SemaDeclCXX.cpp revision 3503d041ca8a3535a1c1a30005a6b18ae7aed5db
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member)
720      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
721                                    RParenLoc);
722  }
723  // It didn't name a member, so see if it names a class.
724  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
725                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
726  if (!BaseTy)
727    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
728      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
729
730  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
731
732  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
733                              RParenLoc, ClassDecl);
734}
735
736Sema::MemInitResult
737Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
738                             unsigned NumArgs, SourceLocation IdLoc,
739                             SourceLocation RParenLoc) {
740  bool HasDependentArg = false;
741  for (unsigned i = 0; i < NumArgs; i++)
742    HasDependentArg |= Args[i]->isTypeDependent();
743
744  CXXConstructorDecl *C = 0;
745  QualType FieldType = Member->getType();
746  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
747    FieldType = Array->getElementType();
748  if (FieldType->isDependentType()) {
749    // Can't check init for dependent type.
750  } else if (FieldType->getAs<RecordType>()) {
751    if (!HasDependentArg)
752      C = PerformInitializationByConstructor(
753            FieldType, (Expr **)Args, NumArgs, IdLoc,
754            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
755  } else if (NumArgs != 1) {
756    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
757                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
758  } else if (!HasDependentArg) {
759    Expr *NewExp = (Expr*)Args[0];
760    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
761      return true;
762    Args[0] = NewExp;
763  }
764  // FIXME: Perform direct initialization of the member.
765  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
766                                                  NumArgs, C, IdLoc);
767}
768
769Sema::MemInitResult
770Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
771                           unsigned NumArgs, SourceLocation IdLoc,
772                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
773  bool HasDependentArg = false;
774  for (unsigned i = 0; i < NumArgs; i++)
775    HasDependentArg |= Args[i]->isTypeDependent();
776
777  if (!BaseType->isDependentType()) {
778    if (!BaseType->isRecordType())
779      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
780        << BaseType << SourceRange(IdLoc, RParenLoc);
781
782    // C++ [class.base.init]p2:
783    //   [...] Unless the mem-initializer-id names a nonstatic data
784    //   member of the constructor’s class or a direct or virtual base
785    //   of that class, the mem-initializer is ill-formed. A
786    //   mem-initializer-list can initialize a base class using any
787    //   name that denotes that base class type.
788
789    // First, check for a direct base class.
790    const CXXBaseSpecifier *DirectBaseSpec = 0;
791    for (CXXRecordDecl::base_class_const_iterator Base =
792         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
793      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
794          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
795        // We found a direct base of this type. That's what we're
796        // initializing.
797        DirectBaseSpec = &*Base;
798        break;
799      }
800    }
801
802    // Check for a virtual base class.
803    // FIXME: We might be able to short-circuit this if we know in advance that
804    // there are no virtual bases.
805    const CXXBaseSpecifier *VirtualBaseSpec = 0;
806    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
807      // We haven't found a base yet; search the class hierarchy for a
808      // virtual base class.
809      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
810                      /*DetectVirtual=*/false);
811      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
812        for (BasePaths::paths_iterator Path = Paths.begin();
813             Path != Paths.end(); ++Path) {
814          if (Path->back().Base->isVirtual()) {
815            VirtualBaseSpec = Path->back().Base;
816            break;
817          }
818        }
819      }
820    }
821
822    // C++ [base.class.init]p2:
823    //   If a mem-initializer-id is ambiguous because it designates both
824    //   a direct non-virtual base class and an inherited virtual base
825    //   class, the mem-initializer is ill-formed.
826    if (DirectBaseSpec && VirtualBaseSpec)
827      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
828        << BaseType << SourceRange(IdLoc, RParenLoc);
829    // C++ [base.class.init]p2:
830    // Unless the mem-initializer-id names a nonstatic data membeer of the
831    // constructor's class ot a direst or virtual base of that class, the
832    // mem-initializer is ill-formed.
833    if (!DirectBaseSpec && !VirtualBaseSpec)
834      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
835      << BaseType << ClassDecl->getNameAsCString()
836      << SourceRange(IdLoc, RParenLoc);
837  }
838
839  CXXConstructorDecl *C = 0;
840  if (!BaseType->isDependentType() && !HasDependentArg) {
841    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
842                                            Context.getCanonicalType(BaseType));
843    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
844                                           IdLoc, SourceRange(IdLoc, RParenLoc),
845                                           Name, IK_Direct);
846  }
847
848  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
849                                                  NumArgs, C, IdLoc);
850}
851
852void
853Sema::BuildBaseOrMemberInitializers(ASTContext &C,
854                                 CXXConstructorDecl *Constructor,
855                                 CXXBaseOrMemberInitializer **Initializers,
856                                 unsigned NumInitializers
857                                 ) {
858  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
859  llvm::SmallVector<FieldDecl *, 4>Members;
860
861  Constructor->setBaseOrMemberInitializers(C,
862                                           Initializers, NumInitializers,
863                                           Bases, Members);
864  for (unsigned int i = 0; i < Bases.size(); i++)
865    Diag(Bases[i]->getSourceRange().getBegin(),
866         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
867  for (unsigned int i = 0; i < Members.size(); i++)
868    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
869          << 1 << Members[i]->getType();
870}
871
872static void *GetKeyForTopLevelField(FieldDecl *Field) {
873  // For anonymous unions, use the class declaration as the key.
874  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
875    if (RT->getDecl()->isAnonymousStructOrUnion())
876      return static_cast<void *>(RT->getDecl());
877  }
878  return static_cast<void *>(Field);
879}
880
881static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
882  // For fields injected into the class via declaration of an anonymous union,
883  // use its anonymous union class declaration as the unique key.
884  if (FieldDecl *Field = Member->getMember()) {
885    if (Field->getDeclContext()->isRecord()) {
886      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
887      if (RD->isAnonymousStructOrUnion())
888        return static_cast<void *>(RD);
889    }
890    return static_cast<void *>(Field);
891  }
892  return static_cast<RecordType *>(Member->getBaseClass());
893}
894
895void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
896                                SourceLocation ColonLoc,
897                                MemInitTy **MemInits, unsigned NumMemInits) {
898  if (!ConstructorDecl)
899    return;
900
901  CXXConstructorDecl *Constructor
902    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
903
904  if (!Constructor) {
905    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
906    return;
907  }
908  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
909  bool err = false;
910  for (unsigned i = 0; i < NumMemInits; i++) {
911    CXXBaseOrMemberInitializer *Member =
912      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
913    void *KeyToMember = GetKeyForMember(Member);
914    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
915    if (!PrevMember) {
916      PrevMember = Member;
917      continue;
918    }
919    if (FieldDecl *Field = Member->getMember())
920      Diag(Member->getSourceLocation(),
921           diag::error_multiple_mem_initialization)
922      << Field->getNameAsString();
923    else {
924      Type *BaseClass = Member->getBaseClass();
925      assert(BaseClass && "ActOnMemInitializers - neither field or base");
926      Diag(Member->getSourceLocation(),
927           diag::error_multiple_base_initialization)
928        << BaseClass->getDesugaredType(true);
929    }
930    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
931      << 0;
932    err = true;
933  }
934  if (!err)
935    BuildBaseOrMemberInitializers(Context, Constructor,
936                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
937                      NumMemInits);
938
939  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
940               != Diagnostic::Ignored ||
941               Diags.getDiagnosticLevel(diag::warn_field_initialized)
942               != Diagnostic::Ignored)) {
943    // Also issue warning if order of ctor-initializer list does not match order
944    // of 1) base class declarations and 2) order of non-static data members.
945    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
946
947    CXXRecordDecl *ClassDecl
948      = cast<CXXRecordDecl>(Constructor->getDeclContext());
949    // Push virtual bases before others.
950    for (CXXRecordDecl::base_class_iterator VBase =
951         ClassDecl->vbases_begin(),
952         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
953      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
954
955    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
956         E = ClassDecl->bases_end(); Base != E; ++Base) {
957      // Virtuals are alread in the virtual base list and are constructed
958      // first.
959      if (Base->isVirtual())
960        continue;
961      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
962    }
963
964    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
965         E = ClassDecl->field_end(); Field != E; ++Field)
966      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
967
968    int Last = AllBaseOrMembers.size();
969    int curIndex = 0;
970    CXXBaseOrMemberInitializer *PrevMember = 0;
971    for (unsigned i = 0; i < NumMemInits; i++) {
972      CXXBaseOrMemberInitializer *Member =
973        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
974      void *MemberInCtorList = GetKeyForMember(Member);
975
976      for (; curIndex < Last; curIndex++)
977        if (MemberInCtorList == AllBaseOrMembers[curIndex])
978          break;
979      if (curIndex == Last) {
980        assert(PrevMember && "Member not in member list?!");
981        // Initializer as specified in ctor-initializer list is out of order.
982        // Issue a warning diagnostic.
983        if (PrevMember->isBaseInitializer()) {
984          // Diagnostics is for an initialized base class.
985          Type *BaseClass = PrevMember->getBaseClass();
986          Diag(PrevMember->getSourceLocation(),
987               diag::warn_base_initialized)
988                << BaseClass->getDesugaredType(true);
989        }
990        else {
991          FieldDecl *Field = PrevMember->getMember();
992          Diag(PrevMember->getSourceLocation(),
993               diag::warn_field_initialized)
994            << Field->getNameAsString();
995        }
996        // Also the note!
997        if (FieldDecl *Field = Member->getMember())
998          Diag(Member->getSourceLocation(),
999               diag::note_fieldorbase_initialized_here) << 0
1000            << Field->getNameAsString();
1001        else {
1002          Type *BaseClass = Member->getBaseClass();
1003          Diag(Member->getSourceLocation(),
1004               diag::note_fieldorbase_initialized_here) << 1
1005            << BaseClass->getDesugaredType(true);
1006        }
1007        for (curIndex = 0; curIndex < Last; curIndex++)
1008          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1009            break;
1010      }
1011      PrevMember = Member;
1012    }
1013  }
1014}
1015
1016void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1017  if (!CDtorDecl)
1018    return;
1019
1020  if (CXXConstructorDecl *Constructor
1021      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1022    BuildBaseOrMemberInitializers(Context,
1023                                     Constructor,
1024                                     (CXXBaseOrMemberInitializer **)0, 0);
1025}
1026
1027namespace {
1028  /// PureVirtualMethodCollector - traverses a class and its superclasses
1029  /// and determines if it has any pure virtual methods.
1030  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1031    ASTContext &Context;
1032
1033  public:
1034    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1035
1036  private:
1037    MethodList Methods;
1038
1039    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1040
1041  public:
1042    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1043      : Context(Ctx) {
1044
1045      MethodList List;
1046      Collect(RD, List);
1047
1048      // Copy the temporary list to methods, and make sure to ignore any
1049      // null entries.
1050      for (size_t i = 0, e = List.size(); i != e; ++i) {
1051        if (List[i])
1052          Methods.push_back(List[i]);
1053      }
1054    }
1055
1056    bool empty() const { return Methods.empty(); }
1057
1058    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1059    MethodList::const_iterator methods_end() { return Methods.end(); }
1060  };
1061
1062  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1063                                           MethodList& Methods) {
1064    // First, collect the pure virtual methods for the base classes.
1065    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1066         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1067      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1068        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1069        if (BaseDecl && BaseDecl->isAbstract())
1070          Collect(BaseDecl, Methods);
1071      }
1072    }
1073
1074    // Next, zero out any pure virtual methods that this class overrides.
1075    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1076
1077    MethodSetTy OverriddenMethods;
1078    size_t MethodsSize = Methods.size();
1079
1080    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1081         i != e; ++i) {
1082      // Traverse the record, looking for methods.
1083      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1084        // If the method is pure virtual, add it to the methods vector.
1085        if (MD->isPure()) {
1086          Methods.push_back(MD);
1087          continue;
1088        }
1089
1090        // Otherwise, record all the overridden methods in our set.
1091        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1092             E = MD->end_overridden_methods(); I != E; ++I) {
1093          // Keep track of the overridden methods.
1094          OverriddenMethods.insert(*I);
1095        }
1096      }
1097    }
1098
1099    // Now go through the methods and zero out all the ones we know are
1100    // overridden.
1101    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1102      if (OverriddenMethods.count(Methods[i]))
1103        Methods[i] = 0;
1104    }
1105
1106  }
1107}
1108
1109bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1110                                  unsigned DiagID, AbstractDiagSelID SelID,
1111                                  const CXXRecordDecl *CurrentRD) {
1112
1113  if (!getLangOptions().CPlusPlus)
1114    return false;
1115
1116  if (const ArrayType *AT = Context.getAsArrayType(T))
1117    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1118                                  CurrentRD);
1119
1120  if (const PointerType *PT = T->getAs<PointerType>()) {
1121    // Find the innermost pointer type.
1122    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1123      PT = T;
1124
1125    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1126      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1127                                    CurrentRD);
1128  }
1129
1130  const RecordType *RT = T->getAs<RecordType>();
1131  if (!RT)
1132    return false;
1133
1134  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1135  if (!RD)
1136    return false;
1137
1138  if (CurrentRD && CurrentRD != RD)
1139    return false;
1140
1141  if (!RD->isAbstract())
1142    return false;
1143
1144  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1145
1146  // Check if we've already emitted the list of pure virtual functions for this
1147  // class.
1148  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1149    return true;
1150
1151  PureVirtualMethodCollector Collector(Context, RD);
1152
1153  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1154       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1155    const CXXMethodDecl *MD = *I;
1156
1157    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1158      MD->getDeclName();
1159  }
1160
1161  if (!PureVirtualClassDiagSet)
1162    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1163  PureVirtualClassDiagSet->insert(RD);
1164
1165  return true;
1166}
1167
1168namespace {
1169  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1170    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1171    Sema &SemaRef;
1172    CXXRecordDecl *AbstractClass;
1173
1174    bool VisitDeclContext(const DeclContext *DC) {
1175      bool Invalid = false;
1176
1177      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1178           E = DC->decls_end(); I != E; ++I)
1179        Invalid |= Visit(*I);
1180
1181      return Invalid;
1182    }
1183
1184  public:
1185    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1186      : SemaRef(SemaRef), AbstractClass(ac) {
1187        Visit(SemaRef.Context.getTranslationUnitDecl());
1188    }
1189
1190    bool VisitFunctionDecl(const FunctionDecl *FD) {
1191      if (FD->isThisDeclarationADefinition()) {
1192        // No need to do the check if we're in a definition, because it requires
1193        // that the return/param types are complete.
1194        // because that requires
1195        return VisitDeclContext(FD);
1196      }
1197
1198      // Check the return type.
1199      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1200      bool Invalid =
1201        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1202                                       diag::err_abstract_type_in_decl,
1203                                       Sema::AbstractReturnType,
1204                                       AbstractClass);
1205
1206      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1207           E = FD->param_end(); I != E; ++I) {
1208        const ParmVarDecl *VD = *I;
1209        Invalid |=
1210          SemaRef.RequireNonAbstractType(VD->getLocation(),
1211                                         VD->getOriginalType(),
1212                                         diag::err_abstract_type_in_decl,
1213                                         Sema::AbstractParamType,
1214                                         AbstractClass);
1215      }
1216
1217      return Invalid;
1218    }
1219
1220    bool VisitDecl(const Decl* D) {
1221      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1222        return VisitDeclContext(DC);
1223
1224      return false;
1225    }
1226  };
1227}
1228
1229void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1230                                             DeclPtrTy TagDecl,
1231                                             SourceLocation LBrac,
1232                                             SourceLocation RBrac) {
1233  if (!TagDecl)
1234    return;
1235
1236  AdjustDeclIfTemplate(TagDecl);
1237  ActOnFields(S, RLoc, TagDecl,
1238              (DeclPtrTy*)FieldCollector->getCurFields(),
1239              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1240
1241  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1242  if (!RD->isAbstract()) {
1243    // Collect all the pure virtual methods and see if this is an abstract
1244    // class after all.
1245    PureVirtualMethodCollector Collector(Context, RD);
1246    if (!Collector.empty())
1247      RD->setAbstract(true);
1248  }
1249
1250  if (RD->isAbstract())
1251    AbstractClassUsageDiagnoser(*this, RD);
1252
1253  if (!RD->isDependentType())
1254    AddImplicitlyDeclaredMembersToClass(RD);
1255}
1256
1257/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1258/// special functions, such as the default constructor, copy
1259/// constructor, or destructor, to the given C++ class (C++
1260/// [special]p1).  This routine can only be executed just before the
1261/// definition of the class is complete.
1262void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1263  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1264  ClassType = Context.getCanonicalType(ClassType);
1265
1266  // FIXME: Implicit declarations have exception specifications, which are
1267  // the union of the specifications of the implicitly called functions.
1268
1269  if (!ClassDecl->hasUserDeclaredConstructor()) {
1270    // C++ [class.ctor]p5:
1271    //   A default constructor for a class X is a constructor of class X
1272    //   that can be called without an argument. If there is no
1273    //   user-declared constructor for class X, a default constructor is
1274    //   implicitly declared. An implicitly-declared default constructor
1275    //   is an inline public member of its class.
1276    DeclarationName Name
1277      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1278    CXXConstructorDecl *DefaultCon =
1279      CXXConstructorDecl::Create(Context, ClassDecl,
1280                                 ClassDecl->getLocation(), Name,
1281                                 Context.getFunctionType(Context.VoidTy,
1282                                                         0, 0, false, 0),
1283                                 /*isExplicit=*/false,
1284                                 /*isInline=*/true,
1285                                 /*isImplicitlyDeclared=*/true);
1286    DefaultCon->setAccess(AS_public);
1287    DefaultCon->setImplicit();
1288    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1289    ClassDecl->addDecl(DefaultCon);
1290  }
1291
1292  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1293    // C++ [class.copy]p4:
1294    //   If the class definition does not explicitly declare a copy
1295    //   constructor, one is declared implicitly.
1296
1297    // C++ [class.copy]p5:
1298    //   The implicitly-declared copy constructor for a class X will
1299    //   have the form
1300    //
1301    //       X::X(const X&)
1302    //
1303    //   if
1304    bool HasConstCopyConstructor = true;
1305
1306    //     -- each direct or virtual base class B of X has a copy
1307    //        constructor whose first parameter is of type const B& or
1308    //        const volatile B&, and
1309    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1310         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1311      const CXXRecordDecl *BaseClassDecl
1312        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1313      HasConstCopyConstructor
1314        = BaseClassDecl->hasConstCopyConstructor(Context);
1315    }
1316
1317    //     -- for all the nonstatic data members of X that are of a
1318    //        class type M (or array thereof), each such class type
1319    //        has a copy constructor whose first parameter is of type
1320    //        const M& or const volatile M&.
1321    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1322         HasConstCopyConstructor && Field != ClassDecl->field_end();
1323         ++Field) {
1324      QualType FieldType = (*Field)->getType();
1325      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1326        FieldType = Array->getElementType();
1327      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1328        const CXXRecordDecl *FieldClassDecl
1329          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1330        HasConstCopyConstructor
1331          = FieldClassDecl->hasConstCopyConstructor(Context);
1332      }
1333    }
1334
1335    //   Otherwise, the implicitly declared copy constructor will have
1336    //   the form
1337    //
1338    //       X::X(X&)
1339    QualType ArgType = ClassType;
1340    if (HasConstCopyConstructor)
1341      ArgType = ArgType.withConst();
1342    ArgType = Context.getLValueReferenceType(ArgType);
1343
1344    //   An implicitly-declared copy constructor is an inline public
1345    //   member of its class.
1346    DeclarationName Name
1347      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1348    CXXConstructorDecl *CopyConstructor
1349      = CXXConstructorDecl::Create(Context, ClassDecl,
1350                                   ClassDecl->getLocation(), Name,
1351                                   Context.getFunctionType(Context.VoidTy,
1352                                                           &ArgType, 1,
1353                                                           false, 0),
1354                                   /*isExplicit=*/false,
1355                                   /*isInline=*/true,
1356                                   /*isImplicitlyDeclared=*/true);
1357    CopyConstructor->setAccess(AS_public);
1358    CopyConstructor->setImplicit();
1359    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1360
1361    // Add the parameter to the constructor.
1362    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1363                                                 ClassDecl->getLocation(),
1364                                                 /*IdentifierInfo=*/0,
1365                                                 ArgType, VarDecl::None, 0);
1366    CopyConstructor->setParams(Context, &FromParam, 1);
1367    ClassDecl->addDecl(CopyConstructor);
1368  }
1369
1370  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1371    // Note: The following rules are largely analoguous to the copy
1372    // constructor rules. Note that virtual bases are not taken into account
1373    // for determining the argument type of the operator. Note also that
1374    // operators taking an object instead of a reference are allowed.
1375    //
1376    // C++ [class.copy]p10:
1377    //   If the class definition does not explicitly declare a copy
1378    //   assignment operator, one is declared implicitly.
1379    //   The implicitly-defined copy assignment operator for a class X
1380    //   will have the form
1381    //
1382    //       X& X::operator=(const X&)
1383    //
1384    //   if
1385    bool HasConstCopyAssignment = true;
1386
1387    //       -- each direct base class B of X has a copy assignment operator
1388    //          whose parameter is of type const B&, const volatile B& or B,
1389    //          and
1390    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1391         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1392      const CXXRecordDecl *BaseClassDecl
1393        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1394      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1395    }
1396
1397    //       -- for all the nonstatic data members of X that are of a class
1398    //          type M (or array thereof), each such class type has a copy
1399    //          assignment operator whose parameter is of type const M&,
1400    //          const volatile M& or M.
1401    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1402         HasConstCopyAssignment && Field != ClassDecl->field_end();
1403         ++Field) {
1404      QualType FieldType = (*Field)->getType();
1405      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1406        FieldType = Array->getElementType();
1407      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1408        const CXXRecordDecl *FieldClassDecl
1409          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1410        HasConstCopyAssignment
1411          = FieldClassDecl->hasConstCopyAssignment(Context);
1412      }
1413    }
1414
1415    //   Otherwise, the implicitly declared copy assignment operator will
1416    //   have the form
1417    //
1418    //       X& X::operator=(X&)
1419    QualType ArgType = ClassType;
1420    QualType RetType = Context.getLValueReferenceType(ArgType);
1421    if (HasConstCopyAssignment)
1422      ArgType = ArgType.withConst();
1423    ArgType = Context.getLValueReferenceType(ArgType);
1424
1425    //   An implicitly-declared copy assignment operator is an inline public
1426    //   member of its class.
1427    DeclarationName Name =
1428      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1429    CXXMethodDecl *CopyAssignment =
1430      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1431                            Context.getFunctionType(RetType, &ArgType, 1,
1432                                                    false, 0),
1433                            /*isStatic=*/false, /*isInline=*/true);
1434    CopyAssignment->setAccess(AS_public);
1435    CopyAssignment->setImplicit();
1436    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1437
1438    // Add the parameter to the operator.
1439    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1440                                                 ClassDecl->getLocation(),
1441                                                 /*IdentifierInfo=*/0,
1442                                                 ArgType, VarDecl::None, 0);
1443    CopyAssignment->setParams(Context, &FromParam, 1);
1444
1445    // Don't call addedAssignmentOperator. There is no way to distinguish an
1446    // implicit from an explicit assignment operator.
1447    ClassDecl->addDecl(CopyAssignment);
1448  }
1449
1450  if (!ClassDecl->hasUserDeclaredDestructor()) {
1451    // C++ [class.dtor]p2:
1452    //   If a class has no user-declared destructor, a destructor is
1453    //   declared implicitly. An implicitly-declared destructor is an
1454    //   inline public member of its class.
1455    DeclarationName Name
1456      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1457    CXXDestructorDecl *Destructor
1458      = CXXDestructorDecl::Create(Context, ClassDecl,
1459                                  ClassDecl->getLocation(), Name,
1460                                  Context.getFunctionType(Context.VoidTy,
1461                                                          0, 0, false, 0),
1462                                  /*isInline=*/true,
1463                                  /*isImplicitlyDeclared=*/true);
1464    Destructor->setAccess(AS_public);
1465    Destructor->setImplicit();
1466    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1467    ClassDecl->addDecl(Destructor);
1468  }
1469}
1470
1471void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1472  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1473  if (!Template)
1474    return;
1475
1476  TemplateParameterList *Params = Template->getTemplateParameters();
1477  for (TemplateParameterList::iterator Param = Params->begin(),
1478                                    ParamEnd = Params->end();
1479       Param != ParamEnd; ++Param) {
1480    NamedDecl *Named = cast<NamedDecl>(*Param);
1481    if (Named->getDeclName()) {
1482      S->AddDecl(DeclPtrTy::make(Named));
1483      IdResolver.AddDecl(Named);
1484    }
1485  }
1486}
1487
1488/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1489/// parsing a top-level (non-nested) C++ class, and we are now
1490/// parsing those parts of the given Method declaration that could
1491/// not be parsed earlier (C++ [class.mem]p2), such as default
1492/// arguments. This action should enter the scope of the given
1493/// Method declaration as if we had just parsed the qualified method
1494/// name. However, it should not bring the parameters into scope;
1495/// that will be performed by ActOnDelayedCXXMethodParameter.
1496void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1497  if (!MethodD)
1498    return;
1499
1500  CXXScopeSpec SS;
1501  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1502  QualType ClassTy
1503    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1504  SS.setScopeRep(
1505    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1506  ActOnCXXEnterDeclaratorScope(S, SS);
1507}
1508
1509/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1510/// C++ method declaration. We're (re-)introducing the given
1511/// function parameter into scope for use in parsing later parts of
1512/// the method declaration. For example, we could see an
1513/// ActOnParamDefaultArgument event for this parameter.
1514void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1515  if (!ParamD)
1516    return;
1517
1518  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1519
1520  // If this parameter has an unparsed default argument, clear it out
1521  // to make way for the parsed default argument.
1522  if (Param->hasUnparsedDefaultArg())
1523    Param->setDefaultArg(0);
1524
1525  S->AddDecl(DeclPtrTy::make(Param));
1526  if (Param->getDeclName())
1527    IdResolver.AddDecl(Param);
1528}
1529
1530/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1531/// processing the delayed method declaration for Method. The method
1532/// declaration is now considered finished. There may be a separate
1533/// ActOnStartOfFunctionDef action later (not necessarily
1534/// immediately!) for this method, if it was also defined inside the
1535/// class body.
1536void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1537  if (!MethodD)
1538    return;
1539
1540  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1541  CXXScopeSpec SS;
1542  QualType ClassTy
1543    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1544  SS.setScopeRep(
1545    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1546  ActOnCXXExitDeclaratorScope(S, SS);
1547
1548  // Now that we have our default arguments, check the constructor
1549  // again. It could produce additional diagnostics or affect whether
1550  // the class has implicitly-declared destructors, among other
1551  // things.
1552  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1553    CheckConstructor(Constructor);
1554
1555  // Check the default arguments, which we may have added.
1556  if (!Method->isInvalidDecl())
1557    CheckCXXDefaultArguments(Method);
1558}
1559
1560/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1561/// the well-formedness of the constructor declarator @p D with type @p
1562/// R. If there are any errors in the declarator, this routine will
1563/// emit diagnostics and set the invalid bit to true.  In any case, the type
1564/// will be updated to reflect a well-formed type for the constructor and
1565/// returned.
1566QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1567                                          FunctionDecl::StorageClass &SC) {
1568  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1569
1570  // C++ [class.ctor]p3:
1571  //   A constructor shall not be virtual (10.3) or static (9.4). A
1572  //   constructor can be invoked for a const, volatile or const
1573  //   volatile object. A constructor shall not be declared const,
1574  //   volatile, or const volatile (9.3.2).
1575  if (isVirtual) {
1576    if (!D.isInvalidType())
1577      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1578        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1579        << SourceRange(D.getIdentifierLoc());
1580    D.setInvalidType();
1581  }
1582  if (SC == FunctionDecl::Static) {
1583    if (!D.isInvalidType())
1584      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1585        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1586        << SourceRange(D.getIdentifierLoc());
1587    D.setInvalidType();
1588    SC = FunctionDecl::None;
1589  }
1590
1591  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1592  if (FTI.TypeQuals != 0) {
1593    if (FTI.TypeQuals & QualType::Const)
1594      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1595        << "const" << SourceRange(D.getIdentifierLoc());
1596    if (FTI.TypeQuals & QualType::Volatile)
1597      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1598        << "volatile" << SourceRange(D.getIdentifierLoc());
1599    if (FTI.TypeQuals & QualType::Restrict)
1600      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1601        << "restrict" << SourceRange(D.getIdentifierLoc());
1602  }
1603
1604  // Rebuild the function type "R" without any type qualifiers (in
1605  // case any of the errors above fired) and with "void" as the
1606  // return type, since constructors don't have return types. We
1607  // *always* have to do this, because GetTypeForDeclarator will
1608  // put in a result type of "int" when none was specified.
1609  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1610  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1611                                 Proto->getNumArgs(),
1612                                 Proto->isVariadic(), 0);
1613}
1614
1615/// CheckConstructor - Checks a fully-formed constructor for
1616/// well-formedness, issuing any diagnostics required. Returns true if
1617/// the constructor declarator is invalid.
1618void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1619  CXXRecordDecl *ClassDecl
1620    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1621  if (!ClassDecl)
1622    return Constructor->setInvalidDecl();
1623
1624  // C++ [class.copy]p3:
1625  //   A declaration of a constructor for a class X is ill-formed if
1626  //   its first parameter is of type (optionally cv-qualified) X and
1627  //   either there are no other parameters or else all other
1628  //   parameters have default arguments.
1629  if (!Constructor->isInvalidDecl() &&
1630      ((Constructor->getNumParams() == 1) ||
1631       (Constructor->getNumParams() > 1 &&
1632        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1633    QualType ParamType = Constructor->getParamDecl(0)->getType();
1634    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1635    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1636      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1637      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1638        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1639      Constructor->setInvalidDecl();
1640    }
1641  }
1642
1643  // Notify the class that we've added a constructor.
1644  ClassDecl->addedConstructor(Context, Constructor);
1645}
1646
1647static inline bool
1648FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1649  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1650          FTI.ArgInfo[0].Param &&
1651          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1652}
1653
1654/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1655/// the well-formednes of the destructor declarator @p D with type @p
1656/// R. If there are any errors in the declarator, this routine will
1657/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1658/// will be updated to reflect a well-formed type for the destructor and
1659/// returned.
1660QualType Sema::CheckDestructorDeclarator(Declarator &D,
1661                                         FunctionDecl::StorageClass& SC) {
1662  // C++ [class.dtor]p1:
1663  //   [...] A typedef-name that names a class is a class-name
1664  //   (7.1.3); however, a typedef-name that names a class shall not
1665  //   be used as the identifier in the declarator for a destructor
1666  //   declaration.
1667  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1668  if (isa<TypedefType>(DeclaratorType)) {
1669    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1670      << DeclaratorType;
1671    D.setInvalidType();
1672  }
1673
1674  // C++ [class.dtor]p2:
1675  //   A destructor is used to destroy objects of its class type. A
1676  //   destructor takes no parameters, and no return type can be
1677  //   specified for it (not even void). The address of a destructor
1678  //   shall not be taken. A destructor shall not be static. A
1679  //   destructor can be invoked for a const, volatile or const
1680  //   volatile object. A destructor shall not be declared const,
1681  //   volatile or const volatile (9.3.2).
1682  if (SC == FunctionDecl::Static) {
1683    if (!D.isInvalidType())
1684      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1685        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1686        << SourceRange(D.getIdentifierLoc());
1687    SC = FunctionDecl::None;
1688    D.setInvalidType();
1689  }
1690  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1691    // Destructors don't have return types, but the parser will
1692    // happily parse something like:
1693    //
1694    //   class X {
1695    //     float ~X();
1696    //   };
1697    //
1698    // The return type will be eliminated later.
1699    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1700      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1701      << SourceRange(D.getIdentifierLoc());
1702  }
1703
1704  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1705  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1706    if (FTI.TypeQuals & QualType::Const)
1707      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1708        << "const" << SourceRange(D.getIdentifierLoc());
1709    if (FTI.TypeQuals & QualType::Volatile)
1710      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1711        << "volatile" << SourceRange(D.getIdentifierLoc());
1712    if (FTI.TypeQuals & QualType::Restrict)
1713      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1714        << "restrict" << SourceRange(D.getIdentifierLoc());
1715    D.setInvalidType();
1716  }
1717
1718  // Make sure we don't have any parameters.
1719  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1720    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1721
1722    // Delete the parameters.
1723    FTI.freeArgs();
1724    D.setInvalidType();
1725  }
1726
1727  // Make sure the destructor isn't variadic.
1728  if (FTI.isVariadic) {
1729    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1730    D.setInvalidType();
1731  }
1732
1733  // Rebuild the function type "R" without any type qualifiers or
1734  // parameters (in case any of the errors above fired) and with
1735  // "void" as the return type, since destructors don't have return
1736  // types. We *always* have to do this, because GetTypeForDeclarator
1737  // will put in a result type of "int" when none was specified.
1738  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1739}
1740
1741/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1742/// well-formednes of the conversion function declarator @p D with
1743/// type @p R. If there are any errors in the declarator, this routine
1744/// will emit diagnostics and return true. Otherwise, it will return
1745/// false. Either way, the type @p R will be updated to reflect a
1746/// well-formed type for the conversion operator.
1747void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1748                                     FunctionDecl::StorageClass& SC) {
1749  // C++ [class.conv.fct]p1:
1750  //   Neither parameter types nor return type can be specified. The
1751  //   type of a conversion function (8.3.5) is “function taking no
1752  //   parameter returning conversion-type-id.”
1753  if (SC == FunctionDecl::Static) {
1754    if (!D.isInvalidType())
1755      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1756        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1757        << SourceRange(D.getIdentifierLoc());
1758    D.setInvalidType();
1759    SC = FunctionDecl::None;
1760  }
1761  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1762    // Conversion functions don't have return types, but the parser will
1763    // happily parse something like:
1764    //
1765    //   class X {
1766    //     float operator bool();
1767    //   };
1768    //
1769    // The return type will be changed later anyway.
1770    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1771      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1772      << SourceRange(D.getIdentifierLoc());
1773  }
1774
1775  // Make sure we don't have any parameters.
1776  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1777    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1778
1779    // Delete the parameters.
1780    D.getTypeObject(0).Fun.freeArgs();
1781    D.setInvalidType();
1782  }
1783
1784  // Make sure the conversion function isn't variadic.
1785  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1786    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1787    D.setInvalidType();
1788  }
1789
1790  // C++ [class.conv.fct]p4:
1791  //   The conversion-type-id shall not represent a function type nor
1792  //   an array type.
1793  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1794  if (ConvType->isArrayType()) {
1795    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1796    ConvType = Context.getPointerType(ConvType);
1797    D.setInvalidType();
1798  } else if (ConvType->isFunctionType()) {
1799    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1800    ConvType = Context.getPointerType(ConvType);
1801    D.setInvalidType();
1802  }
1803
1804  // Rebuild the function type "R" without any parameters (in case any
1805  // of the errors above fired) and with the conversion type as the
1806  // return type.
1807  R = Context.getFunctionType(ConvType, 0, 0, false,
1808                              R->getAsFunctionProtoType()->getTypeQuals());
1809
1810  // C++0x explicit conversion operators.
1811  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1812    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1813         diag::warn_explicit_conversion_functions)
1814      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1815}
1816
1817/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1818/// the declaration of the given C++ conversion function. This routine
1819/// is responsible for recording the conversion function in the C++
1820/// class, if possible.
1821Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1822  assert(Conversion && "Expected to receive a conversion function declaration");
1823
1824  // Set the lexical context of this conversion function
1825  Conversion->setLexicalDeclContext(CurContext);
1826
1827  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1828
1829  // Make sure we aren't redeclaring the conversion function.
1830  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1831
1832  // C++ [class.conv.fct]p1:
1833  //   [...] A conversion function is never used to convert a
1834  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1835  //   same object type (or a reference to it), to a (possibly
1836  //   cv-qualified) base class of that type (or a reference to it),
1837  //   or to (possibly cv-qualified) void.
1838  // FIXME: Suppress this warning if the conversion function ends up being a
1839  // virtual function that overrides a virtual function in a base class.
1840  QualType ClassType
1841    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1842  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1843    ConvType = ConvTypeRef->getPointeeType();
1844  if (ConvType->isRecordType()) {
1845    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1846    if (ConvType == ClassType)
1847      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1848        << ClassType;
1849    else if (IsDerivedFrom(ClassType, ConvType))
1850      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1851        <<  ClassType << ConvType;
1852  } else if (ConvType->isVoidType()) {
1853    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1854      << ClassType << ConvType;
1855  }
1856
1857  if (Conversion->getPreviousDeclaration()) {
1858    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1859    for (OverloadedFunctionDecl::function_iterator
1860           Conv = Conversions->function_begin(),
1861           ConvEnd = Conversions->function_end();
1862         Conv != ConvEnd; ++Conv) {
1863      if (*Conv
1864            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1865        *Conv = Conversion;
1866        return DeclPtrTy::make(Conversion);
1867      }
1868    }
1869    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1870  } else
1871    ClassDecl->addConversionFunction(Context, Conversion);
1872
1873  return DeclPtrTy::make(Conversion);
1874}
1875
1876//===----------------------------------------------------------------------===//
1877// Namespace Handling
1878//===----------------------------------------------------------------------===//
1879
1880/// ActOnStartNamespaceDef - This is called at the start of a namespace
1881/// definition.
1882Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1883                                             SourceLocation IdentLoc,
1884                                             IdentifierInfo *II,
1885                                             SourceLocation LBrace) {
1886  NamespaceDecl *Namespc =
1887      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1888  Namespc->setLBracLoc(LBrace);
1889
1890  Scope *DeclRegionScope = NamespcScope->getParent();
1891
1892  if (II) {
1893    // C++ [namespace.def]p2:
1894    // The identifier in an original-namespace-definition shall not have been
1895    // previously defined in the declarative region in which the
1896    // original-namespace-definition appears. The identifier in an
1897    // original-namespace-definition is the name of the namespace. Subsequently
1898    // in that declarative region, it is treated as an original-namespace-name.
1899
1900    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1901                                     true);
1902
1903    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1904      // This is an extended namespace definition.
1905      // Attach this namespace decl to the chain of extended namespace
1906      // definitions.
1907      OrigNS->setNextNamespace(Namespc);
1908      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1909
1910      // Remove the previous declaration from the scope.
1911      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1912        IdResolver.RemoveDecl(OrigNS);
1913        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1914      }
1915    } else if (PrevDecl) {
1916      // This is an invalid name redefinition.
1917      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1918       << Namespc->getDeclName();
1919      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1920      Namespc->setInvalidDecl();
1921      // Continue on to push Namespc as current DeclContext and return it.
1922    }
1923
1924    PushOnScopeChains(Namespc, DeclRegionScope);
1925  } else {
1926    // FIXME: Handle anonymous namespaces
1927  }
1928
1929  // Although we could have an invalid decl (i.e. the namespace name is a
1930  // redefinition), push it as current DeclContext and try to continue parsing.
1931  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1932  // for the namespace has the declarations that showed up in that particular
1933  // namespace definition.
1934  PushDeclContext(NamespcScope, Namespc);
1935  return DeclPtrTy::make(Namespc);
1936}
1937
1938/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1939/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1940void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1941  Decl *Dcl = D.getAs<Decl>();
1942  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1943  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1944  Namespc->setRBracLoc(RBrace);
1945  PopDeclContext();
1946}
1947
1948Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1949                                          SourceLocation UsingLoc,
1950                                          SourceLocation NamespcLoc,
1951                                          const CXXScopeSpec &SS,
1952                                          SourceLocation IdentLoc,
1953                                          IdentifierInfo *NamespcName,
1954                                          AttributeList *AttrList) {
1955  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1956  assert(NamespcName && "Invalid NamespcName.");
1957  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1958  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1959
1960  UsingDirectiveDecl *UDir = 0;
1961
1962  // Lookup namespace name.
1963  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1964                                    LookupNamespaceName, false);
1965  if (R.isAmbiguous()) {
1966    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1967    return DeclPtrTy();
1968  }
1969  if (NamedDecl *NS = R) {
1970    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1971    // C++ [namespace.udir]p1:
1972    //   A using-directive specifies that the names in the nominated
1973    //   namespace can be used in the scope in which the
1974    //   using-directive appears after the using-directive. During
1975    //   unqualified name lookup (3.4.1), the names appear as if they
1976    //   were declared in the nearest enclosing namespace which
1977    //   contains both the using-directive and the nominated
1978    //   namespace. [Note: in this context, “contains” means “contains
1979    //   directly or indirectly”. ]
1980
1981    // Find enclosing context containing both using-directive and
1982    // nominated namespace.
1983    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1984    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1985      CommonAncestor = CommonAncestor->getParent();
1986
1987    UDir = UsingDirectiveDecl::Create(Context,
1988                                      CurContext, UsingLoc,
1989                                      NamespcLoc,
1990                                      SS.getRange(),
1991                                      (NestedNameSpecifier *)SS.getScopeRep(),
1992                                      IdentLoc,
1993                                      cast<NamespaceDecl>(NS),
1994                                      CommonAncestor);
1995    PushUsingDirective(S, UDir);
1996  } else {
1997    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1998  }
1999
2000  // FIXME: We ignore attributes for now.
2001  delete AttrList;
2002  return DeclPtrTy::make(UDir);
2003}
2004
2005void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2006  // If scope has associated entity, then using directive is at namespace
2007  // or translation unit scope. We add UsingDirectiveDecls, into
2008  // it's lookup structure.
2009  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2010    Ctx->addDecl(UDir);
2011  else
2012    // Otherwise it is block-sope. using-directives will affect lookup
2013    // only to the end of scope.
2014    S->PushUsingDirective(DeclPtrTy::make(UDir));
2015}
2016
2017
2018Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2019                                          SourceLocation UsingLoc,
2020                                          const CXXScopeSpec &SS,
2021                                          SourceLocation IdentLoc,
2022                                          IdentifierInfo *TargetName,
2023                                          OverloadedOperatorKind Op,
2024                                          AttributeList *AttrList,
2025                                          bool IsTypeName) {
2026  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2027  assert((TargetName || Op) && "Invalid TargetName.");
2028  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2029  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2030
2031  UsingDecl *UsingAlias = 0;
2032
2033  DeclarationName Name;
2034  if (TargetName)
2035    Name = TargetName;
2036  else
2037    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2038
2039  // Lookup target name.
2040  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2041
2042  if (NamedDecl *NS = R) {
2043    if (IsTypeName && !isa<TypeDecl>(NS)) {
2044      Diag(IdentLoc, diag::err_using_typename_non_type);
2045    }
2046    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2047        NS->getLocation(), UsingLoc, NS,
2048        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2049        IsTypeName);
2050    PushOnScopeChains(UsingAlias, S);
2051  } else {
2052    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2053  }
2054
2055  // FIXME: We ignore attributes for now.
2056  delete AttrList;
2057  return DeclPtrTy::make(UsingAlias);
2058}
2059
2060/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2061/// is a namespace alias, returns the namespace it points to.
2062static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2063  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2064    return AD->getNamespace();
2065  return dyn_cast_or_null<NamespaceDecl>(D);
2066}
2067
2068Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2069                                             SourceLocation NamespaceLoc,
2070                                             SourceLocation AliasLoc,
2071                                             IdentifierInfo *Alias,
2072                                             const CXXScopeSpec &SS,
2073                                             SourceLocation IdentLoc,
2074                                             IdentifierInfo *Ident) {
2075
2076  // Lookup the namespace name.
2077  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2078
2079  // Check if we have a previous declaration with the same name.
2080  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2081    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2082      // We already have an alias with the same name that points to the same
2083      // namespace, so don't create a new one.
2084      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2085        return DeclPtrTy();
2086    }
2087
2088    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2089      diag::err_redefinition_different_kind;
2090    Diag(AliasLoc, DiagID) << Alias;
2091    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2092    return DeclPtrTy();
2093  }
2094
2095  if (R.isAmbiguous()) {
2096    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2097    return DeclPtrTy();
2098  }
2099
2100  if (!R) {
2101    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2102    return DeclPtrTy();
2103  }
2104
2105  NamespaceAliasDecl *AliasDecl =
2106    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2107                               Alias, SS.getRange(),
2108                               (NestedNameSpecifier *)SS.getScopeRep(),
2109                               IdentLoc, R);
2110
2111  CurContext->addDecl(AliasDecl);
2112  return DeclPtrTy::make(AliasDecl);
2113}
2114
2115void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2116                                            CXXConstructorDecl *Constructor) {
2117  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2118          !Constructor->isUsed()) &&
2119    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2120
2121  CXXRecordDecl *ClassDecl
2122    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2123  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2124  // Before the implicitly-declared default constructor for a class is
2125  // implicitly defined, all the implicitly-declared default constructors
2126  // for its base class and its non-static data members shall have been
2127  // implicitly defined.
2128  bool err = false;
2129  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2130       E = ClassDecl->bases_end(); Base != E; ++Base) {
2131    CXXRecordDecl *BaseClassDecl
2132      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2133    if (!BaseClassDecl->hasTrivialConstructor()) {
2134      if (CXXConstructorDecl *BaseCtor =
2135            BaseClassDecl->getDefaultConstructor(Context))
2136        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2137      else {
2138        Diag(CurrentLocation, diag::err_defining_default_ctor)
2139          << Context.getTagDeclType(ClassDecl) << 1
2140          << Context.getTagDeclType(BaseClassDecl);
2141        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2142              << Context.getTagDeclType(BaseClassDecl);
2143        err = true;
2144      }
2145    }
2146  }
2147  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2148       E = ClassDecl->field_end(); Field != E; ++Field) {
2149    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2150    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2151      FieldType = Array->getElementType();
2152    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2153      CXXRecordDecl *FieldClassDecl
2154        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2155      if (!FieldClassDecl->hasTrivialConstructor()) {
2156        if (CXXConstructorDecl *FieldCtor =
2157            FieldClassDecl->getDefaultConstructor(Context))
2158          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2159        else {
2160          Diag(CurrentLocation, diag::err_defining_default_ctor)
2161          << Context.getTagDeclType(ClassDecl) << 0 <<
2162              Context.getTagDeclType(FieldClassDecl);
2163          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2164          << Context.getTagDeclType(FieldClassDecl);
2165          err = true;
2166        }
2167      }
2168    }
2169    else if (FieldType->isReferenceType()) {
2170      Diag(CurrentLocation, diag::err_unintialized_member)
2171        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2172      Diag((*Field)->getLocation(), diag::note_declared_at);
2173      err = true;
2174    }
2175    else if (FieldType.isConstQualified()) {
2176      Diag(CurrentLocation, diag::err_unintialized_member)
2177        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2178       Diag((*Field)->getLocation(), diag::note_declared_at);
2179      err = true;
2180    }
2181  }
2182  if (!err)
2183    Constructor->setUsed();
2184  else
2185    Constructor->setInvalidDecl();
2186}
2187
2188void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2189                                            CXXDestructorDecl *Destructor) {
2190  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2191         "DefineImplicitDestructor - call it for implicit default dtor");
2192
2193  CXXRecordDecl *ClassDecl
2194  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2195  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2196  // C++ [class.dtor] p5
2197  // Before the implicitly-declared default destructor for a class is
2198  // implicitly defined, all the implicitly-declared default destructors
2199  // for its base class and its non-static data members shall have been
2200  // implicitly defined.
2201  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2202       E = ClassDecl->bases_end(); Base != E; ++Base) {
2203    CXXRecordDecl *BaseClassDecl
2204      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2205    if (!BaseClassDecl->hasTrivialDestructor()) {
2206      if (CXXDestructorDecl *BaseDtor =
2207          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2208        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2209      else
2210        assert(false &&
2211               "DefineImplicitDestructor - missing dtor in a base class");
2212    }
2213  }
2214
2215  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2216       E = ClassDecl->field_end(); Field != E; ++Field) {
2217    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2218    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2219      FieldType = Array->getElementType();
2220    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2221      CXXRecordDecl *FieldClassDecl
2222        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2223      if (!FieldClassDecl->hasTrivialDestructor()) {
2224        if (CXXDestructorDecl *FieldDtor =
2225            const_cast<CXXDestructorDecl*>(
2226                                        FieldClassDecl->getDestructor(Context)))
2227          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2228        else
2229          assert(false &&
2230          "DefineImplicitDestructor - missing dtor in class of a data member");
2231      }
2232    }
2233  }
2234  Destructor->setUsed();
2235}
2236
2237void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2238                                          CXXMethodDecl *MethodDecl) {
2239  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2240          MethodDecl->getOverloadedOperator() == OO_Equal &&
2241          !MethodDecl->isUsed()) &&
2242         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2243
2244  CXXRecordDecl *ClassDecl
2245    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2246
2247  // C++[class.copy] p12
2248  // Before the implicitly-declared copy assignment operator for a class is
2249  // implicitly defined, all implicitly-declared copy assignment operators
2250  // for its direct base classes and its nonstatic data members shall have
2251  // been implicitly defined.
2252  bool err = false;
2253  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2254       E = ClassDecl->bases_end(); Base != E; ++Base) {
2255    CXXRecordDecl *BaseClassDecl
2256      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2257    if (CXXMethodDecl *BaseAssignOpMethod =
2258          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2259      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2260  }
2261  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2262       E = ClassDecl->field_end(); Field != E; ++Field) {
2263    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2264    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2265      FieldType = Array->getElementType();
2266    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2267      CXXRecordDecl *FieldClassDecl
2268        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2269      if (CXXMethodDecl *FieldAssignOpMethod =
2270          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2271        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2272    }
2273    else if (FieldType->isReferenceType()) {
2274      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2275      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2276      Diag(Field->getLocation(), diag::note_declared_at);
2277      Diag(CurrentLocation, diag::note_first_required_here);
2278      err = true;
2279    }
2280    else if (FieldType.isConstQualified()) {
2281      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2282      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2283      Diag(Field->getLocation(), diag::note_declared_at);
2284      Diag(CurrentLocation, diag::note_first_required_here);
2285      err = true;
2286    }
2287  }
2288  if (!err)
2289    MethodDecl->setUsed();
2290}
2291
2292CXXMethodDecl *
2293Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2294                              CXXRecordDecl *ClassDecl) {
2295  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2296  QualType RHSType(LHSType);
2297  // If class's assignment operator argument is const/volatile qualified,
2298  // look for operator = (const/volatile B&). Otherwise, look for
2299  // operator = (B&).
2300  if (ParmDecl->getType().isConstQualified())
2301    RHSType.addConst();
2302  if (ParmDecl->getType().isVolatileQualified())
2303    RHSType.addVolatile();
2304  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2305                                                          LHSType,
2306                                                          SourceLocation()));
2307  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2308                                                          RHSType,
2309                                                          SourceLocation()));
2310  Expr *Args[2] = { &*LHS, &*RHS };
2311  OverloadCandidateSet CandidateSet;
2312  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2313                              CandidateSet);
2314  OverloadCandidateSet::iterator Best;
2315  if (BestViableFunction(CandidateSet,
2316                         ClassDecl->getLocation(), Best) == OR_Success)
2317    return cast<CXXMethodDecl>(Best->Function);
2318  assert(false &&
2319         "getAssignOperatorMethod - copy assignment operator method not found");
2320  return 0;
2321}
2322
2323void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2324                                   CXXConstructorDecl *CopyConstructor,
2325                                   unsigned TypeQuals) {
2326  assert((CopyConstructor->isImplicit() &&
2327          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2328          !CopyConstructor->isUsed()) &&
2329         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2330
2331  CXXRecordDecl *ClassDecl
2332    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2333  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2334  // C++ [class.copy] p209
2335  // Before the implicitly-declared copy constructor for a class is
2336  // implicitly defined, all the implicitly-declared copy constructors
2337  // for its base class and its non-static data members shall have been
2338  // implicitly defined.
2339  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2340       Base != ClassDecl->bases_end(); ++Base) {
2341    CXXRecordDecl *BaseClassDecl
2342      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2343    if (CXXConstructorDecl *BaseCopyCtor =
2344        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2345      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2346  }
2347  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2348                                  FieldEnd = ClassDecl->field_end();
2349       Field != FieldEnd; ++Field) {
2350    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2351    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2352      FieldType = Array->getElementType();
2353    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2354      CXXRecordDecl *FieldClassDecl
2355        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2356      if (CXXConstructorDecl *FieldCopyCtor =
2357          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2358        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2359    }
2360  }
2361  CopyConstructor->setUsed();
2362}
2363
2364void Sema::InitializeVarWithConstructor(VarDecl *VD,
2365                                        CXXConstructorDecl *Constructor,
2366                                        QualType DeclInitType,
2367                                        Expr **Exprs, unsigned NumExprs) {
2368  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2369                                        false, Exprs, NumExprs);
2370  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2371  VD->setInit(Context, Temp);
2372}
2373
2374void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2375{
2376  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2377                                  DeclInitType->getAs<RecordType>()->getDecl());
2378  if (!ClassDecl->hasTrivialDestructor())
2379    if (CXXDestructorDecl *Destructor =
2380        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2381      MarkDeclarationReferenced(Loc, Destructor);
2382}
2383
2384/// AddCXXDirectInitializerToDecl - This action is called immediately after
2385/// ActOnDeclarator, when a C++ direct initializer is present.
2386/// e.g: "int x(1);"
2387void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2388                                         SourceLocation LParenLoc,
2389                                         MultiExprArg Exprs,
2390                                         SourceLocation *CommaLocs,
2391                                         SourceLocation RParenLoc) {
2392  unsigned NumExprs = Exprs.size();
2393  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2394  Decl *RealDecl = Dcl.getAs<Decl>();
2395
2396  // If there is no declaration, there was an error parsing it.  Just ignore
2397  // the initializer.
2398  if (RealDecl == 0)
2399    return;
2400
2401  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2402  if (!VDecl) {
2403    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2404    RealDecl->setInvalidDecl();
2405    return;
2406  }
2407
2408  // FIXME: Need to handle dependent types and expressions here.
2409
2410  // We will treat direct-initialization as a copy-initialization:
2411  //    int x(1);  -as-> int x = 1;
2412  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2413  //
2414  // Clients that want to distinguish between the two forms, can check for
2415  // direct initializer using VarDecl::hasCXXDirectInitializer().
2416  // A major benefit is that clients that don't particularly care about which
2417  // exactly form was it (like the CodeGen) can handle both cases without
2418  // special case code.
2419
2420  // C++ 8.5p11:
2421  // The form of initialization (using parentheses or '=') is generally
2422  // insignificant, but does matter when the entity being initialized has a
2423  // class type.
2424  QualType DeclInitType = VDecl->getType();
2425  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2426    DeclInitType = Array->getElementType();
2427
2428  // FIXME: This isn't the right place to complete the type.
2429  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2430                          diag::err_typecheck_decl_incomplete_type)) {
2431    VDecl->setInvalidDecl();
2432    return;
2433  }
2434
2435  if (VDecl->getType()->isRecordType()) {
2436    CXXConstructorDecl *Constructor
2437      = PerformInitializationByConstructor(DeclInitType,
2438                                           (Expr **)Exprs.get(), NumExprs,
2439                                           VDecl->getLocation(),
2440                                           SourceRange(VDecl->getLocation(),
2441                                                       RParenLoc),
2442                                           VDecl->getDeclName(),
2443                                           IK_Direct);
2444    if (!Constructor)
2445      RealDecl->setInvalidDecl();
2446    else {
2447      VDecl->setCXXDirectInitializer(true);
2448      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2449                                   (Expr**)Exprs.release(), NumExprs);
2450      // FIXME. Must do all that is needed to destroy the object
2451      // on scope exit. For now, just mark the destructor as used.
2452      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2453    }
2454    return;
2455  }
2456
2457  if (NumExprs > 1) {
2458    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2459      << SourceRange(VDecl->getLocation(), RParenLoc);
2460    RealDecl->setInvalidDecl();
2461    return;
2462  }
2463
2464  // Let clients know that initialization was done with a direct initializer.
2465  VDecl->setCXXDirectInitializer(true);
2466
2467  assert(NumExprs == 1 && "Expected 1 expression");
2468  // Set the init expression, handles conversions.
2469  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2470                       /*DirectInit=*/true);
2471}
2472
2473/// PerformInitializationByConstructor - Perform initialization by
2474/// constructor (C++ [dcl.init]p14), which may occur as part of
2475/// direct-initialization or copy-initialization. We are initializing
2476/// an object of type @p ClassType with the given arguments @p
2477/// Args. @p Loc is the location in the source code where the
2478/// initializer occurs (e.g., a declaration, member initializer,
2479/// functional cast, etc.) while @p Range covers the whole
2480/// initialization. @p InitEntity is the entity being initialized,
2481/// which may by the name of a declaration or a type. @p Kind is the
2482/// kind of initialization we're performing, which affects whether
2483/// explicit constructors will be considered. When successful, returns
2484/// the constructor that will be used to perform the initialization;
2485/// when the initialization fails, emits a diagnostic and returns
2486/// null.
2487CXXConstructorDecl *
2488Sema::PerformInitializationByConstructor(QualType ClassType,
2489                                         Expr **Args, unsigned NumArgs,
2490                                         SourceLocation Loc, SourceRange Range,
2491                                         DeclarationName InitEntity,
2492                                         InitializationKind Kind) {
2493  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2494  assert(ClassRec && "Can only initialize a class type here");
2495
2496  // C++ [dcl.init]p14:
2497  //
2498  //   If the initialization is direct-initialization, or if it is
2499  //   copy-initialization where the cv-unqualified version of the
2500  //   source type is the same class as, or a derived class of, the
2501  //   class of the destination, constructors are considered. The
2502  //   applicable constructors are enumerated (13.3.1.3), and the
2503  //   best one is chosen through overload resolution (13.3). The
2504  //   constructor so selected is called to initialize the object,
2505  //   with the initializer expression(s) as its argument(s). If no
2506  //   constructor applies, or the overload resolution is ambiguous,
2507  //   the initialization is ill-formed.
2508  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2509  OverloadCandidateSet CandidateSet;
2510
2511  // Add constructors to the overload set.
2512  DeclarationName ConstructorName
2513    = Context.DeclarationNames.getCXXConstructorName(
2514                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2515  DeclContext::lookup_const_iterator Con, ConEnd;
2516  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2517       Con != ConEnd; ++Con) {
2518    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2519    if ((Kind == IK_Direct) ||
2520        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2521        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2522      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2523  }
2524
2525  // FIXME: When we decide not to synthesize the implicitly-declared
2526  // constructors, we'll need to make them appear here.
2527
2528  OverloadCandidateSet::iterator Best;
2529  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2530  case OR_Success:
2531    // We found a constructor. Return it.
2532    return cast<CXXConstructorDecl>(Best->Function);
2533
2534  case OR_No_Viable_Function:
2535    if (InitEntity)
2536      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2537        << InitEntity << Range;
2538    else
2539      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2540        << ClassType << Range;
2541    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2542    return 0;
2543
2544  case OR_Ambiguous:
2545    if (InitEntity)
2546      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2547    else
2548      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2549    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2550    return 0;
2551
2552  case OR_Deleted:
2553    if (InitEntity)
2554      Diag(Loc, diag::err_ovl_deleted_init)
2555        << Best->Function->isDeleted()
2556        << InitEntity << Range;
2557    else
2558      Diag(Loc, diag::err_ovl_deleted_init)
2559        << Best->Function->isDeleted()
2560        << InitEntity << Range;
2561    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2562    return 0;
2563  }
2564
2565  return 0;
2566}
2567
2568/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2569/// determine whether they are reference-related,
2570/// reference-compatible, reference-compatible with added
2571/// qualification, or incompatible, for use in C++ initialization by
2572/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2573/// type, and the first type (T1) is the pointee type of the reference
2574/// type being initialized.
2575Sema::ReferenceCompareResult
2576Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2577                                   bool& DerivedToBase) {
2578  assert(!T1->isReferenceType() &&
2579    "T1 must be the pointee type of the reference type");
2580  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2581
2582  T1 = Context.getCanonicalType(T1);
2583  T2 = Context.getCanonicalType(T2);
2584  QualType UnqualT1 = T1.getUnqualifiedType();
2585  QualType UnqualT2 = T2.getUnqualifiedType();
2586
2587  // C++ [dcl.init.ref]p4:
2588  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2589  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2590  //   T1 is a base class of T2.
2591  if (UnqualT1 == UnqualT2)
2592    DerivedToBase = false;
2593  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2594    DerivedToBase = true;
2595  else
2596    return Ref_Incompatible;
2597
2598  // At this point, we know that T1 and T2 are reference-related (at
2599  // least).
2600
2601  // C++ [dcl.init.ref]p4:
2602  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2603  //   reference-related to T2 and cv1 is the same cv-qualification
2604  //   as, or greater cv-qualification than, cv2. For purposes of
2605  //   overload resolution, cases for which cv1 is greater
2606  //   cv-qualification than cv2 are identified as
2607  //   reference-compatible with added qualification (see 13.3.3.2).
2608  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2609    return Ref_Compatible;
2610  else if (T1.isMoreQualifiedThan(T2))
2611    return Ref_Compatible_With_Added_Qualification;
2612  else
2613    return Ref_Related;
2614}
2615
2616/// CheckReferenceInit - Check the initialization of a reference
2617/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2618/// the initializer (either a simple initializer or an initializer
2619/// list), and DeclType is the type of the declaration. When ICS is
2620/// non-null, this routine will compute the implicit conversion
2621/// sequence according to C++ [over.ics.ref] and will not produce any
2622/// diagnostics; when ICS is null, it will emit diagnostics when any
2623/// errors are found. Either way, a return value of true indicates
2624/// that there was a failure, a return value of false indicates that
2625/// the reference initialization succeeded.
2626///
2627/// When @p SuppressUserConversions, user-defined conversions are
2628/// suppressed.
2629/// When @p AllowExplicit, we also permit explicit user-defined
2630/// conversion functions.
2631/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2632bool
2633Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2634                         ImplicitConversionSequence *ICS,
2635                         bool SuppressUserConversions,
2636                         bool AllowExplicit, bool ForceRValue) {
2637  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2638
2639  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2640  QualType T2 = Init->getType();
2641
2642  // If the initializer is the address of an overloaded function, try
2643  // to resolve the overloaded function. If all goes well, T2 is the
2644  // type of the resulting function.
2645  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2646    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2647                                                          ICS != 0);
2648    if (Fn) {
2649      // Since we're performing this reference-initialization for
2650      // real, update the initializer with the resulting function.
2651      if (!ICS) {
2652        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2653          return true;
2654
2655        FixOverloadedFunctionReference(Init, Fn);
2656      }
2657
2658      T2 = Fn->getType();
2659    }
2660  }
2661
2662  // Compute some basic properties of the types and the initializer.
2663  bool isRValRef = DeclType->isRValueReferenceType();
2664  bool DerivedToBase = false;
2665  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2666                                                  Init->isLvalue(Context);
2667  ReferenceCompareResult RefRelationship
2668    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2669
2670  // Most paths end in a failed conversion.
2671  if (ICS)
2672    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2673
2674  // C++ [dcl.init.ref]p5:
2675  //   A reference to type “cv1 T1” is initialized by an expression
2676  //   of type “cv2 T2” as follows:
2677
2678  //     -- If the initializer expression
2679
2680  // Rvalue references cannot bind to lvalues (N2812).
2681  // There is absolutely no situation where they can. In particular, note that
2682  // this is ill-formed, even if B has a user-defined conversion to A&&:
2683  //   B b;
2684  //   A&& r = b;
2685  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2686    if (!ICS)
2687      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2688        << Init->getSourceRange();
2689    return true;
2690  }
2691
2692  bool BindsDirectly = false;
2693  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2694  //          reference-compatible with “cv2 T2,” or
2695  //
2696  // Note that the bit-field check is skipped if we are just computing
2697  // the implicit conversion sequence (C++ [over.best.ics]p2).
2698  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2699      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2700    BindsDirectly = true;
2701
2702    if (ICS) {
2703      // C++ [over.ics.ref]p1:
2704      //   When a parameter of reference type binds directly (8.5.3)
2705      //   to an argument expression, the implicit conversion sequence
2706      //   is the identity conversion, unless the argument expression
2707      //   has a type that is a derived class of the parameter type,
2708      //   in which case the implicit conversion sequence is a
2709      //   derived-to-base Conversion (13.3.3.1).
2710      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2711      ICS->Standard.First = ICK_Identity;
2712      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2713      ICS->Standard.Third = ICK_Identity;
2714      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2715      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2716      ICS->Standard.ReferenceBinding = true;
2717      ICS->Standard.DirectBinding = true;
2718      ICS->Standard.RRefBinding = false;
2719      ICS->Standard.CopyConstructor = 0;
2720
2721      // Nothing more to do: the inaccessibility/ambiguity check for
2722      // derived-to-base conversions is suppressed when we're
2723      // computing the implicit conversion sequence (C++
2724      // [over.best.ics]p2).
2725      return false;
2726    } else {
2727      // Perform the conversion.
2728      // FIXME: Binding to a subobject of the lvalue is going to require more
2729      // AST annotation than this.
2730      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2731    }
2732  }
2733
2734  //       -- has a class type (i.e., T2 is a class type) and can be
2735  //          implicitly converted to an lvalue of type “cv3 T3,”
2736  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2737  //          92) (this conversion is selected by enumerating the
2738  //          applicable conversion functions (13.3.1.6) and choosing
2739  //          the best one through overload resolution (13.3)),
2740  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2741    // FIXME: Look for conversions in base classes!
2742    CXXRecordDecl *T2RecordDecl
2743      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2744
2745    OverloadCandidateSet CandidateSet;
2746    OverloadedFunctionDecl *Conversions
2747      = T2RecordDecl->getConversionFunctions();
2748    for (OverloadedFunctionDecl::function_iterator Func
2749           = Conversions->function_begin();
2750         Func != Conversions->function_end(); ++Func) {
2751      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2752
2753      // If the conversion function doesn't return a reference type,
2754      // it can't be considered for this conversion.
2755      if (Conv->getConversionType()->isLValueReferenceType() &&
2756          (AllowExplicit || !Conv->isExplicit()))
2757        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2758    }
2759
2760    OverloadCandidateSet::iterator Best;
2761    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2762    case OR_Success:
2763      // This is a direct binding.
2764      BindsDirectly = true;
2765
2766      if (ICS) {
2767        // C++ [over.ics.ref]p1:
2768        //
2769        //   [...] If the parameter binds directly to the result of
2770        //   applying a conversion function to the argument
2771        //   expression, the implicit conversion sequence is a
2772        //   user-defined conversion sequence (13.3.3.1.2), with the
2773        //   second standard conversion sequence either an identity
2774        //   conversion or, if the conversion function returns an
2775        //   entity of a type that is a derived class of the parameter
2776        //   type, a derived-to-base Conversion.
2777        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2778        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2779        ICS->UserDefined.After = Best->FinalConversion;
2780        ICS->UserDefined.ConversionFunction = Best->Function;
2781        assert(ICS->UserDefined.After.ReferenceBinding &&
2782               ICS->UserDefined.After.DirectBinding &&
2783               "Expected a direct reference binding!");
2784        return false;
2785      } else {
2786        // Perform the conversion.
2787        // FIXME: Binding to a subobject of the lvalue is going to require more
2788        // AST annotation than this.
2789        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2790      }
2791      break;
2792
2793    case OR_Ambiguous:
2794      assert(false && "Ambiguous reference binding conversions not implemented.");
2795      return true;
2796
2797    case OR_No_Viable_Function:
2798    case OR_Deleted:
2799      // There was no suitable conversion, or we found a deleted
2800      // conversion; continue with other checks.
2801      break;
2802    }
2803  }
2804
2805  if (BindsDirectly) {
2806    // C++ [dcl.init.ref]p4:
2807    //   [...] In all cases where the reference-related or
2808    //   reference-compatible relationship of two types is used to
2809    //   establish the validity of a reference binding, and T1 is a
2810    //   base class of T2, a program that necessitates such a binding
2811    //   is ill-formed if T1 is an inaccessible (clause 11) or
2812    //   ambiguous (10.2) base class of T2.
2813    //
2814    // Note that we only check this condition when we're allowed to
2815    // complain about errors, because we should not be checking for
2816    // ambiguity (or inaccessibility) unless the reference binding
2817    // actually happens.
2818    if (DerivedToBase)
2819      return CheckDerivedToBaseConversion(T2, T1,
2820                                          Init->getSourceRange().getBegin(),
2821                                          Init->getSourceRange());
2822    else
2823      return false;
2824  }
2825
2826  //     -- Otherwise, the reference shall be to a non-volatile const
2827  //        type (i.e., cv1 shall be const), or the reference shall be an
2828  //        rvalue reference and the initializer expression shall be an rvalue.
2829  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2830    if (!ICS)
2831      Diag(Init->getSourceRange().getBegin(),
2832           diag::err_not_reference_to_const_init)
2833        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2834        << T2 << Init->getSourceRange();
2835    return true;
2836  }
2837
2838  //       -- If the initializer expression is an rvalue, with T2 a
2839  //          class type, and “cv1 T1” is reference-compatible with
2840  //          “cv2 T2,” the reference is bound in one of the
2841  //          following ways (the choice is implementation-defined):
2842  //
2843  //          -- The reference is bound to the object represented by
2844  //             the rvalue (see 3.10) or to a sub-object within that
2845  //             object.
2846  //
2847  //          -- A temporary of type “cv1 T2” [sic] is created, and
2848  //             a constructor is called to copy the entire rvalue
2849  //             object into the temporary. The reference is bound to
2850  //             the temporary or to a sub-object within the
2851  //             temporary.
2852  //
2853  //          The constructor that would be used to make the copy
2854  //          shall be callable whether or not the copy is actually
2855  //          done.
2856  //
2857  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2858  // freedom, so we will always take the first option and never build
2859  // a temporary in this case. FIXME: We will, however, have to check
2860  // for the presence of a copy constructor in C++98/03 mode.
2861  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2862      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2863    if (ICS) {
2864      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2865      ICS->Standard.First = ICK_Identity;
2866      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2867      ICS->Standard.Third = ICK_Identity;
2868      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2869      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2870      ICS->Standard.ReferenceBinding = true;
2871      ICS->Standard.DirectBinding = false;
2872      ICS->Standard.RRefBinding = isRValRef;
2873      ICS->Standard.CopyConstructor = 0;
2874    } else {
2875      // FIXME: Binding to a subobject of the rvalue is going to require more
2876      // AST annotation than this.
2877      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2878    }
2879    return false;
2880  }
2881
2882  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2883  //          initialized from the initializer expression using the
2884  //          rules for a non-reference copy initialization (8.5). The
2885  //          reference is then bound to the temporary. If T1 is
2886  //          reference-related to T2, cv1 must be the same
2887  //          cv-qualification as, or greater cv-qualification than,
2888  //          cv2; otherwise, the program is ill-formed.
2889  if (RefRelationship == Ref_Related) {
2890    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2891    // we would be reference-compatible or reference-compatible with
2892    // added qualification. But that wasn't the case, so the reference
2893    // initialization fails.
2894    if (!ICS)
2895      Diag(Init->getSourceRange().getBegin(),
2896           diag::err_reference_init_drops_quals)
2897        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2898        << T2 << Init->getSourceRange();
2899    return true;
2900  }
2901
2902  // If at least one of the types is a class type, the types are not
2903  // related, and we aren't allowed any user conversions, the
2904  // reference binding fails. This case is important for breaking
2905  // recursion, since TryImplicitConversion below will attempt to
2906  // create a temporary through the use of a copy constructor.
2907  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2908      (T1->isRecordType() || T2->isRecordType())) {
2909    if (!ICS)
2910      Diag(Init->getSourceRange().getBegin(),
2911           diag::err_typecheck_convert_incompatible)
2912        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2913    return true;
2914  }
2915
2916  // Actually try to convert the initializer to T1.
2917  if (ICS) {
2918    // C++ [over.ics.ref]p2:
2919    //
2920    //   When a parameter of reference type is not bound directly to
2921    //   an argument expression, the conversion sequence is the one
2922    //   required to convert the argument expression to the
2923    //   underlying type of the reference according to
2924    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2925    //   to copy-initializing a temporary of the underlying type with
2926    //   the argument expression. Any difference in top-level
2927    //   cv-qualification is subsumed by the initialization itself
2928    //   and does not constitute a conversion.
2929    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2930    // Of course, that's still a reference binding.
2931    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2932      ICS->Standard.ReferenceBinding = true;
2933      ICS->Standard.RRefBinding = isRValRef;
2934    } else if(ICS->ConversionKind ==
2935              ImplicitConversionSequence::UserDefinedConversion) {
2936      ICS->UserDefined.After.ReferenceBinding = true;
2937      ICS->UserDefined.After.RRefBinding = isRValRef;
2938    }
2939    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2940  } else {
2941    return PerformImplicitConversion(Init, T1, "initializing");
2942  }
2943}
2944
2945/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2946/// of this overloaded operator is well-formed. If so, returns false;
2947/// otherwise, emits appropriate diagnostics and returns true.
2948bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2949  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2950         "Expected an overloaded operator declaration");
2951
2952  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2953
2954  // C++ [over.oper]p5:
2955  //   The allocation and deallocation functions, operator new,
2956  //   operator new[], operator delete and operator delete[], are
2957  //   described completely in 3.7.3. The attributes and restrictions
2958  //   found in the rest of this subclause do not apply to them unless
2959  //   explicitly stated in 3.7.3.
2960  // FIXME: Write a separate routine for checking this. For now, just allow it.
2961  if (Op == OO_New || Op == OO_Array_New ||
2962      Op == OO_Delete || Op == OO_Array_Delete)
2963    return false;
2964
2965  // C++ [over.oper]p6:
2966  //   An operator function shall either be a non-static member
2967  //   function or be a non-member function and have at least one
2968  //   parameter whose type is a class, a reference to a class, an
2969  //   enumeration, or a reference to an enumeration.
2970  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2971    if (MethodDecl->isStatic())
2972      return Diag(FnDecl->getLocation(),
2973                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2974  } else {
2975    bool ClassOrEnumParam = false;
2976    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2977                                   ParamEnd = FnDecl->param_end();
2978         Param != ParamEnd; ++Param) {
2979      QualType ParamType = (*Param)->getType().getNonReferenceType();
2980      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2981          ParamType->isEnumeralType()) {
2982        ClassOrEnumParam = true;
2983        break;
2984      }
2985    }
2986
2987    if (!ClassOrEnumParam)
2988      return Diag(FnDecl->getLocation(),
2989                  diag::err_operator_overload_needs_class_or_enum)
2990        << FnDecl->getDeclName();
2991  }
2992
2993  // C++ [over.oper]p8:
2994  //   An operator function cannot have default arguments (8.3.6),
2995  //   except where explicitly stated below.
2996  //
2997  // Only the function-call operator allows default arguments
2998  // (C++ [over.call]p1).
2999  if (Op != OO_Call) {
3000    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3001         Param != FnDecl->param_end(); ++Param) {
3002      if ((*Param)->hasUnparsedDefaultArg())
3003        return Diag((*Param)->getLocation(),
3004                    diag::err_operator_overload_default_arg)
3005          << FnDecl->getDeclName();
3006      else if (Expr *DefArg = (*Param)->getDefaultArg())
3007        return Diag((*Param)->getLocation(),
3008                    diag::err_operator_overload_default_arg)
3009          << FnDecl->getDeclName() << DefArg->getSourceRange();
3010    }
3011  }
3012
3013  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3014    { false, false, false }
3015#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3016    , { Unary, Binary, MemberOnly }
3017#include "clang/Basic/OperatorKinds.def"
3018  };
3019
3020  bool CanBeUnaryOperator = OperatorUses[Op][0];
3021  bool CanBeBinaryOperator = OperatorUses[Op][1];
3022  bool MustBeMemberOperator = OperatorUses[Op][2];
3023
3024  // C++ [over.oper]p8:
3025  //   [...] Operator functions cannot have more or fewer parameters
3026  //   than the number required for the corresponding operator, as
3027  //   described in the rest of this subclause.
3028  unsigned NumParams = FnDecl->getNumParams()
3029                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3030  if (Op != OO_Call &&
3031      ((NumParams == 1 && !CanBeUnaryOperator) ||
3032       (NumParams == 2 && !CanBeBinaryOperator) ||
3033       (NumParams < 1) || (NumParams > 2))) {
3034    // We have the wrong number of parameters.
3035    unsigned ErrorKind;
3036    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3037      ErrorKind = 2;  // 2 -> unary or binary.
3038    } else if (CanBeUnaryOperator) {
3039      ErrorKind = 0;  // 0 -> unary
3040    } else {
3041      assert(CanBeBinaryOperator &&
3042             "All non-call overloaded operators are unary or binary!");
3043      ErrorKind = 1;  // 1 -> binary
3044    }
3045
3046    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3047      << FnDecl->getDeclName() << NumParams << ErrorKind;
3048  }
3049
3050  // Overloaded operators other than operator() cannot be variadic.
3051  if (Op != OO_Call &&
3052      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3053    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3054      << FnDecl->getDeclName();
3055  }
3056
3057  // Some operators must be non-static member functions.
3058  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3059    return Diag(FnDecl->getLocation(),
3060                diag::err_operator_overload_must_be_member)
3061      << FnDecl->getDeclName();
3062  }
3063
3064  // C++ [over.inc]p1:
3065  //   The user-defined function called operator++ implements the
3066  //   prefix and postfix ++ operator. If this function is a member
3067  //   function with no parameters, or a non-member function with one
3068  //   parameter of class or enumeration type, it defines the prefix
3069  //   increment operator ++ for objects of that type. If the function
3070  //   is a member function with one parameter (which shall be of type
3071  //   int) or a non-member function with two parameters (the second
3072  //   of which shall be of type int), it defines the postfix
3073  //   increment operator ++ for objects of that type.
3074  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3075    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3076    bool ParamIsInt = false;
3077    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3078      ParamIsInt = BT->getKind() == BuiltinType::Int;
3079
3080    if (!ParamIsInt)
3081      return Diag(LastParam->getLocation(),
3082                  diag::err_operator_overload_post_incdec_must_be_int)
3083        << LastParam->getType() << (Op == OO_MinusMinus);
3084  }
3085
3086  // Notify the class if it got an assignment operator.
3087  if (Op == OO_Equal) {
3088    // Would have returned earlier otherwise.
3089    assert(isa<CXXMethodDecl>(FnDecl) &&
3090      "Overloaded = not member, but not filtered.");
3091    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3092    Method->getParent()->addedAssignmentOperator(Context, Method);
3093  }
3094
3095  return false;
3096}
3097
3098/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3099/// linkage specification, including the language and (if present)
3100/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3101/// the location of the language string literal, which is provided
3102/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3103/// the '{' brace. Otherwise, this linkage specification does not
3104/// have any braces.
3105Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3106                                                     SourceLocation ExternLoc,
3107                                                     SourceLocation LangLoc,
3108                                                     const char *Lang,
3109                                                     unsigned StrSize,
3110                                                     SourceLocation LBraceLoc) {
3111  LinkageSpecDecl::LanguageIDs Language;
3112  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3113    Language = LinkageSpecDecl::lang_c;
3114  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3115    Language = LinkageSpecDecl::lang_cxx;
3116  else {
3117    Diag(LangLoc, diag::err_bad_language);
3118    return DeclPtrTy();
3119  }
3120
3121  // FIXME: Add all the various semantics of linkage specifications
3122
3123  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3124                                               LangLoc, Language,
3125                                               LBraceLoc.isValid());
3126  CurContext->addDecl(D);
3127  PushDeclContext(S, D);
3128  return DeclPtrTy::make(D);
3129}
3130
3131/// ActOnFinishLinkageSpecification - Completely the definition of
3132/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3133/// valid, it's the position of the closing '}' brace in a linkage
3134/// specification that uses braces.
3135Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3136                                                      DeclPtrTy LinkageSpec,
3137                                                      SourceLocation RBraceLoc) {
3138  if (LinkageSpec)
3139    PopDeclContext();
3140  return LinkageSpec;
3141}
3142
3143/// \brief Perform semantic analysis for the variable declaration that
3144/// occurs within a C++ catch clause, returning the newly-created
3145/// variable.
3146VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3147                                         IdentifierInfo *Name,
3148                                         SourceLocation Loc,
3149                                         SourceRange Range) {
3150  bool Invalid = false;
3151
3152  // Arrays and functions decay.
3153  if (ExDeclType->isArrayType())
3154    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3155  else if (ExDeclType->isFunctionType())
3156    ExDeclType = Context.getPointerType(ExDeclType);
3157
3158  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3159  // The exception-declaration shall not denote a pointer or reference to an
3160  // incomplete type, other than [cv] void*.
3161  // N2844 forbids rvalue references.
3162  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3163    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3164    Invalid = true;
3165  }
3166
3167  QualType BaseType = ExDeclType;
3168  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3169  unsigned DK = diag::err_catch_incomplete;
3170  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3171    BaseType = Ptr->getPointeeType();
3172    Mode = 1;
3173    DK = diag::err_catch_incomplete_ptr;
3174  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3175    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3176    BaseType = Ref->getPointeeType();
3177    Mode = 2;
3178    DK = diag::err_catch_incomplete_ref;
3179  }
3180  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3181      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3182    Invalid = true;
3183
3184  if (!Invalid && !ExDeclType->isDependentType() &&
3185      RequireNonAbstractType(Loc, ExDeclType,
3186                             diag::err_abstract_type_in_decl,
3187                             AbstractVariableType))
3188    Invalid = true;
3189
3190  // FIXME: Need to test for ability to copy-construct and destroy the
3191  // exception variable.
3192
3193  // FIXME: Need to check for abstract classes.
3194
3195  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3196                                    Name, ExDeclType, VarDecl::None,
3197                                    Range.getBegin());
3198
3199  if (Invalid)
3200    ExDecl->setInvalidDecl();
3201
3202  return ExDecl;
3203}
3204
3205/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3206/// handler.
3207Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3208  QualType ExDeclType = GetTypeForDeclarator(D, S);
3209
3210  bool Invalid = D.isInvalidType();
3211  IdentifierInfo *II = D.getIdentifier();
3212  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3213    // The scope should be freshly made just for us. There is just no way
3214    // it contains any previous declaration.
3215    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3216    if (PrevDecl->isTemplateParameter()) {
3217      // Maybe we will complain about the shadowed template parameter.
3218      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3219    }
3220  }
3221
3222  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3223    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3224      << D.getCXXScopeSpec().getRange();
3225    Invalid = true;
3226  }
3227
3228  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3229                                              D.getIdentifier(),
3230                                              D.getIdentifierLoc(),
3231                                            D.getDeclSpec().getSourceRange());
3232
3233  if (Invalid)
3234    ExDecl->setInvalidDecl();
3235
3236  // Add the exception declaration into this scope.
3237  if (II)
3238    PushOnScopeChains(ExDecl, S);
3239  else
3240    CurContext->addDecl(ExDecl);
3241
3242  ProcessDeclAttributes(S, ExDecl, D);
3243  return DeclPtrTy::make(ExDecl);
3244}
3245
3246Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3247                                                   ExprArg assertexpr,
3248                                                   ExprArg assertmessageexpr) {
3249  Expr *AssertExpr = (Expr *)assertexpr.get();
3250  StringLiteral *AssertMessage =
3251    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3252
3253  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3254    llvm::APSInt Value(32);
3255    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3256      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3257        AssertExpr->getSourceRange();
3258      return DeclPtrTy();
3259    }
3260
3261    if (Value == 0) {
3262      std::string str(AssertMessage->getStrData(),
3263                      AssertMessage->getByteLength());
3264      Diag(AssertLoc, diag::err_static_assert_failed)
3265        << str << AssertExpr->getSourceRange();
3266    }
3267  }
3268
3269  assertexpr.release();
3270  assertmessageexpr.release();
3271  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3272                                        AssertExpr, AssertMessage);
3273
3274  CurContext->addDecl(Decl);
3275  return DeclPtrTy::make(Decl);
3276}
3277
3278bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3279  if (!(S->getFlags() & Scope::ClassScope)) {
3280    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3281    return true;
3282  }
3283
3284  return false;
3285}
3286
3287void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3288  Decl *Dcl = dcl.getAs<Decl>();
3289  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3290  if (!Fn) {
3291    Diag(DelLoc, diag::err_deleted_non_function);
3292    return;
3293  }
3294  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3295    Diag(DelLoc, diag::err_deleted_decl_not_first);
3296    Diag(Prev->getLocation(), diag::note_previous_declaration);
3297    // If the declaration wasn't the first, we delete the function anyway for
3298    // recovery.
3299  }
3300  Fn->setDeleted();
3301}
3302
3303static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3304  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3305       ++CI) {
3306    Stmt *SubStmt = *CI;
3307    if (!SubStmt)
3308      continue;
3309    if (isa<ReturnStmt>(SubStmt))
3310      Self.Diag(SubStmt->getSourceRange().getBegin(),
3311           diag::err_return_in_constructor_handler);
3312    if (!isa<Expr>(SubStmt))
3313      SearchForReturnInStmt(Self, SubStmt);
3314  }
3315}
3316
3317void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3318  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3319    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3320    SearchForReturnInStmt(*this, Handler);
3321  }
3322}
3323
3324bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3325                                             const CXXMethodDecl *Old) {
3326  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3327  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3328
3329  QualType CNewTy = Context.getCanonicalType(NewTy);
3330  QualType COldTy = Context.getCanonicalType(OldTy);
3331
3332  if (CNewTy == COldTy &&
3333      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3334    return false;
3335
3336  // Check if the return types are covariant
3337  QualType NewClassTy, OldClassTy;
3338
3339  /// Both types must be pointers or references to classes.
3340  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3341    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3342      NewClassTy = NewPT->getPointeeType();
3343      OldClassTy = OldPT->getPointeeType();
3344    }
3345  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3346    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3347      NewClassTy = NewRT->getPointeeType();
3348      OldClassTy = OldRT->getPointeeType();
3349    }
3350  }
3351
3352  // The return types aren't either both pointers or references to a class type.
3353  if (NewClassTy.isNull()) {
3354    Diag(New->getLocation(),
3355         diag::err_different_return_type_for_overriding_virtual_function)
3356      << New->getDeclName() << NewTy << OldTy;
3357    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3358
3359    return true;
3360  }
3361
3362  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3363    // Check if the new class derives from the old class.
3364    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3365      Diag(New->getLocation(),
3366           diag::err_covariant_return_not_derived)
3367      << New->getDeclName() << NewTy << OldTy;
3368      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3369      return true;
3370    }
3371
3372    // Check if we the conversion from derived to base is valid.
3373    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3374                      diag::err_covariant_return_inaccessible_base,
3375                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3376                      // FIXME: Should this point to the return type?
3377                      New->getLocation(), SourceRange(), New->getDeclName())) {
3378      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3379      return true;
3380    }
3381  }
3382
3383  // The qualifiers of the return types must be the same.
3384  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3385    Diag(New->getLocation(),
3386         diag::err_covariant_return_type_different_qualifications)
3387    << New->getDeclName() << NewTy << OldTy;
3388    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3389    return true;
3390  };
3391
3392
3393  // The new class type must have the same or less qualifiers as the old type.
3394  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3395    Diag(New->getLocation(),
3396         diag::err_covariant_return_type_class_type_more_qualified)
3397    << New->getDeclName() << NewTy << OldTy;
3398    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3399    return true;
3400  };
3401
3402  return false;
3403}
3404
3405bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3406                                                const CXXMethodDecl *Old)
3407{
3408  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3409                                  diag::note_overridden_virtual_function,
3410                                  Old->getType()->getAsFunctionProtoType(),
3411                                  Old->getLocation(),
3412                                  New->getType()->getAsFunctionProtoType(),
3413                                  New->getLocation());
3414}
3415
3416/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3417/// initializer for the declaration 'Dcl'.
3418/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3419/// static data member of class X, names should be looked up in the scope of
3420/// class X.
3421void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3422  Decl *D = Dcl.getAs<Decl>();
3423  // If there is no declaration, there was an error parsing it.
3424  if (D == 0)
3425    return;
3426
3427  // Check whether it is a declaration with a nested name specifier like
3428  // int foo::bar;
3429  if (!D->isOutOfLine())
3430    return;
3431
3432  // C++ [basic.lookup.unqual]p13
3433  //
3434  // A name used in the definition of a static data member of class X
3435  // (after the qualified-id of the static member) is looked up as if the name
3436  // was used in a member function of X.
3437
3438  // Change current context into the context of the initializing declaration.
3439  EnterDeclaratorContext(S, D->getDeclContext());
3440}
3441
3442/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3443/// initializer for the declaration 'Dcl'.
3444void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3445  Decl *D = Dcl.getAs<Decl>();
3446  // If there is no declaration, there was an error parsing it.
3447  if (D == 0)
3448    return;
3449
3450  // Check whether it is a declaration with a nested name specifier like
3451  // int foo::bar;
3452  if (!D->isOutOfLine())
3453    return;
3454
3455  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3456  ExitDeclaratorContext(S);
3457}
3458