SemaDeclCXX.cpp revision 3a031ae36a2f29a65930d6f38433851560945163
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isBlockVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
132  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
133                                            MultiExprArg(*this, &Arg, 1));
134  if (Result.isInvalid())
135    return true;
136  Arg = Result.takeAs<Expr>();
137
138  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
139
140  // Okay: add the default argument to the parameter
141  Param->setDefaultArg(Arg);
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
151                                Expr *DefaultArg) {
152  if (!param || !DefaultArg)
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param);
156  UnparsedDefaultArgLocs.erase(Param);
157
158  // Default arguments are only permitted in C++
159  if (!getLangOptions().CPlusPlus) {
160    Diag(EqualLoc, diag::err_param_default_argument)
161      << DefaultArg->getSourceRange();
162    Param->setInvalidDecl();
163    return;
164  }
165
166  // Check that the default argument is well-formed
167  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
168  if (DefaultArgChecker.Visit(DefaultArg)) {
169    Param->setInvalidDecl();
170    return;
171  }
172
173  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
174}
175
176/// ActOnParamUnparsedDefaultArgument - We've seen a default
177/// argument for a function parameter, but we can't parse it yet
178/// because we're inside a class definition. Note that this default
179/// argument will be parsed later.
180void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
181                                             SourceLocation EqualLoc,
182                                             SourceLocation ArgLoc) {
183  if (!param)
184    return;
185
186  ParmVarDecl *Param = cast<ParmVarDecl>(param);
187  if (Param)
188    Param->setUnparsedDefaultArg();
189
190  UnparsedDefaultArgLocs[Param] = ArgLoc;
191}
192
193/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
194/// the default argument for the parameter param failed.
195void Sema::ActOnParamDefaultArgumentError(Decl *param) {
196  if (!param)
197    return;
198
199  ParmVarDecl *Param = cast<ParmVarDecl>(param);
200
201  Param->setInvalidDecl();
202
203  UnparsedDefaultArgLocs.erase(Param);
204}
205
206/// CheckExtraCXXDefaultArguments - Check for any extra default
207/// arguments in the declarator, which is not a function declaration
208/// or definition and therefore is not permitted to have default
209/// arguments. This routine should be invoked for every declarator
210/// that is not a function declaration or definition.
211void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
212  // C++ [dcl.fct.default]p3
213  //   A default argument expression shall be specified only in the
214  //   parameter-declaration-clause of a function declaration or in a
215  //   template-parameter (14.1). It shall not be specified for a
216  //   parameter pack. If it is specified in a
217  //   parameter-declaration-clause, it shall not occur within a
218  //   declarator or abstract-declarator of a parameter-declaration.
219  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
220    DeclaratorChunk &chunk = D.getTypeObject(i);
221    if (chunk.Kind == DeclaratorChunk::Function) {
222      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
223        ParmVarDecl *Param =
224          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
225        if (Param->hasUnparsedDefaultArg()) {
226          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
227          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
228            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
229          delete Toks;
230          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
231        } else if (Param->getDefaultArg()) {
232          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
233            << Param->getDefaultArg()->getSourceRange();
234          Param->setDefaultArg(0);
235        }
236      }
237    }
238  }
239}
240
241// MergeCXXFunctionDecl - Merge two declarations of the same C++
242// function, once we already know that they have the same
243// type. Subroutine of MergeFunctionDecl. Returns true if there was an
244// error, false otherwise.
245bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
246  bool Invalid = false;
247
248  // C++ [dcl.fct.default]p4:
249  //   For non-template functions, default arguments can be added in
250  //   later declarations of a function in the same
251  //   scope. Declarations in different scopes have completely
252  //   distinct sets of default arguments. That is, declarations in
253  //   inner scopes do not acquire default arguments from
254  //   declarations in outer scopes, and vice versa. In a given
255  //   function declaration, all parameters subsequent to a
256  //   parameter with a default argument shall have default
257  //   arguments supplied in this or previous declarations. A
258  //   default argument shall not be redefined by a later
259  //   declaration (not even to the same value).
260  //
261  // C++ [dcl.fct.default]p6:
262  //   Except for member functions of class templates, the default arguments
263  //   in a member function definition that appears outside of the class
264  //   definition are added to the set of default arguments provided by the
265  //   member function declaration in the class definition.
266  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
267    ParmVarDecl *OldParam = Old->getParamDecl(p);
268    ParmVarDecl *NewParam = New->getParamDecl(p);
269
270    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
271      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
272      // hint here. Alternatively, we could walk the type-source information
273      // for NewParam to find the last source location in the type... but it
274      // isn't worth the effort right now. This is the kind of test case that
275      // is hard to get right:
276
277      //   int f(int);
278      //   void g(int (*fp)(int) = f);
279      //   void g(int (*fp)(int) = &f);
280      Diag(NewParam->getLocation(),
281           diag::err_param_default_argument_redefinition)
282        << NewParam->getDefaultArgRange();
283
284      // Look for the function declaration where the default argument was
285      // actually written, which may be a declaration prior to Old.
286      for (FunctionDecl *Older = Old->getPreviousDeclaration();
287           Older; Older = Older->getPreviousDeclaration()) {
288        if (!Older->getParamDecl(p)->hasDefaultArg())
289          break;
290
291        OldParam = Older->getParamDecl(p);
292      }
293
294      Diag(OldParam->getLocation(), diag::note_previous_definition)
295        << OldParam->getDefaultArgRange();
296      Invalid = true;
297    } else if (OldParam->hasDefaultArg()) {
298      // Merge the old default argument into the new parameter.
299      // It's important to use getInit() here;  getDefaultArg()
300      // strips off any top-level CXXExprWithTemporaries.
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getInit());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        Param->setDefaultArg(0);
413      }
414    }
415  }
416}
417
418/// isCurrentClassName - Determine whether the identifier II is the
419/// name of the class type currently being defined. In the case of
420/// nested classes, this will only return true if II is the name of
421/// the innermost class.
422bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
423                              const CXXScopeSpec *SS) {
424  assert(getLangOptions().CPlusPlus && "No class names in C!");
425
426  CXXRecordDecl *CurDecl;
427  if (SS && SS->isSet() && !SS->isInvalid()) {
428    DeclContext *DC = computeDeclContext(*SS, true);
429    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
430  } else
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
432
433  if (CurDecl && CurDecl->getIdentifier())
434    return &II == CurDecl->getIdentifier();
435  else
436    return false;
437}
438
439/// \brief Check the validity of a C++ base class specifier.
440///
441/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
442/// and returns NULL otherwise.
443CXXBaseSpecifier *
444Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
445                         SourceRange SpecifierRange,
446                         bool Virtual, AccessSpecifier Access,
447                         TypeSourceInfo *TInfo) {
448  QualType BaseType = TInfo->getType();
449
450  // C++ [class.union]p1:
451  //   A union shall not have base classes.
452  if (Class->isUnion()) {
453    Diag(Class->getLocation(), diag::err_base_clause_on_union)
454      << SpecifierRange;
455    return 0;
456  }
457
458  if (BaseType->isDependentType())
459    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
460                                          Class->getTagKind() == TTK_Class,
461                                          Access, TInfo);
462
463  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
464
465  // Base specifiers must be record types.
466  if (!BaseType->isRecordType()) {
467    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.union]p1:
472  //   A union shall not be used as a base class.
473  if (BaseType->isUnionType()) {
474    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
475    return 0;
476  }
477
478  // C++ [class.derived]p2:
479  //   The class-name in a base-specifier shall not be an incompletely
480  //   defined class.
481  if (RequireCompleteType(BaseLoc, BaseType,
482                          PDiag(diag::err_incomplete_base_class)
483                            << SpecifierRange)) {
484    Class->setInvalidDecl();
485    return 0;
486  }
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  if (BaseDecl->isInvalidDecl())
507    Class->setInvalidDecl();
508
509  // Create the base specifier.
510  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
511                                        Class->getTagKind() == TTK_Class,
512                                        Access, TInfo);
513}
514
515void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
516                                          const CXXRecordDecl *BaseClass,
517                                          bool BaseIsVirtual) {
518  // A class with a non-empty base class is not empty.
519  // FIXME: Standard ref?
520  if (!BaseClass->isEmpty())
521    Class->setEmpty(false);
522
523  // C++ [class.virtual]p1:
524  //   A class that [...] inherits a virtual function is called a polymorphic
525  //   class.
526  if (BaseClass->isPolymorphic())
527    Class->setPolymorphic(true);
528
529  // C++ [dcl.init.aggr]p1:
530  //   An aggregate is [...] a class with [...] no base classes [...].
531  Class->setAggregate(false);
532
533  // C++ [class]p4:
534  //   A POD-struct is an aggregate class...
535  Class->setPOD(false);
536
537  if (BaseIsVirtual) {
538    // C++ [class.ctor]p5:
539    //   A constructor is trivial if its class has no virtual base classes.
540    Class->setHasTrivialConstructor(false);
541
542    // C++ [class.copy]p6:
543    //   A copy constructor is trivial if its class has no virtual base classes.
544    Class->setHasTrivialCopyConstructor(false);
545
546    // C++ [class.copy]p11:
547    //   A copy assignment operator is trivial if its class has no virtual
548    //   base classes.
549    Class->setHasTrivialCopyAssignment(false);
550
551    // C++0x [meta.unary.prop] is_empty:
552    //    T is a class type, but not a union type, with ... no virtual base
553    //    classes
554    Class->setEmpty(false);
555  } else {
556    // C++ [class.ctor]p5:
557    //   A constructor is trivial if all the direct base classes of its
558    //   class have trivial constructors.
559    if (!BaseClass->hasTrivialConstructor())
560      Class->setHasTrivialConstructor(false);
561
562    // C++ [class.copy]p6:
563    //   A copy constructor is trivial if all the direct base classes of its
564    //   class have trivial copy constructors.
565    if (!BaseClass->hasTrivialCopyConstructor())
566      Class->setHasTrivialCopyConstructor(false);
567
568    // C++ [class.copy]p11:
569    //   A copy assignment operator is trivial if all the direct base classes
570    //   of its class have trivial copy assignment operators.
571    if (!BaseClass->hasTrivialCopyAssignment())
572      Class->setHasTrivialCopyAssignment(false);
573  }
574
575  // C++ [class.ctor]p3:
576  //   A destructor is trivial if all the direct base classes of its class
577  //   have trivial destructors.
578  if (!BaseClass->hasTrivialDestructor())
579    Class->setHasTrivialDestructor(false);
580}
581
582/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
583/// one entry in the base class list of a class specifier, for
584/// example:
585///    class foo : public bar, virtual private baz {
586/// 'public bar' and 'virtual private baz' are each base-specifiers.
587BaseResult
588Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
589                         bool Virtual, AccessSpecifier Access,
590                         ParsedType basetype, SourceLocation BaseLoc) {
591  if (!classdecl)
592    return true;
593
594  AdjustDeclIfTemplate(classdecl);
595  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
596  if (!Class)
597    return true;
598
599  TypeSourceInfo *TInfo = 0;
600  GetTypeFromParser(basetype, &TInfo);
601  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
602                                                      Virtual, Access, TInfo))
603    return BaseSpec;
604
605  return true;
606}
607
608/// \brief Performs the actual work of attaching the given base class
609/// specifiers to a C++ class.
610bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
611                                unsigned NumBases) {
612 if (NumBases == 0)
613    return false;
614
615  // Used to keep track of which base types we have already seen, so
616  // that we can properly diagnose redundant direct base types. Note
617  // that the key is always the unqualified canonical type of the base
618  // class.
619  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
620
621  // Copy non-redundant base specifiers into permanent storage.
622  unsigned NumGoodBases = 0;
623  bool Invalid = false;
624  for (unsigned idx = 0; idx < NumBases; ++idx) {
625    QualType NewBaseType
626      = Context.getCanonicalType(Bases[idx]->getType());
627    NewBaseType = NewBaseType.getLocalUnqualifiedType();
628    if (!Class->hasObjectMember()) {
629      if (const RecordType *FDTTy =
630            NewBaseType.getTypePtr()->getAs<RecordType>())
631        if (FDTTy->getDecl()->hasObjectMember())
632          Class->setHasObjectMember(true);
633    }
634
635    if (KnownBaseTypes[NewBaseType]) {
636      // C++ [class.mi]p3:
637      //   A class shall not be specified as a direct base class of a
638      //   derived class more than once.
639      Diag(Bases[idx]->getSourceRange().getBegin(),
640           diag::err_duplicate_base_class)
641        << KnownBaseTypes[NewBaseType]->getType()
642        << Bases[idx]->getSourceRange();
643
644      // Delete the duplicate base class specifier; we're going to
645      // overwrite its pointer later.
646      Context.Deallocate(Bases[idx]);
647
648      Invalid = true;
649    } else {
650      // Okay, add this new base class.
651      KnownBaseTypes[NewBaseType] = Bases[idx];
652      Bases[NumGoodBases++] = Bases[idx];
653    }
654  }
655
656  // Attach the remaining base class specifiers to the derived class.
657  Class->setBases(Bases, NumGoodBases);
658
659  // Delete the remaining (good) base class specifiers, since their
660  // data has been copied into the CXXRecordDecl.
661  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
662    Context.Deallocate(Bases[idx]);
663
664  return Invalid;
665}
666
667/// ActOnBaseSpecifiers - Attach the given base specifiers to the
668/// class, after checking whether there are any duplicate base
669/// classes.
670void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
671                               unsigned NumBases) {
672  if (!ClassDecl || !Bases || !NumBases)
673    return;
674
675  AdjustDeclIfTemplate(ClassDecl);
676  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
677                       (CXXBaseSpecifier**)(Bases), NumBases);
678}
679
680static CXXRecordDecl *GetClassForType(QualType T) {
681  if (const RecordType *RT = T->getAs<RecordType>())
682    return cast<CXXRecordDecl>(RT->getDecl());
683  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
684    return ICT->getDecl();
685  else
686    return 0;
687}
688
689/// \brief Determine whether the type \p Derived is a C++ class that is
690/// derived from the type \p Base.
691bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
692  if (!getLangOptions().CPlusPlus)
693    return false;
694
695  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
696  if (!DerivedRD)
697    return false;
698
699  CXXRecordDecl *BaseRD = GetClassForType(Base);
700  if (!BaseRD)
701    return false;
702
703  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
704  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
705}
706
707/// \brief Determine whether the type \p Derived is a C++ class that is
708/// derived from the type \p Base.
709bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
710  if (!getLangOptions().CPlusPlus)
711    return false;
712
713  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
714  if (!DerivedRD)
715    return false;
716
717  CXXRecordDecl *BaseRD = GetClassForType(Base);
718  if (!BaseRD)
719    return false;
720
721  return DerivedRD->isDerivedFrom(BaseRD, Paths);
722}
723
724void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
725                              CXXCastPath &BasePathArray) {
726  assert(BasePathArray.empty() && "Base path array must be empty!");
727  assert(Paths.isRecordingPaths() && "Must record paths!");
728
729  const CXXBasePath &Path = Paths.front();
730
731  // We first go backward and check if we have a virtual base.
732  // FIXME: It would be better if CXXBasePath had the base specifier for
733  // the nearest virtual base.
734  unsigned Start = 0;
735  for (unsigned I = Path.size(); I != 0; --I) {
736    if (Path[I - 1].Base->isVirtual()) {
737      Start = I - 1;
738      break;
739    }
740  }
741
742  // Now add all bases.
743  for (unsigned I = Start, E = Path.size(); I != E; ++I)
744    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
745}
746
747/// \brief Determine whether the given base path includes a virtual
748/// base class.
749bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
750  for (CXXCastPath::const_iterator B = BasePath.begin(),
751                                BEnd = BasePath.end();
752       B != BEnd; ++B)
753    if ((*B)->isVirtual())
754      return true;
755
756  return false;
757}
758
759/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
760/// conversion (where Derived and Base are class types) is
761/// well-formed, meaning that the conversion is unambiguous (and
762/// that all of the base classes are accessible). Returns true
763/// and emits a diagnostic if the code is ill-formed, returns false
764/// otherwise. Loc is the location where this routine should point to
765/// if there is an error, and Range is the source range to highlight
766/// if there is an error.
767bool
768Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
769                                   unsigned InaccessibleBaseID,
770                                   unsigned AmbigiousBaseConvID,
771                                   SourceLocation Loc, SourceRange Range,
772                                   DeclarationName Name,
773                                   CXXCastPath *BasePath) {
774  // First, determine whether the path from Derived to Base is
775  // ambiguous. This is slightly more expensive than checking whether
776  // the Derived to Base conversion exists, because here we need to
777  // explore multiple paths to determine if there is an ambiguity.
778  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
779                     /*DetectVirtual=*/false);
780  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
781  assert(DerivationOkay &&
782         "Can only be used with a derived-to-base conversion");
783  (void)DerivationOkay;
784
785  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
786    if (InaccessibleBaseID) {
787      // Check that the base class can be accessed.
788      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
789                                   InaccessibleBaseID)) {
790        case AR_inaccessible:
791          return true;
792        case AR_accessible:
793        case AR_dependent:
794        case AR_delayed:
795          break;
796      }
797    }
798
799    // Build a base path if necessary.
800    if (BasePath)
801      BuildBasePathArray(Paths, *BasePath);
802    return false;
803  }
804
805  // We know that the derived-to-base conversion is ambiguous, and
806  // we're going to produce a diagnostic. Perform the derived-to-base
807  // search just one more time to compute all of the possible paths so
808  // that we can print them out. This is more expensive than any of
809  // the previous derived-to-base checks we've done, but at this point
810  // performance isn't as much of an issue.
811  Paths.clear();
812  Paths.setRecordingPaths(true);
813  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
814  assert(StillOkay && "Can only be used with a derived-to-base conversion");
815  (void)StillOkay;
816
817  // Build up a textual representation of the ambiguous paths, e.g.,
818  // D -> B -> A, that will be used to illustrate the ambiguous
819  // conversions in the diagnostic. We only print one of the paths
820  // to each base class subobject.
821  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
822
823  Diag(Loc, AmbigiousBaseConvID)
824  << Derived << Base << PathDisplayStr << Range << Name;
825  return true;
826}
827
828bool
829Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
830                                   SourceLocation Loc, SourceRange Range,
831                                   CXXCastPath *BasePath,
832                                   bool IgnoreAccess) {
833  return CheckDerivedToBaseConversion(Derived, Base,
834                                      IgnoreAccess ? 0
835                                       : diag::err_upcast_to_inaccessible_base,
836                                      diag::err_ambiguous_derived_to_base_conv,
837                                      Loc, Range, DeclarationName(),
838                                      BasePath);
839}
840
841
842/// @brief Builds a string representing ambiguous paths from a
843/// specific derived class to different subobjects of the same base
844/// class.
845///
846/// This function builds a string that can be used in error messages
847/// to show the different paths that one can take through the
848/// inheritance hierarchy to go from the derived class to different
849/// subobjects of a base class. The result looks something like this:
850/// @code
851/// struct D -> struct B -> struct A
852/// struct D -> struct C -> struct A
853/// @endcode
854std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
855  std::string PathDisplayStr;
856  std::set<unsigned> DisplayedPaths;
857  for (CXXBasePaths::paths_iterator Path = Paths.begin();
858       Path != Paths.end(); ++Path) {
859    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
860      // We haven't displayed a path to this particular base
861      // class subobject yet.
862      PathDisplayStr += "\n    ";
863      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
864      for (CXXBasePath::const_iterator Element = Path->begin();
865           Element != Path->end(); ++Element)
866        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
867    }
868  }
869
870  return PathDisplayStr;
871}
872
873//===----------------------------------------------------------------------===//
874// C++ class member Handling
875//===----------------------------------------------------------------------===//
876
877/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
878Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
879                                 SourceLocation ASLoc,
880                                 SourceLocation ColonLoc) {
881  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
882  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
883                                                  ASLoc, ColonLoc);
884  CurContext->addHiddenDecl(ASDecl);
885  return ASDecl;
886}
887
888/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
889/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
890/// bitfield width if there is one and 'InitExpr' specifies the initializer if
891/// any.
892Decl *
893Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
894                               MultiTemplateParamsArg TemplateParameterLists,
895                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
896                               bool Deleted) {
897  const DeclSpec &DS = D.getDeclSpec();
898  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
899  DeclarationName Name = NameInfo.getName();
900  SourceLocation Loc = NameInfo.getLoc();
901  Expr *BitWidth = static_cast<Expr*>(BW);
902  Expr *Init = static_cast<Expr*>(InitExpr);
903
904  assert(isa<CXXRecordDecl>(CurContext));
905  assert(!DS.isFriendSpecified());
906
907  bool isFunc = false;
908  if (D.isFunctionDeclarator())
909    isFunc = true;
910  else if (D.getNumTypeObjects() == 0 &&
911           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
912    QualType TDType = GetTypeFromParser(DS.getRepAsType());
913    isFunc = TDType->isFunctionType();
914  }
915
916  // C++ 9.2p6: A member shall not be declared to have automatic storage
917  // duration (auto, register) or with the extern storage-class-specifier.
918  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
919  // data members and cannot be applied to names declared const or static,
920  // and cannot be applied to reference members.
921  switch (DS.getStorageClassSpec()) {
922    case DeclSpec::SCS_unspecified:
923    case DeclSpec::SCS_typedef:
924    case DeclSpec::SCS_static:
925      // FALL THROUGH.
926      break;
927    case DeclSpec::SCS_mutable:
928      if (isFunc) {
929        if (DS.getStorageClassSpecLoc().isValid())
930          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
931        else
932          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
933
934        // FIXME: It would be nicer if the keyword was ignored only for this
935        // declarator. Otherwise we could get follow-up errors.
936        D.getMutableDeclSpec().ClearStorageClassSpecs();
937      }
938      break;
939    default:
940      if (DS.getStorageClassSpecLoc().isValid())
941        Diag(DS.getStorageClassSpecLoc(),
942             diag::err_storageclass_invalid_for_member);
943      else
944        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
945      D.getMutableDeclSpec().ClearStorageClassSpecs();
946  }
947
948  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
949                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
950                      !isFunc);
951
952  Decl *Member;
953  if (isInstField) {
954    // FIXME: Check for template parameters!
955    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
956                         AS);
957    assert(Member && "HandleField never returns null");
958  } else {
959    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
960    if (!Member) {
961      return 0;
962    }
963
964    // Non-instance-fields can't have a bitfield.
965    if (BitWidth) {
966      if (Member->isInvalidDecl()) {
967        // don't emit another diagnostic.
968      } else if (isa<VarDecl>(Member)) {
969        // C++ 9.6p3: A bit-field shall not be a static member.
970        // "static member 'A' cannot be a bit-field"
971        Diag(Loc, diag::err_static_not_bitfield)
972          << Name << BitWidth->getSourceRange();
973      } else if (isa<TypedefDecl>(Member)) {
974        // "typedef member 'x' cannot be a bit-field"
975        Diag(Loc, diag::err_typedef_not_bitfield)
976          << Name << BitWidth->getSourceRange();
977      } else {
978        // A function typedef ("typedef int f(); f a;").
979        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
980        Diag(Loc, diag::err_not_integral_type_bitfield)
981          << Name << cast<ValueDecl>(Member)->getType()
982          << BitWidth->getSourceRange();
983      }
984
985      BitWidth = 0;
986      Member->setInvalidDecl();
987    }
988
989    Member->setAccess(AS);
990
991    // If we have declared a member function template, set the access of the
992    // templated declaration as well.
993    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
994      FunTmpl->getTemplatedDecl()->setAccess(AS);
995  }
996
997  assert((Name || isInstField) && "No identifier for non-field ?");
998
999  if (Init)
1000    AddInitializerToDecl(Member, Init, false);
1001  if (Deleted) // FIXME: Source location is not very good.
1002    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1003
1004  if (isInstField) {
1005    FieldCollector->Add(cast<FieldDecl>(Member));
1006    return 0;
1007  }
1008  return Member;
1009}
1010
1011/// \brief Find the direct and/or virtual base specifiers that
1012/// correspond to the given base type, for use in base initialization
1013/// within a constructor.
1014static bool FindBaseInitializer(Sema &SemaRef,
1015                                CXXRecordDecl *ClassDecl,
1016                                QualType BaseType,
1017                                const CXXBaseSpecifier *&DirectBaseSpec,
1018                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1019  // First, check for a direct base class.
1020  DirectBaseSpec = 0;
1021  for (CXXRecordDecl::base_class_const_iterator Base
1022         = ClassDecl->bases_begin();
1023       Base != ClassDecl->bases_end(); ++Base) {
1024    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1025      // We found a direct base of this type. That's what we're
1026      // initializing.
1027      DirectBaseSpec = &*Base;
1028      break;
1029    }
1030  }
1031
1032  // Check for a virtual base class.
1033  // FIXME: We might be able to short-circuit this if we know in advance that
1034  // there are no virtual bases.
1035  VirtualBaseSpec = 0;
1036  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1037    // We haven't found a base yet; search the class hierarchy for a
1038    // virtual base class.
1039    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1040                       /*DetectVirtual=*/false);
1041    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1042                              BaseType, Paths)) {
1043      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1044           Path != Paths.end(); ++Path) {
1045        if (Path->back().Base->isVirtual()) {
1046          VirtualBaseSpec = Path->back().Base;
1047          break;
1048        }
1049      }
1050    }
1051  }
1052
1053  return DirectBaseSpec || VirtualBaseSpec;
1054}
1055
1056/// ActOnMemInitializer - Handle a C++ member initializer.
1057MemInitResult
1058Sema::ActOnMemInitializer(Decl *ConstructorD,
1059                          Scope *S,
1060                          CXXScopeSpec &SS,
1061                          IdentifierInfo *MemberOrBase,
1062                          ParsedType TemplateTypeTy,
1063                          SourceLocation IdLoc,
1064                          SourceLocation LParenLoc,
1065                          ExprTy **Args, unsigned NumArgs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  if (Member->getType()->isDependentType() || HasDependentArg) {
1289    // Can't check initialization for a member of dependent type or when
1290    // any of the arguments are type-dependent expressions.
1291    Expr *Init
1292      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1293                                    RParenLoc);
1294
1295    // Erase any temporaries within this evaluation context; we're not
1296    // going to track them in the AST, since we'll be rebuilding the
1297    // ASTs during template instantiation.
1298    ExprTemporaries.erase(
1299              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1300                          ExprTemporaries.end());
1301
1302    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1303                                                    LParenLoc,
1304                                                    Init,
1305                                                    RParenLoc);
1306
1307  }
1308
1309  if (Member->isInvalidDecl())
1310    return true;
1311
1312  // Initialize the member.
1313  InitializedEntity MemberEntity =
1314    InitializedEntity::InitializeMember(Member, 0);
1315  InitializationKind Kind =
1316    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1317
1318  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1319
1320  ExprResult MemberInit =
1321    InitSeq.Perform(*this, MemberEntity, Kind,
1322                    MultiExprArg(*this, Args, NumArgs), 0);
1323  if (MemberInit.isInvalid())
1324    return true;
1325
1326  // C++0x [class.base.init]p7:
1327  //   The initialization of each base and member constitutes a
1328  //   full-expression.
1329  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // If we are in a dependent context, template instantiation will
1334  // perform this type-checking again. Just save the arguments that we
1335  // received in a ParenListExpr.
1336  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1337  // of the information that we have about the member
1338  // initializer. However, deconstructing the ASTs is a dicey process,
1339  // and this approach is far more likely to get the corner cases right.
1340  if (CurContext->isDependentContext()) {
1341    // Bump the reference count of all of the arguments.
1342    for (unsigned I = 0; I != NumArgs; ++I)
1343      Args[I]->Retain();
1344
1345    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1346                                             RParenLoc);
1347    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1348                                                    LParenLoc,
1349                                                    Init,
1350                                                    RParenLoc);
1351  }
1352
1353  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1354                                                  LParenLoc,
1355                                                  MemberInit.get(),
1356                                                  RParenLoc);
1357}
1358
1359MemInitResult
1360Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1361                           Expr **Args, unsigned NumArgs,
1362                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1363                           CXXRecordDecl *ClassDecl) {
1364  bool HasDependentArg = false;
1365  for (unsigned i = 0; i < NumArgs; i++)
1366    HasDependentArg |= Args[i]->isTypeDependent();
1367
1368  SourceLocation BaseLoc
1369    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1370
1371  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1372    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1373             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1374
1375  // C++ [class.base.init]p2:
1376  //   [...] Unless the mem-initializer-id names a nonstatic data
1377  //   member of the constructor’s class or a direct or virtual base
1378  //   of that class, the mem-initializer is ill-formed. A
1379  //   mem-initializer-list can initialize a base class using any
1380  //   name that denotes that base class type.
1381  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1382
1383  // Check for direct and virtual base classes.
1384  const CXXBaseSpecifier *DirectBaseSpec = 0;
1385  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1386  if (!Dependent) {
1387    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1388                        VirtualBaseSpec);
1389
1390    // C++ [base.class.init]p2:
1391    // Unless the mem-initializer-id names a nonstatic data member of the
1392    // constructor's class or a direct or virtual base of that class, the
1393    // mem-initializer is ill-formed.
1394    if (!DirectBaseSpec && !VirtualBaseSpec) {
1395      // If the class has any dependent bases, then it's possible that
1396      // one of those types will resolve to the same type as
1397      // BaseType. Therefore, just treat this as a dependent base
1398      // class initialization.  FIXME: Should we try to check the
1399      // initialization anyway? It seems odd.
1400      if (ClassDecl->hasAnyDependentBases())
1401        Dependent = true;
1402      else
1403        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1404          << BaseType << Context.getTypeDeclType(ClassDecl)
1405          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1406    }
1407  }
1408
1409  if (Dependent) {
1410    // Can't check initialization for a base of dependent type or when
1411    // any of the arguments are type-dependent expressions.
1412    ExprResult BaseInit
1413      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1414                                          RParenLoc));
1415
1416    // Erase any temporaries within this evaluation context; we're not
1417    // going to track them in the AST, since we'll be rebuilding the
1418    // ASTs during template instantiation.
1419    ExprTemporaries.erase(
1420              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1421                          ExprTemporaries.end());
1422
1423    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1424                                                    /*IsVirtual=*/false,
1425                                                    LParenLoc,
1426                                                    BaseInit.takeAs<Expr>(),
1427                                                    RParenLoc);
1428  }
1429
1430  // C++ [base.class.init]p2:
1431  //   If a mem-initializer-id is ambiguous because it designates both
1432  //   a direct non-virtual base class and an inherited virtual base
1433  //   class, the mem-initializer is ill-formed.
1434  if (DirectBaseSpec && VirtualBaseSpec)
1435    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1436      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1437
1438  CXXBaseSpecifier *BaseSpec
1439    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1440  if (!BaseSpec)
1441    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1442
1443  // Initialize the base.
1444  InitializedEntity BaseEntity =
1445    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1446  InitializationKind Kind =
1447    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1448
1449  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1450
1451  ExprResult BaseInit =
1452    InitSeq.Perform(*this, BaseEntity, Kind,
1453                    MultiExprArg(*this, Args, NumArgs), 0);
1454  if (BaseInit.isInvalid())
1455    return true;
1456
1457  // C++0x [class.base.init]p7:
1458  //   The initialization of each base and member constitutes a
1459  //   full-expression.
1460  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1461  if (BaseInit.isInvalid())
1462    return true;
1463
1464  // If we are in a dependent context, template instantiation will
1465  // perform this type-checking again. Just save the arguments that we
1466  // received in a ParenListExpr.
1467  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1468  // of the information that we have about the base
1469  // initializer. However, deconstructing the ASTs is a dicey process,
1470  // and this approach is far more likely to get the corner cases right.
1471  if (CurContext->isDependentContext()) {
1472    // Bump the reference count of all of the arguments.
1473    for (unsigned I = 0; I != NumArgs; ++I)
1474      Args[I]->Retain();
1475
1476    ExprResult Init
1477      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1478                                          RParenLoc));
1479    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1480                                                    BaseSpec->isVirtual(),
1481                                                    LParenLoc,
1482                                                    Init.takeAs<Expr>(),
1483                                                    RParenLoc);
1484  }
1485
1486  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1487                                                  BaseSpec->isVirtual(),
1488                                                  LParenLoc,
1489                                                  BaseInit.takeAs<Expr>(),
1490                                                  RParenLoc);
1491}
1492
1493/// ImplicitInitializerKind - How an implicit base or member initializer should
1494/// initialize its base or member.
1495enum ImplicitInitializerKind {
1496  IIK_Default,
1497  IIK_Copy,
1498  IIK_Move
1499};
1500
1501static bool
1502BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1503                             ImplicitInitializerKind ImplicitInitKind,
1504                             CXXBaseSpecifier *BaseSpec,
1505                             bool IsInheritedVirtualBase,
1506                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1507  InitializedEntity InitEntity
1508    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1509                                        IsInheritedVirtualBase);
1510
1511  ExprResult BaseInit;
1512
1513  switch (ImplicitInitKind) {
1514  case IIK_Default: {
1515    InitializationKind InitKind
1516      = InitializationKind::CreateDefault(Constructor->getLocation());
1517    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1518    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1519                               MultiExprArg(SemaRef, 0, 0));
1520    break;
1521  }
1522
1523  case IIK_Copy: {
1524    ParmVarDecl *Param = Constructor->getParamDecl(0);
1525    QualType ParamType = Param->getType().getNonReferenceType();
1526
1527    Expr *CopyCtorArg =
1528      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1529                          Constructor->getLocation(), ParamType, 0);
1530
1531    // Cast to the base class to avoid ambiguities.
1532    QualType ArgTy =
1533      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1534                                       ParamType.getQualifiers());
1535
1536    CXXCastPath BasePath;
1537    BasePath.push_back(BaseSpec);
1538    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1539                              CK_UncheckedDerivedToBase,
1540                              VK_LValue, &BasePath);
1541
1542    InitializationKind InitKind
1543      = InitializationKind::CreateDirect(Constructor->getLocation(),
1544                                         SourceLocation(), SourceLocation());
1545    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1546                                   &CopyCtorArg, 1);
1547    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1548                               MultiExprArg(&CopyCtorArg, 1));
1549    break;
1550  }
1551
1552  case IIK_Move:
1553    assert(false && "Unhandled initializer kind!");
1554  }
1555
1556  if (BaseInit.isInvalid())
1557    return true;
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    ExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          SC_None, SC_None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      ExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1642                                                            Loc,
1643                                                        IterationVarRef.take(),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    ExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        MultiExprArg(&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    ExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1698    if (MemberInit.isInvalid())
1699      return true;
1700
1701    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1702    if (MemberInit.isInvalid())
1703      return true;
1704
1705    CXXMemberInit =
1706      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1707                                                       Field, Loc, Loc,
1708                                                       MemberInit.get(),
1709                                                       Loc);
1710    return false;
1711  }
1712
1713  if (FieldBaseElementType->isReferenceType()) {
1714    SemaRef.Diag(Constructor->getLocation(),
1715                 diag::err_uninitialized_member_in_ctor)
1716    << (int)Constructor->isImplicit()
1717    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1718    << 0 << Field->getDeclName();
1719    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1720    return true;
1721  }
1722
1723  if (FieldBaseElementType.isConstQualified()) {
1724    SemaRef.Diag(Constructor->getLocation(),
1725                 diag::err_uninitialized_member_in_ctor)
1726    << (int)Constructor->isImplicit()
1727    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1728    << 1 << Field->getDeclName();
1729    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1730    return true;
1731  }
1732
1733  // Nothing to initialize.
1734  CXXMemberInit = 0;
1735  return false;
1736}
1737
1738namespace {
1739struct BaseAndFieldInfo {
1740  Sema &S;
1741  CXXConstructorDecl *Ctor;
1742  bool AnyErrorsInInits;
1743  ImplicitInitializerKind IIK;
1744  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1745  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1746
1747  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1748    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1749    // FIXME: Handle implicit move constructors.
1750    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1751      IIK = IIK_Copy;
1752    else
1753      IIK = IIK_Default;
1754  }
1755};
1756}
1757
1758static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1759                                   FieldDecl *Top, FieldDecl *Field,
1760                                   CXXBaseOrMemberInitializer *Init) {
1761  // If the member doesn't need to be initialized, Init will still be null.
1762  if (!Init)
1763    return;
1764
1765  Info.AllToInit.push_back(Init);
1766  if (Field != Top) {
1767    Init->setMember(Top);
1768    Init->setAnonUnionMember(Field);
1769  }
1770}
1771
1772static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1773                                    FieldDecl *Top, FieldDecl *Field) {
1774
1775  // Overwhelmingly common case: we have a direct initializer for this field.
1776  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1777    RecordFieldInitializer(Info, Top, Field, Init);
1778    return false;
1779  }
1780
1781  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1782    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1783    assert(FieldClassType && "anonymous struct/union without record type");
1784    CXXRecordDecl *FieldClassDecl
1785      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1786
1787    // Even though union members never have non-trivial default
1788    // constructions in C++03, we still build member initializers for aggregate
1789    // record types which can be union members, and C++0x allows non-trivial
1790    // default constructors for union members, so we ensure that only one
1791    // member is initialized for these.
1792    if (FieldClassDecl->isUnion()) {
1793      // First check for an explicit initializer for one field.
1794      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1795           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1796        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1797          RecordFieldInitializer(Info, Top, *FA, Init);
1798
1799          // Once we've initialized a field of an anonymous union, the union
1800          // field in the class is also initialized, so exit immediately.
1801          return false;
1802        } else if ((*FA)->isAnonymousStructOrUnion()) {
1803          if (CollectFieldInitializer(Info, Top, *FA))
1804            return true;
1805        }
1806      }
1807
1808      // Fallthrough and construct a default initializer for the union as
1809      // a whole, which can call its default constructor if such a thing exists
1810      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1811      // behavior going forward with C++0x, when anonymous unions there are
1812      // finalized, we should revisit this.
1813    } else {
1814      // For structs, we simply descend through to initialize all members where
1815      // necessary.
1816      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1817           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1818        if (CollectFieldInitializer(Info, Top, *FA))
1819          return true;
1820      }
1821    }
1822  }
1823
1824  // Don't try to build an implicit initializer if there were semantic
1825  // errors in any of the initializers (and therefore we might be
1826  // missing some that the user actually wrote).
1827  if (Info.AnyErrorsInInits)
1828    return false;
1829
1830  CXXBaseOrMemberInitializer *Init = 0;
1831  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1832    return true;
1833
1834  RecordFieldInitializer(Info, Top, Field, Init);
1835  return false;
1836}
1837
1838bool
1839Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1840                                  CXXBaseOrMemberInitializer **Initializers,
1841                                  unsigned NumInitializers,
1842                                  bool AnyErrors) {
1843  if (Constructor->getDeclContext()->isDependentContext()) {
1844    // Just store the initializers as written, they will be checked during
1845    // instantiation.
1846    if (NumInitializers > 0) {
1847      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1848      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1849        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1850      memcpy(baseOrMemberInitializers, Initializers,
1851             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1852      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1853    }
1854
1855    return false;
1856  }
1857
1858  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1859
1860  // We need to build the initializer AST according to order of construction
1861  // and not what user specified in the Initializers list.
1862  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1863  if (!ClassDecl)
1864    return true;
1865
1866  bool HadError = false;
1867
1868  for (unsigned i = 0; i < NumInitializers; i++) {
1869    CXXBaseOrMemberInitializer *Member = Initializers[i];
1870
1871    if (Member->isBaseInitializer())
1872      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1873    else
1874      Info.AllBaseFields[Member->getMember()] = Member;
1875  }
1876
1877  // Keep track of the direct virtual bases.
1878  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1879  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1880       E = ClassDecl->bases_end(); I != E; ++I) {
1881    if (I->isVirtual())
1882      DirectVBases.insert(I);
1883  }
1884
1885  // Push virtual bases before others.
1886  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1887       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1888
1889    if (CXXBaseOrMemberInitializer *Value
1890        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1891      Info.AllToInit.push_back(Value);
1892    } else if (!AnyErrors) {
1893      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1894      CXXBaseOrMemberInitializer *CXXBaseInit;
1895      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1896                                       VBase, IsInheritedVirtualBase,
1897                                       CXXBaseInit)) {
1898        HadError = true;
1899        continue;
1900      }
1901
1902      Info.AllToInit.push_back(CXXBaseInit);
1903    }
1904  }
1905
1906  // Non-virtual bases.
1907  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1908       E = ClassDecl->bases_end(); Base != E; ++Base) {
1909    // Virtuals are in the virtual base list and already constructed.
1910    if (Base->isVirtual())
1911      continue;
1912
1913    if (CXXBaseOrMemberInitializer *Value
1914          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1915      Info.AllToInit.push_back(Value);
1916    } else if (!AnyErrors) {
1917      CXXBaseOrMemberInitializer *CXXBaseInit;
1918      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1919                                       Base, /*IsInheritedVirtualBase=*/false,
1920                                       CXXBaseInit)) {
1921        HadError = true;
1922        continue;
1923      }
1924
1925      Info.AllToInit.push_back(CXXBaseInit);
1926    }
1927  }
1928
1929  // Fields.
1930  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1931       E = ClassDecl->field_end(); Field != E; ++Field) {
1932    if ((*Field)->getType()->isIncompleteArrayType()) {
1933      assert(ClassDecl->hasFlexibleArrayMember() &&
1934             "Incomplete array type is not valid");
1935      continue;
1936    }
1937    if (CollectFieldInitializer(Info, *Field, *Field))
1938      HadError = true;
1939  }
1940
1941  NumInitializers = Info.AllToInit.size();
1942  if (NumInitializers > 0) {
1943    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1944    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1945      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1946    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1947           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1948    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1949
1950    // Constructors implicitly reference the base and member
1951    // destructors.
1952    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1953                                           Constructor->getParent());
1954  }
1955
1956  return HadError;
1957}
1958
1959static void *GetKeyForTopLevelField(FieldDecl *Field) {
1960  // For anonymous unions, use the class declaration as the key.
1961  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1962    if (RT->getDecl()->isAnonymousStructOrUnion())
1963      return static_cast<void *>(RT->getDecl());
1964  }
1965  return static_cast<void *>(Field);
1966}
1967
1968static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1969  return Context.getCanonicalType(BaseType).getTypePtr();
1970}
1971
1972static void *GetKeyForMember(ASTContext &Context,
1973                             CXXBaseOrMemberInitializer *Member,
1974                             bool MemberMaybeAnon = false) {
1975  if (!Member->isMemberInitializer())
1976    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1977
1978  // For fields injected into the class via declaration of an anonymous union,
1979  // use its anonymous union class declaration as the unique key.
1980  FieldDecl *Field = Member->getMember();
1981
1982  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1983  // data member of the class. Data member used in the initializer list is
1984  // in AnonUnionMember field.
1985  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1986    Field = Member->getAnonUnionMember();
1987
1988  // If the field is a member of an anonymous struct or union, our key
1989  // is the anonymous record decl that's a direct child of the class.
1990  RecordDecl *RD = Field->getParent();
1991  if (RD->isAnonymousStructOrUnion()) {
1992    while (true) {
1993      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1994      if (Parent->isAnonymousStructOrUnion())
1995        RD = Parent;
1996      else
1997        break;
1998    }
1999
2000    return static_cast<void *>(RD);
2001  }
2002
2003  return static_cast<void *>(Field);
2004}
2005
2006static void
2007DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2008                                  const CXXConstructorDecl *Constructor,
2009                                  CXXBaseOrMemberInitializer **Inits,
2010                                  unsigned NumInits) {
2011  if (Constructor->getDeclContext()->isDependentContext())
2012    return;
2013
2014  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2015        == Diagnostic::Ignored)
2016    return;
2017
2018  // Build the list of bases and members in the order that they'll
2019  // actually be initialized.  The explicit initializers should be in
2020  // this same order but may be missing things.
2021  llvm::SmallVector<const void*, 32> IdealInitKeys;
2022
2023  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2024
2025  // 1. Virtual bases.
2026  for (CXXRecordDecl::base_class_const_iterator VBase =
2027       ClassDecl->vbases_begin(),
2028       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2029    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2030
2031  // 2. Non-virtual bases.
2032  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2033       E = ClassDecl->bases_end(); Base != E; ++Base) {
2034    if (Base->isVirtual())
2035      continue;
2036    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2037  }
2038
2039  // 3. Direct fields.
2040  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2041       E = ClassDecl->field_end(); Field != E; ++Field)
2042    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2043
2044  unsigned NumIdealInits = IdealInitKeys.size();
2045  unsigned IdealIndex = 0;
2046
2047  CXXBaseOrMemberInitializer *PrevInit = 0;
2048  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2049    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2050    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2051
2052    // Scan forward to try to find this initializer in the idealized
2053    // initializers list.
2054    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2055      if (InitKey == IdealInitKeys[IdealIndex])
2056        break;
2057
2058    // If we didn't find this initializer, it must be because we
2059    // scanned past it on a previous iteration.  That can only
2060    // happen if we're out of order;  emit a warning.
2061    if (IdealIndex == NumIdealInits && PrevInit) {
2062      Sema::SemaDiagnosticBuilder D =
2063        SemaRef.Diag(PrevInit->getSourceLocation(),
2064                     diag::warn_initializer_out_of_order);
2065
2066      if (PrevInit->isMemberInitializer())
2067        D << 0 << PrevInit->getMember()->getDeclName();
2068      else
2069        D << 1 << PrevInit->getBaseClassInfo()->getType();
2070
2071      if (Init->isMemberInitializer())
2072        D << 0 << Init->getMember()->getDeclName();
2073      else
2074        D << 1 << Init->getBaseClassInfo()->getType();
2075
2076      // Move back to the initializer's location in the ideal list.
2077      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2078        if (InitKey == IdealInitKeys[IdealIndex])
2079          break;
2080
2081      assert(IdealIndex != NumIdealInits &&
2082             "initializer not found in initializer list");
2083    }
2084
2085    PrevInit = Init;
2086  }
2087}
2088
2089namespace {
2090bool CheckRedundantInit(Sema &S,
2091                        CXXBaseOrMemberInitializer *Init,
2092                        CXXBaseOrMemberInitializer *&PrevInit) {
2093  if (!PrevInit) {
2094    PrevInit = Init;
2095    return false;
2096  }
2097
2098  if (FieldDecl *Field = Init->getMember())
2099    S.Diag(Init->getSourceLocation(),
2100           diag::err_multiple_mem_initialization)
2101      << Field->getDeclName()
2102      << Init->getSourceRange();
2103  else {
2104    Type *BaseClass = Init->getBaseClass();
2105    assert(BaseClass && "neither field nor base");
2106    S.Diag(Init->getSourceLocation(),
2107           diag::err_multiple_base_initialization)
2108      << QualType(BaseClass, 0)
2109      << Init->getSourceRange();
2110  }
2111  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2112    << 0 << PrevInit->getSourceRange();
2113
2114  return true;
2115}
2116
2117typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2118typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2119
2120bool CheckRedundantUnionInit(Sema &S,
2121                             CXXBaseOrMemberInitializer *Init,
2122                             RedundantUnionMap &Unions) {
2123  FieldDecl *Field = Init->getMember();
2124  RecordDecl *Parent = Field->getParent();
2125  if (!Parent->isAnonymousStructOrUnion())
2126    return false;
2127
2128  NamedDecl *Child = Field;
2129  do {
2130    if (Parent->isUnion()) {
2131      UnionEntry &En = Unions[Parent];
2132      if (En.first && En.first != Child) {
2133        S.Diag(Init->getSourceLocation(),
2134               diag::err_multiple_mem_union_initialization)
2135          << Field->getDeclName()
2136          << Init->getSourceRange();
2137        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2138          << 0 << En.second->getSourceRange();
2139        return true;
2140      } else if (!En.first) {
2141        En.first = Child;
2142        En.second = Init;
2143      }
2144    }
2145
2146    Child = Parent;
2147    Parent = cast<RecordDecl>(Parent->getDeclContext());
2148  } while (Parent->isAnonymousStructOrUnion());
2149
2150  return false;
2151}
2152}
2153
2154/// ActOnMemInitializers - Handle the member initializers for a constructor.
2155void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2156                                SourceLocation ColonLoc,
2157                                MemInitTy **meminits, unsigned NumMemInits,
2158                                bool AnyErrors) {
2159  if (!ConstructorDecl)
2160    return;
2161
2162  AdjustDeclIfTemplate(ConstructorDecl);
2163
2164  CXXConstructorDecl *Constructor
2165    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2166
2167  if (!Constructor) {
2168    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2169    return;
2170  }
2171
2172  CXXBaseOrMemberInitializer **MemInits =
2173    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2174
2175  // Mapping for the duplicate initializers check.
2176  // For member initializers, this is keyed with a FieldDecl*.
2177  // For base initializers, this is keyed with a Type*.
2178  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2179
2180  // Mapping for the inconsistent anonymous-union initializers check.
2181  RedundantUnionMap MemberUnions;
2182
2183  bool HadError = false;
2184  for (unsigned i = 0; i < NumMemInits; i++) {
2185    CXXBaseOrMemberInitializer *Init = MemInits[i];
2186
2187    // Set the source order index.
2188    Init->setSourceOrder(i);
2189
2190    if (Init->isMemberInitializer()) {
2191      FieldDecl *Field = Init->getMember();
2192      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2193          CheckRedundantUnionInit(*this, Init, MemberUnions))
2194        HadError = true;
2195    } else {
2196      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2197      if (CheckRedundantInit(*this, Init, Members[Key]))
2198        HadError = true;
2199    }
2200  }
2201
2202  if (HadError)
2203    return;
2204
2205  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2206
2207  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2208}
2209
2210void
2211Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2212                                             CXXRecordDecl *ClassDecl) {
2213  // Ignore dependent contexts.
2214  if (ClassDecl->isDependentContext())
2215    return;
2216
2217  // FIXME: all the access-control diagnostics are positioned on the
2218  // field/base declaration.  That's probably good; that said, the
2219  // user might reasonably want to know why the destructor is being
2220  // emitted, and we currently don't say.
2221
2222  // Non-static data members.
2223  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2224       E = ClassDecl->field_end(); I != E; ++I) {
2225    FieldDecl *Field = *I;
2226    if (Field->isInvalidDecl())
2227      continue;
2228    QualType FieldType = Context.getBaseElementType(Field->getType());
2229
2230    const RecordType* RT = FieldType->getAs<RecordType>();
2231    if (!RT)
2232      continue;
2233
2234    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2235    if (FieldClassDecl->hasTrivialDestructor())
2236      continue;
2237
2238    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2239    CheckDestructorAccess(Field->getLocation(), Dtor,
2240                          PDiag(diag::err_access_dtor_field)
2241                            << Field->getDeclName()
2242                            << FieldType);
2243
2244    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2245  }
2246
2247  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2248
2249  // Bases.
2250  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2251       E = ClassDecl->bases_end(); Base != E; ++Base) {
2252    // Bases are always records in a well-formed non-dependent class.
2253    const RecordType *RT = Base->getType()->getAs<RecordType>();
2254
2255    // Remember direct virtual bases.
2256    if (Base->isVirtual())
2257      DirectVirtualBases.insert(RT);
2258
2259    // Ignore trivial destructors.
2260    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2261    if (BaseClassDecl->hasTrivialDestructor())
2262      continue;
2263
2264    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2265
2266    // FIXME: caret should be on the start of the class name
2267    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2268                          PDiag(diag::err_access_dtor_base)
2269                            << Base->getType()
2270                            << Base->getSourceRange());
2271
2272    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2273  }
2274
2275  // Virtual bases.
2276  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2277       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2278
2279    // Bases are always records in a well-formed non-dependent class.
2280    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2281
2282    // Ignore direct virtual bases.
2283    if (DirectVirtualBases.count(RT))
2284      continue;
2285
2286    // Ignore trivial destructors.
2287    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2288    if (BaseClassDecl->hasTrivialDestructor())
2289      continue;
2290
2291    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2292    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2293                          PDiag(diag::err_access_dtor_vbase)
2294                            << VBase->getType());
2295
2296    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2297  }
2298}
2299
2300void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2301  if (!CDtorDecl)
2302    return;
2303
2304  if (CXXConstructorDecl *Constructor
2305      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2306    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2307}
2308
2309bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2310                                  unsigned DiagID, AbstractDiagSelID SelID) {
2311  if (SelID == -1)
2312    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2313  else
2314    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2315}
2316
2317bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2318                                  const PartialDiagnostic &PD) {
2319  if (!getLangOptions().CPlusPlus)
2320    return false;
2321
2322  if (const ArrayType *AT = Context.getAsArrayType(T))
2323    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2324
2325  if (const PointerType *PT = T->getAs<PointerType>()) {
2326    // Find the innermost pointer type.
2327    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2328      PT = T;
2329
2330    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2331      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2332  }
2333
2334  const RecordType *RT = T->getAs<RecordType>();
2335  if (!RT)
2336    return false;
2337
2338  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2339
2340  // We can't answer whether something is abstract until it has a
2341  // definition.  If it's currently being defined, we'll walk back
2342  // over all the declarations when we have a full definition.
2343  const CXXRecordDecl *Def = RD->getDefinition();
2344  if (!Def || Def->isBeingDefined())
2345    return false;
2346
2347  if (!RD->isAbstract())
2348    return false;
2349
2350  Diag(Loc, PD) << RD->getDeclName();
2351  DiagnoseAbstractType(RD);
2352
2353  return true;
2354}
2355
2356void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2357  // Check if we've already emitted the list of pure virtual functions
2358  // for this class.
2359  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2360    return;
2361
2362  CXXFinalOverriderMap FinalOverriders;
2363  RD->getFinalOverriders(FinalOverriders);
2364
2365  // Keep a set of seen pure methods so we won't diagnose the same method
2366  // more than once.
2367  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2368
2369  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2370                                   MEnd = FinalOverriders.end();
2371       M != MEnd;
2372       ++M) {
2373    for (OverridingMethods::iterator SO = M->second.begin(),
2374                                  SOEnd = M->second.end();
2375         SO != SOEnd; ++SO) {
2376      // C++ [class.abstract]p4:
2377      //   A class is abstract if it contains or inherits at least one
2378      //   pure virtual function for which the final overrider is pure
2379      //   virtual.
2380
2381      //
2382      if (SO->second.size() != 1)
2383        continue;
2384
2385      if (!SO->second.front().Method->isPure())
2386        continue;
2387
2388      if (!SeenPureMethods.insert(SO->second.front().Method))
2389        continue;
2390
2391      Diag(SO->second.front().Method->getLocation(),
2392           diag::note_pure_virtual_function)
2393        << SO->second.front().Method->getDeclName();
2394    }
2395  }
2396
2397  if (!PureVirtualClassDiagSet)
2398    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2399  PureVirtualClassDiagSet->insert(RD);
2400}
2401
2402namespace {
2403struct AbstractUsageInfo {
2404  Sema &S;
2405  CXXRecordDecl *Record;
2406  CanQualType AbstractType;
2407  bool Invalid;
2408
2409  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2410    : S(S), Record(Record),
2411      AbstractType(S.Context.getCanonicalType(
2412                   S.Context.getTypeDeclType(Record))),
2413      Invalid(false) {}
2414
2415  void DiagnoseAbstractType() {
2416    if (Invalid) return;
2417    S.DiagnoseAbstractType(Record);
2418    Invalid = true;
2419  }
2420
2421  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2422};
2423
2424struct CheckAbstractUsage {
2425  AbstractUsageInfo &Info;
2426  const NamedDecl *Ctx;
2427
2428  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2429    : Info(Info), Ctx(Ctx) {}
2430
2431  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2432    switch (TL.getTypeLocClass()) {
2433#define ABSTRACT_TYPELOC(CLASS, PARENT)
2434#define TYPELOC(CLASS, PARENT) \
2435    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2436#include "clang/AST/TypeLocNodes.def"
2437    }
2438  }
2439
2440  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2441    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2442    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2443      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2444      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2445    }
2446  }
2447
2448  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2449    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2450  }
2451
2452  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2453    // Visit the type parameters from a permissive context.
2454    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2455      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2456      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2457        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2458          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2459      // TODO: other template argument types?
2460    }
2461  }
2462
2463  // Visit pointee types from a permissive context.
2464#define CheckPolymorphic(Type) \
2465  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2466    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2467  }
2468  CheckPolymorphic(PointerTypeLoc)
2469  CheckPolymorphic(ReferenceTypeLoc)
2470  CheckPolymorphic(MemberPointerTypeLoc)
2471  CheckPolymorphic(BlockPointerTypeLoc)
2472
2473  /// Handle all the types we haven't given a more specific
2474  /// implementation for above.
2475  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2476    // Every other kind of type that we haven't called out already
2477    // that has an inner type is either (1) sugar or (2) contains that
2478    // inner type in some way as a subobject.
2479    if (TypeLoc Next = TL.getNextTypeLoc())
2480      return Visit(Next, Sel);
2481
2482    // If there's no inner type and we're in a permissive context,
2483    // don't diagnose.
2484    if (Sel == Sema::AbstractNone) return;
2485
2486    // Check whether the type matches the abstract type.
2487    QualType T = TL.getType();
2488    if (T->isArrayType()) {
2489      Sel = Sema::AbstractArrayType;
2490      T = Info.S.Context.getBaseElementType(T);
2491    }
2492    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2493    if (CT != Info.AbstractType) return;
2494
2495    // It matched; do some magic.
2496    if (Sel == Sema::AbstractArrayType) {
2497      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2498        << T << TL.getSourceRange();
2499    } else {
2500      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2501        << Sel << T << TL.getSourceRange();
2502    }
2503    Info.DiagnoseAbstractType();
2504  }
2505};
2506
2507void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2508                                  Sema::AbstractDiagSelID Sel) {
2509  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2510}
2511
2512}
2513
2514/// Check for invalid uses of an abstract type in a method declaration.
2515static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2516                                    CXXMethodDecl *MD) {
2517  // No need to do the check on definitions, which require that
2518  // the return/param types be complete.
2519  if (MD->isThisDeclarationADefinition())
2520    return;
2521
2522  // For safety's sake, just ignore it if we don't have type source
2523  // information.  This should never happen for non-implicit methods,
2524  // but...
2525  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2526    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2527}
2528
2529/// Check for invalid uses of an abstract type within a class definition.
2530static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2531                                    CXXRecordDecl *RD) {
2532  for (CXXRecordDecl::decl_iterator
2533         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2534    Decl *D = *I;
2535    if (D->isImplicit()) continue;
2536
2537    // Methods and method templates.
2538    if (isa<CXXMethodDecl>(D)) {
2539      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2540    } else if (isa<FunctionTemplateDecl>(D)) {
2541      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2542      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2543
2544    // Fields and static variables.
2545    } else if (isa<FieldDecl>(D)) {
2546      FieldDecl *FD = cast<FieldDecl>(D);
2547      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2548        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2549    } else if (isa<VarDecl>(D)) {
2550      VarDecl *VD = cast<VarDecl>(D);
2551      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2552        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2553
2554    // Nested classes and class templates.
2555    } else if (isa<CXXRecordDecl>(D)) {
2556      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2557    } else if (isa<ClassTemplateDecl>(D)) {
2558      CheckAbstractClassUsage(Info,
2559                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2560    }
2561  }
2562}
2563
2564/// \brief Perform semantic checks on a class definition that has been
2565/// completing, introducing implicitly-declared members, checking for
2566/// abstract types, etc.
2567void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2568  if (!Record || Record->isInvalidDecl())
2569    return;
2570
2571  if (!Record->isDependentType())
2572    AddImplicitlyDeclaredMembersToClass(Record);
2573
2574  if (Record->isInvalidDecl())
2575    return;
2576
2577  // Set access bits correctly on the directly-declared conversions.
2578  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2579  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2580    Convs->setAccess(I, (*I)->getAccess());
2581
2582  // Determine whether we need to check for final overriders. We do
2583  // this either when there are virtual base classes (in which case we
2584  // may end up finding multiple final overriders for a given virtual
2585  // function) or any of the base classes is abstract (in which case
2586  // we might detect that this class is abstract).
2587  bool CheckFinalOverriders = false;
2588  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2589      !Record->isDependentType()) {
2590    if (Record->getNumVBases())
2591      CheckFinalOverriders = true;
2592    else if (!Record->isAbstract()) {
2593      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2594                                                 BEnd = Record->bases_end();
2595           B != BEnd; ++B) {
2596        CXXRecordDecl *BaseDecl
2597          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2598        if (BaseDecl->isAbstract()) {
2599          CheckFinalOverriders = true;
2600          break;
2601        }
2602      }
2603    }
2604  }
2605
2606  if (CheckFinalOverriders) {
2607    CXXFinalOverriderMap FinalOverriders;
2608    Record->getFinalOverriders(FinalOverriders);
2609
2610    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2611                                     MEnd = FinalOverriders.end();
2612         M != MEnd; ++M) {
2613      for (OverridingMethods::iterator SO = M->second.begin(),
2614                                    SOEnd = M->second.end();
2615           SO != SOEnd; ++SO) {
2616        assert(SO->second.size() > 0 &&
2617               "All virtual functions have overridding virtual functions");
2618        if (SO->second.size() == 1) {
2619          // C++ [class.abstract]p4:
2620          //   A class is abstract if it contains or inherits at least one
2621          //   pure virtual function for which the final overrider is pure
2622          //   virtual.
2623          if (SO->second.front().Method->isPure())
2624            Record->setAbstract(true);
2625          continue;
2626        }
2627
2628        // C++ [class.virtual]p2:
2629        //   In a derived class, if a virtual member function of a base
2630        //   class subobject has more than one final overrider the
2631        //   program is ill-formed.
2632        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2633          << (NamedDecl *)M->first << Record;
2634        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2635        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2636                                                 OMEnd = SO->second.end();
2637             OM != OMEnd; ++OM)
2638          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2639            << (NamedDecl *)M->first << OM->Method->getParent();
2640
2641        Record->setInvalidDecl();
2642      }
2643    }
2644  }
2645
2646  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2647    AbstractUsageInfo Info(*this, Record);
2648    CheckAbstractClassUsage(Info, Record);
2649  }
2650
2651  // If this is not an aggregate type and has no user-declared constructor,
2652  // complain about any non-static data members of reference or const scalar
2653  // type, since they will never get initializers.
2654  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2655      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2656    bool Complained = false;
2657    for (RecordDecl::field_iterator F = Record->field_begin(),
2658                                 FEnd = Record->field_end();
2659         F != FEnd; ++F) {
2660      if (F->getType()->isReferenceType() ||
2661          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2662        if (!Complained) {
2663          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2664            << Record->getTagKind() << Record;
2665          Complained = true;
2666        }
2667
2668        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2669          << F->getType()->isReferenceType()
2670          << F->getDeclName();
2671      }
2672    }
2673  }
2674
2675  if (Record->isDynamicClass())
2676    DynamicClasses.push_back(Record);
2677}
2678
2679void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2680                                             Decl *TagDecl,
2681                                             SourceLocation LBrac,
2682                                             SourceLocation RBrac,
2683                                             AttributeList *AttrList) {
2684  if (!TagDecl)
2685    return;
2686
2687  AdjustDeclIfTemplate(TagDecl);
2688
2689  ActOnFields(S, RLoc, TagDecl,
2690              // strict aliasing violation!
2691              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2692              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2693
2694  CheckCompletedCXXClass(
2695                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2696}
2697
2698namespace {
2699  /// \brief Helper class that collects exception specifications for
2700  /// implicitly-declared special member functions.
2701  class ImplicitExceptionSpecification {
2702    ASTContext &Context;
2703    bool AllowsAllExceptions;
2704    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2705    llvm::SmallVector<QualType, 4> Exceptions;
2706
2707  public:
2708    explicit ImplicitExceptionSpecification(ASTContext &Context)
2709      : Context(Context), AllowsAllExceptions(false) { }
2710
2711    /// \brief Whether the special member function should have any
2712    /// exception specification at all.
2713    bool hasExceptionSpecification() const {
2714      return !AllowsAllExceptions;
2715    }
2716
2717    /// \brief Whether the special member function should have a
2718    /// throw(...) exception specification (a Microsoft extension).
2719    bool hasAnyExceptionSpecification() const {
2720      return false;
2721    }
2722
2723    /// \brief The number of exceptions in the exception specification.
2724    unsigned size() const { return Exceptions.size(); }
2725
2726    /// \brief The set of exceptions in the exception specification.
2727    const QualType *data() const { return Exceptions.data(); }
2728
2729    /// \brief Note that
2730    void CalledDecl(CXXMethodDecl *Method) {
2731      // If we already know that we allow all exceptions, do nothing.
2732      if (AllowsAllExceptions || !Method)
2733        return;
2734
2735      const FunctionProtoType *Proto
2736        = Method->getType()->getAs<FunctionProtoType>();
2737
2738      // If this function can throw any exceptions, make a note of that.
2739      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2740        AllowsAllExceptions = true;
2741        ExceptionsSeen.clear();
2742        Exceptions.clear();
2743        return;
2744      }
2745
2746      // Record the exceptions in this function's exception specification.
2747      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2748                                              EEnd = Proto->exception_end();
2749           E != EEnd; ++E)
2750        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2751          Exceptions.push_back(*E);
2752    }
2753  };
2754}
2755
2756
2757/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2758/// special functions, such as the default constructor, copy
2759/// constructor, or destructor, to the given C++ class (C++
2760/// [special]p1).  This routine can only be executed just before the
2761/// definition of the class is complete.
2762void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2763  if (!ClassDecl->hasUserDeclaredConstructor())
2764    ++ASTContext::NumImplicitDefaultConstructors;
2765
2766  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2767    ++ASTContext::NumImplicitCopyConstructors;
2768
2769  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2770    ++ASTContext::NumImplicitCopyAssignmentOperators;
2771
2772    // If we have a dynamic class, then the copy assignment operator may be
2773    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2774    // it shows up in the right place in the vtable and that we diagnose
2775    // problems with the implicit exception specification.
2776    if (ClassDecl->isDynamicClass())
2777      DeclareImplicitCopyAssignment(ClassDecl);
2778  }
2779
2780  if (!ClassDecl->hasUserDeclaredDestructor()) {
2781    ++ASTContext::NumImplicitDestructors;
2782
2783    // If we have a dynamic class, then the destructor may be virtual, so we
2784    // have to declare the destructor immediately. This ensures that, e.g., it
2785    // shows up in the right place in the vtable and that we diagnose problems
2786    // with the implicit exception specification.
2787    if (ClassDecl->isDynamicClass())
2788      DeclareImplicitDestructor(ClassDecl);
2789  }
2790}
2791
2792void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2793  if (!D)
2794    return;
2795
2796  TemplateParameterList *Params = 0;
2797  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2798    Params = Template->getTemplateParameters();
2799  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2800           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2801    Params = PartialSpec->getTemplateParameters();
2802  else
2803    return;
2804
2805  for (TemplateParameterList::iterator Param = Params->begin(),
2806                                    ParamEnd = Params->end();
2807       Param != ParamEnd; ++Param) {
2808    NamedDecl *Named = cast<NamedDecl>(*Param);
2809    if (Named->getDeclName()) {
2810      S->AddDecl(Named);
2811      IdResolver.AddDecl(Named);
2812    }
2813  }
2814}
2815
2816void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2817  if (!RecordD) return;
2818  AdjustDeclIfTemplate(RecordD);
2819  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2820  PushDeclContext(S, Record);
2821}
2822
2823void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2824  if (!RecordD) return;
2825  PopDeclContext();
2826}
2827
2828/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2829/// parsing a top-level (non-nested) C++ class, and we are now
2830/// parsing those parts of the given Method declaration that could
2831/// not be parsed earlier (C++ [class.mem]p2), such as default
2832/// arguments. This action should enter the scope of the given
2833/// Method declaration as if we had just parsed the qualified method
2834/// name. However, it should not bring the parameters into scope;
2835/// that will be performed by ActOnDelayedCXXMethodParameter.
2836void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2837}
2838
2839/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2840/// C++ method declaration. We're (re-)introducing the given
2841/// function parameter into scope for use in parsing later parts of
2842/// the method declaration. For example, we could see an
2843/// ActOnParamDefaultArgument event for this parameter.
2844void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2845  if (!ParamD)
2846    return;
2847
2848  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2849
2850  // If this parameter has an unparsed default argument, clear it out
2851  // to make way for the parsed default argument.
2852  if (Param->hasUnparsedDefaultArg())
2853    Param->setDefaultArg(0);
2854
2855  S->AddDecl(Param);
2856  if (Param->getDeclName())
2857    IdResolver.AddDecl(Param);
2858}
2859
2860/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2861/// processing the delayed method declaration for Method. The method
2862/// declaration is now considered finished. There may be a separate
2863/// ActOnStartOfFunctionDef action later (not necessarily
2864/// immediately!) for this method, if it was also defined inside the
2865/// class body.
2866void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2867  if (!MethodD)
2868    return;
2869
2870  AdjustDeclIfTemplate(MethodD);
2871
2872  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2873
2874  // Now that we have our default arguments, check the constructor
2875  // again. It could produce additional diagnostics or affect whether
2876  // the class has implicitly-declared destructors, among other
2877  // things.
2878  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2879    CheckConstructor(Constructor);
2880
2881  // Check the default arguments, which we may have added.
2882  if (!Method->isInvalidDecl())
2883    CheckCXXDefaultArguments(Method);
2884}
2885
2886/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2887/// the well-formedness of the constructor declarator @p D with type @p
2888/// R. If there are any errors in the declarator, this routine will
2889/// emit diagnostics and set the invalid bit to true.  In any case, the type
2890/// will be updated to reflect a well-formed type for the constructor and
2891/// returned.
2892QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2893                                          StorageClass &SC) {
2894  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2895
2896  // C++ [class.ctor]p3:
2897  //   A constructor shall not be virtual (10.3) or static (9.4). A
2898  //   constructor can be invoked for a const, volatile or const
2899  //   volatile object. A constructor shall not be declared const,
2900  //   volatile, or const volatile (9.3.2).
2901  if (isVirtual) {
2902    if (!D.isInvalidType())
2903      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2904        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2905        << SourceRange(D.getIdentifierLoc());
2906    D.setInvalidType();
2907  }
2908  if (SC == SC_Static) {
2909    if (!D.isInvalidType())
2910      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2911        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2912        << SourceRange(D.getIdentifierLoc());
2913    D.setInvalidType();
2914    SC = SC_None;
2915  }
2916
2917  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2918  if (FTI.TypeQuals != 0) {
2919    if (FTI.TypeQuals & Qualifiers::Const)
2920      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2921        << "const" << SourceRange(D.getIdentifierLoc());
2922    if (FTI.TypeQuals & Qualifiers::Volatile)
2923      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2924        << "volatile" << SourceRange(D.getIdentifierLoc());
2925    if (FTI.TypeQuals & Qualifiers::Restrict)
2926      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2927        << "restrict" << SourceRange(D.getIdentifierLoc());
2928  }
2929
2930  // Rebuild the function type "R" without any type qualifiers (in
2931  // case any of the errors above fired) and with "void" as the
2932  // return type, since constructors don't have return types.
2933  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2934  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2935                                 Proto->getNumArgs(),
2936                                 Proto->isVariadic(), 0,
2937                                 Proto->hasExceptionSpec(),
2938                                 Proto->hasAnyExceptionSpec(),
2939                                 Proto->getNumExceptions(),
2940                                 Proto->exception_begin(),
2941                                 Proto->getExtInfo());
2942}
2943
2944/// CheckConstructor - Checks a fully-formed constructor for
2945/// well-formedness, issuing any diagnostics required. Returns true if
2946/// the constructor declarator is invalid.
2947void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2948  CXXRecordDecl *ClassDecl
2949    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2950  if (!ClassDecl)
2951    return Constructor->setInvalidDecl();
2952
2953  // C++ [class.copy]p3:
2954  //   A declaration of a constructor for a class X is ill-formed if
2955  //   its first parameter is of type (optionally cv-qualified) X and
2956  //   either there are no other parameters or else all other
2957  //   parameters have default arguments.
2958  if (!Constructor->isInvalidDecl() &&
2959      ((Constructor->getNumParams() == 1) ||
2960       (Constructor->getNumParams() > 1 &&
2961        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2962      Constructor->getTemplateSpecializationKind()
2963                                              != TSK_ImplicitInstantiation) {
2964    QualType ParamType = Constructor->getParamDecl(0)->getType();
2965    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2966    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2967      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2968      const char *ConstRef
2969        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2970                                                        : " const &";
2971      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2972        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2973
2974      // FIXME: Rather that making the constructor invalid, we should endeavor
2975      // to fix the type.
2976      Constructor->setInvalidDecl();
2977    }
2978  }
2979
2980  // Notify the class that we've added a constructor.  In principle we
2981  // don't need to do this for out-of-line declarations; in practice
2982  // we only instantiate the most recent declaration of a method, so
2983  // we have to call this for everything but friends.
2984  if (!Constructor->getFriendObjectKind())
2985    ClassDecl->addedConstructor(Context, Constructor);
2986}
2987
2988/// CheckDestructor - Checks a fully-formed destructor definition for
2989/// well-formedness, issuing any diagnostics required.  Returns true
2990/// on error.
2991bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2992  CXXRecordDecl *RD = Destructor->getParent();
2993
2994  if (Destructor->isVirtual()) {
2995    SourceLocation Loc;
2996
2997    if (!Destructor->isImplicit())
2998      Loc = Destructor->getLocation();
2999    else
3000      Loc = RD->getLocation();
3001
3002    // If we have a virtual destructor, look up the deallocation function
3003    FunctionDecl *OperatorDelete = 0;
3004    DeclarationName Name =
3005    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3006    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3007      return true;
3008
3009    MarkDeclarationReferenced(Loc, OperatorDelete);
3010
3011    Destructor->setOperatorDelete(OperatorDelete);
3012  }
3013
3014  return false;
3015}
3016
3017static inline bool
3018FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3019  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3020          FTI.ArgInfo[0].Param &&
3021          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3022}
3023
3024/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3025/// the well-formednes of the destructor declarator @p D with type @p
3026/// R. If there are any errors in the declarator, this routine will
3027/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3028/// will be updated to reflect a well-formed type for the destructor and
3029/// returned.
3030QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3031                                         StorageClass& SC) {
3032  // C++ [class.dtor]p1:
3033  //   [...] A typedef-name that names a class is a class-name
3034  //   (7.1.3); however, a typedef-name that names a class shall not
3035  //   be used as the identifier in the declarator for a destructor
3036  //   declaration.
3037  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3038  if (isa<TypedefType>(DeclaratorType))
3039    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3040      << DeclaratorType;
3041
3042  // C++ [class.dtor]p2:
3043  //   A destructor is used to destroy objects of its class type. A
3044  //   destructor takes no parameters, and no return type can be
3045  //   specified for it (not even void). The address of a destructor
3046  //   shall not be taken. A destructor shall not be static. A
3047  //   destructor can be invoked for a const, volatile or const
3048  //   volatile object. A destructor shall not be declared const,
3049  //   volatile or const volatile (9.3.2).
3050  if (SC == SC_Static) {
3051    if (!D.isInvalidType())
3052      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3053        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3054        << SourceRange(D.getIdentifierLoc())
3055        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3056
3057    SC = SC_None;
3058  }
3059  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3060    // Destructors don't have return types, but the parser will
3061    // happily parse something like:
3062    //
3063    //   class X {
3064    //     float ~X();
3065    //   };
3066    //
3067    // The return type will be eliminated later.
3068    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3069      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3070      << SourceRange(D.getIdentifierLoc());
3071  }
3072
3073  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3074  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3075    if (FTI.TypeQuals & Qualifiers::Const)
3076      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3077        << "const" << SourceRange(D.getIdentifierLoc());
3078    if (FTI.TypeQuals & Qualifiers::Volatile)
3079      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3080        << "volatile" << SourceRange(D.getIdentifierLoc());
3081    if (FTI.TypeQuals & Qualifiers::Restrict)
3082      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3083        << "restrict" << SourceRange(D.getIdentifierLoc());
3084    D.setInvalidType();
3085  }
3086
3087  // Make sure we don't have any parameters.
3088  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3089    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3090
3091    // Delete the parameters.
3092    FTI.freeArgs();
3093    D.setInvalidType();
3094  }
3095
3096  // Make sure the destructor isn't variadic.
3097  if (FTI.isVariadic) {
3098    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3099    D.setInvalidType();
3100  }
3101
3102  // Rebuild the function type "R" without any type qualifiers or
3103  // parameters (in case any of the errors above fired) and with
3104  // "void" as the return type, since destructors don't have return
3105  // types.
3106  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3107  if (!Proto)
3108    return QualType();
3109
3110  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3111                                 Proto->hasExceptionSpec(),
3112                                 Proto->hasAnyExceptionSpec(),
3113                                 Proto->getNumExceptions(),
3114                                 Proto->exception_begin(),
3115                                 Proto->getExtInfo());
3116}
3117
3118/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3119/// well-formednes of the conversion function declarator @p D with
3120/// type @p R. If there are any errors in the declarator, this routine
3121/// will emit diagnostics and return true. Otherwise, it will return
3122/// false. Either way, the type @p R will be updated to reflect a
3123/// well-formed type for the conversion operator.
3124void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3125                                     StorageClass& SC) {
3126  // C++ [class.conv.fct]p1:
3127  //   Neither parameter types nor return type can be specified. The
3128  //   type of a conversion function (8.3.5) is "function taking no
3129  //   parameter returning conversion-type-id."
3130  if (SC == SC_Static) {
3131    if (!D.isInvalidType())
3132      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3133        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3134        << SourceRange(D.getIdentifierLoc());
3135    D.setInvalidType();
3136    SC = SC_None;
3137  }
3138
3139  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3140
3141  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3142    // Conversion functions don't have return types, but the parser will
3143    // happily parse something like:
3144    //
3145    //   class X {
3146    //     float operator bool();
3147    //   };
3148    //
3149    // The return type will be changed later anyway.
3150    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3151      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3152      << SourceRange(D.getIdentifierLoc());
3153    D.setInvalidType();
3154  }
3155
3156  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3157
3158  // Make sure we don't have any parameters.
3159  if (Proto->getNumArgs() > 0) {
3160    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3161
3162    // Delete the parameters.
3163    D.getTypeObject(0).Fun.freeArgs();
3164    D.setInvalidType();
3165  } else if (Proto->isVariadic()) {
3166    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3167    D.setInvalidType();
3168  }
3169
3170  // Diagnose "&operator bool()" and other such nonsense.  This
3171  // is actually a gcc extension which we don't support.
3172  if (Proto->getResultType() != ConvType) {
3173    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3174      << Proto->getResultType();
3175    D.setInvalidType();
3176    ConvType = Proto->getResultType();
3177  }
3178
3179  // C++ [class.conv.fct]p4:
3180  //   The conversion-type-id shall not represent a function type nor
3181  //   an array type.
3182  if (ConvType->isArrayType()) {
3183    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3184    ConvType = Context.getPointerType(ConvType);
3185    D.setInvalidType();
3186  } else if (ConvType->isFunctionType()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3188    ConvType = Context.getPointerType(ConvType);
3189    D.setInvalidType();
3190  }
3191
3192  // Rebuild the function type "R" without any parameters (in case any
3193  // of the errors above fired) and with the conversion type as the
3194  // return type.
3195  if (D.isInvalidType()) {
3196    R = Context.getFunctionType(ConvType, 0, 0, false,
3197                                Proto->getTypeQuals(),
3198                                Proto->hasExceptionSpec(),
3199                                Proto->hasAnyExceptionSpec(),
3200                                Proto->getNumExceptions(),
3201                                Proto->exception_begin(),
3202                                Proto->getExtInfo());
3203  }
3204
3205  // C++0x explicit conversion operators.
3206  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3207    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3208         diag::warn_explicit_conversion_functions)
3209      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3210}
3211
3212/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3213/// the declaration of the given C++ conversion function. This routine
3214/// is responsible for recording the conversion function in the C++
3215/// class, if possible.
3216Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3217  assert(Conversion && "Expected to receive a conversion function declaration");
3218
3219  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3220
3221  // Make sure we aren't redeclaring the conversion function.
3222  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3223
3224  // C++ [class.conv.fct]p1:
3225  //   [...] A conversion function is never used to convert a
3226  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3227  //   same object type (or a reference to it), to a (possibly
3228  //   cv-qualified) base class of that type (or a reference to it),
3229  //   or to (possibly cv-qualified) void.
3230  // FIXME: Suppress this warning if the conversion function ends up being a
3231  // virtual function that overrides a virtual function in a base class.
3232  QualType ClassType
3233    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3234  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3235    ConvType = ConvTypeRef->getPointeeType();
3236  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3237      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3238    /* Suppress diagnostics for instantiations. */;
3239  else if (ConvType->isRecordType()) {
3240    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3241    if (ConvType == ClassType)
3242      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3243        << ClassType;
3244    else if (IsDerivedFrom(ClassType, ConvType))
3245      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3246        <<  ClassType << ConvType;
3247  } else if (ConvType->isVoidType()) {
3248    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3249      << ClassType << ConvType;
3250  }
3251
3252  if (Conversion->getPrimaryTemplate()) {
3253    // ignore specializations
3254  } else if (Conversion->getPreviousDeclaration()) {
3255    if (FunctionTemplateDecl *ConversionTemplate
3256                                  = Conversion->getDescribedFunctionTemplate()) {
3257      if (ClassDecl->replaceConversion(
3258                                   ConversionTemplate->getPreviousDeclaration(),
3259                                       ConversionTemplate))
3260        return ConversionTemplate;
3261    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3262                                            Conversion))
3263      return Conversion;
3264    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3265  } else if (FunctionTemplateDecl *ConversionTemplate
3266               = Conversion->getDescribedFunctionTemplate())
3267    ClassDecl->addConversionFunction(ConversionTemplate);
3268  else
3269    ClassDecl->addConversionFunction(Conversion);
3270
3271  return Conversion;
3272}
3273
3274//===----------------------------------------------------------------------===//
3275// Namespace Handling
3276//===----------------------------------------------------------------------===//
3277
3278
3279
3280/// ActOnStartNamespaceDef - This is called at the start of a namespace
3281/// definition.
3282Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3283                                   SourceLocation InlineLoc,
3284                                   SourceLocation IdentLoc,
3285                                   IdentifierInfo *II,
3286                                   SourceLocation LBrace,
3287                                   AttributeList *AttrList) {
3288  // anonymous namespace starts at its left brace
3289  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3290    (II ? IdentLoc : LBrace) , II);
3291  Namespc->setLBracLoc(LBrace);
3292  Namespc->setInline(InlineLoc.isValid());
3293
3294  Scope *DeclRegionScope = NamespcScope->getParent();
3295
3296  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3297
3298  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3299    PushVisibilityAttr(attr);
3300
3301  if (II) {
3302    // C++ [namespace.def]p2:
3303    // The identifier in an original-namespace-definition shall not have been
3304    // previously defined in the declarative region in which the
3305    // original-namespace-definition appears. The identifier in an
3306    // original-namespace-definition is the name of the namespace. Subsequently
3307    // in that declarative region, it is treated as an original-namespace-name.
3308
3309    NamedDecl *PrevDecl
3310      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3311                         ForRedeclaration);
3312
3313    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3314      // This is an extended namespace definition.
3315      if (Namespc->isInline() != OrigNS->isInline()) {
3316        // inline-ness must match
3317        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3318          << Namespc->isInline();
3319        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3320        Namespc->setInvalidDecl();
3321        // Recover by ignoring the new namespace's inline status.
3322        Namespc->setInline(OrigNS->isInline());
3323      }
3324
3325      // Attach this namespace decl to the chain of extended namespace
3326      // definitions.
3327      OrigNS->setNextNamespace(Namespc);
3328      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3329
3330      // Remove the previous declaration from the scope.
3331      if (DeclRegionScope->isDeclScope(OrigNS)) {
3332        IdResolver.RemoveDecl(OrigNS);
3333        DeclRegionScope->RemoveDecl(OrigNS);
3334      }
3335    } else if (PrevDecl) {
3336      // This is an invalid name redefinition.
3337      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3338       << Namespc->getDeclName();
3339      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3340      Namespc->setInvalidDecl();
3341      // Continue on to push Namespc as current DeclContext and return it.
3342    } else if (II->isStr("std") &&
3343               CurContext->getRedeclContext()->isTranslationUnit()) {
3344      // This is the first "real" definition of the namespace "std", so update
3345      // our cache of the "std" namespace to point at this definition.
3346      if (NamespaceDecl *StdNS = getStdNamespace()) {
3347        // We had already defined a dummy namespace "std". Link this new
3348        // namespace definition to the dummy namespace "std".
3349        StdNS->setNextNamespace(Namespc);
3350        StdNS->setLocation(IdentLoc);
3351        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3352      }
3353
3354      // Make our StdNamespace cache point at the first real definition of the
3355      // "std" namespace.
3356      StdNamespace = Namespc;
3357    }
3358
3359    PushOnScopeChains(Namespc, DeclRegionScope);
3360  } else {
3361    // Anonymous namespaces.
3362    assert(Namespc->isAnonymousNamespace());
3363
3364    // Link the anonymous namespace into its parent.
3365    NamespaceDecl *PrevDecl;
3366    DeclContext *Parent = CurContext->getRedeclContext();
3367    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3368      PrevDecl = TU->getAnonymousNamespace();
3369      TU->setAnonymousNamespace(Namespc);
3370    } else {
3371      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3372      PrevDecl = ND->getAnonymousNamespace();
3373      ND->setAnonymousNamespace(Namespc);
3374    }
3375
3376    // Link the anonymous namespace with its previous declaration.
3377    if (PrevDecl) {
3378      assert(PrevDecl->isAnonymousNamespace());
3379      assert(!PrevDecl->getNextNamespace());
3380      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3381      PrevDecl->setNextNamespace(Namespc);
3382
3383      if (Namespc->isInline() != PrevDecl->isInline()) {
3384        // inline-ness must match
3385        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3386          << Namespc->isInline();
3387        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3388        Namespc->setInvalidDecl();
3389        // Recover by ignoring the new namespace's inline status.
3390        Namespc->setInline(PrevDecl->isInline());
3391      }
3392    }
3393
3394    CurContext->addDecl(Namespc);
3395
3396    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3397    //   behaves as if it were replaced by
3398    //     namespace unique { /* empty body */ }
3399    //     using namespace unique;
3400    //     namespace unique { namespace-body }
3401    //   where all occurrences of 'unique' in a translation unit are
3402    //   replaced by the same identifier and this identifier differs
3403    //   from all other identifiers in the entire program.
3404
3405    // We just create the namespace with an empty name and then add an
3406    // implicit using declaration, just like the standard suggests.
3407    //
3408    // CodeGen enforces the "universally unique" aspect by giving all
3409    // declarations semantically contained within an anonymous
3410    // namespace internal linkage.
3411
3412    if (!PrevDecl) {
3413      UsingDirectiveDecl* UD
3414        = UsingDirectiveDecl::Create(Context, CurContext,
3415                                     /* 'using' */ LBrace,
3416                                     /* 'namespace' */ SourceLocation(),
3417                                     /* qualifier */ SourceRange(),
3418                                     /* NNS */ NULL,
3419                                     /* identifier */ SourceLocation(),
3420                                     Namespc,
3421                                     /* Ancestor */ CurContext);
3422      UD->setImplicit();
3423      CurContext->addDecl(UD);
3424    }
3425  }
3426
3427  // Although we could have an invalid decl (i.e. the namespace name is a
3428  // redefinition), push it as current DeclContext and try to continue parsing.
3429  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3430  // for the namespace has the declarations that showed up in that particular
3431  // namespace definition.
3432  PushDeclContext(NamespcScope, Namespc);
3433  return Namespc;
3434}
3435
3436/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3437/// is a namespace alias, returns the namespace it points to.
3438static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3439  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3440    return AD->getNamespace();
3441  return dyn_cast_or_null<NamespaceDecl>(D);
3442}
3443
3444/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3445/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3446void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3447  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3448  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3449  Namespc->setRBracLoc(RBrace);
3450  PopDeclContext();
3451  if (Namespc->hasAttr<VisibilityAttr>())
3452    PopPragmaVisibility();
3453}
3454
3455CXXRecordDecl *Sema::getStdBadAlloc() const {
3456  return cast_or_null<CXXRecordDecl>(
3457                                  StdBadAlloc.get(Context.getExternalSource()));
3458}
3459
3460NamespaceDecl *Sema::getStdNamespace() const {
3461  return cast_or_null<NamespaceDecl>(
3462                                 StdNamespace.get(Context.getExternalSource()));
3463}
3464
3465/// \brief Retrieve the special "std" namespace, which may require us to
3466/// implicitly define the namespace.
3467NamespaceDecl *Sema::getOrCreateStdNamespace() {
3468  if (!StdNamespace) {
3469    // The "std" namespace has not yet been defined, so build one implicitly.
3470    StdNamespace = NamespaceDecl::Create(Context,
3471                                         Context.getTranslationUnitDecl(),
3472                                         SourceLocation(),
3473                                         &PP.getIdentifierTable().get("std"));
3474    getStdNamespace()->setImplicit(true);
3475  }
3476
3477  return getStdNamespace();
3478}
3479
3480Decl *Sema::ActOnUsingDirective(Scope *S,
3481                                          SourceLocation UsingLoc,
3482                                          SourceLocation NamespcLoc,
3483                                          CXXScopeSpec &SS,
3484                                          SourceLocation IdentLoc,
3485                                          IdentifierInfo *NamespcName,
3486                                          AttributeList *AttrList) {
3487  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3488  assert(NamespcName && "Invalid NamespcName.");
3489  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3490  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3491
3492  UsingDirectiveDecl *UDir = 0;
3493  NestedNameSpecifier *Qualifier = 0;
3494  if (SS.isSet())
3495    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3496
3497  // Lookup namespace name.
3498  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3499  LookupParsedName(R, S, &SS);
3500  if (R.isAmbiguous())
3501    return 0;
3502
3503  if (R.empty()) {
3504    // Allow "using namespace std;" or "using namespace ::std;" even if
3505    // "std" hasn't been defined yet, for GCC compatibility.
3506    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3507        NamespcName->isStr("std")) {
3508      Diag(IdentLoc, diag::ext_using_undefined_std);
3509      R.addDecl(getOrCreateStdNamespace());
3510      R.resolveKind();
3511    }
3512    // Otherwise, attempt typo correction.
3513    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3514                                                       CTC_NoKeywords, 0)) {
3515      if (R.getAsSingle<NamespaceDecl>() ||
3516          R.getAsSingle<NamespaceAliasDecl>()) {
3517        if (DeclContext *DC = computeDeclContext(SS, false))
3518          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3519            << NamespcName << DC << Corrected << SS.getRange()
3520            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3521        else
3522          Diag(IdentLoc, diag::err_using_directive_suggest)
3523            << NamespcName << Corrected
3524            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3525        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3526          << Corrected;
3527
3528        NamespcName = Corrected.getAsIdentifierInfo();
3529      } else {
3530        R.clear();
3531        R.setLookupName(NamespcName);
3532      }
3533    }
3534  }
3535
3536  if (!R.empty()) {
3537    NamedDecl *Named = R.getFoundDecl();
3538    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3539        && "expected namespace decl");
3540    // C++ [namespace.udir]p1:
3541    //   A using-directive specifies that the names in the nominated
3542    //   namespace can be used in the scope in which the
3543    //   using-directive appears after the using-directive. During
3544    //   unqualified name lookup (3.4.1), the names appear as if they
3545    //   were declared in the nearest enclosing namespace which
3546    //   contains both the using-directive and the nominated
3547    //   namespace. [Note: in this context, "contains" means "contains
3548    //   directly or indirectly". ]
3549
3550    // Find enclosing context containing both using-directive and
3551    // nominated namespace.
3552    NamespaceDecl *NS = getNamespaceDecl(Named);
3553    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3554    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3555      CommonAncestor = CommonAncestor->getParent();
3556
3557    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3558                                      SS.getRange(),
3559                                      (NestedNameSpecifier *)SS.getScopeRep(),
3560                                      IdentLoc, Named, CommonAncestor);
3561    PushUsingDirective(S, UDir);
3562  } else {
3563    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3564  }
3565
3566  // FIXME: We ignore attributes for now.
3567  delete AttrList;
3568  return UDir;
3569}
3570
3571void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3572  // If scope has associated entity, then using directive is at namespace
3573  // or translation unit scope. We add UsingDirectiveDecls, into
3574  // it's lookup structure.
3575  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3576    Ctx->addDecl(UDir);
3577  else
3578    // Otherwise it is block-sope. using-directives will affect lookup
3579    // only to the end of scope.
3580    S->PushUsingDirective(UDir);
3581}
3582
3583
3584Decl *Sema::ActOnUsingDeclaration(Scope *S,
3585                                            AccessSpecifier AS,
3586                                            bool HasUsingKeyword,
3587                                            SourceLocation UsingLoc,
3588                                            CXXScopeSpec &SS,
3589                                            UnqualifiedId &Name,
3590                                            AttributeList *AttrList,
3591                                            bool IsTypeName,
3592                                            SourceLocation TypenameLoc) {
3593  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3594
3595  switch (Name.getKind()) {
3596  case UnqualifiedId::IK_Identifier:
3597  case UnqualifiedId::IK_OperatorFunctionId:
3598  case UnqualifiedId::IK_LiteralOperatorId:
3599  case UnqualifiedId::IK_ConversionFunctionId:
3600    break;
3601
3602  case UnqualifiedId::IK_ConstructorName:
3603  case UnqualifiedId::IK_ConstructorTemplateId:
3604    // C++0x inherited constructors.
3605    if (getLangOptions().CPlusPlus0x) break;
3606
3607    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3608      << SS.getRange();
3609    return 0;
3610
3611  case UnqualifiedId::IK_DestructorName:
3612    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3613      << SS.getRange();
3614    return 0;
3615
3616  case UnqualifiedId::IK_TemplateId:
3617    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3618      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3619    return 0;
3620  }
3621
3622  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3623  DeclarationName TargetName = TargetNameInfo.getName();
3624  if (!TargetName)
3625    return 0;
3626
3627  // Warn about using declarations.
3628  // TODO: store that the declaration was written without 'using' and
3629  // talk about access decls instead of using decls in the
3630  // diagnostics.
3631  if (!HasUsingKeyword) {
3632    UsingLoc = Name.getSourceRange().getBegin();
3633
3634    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3635      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3636  }
3637
3638  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3639                                        TargetNameInfo, AttrList,
3640                                        /* IsInstantiation */ false,
3641                                        IsTypeName, TypenameLoc);
3642  if (UD)
3643    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3644
3645  return UD;
3646}
3647
3648/// \brief Determine whether a using declaration considers the given
3649/// declarations as "equivalent", e.g., if they are redeclarations of
3650/// the same entity or are both typedefs of the same type.
3651static bool
3652IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3653                         bool &SuppressRedeclaration) {
3654  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3655    SuppressRedeclaration = false;
3656    return true;
3657  }
3658
3659  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3660    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3661      SuppressRedeclaration = true;
3662      return Context.hasSameType(TD1->getUnderlyingType(),
3663                                 TD2->getUnderlyingType());
3664    }
3665
3666  return false;
3667}
3668
3669
3670/// Determines whether to create a using shadow decl for a particular
3671/// decl, given the set of decls existing prior to this using lookup.
3672bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3673                                const LookupResult &Previous) {
3674  // Diagnose finding a decl which is not from a base class of the
3675  // current class.  We do this now because there are cases where this
3676  // function will silently decide not to build a shadow decl, which
3677  // will pre-empt further diagnostics.
3678  //
3679  // We don't need to do this in C++0x because we do the check once on
3680  // the qualifier.
3681  //
3682  // FIXME: diagnose the following if we care enough:
3683  //   struct A { int foo; };
3684  //   struct B : A { using A::foo; };
3685  //   template <class T> struct C : A {};
3686  //   template <class T> struct D : C<T> { using B::foo; } // <---
3687  // This is invalid (during instantiation) in C++03 because B::foo
3688  // resolves to the using decl in B, which is not a base class of D<T>.
3689  // We can't diagnose it immediately because C<T> is an unknown
3690  // specialization.  The UsingShadowDecl in D<T> then points directly
3691  // to A::foo, which will look well-formed when we instantiate.
3692  // The right solution is to not collapse the shadow-decl chain.
3693  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3694    DeclContext *OrigDC = Orig->getDeclContext();
3695
3696    // Handle enums and anonymous structs.
3697    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3698    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3699    while (OrigRec->isAnonymousStructOrUnion())
3700      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3701
3702    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3703      if (OrigDC == CurContext) {
3704        Diag(Using->getLocation(),
3705             diag::err_using_decl_nested_name_specifier_is_current_class)
3706          << Using->getNestedNameRange();
3707        Diag(Orig->getLocation(), diag::note_using_decl_target);
3708        return true;
3709      }
3710
3711      Diag(Using->getNestedNameRange().getBegin(),
3712           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3713        << Using->getTargetNestedNameDecl()
3714        << cast<CXXRecordDecl>(CurContext)
3715        << Using->getNestedNameRange();
3716      Diag(Orig->getLocation(), diag::note_using_decl_target);
3717      return true;
3718    }
3719  }
3720
3721  if (Previous.empty()) return false;
3722
3723  NamedDecl *Target = Orig;
3724  if (isa<UsingShadowDecl>(Target))
3725    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3726
3727  // If the target happens to be one of the previous declarations, we
3728  // don't have a conflict.
3729  //
3730  // FIXME: but we might be increasing its access, in which case we
3731  // should redeclare it.
3732  NamedDecl *NonTag = 0, *Tag = 0;
3733  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3734         I != E; ++I) {
3735    NamedDecl *D = (*I)->getUnderlyingDecl();
3736    bool Result;
3737    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3738      return Result;
3739
3740    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3741  }
3742
3743  if (Target->isFunctionOrFunctionTemplate()) {
3744    FunctionDecl *FD;
3745    if (isa<FunctionTemplateDecl>(Target))
3746      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3747    else
3748      FD = cast<FunctionDecl>(Target);
3749
3750    NamedDecl *OldDecl = 0;
3751    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3752    case Ovl_Overload:
3753      return false;
3754
3755    case Ovl_NonFunction:
3756      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3757      break;
3758
3759    // We found a decl with the exact signature.
3760    case Ovl_Match:
3761      // If we're in a record, we want to hide the target, so we
3762      // return true (without a diagnostic) to tell the caller not to
3763      // build a shadow decl.
3764      if (CurContext->isRecord())
3765        return true;
3766
3767      // If we're not in a record, this is an error.
3768      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3769      break;
3770    }
3771
3772    Diag(Target->getLocation(), diag::note_using_decl_target);
3773    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3774    return true;
3775  }
3776
3777  // Target is not a function.
3778
3779  if (isa<TagDecl>(Target)) {
3780    // No conflict between a tag and a non-tag.
3781    if (!Tag) return false;
3782
3783    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3784    Diag(Target->getLocation(), diag::note_using_decl_target);
3785    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3786    return true;
3787  }
3788
3789  // No conflict between a tag and a non-tag.
3790  if (!NonTag) return false;
3791
3792  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3793  Diag(Target->getLocation(), diag::note_using_decl_target);
3794  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3795  return true;
3796}
3797
3798/// Builds a shadow declaration corresponding to a 'using' declaration.
3799UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3800                                            UsingDecl *UD,
3801                                            NamedDecl *Orig) {
3802
3803  // If we resolved to another shadow declaration, just coalesce them.
3804  NamedDecl *Target = Orig;
3805  if (isa<UsingShadowDecl>(Target)) {
3806    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3807    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3808  }
3809
3810  UsingShadowDecl *Shadow
3811    = UsingShadowDecl::Create(Context, CurContext,
3812                              UD->getLocation(), UD, Target);
3813  UD->addShadowDecl(Shadow);
3814
3815  if (S)
3816    PushOnScopeChains(Shadow, S);
3817  else
3818    CurContext->addDecl(Shadow);
3819  Shadow->setAccess(UD->getAccess());
3820
3821  // Register it as a conversion if appropriate.
3822  if (Shadow->getDeclName().getNameKind()
3823        == DeclarationName::CXXConversionFunctionName)
3824    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3825
3826  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3827    Shadow->setInvalidDecl();
3828
3829  return Shadow;
3830}
3831
3832/// Hides a using shadow declaration.  This is required by the current
3833/// using-decl implementation when a resolvable using declaration in a
3834/// class is followed by a declaration which would hide or override
3835/// one or more of the using decl's targets; for example:
3836///
3837///   struct Base { void foo(int); };
3838///   struct Derived : Base {
3839///     using Base::foo;
3840///     void foo(int);
3841///   };
3842///
3843/// The governing language is C++03 [namespace.udecl]p12:
3844///
3845///   When a using-declaration brings names from a base class into a
3846///   derived class scope, member functions in the derived class
3847///   override and/or hide member functions with the same name and
3848///   parameter types in a base class (rather than conflicting).
3849///
3850/// There are two ways to implement this:
3851///   (1) optimistically create shadow decls when they're not hidden
3852///       by existing declarations, or
3853///   (2) don't create any shadow decls (or at least don't make them
3854///       visible) until we've fully parsed/instantiated the class.
3855/// The problem with (1) is that we might have to retroactively remove
3856/// a shadow decl, which requires several O(n) operations because the
3857/// decl structures are (very reasonably) not designed for removal.
3858/// (2) avoids this but is very fiddly and phase-dependent.
3859void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3860  if (Shadow->getDeclName().getNameKind() ==
3861        DeclarationName::CXXConversionFunctionName)
3862    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3863
3864  // Remove it from the DeclContext...
3865  Shadow->getDeclContext()->removeDecl(Shadow);
3866
3867  // ...and the scope, if applicable...
3868  if (S) {
3869    S->RemoveDecl(Shadow);
3870    IdResolver.RemoveDecl(Shadow);
3871  }
3872
3873  // ...and the using decl.
3874  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3875
3876  // TODO: complain somehow if Shadow was used.  It shouldn't
3877  // be possible for this to happen, because...?
3878}
3879
3880/// Builds a using declaration.
3881///
3882/// \param IsInstantiation - Whether this call arises from an
3883///   instantiation of an unresolved using declaration.  We treat
3884///   the lookup differently for these declarations.
3885NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3886                                       SourceLocation UsingLoc,
3887                                       CXXScopeSpec &SS,
3888                                       const DeclarationNameInfo &NameInfo,
3889                                       AttributeList *AttrList,
3890                                       bool IsInstantiation,
3891                                       bool IsTypeName,
3892                                       SourceLocation TypenameLoc) {
3893  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3894  SourceLocation IdentLoc = NameInfo.getLoc();
3895  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3896
3897  // FIXME: We ignore attributes for now.
3898  delete AttrList;
3899
3900  if (SS.isEmpty()) {
3901    Diag(IdentLoc, diag::err_using_requires_qualname);
3902    return 0;
3903  }
3904
3905  // Do the redeclaration lookup in the current scope.
3906  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3907                        ForRedeclaration);
3908  Previous.setHideTags(false);
3909  if (S) {
3910    LookupName(Previous, S);
3911
3912    // It is really dumb that we have to do this.
3913    LookupResult::Filter F = Previous.makeFilter();
3914    while (F.hasNext()) {
3915      NamedDecl *D = F.next();
3916      if (!isDeclInScope(D, CurContext, S))
3917        F.erase();
3918    }
3919    F.done();
3920  } else {
3921    assert(IsInstantiation && "no scope in non-instantiation");
3922    assert(CurContext->isRecord() && "scope not record in instantiation");
3923    LookupQualifiedName(Previous, CurContext);
3924  }
3925
3926  NestedNameSpecifier *NNS =
3927    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3928
3929  // Check for invalid redeclarations.
3930  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3931    return 0;
3932
3933  // Check for bad qualifiers.
3934  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3935    return 0;
3936
3937  DeclContext *LookupContext = computeDeclContext(SS);
3938  NamedDecl *D;
3939  if (!LookupContext) {
3940    if (IsTypeName) {
3941      // FIXME: not all declaration name kinds are legal here
3942      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3943                                              UsingLoc, TypenameLoc,
3944                                              SS.getRange(), NNS,
3945                                              IdentLoc, NameInfo.getName());
3946    } else {
3947      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3948                                           UsingLoc, SS.getRange(),
3949                                           NNS, NameInfo);
3950    }
3951  } else {
3952    D = UsingDecl::Create(Context, CurContext,
3953                          SS.getRange(), UsingLoc, NNS, NameInfo,
3954                          IsTypeName);
3955  }
3956  D->setAccess(AS);
3957  CurContext->addDecl(D);
3958
3959  if (!LookupContext) return D;
3960  UsingDecl *UD = cast<UsingDecl>(D);
3961
3962  if (RequireCompleteDeclContext(SS, LookupContext)) {
3963    UD->setInvalidDecl();
3964    return UD;
3965  }
3966
3967  // Look up the target name.
3968
3969  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3970
3971  // Unlike most lookups, we don't always want to hide tag
3972  // declarations: tag names are visible through the using declaration
3973  // even if hidden by ordinary names, *except* in a dependent context
3974  // where it's important for the sanity of two-phase lookup.
3975  if (!IsInstantiation)
3976    R.setHideTags(false);
3977
3978  LookupQualifiedName(R, LookupContext);
3979
3980  if (R.empty()) {
3981    Diag(IdentLoc, diag::err_no_member)
3982      << NameInfo.getName() << LookupContext << SS.getRange();
3983    UD->setInvalidDecl();
3984    return UD;
3985  }
3986
3987  if (R.isAmbiguous()) {
3988    UD->setInvalidDecl();
3989    return UD;
3990  }
3991
3992  if (IsTypeName) {
3993    // If we asked for a typename and got a non-type decl, error out.
3994    if (!R.getAsSingle<TypeDecl>()) {
3995      Diag(IdentLoc, diag::err_using_typename_non_type);
3996      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3997        Diag((*I)->getUnderlyingDecl()->getLocation(),
3998             diag::note_using_decl_target);
3999      UD->setInvalidDecl();
4000      return UD;
4001    }
4002  } else {
4003    // If we asked for a non-typename and we got a type, error out,
4004    // but only if this is an instantiation of an unresolved using
4005    // decl.  Otherwise just silently find the type name.
4006    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4007      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4008      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4009      UD->setInvalidDecl();
4010      return UD;
4011    }
4012  }
4013
4014  // C++0x N2914 [namespace.udecl]p6:
4015  // A using-declaration shall not name a namespace.
4016  if (R.getAsSingle<NamespaceDecl>()) {
4017    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4018      << SS.getRange();
4019    UD->setInvalidDecl();
4020    return UD;
4021  }
4022
4023  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4024    if (!CheckUsingShadowDecl(UD, *I, Previous))
4025      BuildUsingShadowDecl(S, UD, *I);
4026  }
4027
4028  return UD;
4029}
4030
4031/// Checks that the given using declaration is not an invalid
4032/// redeclaration.  Note that this is checking only for the using decl
4033/// itself, not for any ill-formedness among the UsingShadowDecls.
4034bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4035                                       bool isTypeName,
4036                                       const CXXScopeSpec &SS,
4037                                       SourceLocation NameLoc,
4038                                       const LookupResult &Prev) {
4039  // C++03 [namespace.udecl]p8:
4040  // C++0x [namespace.udecl]p10:
4041  //   A using-declaration is a declaration and can therefore be used
4042  //   repeatedly where (and only where) multiple declarations are
4043  //   allowed.
4044  //
4045  // That's in non-member contexts.
4046  if (!CurContext->getRedeclContext()->isRecord())
4047    return false;
4048
4049  NestedNameSpecifier *Qual
4050    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4051
4052  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4053    NamedDecl *D = *I;
4054
4055    bool DTypename;
4056    NestedNameSpecifier *DQual;
4057    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4058      DTypename = UD->isTypeName();
4059      DQual = UD->getTargetNestedNameDecl();
4060    } else if (UnresolvedUsingValueDecl *UD
4061                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4062      DTypename = false;
4063      DQual = UD->getTargetNestedNameSpecifier();
4064    } else if (UnresolvedUsingTypenameDecl *UD
4065                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4066      DTypename = true;
4067      DQual = UD->getTargetNestedNameSpecifier();
4068    } else continue;
4069
4070    // using decls differ if one says 'typename' and the other doesn't.
4071    // FIXME: non-dependent using decls?
4072    if (isTypeName != DTypename) continue;
4073
4074    // using decls differ if they name different scopes (but note that
4075    // template instantiation can cause this check to trigger when it
4076    // didn't before instantiation).
4077    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4078        Context.getCanonicalNestedNameSpecifier(DQual))
4079      continue;
4080
4081    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4082    Diag(D->getLocation(), diag::note_using_decl) << 1;
4083    return true;
4084  }
4085
4086  return false;
4087}
4088
4089
4090/// Checks that the given nested-name qualifier used in a using decl
4091/// in the current context is appropriately related to the current
4092/// scope.  If an error is found, diagnoses it and returns true.
4093bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4094                                   const CXXScopeSpec &SS,
4095                                   SourceLocation NameLoc) {
4096  DeclContext *NamedContext = computeDeclContext(SS);
4097
4098  if (!CurContext->isRecord()) {
4099    // C++03 [namespace.udecl]p3:
4100    // C++0x [namespace.udecl]p8:
4101    //   A using-declaration for a class member shall be a member-declaration.
4102
4103    // If we weren't able to compute a valid scope, it must be a
4104    // dependent class scope.
4105    if (!NamedContext || NamedContext->isRecord()) {
4106      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4107        << SS.getRange();
4108      return true;
4109    }
4110
4111    // Otherwise, everything is known to be fine.
4112    return false;
4113  }
4114
4115  // The current scope is a record.
4116
4117  // If the named context is dependent, we can't decide much.
4118  if (!NamedContext) {
4119    // FIXME: in C++0x, we can diagnose if we can prove that the
4120    // nested-name-specifier does not refer to a base class, which is
4121    // still possible in some cases.
4122
4123    // Otherwise we have to conservatively report that things might be
4124    // okay.
4125    return false;
4126  }
4127
4128  if (!NamedContext->isRecord()) {
4129    // Ideally this would point at the last name in the specifier,
4130    // but we don't have that level of source info.
4131    Diag(SS.getRange().getBegin(),
4132         diag::err_using_decl_nested_name_specifier_is_not_class)
4133      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4134    return true;
4135  }
4136
4137  if (getLangOptions().CPlusPlus0x) {
4138    // C++0x [namespace.udecl]p3:
4139    //   In a using-declaration used as a member-declaration, the
4140    //   nested-name-specifier shall name a base class of the class
4141    //   being defined.
4142
4143    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4144                                 cast<CXXRecordDecl>(NamedContext))) {
4145      if (CurContext == NamedContext) {
4146        Diag(NameLoc,
4147             diag::err_using_decl_nested_name_specifier_is_current_class)
4148          << SS.getRange();
4149        return true;
4150      }
4151
4152      Diag(SS.getRange().getBegin(),
4153           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4154        << (NestedNameSpecifier*) SS.getScopeRep()
4155        << cast<CXXRecordDecl>(CurContext)
4156        << SS.getRange();
4157      return true;
4158    }
4159
4160    return false;
4161  }
4162
4163  // C++03 [namespace.udecl]p4:
4164  //   A using-declaration used as a member-declaration shall refer
4165  //   to a member of a base class of the class being defined [etc.].
4166
4167  // Salient point: SS doesn't have to name a base class as long as
4168  // lookup only finds members from base classes.  Therefore we can
4169  // diagnose here only if we can prove that that can't happen,
4170  // i.e. if the class hierarchies provably don't intersect.
4171
4172  // TODO: it would be nice if "definitely valid" results were cached
4173  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4174  // need to be repeated.
4175
4176  struct UserData {
4177    llvm::DenseSet<const CXXRecordDecl*> Bases;
4178
4179    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4180      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4181      Data->Bases.insert(Base);
4182      return true;
4183    }
4184
4185    bool hasDependentBases(const CXXRecordDecl *Class) {
4186      return !Class->forallBases(collect, this);
4187    }
4188
4189    /// Returns true if the base is dependent or is one of the
4190    /// accumulated base classes.
4191    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4192      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4193      return !Data->Bases.count(Base);
4194    }
4195
4196    bool mightShareBases(const CXXRecordDecl *Class) {
4197      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4198    }
4199  };
4200
4201  UserData Data;
4202
4203  // Returns false if we find a dependent base.
4204  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4205    return false;
4206
4207  // Returns false if the class has a dependent base or if it or one
4208  // of its bases is present in the base set of the current context.
4209  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4210    return false;
4211
4212  Diag(SS.getRange().getBegin(),
4213       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4214    << (NestedNameSpecifier*) SS.getScopeRep()
4215    << cast<CXXRecordDecl>(CurContext)
4216    << SS.getRange();
4217
4218  return true;
4219}
4220
4221Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4222                                             SourceLocation NamespaceLoc,
4223                                             SourceLocation AliasLoc,
4224                                             IdentifierInfo *Alias,
4225                                             CXXScopeSpec &SS,
4226                                             SourceLocation IdentLoc,
4227                                             IdentifierInfo *Ident) {
4228
4229  // Lookup the namespace name.
4230  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4231  LookupParsedName(R, S, &SS);
4232
4233  // Check if we have a previous declaration with the same name.
4234  NamedDecl *PrevDecl
4235    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4236                       ForRedeclaration);
4237  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4238    PrevDecl = 0;
4239
4240  if (PrevDecl) {
4241    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4242      // We already have an alias with the same name that points to the same
4243      // namespace, so don't create a new one.
4244      // FIXME: At some point, we'll want to create the (redundant)
4245      // declaration to maintain better source information.
4246      if (!R.isAmbiguous() && !R.empty() &&
4247          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4248        return 0;
4249    }
4250
4251    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4252      diag::err_redefinition_different_kind;
4253    Diag(AliasLoc, DiagID) << Alias;
4254    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4255    return 0;
4256  }
4257
4258  if (R.isAmbiguous())
4259    return 0;
4260
4261  if (R.empty()) {
4262    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4263                                                CTC_NoKeywords, 0)) {
4264      if (R.getAsSingle<NamespaceDecl>() ||
4265          R.getAsSingle<NamespaceAliasDecl>()) {
4266        if (DeclContext *DC = computeDeclContext(SS, false))
4267          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4268            << Ident << DC << Corrected << SS.getRange()
4269            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4270        else
4271          Diag(IdentLoc, diag::err_using_directive_suggest)
4272            << Ident << Corrected
4273            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4274
4275        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4276          << Corrected;
4277
4278        Ident = Corrected.getAsIdentifierInfo();
4279      } else {
4280        R.clear();
4281        R.setLookupName(Ident);
4282      }
4283    }
4284
4285    if (R.empty()) {
4286      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4287      return 0;
4288    }
4289  }
4290
4291  NamespaceAliasDecl *AliasDecl =
4292    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4293                               Alias, SS.getRange(),
4294                               (NestedNameSpecifier *)SS.getScopeRep(),
4295                               IdentLoc, R.getFoundDecl());
4296
4297  PushOnScopeChains(AliasDecl, S);
4298  return AliasDecl;
4299}
4300
4301namespace {
4302  /// \brief Scoped object used to handle the state changes required in Sema
4303  /// to implicitly define the body of a C++ member function;
4304  class ImplicitlyDefinedFunctionScope {
4305    Sema &S;
4306    DeclContext *PreviousContext;
4307
4308  public:
4309    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4310      : S(S), PreviousContext(S.CurContext)
4311    {
4312      S.CurContext = Method;
4313      S.PushFunctionScope();
4314      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4315    }
4316
4317    ~ImplicitlyDefinedFunctionScope() {
4318      S.PopExpressionEvaluationContext();
4319      S.PopFunctionOrBlockScope();
4320      S.CurContext = PreviousContext;
4321    }
4322  };
4323}
4324
4325CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4326                                                     CXXRecordDecl *ClassDecl) {
4327  // C++ [class.ctor]p5:
4328  //   A default constructor for a class X is a constructor of class X
4329  //   that can be called without an argument. If there is no
4330  //   user-declared constructor for class X, a default constructor is
4331  //   implicitly declared. An implicitly-declared default constructor
4332  //   is an inline public member of its class.
4333  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4334         "Should not build implicit default constructor!");
4335
4336  // C++ [except.spec]p14:
4337  //   An implicitly declared special member function (Clause 12) shall have an
4338  //   exception-specification. [...]
4339  ImplicitExceptionSpecification ExceptSpec(Context);
4340
4341  // Direct base-class destructors.
4342  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4343                                       BEnd = ClassDecl->bases_end();
4344       B != BEnd; ++B) {
4345    if (B->isVirtual()) // Handled below.
4346      continue;
4347
4348    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4349      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4350      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4351        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4352      else if (CXXConstructorDecl *Constructor
4353                                       = BaseClassDecl->getDefaultConstructor())
4354        ExceptSpec.CalledDecl(Constructor);
4355    }
4356  }
4357
4358  // Virtual base-class destructors.
4359  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4360                                       BEnd = ClassDecl->vbases_end();
4361       B != BEnd; ++B) {
4362    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4363      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4364      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4365        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4366      else if (CXXConstructorDecl *Constructor
4367                                       = BaseClassDecl->getDefaultConstructor())
4368        ExceptSpec.CalledDecl(Constructor);
4369    }
4370  }
4371
4372  // Field destructors.
4373  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4374                               FEnd = ClassDecl->field_end();
4375       F != FEnd; ++F) {
4376    if (const RecordType *RecordTy
4377              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4378      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4379      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4380        ExceptSpec.CalledDecl(
4381                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4382      else if (CXXConstructorDecl *Constructor
4383                                      = FieldClassDecl->getDefaultConstructor())
4384        ExceptSpec.CalledDecl(Constructor);
4385    }
4386  }
4387
4388
4389  // Create the actual constructor declaration.
4390  CanQualType ClassType
4391    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4392  DeclarationName Name
4393    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4394  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4395  CXXConstructorDecl *DefaultCon
4396    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4397                                 Context.getFunctionType(Context.VoidTy,
4398                                                         0, 0, false, 0,
4399                                       ExceptSpec.hasExceptionSpecification(),
4400                                     ExceptSpec.hasAnyExceptionSpecification(),
4401                                                         ExceptSpec.size(),
4402                                                         ExceptSpec.data(),
4403                                                       FunctionType::ExtInfo()),
4404                                 /*TInfo=*/0,
4405                                 /*isExplicit=*/false,
4406                                 /*isInline=*/true,
4407                                 /*isImplicitlyDeclared=*/true);
4408  DefaultCon->setAccess(AS_public);
4409  DefaultCon->setImplicit();
4410  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4411
4412  // Note that we have declared this constructor.
4413  ClassDecl->setDeclaredDefaultConstructor(true);
4414  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4415
4416  if (Scope *S = getScopeForContext(ClassDecl))
4417    PushOnScopeChains(DefaultCon, S, false);
4418  ClassDecl->addDecl(DefaultCon);
4419
4420  return DefaultCon;
4421}
4422
4423void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4424                                            CXXConstructorDecl *Constructor) {
4425  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4426          !Constructor->isUsed(false)) &&
4427    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4428
4429  CXXRecordDecl *ClassDecl = Constructor->getParent();
4430  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4431
4432  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4433  ErrorTrap Trap(*this);
4434  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4435      Trap.hasErrorOccurred()) {
4436    Diag(CurrentLocation, diag::note_member_synthesized_at)
4437      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4438    Constructor->setInvalidDecl();
4439  } else {
4440    Constructor->setUsed();
4441    MarkVTableUsed(CurrentLocation, ClassDecl);
4442  }
4443}
4444
4445CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4446  // C++ [class.dtor]p2:
4447  //   If a class has no user-declared destructor, a destructor is
4448  //   declared implicitly. An implicitly-declared destructor is an
4449  //   inline public member of its class.
4450
4451  // C++ [except.spec]p14:
4452  //   An implicitly declared special member function (Clause 12) shall have
4453  //   an exception-specification.
4454  ImplicitExceptionSpecification ExceptSpec(Context);
4455
4456  // Direct base-class destructors.
4457  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4458                                       BEnd = ClassDecl->bases_end();
4459       B != BEnd; ++B) {
4460    if (B->isVirtual()) // Handled below.
4461      continue;
4462
4463    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4464      ExceptSpec.CalledDecl(
4465                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4466  }
4467
4468  // Virtual base-class destructors.
4469  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4470                                       BEnd = ClassDecl->vbases_end();
4471       B != BEnd; ++B) {
4472    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4473      ExceptSpec.CalledDecl(
4474                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4475  }
4476
4477  // Field destructors.
4478  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4479                               FEnd = ClassDecl->field_end();
4480       F != FEnd; ++F) {
4481    if (const RecordType *RecordTy
4482        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4483      ExceptSpec.CalledDecl(
4484                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4485  }
4486
4487  // Create the actual destructor declaration.
4488  QualType Ty = Context.getFunctionType(Context.VoidTy,
4489                                        0, 0, false, 0,
4490                                        ExceptSpec.hasExceptionSpecification(),
4491                                    ExceptSpec.hasAnyExceptionSpecification(),
4492                                        ExceptSpec.size(),
4493                                        ExceptSpec.data(),
4494                                        FunctionType::ExtInfo());
4495
4496  CanQualType ClassType
4497    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4498  DeclarationName Name
4499    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4500  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4501  CXXDestructorDecl *Destructor
4502    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4503                                /*isInline=*/true,
4504                                /*isImplicitlyDeclared=*/true);
4505  Destructor->setAccess(AS_public);
4506  Destructor->setImplicit();
4507  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4508
4509  // Note that we have declared this destructor.
4510  ClassDecl->setDeclaredDestructor(true);
4511  ++ASTContext::NumImplicitDestructorsDeclared;
4512
4513  // Introduce this destructor into its scope.
4514  if (Scope *S = getScopeForContext(ClassDecl))
4515    PushOnScopeChains(Destructor, S, false);
4516  ClassDecl->addDecl(Destructor);
4517
4518  // This could be uniqued if it ever proves significant.
4519  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4520
4521  AddOverriddenMethods(ClassDecl, Destructor);
4522
4523  return Destructor;
4524}
4525
4526void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4527                                    CXXDestructorDecl *Destructor) {
4528  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4529         "DefineImplicitDestructor - call it for implicit default dtor");
4530  CXXRecordDecl *ClassDecl = Destructor->getParent();
4531  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4532
4533  if (Destructor->isInvalidDecl())
4534    return;
4535
4536  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4537
4538  ErrorTrap Trap(*this);
4539  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4540                                         Destructor->getParent());
4541
4542  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4543    Diag(CurrentLocation, diag::note_member_synthesized_at)
4544      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4545
4546    Destructor->setInvalidDecl();
4547    return;
4548  }
4549
4550  Destructor->setUsed();
4551  MarkVTableUsed(CurrentLocation, ClassDecl);
4552}
4553
4554/// \brief Builds a statement that copies the given entity from \p From to
4555/// \c To.
4556///
4557/// This routine is used to copy the members of a class with an
4558/// implicitly-declared copy assignment operator. When the entities being
4559/// copied are arrays, this routine builds for loops to copy them.
4560///
4561/// \param S The Sema object used for type-checking.
4562///
4563/// \param Loc The location where the implicit copy is being generated.
4564///
4565/// \param T The type of the expressions being copied. Both expressions must
4566/// have this type.
4567///
4568/// \param To The expression we are copying to.
4569///
4570/// \param From The expression we are copying from.
4571///
4572/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4573/// Otherwise, it's a non-static member subobject.
4574///
4575/// \param Depth Internal parameter recording the depth of the recursion.
4576///
4577/// \returns A statement or a loop that copies the expressions.
4578static StmtResult
4579BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4580                      Expr *To, Expr *From,
4581                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4582  // C++0x [class.copy]p30:
4583  //   Each subobject is assigned in the manner appropriate to its type:
4584  //
4585  //     - if the subobject is of class type, the copy assignment operator
4586  //       for the class is used (as if by explicit qualification; that is,
4587  //       ignoring any possible virtual overriding functions in more derived
4588  //       classes);
4589  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4590    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4591
4592    // Look for operator=.
4593    DeclarationName Name
4594      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4595    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4596    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4597
4598    // Filter out any result that isn't a copy-assignment operator.
4599    LookupResult::Filter F = OpLookup.makeFilter();
4600    while (F.hasNext()) {
4601      NamedDecl *D = F.next();
4602      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4603        if (Method->isCopyAssignmentOperator())
4604          continue;
4605
4606      F.erase();
4607    }
4608    F.done();
4609
4610    // Suppress the protected check (C++ [class.protected]) for each of the
4611    // assignment operators we found. This strange dance is required when
4612    // we're assigning via a base classes's copy-assignment operator. To
4613    // ensure that we're getting the right base class subobject (without
4614    // ambiguities), we need to cast "this" to that subobject type; to
4615    // ensure that we don't go through the virtual call mechanism, we need
4616    // to qualify the operator= name with the base class (see below). However,
4617    // this means that if the base class has a protected copy assignment
4618    // operator, the protected member access check will fail. So, we
4619    // rewrite "protected" access to "public" access in this case, since we
4620    // know by construction that we're calling from a derived class.
4621    if (CopyingBaseSubobject) {
4622      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4623           L != LEnd; ++L) {
4624        if (L.getAccess() == AS_protected)
4625          L.setAccess(AS_public);
4626      }
4627    }
4628
4629    // Create the nested-name-specifier that will be used to qualify the
4630    // reference to operator=; this is required to suppress the virtual
4631    // call mechanism.
4632    CXXScopeSpec SS;
4633    SS.setRange(Loc);
4634    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4635                                               T.getTypePtr()));
4636
4637    // Create the reference to operator=.
4638    ExprResult OpEqualRef
4639      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4640                                   /*FirstQualifierInScope=*/0, OpLookup,
4641                                   /*TemplateArgs=*/0,
4642                                   /*SuppressQualifierCheck=*/true);
4643    if (OpEqualRef.isInvalid())
4644      return StmtError();
4645
4646    // Build the call to the assignment operator.
4647
4648    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4649                                                  OpEqualRef.takeAs<Expr>(),
4650                                                  Loc, &From, 1, Loc);
4651    if (Call.isInvalid())
4652      return StmtError();
4653
4654    return S.Owned(Call.takeAs<Stmt>());
4655  }
4656
4657  //     - if the subobject is of scalar type, the built-in assignment
4658  //       operator is used.
4659  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4660  if (!ArrayTy) {
4661    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4662    if (Assignment.isInvalid())
4663      return StmtError();
4664
4665    return S.Owned(Assignment.takeAs<Stmt>());
4666  }
4667
4668  //     - if the subobject is an array, each element is assigned, in the
4669  //       manner appropriate to the element type;
4670
4671  // Construct a loop over the array bounds, e.g.,
4672  //
4673  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4674  //
4675  // that will copy each of the array elements.
4676  QualType SizeType = S.Context.getSizeType();
4677
4678  // Create the iteration variable.
4679  IdentifierInfo *IterationVarName = 0;
4680  {
4681    llvm::SmallString<8> Str;
4682    llvm::raw_svector_ostream OS(Str);
4683    OS << "__i" << Depth;
4684    IterationVarName = &S.Context.Idents.get(OS.str());
4685  }
4686  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4687                                          IterationVarName, SizeType,
4688                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4689                                          SC_None, SC_None);
4690
4691  // Initialize the iteration variable to zero.
4692  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4693  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4694
4695  // Create a reference to the iteration variable; we'll use this several
4696  // times throughout.
4697  Expr *IterationVarRef
4698    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4699  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4700
4701  // Create the DeclStmt that holds the iteration variable.
4702  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4703
4704  // Create the comparison against the array bound.
4705  llvm::APInt Upper = ArrayTy->getSize();
4706  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4707  Expr *Comparison
4708    = new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4709                           IntegerLiteral::Create(S.Context,
4710                                                  Upper, SizeType, Loc),
4711                                                  BO_NE, S.Context.BoolTy, Loc);
4712
4713  // Create the pre-increment of the iteration variable.
4714  Expr *Increment
4715    = new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4716                                    UO_PreInc,
4717                                    SizeType, Loc);
4718
4719  // Subscript the "from" and "to" expressions with the iteration variable.
4720  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4721                                                         IterationVarRef, Loc));
4722  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4723                                                       IterationVarRef, Loc));
4724
4725  // Build the copy for an individual element of the array.
4726  StmtResult Copy = BuildSingleCopyAssign(S, Loc,
4727                                                ArrayTy->getElementType(),
4728                                                To, From,
4729                                                CopyingBaseSubobject, Depth+1);
4730  if (Copy.isInvalid())
4731    return StmtError();
4732
4733  // Construct the loop that copies all elements of this array.
4734  return S.ActOnForStmt(Loc, Loc, InitStmt,
4735                        S.MakeFullExpr(Comparison),
4736                        0, S.MakeFullExpr(Increment),
4737                        Loc, Copy.take());
4738}
4739
4740/// \brief Determine whether the given class has a copy assignment operator
4741/// that accepts a const-qualified argument.
4742static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4743  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4744
4745  if (!Class->hasDeclaredCopyAssignment())
4746    S.DeclareImplicitCopyAssignment(Class);
4747
4748  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4749  DeclarationName OpName
4750    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4751
4752  DeclContext::lookup_const_iterator Op, OpEnd;
4753  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4754    // C++ [class.copy]p9:
4755    //   A user-declared copy assignment operator is a non-static non-template
4756    //   member function of class X with exactly one parameter of type X, X&,
4757    //   const X&, volatile X& or const volatile X&.
4758    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4759    if (!Method)
4760      continue;
4761
4762    if (Method->isStatic())
4763      continue;
4764    if (Method->getPrimaryTemplate())
4765      continue;
4766    const FunctionProtoType *FnType =
4767    Method->getType()->getAs<FunctionProtoType>();
4768    assert(FnType && "Overloaded operator has no prototype.");
4769    // Don't assert on this; an invalid decl might have been left in the AST.
4770    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4771      continue;
4772    bool AcceptsConst = true;
4773    QualType ArgType = FnType->getArgType(0);
4774    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4775      ArgType = Ref->getPointeeType();
4776      // Is it a non-const lvalue reference?
4777      if (!ArgType.isConstQualified())
4778        AcceptsConst = false;
4779    }
4780    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4781      continue;
4782
4783    // We have a single argument of type cv X or cv X&, i.e. we've found the
4784    // copy assignment operator. Return whether it accepts const arguments.
4785    return AcceptsConst;
4786  }
4787  assert(Class->isInvalidDecl() &&
4788         "No copy assignment operator declared in valid code.");
4789  return false;
4790}
4791
4792CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4793  // Note: The following rules are largely analoguous to the copy
4794  // constructor rules. Note that virtual bases are not taken into account
4795  // for determining the argument type of the operator. Note also that
4796  // operators taking an object instead of a reference are allowed.
4797
4798
4799  // C++ [class.copy]p10:
4800  //   If the class definition does not explicitly declare a copy
4801  //   assignment operator, one is declared implicitly.
4802  //   The implicitly-defined copy assignment operator for a class X
4803  //   will have the form
4804  //
4805  //       X& X::operator=(const X&)
4806  //
4807  //   if
4808  bool HasConstCopyAssignment = true;
4809
4810  //       -- each direct base class B of X has a copy assignment operator
4811  //          whose parameter is of type const B&, const volatile B& or B,
4812  //          and
4813  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4814                                       BaseEnd = ClassDecl->bases_end();
4815       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4816    assert(!Base->getType()->isDependentType() &&
4817           "Cannot generate implicit members for class with dependent bases.");
4818    const CXXRecordDecl *BaseClassDecl
4819      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4820    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4821  }
4822
4823  //       -- for all the nonstatic data members of X that are of a class
4824  //          type M (or array thereof), each such class type has a copy
4825  //          assignment operator whose parameter is of type const M&,
4826  //          const volatile M& or M.
4827  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4828                                  FieldEnd = ClassDecl->field_end();
4829       HasConstCopyAssignment && Field != FieldEnd;
4830       ++Field) {
4831    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4832    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4833      const CXXRecordDecl *FieldClassDecl
4834        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4835      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4836    }
4837  }
4838
4839  //   Otherwise, the implicitly declared copy assignment operator will
4840  //   have the form
4841  //
4842  //       X& X::operator=(X&)
4843  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4844  QualType RetType = Context.getLValueReferenceType(ArgType);
4845  if (HasConstCopyAssignment)
4846    ArgType = ArgType.withConst();
4847  ArgType = Context.getLValueReferenceType(ArgType);
4848
4849  // C++ [except.spec]p14:
4850  //   An implicitly declared special member function (Clause 12) shall have an
4851  //   exception-specification. [...]
4852  ImplicitExceptionSpecification ExceptSpec(Context);
4853  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4854                                       BaseEnd = ClassDecl->bases_end();
4855       Base != BaseEnd; ++Base) {
4856    CXXRecordDecl *BaseClassDecl
4857      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4858
4859    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4860      DeclareImplicitCopyAssignment(BaseClassDecl);
4861
4862    if (CXXMethodDecl *CopyAssign
4863           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4864      ExceptSpec.CalledDecl(CopyAssign);
4865  }
4866  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4867                                  FieldEnd = ClassDecl->field_end();
4868       Field != FieldEnd;
4869       ++Field) {
4870    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4871    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4872      CXXRecordDecl *FieldClassDecl
4873        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4874
4875      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4876        DeclareImplicitCopyAssignment(FieldClassDecl);
4877
4878      if (CXXMethodDecl *CopyAssign
4879            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4880        ExceptSpec.CalledDecl(CopyAssign);
4881    }
4882  }
4883
4884  //   An implicitly-declared copy assignment operator is an inline public
4885  //   member of its class.
4886  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4887  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4888  CXXMethodDecl *CopyAssignment
4889    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4890                            Context.getFunctionType(RetType, &ArgType, 1,
4891                                                    false, 0,
4892                                         ExceptSpec.hasExceptionSpecification(),
4893                                      ExceptSpec.hasAnyExceptionSpecification(),
4894                                                    ExceptSpec.size(),
4895                                                    ExceptSpec.data(),
4896                                                    FunctionType::ExtInfo()),
4897                            /*TInfo=*/0, /*isStatic=*/false,
4898                            /*StorageClassAsWritten=*/SC_None,
4899                            /*isInline=*/true);
4900  CopyAssignment->setAccess(AS_public);
4901  CopyAssignment->setImplicit();
4902  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4903  CopyAssignment->setCopyAssignment(true);
4904
4905  // Add the parameter to the operator.
4906  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4907                                               ClassDecl->getLocation(),
4908                                               /*Id=*/0,
4909                                               ArgType, /*TInfo=*/0,
4910                                               SC_None,
4911                                               SC_None, 0);
4912  CopyAssignment->setParams(&FromParam, 1);
4913
4914  // Note that we have added this copy-assignment operator.
4915  ClassDecl->setDeclaredCopyAssignment(true);
4916  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4917
4918  if (Scope *S = getScopeForContext(ClassDecl))
4919    PushOnScopeChains(CopyAssignment, S, false);
4920  ClassDecl->addDecl(CopyAssignment);
4921
4922  AddOverriddenMethods(ClassDecl, CopyAssignment);
4923  return CopyAssignment;
4924}
4925
4926void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4927                                        CXXMethodDecl *CopyAssignOperator) {
4928  assert((CopyAssignOperator->isImplicit() &&
4929          CopyAssignOperator->isOverloadedOperator() &&
4930          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4931          !CopyAssignOperator->isUsed(false)) &&
4932         "DefineImplicitCopyAssignment called for wrong function");
4933
4934  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4935
4936  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4937    CopyAssignOperator->setInvalidDecl();
4938    return;
4939  }
4940
4941  CopyAssignOperator->setUsed();
4942
4943  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4944  ErrorTrap Trap(*this);
4945
4946  // C++0x [class.copy]p30:
4947  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4948  //   for a non-union class X performs memberwise copy assignment of its
4949  //   subobjects. The direct base classes of X are assigned first, in the
4950  //   order of their declaration in the base-specifier-list, and then the
4951  //   immediate non-static data members of X are assigned, in the order in
4952  //   which they were declared in the class definition.
4953
4954  // The statements that form the synthesized function body.
4955  ASTOwningVector<Stmt*> Statements(*this);
4956
4957  // The parameter for the "other" object, which we are copying from.
4958  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4959  Qualifiers OtherQuals = Other->getType().getQualifiers();
4960  QualType OtherRefType = Other->getType();
4961  if (const LValueReferenceType *OtherRef
4962                                = OtherRefType->getAs<LValueReferenceType>()) {
4963    OtherRefType = OtherRef->getPointeeType();
4964    OtherQuals = OtherRefType.getQualifiers();
4965  }
4966
4967  // Our location for everything implicitly-generated.
4968  SourceLocation Loc = CopyAssignOperator->getLocation();
4969
4970  // Construct a reference to the "other" object. We'll be using this
4971  // throughout the generated ASTs.
4972  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4973  assert(OtherRef && "Reference to parameter cannot fail!");
4974
4975  // Construct the "this" pointer. We'll be using this throughout the generated
4976  // ASTs.
4977  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4978  assert(This && "Reference to this cannot fail!");
4979
4980  // Assign base classes.
4981  bool Invalid = false;
4982  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4983       E = ClassDecl->bases_end(); Base != E; ++Base) {
4984    // Form the assignment:
4985    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4986    QualType BaseType = Base->getType().getUnqualifiedType();
4987    CXXRecordDecl *BaseClassDecl = 0;
4988    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4989      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4990    else {
4991      Invalid = true;
4992      continue;
4993    }
4994
4995    CXXCastPath BasePath;
4996    BasePath.push_back(Base);
4997
4998    // Construct the "from" expression, which is an implicit cast to the
4999    // appropriately-qualified base type.
5000    Expr *From = OtherRef->Retain();
5001    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5002                      CK_UncheckedDerivedToBase,
5003                      VK_LValue, &BasePath);
5004
5005    // Dereference "this".
5006    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5007
5008    // Implicitly cast "this" to the appropriately-qualified base type.
5009    Expr *ToE = To.takeAs<Expr>();
5010    ImpCastExprToType(ToE,
5011                      Context.getCVRQualifiedType(BaseType,
5012                                      CopyAssignOperator->getTypeQualifiers()),
5013                      CK_UncheckedDerivedToBase,
5014                      VK_LValue, &BasePath);
5015    To = Owned(ToE);
5016
5017    // Build the copy.
5018    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5019                                            To.get(), From,
5020                                            /*CopyingBaseSubobject=*/true);
5021    if (Copy.isInvalid()) {
5022      Diag(CurrentLocation, diag::note_member_synthesized_at)
5023        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5024      CopyAssignOperator->setInvalidDecl();
5025      return;
5026    }
5027
5028    // Success! Record the copy.
5029    Statements.push_back(Copy.takeAs<Expr>());
5030  }
5031
5032  // \brief Reference to the __builtin_memcpy function.
5033  Expr *BuiltinMemCpyRef = 0;
5034  // \brief Reference to the __builtin_objc_memmove_collectable function.
5035  Expr *CollectableMemCpyRef = 0;
5036
5037  // Assign non-static members.
5038  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5039                                  FieldEnd = ClassDecl->field_end();
5040       Field != FieldEnd; ++Field) {
5041    // Check for members of reference type; we can't copy those.
5042    if (Field->getType()->isReferenceType()) {
5043      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5044        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5045      Diag(Field->getLocation(), diag::note_declared_at);
5046      Diag(CurrentLocation, diag::note_member_synthesized_at)
5047        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5048      Invalid = true;
5049      continue;
5050    }
5051
5052    // Check for members of const-qualified, non-class type.
5053    QualType BaseType = Context.getBaseElementType(Field->getType());
5054    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5055      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5056        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5057      Diag(Field->getLocation(), diag::note_declared_at);
5058      Diag(CurrentLocation, diag::note_member_synthesized_at)
5059        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5060      Invalid = true;
5061      continue;
5062    }
5063
5064    QualType FieldType = Field->getType().getNonReferenceType();
5065    if (FieldType->isIncompleteArrayType()) {
5066      assert(ClassDecl->hasFlexibleArrayMember() &&
5067             "Incomplete array type is not valid");
5068      continue;
5069    }
5070
5071    // Build references to the field in the object we're copying from and to.
5072    CXXScopeSpec SS; // Intentionally empty
5073    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5074                              LookupMemberName);
5075    MemberLookup.addDecl(*Field);
5076    MemberLookup.resolveKind();
5077    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5078                                                     Loc, /*IsArrow=*/false,
5079                                                     SS, 0, MemberLookup, 0);
5080    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5081                                                   Loc, /*IsArrow=*/true,
5082                                                   SS, 0, MemberLookup, 0);
5083    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5084    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5085
5086    // If the field should be copied with __builtin_memcpy rather than via
5087    // explicit assignments, do so. This optimization only applies for arrays
5088    // of scalars and arrays of class type with trivial copy-assignment
5089    // operators.
5090    if (FieldType->isArrayType() &&
5091        (!BaseType->isRecordType() ||
5092         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5093           ->hasTrivialCopyAssignment())) {
5094      // Compute the size of the memory buffer to be copied.
5095      QualType SizeType = Context.getSizeType();
5096      llvm::APInt Size(Context.getTypeSize(SizeType),
5097                       Context.getTypeSizeInChars(BaseType).getQuantity());
5098      for (const ConstantArrayType *Array
5099              = Context.getAsConstantArrayType(FieldType);
5100           Array;
5101           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5102        llvm::APInt ArraySize = Array->getSize();
5103        ArraySize.zextOrTrunc(Size.getBitWidth());
5104        Size *= ArraySize;
5105      }
5106
5107      // Take the address of the field references for "from" and "to".
5108      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5109      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5110
5111      bool NeedsCollectableMemCpy =
5112          (BaseType->isRecordType() &&
5113           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5114
5115      if (NeedsCollectableMemCpy) {
5116        if (!CollectableMemCpyRef) {
5117          // Create a reference to the __builtin_objc_memmove_collectable function.
5118          LookupResult R(*this,
5119                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5120                         Loc, LookupOrdinaryName);
5121          LookupName(R, TUScope, true);
5122
5123          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5124          if (!CollectableMemCpy) {
5125            // Something went horribly wrong earlier, and we will have
5126            // complained about it.
5127            Invalid = true;
5128            continue;
5129          }
5130
5131          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5132                                                  CollectableMemCpy->getType(),
5133                                                  Loc, 0).takeAs<Expr>();
5134          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5135        }
5136      }
5137      // Create a reference to the __builtin_memcpy builtin function.
5138      else if (!BuiltinMemCpyRef) {
5139        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5140                       LookupOrdinaryName);
5141        LookupName(R, TUScope, true);
5142
5143        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5144        if (!BuiltinMemCpy) {
5145          // Something went horribly wrong earlier, and we will have complained
5146          // about it.
5147          Invalid = true;
5148          continue;
5149        }
5150
5151        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5152                                            BuiltinMemCpy->getType(),
5153                                            Loc, 0).takeAs<Expr>();
5154        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5155      }
5156
5157      ASTOwningVector<Expr*> CallArgs(*this);
5158      CallArgs.push_back(To.takeAs<Expr>());
5159      CallArgs.push_back(From.takeAs<Expr>());
5160      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5161      ExprResult Call = ExprError();
5162      if (NeedsCollectableMemCpy)
5163        Call = ActOnCallExpr(/*Scope=*/0,
5164                             CollectableMemCpyRef,
5165                             Loc, move_arg(CallArgs),
5166                             Loc);
5167      else
5168        Call = ActOnCallExpr(/*Scope=*/0,
5169                             BuiltinMemCpyRef,
5170                             Loc, move_arg(CallArgs),
5171                             Loc);
5172
5173      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5174      Statements.push_back(Call.takeAs<Expr>());
5175      continue;
5176    }
5177
5178    // Build the copy of this field.
5179    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5180                                                  To.get(), From.get(),
5181                                              /*CopyingBaseSubobject=*/false);
5182    if (Copy.isInvalid()) {
5183      Diag(CurrentLocation, diag::note_member_synthesized_at)
5184        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5185      CopyAssignOperator->setInvalidDecl();
5186      return;
5187    }
5188
5189    // Success! Record the copy.
5190    Statements.push_back(Copy.takeAs<Stmt>());
5191  }
5192
5193  if (!Invalid) {
5194    // Add a "return *this;"
5195    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5196
5197    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5198    if (Return.isInvalid())
5199      Invalid = true;
5200    else {
5201      Statements.push_back(Return.takeAs<Stmt>());
5202
5203      if (Trap.hasErrorOccurred()) {
5204        Diag(CurrentLocation, diag::note_member_synthesized_at)
5205          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5206        Invalid = true;
5207      }
5208    }
5209  }
5210
5211  if (Invalid) {
5212    CopyAssignOperator->setInvalidDecl();
5213    return;
5214  }
5215
5216  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5217                                            /*isStmtExpr=*/false);
5218  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5219  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5220}
5221
5222CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5223                                                    CXXRecordDecl *ClassDecl) {
5224  // C++ [class.copy]p4:
5225  //   If the class definition does not explicitly declare a copy
5226  //   constructor, one is declared implicitly.
5227
5228  // C++ [class.copy]p5:
5229  //   The implicitly-declared copy constructor for a class X will
5230  //   have the form
5231  //
5232  //       X::X(const X&)
5233  //
5234  //   if
5235  bool HasConstCopyConstructor = true;
5236
5237  //     -- each direct or virtual base class B of X has a copy
5238  //        constructor whose first parameter is of type const B& or
5239  //        const volatile B&, and
5240  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5241                                       BaseEnd = ClassDecl->bases_end();
5242       HasConstCopyConstructor && Base != BaseEnd;
5243       ++Base) {
5244    // Virtual bases are handled below.
5245    if (Base->isVirtual())
5246      continue;
5247
5248    CXXRecordDecl *BaseClassDecl
5249      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5250    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5251      DeclareImplicitCopyConstructor(BaseClassDecl);
5252
5253    HasConstCopyConstructor
5254      = BaseClassDecl->hasConstCopyConstructor(Context);
5255  }
5256
5257  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5258                                       BaseEnd = ClassDecl->vbases_end();
5259       HasConstCopyConstructor && Base != BaseEnd;
5260       ++Base) {
5261    CXXRecordDecl *BaseClassDecl
5262      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5263    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5264      DeclareImplicitCopyConstructor(BaseClassDecl);
5265
5266    HasConstCopyConstructor
5267      = BaseClassDecl->hasConstCopyConstructor(Context);
5268  }
5269
5270  //     -- for all the nonstatic data members of X that are of a
5271  //        class type M (or array thereof), each such class type
5272  //        has a copy constructor whose first parameter is of type
5273  //        const M& or const volatile M&.
5274  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5275                                  FieldEnd = ClassDecl->field_end();
5276       HasConstCopyConstructor && Field != FieldEnd;
5277       ++Field) {
5278    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5279    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5280      CXXRecordDecl *FieldClassDecl
5281        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5282      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5283        DeclareImplicitCopyConstructor(FieldClassDecl);
5284
5285      HasConstCopyConstructor
5286        = FieldClassDecl->hasConstCopyConstructor(Context);
5287    }
5288  }
5289
5290  //   Otherwise, the implicitly declared copy constructor will have
5291  //   the form
5292  //
5293  //       X::X(X&)
5294  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5295  QualType ArgType = ClassType;
5296  if (HasConstCopyConstructor)
5297    ArgType = ArgType.withConst();
5298  ArgType = Context.getLValueReferenceType(ArgType);
5299
5300  // C++ [except.spec]p14:
5301  //   An implicitly declared special member function (Clause 12) shall have an
5302  //   exception-specification. [...]
5303  ImplicitExceptionSpecification ExceptSpec(Context);
5304  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5305  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5306                                       BaseEnd = ClassDecl->bases_end();
5307       Base != BaseEnd;
5308       ++Base) {
5309    // Virtual bases are handled below.
5310    if (Base->isVirtual())
5311      continue;
5312
5313    CXXRecordDecl *BaseClassDecl
5314      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5315    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5316      DeclareImplicitCopyConstructor(BaseClassDecl);
5317
5318    if (CXXConstructorDecl *CopyConstructor
5319                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5320      ExceptSpec.CalledDecl(CopyConstructor);
5321  }
5322  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5323                                       BaseEnd = ClassDecl->vbases_end();
5324       Base != BaseEnd;
5325       ++Base) {
5326    CXXRecordDecl *BaseClassDecl
5327      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5328    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5329      DeclareImplicitCopyConstructor(BaseClassDecl);
5330
5331    if (CXXConstructorDecl *CopyConstructor
5332                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5333      ExceptSpec.CalledDecl(CopyConstructor);
5334  }
5335  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5336                                  FieldEnd = ClassDecl->field_end();
5337       Field != FieldEnd;
5338       ++Field) {
5339    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5340    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5341      CXXRecordDecl *FieldClassDecl
5342        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5343      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5344        DeclareImplicitCopyConstructor(FieldClassDecl);
5345
5346      if (CXXConstructorDecl *CopyConstructor
5347                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5348        ExceptSpec.CalledDecl(CopyConstructor);
5349    }
5350  }
5351
5352  //   An implicitly-declared copy constructor is an inline public
5353  //   member of its class.
5354  DeclarationName Name
5355    = Context.DeclarationNames.getCXXConstructorName(
5356                                           Context.getCanonicalType(ClassType));
5357  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5358  CXXConstructorDecl *CopyConstructor
5359    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5360                                 Context.getFunctionType(Context.VoidTy,
5361                                                         &ArgType, 1,
5362                                                         false, 0,
5363                                         ExceptSpec.hasExceptionSpecification(),
5364                                      ExceptSpec.hasAnyExceptionSpecification(),
5365                                                         ExceptSpec.size(),
5366                                                         ExceptSpec.data(),
5367                                                       FunctionType::ExtInfo()),
5368                                 /*TInfo=*/0,
5369                                 /*isExplicit=*/false,
5370                                 /*isInline=*/true,
5371                                 /*isImplicitlyDeclared=*/true);
5372  CopyConstructor->setAccess(AS_public);
5373  CopyConstructor->setImplicit();
5374  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5375
5376  // Note that we have declared this constructor.
5377  ClassDecl->setDeclaredCopyConstructor(true);
5378  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5379
5380  // Add the parameter to the constructor.
5381  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5382                                               ClassDecl->getLocation(),
5383                                               /*IdentifierInfo=*/0,
5384                                               ArgType, /*TInfo=*/0,
5385                                               SC_None,
5386                                               SC_None, 0);
5387  CopyConstructor->setParams(&FromParam, 1);
5388  if (Scope *S = getScopeForContext(ClassDecl))
5389    PushOnScopeChains(CopyConstructor, S, false);
5390  ClassDecl->addDecl(CopyConstructor);
5391
5392  return CopyConstructor;
5393}
5394
5395void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5396                                   CXXConstructorDecl *CopyConstructor,
5397                                   unsigned TypeQuals) {
5398  assert((CopyConstructor->isImplicit() &&
5399          CopyConstructor->isCopyConstructor(TypeQuals) &&
5400          !CopyConstructor->isUsed(false)) &&
5401         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5402
5403  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5404  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5405
5406  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5407  ErrorTrap Trap(*this);
5408
5409  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5410      Trap.hasErrorOccurred()) {
5411    Diag(CurrentLocation, diag::note_member_synthesized_at)
5412      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5413    CopyConstructor->setInvalidDecl();
5414  }  else {
5415    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5416                                               CopyConstructor->getLocation(),
5417                                               MultiStmtArg(*this, 0, 0),
5418                                               /*isStmtExpr=*/false)
5419                                                              .takeAs<Stmt>());
5420  }
5421
5422  CopyConstructor->setUsed();
5423}
5424
5425ExprResult
5426Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5427                            CXXConstructorDecl *Constructor,
5428                            MultiExprArg ExprArgs,
5429                            bool RequiresZeroInit,
5430                            unsigned ConstructKind) {
5431  bool Elidable = false;
5432
5433  // C++0x [class.copy]p34:
5434  //   When certain criteria are met, an implementation is allowed to
5435  //   omit the copy/move construction of a class object, even if the
5436  //   copy/move constructor and/or destructor for the object have
5437  //   side effects. [...]
5438  //     - when a temporary class object that has not been bound to a
5439  //       reference (12.2) would be copied/moved to a class object
5440  //       with the same cv-unqualified type, the copy/move operation
5441  //       can be omitted by constructing the temporary object
5442  //       directly into the target of the omitted copy/move
5443  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5444    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5445    Elidable = SubExpr->isTemporaryObject() &&
5446      ConstructKind == CXXConstructExpr::CK_Complete &&
5447      Context.hasSameUnqualifiedType(SubExpr->getType(),
5448                           Context.getTypeDeclType(Constructor->getParent()));
5449  }
5450
5451  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5452                               Elidable, move(ExprArgs), RequiresZeroInit,
5453                               ConstructKind);
5454}
5455
5456/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5457/// including handling of its default argument expressions.
5458ExprResult
5459Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5460                            CXXConstructorDecl *Constructor, bool Elidable,
5461                            MultiExprArg ExprArgs,
5462                            bool RequiresZeroInit,
5463                            unsigned ConstructKind) {
5464  unsigned NumExprs = ExprArgs.size();
5465  Expr **Exprs = (Expr **)ExprArgs.release();
5466
5467  MarkDeclarationReferenced(ConstructLoc, Constructor);
5468  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5469                                        Constructor, Elidable, Exprs, NumExprs,
5470                                        RequiresZeroInit,
5471              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind)));
5472}
5473
5474bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5475                                        CXXConstructorDecl *Constructor,
5476                                        MultiExprArg Exprs) {
5477  ExprResult TempResult =
5478    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5479                          move(Exprs), false, CXXConstructExpr::CK_Complete);
5480  if (TempResult.isInvalid())
5481    return true;
5482
5483  Expr *Temp = TempResult.takeAs<Expr>();
5484  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5485  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5486  VD->setInit(Temp);
5487
5488  return false;
5489}
5490
5491void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5492  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5493  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5494      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5495    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5496    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5497    CheckDestructorAccess(VD->getLocation(), Destructor,
5498                          PDiag(diag::err_access_dtor_var)
5499                            << VD->getDeclName()
5500                            << VD->getType());
5501
5502    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5503      Diag(VD->getLocation(), diag::warn_global_destructor);
5504  }
5505}
5506
5507/// AddCXXDirectInitializerToDecl - This action is called immediately after
5508/// ActOnDeclarator, when a C++ direct initializer is present.
5509/// e.g: "int x(1);"
5510void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5511                                         SourceLocation LParenLoc,
5512                                         MultiExprArg Exprs,
5513                                         SourceLocation RParenLoc) {
5514  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5515
5516  // If there is no declaration, there was an error parsing it.  Just ignore
5517  // the initializer.
5518  if (RealDecl == 0)
5519    return;
5520
5521  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5522  if (!VDecl) {
5523    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5524    RealDecl->setInvalidDecl();
5525    return;
5526  }
5527
5528  // We will represent direct-initialization similarly to copy-initialization:
5529  //    int x(1);  -as-> int x = 1;
5530  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5531  //
5532  // Clients that want to distinguish between the two forms, can check for
5533  // direct initializer using VarDecl::hasCXXDirectInitializer().
5534  // A major benefit is that clients that don't particularly care about which
5535  // exactly form was it (like the CodeGen) can handle both cases without
5536  // special case code.
5537
5538  // C++ 8.5p11:
5539  // The form of initialization (using parentheses or '=') is generally
5540  // insignificant, but does matter when the entity being initialized has a
5541  // class type.
5542
5543  if (!VDecl->getType()->isDependentType() &&
5544      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5545                          diag::err_typecheck_decl_incomplete_type)) {
5546    VDecl->setInvalidDecl();
5547    return;
5548  }
5549
5550  // The variable can not have an abstract class type.
5551  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5552                             diag::err_abstract_type_in_decl,
5553                             AbstractVariableType))
5554    VDecl->setInvalidDecl();
5555
5556  const VarDecl *Def;
5557  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5558    Diag(VDecl->getLocation(), diag::err_redefinition)
5559    << VDecl->getDeclName();
5560    Diag(Def->getLocation(), diag::note_previous_definition);
5561    VDecl->setInvalidDecl();
5562    return;
5563  }
5564
5565  // C++ [class.static.data]p4
5566  //   If a static data member is of const integral or const
5567  //   enumeration type, its declaration in the class definition can
5568  //   specify a constant-initializer which shall be an integral
5569  //   constant expression (5.19). In that case, the member can appear
5570  //   in integral constant expressions. The member shall still be
5571  //   defined in a namespace scope if it is used in the program and the
5572  //   namespace scope definition shall not contain an initializer.
5573  //
5574  // We already performed a redefinition check above, but for static
5575  // data members we also need to check whether there was an in-class
5576  // declaration with an initializer.
5577  const VarDecl* PrevInit = 0;
5578  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5579    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5580    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5581    return;
5582  }
5583
5584  // If either the declaration has a dependent type or if any of the
5585  // expressions is type-dependent, we represent the initialization
5586  // via a ParenListExpr for later use during template instantiation.
5587  if (VDecl->getType()->isDependentType() ||
5588      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5589    // Let clients know that initialization was done with a direct initializer.
5590    VDecl->setCXXDirectInitializer(true);
5591
5592    // Store the initialization expressions as a ParenListExpr.
5593    unsigned NumExprs = Exprs.size();
5594    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5595                                               (Expr **)Exprs.release(),
5596                                               NumExprs, RParenLoc));
5597    return;
5598  }
5599
5600  // Capture the variable that is being initialized and the style of
5601  // initialization.
5602  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5603
5604  // FIXME: Poor source location information.
5605  InitializationKind Kind
5606    = InitializationKind::CreateDirect(VDecl->getLocation(),
5607                                       LParenLoc, RParenLoc);
5608
5609  InitializationSequence InitSeq(*this, Entity, Kind,
5610                                 Exprs.get(), Exprs.size());
5611  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5612  if (Result.isInvalid()) {
5613    VDecl->setInvalidDecl();
5614    return;
5615  }
5616
5617  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5618  VDecl->setInit(Result.takeAs<Expr>());
5619  VDecl->setCXXDirectInitializer(true);
5620
5621    if (!VDecl->isInvalidDecl() &&
5622        !VDecl->getDeclContext()->isDependentContext() &&
5623        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5624        !VDecl->getInit()->isConstantInitializer(Context,
5625                                        VDecl->getType()->isReferenceType()))
5626      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5627        << VDecl->getInit()->getSourceRange();
5628
5629  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5630    FinalizeVarWithDestructor(VDecl, Record);
5631}
5632
5633/// \brief Given a constructor and the set of arguments provided for the
5634/// constructor, convert the arguments and add any required default arguments
5635/// to form a proper call to this constructor.
5636///
5637/// \returns true if an error occurred, false otherwise.
5638bool
5639Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5640                              MultiExprArg ArgsPtr,
5641                              SourceLocation Loc,
5642                              ASTOwningVector<Expr*> &ConvertedArgs) {
5643  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5644  unsigned NumArgs = ArgsPtr.size();
5645  Expr **Args = (Expr **)ArgsPtr.get();
5646
5647  const FunctionProtoType *Proto
5648    = Constructor->getType()->getAs<FunctionProtoType>();
5649  assert(Proto && "Constructor without a prototype?");
5650  unsigned NumArgsInProto = Proto->getNumArgs();
5651
5652  // If too few arguments are available, we'll fill in the rest with defaults.
5653  if (NumArgs < NumArgsInProto)
5654    ConvertedArgs.reserve(NumArgsInProto);
5655  else
5656    ConvertedArgs.reserve(NumArgs);
5657
5658  VariadicCallType CallType =
5659    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5660  llvm::SmallVector<Expr *, 8> AllArgs;
5661  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5662                                        Proto, 0, Args, NumArgs, AllArgs,
5663                                        CallType);
5664  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5665    ConvertedArgs.push_back(AllArgs[i]);
5666  return Invalid;
5667}
5668
5669static inline bool
5670CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5671                                       const FunctionDecl *FnDecl) {
5672  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5673  if (isa<NamespaceDecl>(DC)) {
5674    return SemaRef.Diag(FnDecl->getLocation(),
5675                        diag::err_operator_new_delete_declared_in_namespace)
5676      << FnDecl->getDeclName();
5677  }
5678
5679  if (isa<TranslationUnitDecl>(DC) &&
5680      FnDecl->getStorageClass() == SC_Static) {
5681    return SemaRef.Diag(FnDecl->getLocation(),
5682                        diag::err_operator_new_delete_declared_static)
5683      << FnDecl->getDeclName();
5684  }
5685
5686  return false;
5687}
5688
5689static inline bool
5690CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5691                            CanQualType ExpectedResultType,
5692                            CanQualType ExpectedFirstParamType,
5693                            unsigned DependentParamTypeDiag,
5694                            unsigned InvalidParamTypeDiag) {
5695  QualType ResultType =
5696    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5697
5698  // Check that the result type is not dependent.
5699  if (ResultType->isDependentType())
5700    return SemaRef.Diag(FnDecl->getLocation(),
5701                        diag::err_operator_new_delete_dependent_result_type)
5702    << FnDecl->getDeclName() << ExpectedResultType;
5703
5704  // Check that the result type is what we expect.
5705  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5706    return SemaRef.Diag(FnDecl->getLocation(),
5707                        diag::err_operator_new_delete_invalid_result_type)
5708    << FnDecl->getDeclName() << ExpectedResultType;
5709
5710  // A function template must have at least 2 parameters.
5711  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5712    return SemaRef.Diag(FnDecl->getLocation(),
5713                      diag::err_operator_new_delete_template_too_few_parameters)
5714        << FnDecl->getDeclName();
5715
5716  // The function decl must have at least 1 parameter.
5717  if (FnDecl->getNumParams() == 0)
5718    return SemaRef.Diag(FnDecl->getLocation(),
5719                        diag::err_operator_new_delete_too_few_parameters)
5720      << FnDecl->getDeclName();
5721
5722  // Check the the first parameter type is not dependent.
5723  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5724  if (FirstParamType->isDependentType())
5725    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5726      << FnDecl->getDeclName() << ExpectedFirstParamType;
5727
5728  // Check that the first parameter type is what we expect.
5729  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5730      ExpectedFirstParamType)
5731    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5732    << FnDecl->getDeclName() << ExpectedFirstParamType;
5733
5734  return false;
5735}
5736
5737static bool
5738CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5739  // C++ [basic.stc.dynamic.allocation]p1:
5740  //   A program is ill-formed if an allocation function is declared in a
5741  //   namespace scope other than global scope or declared static in global
5742  //   scope.
5743  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5744    return true;
5745
5746  CanQualType SizeTy =
5747    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5748
5749  // C++ [basic.stc.dynamic.allocation]p1:
5750  //  The return type shall be void*. The first parameter shall have type
5751  //  std::size_t.
5752  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5753                                  SizeTy,
5754                                  diag::err_operator_new_dependent_param_type,
5755                                  diag::err_operator_new_param_type))
5756    return true;
5757
5758  // C++ [basic.stc.dynamic.allocation]p1:
5759  //  The first parameter shall not have an associated default argument.
5760  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5761    return SemaRef.Diag(FnDecl->getLocation(),
5762                        diag::err_operator_new_default_arg)
5763      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5764
5765  return false;
5766}
5767
5768static bool
5769CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5770  // C++ [basic.stc.dynamic.deallocation]p1:
5771  //   A program is ill-formed if deallocation functions are declared in a
5772  //   namespace scope other than global scope or declared static in global
5773  //   scope.
5774  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5775    return true;
5776
5777  // C++ [basic.stc.dynamic.deallocation]p2:
5778  //   Each deallocation function shall return void and its first parameter
5779  //   shall be void*.
5780  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5781                                  SemaRef.Context.VoidPtrTy,
5782                                 diag::err_operator_delete_dependent_param_type,
5783                                 diag::err_operator_delete_param_type))
5784    return true;
5785
5786  return false;
5787}
5788
5789/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5790/// of this overloaded operator is well-formed. If so, returns false;
5791/// otherwise, emits appropriate diagnostics and returns true.
5792bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5793  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5794         "Expected an overloaded operator declaration");
5795
5796  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5797
5798  // C++ [over.oper]p5:
5799  //   The allocation and deallocation functions, operator new,
5800  //   operator new[], operator delete and operator delete[], are
5801  //   described completely in 3.7.3. The attributes and restrictions
5802  //   found in the rest of this subclause do not apply to them unless
5803  //   explicitly stated in 3.7.3.
5804  if (Op == OO_Delete || Op == OO_Array_Delete)
5805    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5806
5807  if (Op == OO_New || Op == OO_Array_New)
5808    return CheckOperatorNewDeclaration(*this, FnDecl);
5809
5810  // C++ [over.oper]p6:
5811  //   An operator function shall either be a non-static member
5812  //   function or be a non-member function and have at least one
5813  //   parameter whose type is a class, a reference to a class, an
5814  //   enumeration, or a reference to an enumeration.
5815  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5816    if (MethodDecl->isStatic())
5817      return Diag(FnDecl->getLocation(),
5818                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5819  } else {
5820    bool ClassOrEnumParam = false;
5821    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5822                                   ParamEnd = FnDecl->param_end();
5823         Param != ParamEnd; ++Param) {
5824      QualType ParamType = (*Param)->getType().getNonReferenceType();
5825      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5826          ParamType->isEnumeralType()) {
5827        ClassOrEnumParam = true;
5828        break;
5829      }
5830    }
5831
5832    if (!ClassOrEnumParam)
5833      return Diag(FnDecl->getLocation(),
5834                  diag::err_operator_overload_needs_class_or_enum)
5835        << FnDecl->getDeclName();
5836  }
5837
5838  // C++ [over.oper]p8:
5839  //   An operator function cannot have default arguments (8.3.6),
5840  //   except where explicitly stated below.
5841  //
5842  // Only the function-call operator allows default arguments
5843  // (C++ [over.call]p1).
5844  if (Op != OO_Call) {
5845    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5846         Param != FnDecl->param_end(); ++Param) {
5847      if ((*Param)->hasDefaultArg())
5848        return Diag((*Param)->getLocation(),
5849                    diag::err_operator_overload_default_arg)
5850          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5851    }
5852  }
5853
5854  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5855    { false, false, false }
5856#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5857    , { Unary, Binary, MemberOnly }
5858#include "clang/Basic/OperatorKinds.def"
5859  };
5860
5861  bool CanBeUnaryOperator = OperatorUses[Op][0];
5862  bool CanBeBinaryOperator = OperatorUses[Op][1];
5863  bool MustBeMemberOperator = OperatorUses[Op][2];
5864
5865  // C++ [over.oper]p8:
5866  //   [...] Operator functions cannot have more or fewer parameters
5867  //   than the number required for the corresponding operator, as
5868  //   described in the rest of this subclause.
5869  unsigned NumParams = FnDecl->getNumParams()
5870                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5871  if (Op != OO_Call &&
5872      ((NumParams == 1 && !CanBeUnaryOperator) ||
5873       (NumParams == 2 && !CanBeBinaryOperator) ||
5874       (NumParams < 1) || (NumParams > 2))) {
5875    // We have the wrong number of parameters.
5876    unsigned ErrorKind;
5877    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5878      ErrorKind = 2;  // 2 -> unary or binary.
5879    } else if (CanBeUnaryOperator) {
5880      ErrorKind = 0;  // 0 -> unary
5881    } else {
5882      assert(CanBeBinaryOperator &&
5883             "All non-call overloaded operators are unary or binary!");
5884      ErrorKind = 1;  // 1 -> binary
5885    }
5886
5887    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5888      << FnDecl->getDeclName() << NumParams << ErrorKind;
5889  }
5890
5891  // Overloaded operators other than operator() cannot be variadic.
5892  if (Op != OO_Call &&
5893      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5894    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5895      << FnDecl->getDeclName();
5896  }
5897
5898  // Some operators must be non-static member functions.
5899  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5900    return Diag(FnDecl->getLocation(),
5901                diag::err_operator_overload_must_be_member)
5902      << FnDecl->getDeclName();
5903  }
5904
5905  // C++ [over.inc]p1:
5906  //   The user-defined function called operator++ implements the
5907  //   prefix and postfix ++ operator. If this function is a member
5908  //   function with no parameters, or a non-member function with one
5909  //   parameter of class or enumeration type, it defines the prefix
5910  //   increment operator ++ for objects of that type. If the function
5911  //   is a member function with one parameter (which shall be of type
5912  //   int) or a non-member function with two parameters (the second
5913  //   of which shall be of type int), it defines the postfix
5914  //   increment operator ++ for objects of that type.
5915  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5916    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5917    bool ParamIsInt = false;
5918    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5919      ParamIsInt = BT->getKind() == BuiltinType::Int;
5920
5921    if (!ParamIsInt)
5922      return Diag(LastParam->getLocation(),
5923                  diag::err_operator_overload_post_incdec_must_be_int)
5924        << LastParam->getType() << (Op == OO_MinusMinus);
5925  }
5926
5927  // Notify the class if it got an assignment operator.
5928  if (Op == OO_Equal) {
5929    // Would have returned earlier otherwise.
5930    assert(isa<CXXMethodDecl>(FnDecl) &&
5931      "Overloaded = not member, but not filtered.");
5932    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5933    Method->getParent()->addedAssignmentOperator(Context, Method);
5934  }
5935
5936  return false;
5937}
5938
5939/// CheckLiteralOperatorDeclaration - Check whether the declaration
5940/// of this literal operator function is well-formed. If so, returns
5941/// false; otherwise, emits appropriate diagnostics and returns true.
5942bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5943  DeclContext *DC = FnDecl->getDeclContext();
5944  Decl::Kind Kind = DC->getDeclKind();
5945  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5946      Kind != Decl::LinkageSpec) {
5947    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5948      << FnDecl->getDeclName();
5949    return true;
5950  }
5951
5952  bool Valid = false;
5953
5954  // template <char...> type operator "" name() is the only valid template
5955  // signature, and the only valid signature with no parameters.
5956  if (FnDecl->param_size() == 0) {
5957    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5958      // Must have only one template parameter
5959      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5960      if (Params->size() == 1) {
5961        NonTypeTemplateParmDecl *PmDecl =
5962          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5963
5964        // The template parameter must be a char parameter pack.
5965        // FIXME: This test will always fail because non-type parameter packs
5966        //   have not been implemented.
5967        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5968            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5969          Valid = true;
5970      }
5971    }
5972  } else {
5973    // Check the first parameter
5974    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5975
5976    QualType T = (*Param)->getType();
5977
5978    // unsigned long long int, long double, and any character type are allowed
5979    // as the only parameters.
5980    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5981        Context.hasSameType(T, Context.LongDoubleTy) ||
5982        Context.hasSameType(T, Context.CharTy) ||
5983        Context.hasSameType(T, Context.WCharTy) ||
5984        Context.hasSameType(T, Context.Char16Ty) ||
5985        Context.hasSameType(T, Context.Char32Ty)) {
5986      if (++Param == FnDecl->param_end())
5987        Valid = true;
5988      goto FinishedParams;
5989    }
5990
5991    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5992    const PointerType *PT = T->getAs<PointerType>();
5993    if (!PT)
5994      goto FinishedParams;
5995    T = PT->getPointeeType();
5996    if (!T.isConstQualified())
5997      goto FinishedParams;
5998    T = T.getUnqualifiedType();
5999
6000    // Move on to the second parameter;
6001    ++Param;
6002
6003    // If there is no second parameter, the first must be a const char *
6004    if (Param == FnDecl->param_end()) {
6005      if (Context.hasSameType(T, Context.CharTy))
6006        Valid = true;
6007      goto FinishedParams;
6008    }
6009
6010    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6011    // are allowed as the first parameter to a two-parameter function
6012    if (!(Context.hasSameType(T, Context.CharTy) ||
6013          Context.hasSameType(T, Context.WCharTy) ||
6014          Context.hasSameType(T, Context.Char16Ty) ||
6015          Context.hasSameType(T, Context.Char32Ty)))
6016      goto FinishedParams;
6017
6018    // The second and final parameter must be an std::size_t
6019    T = (*Param)->getType().getUnqualifiedType();
6020    if (Context.hasSameType(T, Context.getSizeType()) &&
6021        ++Param == FnDecl->param_end())
6022      Valid = true;
6023  }
6024
6025  // FIXME: This diagnostic is absolutely terrible.
6026FinishedParams:
6027  if (!Valid) {
6028    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6029      << FnDecl->getDeclName();
6030    return true;
6031  }
6032
6033  return false;
6034}
6035
6036/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6037/// linkage specification, including the language and (if present)
6038/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6039/// the location of the language string literal, which is provided
6040/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6041/// the '{' brace. Otherwise, this linkage specification does not
6042/// have any braces.
6043Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
6044                                                     SourceLocation ExternLoc,
6045                                                     SourceLocation LangLoc,
6046                                                     llvm::StringRef Lang,
6047                                                     SourceLocation LBraceLoc) {
6048  LinkageSpecDecl::LanguageIDs Language;
6049  if (Lang == "\"C\"")
6050    Language = LinkageSpecDecl::lang_c;
6051  else if (Lang == "\"C++\"")
6052    Language = LinkageSpecDecl::lang_cxx;
6053  else {
6054    Diag(LangLoc, diag::err_bad_language);
6055    return 0;
6056  }
6057
6058  // FIXME: Add all the various semantics of linkage specifications
6059
6060  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6061                                               LangLoc, Language,
6062                                               LBraceLoc.isValid());
6063  CurContext->addDecl(D);
6064  PushDeclContext(S, D);
6065  return D;
6066}
6067
6068/// ActOnFinishLinkageSpecification - Complete the definition of
6069/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6070/// valid, it's the position of the closing '}' brace in a linkage
6071/// specification that uses braces.
6072Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6073                                                      Decl *LinkageSpec,
6074                                                      SourceLocation RBraceLoc) {
6075  if (LinkageSpec)
6076    PopDeclContext();
6077  return LinkageSpec;
6078}
6079
6080/// \brief Perform semantic analysis for the variable declaration that
6081/// occurs within a C++ catch clause, returning the newly-created
6082/// variable.
6083VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6084                                         TypeSourceInfo *TInfo,
6085                                         IdentifierInfo *Name,
6086                                         SourceLocation Loc) {
6087  bool Invalid = false;
6088  QualType ExDeclType = TInfo->getType();
6089
6090  // Arrays and functions decay.
6091  if (ExDeclType->isArrayType())
6092    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6093  else if (ExDeclType->isFunctionType())
6094    ExDeclType = Context.getPointerType(ExDeclType);
6095
6096  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6097  // The exception-declaration shall not denote a pointer or reference to an
6098  // incomplete type, other than [cv] void*.
6099  // N2844 forbids rvalue references.
6100  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6101    Diag(Loc, diag::err_catch_rvalue_ref);
6102    Invalid = true;
6103  }
6104
6105  // GCC allows catching pointers and references to incomplete types
6106  // as an extension; so do we, but we warn by default.
6107
6108  QualType BaseType = ExDeclType;
6109  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6110  unsigned DK = diag::err_catch_incomplete;
6111  bool IncompleteCatchIsInvalid = true;
6112  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6113    BaseType = Ptr->getPointeeType();
6114    Mode = 1;
6115    DK = diag::ext_catch_incomplete_ptr;
6116    IncompleteCatchIsInvalid = false;
6117  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6118    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6119    BaseType = Ref->getPointeeType();
6120    Mode = 2;
6121    DK = diag::ext_catch_incomplete_ref;
6122    IncompleteCatchIsInvalid = false;
6123  }
6124  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6125      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6126      IncompleteCatchIsInvalid)
6127    Invalid = true;
6128
6129  if (!Invalid && !ExDeclType->isDependentType() &&
6130      RequireNonAbstractType(Loc, ExDeclType,
6131                             diag::err_abstract_type_in_decl,
6132                             AbstractVariableType))
6133    Invalid = true;
6134
6135  // Only the non-fragile NeXT runtime currently supports C++ catches
6136  // of ObjC types, and no runtime supports catching ObjC types by value.
6137  if (!Invalid && getLangOptions().ObjC1) {
6138    QualType T = ExDeclType;
6139    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6140      T = RT->getPointeeType();
6141
6142    if (T->isObjCObjectType()) {
6143      Diag(Loc, diag::err_objc_object_catch);
6144      Invalid = true;
6145    } else if (T->isObjCObjectPointerType()) {
6146      if (!getLangOptions().NeXTRuntime) {
6147        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6148        Invalid = true;
6149      } else if (!getLangOptions().ObjCNonFragileABI) {
6150        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6151        Invalid = true;
6152      }
6153    }
6154  }
6155
6156  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6157                                    Name, ExDeclType, TInfo, SC_None,
6158                                    SC_None);
6159  ExDecl->setExceptionVariable(true);
6160
6161  if (!Invalid) {
6162    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6163      // C++ [except.handle]p16:
6164      //   The object declared in an exception-declaration or, if the
6165      //   exception-declaration does not specify a name, a temporary (12.2) is
6166      //   copy-initialized (8.5) from the exception object. [...]
6167      //   The object is destroyed when the handler exits, after the destruction
6168      //   of any automatic objects initialized within the handler.
6169      //
6170      // We just pretend to initialize the object with itself, then make sure
6171      // it can be destroyed later.
6172      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6173      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6174                                            Loc, ExDeclType, 0);
6175      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6176                                                               SourceLocation());
6177      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6178      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6179                                         MultiExprArg(*this, &ExDeclRef, 1));
6180      if (Result.isInvalid())
6181        Invalid = true;
6182      else
6183        FinalizeVarWithDestructor(ExDecl, RecordTy);
6184    }
6185  }
6186
6187  if (Invalid)
6188    ExDecl->setInvalidDecl();
6189
6190  return ExDecl;
6191}
6192
6193/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6194/// handler.
6195Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6196  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6197  QualType ExDeclType = TInfo->getType();
6198
6199  bool Invalid = D.isInvalidType();
6200  IdentifierInfo *II = D.getIdentifier();
6201  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6202                                             LookupOrdinaryName,
6203                                             ForRedeclaration)) {
6204    // The scope should be freshly made just for us. There is just no way
6205    // it contains any previous declaration.
6206    assert(!S->isDeclScope(PrevDecl));
6207    if (PrevDecl->isTemplateParameter()) {
6208      // Maybe we will complain about the shadowed template parameter.
6209      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6210    }
6211  }
6212
6213  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6214    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6215      << D.getCXXScopeSpec().getRange();
6216    Invalid = true;
6217  }
6218
6219  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6220                                              D.getIdentifier(),
6221                                              D.getIdentifierLoc());
6222
6223  if (Invalid)
6224    ExDecl->setInvalidDecl();
6225
6226  // Add the exception declaration into this scope.
6227  if (II)
6228    PushOnScopeChains(ExDecl, S);
6229  else
6230    CurContext->addDecl(ExDecl);
6231
6232  ProcessDeclAttributes(S, ExDecl, D);
6233  return ExDecl;
6234}
6235
6236Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6237                                         Expr *AssertExpr,
6238                                         Expr *AssertMessageExpr_) {
6239  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6240
6241  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6242    llvm::APSInt Value(32);
6243    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6244      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6245        AssertExpr->getSourceRange();
6246      return 0;
6247    }
6248
6249    if (Value == 0) {
6250      Diag(AssertLoc, diag::err_static_assert_failed)
6251        << AssertMessage->getString() << AssertExpr->getSourceRange();
6252    }
6253  }
6254
6255  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6256                                        AssertExpr, AssertMessage);
6257
6258  CurContext->addDecl(Decl);
6259  return Decl;
6260}
6261
6262/// \brief Perform semantic analysis of the given friend type declaration.
6263///
6264/// \returns A friend declaration that.
6265FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6266                                      TypeSourceInfo *TSInfo) {
6267  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6268
6269  QualType T = TSInfo->getType();
6270  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6271
6272  if (!getLangOptions().CPlusPlus0x) {
6273    // C++03 [class.friend]p2:
6274    //   An elaborated-type-specifier shall be used in a friend declaration
6275    //   for a class.*
6276    //
6277    //   * The class-key of the elaborated-type-specifier is required.
6278    if (!ActiveTemplateInstantiations.empty()) {
6279      // Do not complain about the form of friend template types during
6280      // template instantiation; we will already have complained when the
6281      // template was declared.
6282    } else if (!T->isElaboratedTypeSpecifier()) {
6283      // If we evaluated the type to a record type, suggest putting
6284      // a tag in front.
6285      if (const RecordType *RT = T->getAs<RecordType>()) {
6286        RecordDecl *RD = RT->getDecl();
6287
6288        std::string InsertionText = std::string(" ") + RD->getKindName();
6289
6290        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6291          << (unsigned) RD->getTagKind()
6292          << T
6293          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6294                                        InsertionText);
6295      } else {
6296        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6297          << T
6298          << SourceRange(FriendLoc, TypeRange.getEnd());
6299      }
6300    } else if (T->getAs<EnumType>()) {
6301      Diag(FriendLoc, diag::ext_enum_friend)
6302        << T
6303        << SourceRange(FriendLoc, TypeRange.getEnd());
6304    }
6305  }
6306
6307  // C++0x [class.friend]p3:
6308  //   If the type specifier in a friend declaration designates a (possibly
6309  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6310  //   the friend declaration is ignored.
6311
6312  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6313  // in [class.friend]p3 that we do not implement.
6314
6315  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6316}
6317
6318/// Handle a friend type declaration.  This works in tandem with
6319/// ActOnTag.
6320///
6321/// Notes on friend class templates:
6322///
6323/// We generally treat friend class declarations as if they were
6324/// declaring a class.  So, for example, the elaborated type specifier
6325/// in a friend declaration is required to obey the restrictions of a
6326/// class-head (i.e. no typedefs in the scope chain), template
6327/// parameters are required to match up with simple template-ids, &c.
6328/// However, unlike when declaring a template specialization, it's
6329/// okay to refer to a template specialization without an empty
6330/// template parameter declaration, e.g.
6331///   friend class A<T>::B<unsigned>;
6332/// We permit this as a special case; if there are any template
6333/// parameters present at all, require proper matching, i.e.
6334///   template <> template <class T> friend class A<int>::B;
6335Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6336                                          MultiTemplateParamsArg TempParams) {
6337  SourceLocation Loc = DS.getSourceRange().getBegin();
6338
6339  assert(DS.isFriendSpecified());
6340  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6341
6342  // Try to convert the decl specifier to a type.  This works for
6343  // friend templates because ActOnTag never produces a ClassTemplateDecl
6344  // for a TUK_Friend.
6345  Declarator TheDeclarator(DS, Declarator::MemberContext);
6346  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6347  QualType T = TSI->getType();
6348  if (TheDeclarator.isInvalidType())
6349    return 0;
6350
6351  // This is definitely an error in C++98.  It's probably meant to
6352  // be forbidden in C++0x, too, but the specification is just
6353  // poorly written.
6354  //
6355  // The problem is with declarations like the following:
6356  //   template <T> friend A<T>::foo;
6357  // where deciding whether a class C is a friend or not now hinges
6358  // on whether there exists an instantiation of A that causes
6359  // 'foo' to equal C.  There are restrictions on class-heads
6360  // (which we declare (by fiat) elaborated friend declarations to
6361  // be) that makes this tractable.
6362  //
6363  // FIXME: handle "template <> friend class A<T>;", which
6364  // is possibly well-formed?  Who even knows?
6365  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6366    Diag(Loc, diag::err_tagless_friend_type_template)
6367      << DS.getSourceRange();
6368    return 0;
6369  }
6370
6371  // C++98 [class.friend]p1: A friend of a class is a function
6372  //   or class that is not a member of the class . . .
6373  // This is fixed in DR77, which just barely didn't make the C++03
6374  // deadline.  It's also a very silly restriction that seriously
6375  // affects inner classes and which nobody else seems to implement;
6376  // thus we never diagnose it, not even in -pedantic.
6377  //
6378  // But note that we could warn about it: it's always useless to
6379  // friend one of your own members (it's not, however, worthless to
6380  // friend a member of an arbitrary specialization of your template).
6381
6382  Decl *D;
6383  if (unsigned NumTempParamLists = TempParams.size())
6384    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6385                                   NumTempParamLists,
6386                                 (TemplateParameterList**) TempParams.release(),
6387                                   TSI,
6388                                   DS.getFriendSpecLoc());
6389  else
6390    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6391
6392  if (!D)
6393    return 0;
6394
6395  D->setAccess(AS_public);
6396  CurContext->addDecl(D);
6397
6398  return D;
6399}
6400
6401Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6402                                         Declarator &D,
6403                                         bool IsDefinition,
6404                              MultiTemplateParamsArg TemplateParams) {
6405  const DeclSpec &DS = D.getDeclSpec();
6406
6407  assert(DS.isFriendSpecified());
6408  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6409
6410  SourceLocation Loc = D.getIdentifierLoc();
6411  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6412  QualType T = TInfo->getType();
6413
6414  // C++ [class.friend]p1
6415  //   A friend of a class is a function or class....
6416  // Note that this sees through typedefs, which is intended.
6417  // It *doesn't* see through dependent types, which is correct
6418  // according to [temp.arg.type]p3:
6419  //   If a declaration acquires a function type through a
6420  //   type dependent on a template-parameter and this causes
6421  //   a declaration that does not use the syntactic form of a
6422  //   function declarator to have a function type, the program
6423  //   is ill-formed.
6424  if (!T->isFunctionType()) {
6425    Diag(Loc, diag::err_unexpected_friend);
6426
6427    // It might be worthwhile to try to recover by creating an
6428    // appropriate declaration.
6429    return 0;
6430  }
6431
6432  // C++ [namespace.memdef]p3
6433  //  - If a friend declaration in a non-local class first declares a
6434  //    class or function, the friend class or function is a member
6435  //    of the innermost enclosing namespace.
6436  //  - The name of the friend is not found by simple name lookup
6437  //    until a matching declaration is provided in that namespace
6438  //    scope (either before or after the class declaration granting
6439  //    friendship).
6440  //  - If a friend function is called, its name may be found by the
6441  //    name lookup that considers functions from namespaces and
6442  //    classes associated with the types of the function arguments.
6443  //  - When looking for a prior declaration of a class or a function
6444  //    declared as a friend, scopes outside the innermost enclosing
6445  //    namespace scope are not considered.
6446
6447  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6448  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6449  DeclarationName Name = NameInfo.getName();
6450  assert(Name);
6451
6452  // The context we found the declaration in, or in which we should
6453  // create the declaration.
6454  DeclContext *DC;
6455
6456  // FIXME: handle local classes
6457
6458  // Recover from invalid scope qualifiers as if they just weren't there.
6459  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6460                        ForRedeclaration);
6461  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6462    DC = computeDeclContext(ScopeQual);
6463
6464    // FIXME: handle dependent contexts
6465    if (!DC) return 0;
6466    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6467
6468    LookupQualifiedName(Previous, DC);
6469
6470    // Ignore things found implicitly in the wrong scope.
6471    // TODO: better diagnostics for this case.  Suggesting the right
6472    // qualified scope would be nice...
6473    LookupResult::Filter F = Previous.makeFilter();
6474    while (F.hasNext()) {
6475      NamedDecl *D = F.next();
6476      if (!DC->InEnclosingNamespaceSetOf(
6477              D->getDeclContext()->getRedeclContext()))
6478        F.erase();
6479    }
6480    F.done();
6481
6482    if (Previous.empty()) {
6483      D.setInvalidType();
6484      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6485      return 0;
6486    }
6487
6488    // C++ [class.friend]p1: A friend of a class is a function or
6489    //   class that is not a member of the class . . .
6490    if (DC->Equals(CurContext))
6491      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6492
6493  // Otherwise walk out to the nearest namespace scope looking for matches.
6494  } else {
6495    // TODO: handle local class contexts.
6496
6497    DC = CurContext;
6498    while (true) {
6499      // Skip class contexts.  If someone can cite chapter and verse
6500      // for this behavior, that would be nice --- it's what GCC and
6501      // EDG do, and it seems like a reasonable intent, but the spec
6502      // really only says that checks for unqualified existing
6503      // declarations should stop at the nearest enclosing namespace,
6504      // not that they should only consider the nearest enclosing
6505      // namespace.
6506      while (DC->isRecord())
6507        DC = DC->getParent();
6508
6509      LookupQualifiedName(Previous, DC);
6510
6511      // TODO: decide what we think about using declarations.
6512      if (!Previous.empty())
6513        break;
6514
6515      if (DC->isFileContext()) break;
6516      DC = DC->getParent();
6517    }
6518
6519    // C++ [class.friend]p1: A friend of a class is a function or
6520    //   class that is not a member of the class . . .
6521    // C++0x changes this for both friend types and functions.
6522    // Most C++ 98 compilers do seem to give an error here, so
6523    // we do, too.
6524    if (!Previous.empty() && DC->Equals(CurContext)
6525        && !getLangOptions().CPlusPlus0x)
6526      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6527  }
6528
6529  if (DC->isFileContext()) {
6530    // This implies that it has to be an operator or function.
6531    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6532        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6533        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6534      Diag(Loc, diag::err_introducing_special_friend) <<
6535        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6536         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6537      return 0;
6538    }
6539  }
6540
6541  bool Redeclaration = false;
6542  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6543                                          move(TemplateParams),
6544                                          IsDefinition,
6545                                          Redeclaration);
6546  if (!ND) return 0;
6547
6548  assert(ND->getDeclContext() == DC);
6549  assert(ND->getLexicalDeclContext() == CurContext);
6550
6551  // Add the function declaration to the appropriate lookup tables,
6552  // adjusting the redeclarations list as necessary.  We don't
6553  // want to do this yet if the friending class is dependent.
6554  //
6555  // Also update the scope-based lookup if the target context's
6556  // lookup context is in lexical scope.
6557  if (!CurContext->isDependentContext()) {
6558    DC = DC->getRedeclContext();
6559    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6560    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6561      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6562  }
6563
6564  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6565                                       D.getIdentifierLoc(), ND,
6566                                       DS.getFriendSpecLoc());
6567  FrD->setAccess(AS_public);
6568  CurContext->addDecl(FrD);
6569
6570  return ND;
6571}
6572
6573void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6574  AdjustDeclIfTemplate(Dcl);
6575
6576  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6577  if (!Fn) {
6578    Diag(DelLoc, diag::err_deleted_non_function);
6579    return;
6580  }
6581  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6582    Diag(DelLoc, diag::err_deleted_decl_not_first);
6583    Diag(Prev->getLocation(), diag::note_previous_declaration);
6584    // If the declaration wasn't the first, we delete the function anyway for
6585    // recovery.
6586  }
6587  Fn->setDeleted();
6588}
6589
6590static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6591  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6592       ++CI) {
6593    Stmt *SubStmt = *CI;
6594    if (!SubStmt)
6595      continue;
6596    if (isa<ReturnStmt>(SubStmt))
6597      Self.Diag(SubStmt->getSourceRange().getBegin(),
6598           diag::err_return_in_constructor_handler);
6599    if (!isa<Expr>(SubStmt))
6600      SearchForReturnInStmt(Self, SubStmt);
6601  }
6602}
6603
6604void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6605  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6606    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6607    SearchForReturnInStmt(*this, Handler);
6608  }
6609}
6610
6611bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6612                                             const CXXMethodDecl *Old) {
6613  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6614  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6615
6616  if (Context.hasSameType(NewTy, OldTy) ||
6617      NewTy->isDependentType() || OldTy->isDependentType())
6618    return false;
6619
6620  // Check if the return types are covariant
6621  QualType NewClassTy, OldClassTy;
6622
6623  /// Both types must be pointers or references to classes.
6624  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6625    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6626      NewClassTy = NewPT->getPointeeType();
6627      OldClassTy = OldPT->getPointeeType();
6628    }
6629  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6630    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6631      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6632        NewClassTy = NewRT->getPointeeType();
6633        OldClassTy = OldRT->getPointeeType();
6634      }
6635    }
6636  }
6637
6638  // The return types aren't either both pointers or references to a class type.
6639  if (NewClassTy.isNull()) {
6640    Diag(New->getLocation(),
6641         diag::err_different_return_type_for_overriding_virtual_function)
6642      << New->getDeclName() << NewTy << OldTy;
6643    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6644
6645    return true;
6646  }
6647
6648  // C++ [class.virtual]p6:
6649  //   If the return type of D::f differs from the return type of B::f, the
6650  //   class type in the return type of D::f shall be complete at the point of
6651  //   declaration of D::f or shall be the class type D.
6652  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6653    if (!RT->isBeingDefined() &&
6654        RequireCompleteType(New->getLocation(), NewClassTy,
6655                            PDiag(diag::err_covariant_return_incomplete)
6656                              << New->getDeclName()))
6657    return true;
6658  }
6659
6660  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6661    // Check if the new class derives from the old class.
6662    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6663      Diag(New->getLocation(),
6664           diag::err_covariant_return_not_derived)
6665      << New->getDeclName() << NewTy << OldTy;
6666      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6667      return true;
6668    }
6669
6670    // Check if we the conversion from derived to base is valid.
6671    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6672                    diag::err_covariant_return_inaccessible_base,
6673                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6674                    // FIXME: Should this point to the return type?
6675                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6676      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6677      return true;
6678    }
6679  }
6680
6681  // The qualifiers of the return types must be the same.
6682  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6683    Diag(New->getLocation(),
6684         diag::err_covariant_return_type_different_qualifications)
6685    << New->getDeclName() << NewTy << OldTy;
6686    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6687    return true;
6688  };
6689
6690
6691  // The new class type must have the same or less qualifiers as the old type.
6692  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6693    Diag(New->getLocation(),
6694         diag::err_covariant_return_type_class_type_more_qualified)
6695    << New->getDeclName() << NewTy << OldTy;
6696    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6697    return true;
6698  };
6699
6700  return false;
6701}
6702
6703bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6704                                             const CXXMethodDecl *Old)
6705{
6706  if (Old->hasAttr<FinalAttr>()) {
6707    Diag(New->getLocation(), diag::err_final_function_overridden)
6708      << New->getDeclName();
6709    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6710    return true;
6711  }
6712
6713  return false;
6714}
6715
6716/// \brief Mark the given method pure.
6717///
6718/// \param Method the method to be marked pure.
6719///
6720/// \param InitRange the source range that covers the "0" initializer.
6721bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6722  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6723    Method->setPure();
6724
6725    // A class is abstract if at least one function is pure virtual.
6726    Method->getParent()->setAbstract(true);
6727    return false;
6728  }
6729
6730  if (!Method->isInvalidDecl())
6731    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6732      << Method->getDeclName() << InitRange;
6733  return true;
6734}
6735
6736/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6737/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6738/// is a fresh scope pushed for just this purpose.
6739///
6740/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6741/// static data member of class X, names should be looked up in the scope of
6742/// class X.
6743void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6744  // If there is no declaration, there was an error parsing it.
6745  if (D == 0) return;
6746
6747  // We should only get called for declarations with scope specifiers, like:
6748  //   int foo::bar;
6749  assert(D->isOutOfLine());
6750  EnterDeclaratorContext(S, D->getDeclContext());
6751}
6752
6753/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6754/// initializer for the out-of-line declaration 'D'.
6755void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6756  // If there is no declaration, there was an error parsing it.
6757  if (D == 0) return;
6758
6759  assert(D->isOutOfLine());
6760  ExitDeclaratorContext(S);
6761}
6762
6763/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6764/// C++ if/switch/while/for statement.
6765/// e.g: "if (int x = f()) {...}"
6766DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6767  // C++ 6.4p2:
6768  // The declarator shall not specify a function or an array.
6769  // The type-specifier-seq shall not contain typedef and shall not declare a
6770  // new class or enumeration.
6771  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6772         "Parser allowed 'typedef' as storage class of condition decl.");
6773
6774  TagDecl *OwnedTag = 0;
6775  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6776  QualType Ty = TInfo->getType();
6777
6778  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6779                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6780                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6781    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6782      << D.getSourceRange();
6783    return DeclResult();
6784  } else if (OwnedTag && OwnedTag->isDefinition()) {
6785    // The type-specifier-seq shall not declare a new class or enumeration.
6786    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6787  }
6788
6789  Decl *Dcl = ActOnDeclarator(S, D);
6790  if (!Dcl)
6791    return DeclResult();
6792
6793  return Dcl;
6794}
6795
6796void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6797                          bool DefinitionRequired) {
6798  // Ignore any vtable uses in unevaluated operands or for classes that do
6799  // not have a vtable.
6800  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6801      CurContext->isDependentContext() ||
6802      ExprEvalContexts.back().Context == Unevaluated)
6803    return;
6804
6805  // Try to insert this class into the map.
6806  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6807  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6808    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6809  if (!Pos.second) {
6810    // If we already had an entry, check to see if we are promoting this vtable
6811    // to required a definition. If so, we need to reappend to the VTableUses
6812    // list, since we may have already processed the first entry.
6813    if (DefinitionRequired && !Pos.first->second) {
6814      Pos.first->second = true;
6815    } else {
6816      // Otherwise, we can early exit.
6817      return;
6818    }
6819  }
6820
6821  // Local classes need to have their virtual members marked
6822  // immediately. For all other classes, we mark their virtual members
6823  // at the end of the translation unit.
6824  if (Class->isLocalClass())
6825    MarkVirtualMembersReferenced(Loc, Class);
6826  else
6827    VTableUses.push_back(std::make_pair(Class, Loc));
6828}
6829
6830bool Sema::DefineUsedVTables() {
6831  // If any dynamic classes have their key function defined within
6832  // this translation unit, then those vtables are considered "used" and must
6833  // be emitted.
6834  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6835    if (const CXXMethodDecl *KeyFunction
6836                             = Context.getKeyFunction(DynamicClasses[I])) {
6837      const FunctionDecl *Definition = 0;
6838      if (KeyFunction->hasBody(Definition))
6839        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6840    }
6841  }
6842
6843  if (VTableUses.empty())
6844    return false;
6845
6846  // Note: The VTableUses vector could grow as a result of marking
6847  // the members of a class as "used", so we check the size each
6848  // time through the loop and prefer indices (with are stable) to
6849  // iterators (which are not).
6850  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6851    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6852    if (!Class)
6853      continue;
6854
6855    SourceLocation Loc = VTableUses[I].second;
6856
6857    // If this class has a key function, but that key function is
6858    // defined in another translation unit, we don't need to emit the
6859    // vtable even though we're using it.
6860    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6861    if (KeyFunction && !KeyFunction->hasBody()) {
6862      switch (KeyFunction->getTemplateSpecializationKind()) {
6863      case TSK_Undeclared:
6864      case TSK_ExplicitSpecialization:
6865      case TSK_ExplicitInstantiationDeclaration:
6866        // The key function is in another translation unit.
6867        continue;
6868
6869      case TSK_ExplicitInstantiationDefinition:
6870      case TSK_ImplicitInstantiation:
6871        // We will be instantiating the key function.
6872        break;
6873      }
6874    } else if (!KeyFunction) {
6875      // If we have a class with no key function that is the subject
6876      // of an explicit instantiation declaration, suppress the
6877      // vtable; it will live with the explicit instantiation
6878      // definition.
6879      bool IsExplicitInstantiationDeclaration
6880        = Class->getTemplateSpecializationKind()
6881                                      == TSK_ExplicitInstantiationDeclaration;
6882      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6883                                 REnd = Class->redecls_end();
6884           R != REnd; ++R) {
6885        TemplateSpecializationKind TSK
6886          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6887        if (TSK == TSK_ExplicitInstantiationDeclaration)
6888          IsExplicitInstantiationDeclaration = true;
6889        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6890          IsExplicitInstantiationDeclaration = false;
6891          break;
6892        }
6893      }
6894
6895      if (IsExplicitInstantiationDeclaration)
6896        continue;
6897    }
6898
6899    // Mark all of the virtual members of this class as referenced, so
6900    // that we can build a vtable. Then, tell the AST consumer that a
6901    // vtable for this class is required.
6902    MarkVirtualMembersReferenced(Loc, Class);
6903    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6904    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6905
6906    // Optionally warn if we're emitting a weak vtable.
6907    if (Class->getLinkage() == ExternalLinkage &&
6908        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6909      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6910        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6911    }
6912  }
6913  VTableUses.clear();
6914
6915  return true;
6916}
6917
6918void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6919                                        const CXXRecordDecl *RD) {
6920  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6921       e = RD->method_end(); i != e; ++i) {
6922    CXXMethodDecl *MD = *i;
6923
6924    // C++ [basic.def.odr]p2:
6925    //   [...] A virtual member function is used if it is not pure. [...]
6926    if (MD->isVirtual() && !MD->isPure())
6927      MarkDeclarationReferenced(Loc, MD);
6928  }
6929
6930  // Only classes that have virtual bases need a VTT.
6931  if (RD->getNumVBases() == 0)
6932    return;
6933
6934  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6935           e = RD->bases_end(); i != e; ++i) {
6936    const CXXRecordDecl *Base =
6937        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6938    if (Base->getNumVBases() == 0)
6939      continue;
6940    MarkVirtualMembersReferenced(Loc, Base);
6941  }
6942}
6943
6944/// SetIvarInitializers - This routine builds initialization ASTs for the
6945/// Objective-C implementation whose ivars need be initialized.
6946void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6947  if (!getLangOptions().CPlusPlus)
6948    return;
6949  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6950    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6951    CollectIvarsToConstructOrDestruct(OID, ivars);
6952    if (ivars.empty())
6953      return;
6954    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6955    for (unsigned i = 0; i < ivars.size(); i++) {
6956      FieldDecl *Field = ivars[i];
6957      if (Field->isInvalidDecl())
6958        continue;
6959
6960      CXXBaseOrMemberInitializer *Member;
6961      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6962      InitializationKind InitKind =
6963        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6964
6965      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6966      ExprResult MemberInit =
6967        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
6968      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
6969      // Note, MemberInit could actually come back empty if no initialization
6970      // is required (e.g., because it would call a trivial default constructor)
6971      if (!MemberInit.get() || MemberInit.isInvalid())
6972        continue;
6973
6974      Member =
6975        new (Context) CXXBaseOrMemberInitializer(Context,
6976                                                 Field, SourceLocation(),
6977                                                 SourceLocation(),
6978                                                 MemberInit.takeAs<Expr>(),
6979                                                 SourceLocation());
6980      AllToInit.push_back(Member);
6981
6982      // Be sure that the destructor is accessible and is marked as referenced.
6983      if (const RecordType *RecordTy
6984                  = Context.getBaseElementType(Field->getType())
6985                                                        ->getAs<RecordType>()) {
6986                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6987        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6988          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6989          CheckDestructorAccess(Field->getLocation(), Destructor,
6990                            PDiag(diag::err_access_dtor_ivar)
6991                              << Context.getBaseElementType(Field->getType()));
6992        }
6993      }
6994    }
6995    ObjCImplementation->setIvarInitializers(Context,
6996                                            AllToInit.data(), AllToInit.size());
6997  }
6998}
6999