SemaDeclCXX.cpp revision 35366a67baa970c287c714c957cf78a4131cf60d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor’s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor’s
682  //   definition. [Note: if the constructor’s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor’s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
778                                SourceLocation ColonLoc,
779                                MemInitTy **MemInits, unsigned NumMemInits) {
780  if (!ConstructorDecl)
781    return;
782
783  CXXConstructorDecl *Constructor
784    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
785
786  if (!Constructor) {
787    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
788    return;
789  }
790  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
791  bool err = false;
792  for (unsigned i = 0; i < NumMemInits; i++) {
793    CXXBaseOrMemberInitializer *Member =
794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
795    void *KeyToMember = Member->getBaseOrMember();
796    // For fields injected into the class via declaration of an anonymous union,
797    // use its anonymous union class declaration as the unique key.
798    if (FieldDecl *Field = Member->getMember())
799      if (Field->getDeclContext()->isRecord() &&
800          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
801        KeyToMember = static_cast<void *>(Field->getDeclContext());
802    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
803    if (!PrevMember) {
804      PrevMember = Member;
805      continue;
806    }
807    if (FieldDecl *Field = Member->getMember())
808      Diag(Member->getSourceLocation(),
809           diag::error_multiple_mem_initialization)
810      << Field->getNameAsString();
811    else {
812      Type *BaseClass = Member->getBaseClass();
813      assert(BaseClass && "ActOnMemInitializers - neither field or base");
814      Diag(Member->getSourceLocation(),
815           diag::error_multiple_base_initialization)
816        << BaseClass->getDesugaredType(true);
817    }
818    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
819      << 0;
820    err = true;
821  }
822  if (!err) {
823    Constructor->setBaseOrMemberInitializers(Context,
824                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
825                    NumMemInits);
826    // Also issue warning if order of ctor-initializer list does not match order
827    // of 1) base class declarations and 2) order of non-static data members.
828    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
829
830    CXXRecordDecl *ClassDecl
831      = cast<CXXRecordDecl>(Constructor->getDeclContext());
832    // Push virtual bases before others.
833    for (CXXRecordDecl::base_class_iterator VBase =
834         ClassDecl->vbases_begin(),
835         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
836      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
837
838    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
839         E = ClassDecl->bases_end(); Base != E; ++Base) {
840      // Virtuals are alread in the virtual base list and are constructed
841      // first.
842      if (Base->isVirtual())
843        continue;
844      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
845    }
846
847    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
848         E = ClassDecl->field_end(); Field != E; ++Field)
849      AllBaseOrMembers.push_back(*Field);
850
851    int Last = AllBaseOrMembers.size();
852    int curIndex = 0;
853    CXXBaseOrMemberInitializer *PrevMember = 0;
854    for (unsigned i = 0; i < NumMemInits; i++) {
855      CXXBaseOrMemberInitializer *Member =
856        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
857      void *MemberInCtorList;
858      if (Member->isBaseInitializer())
859        MemberInCtorList = Member->getBaseClass();
860      else
861        MemberInCtorList = Member->getMember();
862
863      int j;
864      for (j = curIndex; j < Last; j++)
865        if (MemberInCtorList == AllBaseOrMembers[j])
866          break;
867      if (j == Last) {
868        if (!PrevMember)
869          continue;
870        // Initializer as specified in ctor-initializer list is out of order.
871        // Issue a warning diagnostic.
872        if (PrevMember->isBaseInitializer()) {
873          // Diagnostics is for an initialized base class.
874          Type *BaseClass = PrevMember->getBaseClass();
875          Diag(PrevMember->getSourceLocation(),
876               diag::warn_base_initialized)
877                << BaseClass->getDesugaredType(true);
878        }
879        else {
880          FieldDecl *Field = PrevMember->getMember();
881          Diag(PrevMember->getSourceLocation(),
882               diag::warn_field_initialized)
883            << Field->getNameAsString();
884        }
885        // Also the note!
886        if (FieldDecl *Field = Member->getMember())
887          Diag(Member->getSourceLocation(),
888               diag::note_fieldorbase_initialized_here) << 0
889            << Field->getNameAsString();
890        else {
891          Type *BaseClass = Member->getBaseClass();
892          Diag(Member->getSourceLocation(),
893               diag::note_fieldorbase_initialized_here) << 1
894            << BaseClass->getDesugaredType(true);
895        }
896      }
897      PrevMember = Member;
898      for (curIndex=0; curIndex < Last; curIndex++)
899        if (MemberInCtorList == AllBaseOrMembers[curIndex])
900          break;
901    }
902  }
903}
904
905void Sema::ActOnDefaultCDtorInitializers(DeclPtrTy CDtorDecl) {
906  if (!CDtorDecl)
907    return;
908
909  if (CXXConstructorDecl *Constructor
910      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
911    Constructor->setBaseOrMemberInitializers(Context,
912                                           (CXXBaseOrMemberInitializer **)0, 0);
913  else
914    if (CXXDestructorDecl *Destructor
915        = dyn_cast<CXXDestructorDecl>(CDtorDecl.getAs<Decl>()))
916      Destructor->setBaseOrMemberDestructions(Context);
917}
918
919namespace {
920  /// PureVirtualMethodCollector - traverses a class and its superclasses
921  /// and determines if it has any pure virtual methods.
922  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
923    ASTContext &Context;
924
925  public:
926    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
927
928  private:
929    MethodList Methods;
930
931    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
932
933  public:
934    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
935      : Context(Ctx) {
936
937      MethodList List;
938      Collect(RD, List);
939
940      // Copy the temporary list to methods, and make sure to ignore any
941      // null entries.
942      for (size_t i = 0, e = List.size(); i != e; ++i) {
943        if (List[i])
944          Methods.push_back(List[i]);
945      }
946    }
947
948    bool empty() const { return Methods.empty(); }
949
950    MethodList::const_iterator methods_begin() { return Methods.begin(); }
951    MethodList::const_iterator methods_end() { return Methods.end(); }
952  };
953
954  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
955                                           MethodList& Methods) {
956    // First, collect the pure virtual methods for the base classes.
957    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
958         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
959      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
960        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
961        if (BaseDecl && BaseDecl->isAbstract())
962          Collect(BaseDecl, Methods);
963      }
964    }
965
966    // Next, zero out any pure virtual methods that this class overrides.
967    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
968
969    MethodSetTy OverriddenMethods;
970    size_t MethodsSize = Methods.size();
971
972    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
973         i != e; ++i) {
974      // Traverse the record, looking for methods.
975      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
976        // If the method is pure virtual, add it to the methods vector.
977        if (MD->isPure()) {
978          Methods.push_back(MD);
979          continue;
980        }
981
982        // Otherwise, record all the overridden methods in our set.
983        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
984             E = MD->end_overridden_methods(); I != E; ++I) {
985          // Keep track of the overridden methods.
986          OverriddenMethods.insert(*I);
987        }
988      }
989    }
990
991    // Now go through the methods and zero out all the ones we know are
992    // overridden.
993    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
994      if (OverriddenMethods.count(Methods[i]))
995        Methods[i] = 0;
996    }
997
998  }
999}
1000
1001bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1002                                  unsigned DiagID, AbstractDiagSelID SelID,
1003                                  const CXXRecordDecl *CurrentRD) {
1004
1005  if (!getLangOptions().CPlusPlus)
1006    return false;
1007
1008  if (const ArrayType *AT = Context.getAsArrayType(T))
1009    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1010                                  CurrentRD);
1011
1012  if (const PointerType *PT = T->getAsPointerType()) {
1013    // Find the innermost pointer type.
1014    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1015      PT = T;
1016
1017    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1018      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1019                                    CurrentRD);
1020  }
1021
1022  const RecordType *RT = T->getAsRecordType();
1023  if (!RT)
1024    return false;
1025
1026  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1027  if (!RD)
1028    return false;
1029
1030  if (CurrentRD && CurrentRD != RD)
1031    return false;
1032
1033  if (!RD->isAbstract())
1034    return false;
1035
1036  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1037
1038  // Check if we've already emitted the list of pure virtual functions for this
1039  // class.
1040  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1041    return true;
1042
1043  PureVirtualMethodCollector Collector(Context, RD);
1044
1045  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1046       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1047    const CXXMethodDecl *MD = *I;
1048
1049    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1050      MD->getDeclName();
1051  }
1052
1053  if (!PureVirtualClassDiagSet)
1054    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1055  PureVirtualClassDiagSet->insert(RD);
1056
1057  return true;
1058}
1059
1060namespace {
1061  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1062    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1063    Sema &SemaRef;
1064    CXXRecordDecl *AbstractClass;
1065
1066    bool VisitDeclContext(const DeclContext *DC) {
1067      bool Invalid = false;
1068
1069      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1070           E = DC->decls_end(); I != E; ++I)
1071        Invalid |= Visit(*I);
1072
1073      return Invalid;
1074    }
1075
1076  public:
1077    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1078      : SemaRef(SemaRef), AbstractClass(ac) {
1079        Visit(SemaRef.Context.getTranslationUnitDecl());
1080    }
1081
1082    bool VisitFunctionDecl(const FunctionDecl *FD) {
1083      if (FD->isThisDeclarationADefinition()) {
1084        // No need to do the check if we're in a definition, because it requires
1085        // that the return/param types are complete.
1086        // because that requires
1087        return VisitDeclContext(FD);
1088      }
1089
1090      // Check the return type.
1091      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1092      bool Invalid =
1093        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1094                                       diag::err_abstract_type_in_decl,
1095                                       Sema::AbstractReturnType,
1096                                       AbstractClass);
1097
1098      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1099           E = FD->param_end(); I != E; ++I) {
1100        const ParmVarDecl *VD = *I;
1101        Invalid |=
1102          SemaRef.RequireNonAbstractType(VD->getLocation(),
1103                                         VD->getOriginalType(),
1104                                         diag::err_abstract_type_in_decl,
1105                                         Sema::AbstractParamType,
1106                                         AbstractClass);
1107      }
1108
1109      return Invalid;
1110    }
1111
1112    bool VisitDecl(const Decl* D) {
1113      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1114        return VisitDeclContext(DC);
1115
1116      return false;
1117    }
1118  };
1119}
1120
1121void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1122                                             DeclPtrTy TagDecl,
1123                                             SourceLocation LBrac,
1124                                             SourceLocation RBrac) {
1125  if (!TagDecl)
1126    return;
1127
1128  AdjustDeclIfTemplate(TagDecl);
1129  ActOnFields(S, RLoc, TagDecl,
1130              (DeclPtrTy*)FieldCollector->getCurFields(),
1131              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1132
1133  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1134  if (!RD->isAbstract()) {
1135    // Collect all the pure virtual methods and see if this is an abstract
1136    // class after all.
1137    PureVirtualMethodCollector Collector(Context, RD);
1138    if (!Collector.empty())
1139      RD->setAbstract(true);
1140  }
1141
1142  if (RD->isAbstract())
1143    AbstractClassUsageDiagnoser(*this, RD);
1144
1145  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1146    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1147         i != e; ++i) {
1148      // All the nonstatic data members must have trivial constructors.
1149      QualType FTy = i->getType();
1150      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1151        FTy = AT->getElementType();
1152
1153      if (const RecordType *RT = FTy->getAsRecordType()) {
1154        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1155
1156        if (!FieldRD->hasTrivialConstructor())
1157          RD->setHasTrivialConstructor(false);
1158        if (!FieldRD->hasTrivialDestructor())
1159          RD->setHasTrivialDestructor(false);
1160
1161        // If RD has neither a trivial constructor nor a trivial destructor
1162        // we don't need to continue checking.
1163        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1164          break;
1165      }
1166    }
1167  }
1168
1169  if (!RD->isDependentType())
1170    AddImplicitlyDeclaredMembersToClass(RD);
1171}
1172
1173/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1174/// special functions, such as the default constructor, copy
1175/// constructor, or destructor, to the given C++ class (C++
1176/// [special]p1).  This routine can only be executed just before the
1177/// definition of the class is complete.
1178void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1179  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1180  ClassType = Context.getCanonicalType(ClassType);
1181
1182  // FIXME: Implicit declarations have exception specifications, which are
1183  // the union of the specifications of the implicitly called functions.
1184
1185  if (!ClassDecl->hasUserDeclaredConstructor()) {
1186    // C++ [class.ctor]p5:
1187    //   A default constructor for a class X is a constructor of class X
1188    //   that can be called without an argument. If there is no
1189    //   user-declared constructor for class X, a default constructor is
1190    //   implicitly declared. An implicitly-declared default constructor
1191    //   is an inline public member of its class.
1192    DeclarationName Name
1193      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1194    CXXConstructorDecl *DefaultCon =
1195      CXXConstructorDecl::Create(Context, ClassDecl,
1196                                 ClassDecl->getLocation(), Name,
1197                                 Context.getFunctionType(Context.VoidTy,
1198                                                         0, 0, false, 0),
1199                                 /*isExplicit=*/false,
1200                                 /*isInline=*/true,
1201                                 /*isImplicitlyDeclared=*/true);
1202    DefaultCon->setAccess(AS_public);
1203    DefaultCon->setImplicit();
1204    ClassDecl->addDecl(DefaultCon);
1205  }
1206
1207  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1208    // C++ [class.copy]p4:
1209    //   If the class definition does not explicitly declare a copy
1210    //   constructor, one is declared implicitly.
1211
1212    // C++ [class.copy]p5:
1213    //   The implicitly-declared copy constructor for a class X will
1214    //   have the form
1215    //
1216    //       X::X(const X&)
1217    //
1218    //   if
1219    bool HasConstCopyConstructor = true;
1220
1221    //     -- each direct or virtual base class B of X has a copy
1222    //        constructor whose first parameter is of type const B& or
1223    //        const volatile B&, and
1224    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1225         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1226      const CXXRecordDecl *BaseClassDecl
1227        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1228      HasConstCopyConstructor
1229        = BaseClassDecl->hasConstCopyConstructor(Context);
1230    }
1231
1232    //     -- for all the nonstatic data members of X that are of a
1233    //        class type M (or array thereof), each such class type
1234    //        has a copy constructor whose first parameter is of type
1235    //        const M& or const volatile M&.
1236    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1237         HasConstCopyConstructor && Field != ClassDecl->field_end();
1238         ++Field) {
1239      QualType FieldType = (*Field)->getType();
1240      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1241        FieldType = Array->getElementType();
1242      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1243        const CXXRecordDecl *FieldClassDecl
1244          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1245        HasConstCopyConstructor
1246          = FieldClassDecl->hasConstCopyConstructor(Context);
1247      }
1248    }
1249
1250    //   Otherwise, the implicitly declared copy constructor will have
1251    //   the form
1252    //
1253    //       X::X(X&)
1254    QualType ArgType = ClassType;
1255    if (HasConstCopyConstructor)
1256      ArgType = ArgType.withConst();
1257    ArgType = Context.getLValueReferenceType(ArgType);
1258
1259    //   An implicitly-declared copy constructor is an inline public
1260    //   member of its class.
1261    DeclarationName Name
1262      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1263    CXXConstructorDecl *CopyConstructor
1264      = CXXConstructorDecl::Create(Context, ClassDecl,
1265                                   ClassDecl->getLocation(), Name,
1266                                   Context.getFunctionType(Context.VoidTy,
1267                                                           &ArgType, 1,
1268                                                           false, 0),
1269                                   /*isExplicit=*/false,
1270                                   /*isInline=*/true,
1271                                   /*isImplicitlyDeclared=*/true);
1272    CopyConstructor->setAccess(AS_public);
1273    CopyConstructor->setImplicit();
1274
1275    // Add the parameter to the constructor.
1276    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1277                                                 ClassDecl->getLocation(),
1278                                                 /*IdentifierInfo=*/0,
1279                                                 ArgType, VarDecl::None, 0);
1280    CopyConstructor->setParams(Context, &FromParam, 1);
1281    ClassDecl->addDecl(CopyConstructor);
1282  }
1283
1284  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1285    // Note: The following rules are largely analoguous to the copy
1286    // constructor rules. Note that virtual bases are not taken into account
1287    // for determining the argument type of the operator. Note also that
1288    // operators taking an object instead of a reference are allowed.
1289    //
1290    // C++ [class.copy]p10:
1291    //   If the class definition does not explicitly declare a copy
1292    //   assignment operator, one is declared implicitly.
1293    //   The implicitly-defined copy assignment operator for a class X
1294    //   will have the form
1295    //
1296    //       X& X::operator=(const X&)
1297    //
1298    //   if
1299    bool HasConstCopyAssignment = true;
1300
1301    //       -- each direct base class B of X has a copy assignment operator
1302    //          whose parameter is of type const B&, const volatile B& or B,
1303    //          and
1304    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1305         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1306      const CXXRecordDecl *BaseClassDecl
1307        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1308      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1309    }
1310
1311    //       -- for all the nonstatic data members of X that are of a class
1312    //          type M (or array thereof), each such class type has a copy
1313    //          assignment operator whose parameter is of type const M&,
1314    //          const volatile M& or M.
1315    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1316         HasConstCopyAssignment && Field != ClassDecl->field_end();
1317         ++Field) {
1318      QualType FieldType = (*Field)->getType();
1319      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1320        FieldType = Array->getElementType();
1321      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1322        const CXXRecordDecl *FieldClassDecl
1323          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1324        HasConstCopyAssignment
1325          = FieldClassDecl->hasConstCopyAssignment(Context);
1326      }
1327    }
1328
1329    //   Otherwise, the implicitly declared copy assignment operator will
1330    //   have the form
1331    //
1332    //       X& X::operator=(X&)
1333    QualType ArgType = ClassType;
1334    QualType RetType = Context.getLValueReferenceType(ArgType);
1335    if (HasConstCopyAssignment)
1336      ArgType = ArgType.withConst();
1337    ArgType = Context.getLValueReferenceType(ArgType);
1338
1339    //   An implicitly-declared copy assignment operator is an inline public
1340    //   member of its class.
1341    DeclarationName Name =
1342      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1343    CXXMethodDecl *CopyAssignment =
1344      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1345                            Context.getFunctionType(RetType, &ArgType, 1,
1346                                                    false, 0),
1347                            /*isStatic=*/false, /*isInline=*/true);
1348    CopyAssignment->setAccess(AS_public);
1349    CopyAssignment->setImplicit();
1350
1351    // Add the parameter to the operator.
1352    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1353                                                 ClassDecl->getLocation(),
1354                                                 /*IdentifierInfo=*/0,
1355                                                 ArgType, VarDecl::None, 0);
1356    CopyAssignment->setParams(Context, &FromParam, 1);
1357
1358    // Don't call addedAssignmentOperator. There is no way to distinguish an
1359    // implicit from an explicit assignment operator.
1360    ClassDecl->addDecl(CopyAssignment);
1361  }
1362
1363  if (!ClassDecl->hasUserDeclaredDestructor()) {
1364    // C++ [class.dtor]p2:
1365    //   If a class has no user-declared destructor, a destructor is
1366    //   declared implicitly. An implicitly-declared destructor is an
1367    //   inline public member of its class.
1368    DeclarationName Name
1369      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1370    CXXDestructorDecl *Destructor
1371      = CXXDestructorDecl::Create(Context, ClassDecl,
1372                                  ClassDecl->getLocation(), Name,
1373                                  Context.getFunctionType(Context.VoidTy,
1374                                                          0, 0, false, 0),
1375                                  /*isInline=*/true,
1376                                  /*isImplicitlyDeclared=*/true);
1377    Destructor->setAccess(AS_public);
1378    Destructor->setImplicit();
1379    ClassDecl->addDecl(Destructor);
1380  }
1381}
1382
1383void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1384  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1385  if (!Template)
1386    return;
1387
1388  TemplateParameterList *Params = Template->getTemplateParameters();
1389  for (TemplateParameterList::iterator Param = Params->begin(),
1390                                    ParamEnd = Params->end();
1391       Param != ParamEnd; ++Param) {
1392    NamedDecl *Named = cast<NamedDecl>(*Param);
1393    if (Named->getDeclName()) {
1394      S->AddDecl(DeclPtrTy::make(Named));
1395      IdResolver.AddDecl(Named);
1396    }
1397  }
1398}
1399
1400/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1401/// parsing a top-level (non-nested) C++ class, and we are now
1402/// parsing those parts of the given Method declaration that could
1403/// not be parsed earlier (C++ [class.mem]p2), such as default
1404/// arguments. This action should enter the scope of the given
1405/// Method declaration as if we had just parsed the qualified method
1406/// name. However, it should not bring the parameters into scope;
1407/// that will be performed by ActOnDelayedCXXMethodParameter.
1408void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1409  if (!MethodD)
1410    return;
1411
1412  CXXScopeSpec SS;
1413  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1414  QualType ClassTy
1415    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1416  SS.setScopeRep(
1417    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1418  ActOnCXXEnterDeclaratorScope(S, SS);
1419}
1420
1421/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1422/// C++ method declaration. We're (re-)introducing the given
1423/// function parameter into scope for use in parsing later parts of
1424/// the method declaration. For example, we could see an
1425/// ActOnParamDefaultArgument event for this parameter.
1426void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1427  if (!ParamD)
1428    return;
1429
1430  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1431
1432  // If this parameter has an unparsed default argument, clear it out
1433  // to make way for the parsed default argument.
1434  if (Param->hasUnparsedDefaultArg())
1435    Param->setDefaultArg(0);
1436
1437  S->AddDecl(DeclPtrTy::make(Param));
1438  if (Param->getDeclName())
1439    IdResolver.AddDecl(Param);
1440}
1441
1442/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1443/// processing the delayed method declaration for Method. The method
1444/// declaration is now considered finished. There may be a separate
1445/// ActOnStartOfFunctionDef action later (not necessarily
1446/// immediately!) for this method, if it was also defined inside the
1447/// class body.
1448void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1449  if (!MethodD)
1450    return;
1451
1452  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1453  CXXScopeSpec SS;
1454  QualType ClassTy
1455    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1456  SS.setScopeRep(
1457    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1458  ActOnCXXExitDeclaratorScope(S, SS);
1459
1460  // Now that we have our default arguments, check the constructor
1461  // again. It could produce additional diagnostics or affect whether
1462  // the class has implicitly-declared destructors, among other
1463  // things.
1464  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1465    CheckConstructor(Constructor);
1466
1467  // Check the default arguments, which we may have added.
1468  if (!Method->isInvalidDecl())
1469    CheckCXXDefaultArguments(Method);
1470}
1471
1472/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1473/// the well-formedness of the constructor declarator @p D with type @p
1474/// R. If there are any errors in the declarator, this routine will
1475/// emit diagnostics and set the invalid bit to true.  In any case, the type
1476/// will be updated to reflect a well-formed type for the constructor and
1477/// returned.
1478QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1479                                          FunctionDecl::StorageClass &SC) {
1480  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1481
1482  // C++ [class.ctor]p3:
1483  //   A constructor shall not be virtual (10.3) or static (9.4). A
1484  //   constructor can be invoked for a const, volatile or const
1485  //   volatile object. A constructor shall not be declared const,
1486  //   volatile, or const volatile (9.3.2).
1487  if (isVirtual) {
1488    if (!D.isInvalidType())
1489      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1490        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1491        << SourceRange(D.getIdentifierLoc());
1492    D.setInvalidType();
1493  }
1494  if (SC == FunctionDecl::Static) {
1495    if (!D.isInvalidType())
1496      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1497        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1498        << SourceRange(D.getIdentifierLoc());
1499    D.setInvalidType();
1500    SC = FunctionDecl::None;
1501  }
1502
1503  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1504  if (FTI.TypeQuals != 0) {
1505    if (FTI.TypeQuals & QualType::Const)
1506      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1507        << "const" << SourceRange(D.getIdentifierLoc());
1508    if (FTI.TypeQuals & QualType::Volatile)
1509      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1510        << "volatile" << SourceRange(D.getIdentifierLoc());
1511    if (FTI.TypeQuals & QualType::Restrict)
1512      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1513        << "restrict" << SourceRange(D.getIdentifierLoc());
1514  }
1515
1516  // Rebuild the function type "R" without any type qualifiers (in
1517  // case any of the errors above fired) and with "void" as the
1518  // return type, since constructors don't have return types. We
1519  // *always* have to do this, because GetTypeForDeclarator will
1520  // put in a result type of "int" when none was specified.
1521  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1522  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1523                                 Proto->getNumArgs(),
1524                                 Proto->isVariadic(), 0);
1525}
1526
1527/// CheckConstructor - Checks a fully-formed constructor for
1528/// well-formedness, issuing any diagnostics required. Returns true if
1529/// the constructor declarator is invalid.
1530void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1531  CXXRecordDecl *ClassDecl
1532    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1533  if (!ClassDecl)
1534    return Constructor->setInvalidDecl();
1535
1536  // C++ [class.copy]p3:
1537  //   A declaration of a constructor for a class X is ill-formed if
1538  //   its first parameter is of type (optionally cv-qualified) X and
1539  //   either there are no other parameters or else all other
1540  //   parameters have default arguments.
1541  if (!Constructor->isInvalidDecl() &&
1542      ((Constructor->getNumParams() == 1) ||
1543       (Constructor->getNumParams() > 1 &&
1544        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1545    QualType ParamType = Constructor->getParamDecl(0)->getType();
1546    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1547    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1548      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1549      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1550        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1551      Constructor->setInvalidDecl();
1552    }
1553  }
1554
1555  // Notify the class that we've added a constructor.
1556  ClassDecl->addedConstructor(Context, Constructor);
1557}
1558
1559static inline bool
1560FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1561  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1562          FTI.ArgInfo[0].Param &&
1563          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1564}
1565
1566/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1567/// the well-formednes of the destructor declarator @p D with type @p
1568/// R. If there are any errors in the declarator, this routine will
1569/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1570/// will be updated to reflect a well-formed type for the destructor and
1571/// returned.
1572QualType Sema::CheckDestructorDeclarator(Declarator &D,
1573                                         FunctionDecl::StorageClass& SC) {
1574  // C++ [class.dtor]p1:
1575  //   [...] A typedef-name that names a class is a class-name
1576  //   (7.1.3); however, a typedef-name that names a class shall not
1577  //   be used as the identifier in the declarator for a destructor
1578  //   declaration.
1579  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1580  if (isa<TypedefType>(DeclaratorType)) {
1581    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1582      << DeclaratorType;
1583    D.setInvalidType();
1584  }
1585
1586  // C++ [class.dtor]p2:
1587  //   A destructor is used to destroy objects of its class type. A
1588  //   destructor takes no parameters, and no return type can be
1589  //   specified for it (not even void). The address of a destructor
1590  //   shall not be taken. A destructor shall not be static. A
1591  //   destructor can be invoked for a const, volatile or const
1592  //   volatile object. A destructor shall not be declared const,
1593  //   volatile or const volatile (9.3.2).
1594  if (SC == FunctionDecl::Static) {
1595    if (!D.isInvalidType())
1596      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1597        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1598        << SourceRange(D.getIdentifierLoc());
1599    SC = FunctionDecl::None;
1600    D.setInvalidType();
1601  }
1602  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1603    // Destructors don't have return types, but the parser will
1604    // happily parse something like:
1605    //
1606    //   class X {
1607    //     float ~X();
1608    //   };
1609    //
1610    // The return type will be eliminated later.
1611    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1612      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1613      << SourceRange(D.getIdentifierLoc());
1614  }
1615
1616  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1617  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1618    if (FTI.TypeQuals & QualType::Const)
1619      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1620        << "const" << SourceRange(D.getIdentifierLoc());
1621    if (FTI.TypeQuals & QualType::Volatile)
1622      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1623        << "volatile" << SourceRange(D.getIdentifierLoc());
1624    if (FTI.TypeQuals & QualType::Restrict)
1625      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1626        << "restrict" << SourceRange(D.getIdentifierLoc());
1627    D.setInvalidType();
1628  }
1629
1630  // Make sure we don't have any parameters.
1631  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1632    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1633
1634    // Delete the parameters.
1635    FTI.freeArgs();
1636    D.setInvalidType();
1637  }
1638
1639  // Make sure the destructor isn't variadic.
1640  if (FTI.isVariadic) {
1641    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1642    D.setInvalidType();
1643  }
1644
1645  // Rebuild the function type "R" without any type qualifiers or
1646  // parameters (in case any of the errors above fired) and with
1647  // "void" as the return type, since destructors don't have return
1648  // types. We *always* have to do this, because GetTypeForDeclarator
1649  // will put in a result type of "int" when none was specified.
1650  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1651}
1652
1653/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1654/// well-formednes of the conversion function declarator @p D with
1655/// type @p R. If there are any errors in the declarator, this routine
1656/// will emit diagnostics and return true. Otherwise, it will return
1657/// false. Either way, the type @p R will be updated to reflect a
1658/// well-formed type for the conversion operator.
1659void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1660                                     FunctionDecl::StorageClass& SC) {
1661  // C++ [class.conv.fct]p1:
1662  //   Neither parameter types nor return type can be specified. The
1663  //   type of a conversion function (8.3.5) is “function taking no
1664  //   parameter returning conversion-type-id.”
1665  if (SC == FunctionDecl::Static) {
1666    if (!D.isInvalidType())
1667      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1668        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1669        << SourceRange(D.getIdentifierLoc());
1670    D.setInvalidType();
1671    SC = FunctionDecl::None;
1672  }
1673  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1674    // Conversion functions don't have return types, but the parser will
1675    // happily parse something like:
1676    //
1677    //   class X {
1678    //     float operator bool();
1679    //   };
1680    //
1681    // The return type will be changed later anyway.
1682    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1683      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1684      << SourceRange(D.getIdentifierLoc());
1685  }
1686
1687  // Make sure we don't have any parameters.
1688  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1689    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1690
1691    // Delete the parameters.
1692    D.getTypeObject(0).Fun.freeArgs();
1693    D.setInvalidType();
1694  }
1695
1696  // Make sure the conversion function isn't variadic.
1697  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1698    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1699    D.setInvalidType();
1700  }
1701
1702  // C++ [class.conv.fct]p4:
1703  //   The conversion-type-id shall not represent a function type nor
1704  //   an array type.
1705  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1706  if (ConvType->isArrayType()) {
1707    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1708    ConvType = Context.getPointerType(ConvType);
1709    D.setInvalidType();
1710  } else if (ConvType->isFunctionType()) {
1711    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1712    ConvType = Context.getPointerType(ConvType);
1713    D.setInvalidType();
1714  }
1715
1716  // Rebuild the function type "R" without any parameters (in case any
1717  // of the errors above fired) and with the conversion type as the
1718  // return type.
1719  R = Context.getFunctionType(ConvType, 0, 0, false,
1720                              R->getAsFunctionProtoType()->getTypeQuals());
1721
1722  // C++0x explicit conversion operators.
1723  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1724    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1725         diag::warn_explicit_conversion_functions)
1726      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1727}
1728
1729/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1730/// the declaration of the given C++ conversion function. This routine
1731/// is responsible for recording the conversion function in the C++
1732/// class, if possible.
1733Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1734  assert(Conversion && "Expected to receive a conversion function declaration");
1735
1736  // Set the lexical context of this conversion function
1737  Conversion->setLexicalDeclContext(CurContext);
1738
1739  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1740
1741  // Make sure we aren't redeclaring the conversion function.
1742  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1743
1744  // C++ [class.conv.fct]p1:
1745  //   [...] A conversion function is never used to convert a
1746  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1747  //   same object type (or a reference to it), to a (possibly
1748  //   cv-qualified) base class of that type (or a reference to it),
1749  //   or to (possibly cv-qualified) void.
1750  // FIXME: Suppress this warning if the conversion function ends up being a
1751  // virtual function that overrides a virtual function in a base class.
1752  QualType ClassType
1753    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1754  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1755    ConvType = ConvTypeRef->getPointeeType();
1756  if (ConvType->isRecordType()) {
1757    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1758    if (ConvType == ClassType)
1759      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1760        << ClassType;
1761    else if (IsDerivedFrom(ClassType, ConvType))
1762      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1763        <<  ClassType << ConvType;
1764  } else if (ConvType->isVoidType()) {
1765    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1766      << ClassType << ConvType;
1767  }
1768
1769  if (Conversion->getPreviousDeclaration()) {
1770    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1771    for (OverloadedFunctionDecl::function_iterator
1772           Conv = Conversions->function_begin(),
1773           ConvEnd = Conversions->function_end();
1774         Conv != ConvEnd; ++Conv) {
1775      if (*Conv
1776            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1777        *Conv = Conversion;
1778        return DeclPtrTy::make(Conversion);
1779      }
1780    }
1781    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1782  } else
1783    ClassDecl->addConversionFunction(Context, Conversion);
1784
1785  return DeclPtrTy::make(Conversion);
1786}
1787
1788//===----------------------------------------------------------------------===//
1789// Namespace Handling
1790//===----------------------------------------------------------------------===//
1791
1792/// ActOnStartNamespaceDef - This is called at the start of a namespace
1793/// definition.
1794Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1795                                             SourceLocation IdentLoc,
1796                                             IdentifierInfo *II,
1797                                             SourceLocation LBrace) {
1798  NamespaceDecl *Namespc =
1799      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1800  Namespc->setLBracLoc(LBrace);
1801
1802  Scope *DeclRegionScope = NamespcScope->getParent();
1803
1804  if (II) {
1805    // C++ [namespace.def]p2:
1806    // The identifier in an original-namespace-definition shall not have been
1807    // previously defined in the declarative region in which the
1808    // original-namespace-definition appears. The identifier in an
1809    // original-namespace-definition is the name of the namespace. Subsequently
1810    // in that declarative region, it is treated as an original-namespace-name.
1811
1812    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1813                                     true);
1814
1815    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1816      // This is an extended namespace definition.
1817      // Attach this namespace decl to the chain of extended namespace
1818      // definitions.
1819      OrigNS->setNextNamespace(Namespc);
1820      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1821
1822      // Remove the previous declaration from the scope.
1823      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1824        IdResolver.RemoveDecl(OrigNS);
1825        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1826      }
1827    } else if (PrevDecl) {
1828      // This is an invalid name redefinition.
1829      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1830       << Namespc->getDeclName();
1831      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1832      Namespc->setInvalidDecl();
1833      // Continue on to push Namespc as current DeclContext and return it.
1834    }
1835
1836    PushOnScopeChains(Namespc, DeclRegionScope);
1837  } else {
1838    // FIXME: Handle anonymous namespaces
1839  }
1840
1841  // Although we could have an invalid decl (i.e. the namespace name is a
1842  // redefinition), push it as current DeclContext and try to continue parsing.
1843  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1844  // for the namespace has the declarations that showed up in that particular
1845  // namespace definition.
1846  PushDeclContext(NamespcScope, Namespc);
1847  return DeclPtrTy::make(Namespc);
1848}
1849
1850/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1851/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1852void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1853  Decl *Dcl = D.getAs<Decl>();
1854  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1855  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1856  Namespc->setRBracLoc(RBrace);
1857  PopDeclContext();
1858}
1859
1860Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1861                                          SourceLocation UsingLoc,
1862                                          SourceLocation NamespcLoc,
1863                                          const CXXScopeSpec &SS,
1864                                          SourceLocation IdentLoc,
1865                                          IdentifierInfo *NamespcName,
1866                                          AttributeList *AttrList) {
1867  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1868  assert(NamespcName && "Invalid NamespcName.");
1869  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1870  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1871
1872  UsingDirectiveDecl *UDir = 0;
1873
1874  // Lookup namespace name.
1875  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1876                                    LookupNamespaceName, false);
1877  if (R.isAmbiguous()) {
1878    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1879    return DeclPtrTy();
1880  }
1881  if (NamedDecl *NS = R) {
1882    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1883    // C++ [namespace.udir]p1:
1884    //   A using-directive specifies that the names in the nominated
1885    //   namespace can be used in the scope in which the
1886    //   using-directive appears after the using-directive. During
1887    //   unqualified name lookup (3.4.1), the names appear as if they
1888    //   were declared in the nearest enclosing namespace which
1889    //   contains both the using-directive and the nominated
1890    //   namespace. [Note: in this context, “contains” means “contains
1891    //   directly or indirectly”. ]
1892
1893    // Find enclosing context containing both using-directive and
1894    // nominated namespace.
1895    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1896    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1897      CommonAncestor = CommonAncestor->getParent();
1898
1899    UDir = UsingDirectiveDecl::Create(Context,
1900                                      CurContext, UsingLoc,
1901                                      NamespcLoc,
1902                                      SS.getRange(),
1903                                      (NestedNameSpecifier *)SS.getScopeRep(),
1904                                      IdentLoc,
1905                                      cast<NamespaceDecl>(NS),
1906                                      CommonAncestor);
1907    PushUsingDirective(S, UDir);
1908  } else {
1909    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1910  }
1911
1912  // FIXME: We ignore attributes for now.
1913  delete AttrList;
1914  return DeclPtrTy::make(UDir);
1915}
1916
1917void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1918  // If scope has associated entity, then using directive is at namespace
1919  // or translation unit scope. We add UsingDirectiveDecls, into
1920  // it's lookup structure.
1921  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1922    Ctx->addDecl(UDir);
1923  else
1924    // Otherwise it is block-sope. using-directives will affect lookup
1925    // only to the end of scope.
1926    S->PushUsingDirective(DeclPtrTy::make(UDir));
1927}
1928
1929
1930Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1931                                          SourceLocation UsingLoc,
1932                                          const CXXScopeSpec &SS,
1933                                          SourceLocation IdentLoc,
1934                                          IdentifierInfo *TargetName,
1935                                          OverloadedOperatorKind Op,
1936                                          AttributeList *AttrList,
1937                                          bool IsTypeName) {
1938  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1939  assert((TargetName || Op) && "Invalid TargetName.");
1940  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1941  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1942
1943  UsingDecl *UsingAlias = 0;
1944
1945  DeclarationName Name;
1946  if (TargetName)
1947    Name = TargetName;
1948  else
1949    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1950
1951  // Lookup target name.
1952  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1953
1954  if (NamedDecl *NS = R) {
1955    if (IsTypeName && !isa<TypeDecl>(NS)) {
1956      Diag(IdentLoc, diag::err_using_typename_non_type);
1957    }
1958    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1959        NS->getLocation(), UsingLoc, NS,
1960        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1961        IsTypeName);
1962    PushOnScopeChains(UsingAlias, S);
1963  } else {
1964    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1965  }
1966
1967  // FIXME: We ignore attributes for now.
1968  delete AttrList;
1969  return DeclPtrTy::make(UsingAlias);
1970}
1971
1972/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1973/// is a namespace alias, returns the namespace it points to.
1974static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1975  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1976    return AD->getNamespace();
1977  return dyn_cast_or_null<NamespaceDecl>(D);
1978}
1979
1980Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1981                                             SourceLocation NamespaceLoc,
1982                                             SourceLocation AliasLoc,
1983                                             IdentifierInfo *Alias,
1984                                             const CXXScopeSpec &SS,
1985                                             SourceLocation IdentLoc,
1986                                             IdentifierInfo *Ident) {
1987
1988  // Lookup the namespace name.
1989  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1990
1991  // Check if we have a previous declaration with the same name.
1992  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1993    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1994      // We already have an alias with the same name that points to the same
1995      // namespace, so don't create a new one.
1996      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1997        return DeclPtrTy();
1998    }
1999
2000    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2001      diag::err_redefinition_different_kind;
2002    Diag(AliasLoc, DiagID) << Alias;
2003    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2004    return DeclPtrTy();
2005  }
2006
2007  if (R.isAmbiguous()) {
2008    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2009    return DeclPtrTy();
2010  }
2011
2012  if (!R) {
2013    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2014    return DeclPtrTy();
2015  }
2016
2017  NamespaceAliasDecl *AliasDecl =
2018    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2019                               Alias, SS.getRange(),
2020                               (NestedNameSpecifier *)SS.getScopeRep(),
2021                               IdentLoc, R);
2022
2023  CurContext->addDecl(AliasDecl);
2024  return DeclPtrTy::make(AliasDecl);
2025}
2026
2027void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2028                                            CXXConstructorDecl *Constructor) {
2029  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2030          !Constructor->isUsed()) &&
2031    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2032
2033  CXXRecordDecl *ClassDecl
2034    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2035  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2036  // Before the implicitly-declared default constructor for a class is
2037  // implicitly defined, all the implicitly-declared default constructors
2038  // for its base class and its non-static data members shall have been
2039  // implicitly defined.
2040  bool err = false;
2041  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2042       E = ClassDecl->bases_end(); Base != E; ++Base) {
2043    CXXRecordDecl *BaseClassDecl
2044      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2045    if (!BaseClassDecl->hasTrivialConstructor()) {
2046      if (CXXConstructorDecl *BaseCtor =
2047            BaseClassDecl->getDefaultConstructor(Context))
2048        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2049      else {
2050        Diag(CurrentLocation, diag::err_defining_default_ctor)
2051          << Context.getTagDeclType(ClassDecl) << 1
2052          << Context.getTagDeclType(BaseClassDecl);
2053        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2054              << Context.getTagDeclType(BaseClassDecl);
2055        err = true;
2056      }
2057    }
2058  }
2059  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2060       E = ClassDecl->field_end(); Field != E; ++Field) {
2061    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2062    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2063      FieldType = Array->getElementType();
2064    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2065      CXXRecordDecl *FieldClassDecl
2066        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2067      if (!FieldClassDecl->hasTrivialConstructor()) {
2068        if (CXXConstructorDecl *FieldCtor =
2069            FieldClassDecl->getDefaultConstructor(Context))
2070          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2071        else {
2072          Diag(CurrentLocation, diag::err_defining_default_ctor)
2073          << Context.getTagDeclType(ClassDecl) << 0 <<
2074              Context.getTagDeclType(FieldClassDecl);
2075          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2076          << Context.getTagDeclType(FieldClassDecl);
2077          err = true;
2078        }
2079      }
2080    }
2081    else if (FieldType->isReferenceType()) {
2082      Diag(CurrentLocation, diag::err_unintialized_member)
2083        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2084      Diag((*Field)->getLocation(), diag::note_declared_at);
2085      err = true;
2086    }
2087    else if (FieldType.isConstQualified()) {
2088      Diag(CurrentLocation, diag::err_unintialized_member)
2089        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2090       Diag((*Field)->getLocation(), diag::note_declared_at);
2091      err = true;
2092    }
2093  }
2094  if (!err)
2095    Constructor->setUsed();
2096  else
2097    Constructor->setInvalidDecl();
2098}
2099
2100void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2101                                            CXXDestructorDecl *Destructor) {
2102  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2103         "DefineImplicitDestructor - call it for implicit default dtor");
2104
2105  CXXRecordDecl *ClassDecl
2106  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2107  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2108  // C++ [class.dtor] p5
2109  // Before the implicitly-declared default destructor for a class is
2110  // implicitly defined, all the implicitly-declared default destructors
2111  // for its base class and its non-static data members shall have been
2112  // implicitly defined.
2113  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2114       E = ClassDecl->bases_end(); Base != E; ++Base) {
2115    CXXRecordDecl *BaseClassDecl
2116      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2117    if (!BaseClassDecl->hasTrivialDestructor()) {
2118      if (CXXDestructorDecl *BaseDtor =
2119          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2120        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2121      else
2122        assert(false &&
2123               "DefineImplicitDestructor - missing dtor in a base class");
2124    }
2125  }
2126
2127  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2128       E = ClassDecl->field_end(); Field != E; ++Field) {
2129    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2130    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2131      FieldType = Array->getElementType();
2132    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2133      CXXRecordDecl *FieldClassDecl
2134        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2135      if (!FieldClassDecl->hasTrivialDestructor()) {
2136        if (CXXDestructorDecl *FieldDtor =
2137            const_cast<CXXDestructorDecl*>(
2138                                        FieldClassDecl->getDestructor(Context)))
2139          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2140        else
2141          assert(false &&
2142          "DefineImplicitDestructor - missing dtor in class of a data member");
2143      }
2144    }
2145  }
2146  Destructor->setUsed();
2147}
2148
2149void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2150                                          CXXMethodDecl *MethodDecl) {
2151  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2152          MethodDecl->getOverloadedOperator() == OO_Equal &&
2153          !MethodDecl->isUsed()) &&
2154         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2155
2156  CXXRecordDecl *ClassDecl
2157    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2158
2159  // C++[class.copy] p12
2160  // Before the implicitly-declared copy assignment operator for a class is
2161  // implicitly defined, all implicitly-declared copy assignment operators
2162  // for its direct base classes and its nonstatic data members shall have
2163  // been implicitly defined.
2164  bool err = false;
2165  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2166       E = ClassDecl->bases_end(); Base != E; ++Base) {
2167    CXXRecordDecl *BaseClassDecl
2168      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2169    if (CXXMethodDecl *BaseAssignOpMethod =
2170          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2171      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2172  }
2173  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2174       E = ClassDecl->field_end(); Field != E; ++Field) {
2175    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2176    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2177      FieldType = Array->getElementType();
2178    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2179      CXXRecordDecl *FieldClassDecl
2180        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2181      if (CXXMethodDecl *FieldAssignOpMethod =
2182          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2183        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2184    }
2185    else if (FieldType->isReferenceType()) {
2186      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2187      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2188      Diag(Field->getLocation(), diag::note_declared_at);
2189      Diag(CurrentLocation, diag::note_first_required_here);
2190      err = true;
2191    }
2192    else if (FieldType.isConstQualified()) {
2193      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2194      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2195      Diag(Field->getLocation(), diag::note_declared_at);
2196      Diag(CurrentLocation, diag::note_first_required_here);
2197      err = true;
2198    }
2199  }
2200  if (!err)
2201    MethodDecl->setUsed();
2202}
2203
2204CXXMethodDecl *
2205Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2206                              CXXRecordDecl *ClassDecl) {
2207  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2208  QualType RHSType(LHSType);
2209  // If class's assignment operator argument is const/volatile qualified,
2210  // look for operator = (const/volatile B&). Otherwise, look for
2211  // operator = (B&).
2212  if (ParmDecl->getType().isConstQualified())
2213    RHSType.addConst();
2214  if (ParmDecl->getType().isVolatileQualified())
2215    RHSType.addVolatile();
2216  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2217                                                          LHSType,
2218                                                          SourceLocation()));
2219  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2220                                                          RHSType,
2221                                                          SourceLocation()));
2222  Expr *Args[2] = { &*LHS, &*RHS };
2223  OverloadCandidateSet CandidateSet;
2224  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2225                              CandidateSet);
2226  OverloadCandidateSet::iterator Best;
2227  if (BestViableFunction(CandidateSet,
2228                         ClassDecl->getLocation(), Best) == OR_Success)
2229    return cast<CXXMethodDecl>(Best->Function);
2230  assert(false &&
2231         "getAssignOperatorMethod - copy assignment operator method not found");
2232  return 0;
2233}
2234
2235void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2236                                   CXXConstructorDecl *CopyConstructor,
2237                                   unsigned TypeQuals) {
2238  assert((CopyConstructor->isImplicit() &&
2239          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2240          !CopyConstructor->isUsed()) &&
2241         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2242
2243  CXXRecordDecl *ClassDecl
2244    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2245  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2246  // C++ [class.copy] p209
2247  // Before the implicitly-declared copy constructor for a class is
2248  // implicitly defined, all the implicitly-declared copy constructors
2249  // for its base class and its non-static data members shall have been
2250  // implicitly defined.
2251  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2252       Base != ClassDecl->bases_end(); ++Base) {
2253    CXXRecordDecl *BaseClassDecl
2254      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2255    if (CXXConstructorDecl *BaseCopyCtor =
2256        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2257      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2258  }
2259  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2260                                  FieldEnd = ClassDecl->field_end();
2261       Field != FieldEnd; ++Field) {
2262    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2263    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2264      FieldType = Array->getElementType();
2265    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2266      CXXRecordDecl *FieldClassDecl
2267        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2268      if (CXXConstructorDecl *FieldCopyCtor =
2269          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2270        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2271    }
2272  }
2273  CopyConstructor->setUsed();
2274}
2275
2276void Sema::InitializeVarWithConstructor(VarDecl *VD,
2277                                        CXXConstructorDecl *Constructor,
2278                                        QualType DeclInitType,
2279                                        Expr **Exprs, unsigned NumExprs) {
2280  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2281                                        false, Exprs, NumExprs);
2282  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2283  VD->setInit(Context, Temp);
2284}
2285
2286void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2287{
2288  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2289                                  DeclInitType->getAsRecordType()->getDecl());
2290  if (!ClassDecl->hasTrivialDestructor())
2291    if (CXXDestructorDecl *Destructor =
2292        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2293      MarkDeclarationReferenced(Loc, Destructor);
2294}
2295
2296/// AddCXXDirectInitializerToDecl - This action is called immediately after
2297/// ActOnDeclarator, when a C++ direct initializer is present.
2298/// e.g: "int x(1);"
2299void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2300                                         SourceLocation LParenLoc,
2301                                         MultiExprArg Exprs,
2302                                         SourceLocation *CommaLocs,
2303                                         SourceLocation RParenLoc) {
2304  unsigned NumExprs = Exprs.size();
2305  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2306  Decl *RealDecl = Dcl.getAs<Decl>();
2307
2308  // If there is no declaration, there was an error parsing it.  Just ignore
2309  // the initializer.
2310  if (RealDecl == 0)
2311    return;
2312
2313  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2314  if (!VDecl) {
2315    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2316    RealDecl->setInvalidDecl();
2317    return;
2318  }
2319
2320  // FIXME: Need to handle dependent types and expressions here.
2321
2322  // We will treat direct-initialization as a copy-initialization:
2323  //    int x(1);  -as-> int x = 1;
2324  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2325  //
2326  // Clients that want to distinguish between the two forms, can check for
2327  // direct initializer using VarDecl::hasCXXDirectInitializer().
2328  // A major benefit is that clients that don't particularly care about which
2329  // exactly form was it (like the CodeGen) can handle both cases without
2330  // special case code.
2331
2332  // C++ 8.5p11:
2333  // The form of initialization (using parentheses or '=') is generally
2334  // insignificant, but does matter when the entity being initialized has a
2335  // class type.
2336  QualType DeclInitType = VDecl->getType();
2337  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2338    DeclInitType = Array->getElementType();
2339
2340  // FIXME: This isn't the right place to complete the type.
2341  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2342                          diag::err_typecheck_decl_incomplete_type)) {
2343    VDecl->setInvalidDecl();
2344    return;
2345  }
2346
2347  if (VDecl->getType()->isRecordType()) {
2348    CXXConstructorDecl *Constructor
2349      = PerformInitializationByConstructor(DeclInitType,
2350                                           (Expr **)Exprs.get(), NumExprs,
2351                                           VDecl->getLocation(),
2352                                           SourceRange(VDecl->getLocation(),
2353                                                       RParenLoc),
2354                                           VDecl->getDeclName(),
2355                                           IK_Direct);
2356    if (!Constructor)
2357      RealDecl->setInvalidDecl();
2358    else {
2359      VDecl->setCXXDirectInitializer(true);
2360      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2361                                   (Expr**)Exprs.release(), NumExprs);
2362      // FIXME. Must do all that is needed to destroy the object
2363      // on scope exit. For now, just mark the destructor as used.
2364      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2365    }
2366    return;
2367  }
2368
2369  if (NumExprs > 1) {
2370    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2371      << SourceRange(VDecl->getLocation(), RParenLoc);
2372    RealDecl->setInvalidDecl();
2373    return;
2374  }
2375
2376  // Let clients know that initialization was done with a direct initializer.
2377  VDecl->setCXXDirectInitializer(true);
2378
2379  assert(NumExprs == 1 && "Expected 1 expression");
2380  // Set the init expression, handles conversions.
2381  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2382                       /*DirectInit=*/true);
2383}
2384
2385/// PerformInitializationByConstructor - Perform initialization by
2386/// constructor (C++ [dcl.init]p14), which may occur as part of
2387/// direct-initialization or copy-initialization. We are initializing
2388/// an object of type @p ClassType with the given arguments @p
2389/// Args. @p Loc is the location in the source code where the
2390/// initializer occurs (e.g., a declaration, member initializer,
2391/// functional cast, etc.) while @p Range covers the whole
2392/// initialization. @p InitEntity is the entity being initialized,
2393/// which may by the name of a declaration or a type. @p Kind is the
2394/// kind of initialization we're performing, which affects whether
2395/// explicit constructors will be considered. When successful, returns
2396/// the constructor that will be used to perform the initialization;
2397/// when the initialization fails, emits a diagnostic and returns
2398/// null.
2399CXXConstructorDecl *
2400Sema::PerformInitializationByConstructor(QualType ClassType,
2401                                         Expr **Args, unsigned NumArgs,
2402                                         SourceLocation Loc, SourceRange Range,
2403                                         DeclarationName InitEntity,
2404                                         InitializationKind Kind) {
2405  const RecordType *ClassRec = ClassType->getAsRecordType();
2406  assert(ClassRec && "Can only initialize a class type here");
2407
2408  // C++ [dcl.init]p14:
2409  //
2410  //   If the initialization is direct-initialization, or if it is
2411  //   copy-initialization where the cv-unqualified version of the
2412  //   source type is the same class as, or a derived class of, the
2413  //   class of the destination, constructors are considered. The
2414  //   applicable constructors are enumerated (13.3.1.3), and the
2415  //   best one is chosen through overload resolution (13.3). The
2416  //   constructor so selected is called to initialize the object,
2417  //   with the initializer expression(s) as its argument(s). If no
2418  //   constructor applies, or the overload resolution is ambiguous,
2419  //   the initialization is ill-formed.
2420  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2421  OverloadCandidateSet CandidateSet;
2422
2423  // Add constructors to the overload set.
2424  DeclarationName ConstructorName
2425    = Context.DeclarationNames.getCXXConstructorName(
2426                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2427  DeclContext::lookup_const_iterator Con, ConEnd;
2428  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2429       Con != ConEnd; ++Con) {
2430    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2431    if ((Kind == IK_Direct) ||
2432        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2433        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2434      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2435  }
2436
2437  // FIXME: When we decide not to synthesize the implicitly-declared
2438  // constructors, we'll need to make them appear here.
2439
2440  OverloadCandidateSet::iterator Best;
2441  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2442  case OR_Success:
2443    // We found a constructor. Return it.
2444    return cast<CXXConstructorDecl>(Best->Function);
2445
2446  case OR_No_Viable_Function:
2447    if (InitEntity)
2448      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2449        << InitEntity << Range;
2450    else
2451      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2452        << ClassType << Range;
2453    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2454    return 0;
2455
2456  case OR_Ambiguous:
2457    if (InitEntity)
2458      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2459    else
2460      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2461    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2462    return 0;
2463
2464  case OR_Deleted:
2465    if (InitEntity)
2466      Diag(Loc, diag::err_ovl_deleted_init)
2467        << Best->Function->isDeleted()
2468        << InitEntity << Range;
2469    else
2470      Diag(Loc, diag::err_ovl_deleted_init)
2471        << Best->Function->isDeleted()
2472        << InitEntity << Range;
2473    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2474    return 0;
2475  }
2476
2477  return 0;
2478}
2479
2480/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2481/// determine whether they are reference-related,
2482/// reference-compatible, reference-compatible with added
2483/// qualification, or incompatible, for use in C++ initialization by
2484/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2485/// type, and the first type (T1) is the pointee type of the reference
2486/// type being initialized.
2487Sema::ReferenceCompareResult
2488Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2489                                   bool& DerivedToBase) {
2490  assert(!T1->isReferenceType() &&
2491    "T1 must be the pointee type of the reference type");
2492  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2493
2494  T1 = Context.getCanonicalType(T1);
2495  T2 = Context.getCanonicalType(T2);
2496  QualType UnqualT1 = T1.getUnqualifiedType();
2497  QualType UnqualT2 = T2.getUnqualifiedType();
2498
2499  // C++ [dcl.init.ref]p4:
2500  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2501  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2502  //   T1 is a base class of T2.
2503  if (UnqualT1 == UnqualT2)
2504    DerivedToBase = false;
2505  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2506    DerivedToBase = true;
2507  else
2508    return Ref_Incompatible;
2509
2510  // At this point, we know that T1 and T2 are reference-related (at
2511  // least).
2512
2513  // C++ [dcl.init.ref]p4:
2514  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2515  //   reference-related to T2 and cv1 is the same cv-qualification
2516  //   as, or greater cv-qualification than, cv2. For purposes of
2517  //   overload resolution, cases for which cv1 is greater
2518  //   cv-qualification than cv2 are identified as
2519  //   reference-compatible with added qualification (see 13.3.3.2).
2520  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2521    return Ref_Compatible;
2522  else if (T1.isMoreQualifiedThan(T2))
2523    return Ref_Compatible_With_Added_Qualification;
2524  else
2525    return Ref_Related;
2526}
2527
2528/// CheckReferenceInit - Check the initialization of a reference
2529/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2530/// the initializer (either a simple initializer or an initializer
2531/// list), and DeclType is the type of the declaration. When ICS is
2532/// non-null, this routine will compute the implicit conversion
2533/// sequence according to C++ [over.ics.ref] and will not produce any
2534/// diagnostics; when ICS is null, it will emit diagnostics when any
2535/// errors are found. Either way, a return value of true indicates
2536/// that there was a failure, a return value of false indicates that
2537/// the reference initialization succeeded.
2538///
2539/// When @p SuppressUserConversions, user-defined conversions are
2540/// suppressed.
2541/// When @p AllowExplicit, we also permit explicit user-defined
2542/// conversion functions.
2543/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2544bool
2545Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2546                         ImplicitConversionSequence *ICS,
2547                         bool SuppressUserConversions,
2548                         bool AllowExplicit, bool ForceRValue) {
2549  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2550
2551  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2552  QualType T2 = Init->getType();
2553
2554  // If the initializer is the address of an overloaded function, try
2555  // to resolve the overloaded function. If all goes well, T2 is the
2556  // type of the resulting function.
2557  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2558    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2559                                                          ICS != 0);
2560    if (Fn) {
2561      // Since we're performing this reference-initialization for
2562      // real, update the initializer with the resulting function.
2563      if (!ICS) {
2564        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2565          return true;
2566
2567        FixOverloadedFunctionReference(Init, Fn);
2568      }
2569
2570      T2 = Fn->getType();
2571    }
2572  }
2573
2574  // Compute some basic properties of the types and the initializer.
2575  bool isRValRef = DeclType->isRValueReferenceType();
2576  bool DerivedToBase = false;
2577  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2578                                                  Init->isLvalue(Context);
2579  ReferenceCompareResult RefRelationship
2580    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2581
2582  // Most paths end in a failed conversion.
2583  if (ICS)
2584    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2585
2586  // C++ [dcl.init.ref]p5:
2587  //   A reference to type “cv1 T1” is initialized by an expression
2588  //   of type “cv2 T2” as follows:
2589
2590  //     -- If the initializer expression
2591
2592  // Rvalue references cannot bind to lvalues (N2812).
2593  // There is absolutely no situation where they can. In particular, note that
2594  // this is ill-formed, even if B has a user-defined conversion to A&&:
2595  //   B b;
2596  //   A&& r = b;
2597  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2598    if (!ICS)
2599      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2600        << Init->getSourceRange();
2601    return true;
2602  }
2603
2604  bool BindsDirectly = false;
2605  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2606  //          reference-compatible with “cv2 T2,” or
2607  //
2608  // Note that the bit-field check is skipped if we are just computing
2609  // the implicit conversion sequence (C++ [over.best.ics]p2).
2610  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2611      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2612    BindsDirectly = true;
2613
2614    if (ICS) {
2615      // C++ [over.ics.ref]p1:
2616      //   When a parameter of reference type binds directly (8.5.3)
2617      //   to an argument expression, the implicit conversion sequence
2618      //   is the identity conversion, unless the argument expression
2619      //   has a type that is a derived class of the parameter type,
2620      //   in which case the implicit conversion sequence is a
2621      //   derived-to-base Conversion (13.3.3.1).
2622      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2623      ICS->Standard.First = ICK_Identity;
2624      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2625      ICS->Standard.Third = ICK_Identity;
2626      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2627      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2628      ICS->Standard.ReferenceBinding = true;
2629      ICS->Standard.DirectBinding = true;
2630      ICS->Standard.RRefBinding = false;
2631      ICS->Standard.CopyConstructor = 0;
2632
2633      // Nothing more to do: the inaccessibility/ambiguity check for
2634      // derived-to-base conversions is suppressed when we're
2635      // computing the implicit conversion sequence (C++
2636      // [over.best.ics]p2).
2637      return false;
2638    } else {
2639      // Perform the conversion.
2640      // FIXME: Binding to a subobject of the lvalue is going to require more
2641      // AST annotation than this.
2642      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2643    }
2644  }
2645
2646  //       -- has a class type (i.e., T2 is a class type) and can be
2647  //          implicitly converted to an lvalue of type “cv3 T3,”
2648  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2649  //          92) (this conversion is selected by enumerating the
2650  //          applicable conversion functions (13.3.1.6) and choosing
2651  //          the best one through overload resolution (13.3)),
2652  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2653    // FIXME: Look for conversions in base classes!
2654    CXXRecordDecl *T2RecordDecl
2655      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2656
2657    OverloadCandidateSet CandidateSet;
2658    OverloadedFunctionDecl *Conversions
2659      = T2RecordDecl->getConversionFunctions();
2660    for (OverloadedFunctionDecl::function_iterator Func
2661           = Conversions->function_begin();
2662         Func != Conversions->function_end(); ++Func) {
2663      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2664
2665      // If the conversion function doesn't return a reference type,
2666      // it can't be considered for this conversion.
2667      if (Conv->getConversionType()->isLValueReferenceType() &&
2668          (AllowExplicit || !Conv->isExplicit()))
2669        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2670    }
2671
2672    OverloadCandidateSet::iterator Best;
2673    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2674    case OR_Success:
2675      // This is a direct binding.
2676      BindsDirectly = true;
2677
2678      if (ICS) {
2679        // C++ [over.ics.ref]p1:
2680        //
2681        //   [...] If the parameter binds directly to the result of
2682        //   applying a conversion function to the argument
2683        //   expression, the implicit conversion sequence is a
2684        //   user-defined conversion sequence (13.3.3.1.2), with the
2685        //   second standard conversion sequence either an identity
2686        //   conversion or, if the conversion function returns an
2687        //   entity of a type that is a derived class of the parameter
2688        //   type, a derived-to-base Conversion.
2689        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2690        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2691        ICS->UserDefined.After = Best->FinalConversion;
2692        ICS->UserDefined.ConversionFunction = Best->Function;
2693        assert(ICS->UserDefined.After.ReferenceBinding &&
2694               ICS->UserDefined.After.DirectBinding &&
2695               "Expected a direct reference binding!");
2696        return false;
2697      } else {
2698        // Perform the conversion.
2699        // FIXME: Binding to a subobject of the lvalue is going to require more
2700        // AST annotation than this.
2701        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2702      }
2703      break;
2704
2705    case OR_Ambiguous:
2706      assert(false && "Ambiguous reference binding conversions not implemented.");
2707      return true;
2708
2709    case OR_No_Viable_Function:
2710    case OR_Deleted:
2711      // There was no suitable conversion, or we found a deleted
2712      // conversion; continue with other checks.
2713      break;
2714    }
2715  }
2716
2717  if (BindsDirectly) {
2718    // C++ [dcl.init.ref]p4:
2719    //   [...] In all cases where the reference-related or
2720    //   reference-compatible relationship of two types is used to
2721    //   establish the validity of a reference binding, and T1 is a
2722    //   base class of T2, a program that necessitates such a binding
2723    //   is ill-formed if T1 is an inaccessible (clause 11) or
2724    //   ambiguous (10.2) base class of T2.
2725    //
2726    // Note that we only check this condition when we're allowed to
2727    // complain about errors, because we should not be checking for
2728    // ambiguity (or inaccessibility) unless the reference binding
2729    // actually happens.
2730    if (DerivedToBase)
2731      return CheckDerivedToBaseConversion(T2, T1,
2732                                          Init->getSourceRange().getBegin(),
2733                                          Init->getSourceRange());
2734    else
2735      return false;
2736  }
2737
2738  //     -- Otherwise, the reference shall be to a non-volatile const
2739  //        type (i.e., cv1 shall be const), or the reference shall be an
2740  //        rvalue reference and the initializer expression shall be an rvalue.
2741  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2742    if (!ICS)
2743      Diag(Init->getSourceRange().getBegin(),
2744           diag::err_not_reference_to_const_init)
2745        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2746        << T2 << Init->getSourceRange();
2747    return true;
2748  }
2749
2750  //       -- If the initializer expression is an rvalue, with T2 a
2751  //          class type, and “cv1 T1” is reference-compatible with
2752  //          “cv2 T2,” the reference is bound in one of the
2753  //          following ways (the choice is implementation-defined):
2754  //
2755  //          -- The reference is bound to the object represented by
2756  //             the rvalue (see 3.10) or to a sub-object within that
2757  //             object.
2758  //
2759  //          -- A temporary of type “cv1 T2” [sic] is created, and
2760  //             a constructor is called to copy the entire rvalue
2761  //             object into the temporary. The reference is bound to
2762  //             the temporary or to a sub-object within the
2763  //             temporary.
2764  //
2765  //          The constructor that would be used to make the copy
2766  //          shall be callable whether or not the copy is actually
2767  //          done.
2768  //
2769  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2770  // freedom, so we will always take the first option and never build
2771  // a temporary in this case. FIXME: We will, however, have to check
2772  // for the presence of a copy constructor in C++98/03 mode.
2773  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2774      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2775    if (ICS) {
2776      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2777      ICS->Standard.First = ICK_Identity;
2778      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2779      ICS->Standard.Third = ICK_Identity;
2780      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2781      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2782      ICS->Standard.ReferenceBinding = true;
2783      ICS->Standard.DirectBinding = false;
2784      ICS->Standard.RRefBinding = isRValRef;
2785      ICS->Standard.CopyConstructor = 0;
2786    } else {
2787      // FIXME: Binding to a subobject of the rvalue is going to require more
2788      // AST annotation than this.
2789      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2790    }
2791    return false;
2792  }
2793
2794  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2795  //          initialized from the initializer expression using the
2796  //          rules for a non-reference copy initialization (8.5). The
2797  //          reference is then bound to the temporary. If T1 is
2798  //          reference-related to T2, cv1 must be the same
2799  //          cv-qualification as, or greater cv-qualification than,
2800  //          cv2; otherwise, the program is ill-formed.
2801  if (RefRelationship == Ref_Related) {
2802    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2803    // we would be reference-compatible or reference-compatible with
2804    // added qualification. But that wasn't the case, so the reference
2805    // initialization fails.
2806    if (!ICS)
2807      Diag(Init->getSourceRange().getBegin(),
2808           diag::err_reference_init_drops_quals)
2809        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2810        << T2 << Init->getSourceRange();
2811    return true;
2812  }
2813
2814  // If at least one of the types is a class type, the types are not
2815  // related, and we aren't allowed any user conversions, the
2816  // reference binding fails. This case is important for breaking
2817  // recursion, since TryImplicitConversion below will attempt to
2818  // create a temporary through the use of a copy constructor.
2819  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2820      (T1->isRecordType() || T2->isRecordType())) {
2821    if (!ICS)
2822      Diag(Init->getSourceRange().getBegin(),
2823           diag::err_typecheck_convert_incompatible)
2824        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2825    return true;
2826  }
2827
2828  // Actually try to convert the initializer to T1.
2829  if (ICS) {
2830    // C++ [over.ics.ref]p2:
2831    //
2832    //   When a parameter of reference type is not bound directly to
2833    //   an argument expression, the conversion sequence is the one
2834    //   required to convert the argument expression to the
2835    //   underlying type of the reference according to
2836    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2837    //   to copy-initializing a temporary of the underlying type with
2838    //   the argument expression. Any difference in top-level
2839    //   cv-qualification is subsumed by the initialization itself
2840    //   and does not constitute a conversion.
2841    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2842    // Of course, that's still a reference binding.
2843    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2844      ICS->Standard.ReferenceBinding = true;
2845      ICS->Standard.RRefBinding = isRValRef;
2846    } else if(ICS->ConversionKind ==
2847              ImplicitConversionSequence::UserDefinedConversion) {
2848      ICS->UserDefined.After.ReferenceBinding = true;
2849      ICS->UserDefined.After.RRefBinding = isRValRef;
2850    }
2851    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2852  } else {
2853    return PerformImplicitConversion(Init, T1, "initializing");
2854  }
2855}
2856
2857/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2858/// of this overloaded operator is well-formed. If so, returns false;
2859/// otherwise, emits appropriate diagnostics and returns true.
2860bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2861  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2862         "Expected an overloaded operator declaration");
2863
2864  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2865
2866  // C++ [over.oper]p5:
2867  //   The allocation and deallocation functions, operator new,
2868  //   operator new[], operator delete and operator delete[], are
2869  //   described completely in 3.7.3. The attributes and restrictions
2870  //   found in the rest of this subclause do not apply to them unless
2871  //   explicitly stated in 3.7.3.
2872  // FIXME: Write a separate routine for checking this. For now, just allow it.
2873  if (Op == OO_New || Op == OO_Array_New ||
2874      Op == OO_Delete || Op == OO_Array_Delete)
2875    return false;
2876
2877  // C++ [over.oper]p6:
2878  //   An operator function shall either be a non-static member
2879  //   function or be a non-member function and have at least one
2880  //   parameter whose type is a class, a reference to a class, an
2881  //   enumeration, or a reference to an enumeration.
2882  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2883    if (MethodDecl->isStatic())
2884      return Diag(FnDecl->getLocation(),
2885                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2886  } else {
2887    bool ClassOrEnumParam = false;
2888    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2889                                   ParamEnd = FnDecl->param_end();
2890         Param != ParamEnd; ++Param) {
2891      QualType ParamType = (*Param)->getType().getNonReferenceType();
2892      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2893          ParamType->isEnumeralType()) {
2894        ClassOrEnumParam = true;
2895        break;
2896      }
2897    }
2898
2899    if (!ClassOrEnumParam)
2900      return Diag(FnDecl->getLocation(),
2901                  diag::err_operator_overload_needs_class_or_enum)
2902        << FnDecl->getDeclName();
2903  }
2904
2905  // C++ [over.oper]p8:
2906  //   An operator function cannot have default arguments (8.3.6),
2907  //   except where explicitly stated below.
2908  //
2909  // Only the function-call operator allows default arguments
2910  // (C++ [over.call]p1).
2911  if (Op != OO_Call) {
2912    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2913         Param != FnDecl->param_end(); ++Param) {
2914      if ((*Param)->hasUnparsedDefaultArg())
2915        return Diag((*Param)->getLocation(),
2916                    diag::err_operator_overload_default_arg)
2917          << FnDecl->getDeclName();
2918      else if (Expr *DefArg = (*Param)->getDefaultArg())
2919        return Diag((*Param)->getLocation(),
2920                    diag::err_operator_overload_default_arg)
2921          << FnDecl->getDeclName() << DefArg->getSourceRange();
2922    }
2923  }
2924
2925  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2926    { false, false, false }
2927#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2928    , { Unary, Binary, MemberOnly }
2929#include "clang/Basic/OperatorKinds.def"
2930  };
2931
2932  bool CanBeUnaryOperator = OperatorUses[Op][0];
2933  bool CanBeBinaryOperator = OperatorUses[Op][1];
2934  bool MustBeMemberOperator = OperatorUses[Op][2];
2935
2936  // C++ [over.oper]p8:
2937  //   [...] Operator functions cannot have more or fewer parameters
2938  //   than the number required for the corresponding operator, as
2939  //   described in the rest of this subclause.
2940  unsigned NumParams = FnDecl->getNumParams()
2941                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2942  if (Op != OO_Call &&
2943      ((NumParams == 1 && !CanBeUnaryOperator) ||
2944       (NumParams == 2 && !CanBeBinaryOperator) ||
2945       (NumParams < 1) || (NumParams > 2))) {
2946    // We have the wrong number of parameters.
2947    unsigned ErrorKind;
2948    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2949      ErrorKind = 2;  // 2 -> unary or binary.
2950    } else if (CanBeUnaryOperator) {
2951      ErrorKind = 0;  // 0 -> unary
2952    } else {
2953      assert(CanBeBinaryOperator &&
2954             "All non-call overloaded operators are unary or binary!");
2955      ErrorKind = 1;  // 1 -> binary
2956    }
2957
2958    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2959      << FnDecl->getDeclName() << NumParams << ErrorKind;
2960  }
2961
2962  // Overloaded operators other than operator() cannot be variadic.
2963  if (Op != OO_Call &&
2964      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2965    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2966      << FnDecl->getDeclName();
2967  }
2968
2969  // Some operators must be non-static member functions.
2970  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2971    return Diag(FnDecl->getLocation(),
2972                diag::err_operator_overload_must_be_member)
2973      << FnDecl->getDeclName();
2974  }
2975
2976  // C++ [over.inc]p1:
2977  //   The user-defined function called operator++ implements the
2978  //   prefix and postfix ++ operator. If this function is a member
2979  //   function with no parameters, or a non-member function with one
2980  //   parameter of class or enumeration type, it defines the prefix
2981  //   increment operator ++ for objects of that type. If the function
2982  //   is a member function with one parameter (which shall be of type
2983  //   int) or a non-member function with two parameters (the second
2984  //   of which shall be of type int), it defines the postfix
2985  //   increment operator ++ for objects of that type.
2986  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2987    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2988    bool ParamIsInt = false;
2989    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2990      ParamIsInt = BT->getKind() == BuiltinType::Int;
2991
2992    if (!ParamIsInt)
2993      return Diag(LastParam->getLocation(),
2994                  diag::err_operator_overload_post_incdec_must_be_int)
2995        << LastParam->getType() << (Op == OO_MinusMinus);
2996  }
2997
2998  // Notify the class if it got an assignment operator.
2999  if (Op == OO_Equal) {
3000    // Would have returned earlier otherwise.
3001    assert(isa<CXXMethodDecl>(FnDecl) &&
3002      "Overloaded = not member, but not filtered.");
3003    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3004    Method->getParent()->addedAssignmentOperator(Context, Method);
3005  }
3006
3007  return false;
3008}
3009
3010/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3011/// linkage specification, including the language and (if present)
3012/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3013/// the location of the language string literal, which is provided
3014/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3015/// the '{' brace. Otherwise, this linkage specification does not
3016/// have any braces.
3017Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3018                                                     SourceLocation ExternLoc,
3019                                                     SourceLocation LangLoc,
3020                                                     const char *Lang,
3021                                                     unsigned StrSize,
3022                                                     SourceLocation LBraceLoc) {
3023  LinkageSpecDecl::LanguageIDs Language;
3024  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3025    Language = LinkageSpecDecl::lang_c;
3026  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3027    Language = LinkageSpecDecl::lang_cxx;
3028  else {
3029    Diag(LangLoc, diag::err_bad_language);
3030    return DeclPtrTy();
3031  }
3032
3033  // FIXME: Add all the various semantics of linkage specifications
3034
3035  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3036                                               LangLoc, Language,
3037                                               LBraceLoc.isValid());
3038  CurContext->addDecl(D);
3039  PushDeclContext(S, D);
3040  return DeclPtrTy::make(D);
3041}
3042
3043/// ActOnFinishLinkageSpecification - Completely the definition of
3044/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3045/// valid, it's the position of the closing '}' brace in a linkage
3046/// specification that uses braces.
3047Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3048                                                      DeclPtrTy LinkageSpec,
3049                                                      SourceLocation RBraceLoc) {
3050  if (LinkageSpec)
3051    PopDeclContext();
3052  return LinkageSpec;
3053}
3054
3055/// \brief Perform semantic analysis for the variable declaration that
3056/// occurs within a C++ catch clause, returning the newly-created
3057/// variable.
3058VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3059                                         IdentifierInfo *Name,
3060                                         SourceLocation Loc,
3061                                         SourceRange Range) {
3062  bool Invalid = false;
3063
3064  // Arrays and functions decay.
3065  if (ExDeclType->isArrayType())
3066    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3067  else if (ExDeclType->isFunctionType())
3068    ExDeclType = Context.getPointerType(ExDeclType);
3069
3070  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3071  // The exception-declaration shall not denote a pointer or reference to an
3072  // incomplete type, other than [cv] void*.
3073  // N2844 forbids rvalue references.
3074  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3075    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3076    Invalid = true;
3077  }
3078
3079  QualType BaseType = ExDeclType;
3080  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3081  unsigned DK = diag::err_catch_incomplete;
3082  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3083    BaseType = Ptr->getPointeeType();
3084    Mode = 1;
3085    DK = diag::err_catch_incomplete_ptr;
3086  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3087    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3088    BaseType = Ref->getPointeeType();
3089    Mode = 2;
3090    DK = diag::err_catch_incomplete_ref;
3091  }
3092  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3093      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3094    Invalid = true;
3095
3096  if (!Invalid && !ExDeclType->isDependentType() &&
3097      RequireNonAbstractType(Loc, ExDeclType,
3098                             diag::err_abstract_type_in_decl,
3099                             AbstractVariableType))
3100    Invalid = true;
3101
3102  // FIXME: Need to test for ability to copy-construct and destroy the
3103  // exception variable.
3104
3105  // FIXME: Need to check for abstract classes.
3106
3107  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3108                                    Name, ExDeclType, VarDecl::None,
3109                                    Range.getBegin());
3110
3111  if (Invalid)
3112    ExDecl->setInvalidDecl();
3113
3114  return ExDecl;
3115}
3116
3117/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3118/// handler.
3119Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3120  QualType ExDeclType = GetTypeForDeclarator(D, S);
3121
3122  bool Invalid = D.isInvalidType();
3123  IdentifierInfo *II = D.getIdentifier();
3124  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3125    // The scope should be freshly made just for us. There is just no way
3126    // it contains any previous declaration.
3127    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3128    if (PrevDecl->isTemplateParameter()) {
3129      // Maybe we will complain about the shadowed template parameter.
3130      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3131    }
3132  }
3133
3134  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3135    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3136      << D.getCXXScopeSpec().getRange();
3137    Invalid = true;
3138  }
3139
3140  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3141                                              D.getIdentifier(),
3142                                              D.getIdentifierLoc(),
3143                                            D.getDeclSpec().getSourceRange());
3144
3145  if (Invalid)
3146    ExDecl->setInvalidDecl();
3147
3148  // Add the exception declaration into this scope.
3149  if (II)
3150    PushOnScopeChains(ExDecl, S);
3151  else
3152    CurContext->addDecl(ExDecl);
3153
3154  ProcessDeclAttributes(S, ExDecl, D);
3155  return DeclPtrTy::make(ExDecl);
3156}
3157
3158Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3159                                                   ExprArg assertexpr,
3160                                                   ExprArg assertmessageexpr) {
3161  Expr *AssertExpr = (Expr *)assertexpr.get();
3162  StringLiteral *AssertMessage =
3163    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3164
3165  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3166    llvm::APSInt Value(32);
3167    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3168      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3169        AssertExpr->getSourceRange();
3170      return DeclPtrTy();
3171    }
3172
3173    if (Value == 0) {
3174      std::string str(AssertMessage->getStrData(),
3175                      AssertMessage->getByteLength());
3176      Diag(AssertLoc, diag::err_static_assert_failed)
3177        << str << AssertExpr->getSourceRange();
3178    }
3179  }
3180
3181  assertexpr.release();
3182  assertmessageexpr.release();
3183  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3184                                        AssertExpr, AssertMessage);
3185
3186  CurContext->addDecl(Decl);
3187  return DeclPtrTy::make(Decl);
3188}
3189
3190bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3191  if (!(S->getFlags() & Scope::ClassScope)) {
3192    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3193    return true;
3194  }
3195
3196  return false;
3197}
3198
3199void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3200  Decl *Dcl = dcl.getAs<Decl>();
3201  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3202  if (!Fn) {
3203    Diag(DelLoc, diag::err_deleted_non_function);
3204    return;
3205  }
3206  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3207    Diag(DelLoc, diag::err_deleted_decl_not_first);
3208    Diag(Prev->getLocation(), diag::note_previous_declaration);
3209    // If the declaration wasn't the first, we delete the function anyway for
3210    // recovery.
3211  }
3212  Fn->setDeleted();
3213}
3214
3215static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3216  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3217       ++CI) {
3218    Stmt *SubStmt = *CI;
3219    if (!SubStmt)
3220      continue;
3221    if (isa<ReturnStmt>(SubStmt))
3222      Self.Diag(SubStmt->getSourceRange().getBegin(),
3223           diag::err_return_in_constructor_handler);
3224    if (!isa<Expr>(SubStmt))
3225      SearchForReturnInStmt(Self, SubStmt);
3226  }
3227}
3228
3229void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3230  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3231    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3232    SearchForReturnInStmt(*this, Handler);
3233  }
3234}
3235
3236bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3237                                             const CXXMethodDecl *Old) {
3238  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3239  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3240
3241  QualType CNewTy = Context.getCanonicalType(NewTy);
3242  QualType COldTy = Context.getCanonicalType(OldTy);
3243
3244  if (CNewTy == COldTy &&
3245      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3246    return false;
3247
3248  // Check if the return types are covariant
3249  QualType NewClassTy, OldClassTy;
3250
3251  /// Both types must be pointers or references to classes.
3252  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3253    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3254      NewClassTy = NewPT->getPointeeType();
3255      OldClassTy = OldPT->getPointeeType();
3256    }
3257  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3258    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3259      NewClassTy = NewRT->getPointeeType();
3260      OldClassTy = OldRT->getPointeeType();
3261    }
3262  }
3263
3264  // The return types aren't either both pointers or references to a class type.
3265  if (NewClassTy.isNull()) {
3266    Diag(New->getLocation(),
3267         diag::err_different_return_type_for_overriding_virtual_function)
3268      << New->getDeclName() << NewTy << OldTy;
3269    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3270
3271    return true;
3272  }
3273
3274  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3275    // Check if the new class derives from the old class.
3276    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3277      Diag(New->getLocation(),
3278           diag::err_covariant_return_not_derived)
3279      << New->getDeclName() << NewTy << OldTy;
3280      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3281      return true;
3282    }
3283
3284    // Check if we the conversion from derived to base is valid.
3285    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3286                      diag::err_covariant_return_inaccessible_base,
3287                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3288                      // FIXME: Should this point to the return type?
3289                      New->getLocation(), SourceRange(), New->getDeclName())) {
3290      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3291      return true;
3292    }
3293  }
3294
3295  // The qualifiers of the return types must be the same.
3296  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3297    Diag(New->getLocation(),
3298         diag::err_covariant_return_type_different_qualifications)
3299    << New->getDeclName() << NewTy << OldTy;
3300    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3301    return true;
3302  };
3303
3304
3305  // The new class type must have the same or less qualifiers as the old type.
3306  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3307    Diag(New->getLocation(),
3308         diag::err_covariant_return_type_class_type_more_qualified)
3309    << New->getDeclName() << NewTy << OldTy;
3310    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3311    return true;
3312  };
3313
3314  return false;
3315}
3316
3317bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3318                                                const CXXMethodDecl *Old)
3319{
3320  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3321                                  diag::note_overridden_virtual_function,
3322                                  Old->getType()->getAsFunctionProtoType(),
3323                                  Old->getLocation(),
3324                                  New->getType()->getAsFunctionProtoType(),
3325                                  New->getLocation());
3326}
3327
3328/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3329/// initializer for the declaration 'Dcl'.
3330/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3331/// static data member of class X, names should be looked up in the scope of
3332/// class X.
3333void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3334  Decl *D = Dcl.getAs<Decl>();
3335  // If there is no declaration, there was an error parsing it.
3336  if (D == 0)
3337    return;
3338
3339  // Check whether it is a declaration with a nested name specifier like
3340  // int foo::bar;
3341  if (!D->isOutOfLine())
3342    return;
3343
3344  // C++ [basic.lookup.unqual]p13
3345  //
3346  // A name used in the definition of a static data member of class X
3347  // (after the qualified-id of the static member) is looked up as if the name
3348  // was used in a member function of X.
3349
3350  // Change current context into the context of the initializing declaration.
3351  EnterDeclaratorContext(S, D->getDeclContext());
3352}
3353
3354/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3355/// initializer for the declaration 'Dcl'.
3356void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3357  Decl *D = Dcl.getAs<Decl>();
3358  // If there is no declaration, there was an error parsing it.
3359  if (D == 0)
3360    return;
3361
3362  // Check whether it is a declaration with a nested name specifier like
3363  // int foo::bar;
3364  if (!D->isOutOfLine())
3365    return;
3366
3367  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3368  ExitDeclaratorContext(S);
3369}
3370