setInvalidDecl();
5048    }
5049  }
5050}
5051
5052/// CheckDestructor - Checks a fully-formed destructor definition for
5053/// well-formedness, issuing any diagnostics required.  Returns true
5054/// on error.
5055bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5056  CXXRecordDecl *RD = Destructor->getParent();
5057
5058  if (Destructor->isVirtual()) {
5059    SourceLocation Loc;
5060
5061    if (!Destructor->isImplicit())
5062      Loc = Destructor->getLocation();
5063    else
5064      Loc = RD->getLocation();
5065
5066    // If we have a virtual destructor, look up the deallocation function
5067    FunctionDecl *OperatorDelete = 0;
5068    DeclarationName Name =
5069    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5070    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5071      return true;
5072
5073    MarkFunctionReferenced(Loc, OperatorDelete);
5074
5075    Destructor->setOperatorDelete(OperatorDelete);
5076  }
5077
5078  return false;
5079}
5080
5081static inline bool
5082FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5083  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5084          FTI.ArgInfo[0].Param &&
5085          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5086}
5087
5088/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5089/// the well-formednes of the destructor declarator @p D with type @p
5090/// R. If there are any errors in the declarator, this routine will
5091/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5092/// will be updated to reflect a well-formed type for the destructor and
5093/// returned.
5094QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5095                                         StorageClass& SC) {
5096  // C++ [class.dtor]p1:
5097  //   [...] A typedef-name that names a class is a class-name
5098  //   (7.1.3); however, a typedef-name that names a class shall not
5099  //   be used as the identifier in the declarator for a destructor
5100  //   declaration.
5101  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5102  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5103    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5104      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5105  else if (const TemplateSpecializationType *TST =
5106             DeclaratorType->getAs<TemplateSpecializationType>())
5107    if (TST->isTypeAlias())
5108      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5109        << DeclaratorType << 1;
5110
5111  // C++ [class.dtor]p2:
5112  //   A destructor is used to destroy objects of its class type. A
5113  //   destructor takes no parameters, and no return type can be
5114  //   specified for it (not even void). The address of a destructor
5115  //   shall not be taken. A destructor shall not be static. A
5116  //   destructor can be invoked for a const, volatile or const
5117  //   volatile object. A destructor shall not be declared const,
5118  //   volatile or const volatile (9.3.2).
5119  if (SC == SC_Static) {
5120    if (!D.isInvalidType())
5121      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5122        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5123        << SourceRange(D.getIdentifierLoc())
5124        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5125
5126    SC = SC_None;
5127  }
5128  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5129    // Destructors don't have return types, but the parser will
5130    // happily parse something like:
5131    //
5132    //   class X {
5133    //     float ~X();
5134    //   };
5135    //
5136    // The return type will be eliminated later.
5137    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5138      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5139      << SourceRange(D.getIdentifierLoc());
5140  }
5141
5142  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5143  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5144    if (FTI.TypeQuals & Qualifiers::Const)
5145      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5146        << "const" << SourceRange(D.getIdentifierLoc());
5147    if (FTI.TypeQuals & Qualifiers::Volatile)
5148      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5149        << "volatile" << SourceRange(D.getIdentifierLoc());
5150    if (FTI.TypeQuals & Qualifiers::Restrict)
5151      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5152        << "restrict" << SourceRange(D.getIdentifierLoc());
5153    D.setInvalidType();
5154  }
5155
5156  // C++0x [class.dtor]p2:
5157  //   A destructor shall not be declared with a ref-qualifier.
5158  if (FTI.hasRefQualifier()) {
5159    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5160      << FTI.RefQualifierIsLValueRef
5161      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5162    D.setInvalidType();
5163  }
5164
5165  // Make sure we don't have any parameters.
5166  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5167    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5168
5169    // Delete the parameters.
5170    FTI.freeArgs();
5171    D.setInvalidType();
5172  }
5173
5174  // Make sure the destructor isn't variadic.
5175  if (FTI.isVariadic) {
5176    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5177    D.setInvalidType();
5178  }
5179
5180  // Rebuild the function type "R" without any type qualifiers or
5181  // parameters (in case any of the errors above fired) and with
5182  // "void" as the return type, since destructors don't have return
5183  // types.
5184  if (!D.isInvalidType())
5185    return R;
5186
5187  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5188  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5189  EPI.Variadic = false;
5190  EPI.TypeQuals = 0;
5191  EPI.RefQualifier = RQ_None;
5192  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5193}
5194
5195/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5196/// well-formednes of the conversion function declarator @p D with
5197/// type @p R. If there are any errors in the declarator, this routine
5198/// will emit diagnostics and return true. Otherwise, it will return
5199/// false. Either way, the type @p R will be updated to reflect a
5200/// well-formed type for the conversion operator.
5201void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5202                                     StorageClass& SC) {
5203  // C++ [class.conv.fct]p1:
5204  //   Neither parameter types nor return type can be specified. The
5205  //   type of a conversion function (8.3.5) is "function taking no
5206  //   parameter returning conversion-type-id."
5207  if (SC == SC_Static) {
5208    if (!D.isInvalidType())
5209      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5210        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5211        << SourceRange(D.getIdentifierLoc());
5212    D.setInvalidType();
5213    SC = SC_None;
5214  }
5215
5216  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5217
5218  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5219    // Conversion functions don't have return types, but the parser will
5220    // happily parse something like:
5221    //
5222    //   class X {
5223    //     float operator bool();
5224    //   };
5225    //
5226    // The return type will be changed later anyway.
5227    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5228      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5229      << SourceRange(D.getIdentifierLoc());
5230    D.setInvalidType();
5231  }
5232
5233  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5234
5235  // Make sure we don't have any parameters.
5236  if (Proto->getNumArgs() > 0) {
5237    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5238
5239    // Delete the parameters.
5240    D.getFunctionTypeInfo().freeArgs();
5241    D.setInvalidType();
5242  } else if (Proto->isVariadic()) {
5243    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5244    D.setInvalidType();
5245  }
5246
5247  // Diagnose "&operator bool()" and other such nonsense.  This
5248  // is actually a gcc extension which we don't support.
5249  if (Proto->getResultType() != ConvType) {
5250    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5251      << Proto->getResultType();
5252    D.setInvalidType();
5253    ConvType = Proto->getResultType();
5254  }
5255
5256  // C++ [class.conv.fct]p4:
5257  //   The conversion-type-id shall not represent a function type nor
5258  //   an array type.
5259  if (ConvType->isArrayType()) {
5260    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5261    ConvType = Context.getPointerType(ConvType);
5262    D.setInvalidType();
5263  } else if (ConvType->isFunctionType()) {
5264    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5265    ConvType = Context.getPointerType(ConvType);
5266    D.setInvalidType();
5267  }
5268
5269  // Rebuild the function type "R" without any parameters (in case any
5270  // of the errors above fired) and with the conversion type as the
5271  // return type.
5272  if (D.isInvalidType())
5273    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5274
5275  // C++0x explicit conversion operators.
5276  if (D.getDeclSpec().isExplicitSpecified())
5277    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5278         getLangOptions().CPlusPlus0x ?
5279           diag::warn_cxx98_compat_explicit_conversion_functions :
5280           diag::ext_explicit_conversion_functions)
5281      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5282}
5283
5284/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5285/// the declaration of the given C++ conversion function. This routine
5286/// is responsible for recording the conversion function in the C++
5287/// class, if possible.
5288Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5289  assert(Conversion && "Expected to receive a conversion function declaration");
5290
5291  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5292
5293  // Make sure we aren't redeclaring the conversion function.
5294  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5295
5296  // C++ [class.conv.fct]p1:
5297  //   [...] A conversion function is never used to convert a
5298  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5299  //   same object type (or a reference to it), to a (possibly
5300  //   cv-qualified) base class of that type (or a reference to it),
5301  //   or to (possibly cv-qualified) void.
5302  // FIXME: Suppress this warning if the conversion function ends up being a
5303  // virtual function that overrides a virtual function in a base class.
5304  QualType ClassType
5305    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5306  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5307    ConvType = ConvTypeRef->getPointeeType();
5308  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5309      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5310    /* Suppress diagnostics for instantiations. */;
5311  else if (ConvType->isRecordType()) {
5312    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5313    if (ConvType == ClassType)
5314      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5315        << ClassType;
5316    else if (IsDerivedFrom(ClassType, ConvType))
5317      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5318        <<  ClassType << ConvType;
5319  } else if (ConvType->isVoidType()) {
5320    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5321      << ClassType << ConvType;
5322  }
5323
5324  if (FunctionTemplateDecl *ConversionTemplate
5325                                = Conversion->getDescribedFunctionTemplate())
5326    return ConversionTemplate;
5327
5328  return Conversion;
5329}
5330
5331//===----------------------------------------------------------------------===//
5332// Namespace Handling
5333//===----------------------------------------------------------------------===//
5334
5335
5336
5337/// ActOnStartNamespaceDef - This is called at the start of a namespace
5338/// definition.
5339Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5340                                   SourceLocation InlineLoc,
5341                                   SourceLocation NamespaceLoc,
5342                                   SourceLocation IdentLoc,
5343                                   IdentifierInfo *II,
5344                                   SourceLocation LBrace,
5345                                   AttributeList *AttrList) {
5346  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5347  // For anonymous namespace, take the location of the left brace.
5348  SourceLocation Loc = II ? IdentLoc : LBrace;
5349  bool IsInline = InlineLoc.isValid();
5350  bool IsInvalid = false;
5351  bool IsStd = false;
5352  bool AddToKnown = false;
5353  Scope *DeclRegionScope = NamespcScope->getParent();
5354
5355  NamespaceDecl *PrevNS = 0;
5356  if (II) {
5357    // C++ [namespace.def]p2:
5358    //   The identifier in an original-namespace-definition shall not
5359    //   have been previously defined in the declarative region in
5360    //   which the original-namespace-definition appears. The
5361    //   identifier in an original-namespace-definition is the name of
5362    //   the namespace. Subsequently in that declarative region, it is
5363    //   treated as an original-namespace-name.
5364    //
5365    // Since namespace names are unique in their scope, and we don't
5366    // look through using directives, just look for any ordinary names.
5367
5368    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5369    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5370    Decl::IDNS_Namespace;
5371    NamedDecl *PrevDecl = 0;
5372    for (DeclContext::lookup_result R
5373         = CurContext->getRedeclContext()->lookup(II);
5374         R.first != R.second; ++R.first) {
5375      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5376        PrevDecl = *R.first;
5377        break;
5378      }
5379    }
5380
5381    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5382
5383    if (PrevNS) {
5384      // This is an extended namespace definition.
5385      if (IsInline != PrevNS->isInline()) {
5386        // inline-ness must match
5387        if (PrevNS->isInline()) {
5388          // The user probably just forgot the 'inline', so suggest that it
5389          // be added back.
5390          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5391            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5392        } else {
5393          Diag(Loc, diag::err_inline_namespace_mismatch)
5394            << IsInline;
5395        }
5396        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5397
5398        IsInline = PrevNS->isInline();
5399      }
5400    } else if (PrevDecl) {
5401      // This is an invalid name redefinition.
5402      Diag(Loc, diag::err_redefinition_different_kind)
5403        << II;
5404      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5405      IsInvalid = true;
5406      // Continue on to push Namespc as current DeclContext and return it.
5407    } else if (II->isStr("std") &&
5408               CurContext->getRedeclContext()->isTranslationUnit()) {
5409      // This is the first "real" definition of the namespace "std", so update
5410      // our cache of the "std" namespace to point at this definition.
5411      PrevNS = getStdNamespace();
5412      IsStd = true;
5413      AddToKnown = !IsInline;
5414    } else {
5415      // We've seen this namespace for the first time.
5416      AddToKnown = !IsInline;
5417    }
5418  } else {
5419    // Anonymous namespaces.
5420
5421    // Determine whether the parent already has an anonymous namespace.
5422    DeclContext *Parent = CurContext->getRedeclContext();
5423    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5424      PrevNS = TU->getAnonymousNamespace();
5425    } else {
5426      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5427      PrevNS = ND->getAnonymousNamespace();
5428    }
5429
5430    if (PrevNS && IsInline != PrevNS->isInline()) {
5431      // inline-ness must match
5432      Diag(Loc, diag::err_inline_namespace_mismatch)
5433        << IsInline;
5434      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5435
5436      // Recover by ignoring the new namespace's inline status.
5437      IsInline = PrevNS->isInline();
5438    }
5439  }
5440
5441  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5442                                                 StartLoc, Loc, II, PrevNS);
5443  if (IsInvalid)
5444    Namespc->setInvalidDecl();
5445
5446  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5447
5448  // FIXME: Should we be merging attributes?
5449  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5450    PushNamespaceVisibilityAttr(Attr, Loc);
5451
5452  if (IsStd)
5453    StdNamespace = Namespc;
5454  if (AddToKnown)
5455    KnownNamespaces[Namespc] = false;
5456
5457  if (II) {
5458    PushOnScopeChains(Namespc, DeclRegionScope);
5459  } else {
5460    // Link the anonymous namespace into its parent.
5461    DeclContext *Parent = CurContext->getRedeclContext();
5462    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5463      TU->setAnonymousNamespace(Namespc);
5464    } else {
5465      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5466    }
5467
5468    CurContext->addDecl(Namespc);
5469
5470    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5471    //   behaves as if it were replaced by
5472    //     namespace unique { /* empty body */ }
5473    //     using namespace unique;
5474    //     namespace unique { namespace-body }
5475    //   where all occurrences of 'unique' in a translation unit are
5476    //   replaced by the same identifier and this identifier differs
5477    //   from all other identifiers in the entire program.
5478
5479    // We just create the namespace with an empty name and then add an
5480    // implicit using declaration, just like the standard suggests.
5481    //
5482    // CodeGen enforces the "universally unique" aspect by giving all
5483    // declarations semantically contained within an anonymous
5484    // namespace internal linkage.
5485
5486    if (!PrevNS) {
5487      UsingDirectiveDecl* UD
5488        = UsingDirectiveDecl::Create(Context, CurContext,
5489                                     /* 'using' */ LBrace,
5490                                     /* 'namespace' */ SourceLocation(),
5491                                     /* qualifier */ NestedNameSpecifierLoc(),
5492                                     /* identifier */ SourceLocation(),
5493                                     Namespc,
5494                                     /* Ancestor */ CurContext);
5495      UD->setImplicit();
5496      CurContext->addDecl(UD);
5497    }
5498  }
5499
5500  // Although we could have an invalid decl (i.e. the namespace name is a
5501  // redefinition), push it as current DeclContext and try to continue parsing.
5502  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5503  // for the namespace has the declarations that showed up in that particular
5504  // namespace definition.
5505  PushDeclContext(NamespcScope, Namespc);
5506  return Namespc;
5507}
5508
5509/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5510/// is a namespace alias, returns the namespace it points to.
5511static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5512  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5513    return AD->getNamespace();
5514  return dyn_cast_or_null<NamespaceDecl>(D);
5515}
5516
5517/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5518/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5519void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5520  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5521  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5522  Namespc->setRBraceLoc(RBrace);
5523  PopDeclContext();
5524  if (Namespc->hasAttr<VisibilityAttr>())
5525    PopPragmaVisibility(true, RBrace);
5526}
5527
5528CXXRecordDecl *Sema::getStdBadAlloc() const {
5529  return cast_or_null<CXXRecordDecl>(
5530                                  StdBadAlloc.get(Context.getExternalSource()));
5531}
5532
5533NamespaceDecl *Sema::getStdNamespace() const {
5534  return cast_or_null<NamespaceDecl>(
5535                                 StdNamespace.get(Context.getExternalSource()));
5536}
5537
5538/// \brief Retrieve the special "std" namespace, which may require us to
5539/// implicitly define the namespace.
5540NamespaceDecl *Sema::getOrCreateStdNamespace() {
5541  if (!StdNamespace) {
5542    // The "std" namespace has not yet been defined, so build one implicitly.
5543    StdNamespace = NamespaceDecl::Create(Context,
5544                                         Context.getTranslationUnitDecl(),
5545                                         /*Inline=*/false,
5546                                         SourceLocation(), SourceLocation(),
5547                                         &PP.getIdentifierTable().get("std"),
5548                                         /*PrevDecl=*/0);
5549    getStdNamespace()->setImplicit(true);
5550  }
5551
5552  return getStdNamespace();
5553}
5554
5555bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5556  assert(getLangOptions().CPlusPlus &&
5557         "Looking for std::initializer_list outside of C++.");
5558
5559  // We're looking for implicit instantiations of
5560  // template <typename E> class std::initializer_list.
5561
5562  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5563    return false;
5564
5565  ClassTemplateDecl *Template = 0;
5566  const TemplateArgument *Arguments = 0;
5567
5568  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5569
5570    ClassTemplateSpecializationDecl *Specialization =
5571        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5572    if (!Specialization)
5573      return false;
5574
5575    Template = Specialization->getSpecializedTemplate();
5576    Arguments = Specialization->getTemplateArgs().data();
5577  } else if (const TemplateSpecializationType *TST =
5578                 Ty->getAs<TemplateSpecializationType>()) {
5579    Template = dyn_cast_or_null<ClassTemplateDecl>(
5580        TST->getTemplateName().getAsTemplateDecl());
5581    Arguments = TST->getArgs();
5582  }
5583  if (!Template)
5584    return false;
5585
5586  if (!StdInitializerList) {
5587    // Haven't recognized std::initializer_list yet, maybe this is it.
5588    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5589    if (TemplateClass->getIdentifier() !=
5590            &PP.getIdentifierTable().get("initializer_list") ||
5591        !getStdNamespace()->InEnclosingNamespaceSetOf(
5592            TemplateClass->getDeclContext()))
5593      return false;
5594    // This is a template called std::initializer_list, but is it the right
5595    // template?
5596    TemplateParameterList *Params = Template->getTemplateParameters();
5597    if (Params->getMinRequiredArguments() != 1)
5598      return false;
5599    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5600      return false;
5601
5602    // It's the right template.
5603    StdInitializerList = Template;
5604  }
5605
5606  if (Template != StdInitializerList)
5607    return false;
5608
5609  // This is an instance of std::initializer_list. Find the argument type.
5610  if (Element)
5611    *Element = Arguments[0].getAsType();
5612  return true;
5613}
5614
5615static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5616  NamespaceDecl *Std = S.getStdNamespace();
5617  if (!Std) {
5618    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5619    return 0;
5620  }
5621
5622  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5623                      Loc, Sema::LookupOrdinaryName);
5624  if (!S.LookupQualifiedName(Result, Std)) {
5625    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5626    return 0;
5627  }
5628  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5629  if (!Template) {
5630    Result.suppressDiagnostics();
5631    // We found something weird. Complain about the first thing we found.
5632    NamedDecl *Found = *Result.begin();
5633    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5634    return 0;
5635  }
5636
5637  // We found some template called std::initializer_list. Now verify that it's
5638  // correct.
5639  TemplateParameterList *Params = Template->getTemplateParameters();
5640  if (Params->getMinRequiredArguments() != 1 ||
5641      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5642    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5643    return 0;
5644  }
5645
5646  return Template;
5647}
5648
5649QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5650  if (!StdInitializerList) {
5651    StdInitializerList = LookupStdInitializerList(*this, Loc);
5652    if (!StdInitializerList)
5653      return QualType();
5654  }
5655
5656  TemplateArgumentListInfo Args(Loc, Loc);
5657  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5658                                       Context.getTrivialTypeSourceInfo(Element,
5659                                                                        Loc)));
5660  return Context.getCanonicalType(
5661      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5662}
5663
5664bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5665  // C++ [dcl.init.list]p2:
5666  //   A constructor is an initializer-list constructor if its first parameter
5667  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5668  //   std::initializer_list<E> for some type E, and either there are no other
5669  //   parameters or else all other parameters have default arguments.
5670  if (Ctor->getNumParams() < 1 ||
5671      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5672    return false;
5673
5674  QualType ArgType = Ctor->getParamDecl(0)->getType();
5675  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5676    ArgType = RT->getPointeeType().getUnqualifiedType();
5677
5678  return isStdInitializerList(ArgType, 0);
5679}
5680
5681/// \brief Determine whether a using statement is in a context where it will be
5682/// apply in all contexts.
5683static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5684  switch (CurContext->getDeclKind()) {
5685    case Decl::TranslationUnit:
5686      return true;
5687    case Decl::LinkageSpec:
5688      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5689    default:
5690      return false;
5691  }
5692}
5693
5694namespace {
5695
5696// Callback to only accept typo corrections that are namespaces.
5697class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5698 public:
5699  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5700    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5701      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5702    }
5703    return false;
5704  }
5705};
5706
5707}
5708
5709static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5710                                       CXXScopeSpec &SS,
5711                                       SourceLocation IdentLoc,
5712                                       IdentifierInfo *Ident) {
5713  NamespaceValidatorCCC Validator;
5714  R.clear();
5715  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5716                                               R.getLookupKind(), Sc, &SS,
5717                                               Validator)) {
5718    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5719    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5720    if (DeclContext *DC = S.computeDeclContext(SS, false))
5721      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5722        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5723        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5724    else
5725      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5726        << Ident << CorrectedQuotedStr
5727        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5728
5729    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5730         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5731
5732    Ident = Corrected.getCorrectionAsIdentifierInfo();
5733    R.addDecl(Corrected.getCorrectionDecl());
5734    return true;
5735  }
5736  return false;
5737}
5738
5739Decl *Sema::ActOnUsingDirective(Scope *S,
5740                                          SourceLocation UsingLoc,
5741                                          SourceLocation NamespcLoc,
5742                                          CXXScopeSpec &SS,
5743                                          SourceLocation IdentLoc,
5744                                          IdentifierInfo *NamespcName,
5745                                          AttributeList *AttrList) {
5746  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5747  assert(NamespcName && "Invalid NamespcName.");
5748  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5749
5750  // This can only happen along a recovery path.
5751  while (S->getFlags() & Scope::TemplateParamScope)
5752    S = S->getParent();
5753  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5754
5755  UsingDirectiveDecl *UDir = 0;
5756  NestedNameSpecifier *Qualifier = 0;
5757  if (SS.isSet())
5758    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5759
5760  // Lookup namespace name.
5761  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5762  LookupParsedName(R, S, &SS);
5763  if (R.isAmbiguous())
5764    return 0;
5765
5766  if (R.empty()) {
5767    R.clear();
5768    // Allow "using namespace std;" or "using namespace ::std;" even if
5769    // "std" hasn't been defined yet, for GCC compatibility.
5770    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5771        NamespcName->isStr("std")) {
5772      Diag(IdentLoc, diag::ext_using_undefined_std);
5773      R.addDecl(getOrCreateStdNamespace());
5774      R.resolveKind();
5775    }
5776    // Otherwise, attempt typo correction.
5777    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5778  }
5779
5780  if (!R.empty()) {
5781    NamedDecl *Named = R.getFoundDecl();
5782    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5783        && "expected namespace decl");
5784    // C++ [namespace.udir]p1:
5785    //   A using-directive specifies that the names in the nominated
5786    //   namespace can be used in the scope in which the
5787    //   using-directive appears after the using-directive. During
5788    //   unqualified name lookup (3.4.1), the names appear as if they
5789    //   were declared in the nearest enclosing namespace which
5790    //   contains both the using-directive and the nominated
5791    //   namespace. [Note: in this context, "contains" means "contains
5792    //   directly or indirectly". ]
5793
5794    // Find enclosing context containing both using-directive and
5795    // nominated namespace.
5796    NamespaceDecl *NS = getNamespaceDecl(Named);
5797    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5798    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5799      CommonAncestor = CommonAncestor->getParent();
5800
5801    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5802                                      SS.getWithLocInContext(Context),
5803                                      IdentLoc, Named, CommonAncestor);
5804
5805    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5806        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5807      Diag(IdentLoc, diag::warn_using_directive_in_header);
5808    }
5809
5810    PushUsingDirective(S, UDir);
5811  } else {
5812    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5813  }
5814
5815  // FIXME: We ignore attributes for now.
5816  return UDir;
5817}
5818
5819void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5820  // If scope has associated entity, then using directive is at namespace
5821  // or translation unit scope. We add UsingDirectiveDecls, into
5822  // it's lookup structure.
5823  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5824    Ctx->addDecl(UDir);
5825  else
5826    // Otherwise it is block-sope. using-directives will affect lookup
5827    // only to the end of scope.
5828    S->PushUsingDirective(UDir);
5829}
5830
5831
5832Decl *Sema::ActOnUsingDeclaration(Scope *S,
5833                                  AccessSpecifier AS,
5834                                  bool HasUsingKeyword,
5835                                  SourceLocation UsingLoc,
5836                                  CXXScopeSpec &SS,
5837                                  UnqualifiedId &Name,
5838                                  AttributeList *AttrList,
5839                                  bool IsTypeName,
5840                                  SourceLocation TypenameLoc) {
5841  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5842
5843  switch (Name.getKind()) {
5844  case UnqualifiedId::IK_ImplicitSelfParam:
5845  case UnqualifiedId::IK_Identifier:
5846  case UnqualifiedId::IK_OperatorFunctionId:
5847  case UnqualifiedId::IK_LiteralOperatorId:
5848  case UnqualifiedId::IK_ConversionFunctionId:
5849    break;
5850
5851  case UnqualifiedId::IK_ConstructorName:
5852  case UnqualifiedId::IK_ConstructorTemplateId:
5853    // C++0x inherited constructors.
5854    Diag(Name.getSourceRange().getBegin(),
5855         getLangOptions().CPlusPlus0x ?
5856           diag::warn_cxx98_compat_using_decl_constructor :
5857           diag::err_using_decl_constructor)
5858      << SS.getRange();
5859
5860    if (getLangOptions().CPlusPlus0x) break;
5861
5862    return 0;
5863
5864  case UnqualifiedId::IK_DestructorName:
5865    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5866      << SS.getRange();
5867    return 0;
5868
5869  case UnqualifiedId::IK_TemplateId:
5870    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5871      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5872    return 0;
5873  }
5874
5875  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5876  DeclarationName TargetName = TargetNameInfo.getName();
5877  if (!TargetName)
5878    return 0;
5879
5880  // Warn about using declarations.
5881  // TODO: store that the declaration was written without 'using' and
5882  // talk about access decls instead of using decls in the
5883  // diagnostics.
5884  if (!HasUsingKeyword) {
5885    UsingLoc = Name.getSourceRange().getBegin();
5886
5887    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5888      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5889  }
5890
5891  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5892      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5893    return 0;
5894
5895  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5896                                        TargetNameInfo, AttrList,
5897                                        /* IsInstantiation */ false,
5898                                        IsTypeName, TypenameLoc);
5899  if (UD)
5900    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5901
5902  return UD;
5903}
5904
5905/// \brief Determine whether a using declaration considers the given
5906/// declarations as "equivalent", e.g., if they are redeclarations of
5907/// the same entity or are both typedefs of the same type.
5908static bool
5909IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5910                         bool &SuppressRedeclaration) {
5911  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5912    SuppressRedeclaration = false;
5913    return true;
5914  }
5915
5916  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5917    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5918      SuppressRedeclaration = true;
5919      return Context.hasSameType(TD1->getUnderlyingType(),
5920                                 TD2->getUnderlyingType());
5921    }
5922
5923  return false;
5924}
5925
5926
5927/// Determines whether to create a using shadow decl for a particular
5928/// decl, given the set of decls existing prior to this using lookup.
5929bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5930                                const LookupResult &Previous) {
5931  // Diagnose finding a decl which is not from a base class of the
5932  // current class.  We do this now because there are cases where this
5933  // function will silently decide not to build a shadow decl, which
5934  // will pre-empt further diagnostics.
5935  //
5936  // We don't need to do this in C++0x because we do the check once on
5937  // the qualifier.
5938  //
5939  // FIXME: diagnose the following if we care enough:
5940  //   struct A { int foo; };
5941  //   struct B : A { using A::foo; };
5942  //   template <class T> struct C : A {};
5943  //   template <class T> struct D : C<T> { using B::foo; } // <---
5944  // This is invalid (during instantiation) in C++03 because B::foo
5945  // resolves to the using decl in B, which is not a base class of D<T>.
5946  // We can't diagnose it immediately because C<T> is an unknown
5947  // specialization.  The UsingShadowDecl in D<T> then points directly
5948  // to A::foo, which will look well-formed when we instantiate.
5949  // The right solution is to not collapse the shadow-decl chain.
5950  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5951    DeclContext *OrigDC = Orig->getDeclContext();
5952
5953    // Handle enums and anonymous structs.
5954    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5955    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5956    while (OrigRec->isAnonymousStructOrUnion())
5957      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5958
5959    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5960      if (OrigDC == CurContext) {
5961        Diag(Using->getLocation(),
5962             diag::err_using_decl_nested_name_specifier_is_current_class)
5963          << Using->getQualifierLoc().getSourceRange();
5964        Diag(Orig->getLocation(), diag::note_using_decl_target);
5965        return true;
5966      }
5967
5968      Diag(Using->getQualifierLoc().getBeginLoc(),
5969           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5970        << Using->getQualifier()
5971        << cast<CXXRecordDecl>(CurContext)
5972        << Using->getQualifierLoc().getSourceRange();
5973      Diag(Orig->getLocation(), diag::note_using_decl_target);
5974      return true;
5975    }
5976  }
5977
5978  if (Previous.empty()) return false;
5979
5980  NamedDecl *Target = Orig;
5981  if (isa<UsingShadowDecl>(Target))
5982    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5983
5984  // If the target happens to be one of the previous declarations, we
5985  // don't have a conflict.
5986  //
5987  // FIXME: but we might be increasing its access, in which case we
5988  // should redeclare it.
5989  NamedDecl *NonTag = 0, *Tag = 0;
5990  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5991         I != E; ++I) {
5992    NamedDecl *D = (*I)->getUnderlyingDecl();
5993    bool Result;
5994    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5995      return Result;
5996
5997    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5998  }
5999
6000  if (Target->isFunctionOrFunctionTemplate()) {
6001    FunctionDecl *FD;
6002    if (isa<FunctionTemplateDecl>(Target))
6003      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6004    else
6005      FD = cast<FunctionDecl>(Target);
6006
6007    NamedDecl *OldDecl = 0;
6008    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6009    case Ovl_Overload:
6010      return false;
6011
6012    case Ovl_NonFunction:
6013      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6014      break;
6015
6016    // We found a decl with the exact signature.
6017    case Ovl_Match:
6018      // If we're in a record, we want to hide the target, so we
6019      // return true (without a diagnostic) to tell the caller not to
6020      // build a shadow decl.
6021      if (CurContext->isRecord())
6022        return true;
6023
6024      // If we're not in a record, this is an error.
6025      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6026      break;
6027    }
6028
6029    Diag(Target->getLocation(), diag::note_using_decl_target);
6030    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6031    return true;
6032  }
6033
6034  // Target is not a function.
6035
6036  if (isa<TagDecl>(Target)) {
6037    // No conflict between a tag and a non-tag.
6038    if (!Tag) return false;
6039
6040    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6041    Diag(Target->getLocation(), diag::note_using_decl_target);
6042    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6043    return true;
6044  }
6045
6046  // No conflict between a tag and a non-tag.
6047  if (!NonTag) return false;
6048
6049  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6050  Diag(Target->getLocation(), diag::note_using_decl_target);
6051  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6052  return true;
6053}
6054
6055/// Builds a shadow declaration corresponding to a 'using' declaration.
6056UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6057                                            UsingDecl *UD,
6058                                            NamedDecl *Orig) {
6059
6060  // If we resolved to another shadow declaration, just coalesce them.
6061  NamedDecl *Target = Orig;
6062  if (isa<UsingShadowDecl>(Target)) {
6063    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6064    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6065  }
6066
6067  UsingShadowDecl *Shadow
6068    = UsingShadowDecl::Create(Context, CurContext,
6069                              UD->getLocation(), UD, Target);
6070  UD->addShadowDecl(Shadow);
6071
6072  Shadow->setAccess(UD->getAccess());
6073  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6074    Shadow->setInvalidDecl();
6075
6076  if (S)
6077    PushOnScopeChains(Shadow, S);
6078  else
6079    CurContext->addDecl(Shadow);
6080
6081
6082  return Shadow;
6083}
6084
6085/// Hides a using shadow declaration.  This is required by the current
6086/// using-decl implementation when a resolvable using declaration in a
6087/// class is followed by a declaration which would hide or override
6088/// one or more of the using decl's targets; for example:
6089///
6090///   struct Base { void foo(int); };
6091///   struct Derived : Base {
6092///     using Base::foo;
6093///     void foo(int);
6094///   };
6095///
6096/// The governing language is C++03 [namespace.udecl]p12:
6097///
6098///   When a using-declaration brings names from a base class into a
6099///   derived class scope, member functions in the derived class
6100///   override and/or hide member functions with the same name and
6101///   parameter types in a base class (rather than conflicting).
6102///
6103/// There are two ways to implement this:
6104///   (1) optimistically create shadow decls when they're not hidden
6105///       by existing declarations, or
6106///   (2) don't create any shadow decls (or at least don't make them
6107///       visible) until we've fully parsed/instantiated the class.
6108/// The problem with (1) is that we might have to retroactively remove
6109/// a shadow decl, which requires several O(n) operations because the
6110/// decl structures are (very reasonably) not designed for removal.
6111/// (2) avoids this but is very fiddly and phase-dependent.
6112void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6113  if (Shadow->getDeclName().getNameKind() ==
6114        DeclarationName::CXXConversionFunctionName)
6115    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6116
6117  // Remove it from the DeclContext...
6118  Shadow->getDeclContext()->removeDecl(Shadow);
6119
6120  // ...and the scope, if applicable...
6121  if (S) {
6122    S->RemoveDecl(Shadow);
6123    IdResolver.RemoveDecl(Shadow);
6124  }
6125
6126  // ...and the using decl.
6127  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6128
6129  // TODO: complain somehow if Shadow was used.  It shouldn't
6130  // be possible for this to happen, because...?
6131}
6132
6133/// Builds a using declaration.
6134///
6135/// \param IsInstantiation - Whether this call arises from an
6136///   instantiation of an unresolved using declaration.  We treat
6137///   the lookup differently for these declarations.
6138NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6139                                       SourceLocation UsingLoc,
6140                                       CXXScopeSpec &SS,
6141                                       const DeclarationNameInfo &NameInfo,
6142                                       AttributeList *AttrList,
6143                                       bool IsInstantiation,
6144                                       bool IsTypeName,
6145                                       SourceLocation TypenameLoc) {
6146  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6147  SourceLocation IdentLoc = NameInfo.getLoc();
6148  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6149
6150  // FIXME: We ignore attributes for now.
6151
6152  if (SS.isEmpty()) {
6153    Diag(IdentLoc, diag::err_using_requires_qualname);
6154    return 0;
6155  }
6156
6157  // Do the redeclaration lookup in the current scope.
6158  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6159                        ForRedeclaration);
6160  Previous.setHideTags(false);
6161  if (S) {
6162    LookupName(Previous, S);
6163
6164    // It is really dumb that we have to do this.
6165    LookupResult::Filter F = Previous.makeFilter();
6166    while (F.hasNext()) {
6167      NamedDecl *D = F.next();
6168      if (!isDeclInScope(D, CurContext, S))
6169        F.erase();
6170    }
6171    F.done();
6172  } else {
6173    assert(IsInstantiation && "no scope in non-instantiation");
6174    assert(CurContext->isRecord() && "scope not record in instantiation");
6175    LookupQualifiedName(Previous, CurContext);
6176  }
6177
6178  // Check for invalid redeclarations.
6179  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6180    return 0;
6181
6182  // Check for bad qualifiers.
6183  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6184    return 0;
6185
6186  DeclContext *LookupContext = computeDeclContext(SS);
6187  NamedDecl *D;
6188  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6189  if (!LookupContext) {
6190    if (IsTypeName) {
6191      // FIXME: not all declaration name kinds are legal here
6192      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6193                                              UsingLoc, TypenameLoc,
6194                                              QualifierLoc,
6195                                              IdentLoc, NameInfo.getName());
6196    } else {
6197      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6198                                           QualifierLoc, NameInfo);
6199    }
6200  } else {
6201    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6202                          NameInfo, IsTypeName);
6203  }
6204  D->setAccess(AS);
6205  CurContext->addDecl(D);
6206
6207  if (!LookupContext) return D;
6208  UsingDecl *UD = cast<UsingDecl>(D);
6209
6210  if (RequireCompleteDeclContext(SS, LookupContext)) {
6211    UD->setInvalidDecl();
6212    return UD;
6213  }
6214
6215  // Constructor inheriting using decls get special treatment.
6216  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6217    if (CheckInheritedConstructorUsingDecl(UD))
6218      UD->setInvalidDecl();
6219    return UD;
6220  }
6221
6222  // Otherwise, look up the target name.
6223
6224  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6225
6226  // Unlike most lookups, we don't always want to hide tag
6227  // declarations: tag names are visible through the using declaration
6228  // even if hidden by ordinary names, *except* in a dependent context
6229  // where it's important for the sanity of two-phase lookup.
6230  if (!IsInstantiation)
6231    R.setHideTags(false);
6232
6233  LookupQualifiedName(R, LookupContext);
6234
6235  if (R.empty()) {
6236    Diag(IdentLoc, diag::err_no_member)
6237      << NameInfo.getName() << LookupContext << SS.getRange();
6238    UD->setInvalidDecl();
6239    return UD;
6240  }
6241
6242  if (R.isAmbiguous()) {
6243    UD->setInvalidDecl();
6244    return UD;
6245  }
6246
6247  if (IsTypeName) {
6248    // If we asked for a typename and got a non-type decl, error out.
6249    if (!R.getAsSingle<TypeDecl>()) {
6250      Diag(IdentLoc, diag::err_using_typename_non_type);
6251      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6252        Diag((*I)->getUnderlyingDecl()->getLocation(),
6253             diag::note_using_decl_target);
6254      UD->setInvalidDecl();
6255      return UD;
6256    }
6257  } else {
6258    // If we asked for a non-typename and we got a type, error out,
6259    // but only if this is an instantiation of an unresolved using
6260    // decl.  Otherwise just silently find the type name.
6261    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6262      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6263      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6264      UD->setInvalidDecl();
6265      return UD;
6266    }
6267  }
6268
6269  // C++0x N2914 [namespace.udecl]p6:
6270  // A using-declaration shall not name a namespace.
6271  if (R.getAsSingle<NamespaceDecl>()) {
6272    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6273      << SS.getRange();
6274    UD->setInvalidDecl();
6275    return UD;
6276  }
6277
6278  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6279    if (!CheckUsingShadowDecl(UD, *I, Previous))
6280      BuildUsingShadowDecl(S, UD, *I);
6281  }
6282
6283  return UD;
6284}
6285
6286/// Additional checks for a using declaration referring to a constructor name.
6287bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6288  if (UD->isTypeName()) {
6289    // FIXME: Cannot specify typename when specifying constructor
6290    return true;
6291  }
6292
6293  const Type *SourceType = UD->getQualifier()->getAsType();
6294  assert(SourceType &&
6295         "Using decl naming constructor doesn't have type in scope spec.");
6296  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6297
6298  // Check whether the named type is a direct base class.
6299  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6300  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6301  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6302       BaseIt != BaseE; ++BaseIt) {
6303    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6304    if (CanonicalSourceType == BaseType)
6305      break;
6306  }
6307
6308  if (BaseIt == BaseE) {
6309    // Did not find SourceType in the bases.
6310    Diag(UD->getUsingLocation(),
6311         diag::err_using_decl_constructor_not_in_direct_base)
6312      << UD->getNameInfo().getSourceRange()
6313      << QualType(SourceType, 0) << TargetClass;
6314    return true;
6315  }
6316
6317  BaseIt->setInheritConstructors();
6318
6319  return false;
6320}
6321
6322/// Checks that the given using declaration is not an invalid
6323/// redeclaration.  Note that this is checking only for the using decl
6324/// itself, not for any ill-formedness among the UsingShadowDecls.
6325bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6326                                       bool isTypeName,
6327                                       const CXXScopeSpec &SS,
6328                                       SourceLocation NameLoc,
6329                                       const LookupResult &Prev) {
6330  // C++03 [namespace.udecl]p8:
6331  // C++0x [namespace.udecl]p10:
6332  //   A using-declaration is a declaration and can therefore be used
6333  //   repeatedly where (and only where) multiple declarations are
6334  //   allowed.
6335  //
6336  // That's in non-member contexts.
6337  if (!CurContext->getRedeclContext()->isRecord())
6338    return false;
6339
6340  NestedNameSpecifier *Qual
6341    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6342
6343  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6344    NamedDecl *D = *I;
6345
6346    bool DTypename;
6347    NestedNameSpecifier *DQual;
6348    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6349      DTypename = UD->isTypeName();
6350      DQual = UD->getQualifier();
6351    } else if (UnresolvedUsingValueDecl *UD
6352                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6353      DTypename = false;
6354      DQual = UD->getQualifier();
6355    } else if (UnresolvedUsingTypenameDecl *UD
6356                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6357      DTypename = true;
6358      DQual = UD->getQualifier();
6359    } else continue;
6360
6361    // using decls differ if one says 'typename' and the other doesn't.
6362    // FIXME: non-dependent using decls?
6363    if (isTypeName != DTypename) continue;
6364
6365    // using decls differ if they name different scopes (but note that
6366    // template instantiation can cause this check to trigger when it
6367    // didn't before instantiation).
6368    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6369        Context.getCanonicalNestedNameSpecifier(DQual))
6370      continue;
6371
6372    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6373    Diag(D->getLocation(), diag::note_using_decl) << 1;
6374    return true;
6375  }
6376
6377  return false;
6378}
6379
6380
6381/// Checks that the given nested-name qualifier used in a using decl
6382/// in the current context is appropriately related to the current
6383/// scope.  If an error is found, diagnoses it and returns true.
6384bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6385                                   const CXXScopeSpec &SS,
6386                                   SourceLocation NameLoc) {
6387  DeclContext *NamedContext = computeDeclContext(SS);
6388
6389  if (!CurContext->isRecord()) {
6390    // C++03 [namespace.udecl]p3:
6391    // C++0x [namespace.udecl]p8:
6392    //   A using-declaration for a class member shall be a member-declaration.
6393
6394    // If we weren't able to compute a valid scope, it must be a
6395    // dependent class scope.
6396    if (!NamedContext || NamedContext->isRecord()) {
6397      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6398        << SS.getRange();
6399      return true;
6400    }
6401
6402    // Otherwise, everything is known to be fine.
6403    return false;
6404  }
6405
6406  // The current scope is a record.
6407
6408  // If the named context is dependent, we can't decide much.
6409  if (!NamedContext) {
6410    // FIXME: in C++0x, we can diagnose if we can prove that the
6411    // nested-name-specifier does not refer to a base class, which is
6412    // still possible in some cases.
6413
6414    // Otherwise we have to conservatively report that things might be
6415    // okay.
6416    return false;
6417  }
6418
6419  if (!NamedContext->isRecord()) {
6420    // Ideally this would point at the last name in the specifier,
6421    // but we don't have that level of source info.
6422    Diag(SS.getRange().getBegin(),
6423         diag::err_using_decl_nested_name_specifier_is_not_class)
6424      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6425    return true;
6426  }
6427
6428  if (!NamedContext->isDependentContext() &&
6429      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6430    return true;
6431
6432  if (getLangOptions().CPlusPlus0x) {
6433    // C++0x [namespace.udecl]p3:
6434    //   In a using-declaration used as a member-declaration, the
6435    //   nested-name-specifier shall name a base class of the class
6436    //   being defined.
6437
6438    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6439                                 cast<CXXRecordDecl>(NamedContext))) {
6440      if (CurContext == NamedContext) {
6441        Diag(NameLoc,
6442             diag::err_using_decl_nested_name_specifier_is_current_class)
6443          << SS.getRange();
6444        return true;
6445      }
6446
6447      Diag(SS.getRange().getBegin(),
6448           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6449        << (NestedNameSpecifier*) SS.getScopeRep()
6450        << cast<CXXRecordDecl>(CurContext)
6451        << SS.getRange();
6452      return true;
6453    }
6454
6455    return false;
6456  }
6457
6458  // C++03 [namespace.udecl]p4:
6459  //   A using-declaration used as a member-declaration shall refer
6460  //   to a member of a base class of the class being defined [etc.].
6461
6462  // Salient point: SS doesn't have to name a base class as long as
6463  // lookup only finds members from base classes.  Therefore we can
6464  // diagnose here only if we can prove that that can't happen,
6465  // i.e. if the class hierarchies provably don't intersect.
6466
6467  // TODO: it would be nice if "definitely valid" results were cached
6468  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6469  // need to be repeated.
6470
6471  struct UserData {
6472    llvm::DenseSet<const CXXRecordDecl*> Bases;
6473
6474    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6475      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6476      Data->Bases.insert(Base);
6477      return true;
6478    }
6479
6480    bool hasDependentBases(const CXXRecordDecl *Class) {
6481      return !Class->forallBases(collect, this);
6482    }
6483
6484    /// Returns true if the base is dependent or is one of the
6485    /// accumulated base classes.
6486    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6487      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6488      return !Data->Bases.count(Base);
6489    }
6490
6491    bool mightShareBases(const CXXRecordDecl *Class) {
6492      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6493    }
6494  };
6495
6496  UserData Data;
6497
6498  // Returns false if we find a dependent base.
6499  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6500    return false;
6501
6502  // Returns false if the class has a dependent base or if it or one
6503  // of its bases is present in the base set of the current context.
6504  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6505    return false;
6506
6507  Diag(SS.getRange().getBegin(),
6508       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6509    << (NestedNameSpecifier*) SS.getScopeRep()
6510    << cast<CXXRecordDecl>(CurContext)
6511    << SS.getRange();
6512
6513  return true;
6514}
6515
6516Decl *Sema::ActOnAliasDeclaration(Scope *S,
6517                                  AccessSpecifier AS,
6518                                  MultiTemplateParamsArg TemplateParamLists,
6519                                  SourceLocation UsingLoc,
6520                                  UnqualifiedId &Name,
6521                                  TypeResult Type) {
6522  // Skip up to the relevant declaration scope.
6523  while (S->getFlags() & Scope::TemplateParamScope)
6524    S = S->getParent();
6525  assert((S->getFlags() & Scope::DeclScope) &&
6526         "got alias-declaration outside of declaration scope");
6527
6528  if (Type.isInvalid())
6529    return 0;
6530
6531  bool Invalid = false;
6532  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6533  TypeSourceInfo *TInfo = 0;
6534  GetTypeFromParser(Type.get(), &TInfo);
6535
6536  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6537    return 0;
6538
6539  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6540                                      UPPC_DeclarationType)) {
6541    Invalid = true;
6542    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6543                                             TInfo->getTypeLoc().getBeginLoc());
6544  }
6545
6546  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6547  LookupName(Previous, S);
6548
6549  // Warn about shadowing the name of a template parameter.
6550  if (Previous.isSingleResult() &&
6551      Previous.getFoundDecl()->isTemplateParameter()) {
6552    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6553    Previous.clear();
6554  }
6555
6556  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6557         "name in alias declaration must be an identifier");
6558  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6559                                               Name.StartLocation,
6560                                               Name.Identifier, TInfo);
6561
6562  NewTD->setAccess(AS);
6563
6564  if (Invalid)
6565    NewTD->setInvalidDecl();
6566
6567  CheckTypedefForVariablyModifiedType(S, NewTD);
6568  Invalid |= NewTD->isInvalidDecl();
6569
6570  bool Redeclaration = false;
6571
6572  NamedDecl *NewND;
6573  if (TemplateParamLists.size()) {
6574    TypeAliasTemplateDecl *OldDecl = 0;
6575    TemplateParameterList *OldTemplateParams = 0;
6576
6577    if (TemplateParamLists.size() != 1) {
6578      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6579        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6580         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6581    }
6582    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6583
6584    // Only consider previous declarations in the same scope.
6585    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6586                         /*ExplicitInstantiationOrSpecialization*/false);
6587    if (!Previous.empty()) {
6588      Redeclaration = true;
6589
6590      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6591      if (!OldDecl && !Invalid) {
6592        Diag(UsingLoc, diag::err_redefinition_different_kind)
6593          << Name.Identifier;
6594
6595        NamedDecl *OldD = Previous.getRepresentativeDecl();
6596        if (OldD->getLocation().isValid())
6597          Diag(OldD->getLocation(), diag::note_previous_definition);
6598
6599        Invalid = true;
6600      }
6601
6602      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6603        if (TemplateParameterListsAreEqual(TemplateParams,
6604                                           OldDecl->getTemplateParameters(),
6605                                           /*Complain=*/true,
6606                                           TPL_TemplateMatch))
6607          OldTemplateParams = OldDecl->getTemplateParameters();
6608        else
6609          Invalid = true;
6610
6611        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6612        if (!Invalid &&
6613            !Context.hasSameType(OldTD->getUnderlyingType(),
6614                                 NewTD->getUnderlyingType())) {
6615          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6616          // but we can't reasonably accept it.
6617          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6618            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6619          if (OldTD->getLocation().isValid())
6620            Diag(OldTD->getLocation(), diag::note_previous_definition);
6621          Invalid = true;
6622        }
6623      }
6624    }
6625
6626    // Merge any previous default template arguments into our parameters,
6627    // and check the parameter list.
6628    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6629                                   TPC_TypeAliasTemplate))
6630      return 0;
6631
6632    TypeAliasTemplateDecl *NewDecl =
6633      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6634                                    Name.Identifier, TemplateParams,
6635                                    NewTD);
6636
6637    NewDecl->setAccess(AS);
6638
6639    if (Invalid)
6640      NewDecl->setInvalidDecl();
6641    else if (OldDecl)
6642      NewDecl->setPreviousDeclaration(OldDecl);
6643
6644    NewND = NewDecl;
6645  } else {
6646    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6647    NewND = NewTD;
6648  }
6649
6650  if (!Redeclaration)
6651    PushOnScopeChains(NewND, S);
6652
6653  return NewND;
6654}
6655
6656Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6657                                             SourceLocation NamespaceLoc,
6658                                             SourceLocation AliasLoc,
6659                                             IdentifierInfo *Alias,
6660                                             CXXScopeSpec &SS,
6661                                             SourceLocation IdentLoc,
6662                                             IdentifierInfo *Ident) {
6663
6664  // Lookup the namespace name.
6665  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6666  LookupParsedName(R, S, &SS);
6667
6668  // Check if we have a previous declaration with the same name.
6669  NamedDecl *PrevDecl
6670    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6671                       ForRedeclaration);
6672  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6673    PrevDecl = 0;
6674
6675  if (PrevDecl) {
6676    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6677      // We already have an alias with the same name that points to the same
6678      // namespace, so don't create a new one.
6679      // FIXME: At some point, we'll want to create the (redundant)
6680      // declaration to maintain better source information.
6681      if (!R.isAmbiguous() && !R.empty() &&
6682          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6683        return 0;
6684    }
6685
6686    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6687      diag::err_redefinition_different_kind;
6688    Diag(AliasLoc, DiagID) << Alias;
6689    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6690    return 0;
6691  }
6692
6693  if (R.isAmbiguous())
6694    return 0;
6695
6696  if (R.empty()) {
6697    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6698      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6699      return 0;
6700    }
6701  }
6702
6703  NamespaceAliasDecl *AliasDecl =
6704    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6705                               Alias, SS.getWithLocInContext(Context),
6706                               IdentLoc, R.getFoundDecl());
6707
6708  PushOnScopeChains(AliasDecl, S);
6709  return AliasDecl;
6710}
6711
6712namespace {
6713  /// \brief Scoped object used to handle the state changes required in Sema
6714  /// to implicitly define the body of a C++ member function;
6715  class ImplicitlyDefinedFunctionScope {
6716    Sema &S;
6717    Sema::ContextRAII SavedContext;
6718
6719  public:
6720    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6721      : S(S), SavedContext(S, Method)
6722    {
6723      S.PushFunctionScope();
6724      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6725    }
6726
6727    ~ImplicitlyDefinedFunctionScope() {
6728      S.PopExpressionEvaluationContext();
6729      S.PopFunctionScopeInfo();
6730    }
6731  };
6732}
6733
6734Sema::ImplicitExceptionSpecification
6735Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6736  // C++ [except.spec]p14:
6737  //   An implicitly declared special member function (Clause 12) shall have an
6738  //   exception-specification. [...]
6739  ImplicitExceptionSpecification ExceptSpec(Context);
6740  if (ClassDecl->isInvalidDecl())
6741    return ExceptSpec;
6742
6743  // Direct base-class constructors.
6744  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6745                                       BEnd = ClassDecl->bases_end();
6746       B != BEnd; ++B) {
6747    if (B->isVirtual()) // Handled below.
6748      continue;
6749
6750    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6751      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6752      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6753      // If this is a deleted function, add it anyway. This might be conformant
6754      // with the standard. This might not. I'm not sure. It might not matter.
6755      if (Constructor)
6756        ExceptSpec.CalledDecl(Constructor);
6757    }
6758  }
6759
6760  // Virtual base-class constructors.
6761  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6762                                       BEnd = ClassDecl->vbases_end();
6763       B != BEnd; ++B) {
6764    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6765      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6766      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6767      // If this is a deleted function, add it anyway. This might be conformant
6768      // with the standard. This might not. I'm not sure. It might not matter.
6769      if (Constructor)
6770        ExceptSpec.CalledDecl(Constructor);
6771    }
6772  }
6773
6774  // Field constructors.
6775  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6776                               FEnd = ClassDecl->field_end();
6777       F != FEnd; ++F) {
6778    if (F->hasInClassInitializer()) {
6779      if (Expr *E = F->getInClassInitializer())
6780        ExceptSpec.CalledExpr(E);
6781      else if (!F->isInvalidDecl())
6782        ExceptSpec.SetDelayed();
6783    } else if (const RecordType *RecordTy
6784              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6785      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6786      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6787      // If this is a deleted function, add it anyway. This might be conformant
6788      // with the standard. This might not. I'm not sure. It might not matter.
6789      // In particular, the problem is that this function never gets called. It
6790      // might just be ill-formed because this function attempts to refer to
6791      // a deleted function here.
6792      if (Constructor)
6793        ExceptSpec.CalledDecl(Constructor);
6794    }
6795  }
6796
6797  return ExceptSpec;
6798}
6799
6800CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6801                                                     CXXRecordDecl *ClassDecl) {
6802  // C++ [class.ctor]p5:
6803  //   A default constructor for a class X is a constructor of class X
6804  //   that can be called without an argument. If there is no
6805  //   user-declared constructor for class X, a default constructor is
6806  //   implicitly declared. An implicitly-declared default constructor
6807  //   is an inline public member of its class.
6808  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6809         "Should not build implicit default constructor!");
6810
6811  ImplicitExceptionSpecification Spec =
6812    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6813  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6814
6815  // Create the actual constructor declaration.
6816  CanQualType ClassType
6817    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6818  SourceLocation ClassLoc = ClassDecl->getLocation();
6819  DeclarationName Name
6820    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6821  DeclarationNameInfo NameInfo(Name, ClassLoc);
6822  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6823      Context, ClassDecl, ClassLoc, NameInfo,
6824      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6825      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6826      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6827        getLangOptions().CPlusPlus0x);
6828  DefaultCon->setAccess(AS_public);
6829  DefaultCon->setDefaulted();
6830  DefaultCon->setImplicit();
6831  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6832
6833  // Note that we have declared this constructor.
6834  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6835
6836  if (Scope *S = getScopeForContext(ClassDecl))
6837    PushOnScopeChains(DefaultCon, S, false);
6838  ClassDecl->addDecl(DefaultCon);
6839
6840  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6841    DefaultCon->setDeletedAsWritten();
6842
6843  return DefaultCon;
6844}
6845
6846void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6847                                            CXXConstructorDecl *Constructor) {
6848  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6849          !Constructor->doesThisDeclarationHaveABody() &&
6850          !Constructor->isDeleted()) &&
6851    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6852
6853  CXXRecordDecl *ClassDecl = Constructor->getParent();
6854  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6855
6856  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6857  DiagnosticErrorTrap Trap(Diags);
6858  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6859      Trap.hasErrorOccurred()) {
6860    Diag(CurrentLocation, diag::note_member_synthesized_at)
6861      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6862    Constructor->setInvalidDecl();
6863    return;
6864  }
6865
6866  SourceLocation Loc = Constructor->getLocation();
6867  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6868
6869  Constructor->setUsed();
6870  MarkVTableUsed(CurrentLocation, ClassDecl);
6871
6872  if (ASTMutationListener *L = getASTMutationListener()) {
6873    L->CompletedImplicitDefinition(Constructor);
6874  }
6875}
6876
6877/// Get any existing defaulted default constructor for the given class. Do not
6878/// implicitly define one if it does not exist.
6879static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6880                                                             CXXRecordDecl *D) {
6881  ASTContext &Context = Self.Context;
6882  QualType ClassType = Context.getTypeDeclType(D);
6883  DeclarationName ConstructorName
6884    = Context.DeclarationNames.getCXXConstructorName(
6885                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6886
6887  DeclContext::lookup_const_iterator Con, ConEnd;
6888  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6889       Con != ConEnd; ++Con) {
6890    // A function template cannot be defaulted.
6891    if (isa<FunctionTemplateDecl>(*Con))
6892      continue;
6893
6894    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6895    if (Constructor->isDefaultConstructor())
6896      return Constructor->isDefaulted() ? Constructor : 0;
6897  }
6898  return 0;
6899}
6900
6901void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6902  if (!D) return;
6903  AdjustDeclIfTemplate(D);
6904
6905  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6906  CXXConstructorDecl *CtorDecl
6907    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6908
6909  if (!CtorDecl) return;
6910
6911  // Compute the exception specification for the default constructor.
6912  const FunctionProtoType *CtorTy =
6913    CtorDecl->getType()->castAs<FunctionProtoType>();
6914  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6915    ImplicitExceptionSpecification Spec =
6916      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6917    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6918    assert(EPI.ExceptionSpecType != EST_Delayed);
6919
6920    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6921  }
6922
6923  // If the default constructor is explicitly defaulted, checking the exception
6924  // specification is deferred until now.
6925  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6926      !ClassDecl->isDependentType())
6927    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6928}
6929
6930void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6931  // We start with an initial pass over the base classes to collect those that
6932  // inherit constructors from. If there are none, we can forgo all further
6933  // processing.
6934  typedef SmallVector<const RecordType *, 4> BasesVector;
6935  BasesVector BasesToInheritFrom;
6936  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6937                                          BaseE = ClassDecl->bases_end();
6938         BaseIt != BaseE; ++BaseIt) {
6939    if (BaseIt->getInheritConstructors()) {
6940      QualType Base = BaseIt->getType();
6941      if (Base->isDependentType()) {
6942        // If we inherit constructors from anything that is dependent, just
6943        // abort processing altogether. We'll get another chance for the
6944        // instantiations.
6945        return;
6946      }
6947      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6948    }
6949  }
6950  if (BasesToInheritFrom.empty())
6951    return;
6952
6953  // Now collect the constructors that we already have in the current class.
6954  // Those take precedence over inherited constructors.
6955  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6956  //   unless there is a user-declared constructor with the same signature in
6957  //   the class where the using-declaration appears.
6958  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6959  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6960                                    CtorE = ClassDecl->ctor_end();
6961       CtorIt != CtorE; ++CtorIt) {
6962    ExistingConstructors.insert(
6963        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6964  }
6965
6966  Scope *S = getScopeForContext(ClassDecl);
6967  DeclarationName CreatedCtorName =
6968      Context.DeclarationNames.getCXXConstructorName(
6969          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6970
6971  // Now comes the true work.
6972  // First, we keep a map from constructor types to the base that introduced
6973  // them. Needed for finding conflicting constructors. We also keep the
6974  // actually inserted declarations in there, for pretty diagnostics.
6975  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6976  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6977  ConstructorToSourceMap InheritedConstructors;
6978  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6979                             BaseE = BasesToInheritFrom.end();
6980       BaseIt != BaseE; ++BaseIt) {
6981    const RecordType *Base = *BaseIt;
6982    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6983    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6984    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6985                                      CtorE = BaseDecl->ctor_end();
6986         CtorIt != CtorE; ++CtorIt) {
6987      // Find the using declaration for inheriting this base's constructors.
6988      DeclarationName Name =
6989          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6990      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6991          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6992      SourceLocation UsingLoc = UD ? UD->getLocation() :
6993                                     ClassDecl->getLocation();
6994
6995      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6996      //   from the class X named in the using-declaration consists of actual
6997      //   constructors and notional constructors that result from the
6998      //   transformation of defaulted parameters as follows:
6999      //   - all non-template default constructors of X, and
7000      //   - for each non-template constructor of X that has at least one
7001      //     parameter with a default argument, the set of constructors that
7002      //     results from omitting any ellipsis parameter specification and
7003      //     successively omitting parameters with a default argument from the
7004      //     end of the parameter-type-list.
7005      CXXConstructorDecl *BaseCtor = *CtorIt;
7006      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7007      const FunctionProtoType *BaseCtorType =
7008          BaseCtor->getType()->getAs<FunctionProtoType>();
7009
7010      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7011                    maxParams = BaseCtor->getNumParams();
7012           params <= maxParams; ++params) {
7013        // Skip default constructors. They're never inherited.
7014        if (params == 0)
7015          continue;
7016        // Skip copy and move constructors for the same reason.
7017        if (CanBeCopyOrMove && params == 1)
7018          continue;
7019
7020        // Build up a function type for this particular constructor.
7021        // FIXME: The working paper does not consider that the exception spec
7022        // for the inheriting constructor might be larger than that of the
7023        // source. This code doesn't yet, either. When it does, this code will
7024        // need to be delayed until after exception specifications and in-class
7025        // member initializers are attached.
7026        const Type *NewCtorType;
7027        if (params == maxParams)
7028          NewCtorType = BaseCtorType;
7029        else {
7030          SmallVector<QualType, 16> Args;
7031          for (unsigned i = 0; i < params; ++i) {
7032            Args.push_back(BaseCtorType->getArgType(i));
7033          }
7034          FunctionProtoType::ExtProtoInfo ExtInfo =
7035              BaseCtorType->getExtProtoInfo();
7036          ExtInfo.Variadic = false;
7037          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7038                                                Args.data(), params, ExtInfo)
7039                       .getTypePtr();
7040        }
7041        const Type *CanonicalNewCtorType =
7042            Context.getCanonicalType(NewCtorType);
7043
7044        // Now that we have the type, first check if the class already has a
7045        // constructor with this signature.
7046        if (ExistingConstructors.count(CanonicalNewCtorType))
7047          continue;
7048
7049        // Then we check if we have already declared an inherited constructor
7050        // with this signature.
7051        std::pair<ConstructorToSourceMap::iterator, bool> result =
7052            InheritedConstructors.insert(std::make_pair(
7053                CanonicalNewCtorType,
7054                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7055        if (!result.second) {
7056          // Already in the map. If it came from a different class, that's an
7057          // error. Not if it's from the same.
7058          CanQualType PreviousBase = result.first->second.first;
7059          if (CanonicalBase != PreviousBase) {
7060            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7061            const CXXConstructorDecl *PrevBaseCtor =
7062                PrevCtor->getInheritedConstructor();
7063            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7064
7065            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7066            Diag(BaseCtor->getLocation(),
7067                 diag::note_using_decl_constructor_conflict_current_ctor);
7068            Diag(PrevBaseCtor->getLocation(),
7069                 diag::note_using_decl_constructor_conflict_previous_ctor);
7070            Diag(PrevCtor->getLocation(),
7071                 diag::note_using_decl_constructor_conflict_previous_using);
7072          }
7073          continue;
7074        }
7075
7076        // OK, we're there, now add the constructor.
7077        // C++0x [class.inhctor]p8: [...] that would be performed by a
7078        //   user-written inline constructor [...]
7079        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7080        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7081            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7082            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7083            /*ImplicitlyDeclared=*/true,
7084            // FIXME: Due to a defect in the standard, we treat inherited
7085            // constructors as constexpr even if that makes them ill-formed.
7086            /*Constexpr=*/BaseCtor->isConstexpr());
7087        NewCtor->setAccess(BaseCtor->getAccess());
7088
7089        // Build up the parameter decls and add them.
7090        SmallVector<ParmVarDecl *, 16> ParamDecls;
7091        for (unsigned i = 0; i < params; ++i) {
7092          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7093                                                   UsingLoc, UsingLoc,
7094                                                   /*IdentifierInfo=*/0,
7095                                                   BaseCtorType->getArgType(i),
7096                                                   /*TInfo=*/0, SC_None,
7097                                                   SC_None, /*DefaultArg=*/0));
7098        }
7099        NewCtor->setParams(ParamDecls);
7100        NewCtor->setInheritedConstructor(BaseCtor);
7101
7102        PushOnScopeChains(NewCtor, S, false);
7103        ClassDecl->addDecl(NewCtor);
7104        result.first->second.second = NewCtor;
7105      }
7106    }
7107  }
7108}
7109
7110Sema::ImplicitExceptionSpecification
7111Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7112  // C++ [except.spec]p14:
7113  //   An implicitly declared special member function (Clause 12) shall have
7114  //   an exception-specification.
7115  ImplicitExceptionSpecification ExceptSpec(Context);
7116  if (ClassDecl->isInvalidDecl())
7117    return ExceptSpec;
7118
7119  // Direct base-class destructors.
7120  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7121                                       BEnd = ClassDecl->bases_end();
7122       B != BEnd; ++B) {
7123    if (B->isVirtual()) // Handled below.
7124      continue;
7125
7126    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7127      ExceptSpec.CalledDecl(
7128                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7129  }
7130
7131  // Virtual base-class destructors.
7132  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7133                                       BEnd = ClassDecl->vbases_end();
7134       B != BEnd; ++B) {
7135    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7136      ExceptSpec.CalledDecl(
7137                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7138  }
7139
7140  // Field destructors.
7141  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7142                               FEnd = ClassDecl->field_end();
7143       F != FEnd; ++F) {
7144    if (const RecordType *RecordTy
7145        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7146      ExceptSpec.CalledDecl(
7147                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7148  }
7149
7150  return ExceptSpec;
7151}
7152
7153CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7154  // C++ [class.dtor]p2:
7155  //   If a class has no user-declared destructor, a destructor is
7156  //   declared implicitly. An implicitly-declared destructor is an
7157  //   inline public member of its class.
7158
7159  ImplicitExceptionSpecification Spec =
7160      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7161  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7162
7163  // Create the actual destructor declaration.
7164  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7165
7166  CanQualType ClassType
7167    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7168  SourceLocation ClassLoc = ClassDecl->getLocation();
7169  DeclarationName Name
7170    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7171  DeclarationNameInfo NameInfo(Name, ClassLoc);
7172  CXXDestructorDecl *Destructor
7173      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7174                                  /*isInline=*/true,
7175                                  /*isImplicitlyDeclared=*/true);
7176  Destructor->setAccess(AS_public);
7177  Destructor->setDefaulted();
7178  Destructor->setImplicit();
7179  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7180
7181  // Note that we have declared this destructor.
7182  ++ASTContext::NumImplicitDestructorsDeclared;
7183
7184  // Introduce this destructor into its scope.
7185  if (Scope *S = getScopeForContext(ClassDecl))
7186    PushOnScopeChains(Destructor, S, false);
7187  ClassDecl->addDecl(Destructor);
7188
7189  // This could be uniqued if it ever proves significant.
7190  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7191
7192  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7193    Destructor->setDeletedAsWritten();
7194
7195  AddOverriddenMethods(ClassDecl, Destructor);
7196
7197  return Destructor;
7198}
7199
7200void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7201                                    CXXDestructorDecl *Destructor) {
7202  assert((Destructor->isDefaulted() &&
7203          !Destructor->doesThisDeclarationHaveABody()) &&
7204         "DefineImplicitDestructor - call it for implicit default dtor");
7205  CXXRecordDecl *ClassDecl = Destructor->getParent();
7206  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7207
7208  if (Destructor->isInvalidDecl())
7209    return;
7210
7211  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7212
7213  DiagnosticErrorTrap Trap(Diags);
7214  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7215                                         Destructor->getParent());
7216
7217  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7218    Diag(CurrentLocation, diag::note_member_synthesized_at)
7219      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7220
7221    Destructor->setInvalidDecl();
7222    return;
7223  }
7224
7225  SourceLocation Loc = Destructor->getLocation();
7226  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7227  Destructor->setImplicitlyDefined(true);
7228  Destructor->setUsed();
7229  MarkVTableUsed(CurrentLocation, ClassDecl);
7230
7231  if (ASTMutationListener *L = getASTMutationListener()) {
7232    L->CompletedImplicitDefinition(Destructor);
7233  }
7234}
7235
7236void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7237                                         CXXDestructorDecl *destructor) {
7238  // C++11 [class.dtor]p3:
7239  //   A declaration of a destructor that does not have an exception-
7240  //   specification is implicitly considered to have the same exception-
7241  //   specification as an implicit declaration.
7242  const FunctionProtoType *dtorType = destructor->getType()->
7243                                        getAs<FunctionProtoType>();
7244  if (dtorType->hasExceptionSpec())
7245    return;
7246
7247  ImplicitExceptionSpecification exceptSpec =
7248      ComputeDefaultedDtorExceptionSpec(classDecl);
7249
7250  // Replace the destructor's type, building off the existing one. Fortunately,
7251  // the only thing of interest in the destructor type is its extended info.
7252  // The return and arguments are fixed.
7253  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7254  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7255  epi.NumExceptions = exceptSpec.size();
7256  epi.Exceptions = exceptSpec.data();
7257  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7258
7259  destructor->setType(ty);
7260
7261  // FIXME: If the destructor has a body that could throw, and the newly created
7262  // spec doesn't allow exceptions, we should emit a warning, because this
7263  // change in behavior can break conforming C++03 programs at runtime.
7264  // However, we don't have a body yet, so it needs to be done somewhere else.
7265}
7266
7267/// \brief Builds a statement that copies/moves the given entity from \p From to
7268/// \c To.
7269///
7270/// This routine is used to copy/move the members of a class with an
7271/// implicitly-declared copy/move assignment operator. When the entities being
7272/// copied are arrays, this routine builds for loops to copy them.
7273///
7274/// \param S The Sema object used for type-checking.
7275///
7276/// \param Loc The location where the implicit copy/move is being generated.
7277///
7278/// \param T The type of the expressions being copied/moved. Both expressions
7279/// must have this type.
7280///
7281/// \param To The expression we are copying/moving to.
7282///
7283/// \param From The expression we are copying/moving from.
7284///
7285/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7286/// Otherwise, it's a non-static member subobject.
7287///
7288/// \param Copying Whether we're copying or moving.
7289///
7290/// \param Depth Internal parameter recording the depth of the recursion.
7291///
7292/// \returns A statement or a loop that copies the expressions.
7293static StmtResult
7294BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7295                      Expr *To, Expr *From,
7296                      bool CopyingBaseSubobject, bool Copying,
7297                      unsigned Depth = 0) {
7298  // C++0x [class.copy]p28:
7299  //   Each subobject is assigned in the manner appropriate to its type:
7300  //
7301  //     - if the subobject is of class type, as if by a call to operator= with
7302  //       the subobject as the object expression and the corresponding
7303  //       subobject of x as a single function argument (as if by explicit
7304  //       qualification; that is, ignoring any possible virtual overriding
7305  //       functions in more derived classes);
7306  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7307    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7308
7309    // Look for operator=.
7310    DeclarationName Name
7311      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7312    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7313    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7314
7315    // Filter out any result that isn't a copy/move-assignment operator.
7316    LookupResult::Filter F = OpLookup.makeFilter();
7317    while (F.hasNext()) {
7318      NamedDecl *D = F.next();
7319      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7320        if (Copying ? Method->isCopyAssignmentOperator() :
7321                      Method->isMoveAssignmentOperator())
7322          continue;
7323
7324      F.erase();
7325    }
7326    F.done();
7327
7328    // Suppress the protected check (C++ [class.protected]) for each of the
7329    // assignment operators we found. This strange dance is required when
7330    // we're assigning via a base classes's copy-assignment operator. To
7331    // ensure that we're getting the right base class subobject (without
7332    // ambiguities), we need to cast "this" to that subobject type; to
7333    // ensure that we don't go through the virtual call mechanism, we need
7334    // to qualify the operator= name with the base class (see below). However,
7335    // this means that if the base class has a protected copy assignment
7336    // operator, the protected member access check will fail. So, we
7337    // rewrite "protected" access to "public" access in this case, since we
7338    // know by construction that we're calling from a derived class.
7339    if (CopyingBaseSubobject) {
7340      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7341           L != LEnd; ++L) {
7342        if (L.getAccess() == AS_protected)
7343          L.setAccess(AS_public);
7344      }
7345    }
7346
7347    // Create the nested-name-specifier that will be used to qualify the
7348    // reference to operator=; this is required to suppress the virtual
7349    // call mechanism.
7350    CXXScopeSpec SS;
7351    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7352    SS.MakeTrivial(S.Context,
7353                   NestedNameSpecifier::Create(S.Context, 0, false,
7354                                               CanonicalT),
7355                   Loc);
7356
7357    // Create the reference to operator=.
7358    ExprResult OpEqualRef
7359      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7360                                   /*TemplateKWLoc=*/SourceLocation(),
7361                                   /*FirstQualifierInScope=*/0,
7362                                   OpLookup,
7363                                   /*TemplateArgs=*/0,
7364                                   /*SuppressQualifierCheck=*/true);
7365    if (OpEqualRef.isInvalid())
7366      return StmtError();
7367
7368    // Build the call to the assignment operator.
7369
7370    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7371                                                  OpEqualRef.takeAs<Expr>(),
7372                                                  Loc, &From, 1, Loc);
7373    if (Call.isInvalid())
7374      return StmtError();
7375
7376    return S.Owned(Call.takeAs<Stmt>());
7377  }
7378
7379  //     - if the subobject is of scalar type, the built-in assignment
7380  //       operator is used.
7381  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7382  if (!ArrayTy) {
7383    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7384    if (Assignment.isInvalid())
7385      return StmtError();
7386
7387    return S.Owned(Assignment.takeAs<Stmt>());
7388  }
7389
7390  //     - if the subobject is an array, each element is assigned, in the
7391  //       manner appropriate to the element type;
7392
7393  // Construct a loop over the array bounds, e.g.,
7394  //
7395  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7396  //
7397  // that will copy each of the array elements.
7398  QualType SizeType = S.Context.getSizeType();
7399
7400  // Create the iteration variable.
7401  IdentifierInfo *IterationVarName = 0;
7402  {
7403    SmallString<8> Str;
7404    llvm::raw_svector_ostream OS(Str);
7405    OS << "__i" << Depth;
7406    IterationVarName = &S.Context.Idents.get(OS.str());
7407  }
7408  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7409                                          IterationVarName, SizeType,
7410                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7411                                          SC_None, SC_None);
7412
7413  // Initialize the iteration variable to zero.
7414  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7415  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7416
7417  // Create a reference to the iteration variable; we'll use this several
7418  // times throughout.
7419  Expr *IterationVarRef
7420    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7421  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7422  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7423  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7424
7425  // Create the DeclStmt that holds the iteration variable.
7426  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7427
7428  // Create the comparison against the array bound.
7429  llvm::APInt Upper
7430    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7431  Expr *Comparison
7432    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7433                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7434                                     BO_NE, S.Context.BoolTy,
7435                                     VK_RValue, OK_Ordinary, Loc);
7436
7437  // Create the pre-increment of the iteration variable.
7438  Expr *Increment
7439    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7440                                    VK_LValue, OK_Ordinary, Loc);
7441
7442  // Subscript the "from" and "to" expressions with the iteration variable.
7443  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7444                                                         IterationVarRefRVal,
7445                                                         Loc));
7446  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7447                                                       IterationVarRefRVal,
7448                                                       Loc));
7449  if (!Copying) // Cast to rvalue
7450    From = CastForMoving(S, From);
7451
7452  // Build the copy/move for an individual element of the array.
7453  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7454                                          To, From, CopyingBaseSubobject,
7455                                          Copying, Depth + 1);
7456  if (Copy.isInvalid())
7457    return StmtError();
7458
7459  // Construct the loop that copies all elements of this array.
7460  return S.ActOnForStmt(Loc, Loc, InitStmt,
7461                        S.MakeFullExpr(Comparison),
7462                        0, S.MakeFullExpr(Increment),
7463                        Loc, Copy.take());
7464}
7465
7466std::pair<Sema::ImplicitExceptionSpecification, bool>
7467Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7468                                                   CXXRecordDecl *ClassDecl) {
7469  if (ClassDecl->isInvalidDecl())
7470    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7471
7472  // C++ [class.copy]p10:
7473  //   If the class definition does not explicitly declare a copy
7474  //   assignment operator, one is declared implicitly.
7475  //   The implicitly-defined copy assignment operator for a class X
7476  //   will have the form
7477  //
7478  //       X& X::operator=(const X&)
7479  //
7480  //   if
7481  bool HasConstCopyAssignment = true;
7482
7483  //       -- each direct base class B of X has a copy assignment operator
7484  //          whose parameter is of type const B&, const volatile B& or B,
7485  //          and
7486  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7487                                       BaseEnd = ClassDecl->bases_end();
7488       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7489    // We'll handle this below
7490    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7491      continue;
7492
7493    assert(!Base->getType()->isDependentType() &&
7494           "Cannot generate implicit members for class with dependent bases.");
7495    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7496    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7497                            &HasConstCopyAssignment);
7498  }
7499
7500  // In C++11, the above citation has "or virtual" added
7501  if (LangOpts.CPlusPlus0x) {
7502    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7503                                         BaseEnd = ClassDecl->vbases_end();
7504         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7505      assert(!Base->getType()->isDependentType() &&
7506             "Cannot generate implicit members for class with dependent bases.");
7507      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7508      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7509                              &HasConstCopyAssignment);
7510    }
7511  }
7512
7513  //       -- for all the nonstatic data members of X that are of a class
7514  //          type M (or array thereof), each such class type has a copy
7515  //          assignment operator whose parameter is of type const M&,
7516  //          const volatile M& or M.
7517  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7518                                  FieldEnd = ClassDecl->field_end();
7519       HasConstCopyAssignment && Field != FieldEnd;
7520       ++Field) {
7521    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7522    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7523      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7524                              &HasConstCopyAssignment);
7525    }
7526  }
7527
7528  //   Otherwise, the implicitly declared copy assignment operator will
7529  //   have the form
7530  //
7531  //       X& X::operator=(X&)
7532
7533  // C++ [except.spec]p14:
7534  //   An implicitly declared special member function (Clause 12) shall have an
7535  //   exception-specification. [...]
7536
7537  // It is unspecified whether or not an implicit copy assignment operator
7538  // attempts to deduplicate calls to assignment operators of virtual bases are
7539  // made. As such, this exception specification is effectively unspecified.
7540  // Based on a similar decision made for constness in C++0x, we're erring on
7541  // the side of assuming such calls to be made regardless of whether they
7542  // actually happen.
7543  ImplicitExceptionSpecification ExceptSpec(Context);
7544  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7545  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7546                                       BaseEnd = ClassDecl->bases_end();
7547       Base != BaseEnd; ++Base) {
7548    if (Base->isVirtual())
7549      continue;
7550
7551    CXXRecordDecl *BaseClassDecl
7552      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7553    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7554                                                            ArgQuals, false, 0))
7555      ExceptSpec.CalledDecl(CopyAssign);
7556  }
7557
7558  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7559                                       BaseEnd = ClassDecl->vbases_end();
7560       Base != BaseEnd; ++Base) {
7561    CXXRecordDecl *BaseClassDecl
7562      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7563    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7564                                                            ArgQuals, false, 0))
7565      ExceptSpec.CalledDecl(CopyAssign);
7566  }
7567
7568  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7569                                  FieldEnd = ClassDecl->field_end();
7570       Field != FieldEnd;
7571       ++Field) {
7572    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7573    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7574      if (CXXMethodDecl *CopyAssign =
7575          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7576        ExceptSpec.CalledDecl(CopyAssign);
7577    }
7578  }
7579
7580  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7581}
7582
7583CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7584  // Note: The following rules are largely analoguous to the copy
7585  // constructor rules. Note that virtual bases are not taken into account
7586  // for determining the argument type of the operator. Note also that
7587  // operators taking an object instead of a reference are allowed.
7588
7589  ImplicitExceptionSpecification Spec(Context);
7590  bool Const;
7591  llvm::tie(Spec, Const) =
7592    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7593
7594  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7595  QualType RetType = Context.getLValueReferenceType(ArgType);
7596  if (Const)
7597    ArgType = ArgType.withConst();
7598  ArgType = Context.getLValueReferenceType(ArgType);
7599
7600  //   An implicitly-declared copy assignment operator is an inline public
7601  //   member of its class.
7602  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7603  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7604  SourceLocation ClassLoc = ClassDecl->getLocation();
7605  DeclarationNameInfo NameInfo(Name, ClassLoc);
7606  CXXMethodDecl *CopyAssignment
7607    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7608                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7609                            /*TInfo=*/0, /*isStatic=*/false,
7610                            /*StorageClassAsWritten=*/SC_None,
7611                            /*isInline=*/true, /*isConstexpr=*/false,
7612                            SourceLocation());
7613  CopyAssignment->setAccess(AS_public);
7614  CopyAssignment->setDefaulted();
7615  CopyAssignment->setImplicit();
7616  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7617
7618  // Add the parameter to the operator.
7619  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7620                                               ClassLoc, ClassLoc, /*Id=*/0,
7621                                               ArgType, /*TInfo=*/0,
7622                                               SC_None,
7623                                               SC_None, 0);
7624  CopyAssignment->setParams(FromParam);
7625
7626  // Note that we have added this copy-assignment operator.
7627  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7628
7629  if (Scope *S = getScopeForContext(ClassDecl))
7630    PushOnScopeChains(CopyAssignment, S, false);
7631  ClassDecl->addDecl(CopyAssignment);
7632
7633  // C++0x [class.copy]p19:
7634  //   ....  If the class definition does not explicitly declare a copy
7635  //   assignment operator, there is no user-declared move constructor, and
7636  //   there is no user-declared move assignment operator, a copy assignment
7637  //   operator is implicitly declared as defaulted.
7638  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7639          !getLangOptions().MicrosoftMode) ||
7640      ClassDecl->hasUserDeclaredMoveAssignment() ||
7641      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7642    CopyAssignment->setDeletedAsWritten();
7643
7644  AddOverriddenMethods(ClassDecl, CopyAssignment);
7645  return CopyAssignment;
7646}
7647
7648void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7649                                        CXXMethodDecl *CopyAssignOperator) {
7650  assert((CopyAssignOperator->isDefaulted() &&
7651          CopyAssignOperator->isOverloadedOperator() &&
7652          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7653          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7654         "DefineImplicitCopyAssignment called for wrong function");
7655
7656  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7657
7658  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7659    CopyAssignOperator->setInvalidDecl();
7660    return;
7661  }
7662
7663  CopyAssignOperator->setUsed();
7664
7665  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7666  DiagnosticErrorTrap Trap(Diags);
7667
7668  // C++0x [class.copy]p30:
7669  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7670  //   for a non-union class X performs memberwise copy assignment of its
7671  //   subobjects. The direct base classes of X are assigned first, in the
7672  //   order of their declaration in the base-specifier-list, and then the
7673  //   immediate non-static data members of X are assigned, in the order in
7674  //   which they were declared in the class definition.
7675
7676  // The statements that form the synthesized function body.
7677  ASTOwningVector<Stmt*> Statements(*this);
7678
7679  // The parameter for the "other" object, which we are copying from.
7680  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7681  Qualifiers OtherQuals = Other->getType().getQualifiers();
7682  QualType OtherRefType = Other->getType();
7683  if (const LValueReferenceType *OtherRef
7684                                = OtherRefType->getAs<LValueReferenceType>()) {
7685    OtherRefType = OtherRef->getPointeeType();
7686    OtherQuals = OtherRefType.getQualifiers();
7687  }
7688
7689  // Our location for everything implicitly-generated.
7690  SourceLocation Loc = CopyAssignOperator->getLocation();
7691
7692  // Construct a reference to the "other" object. We'll be using this
7693  // throughout the generated ASTs.
7694  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7695  assert(OtherRef && "Reference to parameter cannot fail!");
7696
7697  // Construct the "this" pointer. We'll be using this throughout the generated
7698  // ASTs.
7699  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7700  assert(This && "Reference to this cannot fail!");
7701
7702  // Assign base classes.
7703  bool Invalid = false;
7704  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7705       E = ClassDecl->bases_end(); Base != E; ++Base) {
7706    // Form the assignment:
7707    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7708    QualType BaseType = Base->getType().getUnqualifiedType();
7709    if (!BaseType->isRecordType()) {
7710      Invalid = true;
7711      continue;
7712    }
7713
7714    CXXCastPath BasePath;
7715    BasePath.push_back(Base);
7716
7717    // Construct the "from" expression, which is an implicit cast to the
7718    // appropriately-qualified base type.
7719    Expr *From = OtherRef;
7720    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7721                             CK_UncheckedDerivedToBase,
7722                             VK_LValue, &BasePath).take();
7723
7724    // Dereference "this".
7725    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7726
7727    // Implicitly cast "this" to the appropriately-qualified base type.
7728    To = ImpCastExprToType(To.take(),
7729                           Context.getCVRQualifiedType(BaseType,
7730                                     CopyAssignOperator->getTypeQualifiers()),
7731                           CK_UncheckedDerivedToBase,
7732                           VK_LValue, &BasePath);
7733
7734    // Build the copy.
7735    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7736                                            To.get(), From,
7737                                            /*CopyingBaseSubobject=*/true,
7738                                            /*Copying=*/true);
7739    if (Copy.isInvalid()) {
7740      Diag(CurrentLocation, diag::note_member_synthesized_at)
7741        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7742      CopyAssignOperator->setInvalidDecl();
7743      return;
7744    }
7745
7746    // Success! Record the copy.
7747    Statements.push_back(Copy.takeAs<Expr>());
7748  }
7749
7750  // \brief Reference to the __builtin_memcpy function.
7751  Expr *BuiltinMemCpyRef = 0;
7752  // \brief Reference to the __builtin_objc_memmove_collectable function.
7753  Expr *CollectableMemCpyRef = 0;
7754
7755  // Assign non-static members.
7756  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7757                                  FieldEnd = ClassDecl->field_end();
7758       Field != FieldEnd; ++Field) {
7759    if (Field->isUnnamedBitfield())
7760      continue;
7761
7762    // Check for members of reference type; we can't copy those.
7763    if (Field->getType()->isReferenceType()) {
7764      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7765        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7766      Diag(Field->getLocation(), diag::note_declared_at);
7767      Diag(CurrentLocation, diag::note_member_synthesized_at)
7768        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7769      Invalid = true;
7770      continue;
7771    }
7772
7773    // Check for members of const-qualified, non-class type.
7774    QualType BaseType = Context.getBaseElementType(Field->getType());
7775    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7776      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7777        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7778      Diag(Field->getLocation(), diag::note_declared_at);
7779      Diag(CurrentLocation, diag::note_member_synthesized_at)
7780        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7781      Invalid = true;
7782      continue;
7783    }
7784
7785    // Suppress assigning zero-width bitfields.
7786    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7787      continue;
7788
7789    QualType FieldType = Field->getType().getNonReferenceType();
7790    if (FieldType->isIncompleteArrayType()) {
7791      assert(ClassDecl->hasFlexibleArrayMember() &&
7792             "Incomplete array type is not valid");
7793      continue;
7794    }
7795
7796    // Build references to the field in the object we're copying from and to.
7797    CXXScopeSpec SS; // Intentionally empty
7798    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7799                              LookupMemberName);
7800    MemberLookup.addDecl(*Field);
7801    MemberLookup.resolveKind();
7802    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7803                                               Loc, /*IsArrow=*/false,
7804                                               SS, SourceLocation(), 0,
7805                                               MemberLookup, 0);
7806    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7807                                             Loc, /*IsArrow=*/true,
7808                                             SS, SourceLocation(), 0,
7809                                             MemberLookup, 0);
7810    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7811    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7812
7813    // If the field should be copied with __builtin_memcpy rather than via
7814    // explicit assignments, do so. This optimization only applies for arrays
7815    // of scalars and arrays of class type with trivial copy-assignment
7816    // operators.
7817    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7818        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7819      // Compute the size of the memory buffer to be copied.
7820      QualType SizeType = Context.getSizeType();
7821      llvm::APInt Size(Context.getTypeSize(SizeType),
7822                       Context.getTypeSizeInChars(BaseType).getQuantity());
7823      for (const ConstantArrayType *Array
7824              = Context.getAsConstantArrayType(FieldType);
7825           Array;
7826           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7827        llvm::APInt ArraySize
7828          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7829        Size *= ArraySize;
7830      }
7831
7832      // Take the address of the field references for "from" and "to".
7833      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7834      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7835
7836      bool NeedsCollectableMemCpy =
7837          (BaseType->isRecordType() &&
7838           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7839
7840      if (NeedsCollectableMemCpy) {
7841        if (!CollectableMemCpyRef) {
7842          // Create a reference to the __builtin_objc_memmove_collectable function.
7843          LookupResult R(*this,
7844                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7845                         Loc, LookupOrdinaryName);
7846          LookupName(R, TUScope, true);
7847
7848          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7849          if (!CollectableMemCpy) {
7850            // Something went horribly wrong earlier, and we will have
7851            // complained about it.
7852            Invalid = true;
7853            continue;
7854          }
7855
7856          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7857                                                  CollectableMemCpy->getType(),
7858                                                  VK_LValue, Loc, 0).take();
7859          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7860        }
7861      }
7862      // Create a reference to the __builtin_memcpy builtin function.
7863      else if (!BuiltinMemCpyRef) {
7864        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7865                       LookupOrdinaryName);
7866        LookupName(R, TUScope, true);
7867
7868        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7869        if (!BuiltinMemCpy) {
7870          // Something went horribly wrong earlier, and we will have complained
7871          // about it.
7872          Invalid = true;
7873          continue;
7874        }
7875
7876        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7877                                            BuiltinMemCpy->getType(),
7878                                            VK_LValue, Loc, 0).take();
7879        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7880      }
7881
7882      ASTOwningVector<Expr*> CallArgs(*this);
7883      CallArgs.push_back(To.takeAs<Expr>());
7884      CallArgs.push_back(From.takeAs<Expr>());
7885      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7886      ExprResult Call = ExprError();
7887      if (NeedsCollectableMemCpy)
7888        Call = ActOnCallExpr(/*Scope=*/0,
7889                             CollectableMemCpyRef,
7890                             Loc, move_arg(CallArgs),
7891                             Loc);
7892      else
7893        Call = ActOnCallExpr(/*Scope=*/0,
7894                             BuiltinMemCpyRef,
7895                             Loc, move_arg(CallArgs),
7896                             Loc);
7897
7898      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7899      Statements.push_back(Call.takeAs<Expr>());
7900      continue;
7901    }
7902
7903    // Build the copy of this field.
7904    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7905                                            To.get(), From.get(),
7906                                            /*CopyingBaseSubobject=*/false,
7907                                            /*Copying=*/true);
7908    if (Copy.isInvalid()) {
7909      Diag(CurrentLocation, diag::note_member_synthesized_at)
7910        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7911      CopyAssignOperator->setInvalidDecl();
7912      return;
7913    }
7914
7915    // Success! Record the copy.
7916    Statements.push_back(Copy.takeAs<Stmt>());
7917  }
7918
7919  if (!Invalid) {
7920    // Add a "return *this;"
7921    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7922
7923    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7924    if (Return.isInvalid())
7925      Invalid = true;
7926    else {
7927      Statements.push_back(Return.takeAs<Stmt>());
7928
7929      if (Trap.hasErrorOccurred()) {
7930        Diag(CurrentLocation, diag::note_member_synthesized_at)
7931          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7932        Invalid = true;
7933      }
7934    }
7935  }
7936
7937  if (Invalid) {
7938    CopyAssignOperator->setInvalidDecl();
7939    return;
7940  }
7941
7942  StmtResult Body;
7943  {
7944    CompoundScopeRAII CompoundScope(*this);
7945    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7946                             /*isStmtExpr=*/false);
7947    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7948  }
7949  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7950
7951  if (ASTMutationListener *L = getASTMutationListener()) {
7952    L->CompletedImplicitDefinition(CopyAssignOperator);
7953  }
7954}
7955
7956Sema::ImplicitExceptionSpecification
7957Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7958  ImplicitExceptionSpecification ExceptSpec(Context);
7959
7960  if (ClassDecl->isInvalidDecl())
7961    return ExceptSpec;
7962
7963  // C++0x [except.spec]p14:
7964  //   An implicitly declared special member function (Clause 12) shall have an
7965  //   exception-specification. [...]
7966
7967  // It is unspecified whether or not an implicit move assignment operator
7968  // attempts to deduplicate calls to assignment operators of virtual bases are
7969  // made. As such, this exception specification is effectively unspecified.
7970  // Based on a similar decision made for constness in C++0x, we're erring on
7971  // the side of assuming such calls to be made regardless of whether they
7972  // actually happen.
7973  // Note that a move constructor is not implicitly declared when there are
7974  // virtual bases, but it can still be user-declared and explicitly defaulted.
7975  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7976                                       BaseEnd = ClassDecl->bases_end();
7977       Base != BaseEnd; ++Base) {
7978    if (Base->isVirtual())
7979      continue;
7980
7981    CXXRecordDecl *BaseClassDecl
7982      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7983    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7984                                                           false, 0))
7985      ExceptSpec.CalledDecl(MoveAssign);
7986  }
7987
7988  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7989                                       BaseEnd = ClassDecl->vbases_end();
7990       Base != BaseEnd; ++Base) {
7991    CXXRecordDecl *BaseClassDecl
7992      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7993    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7994                                                           false, 0))
7995      ExceptSpec.CalledDecl(MoveAssign);
7996  }
7997
7998  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7999                                  FieldEnd = ClassDecl->field_end();
8000       Field != FieldEnd;
8001       ++Field) {
8002    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8003    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8004      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8005                                                             false, 0))
8006        ExceptSpec.CalledDecl(MoveAssign);
8007    }
8008  }
8009
8010  return ExceptSpec;
8011}
8012
8013CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8014  // Note: The following rules are largely analoguous to the move
8015  // constructor rules.
8016
8017  ImplicitExceptionSpecification Spec(
8018      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8019
8020  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8021  QualType RetType = Context.getLValueReferenceType(ArgType);
8022  ArgType = Context.getRValueReferenceType(ArgType);
8023
8024  //   An implicitly-declared move assignment operator is an inline public
8025  //   member of its class.
8026  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8027  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8028  SourceLocation ClassLoc = ClassDecl->getLocation();
8029  DeclarationNameInfo NameInfo(Name, ClassLoc);
8030  CXXMethodDecl *MoveAssignment
8031    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8032                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8033                            /*TInfo=*/0, /*isStatic=*/false,
8034                            /*StorageClassAsWritten=*/SC_None,
8035                            /*isInline=*/true,
8036                            /*isConstexpr=*/false,
8037                            SourceLocation());
8038  MoveAssignment->setAccess(AS_public);
8039  MoveAssignment->setDefaulted();
8040  MoveAssignment->setImplicit();
8041  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8042
8043  // Add the parameter to the operator.
8044  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8045                                               ClassLoc, ClassLoc, /*Id=*/0,
8046                                               ArgType, /*TInfo=*/0,
8047                                               SC_None,
8048                                               SC_None, 0);
8049  MoveAssignment->setParams(FromParam);
8050
8051  // Note that we have added this copy-assignment operator.
8052  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8053
8054  // C++0x [class.copy]p9:
8055  //   If the definition of a class X does not explicitly declare a move
8056  //   assignment operator, one will be implicitly declared as defaulted if and
8057  //   only if:
8058  //   [...]
8059  //   - the move assignment operator would not be implicitly defined as
8060  //     deleted.
8061  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8062    // Cache this result so that we don't try to generate this over and over
8063    // on every lookup, leaking memory and wasting time.
8064    ClassDecl->setFailedImplicitMoveAssignment();
8065    return 0;
8066  }
8067
8068  if (Scope *S = getScopeForContext(ClassDecl))
8069    PushOnScopeChains(MoveAssignment, S, false);
8070  ClassDecl->addDecl(MoveAssignment);
8071
8072  AddOverriddenMethods(ClassDecl, MoveAssignment);
8073  return MoveAssignment;
8074}
8075
8076void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8077                                        CXXMethodDecl *MoveAssignOperator) {
8078  assert((MoveAssignOperator->isDefaulted() &&
8079          MoveAssignOperator->isOverloadedOperator() &&
8080          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8081          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8082         "DefineImplicitMoveAssignment called for wrong function");
8083
8084  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8085
8086  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8087    MoveAssignOperator->setInvalidDecl();
8088    return;
8089  }
8090
8091  MoveAssignOperator->setUsed();
8092
8093  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8094  DiagnosticErrorTrap Trap(Diags);
8095
8096  // C++0x [class.copy]p28:
8097  //   The implicitly-defined or move assignment operator for a non-union class
8098  //   X performs memberwise move assignment of its subobjects. The direct base
8099  //   classes of X are assigned first, in the order of their declaration in the
8100  //   base-specifier-list, and then the immediate non-static data members of X
8101  //   are assigned, in the order in which they were declared in the class
8102  //   definition.
8103
8104  // The statements that form the synthesized function body.
8105  ASTOwningVector<Stmt*> Statements(*this);
8106
8107  // The parameter for the "other" object, which we are move from.
8108  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8109  QualType OtherRefType = Other->getType()->
8110      getAs<RValueReferenceType>()->getPointeeType();
8111  assert(OtherRefType.getQualifiers() == 0 &&
8112         "Bad argument type of defaulted move assignment");
8113
8114  // Our location for everything implicitly-generated.
8115  SourceLocation Loc = MoveAssignOperator->getLocation();
8116
8117  // Construct a reference to the "other" object. We'll be using this
8118  // throughout the generated ASTs.
8119  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8120  assert(OtherRef && "Reference to parameter cannot fail!");
8121  // Cast to rvalue.
8122  OtherRef = CastForMoving(*this, OtherRef);
8123
8124  // Construct the "this" pointer. We'll be using this throughout the generated
8125  // ASTs.
8126  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8127  assert(This && "Reference to this cannot fail!");
8128
8129  // Assign base classes.
8130  bool Invalid = false;
8131  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8132       E = ClassDecl->bases_end(); Base != E; ++Base) {
8133    // Form the assignment:
8134    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8135    QualType BaseType = Base->getType().getUnqualifiedType();
8136    if (!BaseType->isRecordType()) {
8137      Invalid = true;
8138      continue;
8139    }
8140
8141    CXXCastPath BasePath;
8142    BasePath.push_back(Base);
8143
8144    // Construct the "from" expression, which is an implicit cast to the
8145    // appropriately-qualified base type.
8146    Expr *From = OtherRef;
8147    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8148                             VK_XValue, &BasePath).take();
8149
8150    // Dereference "this".
8151    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8152
8153    // Implicitly cast "this" to the appropriately-qualified base type.
8154    To = ImpCastExprToType(To.take(),
8155                           Context.getCVRQualifiedType(BaseType,
8156                                     MoveAssignOperator->getTypeQualifiers()),
8157                           CK_UncheckedDerivedToBase,
8158                           VK_LValue, &BasePath);
8159
8160    // Build the move.
8161    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8162                                            To.get(), From,
8163                                            /*CopyingBaseSubobject=*/true,
8164                                            /*Copying=*/false);
8165    if (Move.isInvalid()) {
8166      Diag(CurrentLocation, diag::note_member_synthesized_at)
8167        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8168      MoveAssignOperator->setInvalidDecl();
8169      return;
8170    }
8171
8172    // Success! Record the move.
8173    Statements.push_back(Move.takeAs<Expr>());
8174  }
8175
8176  // \brief Reference to the __builtin_memcpy function.
8177  Expr *BuiltinMemCpyRef = 0;
8178  // \brief Reference to the __builtin_objc_memmove_collectable function.
8179  Expr *CollectableMemCpyRef = 0;
8180
8181  // Assign non-static members.
8182  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8183                                  FieldEnd = ClassDecl->field_end();
8184       Field != FieldEnd; ++Field) {
8185    if (Field->isUnnamedBitfield())
8186      continue;
8187
8188    // Check for members of reference type; we can't move those.
8189    if (Field->getType()->isReferenceType()) {
8190      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8191        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8192      Diag(Field->getLocation(), diag::note_declared_at);
8193      Diag(CurrentLocation, diag::note_member_synthesized_at)
8194        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8195      Invalid = true;
8196      continue;
8197    }
8198
8199    // Check for members of const-qualified, non-class type.
8200    QualType BaseType = Context.getBaseElementType(Field->getType());
8201    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8202      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8203        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8204      Diag(Field->getLocation(), diag::note_declared_at);
8205      Diag(CurrentLocation, diag::note_member_synthesized_at)
8206        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8207      Invalid = true;
8208      continue;
8209    }
8210
8211    // Suppress assigning zero-width bitfields.
8212    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8213      continue;
8214
8215    QualType FieldType = Field->getType().getNonReferenceType();
8216    if (FieldType->isIncompleteArrayType()) {
8217      assert(ClassDecl->hasFlexibleArrayMember() &&
8218             "Incomplete array type is not valid");
8219      continue;
8220    }
8221
8222    // Build references to the field in the object we're copying from and to.
8223    CXXScopeSpec SS; // Intentionally empty
8224    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8225                              LookupMemberName);
8226    MemberLookup.addDecl(*Field);
8227    MemberLookup.resolveKind();
8228    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8229                                               Loc, /*IsArrow=*/false,
8230                                               SS, SourceLocation(), 0,
8231                                               MemberLookup, 0);
8232    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8233                                             Loc, /*IsArrow=*/true,
8234                                             SS, SourceLocation(), 0,
8235                                             MemberLookup, 0);
8236    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8237    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8238
8239    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8240        "Member reference with rvalue base must be rvalue except for reference "
8241        "members, which aren't allowed for move assignment.");
8242
8243    // If the field should be copied with __builtin_memcpy rather than via
8244    // explicit assignments, do so. This optimization only applies for arrays
8245    // of scalars and arrays of class type with trivial move-assignment
8246    // operators.
8247    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8248        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8249      // Compute the size of the memory buffer to be copied.
8250      QualType SizeType = Context.getSizeType();
8251      llvm::APInt Size(Context.getTypeSize(SizeType),
8252                       Context.getTypeSizeInChars(BaseType).getQuantity());
8253      for (const ConstantArrayType *Array
8254              = Context.getAsConstantArrayType(FieldType);
8255           Array;
8256           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8257        llvm::APInt ArraySize
8258          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8259        Size *= ArraySize;
8260      }
8261
8262      // Take the address of the field references for "from" and "to". We
8263      // directly construct UnaryOperators here because semantic analysis
8264      // does not permit us to take the address of an xvalue.
8265      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8266                             Context.getPointerType(From.get()->getType()),
8267                             VK_RValue, OK_Ordinary, Loc);
8268      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8269                           Context.getPointerType(To.get()->getType()),
8270                           VK_RValue, OK_Ordinary, Loc);
8271
8272      bool NeedsCollectableMemCpy =
8273          (BaseType->isRecordType() &&
8274           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8275
8276      if (NeedsCollectableMemCpy) {
8277        if (!CollectableMemCpyRef) {
8278          // Create a reference to the __builtin_objc_memmove_collectable function.
8279          LookupResult R(*this,
8280                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8281                         Loc, LookupOrdinaryName);
8282          LookupName(R, TUScope, true);
8283
8284          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8285          if (!CollectableMemCpy) {
8286            // Something went horribly wrong earlier, and we will have
8287            // complained about it.
8288            Invalid = true;
8289            continue;
8290          }
8291
8292          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8293                                                  CollectableMemCpy->getType(),
8294                                                  VK_LValue, Loc, 0).take();
8295          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8296        }
8297      }
8298      // Create a reference to the __builtin_memcpy builtin function.
8299      else if (!BuiltinMemCpyRef) {
8300        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8301                       LookupOrdinaryName);
8302        LookupName(R, TUScope, true);
8303
8304        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8305        if (!BuiltinMemCpy) {
8306          // Something went horribly wrong earlier, and we will have complained
8307          // about it.
8308          Invalid = true;
8309          continue;
8310        }
8311
8312        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8313                                            BuiltinMemCpy->getType(),
8314                                            VK_LValue, Loc, 0).take();
8315        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8316      }
8317
8318      ASTOwningVector<Expr*> CallArgs(*this);
8319      CallArgs.push_back(To.takeAs<Expr>());
8320      CallArgs.push_back(From.takeAs<Expr>());
8321      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8322      ExprResult Call = ExprError();
8323      if (NeedsCollectableMemCpy)
8324        Call = ActOnCallExpr(/*Scope=*/0,
8325                             CollectableMemCpyRef,
8326                             Loc, move_arg(CallArgs),
8327                             Loc);
8328      else
8329        Call = ActOnCallExpr(/*Scope=*/0,
8330                             BuiltinMemCpyRef,
8331                             Loc, move_arg(CallArgs),
8332                             Loc);
8333
8334      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8335      Statements.push_back(Call.takeAs<Expr>());
8336      continue;
8337    }
8338
8339    // Build the move of this field.
8340    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8341                                            To.get(), From.get(),
8342                                            /*CopyingBaseSubobject=*/false,
8343                                            /*Copying=*/false);
8344    if (Move.isInvalid()) {
8345      Diag(CurrentLocation, diag::note_member_synthesized_at)
8346        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8347      MoveAssignOperator->setInvalidDecl();
8348      return;
8349    }
8350
8351    // Success! Record the copy.
8352    Statements.push_back(Move.takeAs<Stmt>());
8353  }
8354
8355  if (!Invalid) {
8356    // Add a "return *this;"
8357    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8358
8359    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8360    if (Return.isInvalid())
8361      Invalid = true;
8362    else {
8363      Statements.push_back(Return.takeAs<Stmt>());
8364
8365      if (Trap.hasErrorOccurred()) {
8366        Diag(CurrentLocation, diag::note_member_synthesized_at)
8367          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8368        Invalid = true;
8369      }
8370    }
8371  }
8372
8373  if (Invalid) {
8374    MoveAssignOperator->setInvalidDecl();
8375    return;
8376  }
8377
8378  StmtResult Body;
8379  {
8380    CompoundScopeRAII CompoundScope(*this);
8381    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8382                             /*isStmtExpr=*/false);
8383    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8384  }
8385  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8386
8387  if (ASTMutationListener *L = getASTMutationListener()) {
8388    L->CompletedImplicitDefinition(MoveAssignOperator);
8389  }
8390}
8391
8392std::pair<Sema::ImplicitExceptionSpecification, bool>
8393Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8394  if (ClassDecl->isInvalidDecl())
8395    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8396
8397  // C++ [class.copy]p5:
8398  //   The implicitly-declared copy constructor for a class X will
8399  //   have the form
8400  //
8401  //       X::X(const X&)
8402  //
8403  //   if
8404  // FIXME: It ought to be possible to store this on the record.
8405  bool HasConstCopyConstructor = true;
8406
8407  //     -- each direct or virtual base class B of X has a copy
8408  //        constructor whose first parameter is of type const B& or
8409  //        const volatile B&, and
8410  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8411                                       BaseEnd = ClassDecl->bases_end();
8412       HasConstCopyConstructor && Base != BaseEnd;
8413       ++Base) {
8414    // Virtual bases are handled below.
8415    if (Base->isVirtual())
8416      continue;
8417
8418    CXXRecordDecl *BaseClassDecl
8419      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8420    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8421                             &HasConstCopyConstructor);
8422  }
8423
8424  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8425                                       BaseEnd = ClassDecl->vbases_end();
8426       HasConstCopyConstructor && Base != BaseEnd;
8427       ++Base) {
8428    CXXRecordDecl *BaseClassDecl
8429      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8430    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8431                             &HasConstCopyConstructor);
8432  }
8433
8434  //     -- for all the nonstatic data members of X that are of a
8435  //        class type M (or array thereof), each such class type
8436  //        has a copy constructor whose first parameter is of type
8437  //        const M& or const volatile M&.
8438  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8439                                  FieldEnd = ClassDecl->field_end();
8440       HasConstCopyConstructor && Field != FieldEnd;
8441       ++Field) {
8442    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8443    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8444      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8445                               &HasConstCopyConstructor);
8446    }
8447  }
8448  //   Otherwise, the implicitly declared copy constructor will have
8449  //   the form
8450  //
8451  //       X::X(X&)
8452
8453  // C++ [except.spec]p14:
8454  //   An implicitly declared special member function (Clause 12) shall have an
8455  //   exception-specification. [...]
8456  ImplicitExceptionSpecification ExceptSpec(Context);
8457  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8458  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8459                                       BaseEnd = ClassDecl->bases_end();
8460       Base != BaseEnd;
8461       ++Base) {
8462    // Virtual bases are handled below.
8463    if (Base->isVirtual())
8464      continue;
8465
8466    CXXRecordDecl *BaseClassDecl
8467      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8468    if (CXXConstructorDecl *CopyConstructor =
8469          LookupCopyingConstructor(BaseClassDecl, Quals))
8470      ExceptSpec.CalledDecl(CopyConstructor);
8471  }
8472  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8473                                       BaseEnd = ClassDecl->vbases_end();
8474       Base != BaseEnd;
8475       ++Base) {
8476    CXXRecordDecl *BaseClassDecl
8477      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8478    if (CXXConstructorDecl *CopyConstructor =
8479          LookupCopyingConstructor(BaseClassDecl, Quals))
8480      ExceptSpec.CalledDecl(CopyConstructor);
8481  }
8482  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8483                                  FieldEnd = ClassDecl->field_end();
8484       Field != FieldEnd;
8485       ++Field) {
8486    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8487    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8488      if (CXXConstructorDecl *CopyConstructor =
8489        LookupCopyingConstructor(FieldClassDecl, Quals))
8490      ExceptSpec.CalledDecl(CopyConstructor);
8491    }
8492  }
8493
8494  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8495}
8496
8497CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8498                                                    CXXRecordDecl *ClassDecl) {
8499  // C++ [class.copy]p4:
8500  //   If the class definition does not explicitly declare a copy
8501  //   constructor, one is declared implicitly.
8502
8503  ImplicitExceptionSpecification Spec(Context);
8504  bool Const;
8505  llvm::tie(Spec, Const) =
8506    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8507
8508  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8509  QualType ArgType = ClassType;
8510  if (Const)
8511    ArgType = ArgType.withConst();
8512  ArgType = Context.getLValueReferenceType(ArgType);
8513
8514  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8515
8516  DeclarationName Name
8517    = Context.DeclarationNames.getCXXConstructorName(
8518                                           Context.getCanonicalType(ClassType));
8519  SourceLocation ClassLoc = ClassDecl->getLocation();
8520  DeclarationNameInfo NameInfo(Name, ClassLoc);
8521
8522  //   An implicitly-declared copy constructor is an inline public
8523  //   member of its class.
8524  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8525      Context, ClassDecl, ClassLoc, NameInfo,
8526      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8527      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8528      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8529        getLangOptions().CPlusPlus0x);
8530  CopyConstructor->setAccess(AS_public);
8531  CopyConstructor->setDefaulted();
8532  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8533
8534  // Note that we have declared this constructor.
8535  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8536
8537  // Add the parameter to the constructor.
8538  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8539                                               ClassLoc, ClassLoc,
8540                                               /*IdentifierInfo=*/0,
8541                                               ArgType, /*TInfo=*/0,
8542                                               SC_None,
8543                                               SC_None, 0);
8544  CopyConstructor->setParams(FromParam);
8545
8546  if (Scope *S = getScopeForContext(ClassDecl))
8547    PushOnScopeChains(CopyConstructor, S, false);
8548  ClassDecl->addDecl(CopyConstructor);
8549
8550  // C++11 [class.copy]p8:
8551  //   ... If the class definition does not explicitly declare a copy
8552  //   constructor, there is no user-declared move constructor, and there is no
8553  //   user-declared move assignment operator, a copy constructor is implicitly
8554  //   declared as defaulted.
8555  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8556      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8557          !getLangOptions().MicrosoftMode) ||
8558      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8559    CopyConstructor->setDeletedAsWritten();
8560
8561  return CopyConstructor;
8562}
8563
8564void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8565                                   CXXConstructorDecl *CopyConstructor) {
8566  assert((CopyConstructor->isDefaulted() &&
8567          CopyConstructor->isCopyConstructor() &&
8568          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8569         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8570
8571  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8572  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8573
8574  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8575  DiagnosticErrorTrap Trap(Diags);
8576
8577  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8578      Trap.hasErrorOccurred()) {
8579    Diag(CurrentLocation, diag::note_member_synthesized_at)
8580      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8581    CopyConstructor->setInvalidDecl();
8582  }  else {
8583    Sema::CompoundScopeRAII CompoundScope(*this);
8584    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8585                                               CopyConstructor->getLocation(),
8586                                               MultiStmtArg(*this, 0, 0),
8587                                               /*isStmtExpr=*/false)
8588                                                              .takeAs<Stmt>());
8589    CopyConstructor->setImplicitlyDefined(true);
8590  }
8591
8592  CopyConstructor->setUsed();
8593  if (ASTMutationListener *L = getASTMutationListener()) {
8594    L->CompletedImplicitDefinition(CopyConstructor);
8595  }
8596}
8597
8598Sema::ImplicitExceptionSpecification
8599Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8600  // C++ [except.spec]p14:
8601  //   An implicitly declared special member function (Clause 12) shall have an
8602  //   exception-specification. [...]
8603  ImplicitExceptionSpecification ExceptSpec(Context);
8604  if (ClassDecl->isInvalidDecl())
8605    return ExceptSpec;
8606
8607  // Direct base-class constructors.
8608  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8609                                       BEnd = ClassDecl->bases_end();
8610       B != BEnd; ++B) {
8611    if (B->isVirtual()) // Handled below.
8612      continue;
8613
8614    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8615      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8616      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8617      // If this is a deleted function, add it anyway. This might be conformant
8618      // with the standard. This might not. I'm not sure. It might not matter.
8619      if (Constructor)
8620        ExceptSpec.CalledDecl(Constructor);
8621    }
8622  }
8623
8624  // Virtual base-class constructors.
8625  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8626                                       BEnd = ClassDecl->vbases_end();
8627       B != BEnd; ++B) {
8628    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8629      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8630      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8631      // If this is a deleted function, add it anyway. This might be conformant
8632      // with the standard. This might not. I'm not sure. It might not matter.
8633      if (Constructor)
8634        ExceptSpec.CalledDecl(Constructor);
8635    }
8636  }
8637
8638  // Field constructors.
8639  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8640                               FEnd = ClassDecl->field_end();
8641       F != FEnd; ++F) {
8642    if (const RecordType *RecordTy
8643              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8644      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8645      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8646      // If this is a deleted function, add it anyway. This might be conformant
8647      // with the standard. This might not. I'm not sure. It might not matter.
8648      // In particular, the problem is that this function never gets called. It
8649      // might just be ill-formed because this function attempts to refer to
8650      // a deleted function here.
8651      if (Constructor)
8652        ExceptSpec.CalledDecl(Constructor);
8653    }
8654  }
8655
8656  return ExceptSpec;
8657}
8658
8659CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8660                                                    CXXRecordDecl *ClassDecl) {
8661  ImplicitExceptionSpecification Spec(
8662      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8663
8664  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8665  QualType ArgType = Context.getRValueReferenceType(ClassType);
8666
8667  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8668
8669  DeclarationName Name
8670    = Context.DeclarationNames.getCXXConstructorName(
8671                                           Context.getCanonicalType(ClassType));
8672  SourceLocation ClassLoc = ClassDecl->getLocation();
8673  DeclarationNameInfo NameInfo(Name, ClassLoc);
8674
8675  // C++0x [class.copy]p11:
8676  //   An implicitly-declared copy/move constructor is an inline public
8677  //   member of its class.
8678  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8679      Context, ClassDecl, ClassLoc, NameInfo,
8680      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8681      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8682      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8683        getLangOptions().CPlusPlus0x);
8684  MoveConstructor->setAccess(AS_public);
8685  MoveConstructor->setDefaulted();
8686  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8687
8688  // Add the parameter to the constructor.
8689  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8690                                               ClassLoc, ClassLoc,
8691                                               /*IdentifierInfo=*/0,
8692                                               ArgType, /*TInfo=*/0,
8693                                               SC_None,
8694                                               SC_None, 0);
8695  MoveConstructor->setParams(FromParam);
8696
8697  // C++0x [class.copy]p9:
8698  //   If the definition of a class X does not explicitly declare a move
8699  //   constructor, one will be implicitly declared as defaulted if and only if:
8700  //   [...]
8701  //   - the move constructor would not be implicitly defined as deleted.
8702  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8703    // Cache this result so that we don't try to generate this over and over
8704    // on every lookup, leaking memory and wasting time.
8705    ClassDecl->setFailedImplicitMoveConstructor();
8706    return 0;
8707  }
8708
8709  // Note that we have declared this constructor.
8710  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8711
8712  if (Scope *S = getScopeForContext(ClassDecl))
8713    PushOnScopeChains(MoveConstructor, S, false);
8714  ClassDecl->addDecl(MoveConstructor);
8715
8716  return MoveConstructor;
8717}
8718
8719void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8720                                   CXXConstructorDecl *MoveConstructor) {
8721  assert((MoveConstructor->isDefaulted() &&
8722          MoveConstructor->isMoveConstructor() &&
8723          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8724         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8725
8726  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8727  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8728
8729  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8730  DiagnosticErrorTrap Trap(Diags);
8731
8732  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8733      Trap.hasErrorOccurred()) {
8734    Diag(CurrentLocation, diag::note_member_synthesized_at)
8735      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8736    MoveConstructor->setInvalidDecl();
8737  }  else {
8738    Sema::CompoundScopeRAII CompoundScope(*this);
8739    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8740                                               MoveConstructor->getLocation(),
8741                                               MultiStmtArg(*this, 0, 0),
8742                                               /*isStmtExpr=*/false)
8743                                                              .takeAs<Stmt>());
8744    MoveConstructor->setImplicitlyDefined(true);
8745  }
8746
8747  MoveConstructor->setUsed();
8748
8749  if (ASTMutationListener *L = getASTMutationListener()) {
8750    L->CompletedImplicitDefinition(MoveConstructor);
8751  }
8752}
8753
8754bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8755  return FD->isDeleted() &&
8756         (FD->isDefaulted() || FD->isImplicit()) &&
8757         isa<CXXMethodDecl>(FD);
8758}
8759
8760/// \brief Mark the call operator of the given lambda closure type as "used".
8761static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8762  CXXMethodDecl *CallOperator
8763    = cast<CXXMethodDecl>(
8764        *Lambda->lookup(
8765          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8766  CallOperator->setReferenced();
8767  CallOperator->setUsed();
8768}
8769
8770void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8771       SourceLocation CurrentLocation,
8772       CXXConversionDecl *Conv)
8773{
8774  CXXRecordDecl *Lambda = Conv->getParent();
8775
8776  // Make sure that the lambda call operator is marked used.
8777  markLambdaCallOperatorUsed(*this, Lambda);
8778
8779  Conv->setUsed();
8780
8781  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8782  DiagnosticErrorTrap Trap(Diags);
8783
8784  // Return the address of the __invoke function.
8785  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8786  CXXMethodDecl *Invoke
8787    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8788  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8789                                       VK_LValue, Conv->getLocation()).take();
8790  assert(FunctionRef && "Can't refer to __invoke function?");
8791  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8792  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8793                                           Conv->getLocation(),
8794                                           Conv->getLocation()));
8795
8796  // Fill in the __invoke function with a dummy implementation. IR generation
8797  // will fill in the actual details.
8798  Invoke->setUsed();
8799  Invoke->setReferenced();
8800  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8801                                             Conv->getLocation()));
8802
8803  if (ASTMutationListener *L = getASTMutationListener()) {
8804    L->CompletedImplicitDefinition(Conv);
8805    L->CompletedImplicitDefinition(Invoke);
8806  }
8807}
8808
8809void Sema::DefineImplicitLambdaToBlockPointerConversion(
8810       SourceLocation CurrentLocation,
8811       CXXConversionDecl *Conv)
8812{
8813  CXXRecordDecl *Lambda = Conv->getParent();
8814
8815  // Make sure that the lambda call operator is marked used.
8816  CXXMethodDecl *CallOperator
8817    = cast<CXXMethodDecl>(
8818        *Lambda->lookup(
8819          Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8820  CallOperator->setReferenced();
8821  CallOperator->setUsed();
8822  Conv->setUsed();
8823
8824  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8825  DiagnosticErrorTrap Trap(Diags);
8826
8827  // Copy-initialize the lambda object as needed to capture it.
8828  Expr *This = ActOnCXXThis(CurrentLocation).take();
8829  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8830  ExprResult Init = PerformCopyInitialization(
8831                      InitializedEntity::InitializeBlock(CurrentLocation,
8832                                                         DerefThis->getType(),
8833                                                         /*NRVO=*/false),
8834                      CurrentLocation, DerefThis);
8835  if (!Init.isInvalid())
8836    Init = ActOnFinishFullExpr(Init.take());
8837
8838  if (Init.isInvalid()) {
8839    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8840    Conv->setInvalidDecl();
8841    return;
8842  }
8843
8844  // Create the new block to be returned.
8845  BlockDecl *Block = BlockDecl::Create(Context, Conv, Conv->getLocation());
8846
8847  // Set the type information.
8848  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
8849  Block->setIsVariadic(CallOperator->isVariadic());
8850  Block->setBlockMissingReturnType(false);
8851
8852  // Add parameters.
8853  SmallVector<ParmVarDecl *, 4> BlockParams;
8854  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
8855    ParmVarDecl *From = CallOperator->getParamDecl(I);
8856    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
8857                                              From->getLocStart(),
8858                                              From->getLocation(),
8859                                              From->getIdentifier(),
8860                                              From->getType(),
8861                                              From->getTypeSourceInfo(),
8862                                              From->getStorageClass(),
8863                                            From->getStorageClassAsWritten(),
8864                                              /*DefaultArg=*/0));
8865  }
8866  Block->setParams(BlockParams);
8867
8868  // Add capture. The capture is uses a fake (NULL) variable, since we don't
8869  // actually want to have to name a capture variable. However, the
8870  // initializer copy-initializes the lambda object.
8871  BlockDecl::Capture Capture(/*Variable=*/0, /*ByRef=*/false, /*Nested=*/false,
8872                             /*Copy=*/Init.take());
8873  Block->setCaptures(Context, &Capture, &Capture + 1,
8874                     /*CapturesCXXThis=*/false);
8875
8876  // Add a fake function body to the block. IR generation is responsible
8877  // for filling in the actual body, which cannot be expressed as an AST.
8878  Block->setBody(new (Context) CompoundStmt(Context, 0, 0,
8879                                            Conv->getLocation(),
8880                                            Conv->getLocation()));
8881
8882  // Create the block literal expression.
8883  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
8884  ExprCleanupObjects.push_back(Block);
8885  ExprNeedsCleanups = true;
8886
8887  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8888  // behavior.
8889  if (!getLangOptions().ObjCAutoRefCount)
8890    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock->getType(),
8891                                          CK_CopyAndAutoreleaseBlockObject,
8892                                          BuildBlock, 0, VK_RValue);
8893
8894  // Create the return statement that returns the block from the conversion
8895  // function.
8896  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock);
8897  if (Return.isInvalid()) {
8898    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8899    Conv->setInvalidDecl();
8900    return;
8901  }
8902
8903  // Set the body of the conversion function.
8904  Stmt *ReturnS = Return.take();
8905  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8906                                           Conv->getLocation(),
8907                                           Conv->getLocation()));
8908
8909  // We're done; notify the mutation listener, if any.
8910  if (ASTMutationListener *L = getASTMutationListener()) {
8911    L->CompletedImplicitDefinition(Conv);
8912  }
8913}
8914
8915ExprResult
8916Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8917                            CXXConstructorDecl *Constructor,
8918                            MultiExprArg ExprArgs,
8919                            bool HadMultipleCandidates,
8920                            bool RequiresZeroInit,
8921                            unsigned ConstructKind,
8922                            SourceRange ParenRange) {
8923  bool Elidable = false;
8924
8925  // C++0x [class.copy]p34:
8926  //   When certain criteria are met, an implementation is allowed to
8927  //   omit the copy/move construction of a class object, even if the
8928  //   copy/move constructor and/or destructor for the object have
8929  //   side effects. [...]
8930  //     - when a temporary class object that has not been bound to a
8931  //       reference (12.2) would be copied/moved to a class object
8932  //       with the same cv-unqualified type, the copy/move operation
8933  //       can be omitted by constructing the temporary object
8934  //       directly into the target of the omitted copy/move
8935  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8936      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8937    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8938    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8939  }
8940
8941  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8942                               Elidable, move(ExprArgs), HadMultipleCandidates,
8943                               RequiresZeroInit, ConstructKind, ParenRange);
8944}
8945
8946/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8947/// including handling of its default argument expressions.
8948ExprResult
8949Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8950                            CXXConstructorDecl *Constructor, bool Elidable,
8951                            MultiExprArg ExprArgs,
8952                            bool HadMultipleCandidates,
8953                            bool RequiresZeroInit,
8954                            unsigned ConstructKind,
8955                            SourceRange ParenRange) {
8956  unsigned NumExprs = ExprArgs.size();
8957  Expr **Exprs = (Expr **)ExprArgs.release();
8958
8959  for (specific_attr_iterator<NonNullAttr>
8960           i = Constructor->specific_attr_begin<NonNullAttr>(),
8961           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8962    const NonNullAttr *NonNull = *i;
8963    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8964  }
8965
8966  MarkFunctionReferenced(ConstructLoc, Constructor);
8967  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8968                                        Constructor, Elidable, Exprs, NumExprs,
8969                                        HadMultipleCandidates, /*FIXME*/false,
8970                                        RequiresZeroInit,
8971              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8972                                        ParenRange));
8973}
8974
8975bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8976                                        CXXConstructorDecl *Constructor,
8977                                        MultiExprArg Exprs,
8978                                        bool HadMultipleCandidates) {
8979  // FIXME: Provide the correct paren SourceRange when available.
8980  ExprResult TempResult =
8981    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8982                          move(Exprs), HadMultipleCandidates, false,
8983                          CXXConstructExpr::CK_Complete, SourceRange());
8984  if (TempResult.isInvalid())
8985    return true;
8986
8987  Expr *Temp = TempResult.takeAs<Expr>();
8988  CheckImplicitConversions(Temp, VD->getLocation());
8989  MarkFunctionReferenced(VD->getLocation(), Constructor);
8990  Temp = MaybeCreateExprWithCleanups(Temp);
8991  VD->setInit(Temp);
8992
8993  return false;
8994}
8995
8996void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8997  if (VD->isInvalidDecl()) return;
8998
8999  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9000  if (ClassDecl->isInvalidDecl()) return;
9001  if (ClassDecl->hasIrrelevantDestructor()) return;
9002  if (ClassDecl->isDependentContext()) return;
9003
9004  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9005  MarkFunctionReferenced(VD->getLocation(), Destructor);
9006  CheckDestructorAccess(VD->getLocation(), Destructor,
9007                        PDiag(diag::err_access_dtor_var)
9008                        << VD->getDeclName()
9009                        << VD->getType());
9010  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9011
9012  if (!VD->hasGlobalStorage()) return;
9013
9014  // Emit warning for non-trivial dtor in global scope (a real global,
9015  // class-static, function-static).
9016  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9017
9018  // TODO: this should be re-enabled for static locals by !CXAAtExit
9019  if (!VD->isStaticLocal())
9020    Diag(VD->getLocation(), diag::warn_global_destructor);
9021}
9022
9023/// \brief Given a constructor and the set of arguments provided for the
9024/// constructor, convert the arguments and add any required default arguments
9025/// to form a proper call to this constructor.
9026///
9027/// \returns true if an error occurred, false otherwise.
9028bool
9029Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9030                              MultiExprArg ArgsPtr,
9031                              SourceLocation Loc,
9032                              ASTOwningVector<Expr*> &ConvertedArgs) {
9033  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9034  unsigned NumArgs = ArgsPtr.size();
9035  Expr **Args = (Expr **)ArgsPtr.get();
9036
9037  const FunctionProtoType *Proto
9038    = Constructor->getType()->getAs<FunctionProtoType>();
9039  assert(Proto && "Constructor without a prototype?");
9040  unsigned NumArgsInProto = Proto->getNumArgs();
9041
9042  // If too few arguments are available, we'll fill in the rest with defaults.
9043  if (NumArgs < NumArgsInProto)
9044    ConvertedArgs.reserve(NumArgsInProto);
9045  else
9046    ConvertedArgs.reserve(NumArgs);
9047
9048  VariadicCallType CallType =
9049    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9050  SmallVector<Expr *, 8> AllArgs;
9051  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9052                                        Proto, 0, Args, NumArgs, AllArgs,
9053                                        CallType);
9054  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9055
9056  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9057
9058  // FIXME: Missing call to CheckFunctionCall or equivalent
9059
9060  return Invalid;
9061}
9062
9063static inline bool
9064CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9065                                       const FunctionDecl *FnDecl) {
9066  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9067  if (isa<NamespaceDecl>(DC)) {
9068    return SemaRef.Diag(FnDecl->getLocation(),
9069                        diag::err_operator_new_delete_declared_in_namespace)
9070      << FnDecl->getDeclName();
9071  }
9072
9073  if (isa<TranslationUnitDecl>(DC) &&
9074      FnDecl->getStorageClass() == SC_Static) {
9075    return SemaRef.Diag(FnDecl->getLocation(),
9076                        diag::err_operator_new_delete_declared_static)
9077      << FnDecl->getDeclName();
9078  }
9079
9080  return false;
9081}
9082
9083static inline bool
9084CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9085                            CanQualType ExpectedResultType,
9086                            CanQualType ExpectedFirstParamType,
9087                            unsigned DependentParamTypeDiag,
9088                            unsigned InvalidParamTypeDiag) {
9089  QualType ResultType =
9090    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9091
9092  // Check that the result type is not dependent.
9093  if (ResultType->isDependentType())
9094    return SemaRef.Diag(FnDecl->getLocation(),
9095                        diag::err_operator_new_delete_dependent_result_type)
9096    << FnDecl->getDeclName() << ExpectedResultType;
9097
9098  // Check that the result type is what we expect.
9099  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9100    return SemaRef.Diag(FnDecl->getLocation(),
9101                        diag::err_operator_new_delete_invalid_result_type)
9102    << FnDecl->getDeclName() << ExpectedResultType;
9103
9104  // A function template must have at least 2 parameters.
9105  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9106    return SemaRef.Diag(FnDecl->getLocation(),
9107                      diag::err_operator_new_delete_template_too_few_parameters)
9108        << FnDecl->getDeclName();
9109
9110  // The function decl must have at least 1 parameter.
9111  if (FnDecl->getNumParams() == 0)
9112    return SemaRef.Diag(FnDecl->getLocation(),
9113                        diag::err_operator_new_delete_too_few_parameters)
9114      << FnDecl->getDeclName();
9115
9116  // Check the the first parameter type is not dependent.
9117  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9118  if (FirstParamType->isDependentType())
9119    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9120      << FnDecl->getDeclName() << ExpectedFirstParamType;
9121
9122  // Check that the first parameter type is what we expect.
9123  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9124      ExpectedFirstParamType)
9125    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9126    << FnDecl->getDeclName() << ExpectedFirstParamType;
9127
9128  return false;
9129}
9130
9131static bool
9132CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9133  // C++ [basic.stc.dynamic.allocation]p1:
9134  //   A program is ill-formed if an allocation function is declared in a
9135  //   namespace scope other than global scope or declared static in global
9136  //   scope.
9137  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9138    return true;
9139
9140  CanQualType SizeTy =
9141    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9142
9143  // C++ [basic.stc.dynamic.allocation]p1:
9144  //  The return type shall be void*. The first parameter shall have type
9145  //  std::size_t.
9146  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9147                                  SizeTy,
9148                                  diag::err_operator_new_dependent_param_type,
9149                                  diag::err_operator_new_param_type))
9150    return true;
9151
9152  // C++ [basic.stc.dynamic.allocation]p1:
9153  //  The first parameter shall not have an associated default argument.
9154  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9155    return SemaRef.Diag(FnDecl->getLocation(),
9156                        diag::err_operator_new_default_arg)
9157      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9158
9159  return false;
9160}
9161
9162static bool
9163CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9164  // C++ [basic.stc.dynamic.deallocation]p1:
9165  //   A program is ill-formed if deallocation functions are declared in a
9166  //   namespace scope other than global scope or declared static in global
9167  //   scope.
9168  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9169    return true;
9170
9171  // C++ [basic.stc.dynamic.deallocation]p2:
9172  //   Each deallocation function shall return void and its first parameter
9173  //   shall be void*.
9174  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9175                                  SemaRef.Context.VoidPtrTy,
9176                                 diag::err_operator_delete_dependent_param_type,
9177                                 diag::err_operator_delete_param_type))
9178    return true;
9179
9180  return false;
9181}
9182
9183/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9184/// of this overloaded operator is well-formed. If so, returns false;
9185/// otherwise, emits appropriate diagnostics and returns true.
9186bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9187  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9188         "Expected an overloaded operator declaration");
9189
9190  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9191
9192  // C++ [over.oper]p5:
9193  //   The allocation and deallocation functions, operator new,
9194  //   operator new[], operator delete and operator delete[], are
9195  //   described completely in 3.7.3. The attributes and restrictions
9196  //   found in the rest of this subclause do not apply to them unless
9197  //   explicitly stated in 3.7.3.
9198  if (Op == OO_Delete || Op == OO_Array_Delete)
9199    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9200
9201  if (Op == OO_New || Op == OO_Array_New)
9202    return CheckOperatorNewDeclaration(*this, FnDecl);
9203
9204  // C++ [over.oper]p6:
9205  //   An operator function shall either be a non-static member
9206  //   function or be a non-member function and have at least one
9207  //   parameter whose type is a class, a reference to a class, an
9208  //   enumeration, or a reference to an enumeration.
9209  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9210    if (MethodDecl->isStatic())
9211      return Diag(FnDecl->getLocation(),
9212                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9213  } else {
9214    bool ClassOrEnumParam = false;
9215    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9216                                   ParamEnd = FnDecl->param_end();
9217         Param != ParamEnd; ++Param) {
9218      QualType ParamType = (*Param)->getType().getNonReferenceType();
9219      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9220          ParamType->isEnumeralType()) {
9221        ClassOrEnumParam = true;
9222        break;
9223      }
9224    }
9225
9226    if (!ClassOrEnumParam)
9227      return Diag(FnDecl->getLocation(),
9228                  diag::err_operator_overload_needs_class_or_enum)
9229        << FnDecl->getDeclName();
9230  }
9231
9232  // C++ [over.oper]p8:
9233  //   An operator function cannot have default arguments (8.3.6),
9234  //   except where explicitly stated below.
9235  //
9236  // Only the function-call operator allows default arguments
9237  // (C++ [over.call]p1).
9238  if (Op != OO_Call) {
9239    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9240         Param != FnDecl->param_end(); ++Param) {
9241      if ((*Param)->hasDefaultArg())
9242        return Diag((*Param)->getLocation(),
9243                    diag::err_operator_overload_default_arg)
9244          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9245    }
9246  }
9247
9248  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9249    { false, false, false }
9250#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9251    , { Unary, Binary, MemberOnly }
9252#include "clang/Basic/OperatorKinds.def"
9253  };
9254
9255  bool CanBeUnaryOperator = OperatorUses[Op][0];
9256  bool CanBeBinaryOperator = OperatorUses[Op][1];
9257  bool MustBeMemberOperator = OperatorUses[Op][2];
9258
9259  // C++ [over.oper]p8:
9260  //   [...] Operator functions cannot have more or fewer parameters
9261  //   than the number required for the corresponding operator, as
9262  //   described in the rest of this subclause.
9263  unsigned NumParams = FnDecl->getNumParams()
9264                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9265  if (Op != OO_Call &&
9266      ((NumParams == 1 && !CanBeUnaryOperator) ||
9267       (NumParams == 2 && !CanBeBinaryOperator) ||
9268       (NumParams < 1) || (NumParams > 2))) {
9269    // We have the wrong number of parameters.
9270    unsigned ErrorKind;
9271    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9272      ErrorKind = 2;  // 2 -> unary or binary.
9273    } else if (CanBeUnaryOperator) {
9274      ErrorKind = 0;  // 0 -> unary
9275    } else {
9276      assert(CanBeBinaryOperator &&
9277             "All non-call overloaded operators are unary or binary!");
9278      ErrorKind = 1;  // 1 -> binary
9279    }
9280
9281    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9282      << FnDecl->getDeclName() << NumParams << ErrorKind;
9283  }
9284
9285  // Overloaded operators other than operator() cannot be variadic.
9286  if (Op != OO_Call &&
9287      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9288    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9289      << FnDecl->getDeclName();
9290  }
9291
9292  // Some operators must be non-static member functions.
9293  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9294    return Diag(FnDecl->getLocation(),
9295                diag::err_operator_overload_must_be_member)
9296      << FnDecl->getDeclName();
9297  }
9298
9299  // C++ [over.inc]p1:
9300  //   The user-defined function called operator++ implements the
9301  //   prefix and postfix ++ operator. If this function is a member
9302  //   function with no parameters, or a non-member function with one
9303  //   parameter of class or enumeration type, it defines the prefix
9304  //   increment operator ++ for objects of that type. If the function
9305  //   is a member function with one parameter (which shall be of type
9306  //   int) or a non-member function with two parameters (the second
9307  //   of which shall be of type int), it defines the postfix
9308  //   increment operator ++ for objects of that type.
9309  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9310    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9311    bool ParamIsInt = false;
9312    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9313      ParamIsInt = BT->getKind() == BuiltinType::Int;
9314
9315    if (!ParamIsInt)
9316      return Diag(LastParam->getLocation(),
9317                  diag::err_operator_overload_post_incdec_must_be_int)
9318        << LastParam->getType() << (Op == OO_MinusMinus);
9319  }
9320
9321  return false;
9322}
9323
9324/// CheckLiteralOperatorDeclaration - Check whether the declaration
9325/// of this literal operator function is well-formed. If so, returns
9326/// false; otherwise, emits appropriate diagnostics and returns true.
9327bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9328  DeclContext *DC = FnDecl->getDeclContext();
9329  Decl::Kind Kind = DC->getDeclKind();
9330  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9331      Kind != Decl::LinkageSpec) {
9332    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9333      << FnDecl->getDeclName();
9334    return true;
9335  }
9336
9337  bool Valid = false;
9338
9339  // template <char...> type operator "" name() is the only valid template
9340  // signature, and the only valid signature with no parameters.
9341  if (FnDecl->param_size() == 0) {
9342    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9343      // Must have only one template parameter
9344      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9345      if (Params->size() == 1) {
9346        NonTypeTemplateParmDecl *PmDecl =
9347          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9348
9349        // The template parameter must be a char parameter pack.
9350        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9351            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9352          Valid = true;
9353      }
9354    }
9355  } else {
9356    // Check the first parameter
9357    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9358
9359    QualType T = (*Param)->getType();
9360
9361    // unsigned long long int, long double, and any character type are allowed
9362    // as the only parameters.
9363    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9364        Context.hasSameType(T, Context.LongDoubleTy) ||
9365        Context.hasSameType(T, Context.CharTy) ||
9366        Context.hasSameType(T, Context.WCharTy) ||
9367        Context.hasSameType(T, Context.Char16Ty) ||
9368        Context.hasSameType(T, Context.Char32Ty)) {
9369      if (++Param == FnDecl->param_end())
9370        Valid = true;
9371      goto FinishedParams;
9372    }
9373
9374    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9375    const PointerType *PT = T->getAs<PointerType>();
9376    if (!PT)
9377      goto FinishedParams;
9378    T = PT->getPointeeType();
9379    if (!T.isConstQualified())
9380      goto FinishedParams;
9381    T = T.getUnqualifiedType();
9382
9383    // Move on to the second parameter;
9384    ++Param;
9385
9386    // If there is no second parameter, the first must be a const char *
9387    if (Param == FnDecl->param_end()) {
9388      if (Context.hasSameType(T, Context.CharTy))
9389        Valid = true;
9390      goto FinishedParams;
9391    }
9392
9393    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9394    // are allowed as the first parameter to a two-parameter function
9395    if (!(Context.hasSameType(T, Context.CharTy) ||
9396          Context.hasSameType(T, Context.WCharTy) ||
9397          Context.hasSameType(T, Context.Char16Ty) ||
9398          Context.hasSameType(T, Context.Char32Ty)))
9399      goto FinishedParams;
9400
9401    // The second and final parameter must be an std::size_t
9402    T = (*Param)->getType().getUnqualifiedType();
9403    if (Context.hasSameType(T, Context.getSizeType()) &&
9404        ++Param == FnDecl->param_end())
9405      Valid = true;
9406  }
9407
9408  // FIXME: This diagnostic is absolutely terrible.
9409FinishedParams:
9410  if (!Valid) {
9411    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9412      << FnDecl->getDeclName();
9413    return true;
9414  }
9415
9416  StringRef LiteralName
9417    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9418  if (LiteralName[0] != '_') {
9419    // C++0x [usrlit.suffix]p1:
9420    //   Literal suffix identifiers that do not start with an underscore are
9421    //   reserved for future standardization.
9422    bool IsHexFloat = true;
9423    if (LiteralName.size() > 1 &&
9424        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9425      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9426        if (!isdigit(LiteralName[I])) {
9427          IsHexFloat = false;
9428          break;
9429        }
9430      }
9431    }
9432
9433    if (IsHexFloat)
9434      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9435        << LiteralName;
9436    else
9437      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9438  }
9439
9440  return false;
9441}
9442
9443/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9444/// linkage specification, including the language and (if present)
9445/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9446/// the location of the language string literal, which is provided
9447/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9448/// the '{' brace. Otherwise, this linkage specification does not
9449/// have any braces.
9450Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9451                                           SourceLocation LangLoc,
9452                                           StringRef Lang,
9453                                           SourceLocation LBraceLoc) {
9454  LinkageSpecDecl::LanguageIDs Language;
9455  if (Lang == "\"C\"")
9456    Language = LinkageSpecDecl::lang_c;
9457  else if (Lang == "\"C++\"")
9458    Language = LinkageSpecDecl::lang_cxx;
9459  else {
9460    Diag(LangLoc, diag::err_bad_language);
9461    return 0;
9462  }
9463
9464  // FIXME: Add all the various semantics of linkage specifications
9465
9466  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9467                                               ExternLoc, LangLoc, Language);
9468  CurContext->addDecl(D);
9469  PushDeclContext(S, D);
9470  return D;
9471}
9472
9473/// ActOnFinishLinkageSpecification - Complete the definition of
9474/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9475/// valid, it's the position of the closing '}' brace in a linkage
9476/// specification that uses braces.
9477Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9478                                            Decl *LinkageSpec,
9479                                            SourceLocation RBraceLoc) {
9480  if (LinkageSpec) {
9481    if (RBraceLoc.isValid()) {
9482      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9483      LSDecl->setRBraceLoc(RBraceLoc);
9484    }
9485    PopDeclContext();
9486  }
9487  return LinkageSpec;
9488}
9489
9490/// \brief Perform semantic analysis for the variable declaration that
9491/// occurs within a C++ catch clause, returning the newly-created
9492/// variable.
9493VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9494                                         TypeSourceInfo *TInfo,
9495                                         SourceLocation StartLoc,
9496                                         SourceLocation Loc,
9497                                         IdentifierInfo *Name) {
9498  bool Invalid = false;
9499  QualType ExDeclType = TInfo->getType();
9500
9501  // Arrays and functions decay.
9502  if (ExDeclType->isArrayType())
9503    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9504  else if (ExDeclType->isFunctionType())
9505    ExDeclType = Context.getPointerType(ExDeclType);
9506
9507  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9508  // The exception-declaration shall not denote a pointer or reference to an
9509  // incomplete type, other than [cv] void*.
9510  // N2844 forbids rvalue references.
9511  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9512    Diag(Loc, diag::err_catch_rvalue_ref);
9513    Invalid = true;
9514  }
9515
9516  QualType BaseType = ExDeclType;
9517  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9518  unsigned DK = diag::err_catch_incomplete;
9519  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9520    BaseType = Ptr->getPointeeType();
9521    Mode = 1;
9522    DK = diag::err_catch_incomplete_ptr;
9523  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9524    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9525    BaseType = Ref->getPointeeType();
9526    Mode = 2;
9527    DK = diag::err_catch_incomplete_ref;
9528  }
9529  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9530      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9531    Invalid = true;
9532
9533  if (!Invalid && !ExDeclType->isDependentType() &&
9534      RequireNonAbstractType(Loc, ExDeclType,
9535                             diag::err_abstract_type_in_decl,
9536                             AbstractVariableType))
9537    Invalid = true;
9538
9539  // Only the non-fragile NeXT runtime currently supports C++ catches
9540  // of ObjC types, and no runtime supports catching ObjC types by value.
9541  if (!Invalid && getLangOptions().ObjC1) {
9542    QualType T = ExDeclType;
9543    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9544      T = RT->getPointeeType();
9545
9546    if (T->isObjCObjectType()) {
9547      Diag(Loc, diag::err_objc_object_catch);
9548      Invalid = true;
9549    } else if (T->isObjCObjectPointerType()) {
9550      if (!getLangOptions().ObjCNonFragileABI)
9551        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9552    }
9553  }
9554
9555  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9556                                    ExDeclType, TInfo, SC_None, SC_None);
9557  ExDecl->setExceptionVariable(true);
9558
9559  // In ARC, infer 'retaining' for variables of retainable type.
9560  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9561    Invalid = true;
9562
9563  if (!Invalid && !ExDeclType->isDependentType()) {
9564    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9565      // C++ [except.handle]p16:
9566      //   The object declared in an exception-declaration or, if the
9567      //   exception-declaration does not specify a name, a temporary (12.2) is
9568      //   copy-initialized (8.5) from the exception object. [...]
9569      //   The object is destroyed when the handler exits, after the destruction
9570      //   of any automatic objects initialized within the handler.
9571      //
9572      // We just pretend to initialize the object with itself, then make sure
9573      // it can be destroyed later.
9574      QualType initType = ExDeclType;
9575
9576      InitializedEntity entity =
9577        InitializedEntity::InitializeVariable(ExDecl);
9578      InitializationKind initKind =
9579        InitializationKind::CreateCopy(Loc, SourceLocation());
9580
9581      Expr *opaqueValue =
9582        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9583      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9584      ExprResult result = sequence.Perform(*this, entity, initKind,
9585                                           MultiExprArg(&opaqueValue, 1));
9586      if (result.isInvalid())
9587        Invalid = true;
9588      else {
9589        // If the constructor used was non-trivial, set this as the
9590        // "initializer".
9591        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9592        if (!construct->getConstructor()->isTrivial()) {
9593          Expr *init = MaybeCreateExprWithCleanups(construct);
9594          ExDecl->setInit(init);
9595        }
9596
9597        // And make sure it's destructable.
9598        FinalizeVarWithDestructor(ExDecl, recordType);
9599      }
9600    }
9601  }
9602
9603  if (Invalid)
9604    ExDecl->setInvalidDecl();
9605
9606  return ExDecl;
9607}
9608
9609/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9610/// handler.
9611Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9612  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9613  bool Invalid = D.isInvalidType();
9614
9615  // Check for unexpanded parameter packs.
9616  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9617                                               UPPC_ExceptionType)) {
9618    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9619                                             D.getIdentifierLoc());
9620    Invalid = true;
9621  }
9622
9623  IdentifierInfo *II = D.getIdentifier();
9624  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9625                                             LookupOrdinaryName,
9626                                             ForRedeclaration)) {
9627    // The scope should be freshly made just for us. There is just no way
9628    // it contains any previous declaration.
9629    assert(!S->isDeclScope(PrevDecl));
9630    if (PrevDecl->isTemplateParameter()) {
9631      // Maybe we will complain about the shadowed template parameter.
9632      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9633      PrevDecl = 0;
9634    }
9635  }
9636
9637  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9638    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9639      << D.getCXXScopeSpec().getRange();
9640    Invalid = true;
9641  }
9642
9643  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9644                                              D.getSourceRange().getBegin(),
9645                                              D.getIdentifierLoc(),
9646                                              D.getIdentifier());
9647  if (Invalid)
9648    ExDecl->setInvalidDecl();
9649
9650  // Add the exception declaration into this scope.
9651  if (II)
9652    PushOnScopeChains(ExDecl, S);
9653  else
9654    CurContext->addDecl(ExDecl);
9655
9656  ProcessDeclAttributes(S, ExDecl, D);
9657  return ExDecl;
9658}
9659
9660Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9661                                         Expr *AssertExpr,
9662                                         Expr *AssertMessageExpr_,
9663                                         SourceLocation RParenLoc) {
9664  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9665
9666  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9667    // In a static_assert-declaration, the constant-expression shall be a
9668    // constant expression that can be contextually converted to bool.
9669    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9670    if (Converted.isInvalid())
9671      return 0;
9672
9673    llvm::APSInt Cond;
9674    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9675          PDiag(diag::err_static_assert_expression_is_not_constant),
9676          /*AllowFold=*/false).isInvalid())
9677      return 0;
9678
9679    if (!Cond)
9680      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9681        << AssertMessage->getString() << AssertExpr->getSourceRange();
9682  }
9683
9684  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9685    return 0;
9686
9687  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9688                                        AssertExpr, AssertMessage, RParenLoc);
9689
9690  CurContext->addDecl(Decl);
9691  return Decl;
9692}
9693
9694/// \brief Perform semantic analysis of the given friend type declaration.
9695///
9696/// \returns A friend declaration that.
9697FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9698                                      SourceLocation FriendLoc,
9699                                      TypeSourceInfo *TSInfo) {
9700  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9701
9702  QualType T = TSInfo->getType();
9703  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9704
9705  // C++03 [class.friend]p2:
9706  //   An elaborated-type-specifier shall be used in a friend declaration
9707  //   for a class.*
9708  //
9709  //   * The class-key of the elaborated-type-specifier is required.
9710  if (!ActiveTemplateInstantiations.empty()) {
9711    // Do not complain about the form of friend template types during
9712    // template instantiation; we will already have complained when the
9713    // template was declared.
9714  } else if (!T->isElaboratedTypeSpecifier()) {
9715    // If we evaluated the type to a record type, suggest putting
9716    // a tag in front.
9717    if (const RecordType *RT = T->getAs<RecordType>()) {
9718      RecordDecl *RD = RT->getDecl();
9719
9720      std::string InsertionText = std::string(" ") + RD->getKindName();
9721
9722      Diag(TypeRange.getBegin(),
9723           getLangOptions().CPlusPlus0x ?
9724             diag::warn_cxx98_compat_unelaborated_friend_type :
9725             diag::ext_unelaborated_friend_type)
9726        << (unsigned) RD->getTagKind()
9727        << T
9728        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9729                                      InsertionText);
9730    } else {
9731      Diag(FriendLoc,
9732           getLangOptions().CPlusPlus0x ?
9733             diag::warn_cxx98_compat_nonclass_type_friend :
9734             diag::ext_nonclass_type_friend)
9735        << T
9736        << SourceRange(FriendLoc, TypeRange.getEnd());
9737    }
9738  } else if (T->getAs<EnumType>()) {
9739    Diag(FriendLoc,
9740         getLangOptions().CPlusPlus0x ?
9741           diag::warn_cxx98_compat_enum_friend :
9742           diag::ext_enum_friend)
9743      << T
9744      << SourceRange(FriendLoc, TypeRange.getEnd());
9745  }
9746
9747  // C++0x [class.friend]p3:
9748  //   If the type specifier in a friend declaration designates a (possibly
9749  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9750  //   the friend declaration is ignored.
9751
9752  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9753  // in [class.friend]p3 that we do not implement.
9754
9755  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9756}
9757
9758/// Handle a friend tag declaration where the scope specifier was
9759/// templated.
9760Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9761                                    unsigned TagSpec, SourceLocation TagLoc,
9762                                    CXXScopeSpec &SS,
9763                                    IdentifierInfo *Name, SourceLocation NameLoc,
9764                                    AttributeList *Attr,
9765                                    MultiTemplateParamsArg TempParamLists) {
9766  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9767
9768  bool isExplicitSpecialization = false;
9769  bool Invalid = false;
9770
9771  if (TemplateParameterList *TemplateParams
9772        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9773                                                  TempParamLists.get(),
9774                                                  TempParamLists.size(),
9775                                                  /*friend*/ true,
9776                                                  isExplicitSpecialization,
9777                                                  Invalid)) {
9778    if (TemplateParams->size() > 0) {
9779      // This is a declaration of a class template.
9780      if (Invalid)
9781        return 0;
9782
9783      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9784                                SS, Name, NameLoc, Attr,
9785                                TemplateParams, AS_public,
9786                                /*ModulePrivateLoc=*/SourceLocation(),
9787                                TempParamLists.size() - 1,
9788                   (TemplateParameterList**) TempParamLists.release()).take();
9789    } else {
9790      // The "template<>" header is extraneous.
9791      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9792        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9793      isExplicitSpecialization = true;
9794    }
9795  }
9796
9797  if (Invalid) return 0;
9798
9799  bool isAllExplicitSpecializations = true;
9800  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9801    if (TempParamLists.get()[I]->size()) {
9802      isAllExplicitSpecializations = false;
9803      break;
9804    }
9805  }
9806
9807  // FIXME: don't ignore attributes.
9808
9809  // If it's explicit specializations all the way down, just forget
9810  // about the template header and build an appropriate non-templated
9811  // friend.  TODO: for source fidelity, remember the headers.
9812  if (isAllExplicitSpecializations) {
9813    if (SS.isEmpty()) {
9814      bool Owned = false;
9815      bool IsDependent = false;
9816      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9817                      Attr, AS_public,
9818                      /*ModulePrivateLoc=*/SourceLocation(),
9819                      MultiTemplateParamsArg(), Owned, IsDependent,
9820                      /*ScopedEnumKWLoc=*/SourceLocation(),
9821                      /*ScopedEnumUsesClassTag=*/false,
9822                      /*UnderlyingType=*/TypeResult());
9823    }
9824
9825    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9826    ElaboratedTypeKeyword Keyword
9827      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9828    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9829                                   *Name, NameLoc);
9830    if (T.isNull())
9831      return 0;
9832
9833    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9834    if (isa<DependentNameType>(T)) {
9835      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9836      TL.setElaboratedKeywordLoc(TagLoc);
9837      TL.setQualifierLoc(QualifierLoc);
9838      TL.setNameLoc(NameLoc);
9839    } else {
9840      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9841      TL.setElaboratedKeywordLoc(TagLoc);
9842      TL.setQualifierLoc(QualifierLoc);
9843      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9844    }
9845
9846    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9847                                            TSI, FriendLoc);
9848    Friend->setAccess(AS_public);
9849    CurContext->addDecl(Friend);
9850    return Friend;
9851  }
9852
9853  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9854
9855
9856
9857  // Handle the case of a templated-scope friend class.  e.g.
9858  //   template <class T> class A<T>::B;
9859  // FIXME: we don't support these right now.
9860  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9861  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9862  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9863  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9864  TL.setElaboratedKeywordLoc(TagLoc);
9865  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9866  TL.setNameLoc(NameLoc);
9867
9868  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9869                                          TSI, FriendLoc);
9870  Friend->setAccess(AS_public);
9871  Friend->setUnsupportedFriend(true);
9872  CurContext->addDecl(Friend);
9873  return Friend;
9874}
9875
9876
9877/// Handle a friend type declaration.  This works in tandem with
9878/// ActOnTag.
9879///
9880/// Notes on friend class templates:
9881///
9882/// We generally treat friend class declarations as if they were
9883/// declaring a class.  So, for example, the elaborated type specifier
9884/// in a friend declaration is required to obey the restrictions of a
9885/// class-head (i.e. no typedefs in the scope chain), template
9886/// parameters are required to match up with simple template-ids, &c.
9887/// However, unlike when declaring a template specialization, it's
9888/// okay to refer to a template specialization without an empty
9889/// template parameter declaration, e.g.
9890///   friend class A<T>::B<unsigned>;
9891/// We permit this as a special case; if there are any template
9892/// parameters present at all, require proper matching, i.e.
9893///   template <> template <class T> friend class A<int>::B;
9894Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9895                                MultiTemplateParamsArg TempParams) {
9896  SourceLocation Loc = DS.getSourceRange().getBegin();
9897
9898  assert(DS.isFriendSpecified());
9899  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9900
9901  // Try to convert the decl specifier to a type.  This works for
9902  // friend templates because ActOnTag never produces a ClassTemplateDecl
9903  // for a TUK_Friend.
9904  Declarator TheDeclarator(DS, Declarator::MemberContext);
9905  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9906  QualType T = TSI->getType();
9907  if (TheDeclarator.isInvalidType())
9908    return 0;
9909
9910  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9911    return 0;
9912
9913  // This is definitely an error in C++98.  It's probably meant to
9914  // be forbidden in C++0x, too, but the specification is just
9915  // poorly written.
9916  //
9917  // The problem is with declarations like the following:
9918  //   template <T> friend A<T>::foo;
9919  // where deciding whether a class C is a friend or not now hinges
9920  // on whether there exists an instantiation of A that causes
9921  // 'foo' to equal C.  There are restrictions on class-heads
9922  // (which we declare (by fiat) elaborated friend declarations to
9923  // be) that makes this tractable.
9924  //
9925  // FIXME: handle "template <> friend class A<T>;", which
9926  // is possibly well-formed?  Who even knows?
9927  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9928    Diag(Loc, diag::err_tagless_friend_type_template)
9929      << DS.getSourceRange();
9930    return 0;
9931  }
9932
9933  // C++98 [class.friend]p1: A friend of a class is a function
9934  //   or class that is not a member of the class . . .
9935  // This is fixed in DR77, which just barely didn't make the C++03
9936  // deadline.  It's also a very silly restriction that seriously
9937  // affects inner classes and which nobody else seems to implement;
9938  // thus we never diagnose it, not even in -pedantic.
9939  //
9940  // But note that we could warn about it: it's always useless to
9941  // friend one of your own members (it's not, however, worthless to
9942  // friend a member of an arbitrary specialization of your template).
9943
9944  Decl *D;
9945  if (unsigned NumTempParamLists = TempParams.size())
9946    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9947                                   NumTempParamLists,
9948                                   TempParams.release(),
9949                                   TSI,
9950                                   DS.getFriendSpecLoc());
9951  else
9952    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9953
9954  if (!D)
9955    return 0;
9956
9957  D->setAccess(AS_public);
9958  CurContext->addDecl(D);
9959
9960  return D;
9961}
9962
9963Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9964                                    MultiTemplateParamsArg TemplateParams) {
9965  const DeclSpec &DS = D.getDeclSpec();
9966
9967  assert(DS.isFriendSpecified());
9968  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9969
9970  SourceLocation Loc = D.getIdentifierLoc();
9971  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9972
9973  // C++ [class.friend]p1
9974  //   A friend of a class is a function or class....
9975  // Note that this sees through typedefs, which is intended.
9976  // It *doesn't* see through dependent types, which is correct
9977  // according to [temp.arg.type]p3:
9978  //   If a declaration acquires a function type through a
9979  //   type dependent on a template-parameter and this causes
9980  //   a declaration that does not use the syntactic form of a
9981  //   function declarator to have a function type, the program
9982  //   is ill-formed.
9983  if (!TInfo->getType()->isFunctionType()) {
9984    Diag(Loc, diag::err_unexpected_friend);
9985
9986    // It might be worthwhile to try to recover by creating an
9987    // appropriate declaration.
9988    return 0;
9989  }
9990
9991  // C++ [namespace.memdef]p3
9992  //  - If a friend declaration in a non-local class first declares a
9993  //    class or function, the friend class or function is a member
9994  //    of the innermost enclosing namespace.
9995  //  - The name of the friend is not found by simple name lookup
9996  //    until a matching declaration is provided in that namespace
9997  //    scope (either before or after the class declaration granting
9998  //    friendship).
9999  //  - If a friend function is called, its name may be found by the
10000  //    name lookup that considers functions from namespaces and
10001  //    classes associated with the types of the function arguments.
10002  //  - When looking for a prior declaration of a class or a function
10003  //    declared as a friend, scopes outside the innermost enclosing
10004  //    namespace scope are not considered.
10005
10006  CXXScopeSpec &SS = D.getCXXScopeSpec();
10007  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10008  DeclarationName Name = NameInfo.getName();
10009  assert(Name);
10010
10011  // Check for unexpanded parameter packs.
10012  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10013      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10014      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10015    return 0;
10016
10017  // The context we found the declaration in, or in which we should
10018  // create the declaration.
10019  DeclContext *DC;
10020  Scope *DCScope = S;
10021  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10022                        ForRedeclaration);
10023
10024  // FIXME: there are different rules in local classes
10025
10026  // There are four cases here.
10027  //   - There's no scope specifier, in which case we just go to the
10028  //     appropriate scope and look for a function or function template
10029  //     there as appropriate.
10030  // Recover from invalid scope qualifiers as if they just weren't there.
10031  if (SS.isInvalid() || !SS.isSet()) {
10032    // C++0x [namespace.memdef]p3:
10033    //   If the name in a friend declaration is neither qualified nor
10034    //   a template-id and the declaration is a function or an
10035    //   elaborated-type-specifier, the lookup to determine whether
10036    //   the entity has been previously declared shall not consider
10037    //   any scopes outside the innermost enclosing namespace.
10038    // C++0x [class.friend]p11:
10039    //   If a friend declaration appears in a local class and the name
10040    //   specified is an unqualified name, a prior declaration is
10041    //   looked up without considering scopes that are outside the
10042    //   innermost enclosing non-class scope. For a friend function
10043    //   declaration, if there is no prior declaration, the program is
10044    //   ill-formed.
10045    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10046    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10047
10048    // Find the appropriate context according to the above.
10049    DC = CurContext;
10050    while (true) {
10051      // Skip class contexts.  If someone can cite chapter and verse
10052      // for this behavior, that would be nice --- it's what GCC and
10053      // EDG do, and it seems like a reasonable intent, but the spec
10054      // really only says that checks for unqualified existing
10055      // declarations should stop at the nearest enclosing namespace,
10056      // not that they should only consider the nearest enclosing
10057      // namespace.
10058      while (DC->isRecord())
10059        DC = DC->getParent();
10060
10061      LookupQualifiedName(Previous, DC);
10062
10063      // TODO: decide what we think about using declarations.
10064      if (isLocal || !Previous.empty())
10065        break;
10066
10067      if (isTemplateId) {
10068        if (isa<TranslationUnitDecl>(DC)) break;
10069      } else {
10070        if (DC->isFileContext()) break;
10071      }
10072      DC = DC->getParent();
10073    }
10074
10075    // C++ [class.friend]p1: A friend of a class is a function or
10076    //   class that is not a member of the class . . .
10077    // C++11 changes this for both friend types and functions.
10078    // Most C++ 98 compilers do seem to give an error here, so
10079    // we do, too.
10080    if (!Previous.empty() && DC->Equals(CurContext))
10081      Diag(DS.getFriendSpecLoc(),
10082           getLangOptions().CPlusPlus0x ?
10083             diag::warn_cxx98_compat_friend_is_member :
10084             diag::err_friend_is_member);
10085
10086    DCScope = getScopeForDeclContext(S, DC);
10087
10088    // C++ [class.friend]p6:
10089    //   A function can be defined in a friend declaration of a class if and
10090    //   only if the class is a non-local class (9.8), the function name is
10091    //   unqualified, and the function has namespace scope.
10092    if (isLocal && D.isFunctionDefinition()) {
10093      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10094    }
10095
10096  //   - There's a non-dependent scope specifier, in which case we
10097  //     compute it and do a previous lookup there for a function
10098  //     or function template.
10099  } else if (!SS.getScopeRep()->isDependent()) {
10100    DC = computeDeclContext(SS);
10101    if (!DC) return 0;
10102
10103    if (RequireCompleteDeclContext(SS, DC)) return 0;
10104
10105    LookupQualifiedName(Previous, DC);
10106
10107    // Ignore things found implicitly in the wrong scope.
10108    // TODO: better diagnostics for this case.  Suggesting the right
10109    // qualified scope would be nice...
10110    LookupResult::Filter F = Previous.makeFilter();
10111    while (F.hasNext()) {
10112      NamedDecl *D = F.next();
10113      if (!DC->InEnclosingNamespaceSetOf(
10114              D->getDeclContext()->getRedeclContext()))
10115        F.erase();
10116    }
10117    F.done();
10118
10119    if (Previous.empty()) {
10120      D.setInvalidType();
10121      Diag(Loc, diag::err_qualified_friend_not_found)
10122          << Name << TInfo->getType();
10123      return 0;
10124    }
10125
10126    // C++ [class.friend]p1: A friend of a class is a function or
10127    //   class that is not a member of the class . . .
10128    if (DC->Equals(CurContext))
10129      Diag(DS.getFriendSpecLoc(),
10130           getLangOptions().CPlusPlus0x ?
10131             diag::warn_cxx98_compat_friend_is_member :
10132             diag::err_friend_is_member);
10133
10134    if (D.isFunctionDefinition()) {
10135      // C++ [class.friend]p6:
10136      //   A function can be defined in a friend declaration of a class if and
10137      //   only if the class is a non-local class (9.8), the function name is
10138      //   unqualified, and the function has namespace scope.
10139      SemaDiagnosticBuilder DB
10140        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10141
10142      DB << SS.getScopeRep();
10143      if (DC->isFileContext())
10144        DB << FixItHint::CreateRemoval(SS.getRange());
10145      SS.clear();
10146    }
10147
10148  //   - There's a scope specifier that does not match any template
10149  //     parameter lists, in which case we use some arbitrary context,
10150  //     create a method or method template, and wait for instantiation.
10151  //   - There's a scope specifier that does match some template
10152  //     parameter lists, which we don't handle right now.
10153  } else {
10154    if (D.isFunctionDefinition()) {
10155      // C++ [class.friend]p6:
10156      //   A function can be defined in a friend declaration of a class if and
10157      //   only if the class is a non-local class (9.8), the function name is
10158      //   unqualified, and the function has namespace scope.
10159      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10160        << SS.getScopeRep();
10161    }
10162
10163    DC = CurContext;
10164    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10165  }
10166
10167  if (!DC->isRecord()) {
10168    // This implies that it has to be an operator or function.
10169    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10170        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10171        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10172      Diag(Loc, diag::err_introducing_special_friend) <<
10173        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10174         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10175      return 0;
10176    }
10177  }
10178
10179  // FIXME: This is an egregious hack to cope with cases where the scope stack
10180  // does not contain the declaration context, i.e., in an out-of-line
10181  // definition of a class.
10182  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10183  if (!DCScope) {
10184    FakeDCScope.setEntity(DC);
10185    DCScope = &FakeDCScope;
10186  }
10187
10188  bool AddToScope = true;
10189  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10190                                          move(TemplateParams), AddToScope);
10191  if (!ND) return 0;
10192
10193  assert(ND->getDeclContext() == DC);
10194  assert(ND->getLexicalDeclContext() == CurContext);
10195
10196  // Add the function declaration to the appropriate lookup tables,
10197  // adjusting the redeclarations list as necessary.  We don't
10198  // want to do this yet if the friending class is dependent.
10199  //
10200  // Also update the scope-based lookup if the target context's
10201  // lookup context is in lexical scope.
10202  if (!CurContext->isDependentContext()) {
10203    DC = DC->getRedeclContext();
10204    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10205    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10206      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10207  }
10208
10209  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10210                                       D.getIdentifierLoc(), ND,
10211                                       DS.getFriendSpecLoc());
10212  FrD->setAccess(AS_public);
10213  CurContext->addDecl(FrD);
10214
10215  if (ND->isInvalidDecl())
10216    FrD->setInvalidDecl();
10217  else {
10218    FunctionDecl *FD;
10219    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10220      FD = FTD->getTemplatedDecl();
10221    else
10222      FD = cast<FunctionDecl>(ND);
10223
10224    // Mark templated-scope function declarations as unsupported.
10225    if (FD->getNumTemplateParameterLists())
10226      FrD->setUnsupportedFriend(true);
10227  }
10228
10229  return ND;
10230}
10231
10232void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10233  AdjustDeclIfTemplate(Dcl);
10234
10235  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10236  if (!Fn) {
10237    Diag(DelLoc, diag::err_deleted_non_function);
10238    return;
10239  }
10240  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10241    Diag(DelLoc, diag::err_deleted_decl_not_first);
10242    Diag(Prev->getLocation(), diag::note_previous_declaration);
10243    // If the declaration wasn't the first, we delete the function anyway for
10244    // recovery.
10245  }
10246  Fn->setDeletedAsWritten();
10247}
10248
10249void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10250  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10251
10252  if (MD) {
10253    if (MD->getParent()->isDependentType()) {
10254      MD->setDefaulted();
10255      MD->setExplicitlyDefaulted();
10256      return;
10257    }
10258
10259    CXXSpecialMember Member = getSpecialMember(MD);
10260    if (Member == CXXInvalid) {
10261      Diag(DefaultLoc, diag::err_default_special_members);
10262      return;
10263    }
10264
10265    MD->setDefaulted();
10266    MD->setExplicitlyDefaulted();
10267
10268    // If this definition appears within the record, do the checking when
10269    // the record is complete.
10270    const FunctionDecl *Primary = MD;
10271    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10272      // Find the uninstantiated declaration that actually had the '= default'
10273      // on it.
10274      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10275
10276    if (Primary == Primary->getCanonicalDecl())
10277      return;
10278
10279    switch (Member) {
10280    case CXXDefaultConstructor: {
10281      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10282      CheckExplicitlyDefaultedDefaultConstructor(CD);
10283      if (!CD->isInvalidDecl())
10284        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10285      break;
10286    }
10287
10288    case CXXCopyConstructor: {
10289      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10290      CheckExplicitlyDefaultedCopyConstructor(CD);
10291      if (!CD->isInvalidDecl())
10292        DefineImplicitCopyConstructor(DefaultLoc, CD);
10293      break;
10294    }
10295
10296    case CXXCopyAssignment: {
10297      CheckExplicitlyDefaultedCopyAssignment(MD);
10298      if (!MD->isInvalidDecl())
10299        DefineImplicitCopyAssignment(DefaultLoc, MD);
10300      break;
10301    }
10302
10303    case CXXDestructor: {
10304      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10305      CheckExplicitlyDefaultedDestructor(DD);
10306      if (!DD->isInvalidDecl())
10307        DefineImplicitDestructor(DefaultLoc, DD);
10308      break;
10309    }
10310
10311    case CXXMoveConstructor: {
10312      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10313      CheckExplicitlyDefaultedMoveConstructor(CD);
10314      if (!CD->isInvalidDecl())
10315        DefineImplicitMoveConstructor(DefaultLoc, CD);
10316      break;
10317    }
10318
10319    case CXXMoveAssignment: {
10320      CheckExplicitlyDefaultedMoveAssignment(MD);
10321      if (!MD->isInvalidDecl())
10322        DefineImplicitMoveAssignment(DefaultLoc, MD);
10323      break;
10324    }
10325
10326    case CXXInvalid:
10327      llvm_unreachable("Invalid special member.");
10328    }
10329  } else {
10330    Diag(DefaultLoc, diag::err_default_special_members);
10331  }
10332}
10333
10334static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10335  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10336    Stmt *SubStmt = *CI;
10337    if (!SubStmt)
10338      continue;
10339    if (isa<ReturnStmt>(SubStmt))
10340      Self.Diag(SubStmt->getSourceRange().getBegin(),
10341           diag::err_return_in_constructor_handler);
10342    if (!isa<Expr>(SubStmt))
10343      SearchForReturnInStmt(Self, SubStmt);
10344  }
10345}
10346
10347void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10348  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10349    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10350    SearchForReturnInStmt(*this, Handler);
10351  }
10352}
10353
10354bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10355                                             const CXXMethodDecl *Old) {
10356  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10357  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10358
10359  if (Context.hasSameType(NewTy, OldTy) ||
10360      NewTy->isDependentType() || OldTy->isDependentType())
10361    return false;
10362
10363  // Check if the return types are covariant
10364  QualType NewClassTy, OldClassTy;
10365
10366  /// Both types must be pointers or references to classes.
10367  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10368    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10369      NewClassTy = NewPT->getPointeeType();
10370      OldClassTy = OldPT->getPointeeType();
10371    }
10372  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10373    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10374      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10375        NewClassTy = NewRT->getPointeeType();
10376        OldClassTy = OldRT->getPointeeType();
10377      }
10378    }
10379  }
10380
10381  // The return types aren't either both pointers or references to a class type.
10382  if (NewClassTy.isNull()) {
10383    Diag(New->getLocation(),
10384         diag::err_different_return_type_for_overriding_virtual_function)
10385      << New->getDeclName() << NewTy << OldTy;
10386    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10387
10388    return true;
10389  }
10390
10391  // C++ [class.virtual]p6:
10392  //   If the return type of D::f differs from the return type of B::f, the
10393  //   class type in the return type of D::f shall be complete at the point of
10394  //   declaration of D::f or shall be the class type D.
10395  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10396    if (!RT->isBeingDefined() &&
10397        RequireCompleteType(New->getLocation(), NewClassTy,
10398                            PDiag(diag::err_covariant_return_incomplete)
10399                              << New->getDeclName()))
10400    return true;
10401  }
10402
10403  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10404    // Check if the new class derives from the old class.
10405    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10406      Diag(New->getLocation(),
10407           diag::err_covariant_return_not_derived)
10408      << New->getDeclName() << NewTy << OldTy;
10409      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10410      return true;
10411    }
10412
10413    // Check if we the conversion from derived to base is valid.
10414    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10415                    diag::err_covariant_return_inaccessible_base,
10416                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10417                    // FIXME: Should this point to the return type?
10418                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10419      // FIXME: this note won't trigger for delayed access control
10420      // diagnostics, and it's impossible to get an undelayed error
10421      // here from access control during the original parse because
10422      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10423      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10424      return true;
10425    }
10426  }
10427
10428  // The qualifiers of the return types must be the same.
10429  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10430    Diag(New->getLocation(),
10431         diag::err_covariant_return_type_different_qualifications)
10432    << New->getDeclName() << NewTy << OldTy;
10433    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10434    return true;
10435  };
10436
10437
10438  // The new class type must have the same or less qualifiers as the old type.
10439  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10440    Diag(New->getLocation(),
10441         diag::err_covariant_return_type_class_type_more_qualified)
10442    << New->getDeclName() << NewTy << OldTy;
10443    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10444    return true;
10445  };
10446
10447  return false;
10448}
10449
10450/// \brief Mark the given method pure.
10451///
10452/// \param Method the method to be marked pure.
10453///
10454/// \param InitRange the source range that covers the "0" initializer.
10455bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10456  SourceLocation EndLoc = InitRange.getEnd();
10457  if (EndLoc.isValid())
10458    Method->setRangeEnd(EndLoc);
10459
10460  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10461    Method->setPure();
10462    return false;
10463  }
10464
10465  if (!Method->isInvalidDecl())
10466    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10467      << Method->getDeclName() << InitRange;
10468  return true;
10469}
10470
10471/// \brief Determine whether the given declaration is a static data member.
10472static bool isStaticDataMember(Decl *D) {
10473  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10474  if (!Var)
10475    return false;
10476
10477  return Var->isStaticDataMember();
10478}
10479/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10480/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10481/// is a fresh scope pushed for just this purpose.
10482///
10483/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10484/// static data member of class X, names should be looked up in the scope of
10485/// class X.
10486void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10487  // If there is no declaration, there was an error parsing it.
10488  if (D == 0 || D->isInvalidDecl()) return;
10489
10490  // We should only get called for declarations with scope specifiers, like:
10491  //   int foo::bar;
10492  assert(D->isOutOfLine());
10493  EnterDeclaratorContext(S, D->getDeclContext());
10494
10495  // If we are parsing the initializer for a static data member, push a
10496  // new expression evaluation context that is associated with this static
10497  // data member.
10498  if (isStaticDataMember(D))
10499    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10500}
10501
10502/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10503/// initializer for the out-of-line declaration 'D'.
10504void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10505  // If there is no declaration, there was an error parsing it.
10506  if (D == 0 || D->isInvalidDecl()) return;
10507
10508  if (isStaticDataMember(D))
10509    PopExpressionEvaluationContext();
10510
10511  assert(D->isOutOfLine());
10512  ExitDeclaratorContext(S);
10513}
10514
10515/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10516/// C++ if/switch/while/for statement.
10517/// e.g: "if (int x = f()) {...}"
10518DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10519  // C++ 6.4p2:
10520  // The declarator shall not specify a function or an array.
10521  // The type-specifier-seq shall not contain typedef and shall not declare a
10522  // new class or enumeration.
10523  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10524         "Parser allowed 'typedef' as storage class of condition decl.");
10525
10526  Decl *Dcl = ActOnDeclarator(S, D);
10527  if (!Dcl)
10528    return true;
10529
10530  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10531    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10532      << D.getSourceRange();
10533    return true;
10534  }
10535
10536  return Dcl;
10537}
10538
10539void Sema::LoadExternalVTableUses() {
10540  if (!ExternalSource)
10541    return;
10542
10543  SmallVector<ExternalVTableUse, 4> VTables;
10544  ExternalSource->ReadUsedVTables(VTables);
10545  SmallVector<VTableUse, 4> NewUses;
10546  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10547    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10548      = VTablesUsed.find(VTables[I].Record);
10549    // Even if a definition wasn't required before, it may be required now.
10550    if (Pos != VTablesUsed.end()) {
10551      if (!Pos->second && VTables[I].DefinitionRequired)
10552        Pos->second = true;
10553      continue;
10554    }
10555
10556    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10557    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10558  }
10559
10560  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10561}
10562
10563void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10564                          bool DefinitionRequired) {
10565  // Ignore any vtable uses in unevaluated operands or for classes that do
10566  // not have a vtable.
10567  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10568      CurContext->isDependentContext() ||
10569      ExprEvalContexts.back().Context == Unevaluated)
10570    return;
10571
10572  // Try to insert this class into the map.
10573  LoadExternalVTableUses();
10574  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10575  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10576    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10577  if (!Pos.second) {
10578    // If we already had an entry, check to see if we are promoting this vtable
10579    // to required a definition. If so, we need to reappend to the VTableUses
10580    // list, since we may have already processed the first entry.
10581    if (DefinitionRequired && !Pos.first->second) {
10582      Pos.first->second = true;
10583    } else {
10584      // Otherwise, we can early exit.
10585      return;
10586    }
10587  }
10588
10589  // Local classes need to have their virtual members marked
10590  // immediately. For all other classes, we mark their virtual members
10591  // at the end of the translation unit.
10592  if (Class->isLocalClass())
10593    MarkVirtualMembersReferenced(Loc, Class);
10594  else
10595    VTableUses.push_back(std::make_pair(Class, Loc));
10596}
10597
10598bool Sema::DefineUsedVTables() {
10599  LoadExternalVTableUses();
10600  if (VTableUses.empty())
10601    return false;
10602
10603  // Note: The VTableUses vector could grow as a result of marking
10604  // the members of a class as "used", so we check the size each
10605  // time through the loop and prefer indices (with are stable) to
10606  // iterators (which are not).
10607  bool DefinedAnything = false;
10608  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10609    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10610    if (!Class)
10611      continue;
10612
10613    SourceLocation Loc = VTableUses[I].second;
10614
10615    // If this class has a key function, but that key function is
10616    // defined in another translation unit, we don't need to emit the
10617    // vtable even though we're using it.
10618    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10619    if (KeyFunction && !KeyFunction->hasBody()) {
10620      switch (KeyFunction->getTemplateSpecializationKind()) {
10621      case TSK_Undeclared:
10622      case TSK_ExplicitSpecialization:
10623      case TSK_ExplicitInstantiationDeclaration:
10624        // The key function is in another translation unit.
10625        continue;
10626
10627      case TSK_ExplicitInstantiationDefinition:
10628      case TSK_ImplicitInstantiation:
10629        // We will be instantiating the key function.
10630        break;
10631      }
10632    } else if (!KeyFunction) {
10633      // If we have a class with no key function that is the subject
10634      // of an explicit instantiation declaration, suppress the
10635      // vtable; it will live with the explicit instantiation
10636      // definition.
10637      bool IsExplicitInstantiationDeclaration
10638        = Class->getTemplateSpecializationKind()
10639                                      == TSK_ExplicitInstantiationDeclaration;
10640      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10641                                 REnd = Class->redecls_end();
10642           R != REnd; ++R) {
10643        TemplateSpecializationKind TSK
10644          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10645        if (TSK == TSK_ExplicitInstantiationDeclaration)
10646          IsExplicitInstantiationDeclaration = true;
10647        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10648          IsExplicitInstantiationDeclaration = false;
10649          break;
10650        }
10651      }
10652
10653      if (IsExplicitInstantiationDeclaration)
10654        continue;
10655    }
10656
10657    // Mark all of the virtual members of this class as referenced, so
10658    // that we can build a vtable. Then, tell the AST consumer that a
10659    // vtable for this class is required.
10660    DefinedAnything = true;
10661    MarkVirtualMembersReferenced(Loc, Class);
10662    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10663    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10664
10665    // Optionally warn if we're emitting a weak vtable.
10666    if (Class->getLinkage() == ExternalLinkage &&
10667        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10668      const FunctionDecl *KeyFunctionDef = 0;
10669      if (!KeyFunction ||
10670          (KeyFunction->hasBody(KeyFunctionDef) &&
10671           KeyFunctionDef->isInlined()))
10672        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10673             TSK_ExplicitInstantiationDefinition
10674             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10675          << Class;
10676    }
10677  }
10678  VTableUses.clear();
10679
10680  return DefinedAnything;
10681}
10682
10683void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10684                                        const CXXRecordDecl *RD) {
10685  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10686       e = RD->method_end(); i != e; ++i) {
10687    CXXMethodDecl *MD = *i;
10688
10689    // C++ [basic.def.odr]p2:
10690    //   [...] A virtual member function is used if it is not pure. [...]
10691    if (MD->isVirtual() && !MD->isPure())
10692      MarkFunctionReferenced(Loc, MD);
10693  }
10694
10695  // Only classes that have virtual bases need a VTT.
10696  if (RD->getNumVBases() == 0)
10697    return;
10698
10699  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10700           e = RD->bases_end(); i != e; ++i) {
10701    const CXXRecordDecl *Base =
10702        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10703    if (Base->getNumVBases() == 0)
10704      continue;
10705    MarkVirtualMembersReferenced(Loc, Base);
10706  }
10707}
10708
10709/// SetIvarInitializers - This routine builds initialization ASTs for the
10710/// Objective-C implementation whose ivars need be initialized.
10711void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10712  if (!getLangOptions().CPlusPlus)
10713    return;
10714  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10715    SmallVector<ObjCIvarDecl*, 8> ivars;
10716    CollectIvarsToConstructOrDestruct(OID, ivars);
10717    if (ivars.empty())
10718      return;
10719    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10720    for (unsigned i = 0; i < ivars.size(); i++) {
10721      FieldDecl *Field = ivars[i];
10722      if (Field->isInvalidDecl())
10723        continue;
10724
10725      CXXCtorInitializer *Member;
10726      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10727      InitializationKind InitKind =
10728        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10729
10730      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10731      ExprResult MemberInit =
10732        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10733      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10734      // Note, MemberInit could actually come back empty if no initialization
10735      // is required (e.g., because it would call a trivial default constructor)
10736      if (!MemberInit.get() || MemberInit.isInvalid())
10737        continue;
10738
10739      Member =
10740        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10741                                         SourceLocation(),
10742                                         MemberInit.takeAs<Expr>(),
10743                                         SourceLocation());
10744      AllToInit.push_back(Member);
10745
10746      // Be sure that the destructor is accessible and is marked as referenced.
10747      if (const RecordType *RecordTy
10748                  = Context.getBaseElementType(Field->getType())
10749                                                        ->getAs<RecordType>()) {
10750                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10751        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10752          MarkFunctionReferenced(Field->getLocation(), Destructor);
10753          CheckDestructorAccess(Field->getLocation(), Destructor,
10754                            PDiag(diag::err_access_dtor_ivar)
10755                              << Context.getBaseElementType(Field->getType()));
10756        }
10757      }
10758    }
10759    ObjCImplementation->setIvarInitializers(Context,
10760                                            AllToInit.data(), AllToInit.size());
10761  }
10762}
10763
10764static
10765void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10766                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10767                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10768                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10769                           Sema &S) {
10770  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10771                                                   CE = Current.end();
10772  if (Ctor->isInvalidDecl())
10773    return;
10774
10775  const FunctionDecl *FNTarget = 0;
10776  CXXConstructorDecl *Target;
10777
10778  // We ignore the result here since if we don't have a body, Target will be
10779  // null below.
10780  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10781  Target
10782= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10783
10784  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10785                     // Avoid dereferencing a null pointer here.
10786                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10787
10788  if (!Current.insert(Canonical))
10789    return;
10790
10791  // We know that beyond here, we aren't chaining into a cycle.
10792  if (!Target || !Target->isDelegatingConstructor() ||
10793      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10794    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10795      Valid.insert(*CI);
10796    Current.clear();
10797  // We've hit a cycle.
10798  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10799             Current.count(TCanonical)) {
10800    // If we haven't diagnosed this cycle yet, do so now.
10801    if (!Invalid.count(TCanonical)) {
10802      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10803             diag::warn_delegating_ctor_cycle)
10804        << Ctor;
10805
10806      // Don't add a note for a function delegating directo to itself.
10807      if (TCanonical != Canonical)
10808        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10809
10810      CXXConstructorDecl *C = Target;
10811      while (C->getCanonicalDecl() != Canonical) {
10812        (void)C->getTargetConstructor()->hasBody(FNTarget);
10813        assert(FNTarget && "Ctor cycle through bodiless function");
10814
10815        C
10816       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10817        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10818      }
10819    }
10820
10821    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10822      Invalid.insert(*CI);
10823    Current.clear();
10824  } else {
10825    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10826  }
10827}
10828
10829
10830void Sema::CheckDelegatingCtorCycles() {
10831  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10832
10833  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10834                                                   CE = Current.end();
10835
10836  for (DelegatingCtorDeclsType::iterator
10837         I = DelegatingCtorDecls.begin(ExternalSource),
10838         E = DelegatingCtorDecls.end();
10839       I != E; ++I) {
10840   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10841  }
10842
10843  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10844    (*CI)->setInvalidDecl();
10845}
10846
10847/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10848Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10849  // Implicitly declared functions (e.g. copy constructors) are
10850  // __host__ __device__
10851  if (D->isImplicit())
10852    return CFT_HostDevice;
10853
10854  if (D->hasAttr<CUDAGlobalAttr>())
10855    return CFT_Global;
10856
10857  if (D->hasAttr<CUDADeviceAttr>()) {
10858    if (D->hasAttr<CUDAHostAttr>())
10859      return CFT_HostDevice;
10860    else
10861      return CFT_Device;
10862  }
10863
10864  return CFT_Host;
10865}
10866
10867bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10868                           CUDAFunctionTarget CalleeTarget) {
10869  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10870  // Callable from the device only."
10871  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10872    return true;
10873
10874  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10875  // Callable from the host only."
10876  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10877  // Callable from the host only."
10878  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10879      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10880    return true;
10881
10882  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10883    return true;
10884
10885  return false;
10886}
10887