SemaDeclCXX.cpp revision 3cc0dda41d0513ceb56c12f37000a888a88d03c9
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
875/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
876/// bitfield width if there is one and 'InitExpr' specifies the initializer if
877/// any.
878Sema::DeclPtrTy
879Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
880                               MultiTemplateParamsArg TemplateParameterLists,
881                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
882                               bool Deleted) {
883  const DeclSpec &DS = D.getDeclSpec();
884  DeclarationName Name = GetNameForDeclarator(D);
885  Expr *BitWidth = static_cast<Expr*>(BW);
886  Expr *Init = static_cast<Expr*>(InitExpr);
887  SourceLocation Loc = D.getIdentifierLoc();
888
889  assert(isa<CXXRecordDecl>(CurContext));
890  assert(!DS.isFriendSpecified());
891
892  bool isFunc = false;
893  if (D.isFunctionDeclarator())
894    isFunc = true;
895  else if (D.getNumTypeObjects() == 0 &&
896           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  // C++ 9.2p6: A member shall not be declared to have automatic storage
902  // duration (auto, register) or with the extern storage-class-specifier.
903  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
904  // data members and cannot be applied to names declared const or static,
905  // and cannot be applied to reference members.
906  switch (DS.getStorageClassSpec()) {
907    case DeclSpec::SCS_unspecified:
908    case DeclSpec::SCS_typedef:
909    case DeclSpec::SCS_static:
910      // FALL THROUGH.
911      break;
912    case DeclSpec::SCS_mutable:
913      if (isFunc) {
914        if (DS.getStorageClassSpecLoc().isValid())
915          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
916        else
917          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
918
919        // FIXME: It would be nicer if the keyword was ignored only for this
920        // declarator. Otherwise we could get follow-up errors.
921        D.getMutableDeclSpec().ClearStorageClassSpecs();
922      }
923      break;
924    default:
925      if (DS.getStorageClassSpecLoc().isValid())
926        Diag(DS.getStorageClassSpecLoc(),
927             diag::err_storageclass_invalid_for_member);
928      else
929        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
930      D.getMutableDeclSpec().ClearStorageClassSpecs();
931  }
932
933  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
934                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
935                      !isFunc);
936
937  Decl *Member;
938  if (isInstField) {
939    // FIXME: Check for template parameters!
940    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
941                         AS);
942    assert(Member && "HandleField never returns null");
943  } else {
944    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
945               .getAs<Decl>();
946    if (!Member) {
947      if (BitWidth) DeleteExpr(BitWidth);
948      return DeclPtrTy();
949    }
950
951    // Non-instance-fields can't have a bitfield.
952    if (BitWidth) {
953      if (Member->isInvalidDecl()) {
954        // don't emit another diagnostic.
955      } else if (isa<VarDecl>(Member)) {
956        // C++ 9.6p3: A bit-field shall not be a static member.
957        // "static member 'A' cannot be a bit-field"
958        Diag(Loc, diag::err_static_not_bitfield)
959          << Name << BitWidth->getSourceRange();
960      } else if (isa<TypedefDecl>(Member)) {
961        // "typedef member 'x' cannot be a bit-field"
962        Diag(Loc, diag::err_typedef_not_bitfield)
963          << Name << BitWidth->getSourceRange();
964      } else {
965        // A function typedef ("typedef int f(); f a;").
966        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
967        Diag(Loc, diag::err_not_integral_type_bitfield)
968          << Name << cast<ValueDecl>(Member)->getType()
969          << BitWidth->getSourceRange();
970      }
971
972      DeleteExpr(BitWidth);
973      BitWidth = 0;
974      Member->setInvalidDecl();
975    }
976
977    Member->setAccess(AS);
978
979    // If we have declared a member function template, set the access of the
980    // templated declaration as well.
981    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
982      FunTmpl->getTemplatedDecl()->setAccess(AS);
983  }
984
985  assert((Name || isInstField) && "No identifier for non-field ?");
986
987  if (Init)
988    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
989  if (Deleted) // FIXME: Source location is not very good.
990    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
991
992  if (isInstField) {
993    FieldCollector->Add(cast<FieldDecl>(Member));
994    return DeclPtrTy();
995  }
996  return DeclPtrTy::make(Member);
997}
998
999/// \brief Find the direct and/or virtual base specifiers that
1000/// correspond to the given base type, for use in base initialization
1001/// within a constructor.
1002static bool FindBaseInitializer(Sema &SemaRef,
1003                                CXXRecordDecl *ClassDecl,
1004                                QualType BaseType,
1005                                const CXXBaseSpecifier *&DirectBaseSpec,
1006                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1007  // First, check for a direct base class.
1008  DirectBaseSpec = 0;
1009  for (CXXRecordDecl::base_class_const_iterator Base
1010         = ClassDecl->bases_begin();
1011       Base != ClassDecl->bases_end(); ++Base) {
1012    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1013      // We found a direct base of this type. That's what we're
1014      // initializing.
1015      DirectBaseSpec = &*Base;
1016      break;
1017    }
1018  }
1019
1020  // Check for a virtual base class.
1021  // FIXME: We might be able to short-circuit this if we know in advance that
1022  // there are no virtual bases.
1023  VirtualBaseSpec = 0;
1024  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1025    // We haven't found a base yet; search the class hierarchy for a
1026    // virtual base class.
1027    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1028                       /*DetectVirtual=*/false);
1029    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1030                              BaseType, Paths)) {
1031      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1032           Path != Paths.end(); ++Path) {
1033        if (Path->back().Base->isVirtual()) {
1034          VirtualBaseSpec = Path->back().Base;
1035          break;
1036        }
1037      }
1038    }
1039  }
1040
1041  return DirectBaseSpec || VirtualBaseSpec;
1042}
1043
1044/// ActOnMemInitializer - Handle a C++ member initializer.
1045Sema::MemInitResult
1046Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1047                          Scope *S,
1048                          CXXScopeSpec &SS,
1049                          IdentifierInfo *MemberOrBase,
1050                          TypeTy *TemplateTypeTy,
1051                          SourceLocation IdLoc,
1052                          SourceLocation LParenLoc,
1053                          ExprTy **Args, unsigned NumArgs,
1054                          SourceLocation *CommaLocs,
1055                          SourceLocation RParenLoc) {
1056  if (!ConstructorD)
1057    return true;
1058
1059  AdjustDeclIfTemplate(ConstructorD);
1060
1061  CXXConstructorDecl *Constructor
1062    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1063  if (!Constructor) {
1064    // The user wrote a constructor initializer on a function that is
1065    // not a C++ constructor. Ignore the error for now, because we may
1066    // have more member initializers coming; we'll diagnose it just
1067    // once in ActOnMemInitializers.
1068    return true;
1069  }
1070
1071  CXXRecordDecl *ClassDecl = Constructor->getParent();
1072
1073  // C++ [class.base.init]p2:
1074  //   Names in a mem-initializer-id are looked up in the scope of the
1075  //   constructor’s class and, if not found in that scope, are looked
1076  //   up in the scope containing the constructor’s
1077  //   definition. [Note: if the constructor’s class contains a member
1078  //   with the same name as a direct or virtual base class of the
1079  //   class, a mem-initializer-id naming the member or base class and
1080  //   composed of a single identifier refers to the class member. A
1081  //   mem-initializer-id for the hidden base class may be specified
1082  //   using a qualified name. ]
1083  if (!SS.getScopeRep() && !TemplateTypeTy) {
1084    // Look for a member, first.
1085    FieldDecl *Member = 0;
1086    DeclContext::lookup_result Result
1087      = ClassDecl->lookup(MemberOrBase);
1088    if (Result.first != Result.second)
1089      Member = dyn_cast<FieldDecl>(*Result.first);
1090
1091    // FIXME: Handle members of an anonymous union.
1092
1093    if (Member)
1094      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1095                                    LParenLoc, RParenLoc);
1096  }
1097  // It didn't name a member, so see if it names a class.
1098  QualType BaseType;
1099  TypeSourceInfo *TInfo = 0;
1100
1101  if (TemplateTypeTy) {
1102    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1103  } else {
1104    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1105    LookupParsedName(R, S, &SS);
1106
1107    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1108    if (!TyD) {
1109      if (R.isAmbiguous()) return true;
1110
1111      // We don't want access-control diagnostics here.
1112      R.suppressDiagnostics();
1113
1114      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1115        bool NotUnknownSpecialization = false;
1116        DeclContext *DC = computeDeclContext(SS, false);
1117        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1118          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1119
1120        if (!NotUnknownSpecialization) {
1121          // When the scope specifier can refer to a member of an unknown
1122          // specialization, we take it as a type name.
1123          BaseType = CheckTypenameType(ETK_None,
1124                                       (NestedNameSpecifier *)SS.getScopeRep(),
1125                                       *MemberOrBase, SourceLocation(),
1126                                       SS.getRange(), IdLoc);
1127          if (BaseType.isNull())
1128            return true;
1129
1130          R.clear();
1131        }
1132      }
1133
1134      // If no results were found, try to correct typos.
1135      if (R.empty() && BaseType.isNull() &&
1136          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1137          R.isSingleResult()) {
1138        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1139          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1140            // We have found a non-static data member with a similar
1141            // name to what was typed; complain and initialize that
1142            // member.
1143            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1144              << MemberOrBase << true << R.getLookupName()
1145              << FixItHint::CreateReplacement(R.getNameLoc(),
1146                                              R.getLookupName().getAsString());
1147            Diag(Member->getLocation(), diag::note_previous_decl)
1148              << Member->getDeclName();
1149
1150            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1151                                          LParenLoc, RParenLoc);
1152          }
1153        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1154          const CXXBaseSpecifier *DirectBaseSpec;
1155          const CXXBaseSpecifier *VirtualBaseSpec;
1156          if (FindBaseInitializer(*this, ClassDecl,
1157                                  Context.getTypeDeclType(Type),
1158                                  DirectBaseSpec, VirtualBaseSpec)) {
1159            // We have found a direct or virtual base class with a
1160            // similar name to what was typed; complain and initialize
1161            // that base class.
1162            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1163              << MemberOrBase << false << R.getLookupName()
1164              << FixItHint::CreateReplacement(R.getNameLoc(),
1165                                              R.getLookupName().getAsString());
1166
1167            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1168                                                             : VirtualBaseSpec;
1169            Diag(BaseSpec->getSourceRange().getBegin(),
1170                 diag::note_base_class_specified_here)
1171              << BaseSpec->getType()
1172              << BaseSpec->getSourceRange();
1173
1174            TyD = Type;
1175          }
1176        }
1177      }
1178
1179      if (!TyD && BaseType.isNull()) {
1180        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1181          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1182        return true;
1183      }
1184    }
1185
1186    if (BaseType.isNull()) {
1187      BaseType = Context.getTypeDeclType(TyD);
1188      if (SS.isSet()) {
1189        NestedNameSpecifier *Qualifier =
1190          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1191
1192        // FIXME: preserve source range information
1193        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1194      }
1195    }
1196  }
1197
1198  if (!TInfo)
1199    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1200
1201  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1202                              LParenLoc, RParenLoc, ClassDecl);
1203}
1204
1205/// Checks an initializer expression for use of uninitialized fields, such as
1206/// containing the field that is being initialized. Returns true if there is an
1207/// uninitialized field was used an updates the SourceLocation parameter; false
1208/// otherwise.
1209static bool InitExprContainsUninitializedFields(const Stmt* S,
1210                                                const FieldDecl* LhsField,
1211                                                SourceLocation* L) {
1212  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1213  if (ME) {
1214    const NamedDecl* RhsField = ME->getMemberDecl();
1215    if (RhsField == LhsField) {
1216      // Initializing a field with itself. Throw a warning.
1217      // But wait; there are exceptions!
1218      // Exception #1:  The field may not belong to this record.
1219      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1220      const Expr* base = ME->getBase();
1221      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1222        // Even though the field matches, it does not belong to this record.
1223        return false;
1224      }
1225      // None of the exceptions triggered; return true to indicate an
1226      // uninitialized field was used.
1227      *L = ME->getMemberLoc();
1228      return true;
1229    }
1230  }
1231  bool found = false;
1232  for (Stmt::const_child_iterator it = S->child_begin();
1233       it != S->child_end() && found == false;
1234       ++it) {
1235    if (isa<CallExpr>(S)) {
1236      // Do not descend into function calls or constructors, as the use
1237      // of an uninitialized field may be valid. One would have to inspect
1238      // the contents of the function/ctor to determine if it is safe or not.
1239      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1240      // may be safe, depending on what the function/ctor does.
1241      continue;
1242    }
1243    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1244  }
1245  return found;
1246}
1247
1248Sema::MemInitResult
1249Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1250                             unsigned NumArgs, SourceLocation IdLoc,
1251                             SourceLocation LParenLoc,
1252                             SourceLocation RParenLoc) {
1253  // Diagnose value-uses of fields to initialize themselves, e.g.
1254  //   foo(foo)
1255  // where foo is not also a parameter to the constructor.
1256  // TODO: implement -Wuninitialized and fold this into that framework.
1257  for (unsigned i = 0; i < NumArgs; ++i) {
1258    SourceLocation L;
1259    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1260      // FIXME: Return true in the case when other fields are used before being
1261      // uninitialized. For example, let this field be the i'th field. When
1262      // initializing the i'th field, throw a warning if any of the >= i'th
1263      // fields are used, as they are not yet initialized.
1264      // Right now we are only handling the case where the i'th field uses
1265      // itself in its initializer.
1266      Diag(L, diag::warn_field_is_uninit);
1267    }
1268  }
1269
1270  bool HasDependentArg = false;
1271  for (unsigned i = 0; i < NumArgs; i++)
1272    HasDependentArg |= Args[i]->isTypeDependent();
1273
1274  QualType FieldType = Member->getType();
1275  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1276    FieldType = Array->getElementType();
1277  if (FieldType->isDependentType() || HasDependentArg) {
1278    // Can't check initialization for a member of dependent type or when
1279    // any of the arguments are type-dependent expressions.
1280    OwningExprResult Init
1281      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1282                                          RParenLoc));
1283
1284    // Erase any temporaries within this evaluation context; we're not
1285    // going to track them in the AST, since we'll be rebuilding the
1286    // ASTs during template instantiation.
1287    ExprTemporaries.erase(
1288              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1289                          ExprTemporaries.end());
1290
1291    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1292                                                    LParenLoc,
1293                                                    Init.takeAs<Expr>(),
1294                                                    RParenLoc);
1295
1296  }
1297
1298  if (Member->isInvalidDecl())
1299    return true;
1300
1301  // Initialize the member.
1302  InitializedEntity MemberEntity =
1303    InitializedEntity::InitializeMember(Member, 0);
1304  InitializationKind Kind =
1305    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1306
1307  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1308
1309  OwningExprResult MemberInit =
1310    InitSeq.Perform(*this, MemberEntity, Kind,
1311                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1312  if (MemberInit.isInvalid())
1313    return true;
1314
1315  // C++0x [class.base.init]p7:
1316  //   The initialization of each base and member constitutes a
1317  //   full-expression.
1318  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1319  if (MemberInit.isInvalid())
1320    return true;
1321
1322  // If we are in a dependent context, template instantiation will
1323  // perform this type-checking again. Just save the arguments that we
1324  // received in a ParenListExpr.
1325  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1326  // of the information that we have about the member
1327  // initializer. However, deconstructing the ASTs is a dicey process,
1328  // and this approach is far more likely to get the corner cases right.
1329  if (CurContext->isDependentContext()) {
1330    // Bump the reference count of all of the arguments.
1331    for (unsigned I = 0; I != NumArgs; ++I)
1332      Args[I]->Retain();
1333
1334    OwningExprResult Init
1335      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1336                                          RParenLoc));
1337    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1338                                                    LParenLoc,
1339                                                    Init.takeAs<Expr>(),
1340                                                    RParenLoc);
1341  }
1342
1343  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1344                                                  LParenLoc,
1345                                                  MemberInit.takeAs<Expr>(),
1346                                                  RParenLoc);
1347}
1348
1349Sema::MemInitResult
1350Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1351                           Expr **Args, unsigned NumArgs,
1352                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1353                           CXXRecordDecl *ClassDecl) {
1354  bool HasDependentArg = false;
1355  for (unsigned i = 0; i < NumArgs; i++)
1356    HasDependentArg |= Args[i]->isTypeDependent();
1357
1358  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1359  if (BaseType->isDependentType() || HasDependentArg) {
1360    // Can't check initialization for a base of dependent type or when
1361    // any of the arguments are type-dependent expressions.
1362    OwningExprResult BaseInit
1363      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1364                                          RParenLoc));
1365
1366    // Erase any temporaries within this evaluation context; we're not
1367    // going to track them in the AST, since we'll be rebuilding the
1368    // ASTs during template instantiation.
1369    ExprTemporaries.erase(
1370              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1371                          ExprTemporaries.end());
1372
1373    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1374                                                    /*IsVirtual=*/false,
1375                                                    LParenLoc,
1376                                                    BaseInit.takeAs<Expr>(),
1377                                                    RParenLoc);
1378  }
1379
1380  if (!BaseType->isRecordType())
1381    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1382             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1383
1384  // C++ [class.base.init]p2:
1385  //   [...] Unless the mem-initializer-id names a nonstatic data
1386  //   member of the constructor’s class or a direct or virtual base
1387  //   of that class, the mem-initializer is ill-formed. A
1388  //   mem-initializer-list can initialize a base class using any
1389  //   name that denotes that base class type.
1390
1391  // Check for direct and virtual base classes.
1392  const CXXBaseSpecifier *DirectBaseSpec = 0;
1393  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1394  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1395                      VirtualBaseSpec);
1396
1397  // C++ [base.class.init]p2:
1398  //   If a mem-initializer-id is ambiguous because it designates both
1399  //   a direct non-virtual base class and an inherited virtual base
1400  //   class, the mem-initializer is ill-formed.
1401  if (DirectBaseSpec && VirtualBaseSpec)
1402    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1403      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1404  // C++ [base.class.init]p2:
1405  // Unless the mem-initializer-id names a nonstatic data membeer of the
1406  // constructor's class ot a direst or virtual base of that class, the
1407  // mem-initializer is ill-formed.
1408  if (!DirectBaseSpec && !VirtualBaseSpec)
1409    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1410      << BaseType << Context.getTypeDeclType(ClassDecl)
1411      << BaseTInfo->getTypeLoc().getLocalSourceRange();
1412
1413  CXXBaseSpecifier *BaseSpec
1414    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1415  if (!BaseSpec)
1416    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1417
1418  // Initialize the base.
1419  InitializedEntity BaseEntity =
1420    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1421  InitializationKind Kind =
1422    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1423
1424  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1425
1426  OwningExprResult BaseInit =
1427    InitSeq.Perform(*this, BaseEntity, Kind,
1428                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1429  if (BaseInit.isInvalid())
1430    return true;
1431
1432  // C++0x [class.base.init]p7:
1433  //   The initialization of each base and member constitutes a
1434  //   full-expression.
1435  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1436  if (BaseInit.isInvalid())
1437    return true;
1438
1439  // If we are in a dependent context, template instantiation will
1440  // perform this type-checking again. Just save the arguments that we
1441  // received in a ParenListExpr.
1442  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1443  // of the information that we have about the base
1444  // initializer. However, deconstructing the ASTs is a dicey process,
1445  // and this approach is far more likely to get the corner cases right.
1446  if (CurContext->isDependentContext()) {
1447    // Bump the reference count of all of the arguments.
1448    for (unsigned I = 0; I != NumArgs; ++I)
1449      Args[I]->Retain();
1450
1451    OwningExprResult Init
1452      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1453                                          RParenLoc));
1454    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1455                                                    BaseSpec->isVirtual(),
1456                                                    LParenLoc,
1457                                                    Init.takeAs<Expr>(),
1458                                                    RParenLoc);
1459  }
1460
1461  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1462                                                  BaseSpec->isVirtual(),
1463                                                  LParenLoc,
1464                                                  BaseInit.takeAs<Expr>(),
1465                                                  RParenLoc);
1466}
1467
1468/// ImplicitInitializerKind - How an implicit base or member initializer should
1469/// initialize its base or member.
1470enum ImplicitInitializerKind {
1471  IIK_Default,
1472  IIK_Copy,
1473  IIK_Move
1474};
1475
1476static bool
1477BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1478                             ImplicitInitializerKind ImplicitInitKind,
1479                             CXXBaseSpecifier *BaseSpec,
1480                             bool IsInheritedVirtualBase,
1481                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1482  InitializedEntity InitEntity
1483    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1484                                        IsInheritedVirtualBase);
1485
1486  Sema::OwningExprResult BaseInit(SemaRef);
1487
1488  switch (ImplicitInitKind) {
1489  case IIK_Default: {
1490    InitializationKind InitKind
1491      = InitializationKind::CreateDefault(Constructor->getLocation());
1492    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1493    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1494                               Sema::MultiExprArg(SemaRef, 0, 0));
1495    break;
1496  }
1497
1498  case IIK_Copy: {
1499    ParmVarDecl *Param = Constructor->getParamDecl(0);
1500    QualType ParamType = Param->getType().getNonReferenceType();
1501
1502    Expr *CopyCtorArg =
1503      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1504                          Constructor->getLocation(), ParamType, 0);
1505
1506    // Cast to the base class to avoid ambiguities.
1507    QualType ArgTy =
1508      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1509                                       ParamType.getQualifiers());
1510    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1511                              CastExpr::CK_UncheckedDerivedToBase,
1512                              /*isLvalue=*/true,
1513                              CXXBaseSpecifierArray(BaseSpec));
1514
1515    InitializationKind InitKind
1516      = InitializationKind::CreateDirect(Constructor->getLocation(),
1517                                         SourceLocation(), SourceLocation());
1518    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1519                                   &CopyCtorArg, 1);
1520    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1521                               Sema::MultiExprArg(SemaRef,
1522                                                  (void**)&CopyCtorArg, 1));
1523    break;
1524  }
1525
1526  case IIK_Move:
1527    assert(false && "Unhandled initializer kind!");
1528  }
1529
1530  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1531  if (BaseInit.isInvalid())
1532    return true;
1533
1534  CXXBaseInit =
1535    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1536               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1537                                                        SourceLocation()),
1538                                             BaseSpec->isVirtual(),
1539                                             SourceLocation(),
1540                                             BaseInit.takeAs<Expr>(),
1541                                             SourceLocation());
1542
1543  return false;
1544}
1545
1546static bool
1547BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1548                               ImplicitInitializerKind ImplicitInitKind,
1549                               FieldDecl *Field,
1550                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1551  if (Field->isInvalidDecl())
1552    return true;
1553
1554  if (ImplicitInitKind == IIK_Copy) {
1555    SourceLocation Loc = Constructor->getLocation();
1556    ParmVarDecl *Param = Constructor->getParamDecl(0);
1557    QualType ParamType = Param->getType().getNonReferenceType();
1558
1559    Expr *MemberExprBase =
1560      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1561                          Loc, ParamType, 0);
1562
1563    // Build a reference to this field within the parameter.
1564    CXXScopeSpec SS;
1565    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1566                              Sema::LookupMemberName);
1567    MemberLookup.addDecl(Field, AS_public);
1568    MemberLookup.resolveKind();
1569    Sema::OwningExprResult CopyCtorArg
1570      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1571                                         ParamType, Loc,
1572                                         /*IsArrow=*/false,
1573                                         SS,
1574                                         /*FirstQualifierInScope=*/0,
1575                                         MemberLookup,
1576                                         /*TemplateArgs=*/0);
1577    if (CopyCtorArg.isInvalid())
1578      return true;
1579
1580    // When the field we are copying is an array, create index variables for
1581    // each dimension of the array. We use these index variables to subscript
1582    // the source array, and other clients (e.g., CodeGen) will perform the
1583    // necessary iteration with these index variables.
1584    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1585    QualType BaseType = Field->getType();
1586    QualType SizeType = SemaRef.Context.getSizeType();
1587    while (const ConstantArrayType *Array
1588                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1589      // Create the iteration variable for this array index.
1590      IdentifierInfo *IterationVarName = 0;
1591      {
1592        llvm::SmallString<8> Str;
1593        llvm::raw_svector_ostream OS(Str);
1594        OS << "__i" << IndexVariables.size();
1595        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1596      }
1597      VarDecl *IterationVar
1598        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1599                          IterationVarName, SizeType,
1600                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1601                          VarDecl::None, VarDecl::None);
1602      IndexVariables.push_back(IterationVar);
1603
1604      // Create a reference to the iteration variable.
1605      Sema::OwningExprResult IterationVarRef
1606        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1607      assert(!IterationVarRef.isInvalid() &&
1608             "Reference to invented variable cannot fail!");
1609
1610      // Subscript the array with this iteration variable.
1611      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1612                                                            Loc,
1613                                                          move(IterationVarRef),
1614                                                            Loc);
1615      if (CopyCtorArg.isInvalid())
1616        return true;
1617
1618      BaseType = Array->getElementType();
1619    }
1620
1621    // Construct the entity that we will be initializing. For an array, this
1622    // will be first element in the array, which may require several levels
1623    // of array-subscript entities.
1624    llvm::SmallVector<InitializedEntity, 4> Entities;
1625    Entities.reserve(1 + IndexVariables.size());
1626    Entities.push_back(InitializedEntity::InitializeMember(Field));
1627    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1628      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1629                                                              0,
1630                                                              Entities.back()));
1631
1632    // Direct-initialize to use the copy constructor.
1633    InitializationKind InitKind =
1634      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1635
1636    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1637    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1638                                   &CopyCtorArgE, 1);
1639
1640    Sema::OwningExprResult MemberInit
1641      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1642                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1643    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1644    if (MemberInit.isInvalid())
1645      return true;
1646
1647    CXXMemberInit
1648      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1649                                           MemberInit.takeAs<Expr>(), Loc,
1650                                           IndexVariables.data(),
1651                                           IndexVariables.size());
1652    return false;
1653  }
1654
1655  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1656
1657  QualType FieldBaseElementType =
1658    SemaRef.Context.getBaseElementType(Field->getType());
1659
1660  if (FieldBaseElementType->isRecordType()) {
1661    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1662    InitializationKind InitKind =
1663      InitializationKind::CreateDefault(Constructor->getLocation());
1664
1665    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1666    Sema::OwningExprResult MemberInit =
1667      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1668                      Sema::MultiExprArg(SemaRef, 0, 0));
1669    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1670    if (MemberInit.isInvalid())
1671      return true;
1672
1673    CXXMemberInit =
1674      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1675                                                       Field, SourceLocation(),
1676                                                       SourceLocation(),
1677                                                      MemberInit.takeAs<Expr>(),
1678                                                       SourceLocation());
1679    return false;
1680  }
1681
1682  if (FieldBaseElementType->isReferenceType()) {
1683    SemaRef.Diag(Constructor->getLocation(),
1684                 diag::err_uninitialized_member_in_ctor)
1685    << (int)Constructor->isImplicit()
1686    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1687    << 0 << Field->getDeclName();
1688    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1689    return true;
1690  }
1691
1692  if (FieldBaseElementType.isConstQualified()) {
1693    SemaRef.Diag(Constructor->getLocation(),
1694                 diag::err_uninitialized_member_in_ctor)
1695    << (int)Constructor->isImplicit()
1696    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1697    << 1 << Field->getDeclName();
1698    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1699    return true;
1700  }
1701
1702  // Nothing to initialize.
1703  CXXMemberInit = 0;
1704  return false;
1705}
1706
1707namespace {
1708struct BaseAndFieldInfo {
1709  Sema &S;
1710  CXXConstructorDecl *Ctor;
1711  bool AnyErrorsInInits;
1712  ImplicitInitializerKind IIK;
1713  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1714  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1715
1716  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1717    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1718    // FIXME: Handle implicit move constructors.
1719    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1720      IIK = IIK_Copy;
1721    else
1722      IIK = IIK_Default;
1723  }
1724};
1725}
1726
1727static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1728                                    FieldDecl *Top, FieldDecl *Field) {
1729
1730  // Overwhelmingly common case:  we have a direct initializer for this field.
1731  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1732    Info.AllToInit.push_back(Init);
1733
1734    if (Field != Top) {
1735      Init->setMember(Top);
1736      Init->setAnonUnionMember(Field);
1737    }
1738    return false;
1739  }
1740
1741  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1742    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1743    assert(FieldClassType && "anonymous struct/union without record type");
1744
1745    // Walk through the members, tying in any initializers for fields
1746    // we find.  The earlier semantic checks should prevent redundant
1747    // initialization of union members, given the requirement that
1748    // union members never have non-trivial default constructors.
1749
1750    // TODO: in C++0x, it might be legal to have union members with
1751    // non-trivial default constructors in unions.  Revise this
1752    // implementation then with the appropriate semantics.
1753    CXXRecordDecl *FieldClassDecl
1754      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1755    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1756           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1757      if (CollectFieldInitializer(Info, Top, *FA))
1758        return true;
1759  }
1760
1761  // Don't try to build an implicit initializer if there were semantic
1762  // errors in any of the initializers (and therefore we might be
1763  // missing some that the user actually wrote).
1764  if (Info.AnyErrorsInInits)
1765    return false;
1766
1767  CXXBaseOrMemberInitializer *Init = 0;
1768  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1769    return true;
1770
1771  // If the member doesn't need to be initialized, Init will still be null.
1772  if (!Init) return false;
1773
1774  Info.AllToInit.push_back(Init);
1775  if (Top != Field) {
1776    Init->setMember(Top);
1777    Init->setAnonUnionMember(Field);
1778  }
1779  return false;
1780}
1781
1782bool
1783Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1784                                  CXXBaseOrMemberInitializer **Initializers,
1785                                  unsigned NumInitializers,
1786                                  bool AnyErrors) {
1787  if (Constructor->getDeclContext()->isDependentContext()) {
1788    // Just store the initializers as written, they will be checked during
1789    // instantiation.
1790    if (NumInitializers > 0) {
1791      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1792      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1793        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1794      memcpy(baseOrMemberInitializers, Initializers,
1795             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1796      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1797    }
1798
1799    return false;
1800  }
1801
1802  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1803
1804  // We need to build the initializer AST according to order of construction
1805  // and not what user specified in the Initializers list.
1806  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1807  if (!ClassDecl)
1808    return true;
1809
1810  bool HadError = false;
1811
1812  for (unsigned i = 0; i < NumInitializers; i++) {
1813    CXXBaseOrMemberInitializer *Member = Initializers[i];
1814
1815    if (Member->isBaseInitializer())
1816      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1817    else
1818      Info.AllBaseFields[Member->getMember()] = Member;
1819  }
1820
1821  // Keep track of the direct virtual bases.
1822  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1823  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1824       E = ClassDecl->bases_end(); I != E; ++I) {
1825    if (I->isVirtual())
1826      DirectVBases.insert(I);
1827  }
1828
1829  // Push virtual bases before others.
1830  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1831       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1832
1833    if (CXXBaseOrMemberInitializer *Value
1834        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1835      Info.AllToInit.push_back(Value);
1836    } else if (!AnyErrors) {
1837      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1838      CXXBaseOrMemberInitializer *CXXBaseInit;
1839      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1840                                       VBase, IsInheritedVirtualBase,
1841                                       CXXBaseInit)) {
1842        HadError = true;
1843        continue;
1844      }
1845
1846      Info.AllToInit.push_back(CXXBaseInit);
1847    }
1848  }
1849
1850  // Non-virtual bases.
1851  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1852       E = ClassDecl->bases_end(); Base != E; ++Base) {
1853    // Virtuals are in the virtual base list and already constructed.
1854    if (Base->isVirtual())
1855      continue;
1856
1857    if (CXXBaseOrMemberInitializer *Value
1858          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1859      Info.AllToInit.push_back(Value);
1860    } else if (!AnyErrors) {
1861      CXXBaseOrMemberInitializer *CXXBaseInit;
1862      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1863                                       Base, /*IsInheritedVirtualBase=*/false,
1864                                       CXXBaseInit)) {
1865        HadError = true;
1866        continue;
1867      }
1868
1869      Info.AllToInit.push_back(CXXBaseInit);
1870    }
1871  }
1872
1873  // Fields.
1874  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1875       E = ClassDecl->field_end(); Field != E; ++Field) {
1876    if ((*Field)->getType()->isIncompleteArrayType()) {
1877      assert(ClassDecl->hasFlexibleArrayMember() &&
1878             "Incomplete array type is not valid");
1879      continue;
1880    }
1881    if (CollectFieldInitializer(Info, *Field, *Field))
1882      HadError = true;
1883  }
1884
1885  NumInitializers = Info.AllToInit.size();
1886  if (NumInitializers > 0) {
1887    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1888    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1889      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1890    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1891           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1892    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1893
1894    // Constructors implicitly reference the base and member
1895    // destructors.
1896    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1897                                           Constructor->getParent());
1898  }
1899
1900  return HadError;
1901}
1902
1903static void *GetKeyForTopLevelField(FieldDecl *Field) {
1904  // For anonymous unions, use the class declaration as the key.
1905  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1906    if (RT->getDecl()->isAnonymousStructOrUnion())
1907      return static_cast<void *>(RT->getDecl());
1908  }
1909  return static_cast<void *>(Field);
1910}
1911
1912static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1913  return Context.getCanonicalType(BaseType).getTypePtr();
1914}
1915
1916static void *GetKeyForMember(ASTContext &Context,
1917                             CXXBaseOrMemberInitializer *Member,
1918                             bool MemberMaybeAnon = false) {
1919  if (!Member->isMemberInitializer())
1920    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1921
1922  // For fields injected into the class via declaration of an anonymous union,
1923  // use its anonymous union class declaration as the unique key.
1924  FieldDecl *Field = Member->getMember();
1925
1926  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1927  // data member of the class. Data member used in the initializer list is
1928  // in AnonUnionMember field.
1929  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1930    Field = Member->getAnonUnionMember();
1931
1932  // If the field is a member of an anonymous struct or union, our key
1933  // is the anonymous record decl that's a direct child of the class.
1934  RecordDecl *RD = Field->getParent();
1935  if (RD->isAnonymousStructOrUnion()) {
1936    while (true) {
1937      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1938      if (Parent->isAnonymousStructOrUnion())
1939        RD = Parent;
1940      else
1941        break;
1942    }
1943
1944    return static_cast<void *>(RD);
1945  }
1946
1947  return static_cast<void *>(Field);
1948}
1949
1950static void
1951DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1952                                  const CXXConstructorDecl *Constructor,
1953                                  CXXBaseOrMemberInitializer **Inits,
1954                                  unsigned NumInits) {
1955  if (Constructor->getDeclContext()->isDependentContext())
1956    return;
1957
1958  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1959        == Diagnostic::Ignored)
1960    return;
1961
1962  // Build the list of bases and members in the order that they'll
1963  // actually be initialized.  The explicit initializers should be in
1964  // this same order but may be missing things.
1965  llvm::SmallVector<const void*, 32> IdealInitKeys;
1966
1967  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1968
1969  // 1. Virtual bases.
1970  for (CXXRecordDecl::base_class_const_iterator VBase =
1971       ClassDecl->vbases_begin(),
1972       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1973    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1974
1975  // 2. Non-virtual bases.
1976  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1977       E = ClassDecl->bases_end(); Base != E; ++Base) {
1978    if (Base->isVirtual())
1979      continue;
1980    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1981  }
1982
1983  // 3. Direct fields.
1984  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1985       E = ClassDecl->field_end(); Field != E; ++Field)
1986    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1987
1988  unsigned NumIdealInits = IdealInitKeys.size();
1989  unsigned IdealIndex = 0;
1990
1991  CXXBaseOrMemberInitializer *PrevInit = 0;
1992  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1993    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1994    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1995
1996    // Scan forward to try to find this initializer in the idealized
1997    // initializers list.
1998    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1999      if (InitKey == IdealInitKeys[IdealIndex])
2000        break;
2001
2002    // If we didn't find this initializer, it must be because we
2003    // scanned past it on a previous iteration.  That can only
2004    // happen if we're out of order;  emit a warning.
2005    if (IdealIndex == NumIdealInits && PrevInit) {
2006      Sema::SemaDiagnosticBuilder D =
2007        SemaRef.Diag(PrevInit->getSourceLocation(),
2008                     diag::warn_initializer_out_of_order);
2009
2010      if (PrevInit->isMemberInitializer())
2011        D << 0 << PrevInit->getMember()->getDeclName();
2012      else
2013        D << 1 << PrevInit->getBaseClassInfo()->getType();
2014
2015      if (Init->isMemberInitializer())
2016        D << 0 << Init->getMember()->getDeclName();
2017      else
2018        D << 1 << Init->getBaseClassInfo()->getType();
2019
2020      // Move back to the initializer's location in the ideal list.
2021      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2022        if (InitKey == IdealInitKeys[IdealIndex])
2023          break;
2024
2025      assert(IdealIndex != NumIdealInits &&
2026             "initializer not found in initializer list");
2027    }
2028
2029    PrevInit = Init;
2030  }
2031}
2032
2033namespace {
2034bool CheckRedundantInit(Sema &S,
2035                        CXXBaseOrMemberInitializer *Init,
2036                        CXXBaseOrMemberInitializer *&PrevInit) {
2037  if (!PrevInit) {
2038    PrevInit = Init;
2039    return false;
2040  }
2041
2042  if (FieldDecl *Field = Init->getMember())
2043    S.Diag(Init->getSourceLocation(),
2044           diag::err_multiple_mem_initialization)
2045      << Field->getDeclName()
2046      << Init->getSourceRange();
2047  else {
2048    Type *BaseClass = Init->getBaseClass();
2049    assert(BaseClass && "neither field nor base");
2050    S.Diag(Init->getSourceLocation(),
2051           diag::err_multiple_base_initialization)
2052      << QualType(BaseClass, 0)
2053      << Init->getSourceRange();
2054  }
2055  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2056    << 0 << PrevInit->getSourceRange();
2057
2058  return true;
2059}
2060
2061typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2062typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2063
2064bool CheckRedundantUnionInit(Sema &S,
2065                             CXXBaseOrMemberInitializer *Init,
2066                             RedundantUnionMap &Unions) {
2067  FieldDecl *Field = Init->getMember();
2068  RecordDecl *Parent = Field->getParent();
2069  if (!Parent->isAnonymousStructOrUnion())
2070    return false;
2071
2072  NamedDecl *Child = Field;
2073  do {
2074    if (Parent->isUnion()) {
2075      UnionEntry &En = Unions[Parent];
2076      if (En.first && En.first != Child) {
2077        S.Diag(Init->getSourceLocation(),
2078               diag::err_multiple_mem_union_initialization)
2079          << Field->getDeclName()
2080          << Init->getSourceRange();
2081        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2082          << 0 << En.second->getSourceRange();
2083        return true;
2084      } else if (!En.first) {
2085        En.first = Child;
2086        En.second = Init;
2087      }
2088    }
2089
2090    Child = Parent;
2091    Parent = cast<RecordDecl>(Parent->getDeclContext());
2092  } while (Parent->isAnonymousStructOrUnion());
2093
2094  return false;
2095}
2096}
2097
2098/// ActOnMemInitializers - Handle the member initializers for a constructor.
2099void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2100                                SourceLocation ColonLoc,
2101                                MemInitTy **meminits, unsigned NumMemInits,
2102                                bool AnyErrors) {
2103  if (!ConstructorDecl)
2104    return;
2105
2106  AdjustDeclIfTemplate(ConstructorDecl);
2107
2108  CXXConstructorDecl *Constructor
2109    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2110
2111  if (!Constructor) {
2112    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2113    return;
2114  }
2115
2116  CXXBaseOrMemberInitializer **MemInits =
2117    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2118
2119  // Mapping for the duplicate initializers check.
2120  // For member initializers, this is keyed with a FieldDecl*.
2121  // For base initializers, this is keyed with a Type*.
2122  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2123
2124  // Mapping for the inconsistent anonymous-union initializers check.
2125  RedundantUnionMap MemberUnions;
2126
2127  bool HadError = false;
2128  for (unsigned i = 0; i < NumMemInits; i++) {
2129    CXXBaseOrMemberInitializer *Init = MemInits[i];
2130
2131    // Set the source order index.
2132    Init->setSourceOrder(i);
2133
2134    if (Init->isMemberInitializer()) {
2135      FieldDecl *Field = Init->getMember();
2136      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2137          CheckRedundantUnionInit(*this, Init, MemberUnions))
2138        HadError = true;
2139    } else {
2140      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2141      if (CheckRedundantInit(*this, Init, Members[Key]))
2142        HadError = true;
2143    }
2144  }
2145
2146  if (HadError)
2147    return;
2148
2149  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2150
2151  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2152}
2153
2154void
2155Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2156                                             CXXRecordDecl *ClassDecl) {
2157  // Ignore dependent contexts.
2158  if (ClassDecl->isDependentContext())
2159    return;
2160
2161  // FIXME: all the access-control diagnostics are positioned on the
2162  // field/base declaration.  That's probably good; that said, the
2163  // user might reasonably want to know why the destructor is being
2164  // emitted, and we currently don't say.
2165
2166  // Non-static data members.
2167  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2168       E = ClassDecl->field_end(); I != E; ++I) {
2169    FieldDecl *Field = *I;
2170    if (Field->isInvalidDecl())
2171      continue;
2172    QualType FieldType = Context.getBaseElementType(Field->getType());
2173
2174    const RecordType* RT = FieldType->getAs<RecordType>();
2175    if (!RT)
2176      continue;
2177
2178    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2179    if (FieldClassDecl->hasTrivialDestructor())
2180      continue;
2181
2182    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2183    CheckDestructorAccess(Field->getLocation(), Dtor,
2184                          PDiag(diag::err_access_dtor_field)
2185                            << Field->getDeclName()
2186                            << FieldType);
2187
2188    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2189  }
2190
2191  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2192
2193  // Bases.
2194  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2195       E = ClassDecl->bases_end(); Base != E; ++Base) {
2196    // Bases are always records in a well-formed non-dependent class.
2197    const RecordType *RT = Base->getType()->getAs<RecordType>();
2198
2199    // Remember direct virtual bases.
2200    if (Base->isVirtual())
2201      DirectVirtualBases.insert(RT);
2202
2203    // Ignore trivial destructors.
2204    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2205    if (BaseClassDecl->hasTrivialDestructor())
2206      continue;
2207
2208    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2209
2210    // FIXME: caret should be on the start of the class name
2211    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2212                          PDiag(diag::err_access_dtor_base)
2213                            << Base->getType()
2214                            << Base->getSourceRange());
2215
2216    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2217  }
2218
2219  // Virtual bases.
2220  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2221       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2222
2223    // Bases are always records in a well-formed non-dependent class.
2224    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2225
2226    // Ignore direct virtual bases.
2227    if (DirectVirtualBases.count(RT))
2228      continue;
2229
2230    // Ignore trivial destructors.
2231    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2232    if (BaseClassDecl->hasTrivialDestructor())
2233      continue;
2234
2235    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2236    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2237                          PDiag(diag::err_access_dtor_vbase)
2238                            << VBase->getType());
2239
2240    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2241  }
2242}
2243
2244void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2245  if (!CDtorDecl)
2246    return;
2247
2248  if (CXXConstructorDecl *Constructor
2249      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2250    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2251}
2252
2253bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2254                                  unsigned DiagID, AbstractDiagSelID SelID,
2255                                  const CXXRecordDecl *CurrentRD) {
2256  if (SelID == -1)
2257    return RequireNonAbstractType(Loc, T,
2258                                  PDiag(DiagID), CurrentRD);
2259  else
2260    return RequireNonAbstractType(Loc, T,
2261                                  PDiag(DiagID) << SelID, CurrentRD);
2262}
2263
2264bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2265                                  const PartialDiagnostic &PD,
2266                                  const CXXRecordDecl *CurrentRD) {
2267  if (!getLangOptions().CPlusPlus)
2268    return false;
2269
2270  if (const ArrayType *AT = Context.getAsArrayType(T))
2271    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2272                                  CurrentRD);
2273
2274  if (const PointerType *PT = T->getAs<PointerType>()) {
2275    // Find the innermost pointer type.
2276    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2277      PT = T;
2278
2279    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2280      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2281  }
2282
2283  const RecordType *RT = T->getAs<RecordType>();
2284  if (!RT)
2285    return false;
2286
2287  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2288
2289  if (CurrentRD && CurrentRD != RD)
2290    return false;
2291
2292  // FIXME: is this reasonable?  It matches current behavior, but....
2293  if (!RD->getDefinition())
2294    return false;
2295
2296  if (!RD->isAbstract())
2297    return false;
2298
2299  Diag(Loc, PD) << RD->getDeclName();
2300
2301  // Check if we've already emitted the list of pure virtual functions for this
2302  // class.
2303  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2304    return true;
2305
2306  CXXFinalOverriderMap FinalOverriders;
2307  RD->getFinalOverriders(FinalOverriders);
2308
2309  // Keep a set of seen pure methods so we won't diagnose the same method
2310  // more than once.
2311  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2312
2313  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2314                                   MEnd = FinalOverriders.end();
2315       M != MEnd;
2316       ++M) {
2317    for (OverridingMethods::iterator SO = M->second.begin(),
2318                                  SOEnd = M->second.end();
2319         SO != SOEnd; ++SO) {
2320      // C++ [class.abstract]p4:
2321      //   A class is abstract if it contains or inherits at least one
2322      //   pure virtual function for which the final overrider is pure
2323      //   virtual.
2324
2325      //
2326      if (SO->second.size() != 1)
2327        continue;
2328
2329      if (!SO->second.front().Method->isPure())
2330        continue;
2331
2332      if (!SeenPureMethods.insert(SO->second.front().Method))
2333        continue;
2334
2335      Diag(SO->second.front().Method->getLocation(),
2336           diag::note_pure_virtual_function)
2337        << SO->second.front().Method->getDeclName();
2338    }
2339  }
2340
2341  if (!PureVirtualClassDiagSet)
2342    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2343  PureVirtualClassDiagSet->insert(RD);
2344
2345  return true;
2346}
2347
2348namespace {
2349  class AbstractClassUsageDiagnoser
2350    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2351    Sema &SemaRef;
2352    CXXRecordDecl *AbstractClass;
2353
2354    bool VisitDeclContext(const DeclContext *DC) {
2355      bool Invalid = false;
2356
2357      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2358           E = DC->decls_end(); I != E; ++I)
2359        Invalid |= Visit(*I);
2360
2361      return Invalid;
2362    }
2363
2364  public:
2365    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2366      : SemaRef(SemaRef), AbstractClass(ac) {
2367        Visit(SemaRef.Context.getTranslationUnitDecl());
2368    }
2369
2370    bool VisitFunctionDecl(const FunctionDecl *FD) {
2371      if (FD->isThisDeclarationADefinition()) {
2372        // No need to do the check if we're in a definition, because it requires
2373        // that the return/param types are complete.
2374        // because that requires
2375        return VisitDeclContext(FD);
2376      }
2377
2378      // Check the return type.
2379      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2380      bool Invalid =
2381        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2382                                       diag::err_abstract_type_in_decl,
2383                                       Sema::AbstractReturnType,
2384                                       AbstractClass);
2385
2386      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2387           E = FD->param_end(); I != E; ++I) {
2388        const ParmVarDecl *VD = *I;
2389        Invalid |=
2390          SemaRef.RequireNonAbstractType(VD->getLocation(),
2391                                         VD->getOriginalType(),
2392                                         diag::err_abstract_type_in_decl,
2393                                         Sema::AbstractParamType,
2394                                         AbstractClass);
2395      }
2396
2397      return Invalid;
2398    }
2399
2400    bool VisitDecl(const Decl* D) {
2401      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2402        return VisitDeclContext(DC);
2403
2404      return false;
2405    }
2406  };
2407}
2408
2409/// \brief Perform semantic checks on a class definition that has been
2410/// completing, introducing implicitly-declared members, checking for
2411/// abstract types, etc.
2412void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2413  if (!Record || Record->isInvalidDecl())
2414    return;
2415
2416  if (!Record->isDependentType())
2417    AddImplicitlyDeclaredMembersToClass(S, Record);
2418
2419  if (Record->isInvalidDecl())
2420    return;
2421
2422  // Set access bits correctly on the directly-declared conversions.
2423  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2424  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2425    Convs->setAccess(I, (*I)->getAccess());
2426
2427  // Determine whether we need to check for final overriders. We do
2428  // this either when there are virtual base classes (in which case we
2429  // may end up finding multiple final overriders for a given virtual
2430  // function) or any of the base classes is abstract (in which case
2431  // we might detect that this class is abstract).
2432  bool CheckFinalOverriders = false;
2433  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2434      !Record->isDependentType()) {
2435    if (Record->getNumVBases())
2436      CheckFinalOverriders = true;
2437    else if (!Record->isAbstract()) {
2438      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2439                                                 BEnd = Record->bases_end();
2440           B != BEnd; ++B) {
2441        CXXRecordDecl *BaseDecl
2442          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2443        if (BaseDecl->isAbstract()) {
2444          CheckFinalOverriders = true;
2445          break;
2446        }
2447      }
2448    }
2449  }
2450
2451  if (CheckFinalOverriders) {
2452    CXXFinalOverriderMap FinalOverriders;
2453    Record->getFinalOverriders(FinalOverriders);
2454
2455    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2456                                     MEnd = FinalOverriders.end();
2457         M != MEnd; ++M) {
2458      for (OverridingMethods::iterator SO = M->second.begin(),
2459                                    SOEnd = M->second.end();
2460           SO != SOEnd; ++SO) {
2461        assert(SO->second.size() > 0 &&
2462               "All virtual functions have overridding virtual functions");
2463        if (SO->second.size() == 1) {
2464          // C++ [class.abstract]p4:
2465          //   A class is abstract if it contains or inherits at least one
2466          //   pure virtual function for which the final overrider is pure
2467          //   virtual.
2468          if (SO->second.front().Method->isPure())
2469            Record->setAbstract(true);
2470          continue;
2471        }
2472
2473        // C++ [class.virtual]p2:
2474        //   In a derived class, if a virtual member function of a base
2475        //   class subobject has more than one final overrider the
2476        //   program is ill-formed.
2477        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2478          << (NamedDecl *)M->first << Record;
2479        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2480        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2481                                                 OMEnd = SO->second.end();
2482             OM != OMEnd; ++OM)
2483          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2484            << (NamedDecl *)M->first << OM->Method->getParent();
2485
2486        Record->setInvalidDecl();
2487      }
2488    }
2489  }
2490
2491  if (Record->isAbstract() && !Record->isInvalidDecl())
2492    (void)AbstractClassUsageDiagnoser(*this, Record);
2493
2494  // If this is not an aggregate type and has no user-declared constructor,
2495  // complain about any non-static data members of reference or const scalar
2496  // type, since they will never get initializers.
2497  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2498      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2499    bool Complained = false;
2500    for (RecordDecl::field_iterator F = Record->field_begin(),
2501                                 FEnd = Record->field_end();
2502         F != FEnd; ++F) {
2503      if (F->getType()->isReferenceType() ||
2504          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2505        if (!Complained) {
2506          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2507            << Record->getTagKind() << Record;
2508          Complained = true;
2509        }
2510
2511        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2512          << F->getType()->isReferenceType()
2513          << F->getDeclName();
2514      }
2515    }
2516  }
2517
2518  if (Record->isDynamicClass())
2519    DynamicClasses.push_back(Record);
2520}
2521
2522void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2523                                             DeclPtrTy TagDecl,
2524                                             SourceLocation LBrac,
2525                                             SourceLocation RBrac,
2526                                             AttributeList *AttrList) {
2527  if (!TagDecl)
2528    return;
2529
2530  AdjustDeclIfTemplate(TagDecl);
2531
2532  ActOnFields(S, RLoc, TagDecl,
2533              (DeclPtrTy*)FieldCollector->getCurFields(),
2534              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2535
2536  CheckCompletedCXXClass(S,
2537                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2538}
2539
2540/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2541/// special functions, such as the default constructor, copy
2542/// constructor, or destructor, to the given C++ class (C++
2543/// [special]p1).  This routine can only be executed just before the
2544/// definition of the class is complete.
2545///
2546/// The scope, if provided, is the class scope.
2547void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2548                                               CXXRecordDecl *ClassDecl) {
2549  CanQualType ClassType
2550    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2551
2552  // FIXME: Implicit declarations have exception specifications, which are
2553  // the union of the specifications of the implicitly called functions.
2554
2555  if (!ClassDecl->hasUserDeclaredConstructor()) {
2556    // C++ [class.ctor]p5:
2557    //   A default constructor for a class X is a constructor of class X
2558    //   that can be called without an argument. If there is no
2559    //   user-declared constructor for class X, a default constructor is
2560    //   implicitly declared. An implicitly-declared default constructor
2561    //   is an inline public member of its class.
2562    DeclarationName Name
2563      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2564    CXXConstructorDecl *DefaultCon =
2565      CXXConstructorDecl::Create(Context, ClassDecl,
2566                                 ClassDecl->getLocation(), Name,
2567                                 Context.getFunctionType(Context.VoidTy,
2568                                                         0, 0, false, 0,
2569                                                         /*FIXME*/false, false,
2570                                                         0, 0,
2571                                                       FunctionType::ExtInfo()),
2572                                 /*TInfo=*/0,
2573                                 /*isExplicit=*/false,
2574                                 /*isInline=*/true,
2575                                 /*isImplicitlyDeclared=*/true);
2576    DefaultCon->setAccess(AS_public);
2577    DefaultCon->setImplicit();
2578    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2579    if (S)
2580      PushOnScopeChains(DefaultCon, S, true);
2581    else
2582      ClassDecl->addDecl(DefaultCon);
2583  }
2584
2585  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2586    // C++ [class.copy]p4:
2587    //   If the class definition does not explicitly declare a copy
2588    //   constructor, one is declared implicitly.
2589
2590    // C++ [class.copy]p5:
2591    //   The implicitly-declared copy constructor for a class X will
2592    //   have the form
2593    //
2594    //       X::X(const X&)
2595    //
2596    //   if
2597    bool HasConstCopyConstructor = true;
2598
2599    //     -- each direct or virtual base class B of X has a copy
2600    //        constructor whose first parameter is of type const B& or
2601    //        const volatile B&, and
2602    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2603         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2604      const CXXRecordDecl *BaseClassDecl
2605        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2606      HasConstCopyConstructor
2607        = BaseClassDecl->hasConstCopyConstructor(Context);
2608    }
2609
2610    //     -- for all the nonstatic data members of X that are of a
2611    //        class type M (or array thereof), each such class type
2612    //        has a copy constructor whose first parameter is of type
2613    //        const M& or const volatile M&.
2614    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2615         HasConstCopyConstructor && Field != ClassDecl->field_end();
2616         ++Field) {
2617      QualType FieldType = (*Field)->getType();
2618      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2619        FieldType = Array->getElementType();
2620      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2621        const CXXRecordDecl *FieldClassDecl
2622          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2623        HasConstCopyConstructor
2624          = FieldClassDecl->hasConstCopyConstructor(Context);
2625      }
2626    }
2627
2628    //   Otherwise, the implicitly declared copy constructor will have
2629    //   the form
2630    //
2631    //       X::X(X&)
2632    QualType ArgType = ClassType;
2633    if (HasConstCopyConstructor)
2634      ArgType = ArgType.withConst();
2635    ArgType = Context.getLValueReferenceType(ArgType);
2636
2637    //   An implicitly-declared copy constructor is an inline public
2638    //   member of its class.
2639    DeclarationName Name
2640      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2641    CXXConstructorDecl *CopyConstructor
2642      = CXXConstructorDecl::Create(Context, ClassDecl,
2643                                   ClassDecl->getLocation(), Name,
2644                                   Context.getFunctionType(Context.VoidTy,
2645                                                           &ArgType, 1,
2646                                                           false, 0,
2647                                               /*FIXME: hasExceptionSpec*/false,
2648                                                           false, 0, 0,
2649                                                       FunctionType::ExtInfo()),
2650                                   /*TInfo=*/0,
2651                                   /*isExplicit=*/false,
2652                                   /*isInline=*/true,
2653                                   /*isImplicitlyDeclared=*/true);
2654    CopyConstructor->setAccess(AS_public);
2655    CopyConstructor->setImplicit();
2656    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2657
2658    // Add the parameter to the constructor.
2659    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2660                                                 ClassDecl->getLocation(),
2661                                                 /*IdentifierInfo=*/0,
2662                                                 ArgType, /*TInfo=*/0,
2663                                                 VarDecl::None,
2664                                                 VarDecl::None, 0);
2665    CopyConstructor->setParams(&FromParam, 1);
2666    if (S)
2667      PushOnScopeChains(CopyConstructor, S, true);
2668    else
2669      ClassDecl->addDecl(CopyConstructor);
2670  }
2671
2672  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2673    // Note: The following rules are largely analoguous to the copy
2674    // constructor rules. Note that virtual bases are not taken into account
2675    // for determining the argument type of the operator. Note also that
2676    // operators taking an object instead of a reference are allowed.
2677    //
2678    // C++ [class.copy]p10:
2679    //   If the class definition does not explicitly declare a copy
2680    //   assignment operator, one is declared implicitly.
2681    //   The implicitly-defined copy assignment operator for a class X
2682    //   will have the form
2683    //
2684    //       X& X::operator=(const X&)
2685    //
2686    //   if
2687    bool HasConstCopyAssignment = true;
2688
2689    //       -- each direct base class B of X has a copy assignment operator
2690    //          whose parameter is of type const B&, const volatile B& or B,
2691    //          and
2692    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2693         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2694      assert(!Base->getType()->isDependentType() &&
2695            "Cannot generate implicit members for class with dependent bases.");
2696      const CXXRecordDecl *BaseClassDecl
2697        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2698      const CXXMethodDecl *MD = 0;
2699      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2700                                                                     MD);
2701    }
2702
2703    //       -- for all the nonstatic data members of X that are of a class
2704    //          type M (or array thereof), each such class type has a copy
2705    //          assignment operator whose parameter is of type const M&,
2706    //          const volatile M& or M.
2707    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2708         HasConstCopyAssignment && Field != ClassDecl->field_end();
2709         ++Field) {
2710      QualType FieldType = (*Field)->getType();
2711      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2712        FieldType = Array->getElementType();
2713      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2714        const CXXRecordDecl *FieldClassDecl
2715          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2716        const CXXMethodDecl *MD = 0;
2717        HasConstCopyAssignment
2718          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2719      }
2720    }
2721
2722    //   Otherwise, the implicitly declared copy assignment operator will
2723    //   have the form
2724    //
2725    //       X& X::operator=(X&)
2726    QualType ArgType = ClassType;
2727    QualType RetType = Context.getLValueReferenceType(ArgType);
2728    if (HasConstCopyAssignment)
2729      ArgType = ArgType.withConst();
2730    ArgType = Context.getLValueReferenceType(ArgType);
2731
2732    //   An implicitly-declared copy assignment operator is an inline public
2733    //   member of its class.
2734    DeclarationName Name =
2735      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2736    CXXMethodDecl *CopyAssignment =
2737      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2738                            Context.getFunctionType(RetType, &ArgType, 1,
2739                                                    false, 0,
2740                                              /*FIXME: hasExceptionSpec*/false,
2741                                                    false, 0, 0,
2742                                                    FunctionType::ExtInfo()),
2743                            /*TInfo=*/0, /*isStatic=*/false,
2744                            /*StorageClassAsWritten=*/FunctionDecl::None,
2745                            /*isInline=*/true);
2746    CopyAssignment->setAccess(AS_public);
2747    CopyAssignment->setImplicit();
2748    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2749    CopyAssignment->setCopyAssignment(true);
2750
2751    // Add the parameter to the operator.
2752    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2753                                                 ClassDecl->getLocation(),
2754                                                 /*Id=*/0,
2755                                                 ArgType, /*TInfo=*/0,
2756                                                 VarDecl::None,
2757                                                 VarDecl::None, 0);
2758    CopyAssignment->setParams(&FromParam, 1);
2759
2760    // Don't call addedAssignmentOperator. There is no way to distinguish an
2761    // implicit from an explicit assignment operator.
2762    if (S)
2763      PushOnScopeChains(CopyAssignment, S, true);
2764    else
2765      ClassDecl->addDecl(CopyAssignment);
2766    AddOverriddenMethods(ClassDecl, CopyAssignment);
2767  }
2768
2769  if (!ClassDecl->hasUserDeclaredDestructor()) {
2770    // C++ [class.dtor]p2:
2771    //   If a class has no user-declared destructor, a destructor is
2772    //   declared implicitly. An implicitly-declared destructor is an
2773    //   inline public member of its class.
2774    QualType Ty = Context.getFunctionType(Context.VoidTy,
2775                                          0, 0, false, 0,
2776                                          /*FIXME: hasExceptionSpec*/false,
2777                                          false, 0, 0, FunctionType::ExtInfo());
2778
2779    DeclarationName Name
2780      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2781    CXXDestructorDecl *Destructor
2782      = CXXDestructorDecl::Create(Context, ClassDecl,
2783                                  ClassDecl->getLocation(), Name, Ty,
2784                                  /*isInline=*/true,
2785                                  /*isImplicitlyDeclared=*/true);
2786    Destructor->setAccess(AS_public);
2787    Destructor->setImplicit();
2788    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2789    if (S)
2790      PushOnScopeChains(Destructor, S, true);
2791    else
2792      ClassDecl->addDecl(Destructor);
2793
2794    // This could be uniqued if it ever proves significant.
2795    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2796
2797    AddOverriddenMethods(ClassDecl, Destructor);
2798  }
2799}
2800
2801void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2802  Decl *D = TemplateD.getAs<Decl>();
2803  if (!D)
2804    return;
2805
2806  TemplateParameterList *Params = 0;
2807  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2808    Params = Template->getTemplateParameters();
2809  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2810           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2811    Params = PartialSpec->getTemplateParameters();
2812  else
2813    return;
2814
2815  for (TemplateParameterList::iterator Param = Params->begin(),
2816                                    ParamEnd = Params->end();
2817       Param != ParamEnd; ++Param) {
2818    NamedDecl *Named = cast<NamedDecl>(*Param);
2819    if (Named->getDeclName()) {
2820      S->AddDecl(DeclPtrTy::make(Named));
2821      IdResolver.AddDecl(Named);
2822    }
2823  }
2824}
2825
2826void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2827  if (!RecordD) return;
2828  AdjustDeclIfTemplate(RecordD);
2829  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2830  PushDeclContext(S, Record);
2831}
2832
2833void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2834  if (!RecordD) return;
2835  PopDeclContext();
2836}
2837
2838/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2839/// parsing a top-level (non-nested) C++ class, and we are now
2840/// parsing those parts of the given Method declaration that could
2841/// not be parsed earlier (C++ [class.mem]p2), such as default
2842/// arguments. This action should enter the scope of the given
2843/// Method declaration as if we had just parsed the qualified method
2844/// name. However, it should not bring the parameters into scope;
2845/// that will be performed by ActOnDelayedCXXMethodParameter.
2846void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2847}
2848
2849/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2850/// C++ method declaration. We're (re-)introducing the given
2851/// function parameter into scope for use in parsing later parts of
2852/// the method declaration. For example, we could see an
2853/// ActOnParamDefaultArgument event for this parameter.
2854void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2855  if (!ParamD)
2856    return;
2857
2858  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2859
2860  // If this parameter has an unparsed default argument, clear it out
2861  // to make way for the parsed default argument.
2862  if (Param->hasUnparsedDefaultArg())
2863    Param->setDefaultArg(0);
2864
2865  S->AddDecl(DeclPtrTy::make(Param));
2866  if (Param->getDeclName())
2867    IdResolver.AddDecl(Param);
2868}
2869
2870/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2871/// processing the delayed method declaration for Method. The method
2872/// declaration is now considered finished. There may be a separate
2873/// ActOnStartOfFunctionDef action later (not necessarily
2874/// immediately!) for this method, if it was also defined inside the
2875/// class body.
2876void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2877  if (!MethodD)
2878    return;
2879
2880  AdjustDeclIfTemplate(MethodD);
2881
2882  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2883
2884  // Now that we have our default arguments, check the constructor
2885  // again. It could produce additional diagnostics or affect whether
2886  // the class has implicitly-declared destructors, among other
2887  // things.
2888  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2889    CheckConstructor(Constructor);
2890
2891  // Check the default arguments, which we may have added.
2892  if (!Method->isInvalidDecl())
2893    CheckCXXDefaultArguments(Method);
2894}
2895
2896/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2897/// the well-formedness of the constructor declarator @p D with type @p
2898/// R. If there are any errors in the declarator, this routine will
2899/// emit diagnostics and set the invalid bit to true.  In any case, the type
2900/// will be updated to reflect a well-formed type for the constructor and
2901/// returned.
2902QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2903                                          FunctionDecl::StorageClass &SC) {
2904  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2905
2906  // C++ [class.ctor]p3:
2907  //   A constructor shall not be virtual (10.3) or static (9.4). A
2908  //   constructor can be invoked for a const, volatile or const
2909  //   volatile object. A constructor shall not be declared const,
2910  //   volatile, or const volatile (9.3.2).
2911  if (isVirtual) {
2912    if (!D.isInvalidType())
2913      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2914        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2915        << SourceRange(D.getIdentifierLoc());
2916    D.setInvalidType();
2917  }
2918  if (SC == FunctionDecl::Static) {
2919    if (!D.isInvalidType())
2920      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2921        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2922        << SourceRange(D.getIdentifierLoc());
2923    D.setInvalidType();
2924    SC = FunctionDecl::None;
2925  }
2926
2927  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2928  if (FTI.TypeQuals != 0) {
2929    if (FTI.TypeQuals & Qualifiers::Const)
2930      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2931        << "const" << SourceRange(D.getIdentifierLoc());
2932    if (FTI.TypeQuals & Qualifiers::Volatile)
2933      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2934        << "volatile" << SourceRange(D.getIdentifierLoc());
2935    if (FTI.TypeQuals & Qualifiers::Restrict)
2936      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2937        << "restrict" << SourceRange(D.getIdentifierLoc());
2938  }
2939
2940  // Rebuild the function type "R" without any type qualifiers (in
2941  // case any of the errors above fired) and with "void" as the
2942  // return type, since constructors don't have return types. We
2943  // *always* have to do this, because GetTypeForDeclarator will
2944  // put in a result type of "int" when none was specified.
2945  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2946  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2947                                 Proto->getNumArgs(),
2948                                 Proto->isVariadic(), 0,
2949                                 Proto->hasExceptionSpec(),
2950                                 Proto->hasAnyExceptionSpec(),
2951                                 Proto->getNumExceptions(),
2952                                 Proto->exception_begin(),
2953                                 Proto->getExtInfo());
2954}
2955
2956/// CheckConstructor - Checks a fully-formed constructor for
2957/// well-formedness, issuing any diagnostics required. Returns true if
2958/// the constructor declarator is invalid.
2959void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2960  CXXRecordDecl *ClassDecl
2961    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2962  if (!ClassDecl)
2963    return Constructor->setInvalidDecl();
2964
2965  // C++ [class.copy]p3:
2966  //   A declaration of a constructor for a class X is ill-formed if
2967  //   its first parameter is of type (optionally cv-qualified) X and
2968  //   either there are no other parameters or else all other
2969  //   parameters have default arguments.
2970  if (!Constructor->isInvalidDecl() &&
2971      ((Constructor->getNumParams() == 1) ||
2972       (Constructor->getNumParams() > 1 &&
2973        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2974      Constructor->getTemplateSpecializationKind()
2975                                              != TSK_ImplicitInstantiation) {
2976    QualType ParamType = Constructor->getParamDecl(0)->getType();
2977    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2978    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2979      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2980      const char *ConstRef
2981        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2982                                                        : " const &";
2983      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2984        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2985
2986      // FIXME: Rather that making the constructor invalid, we should endeavor
2987      // to fix the type.
2988      Constructor->setInvalidDecl();
2989    }
2990  }
2991
2992  // Notify the class that we've added a constructor.  In principle we
2993  // don't need to do this for out-of-line declarations; in practice
2994  // we only instantiate the most recent declaration of a method, so
2995  // we have to call this for everything but friends.
2996  if (!Constructor->getFriendObjectKind())
2997    ClassDecl->addedConstructor(Context, Constructor);
2998}
2999
3000/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3001/// issuing any diagnostics required. Returns true on error.
3002bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3003  CXXRecordDecl *RD = Destructor->getParent();
3004
3005  if (Destructor->isVirtual()) {
3006    SourceLocation Loc;
3007
3008    if (!Destructor->isImplicit())
3009      Loc = Destructor->getLocation();
3010    else
3011      Loc = RD->getLocation();
3012
3013    // If we have a virtual destructor, look up the deallocation function
3014    FunctionDecl *OperatorDelete = 0;
3015    DeclarationName Name =
3016    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3017    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3018      return true;
3019
3020    Destructor->setOperatorDelete(OperatorDelete);
3021  }
3022
3023  return false;
3024}
3025
3026static inline bool
3027FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3028  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3029          FTI.ArgInfo[0].Param &&
3030          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3031}
3032
3033/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3034/// the well-formednes of the destructor declarator @p D with type @p
3035/// R. If there are any errors in the declarator, this routine will
3036/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3037/// will be updated to reflect a well-formed type for the destructor and
3038/// returned.
3039QualType Sema::CheckDestructorDeclarator(Declarator &D,
3040                                         FunctionDecl::StorageClass& SC) {
3041  // C++ [class.dtor]p1:
3042  //   [...] A typedef-name that names a class is a class-name
3043  //   (7.1.3); however, a typedef-name that names a class shall not
3044  //   be used as the identifier in the declarator for a destructor
3045  //   declaration.
3046  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3047  if (isa<TypedefType>(DeclaratorType)) {
3048    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3049      << DeclaratorType;
3050    D.setInvalidType();
3051  }
3052
3053  // C++ [class.dtor]p2:
3054  //   A destructor is used to destroy objects of its class type. A
3055  //   destructor takes no parameters, and no return type can be
3056  //   specified for it (not even void). The address of a destructor
3057  //   shall not be taken. A destructor shall not be static. A
3058  //   destructor can be invoked for a const, volatile or const
3059  //   volatile object. A destructor shall not be declared const,
3060  //   volatile or const volatile (9.3.2).
3061  if (SC == FunctionDecl::Static) {
3062    if (!D.isInvalidType())
3063      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3064        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3065        << SourceRange(D.getIdentifierLoc());
3066    SC = FunctionDecl::None;
3067    D.setInvalidType();
3068  }
3069  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3070    // Destructors don't have return types, but the parser will
3071    // happily parse something like:
3072    //
3073    //   class X {
3074    //     float ~X();
3075    //   };
3076    //
3077    // The return type will be eliminated later.
3078    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3079      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3080      << SourceRange(D.getIdentifierLoc());
3081  }
3082
3083  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3084  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3085    if (FTI.TypeQuals & Qualifiers::Const)
3086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3087        << "const" << SourceRange(D.getIdentifierLoc());
3088    if (FTI.TypeQuals & Qualifiers::Volatile)
3089      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3090        << "volatile" << SourceRange(D.getIdentifierLoc());
3091    if (FTI.TypeQuals & Qualifiers::Restrict)
3092      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3093        << "restrict" << SourceRange(D.getIdentifierLoc());
3094    D.setInvalidType();
3095  }
3096
3097  // Make sure we don't have any parameters.
3098  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3099    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3100
3101    // Delete the parameters.
3102    FTI.freeArgs();
3103    D.setInvalidType();
3104  }
3105
3106  // Make sure the destructor isn't variadic.
3107  if (FTI.isVariadic) {
3108    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3109    D.setInvalidType();
3110  }
3111
3112  // Rebuild the function type "R" without any type qualifiers or
3113  // parameters (in case any of the errors above fired) and with
3114  // "void" as the return type, since destructors don't have return
3115  // types. We *always* have to do this, because GetTypeForDeclarator
3116  // will put in a result type of "int" when none was specified.
3117  // FIXME: Exceptions!
3118  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3119                                 false, false, 0, 0, FunctionType::ExtInfo());
3120}
3121
3122/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3123/// well-formednes of the conversion function declarator @p D with
3124/// type @p R. If there are any errors in the declarator, this routine
3125/// will emit diagnostics and return true. Otherwise, it will return
3126/// false. Either way, the type @p R will be updated to reflect a
3127/// well-formed type for the conversion operator.
3128void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3129                                     FunctionDecl::StorageClass& SC) {
3130  // C++ [class.conv.fct]p1:
3131  //   Neither parameter types nor return type can be specified. The
3132  //   type of a conversion function (8.3.5) is "function taking no
3133  //   parameter returning conversion-type-id."
3134  if (SC == FunctionDecl::Static) {
3135    if (!D.isInvalidType())
3136      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3137        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3138        << SourceRange(D.getIdentifierLoc());
3139    D.setInvalidType();
3140    SC = FunctionDecl::None;
3141  }
3142
3143  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3144
3145  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3146    // Conversion functions don't have return types, but the parser will
3147    // happily parse something like:
3148    //
3149    //   class X {
3150    //     float operator bool();
3151    //   };
3152    //
3153    // The return type will be changed later anyway.
3154    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3155      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3156      << SourceRange(D.getIdentifierLoc());
3157    D.setInvalidType();
3158  }
3159
3160  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3161
3162  // Make sure we don't have any parameters.
3163  if (Proto->getNumArgs() > 0) {
3164    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3165
3166    // Delete the parameters.
3167    D.getTypeObject(0).Fun.freeArgs();
3168    D.setInvalidType();
3169  } else if (Proto->isVariadic()) {
3170    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3171    D.setInvalidType();
3172  }
3173
3174  // Diagnose "&operator bool()" and other such nonsense.  This
3175  // is actually a gcc extension which we don't support.
3176  if (Proto->getResultType() != ConvType) {
3177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3178      << Proto->getResultType();
3179    D.setInvalidType();
3180    ConvType = Proto->getResultType();
3181  }
3182
3183  // C++ [class.conv.fct]p4:
3184  //   The conversion-type-id shall not represent a function type nor
3185  //   an array type.
3186  if (ConvType->isArrayType()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3188    ConvType = Context.getPointerType(ConvType);
3189    D.setInvalidType();
3190  } else if (ConvType->isFunctionType()) {
3191    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3192    ConvType = Context.getPointerType(ConvType);
3193    D.setInvalidType();
3194  }
3195
3196  // Rebuild the function type "R" without any parameters (in case any
3197  // of the errors above fired) and with the conversion type as the
3198  // return type.
3199  if (D.isInvalidType()) {
3200    R = Context.getFunctionType(ConvType, 0, 0, false,
3201                                Proto->getTypeQuals(),
3202                                Proto->hasExceptionSpec(),
3203                                Proto->hasAnyExceptionSpec(),
3204                                Proto->getNumExceptions(),
3205                                Proto->exception_begin(),
3206                                Proto->getExtInfo());
3207  }
3208
3209  // C++0x explicit conversion operators.
3210  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3211    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3212         diag::warn_explicit_conversion_functions)
3213      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3214}
3215
3216/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3217/// the declaration of the given C++ conversion function. This routine
3218/// is responsible for recording the conversion function in the C++
3219/// class, if possible.
3220Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3221  assert(Conversion && "Expected to receive a conversion function declaration");
3222
3223  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3224
3225  // Make sure we aren't redeclaring the conversion function.
3226  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3227
3228  // C++ [class.conv.fct]p1:
3229  //   [...] A conversion function is never used to convert a
3230  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3231  //   same object type (or a reference to it), to a (possibly
3232  //   cv-qualified) base class of that type (or a reference to it),
3233  //   or to (possibly cv-qualified) void.
3234  // FIXME: Suppress this warning if the conversion function ends up being a
3235  // virtual function that overrides a virtual function in a base class.
3236  QualType ClassType
3237    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3238  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3239    ConvType = ConvTypeRef->getPointeeType();
3240  if (ConvType->isRecordType()) {
3241    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3242    if (ConvType == ClassType)
3243      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3244        << ClassType;
3245    else if (IsDerivedFrom(ClassType, ConvType))
3246      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3247        <<  ClassType << ConvType;
3248  } else if (ConvType->isVoidType()) {
3249    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3250      << ClassType << ConvType;
3251  }
3252
3253  if (Conversion->getPrimaryTemplate()) {
3254    // ignore specializations
3255  } else if (Conversion->getPreviousDeclaration()) {
3256    if (FunctionTemplateDecl *ConversionTemplate
3257                                  = Conversion->getDescribedFunctionTemplate()) {
3258      if (ClassDecl->replaceConversion(
3259                                   ConversionTemplate->getPreviousDeclaration(),
3260                                       ConversionTemplate))
3261        return DeclPtrTy::make(ConversionTemplate);
3262    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3263                                            Conversion))
3264      return DeclPtrTy::make(Conversion);
3265    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3266  } else if (FunctionTemplateDecl *ConversionTemplate
3267               = Conversion->getDescribedFunctionTemplate())
3268    ClassDecl->addConversionFunction(ConversionTemplate);
3269  else
3270    ClassDecl->addConversionFunction(Conversion);
3271
3272  return DeclPtrTy::make(Conversion);
3273}
3274
3275//===----------------------------------------------------------------------===//
3276// Namespace Handling
3277//===----------------------------------------------------------------------===//
3278
3279/// ActOnStartNamespaceDef - This is called at the start of a namespace
3280/// definition.
3281Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3282                                             SourceLocation IdentLoc,
3283                                             IdentifierInfo *II,
3284                                             SourceLocation LBrace,
3285                                             AttributeList *AttrList) {
3286  NamespaceDecl *Namespc =
3287      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3288  Namespc->setLBracLoc(LBrace);
3289
3290  Scope *DeclRegionScope = NamespcScope->getParent();
3291
3292  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3293
3294  if (II) {
3295    // C++ [namespace.def]p2:
3296    // The identifier in an original-namespace-definition shall not have been
3297    // previously defined in the declarative region in which the
3298    // original-namespace-definition appears. The identifier in an
3299    // original-namespace-definition is the name of the namespace. Subsequently
3300    // in that declarative region, it is treated as an original-namespace-name.
3301
3302    NamedDecl *PrevDecl
3303      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3304                         ForRedeclaration);
3305
3306    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3307      // This is an extended namespace definition.
3308      // Attach this namespace decl to the chain of extended namespace
3309      // definitions.
3310      OrigNS->setNextNamespace(Namespc);
3311      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3312
3313      // Remove the previous declaration from the scope.
3314      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3315        IdResolver.RemoveDecl(OrigNS);
3316        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3317      }
3318    } else if (PrevDecl) {
3319      // This is an invalid name redefinition.
3320      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3321       << Namespc->getDeclName();
3322      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3323      Namespc->setInvalidDecl();
3324      // Continue on to push Namespc as current DeclContext and return it.
3325    } else if (II->isStr("std") &&
3326               CurContext->getLookupContext()->isTranslationUnit()) {
3327      // This is the first "real" definition of the namespace "std", so update
3328      // our cache of the "std" namespace to point at this definition.
3329      if (StdNamespace) {
3330        // We had already defined a dummy namespace "std". Link this new
3331        // namespace definition to the dummy namespace "std".
3332        StdNamespace->setNextNamespace(Namespc);
3333        StdNamespace->setLocation(IdentLoc);
3334        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3335      }
3336
3337      // Make our StdNamespace cache point at the first real definition of the
3338      // "std" namespace.
3339      StdNamespace = Namespc;
3340    }
3341
3342    PushOnScopeChains(Namespc, DeclRegionScope);
3343  } else {
3344    // Anonymous namespaces.
3345    assert(Namespc->isAnonymousNamespace());
3346
3347    // Link the anonymous namespace into its parent.
3348    NamespaceDecl *PrevDecl;
3349    DeclContext *Parent = CurContext->getLookupContext();
3350    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3351      PrevDecl = TU->getAnonymousNamespace();
3352      TU->setAnonymousNamespace(Namespc);
3353    } else {
3354      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3355      PrevDecl = ND->getAnonymousNamespace();
3356      ND->setAnonymousNamespace(Namespc);
3357    }
3358
3359    // Link the anonymous namespace with its previous declaration.
3360    if (PrevDecl) {
3361      assert(PrevDecl->isAnonymousNamespace());
3362      assert(!PrevDecl->getNextNamespace());
3363      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3364      PrevDecl->setNextNamespace(Namespc);
3365    }
3366
3367    CurContext->addDecl(Namespc);
3368
3369    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3370    //   behaves as if it were replaced by
3371    //     namespace unique { /* empty body */ }
3372    //     using namespace unique;
3373    //     namespace unique { namespace-body }
3374    //   where all occurrences of 'unique' in a translation unit are
3375    //   replaced by the same identifier and this identifier differs
3376    //   from all other identifiers in the entire program.
3377
3378    // We just create the namespace with an empty name and then add an
3379    // implicit using declaration, just like the standard suggests.
3380    //
3381    // CodeGen enforces the "universally unique" aspect by giving all
3382    // declarations semantically contained within an anonymous
3383    // namespace internal linkage.
3384
3385    if (!PrevDecl) {
3386      UsingDirectiveDecl* UD
3387        = UsingDirectiveDecl::Create(Context, CurContext,
3388                                     /* 'using' */ LBrace,
3389                                     /* 'namespace' */ SourceLocation(),
3390                                     /* qualifier */ SourceRange(),
3391                                     /* NNS */ NULL,
3392                                     /* identifier */ SourceLocation(),
3393                                     Namespc,
3394                                     /* Ancestor */ CurContext);
3395      UD->setImplicit();
3396      CurContext->addDecl(UD);
3397    }
3398  }
3399
3400  // Although we could have an invalid decl (i.e. the namespace name is a
3401  // redefinition), push it as current DeclContext and try to continue parsing.
3402  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3403  // for the namespace has the declarations that showed up in that particular
3404  // namespace definition.
3405  PushDeclContext(NamespcScope, Namespc);
3406  return DeclPtrTy::make(Namespc);
3407}
3408
3409/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3410/// is a namespace alias, returns the namespace it points to.
3411static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3412  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3413    return AD->getNamespace();
3414  return dyn_cast_or_null<NamespaceDecl>(D);
3415}
3416
3417/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3418/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3419void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3420  Decl *Dcl = D.getAs<Decl>();
3421  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3422  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3423  Namespc->setRBracLoc(RBrace);
3424  PopDeclContext();
3425}
3426
3427Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3428                                          SourceLocation UsingLoc,
3429                                          SourceLocation NamespcLoc,
3430                                          CXXScopeSpec &SS,
3431                                          SourceLocation IdentLoc,
3432                                          IdentifierInfo *NamespcName,
3433                                          AttributeList *AttrList) {
3434  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3435  assert(NamespcName && "Invalid NamespcName.");
3436  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3437  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3438
3439  UsingDirectiveDecl *UDir = 0;
3440
3441  // Lookup namespace name.
3442  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3443  LookupParsedName(R, S, &SS);
3444  if (R.isAmbiguous())
3445    return DeclPtrTy();
3446
3447  if (!R.empty()) {
3448    NamedDecl *Named = R.getFoundDecl();
3449    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3450        && "expected namespace decl");
3451    // C++ [namespace.udir]p1:
3452    //   A using-directive specifies that the names in the nominated
3453    //   namespace can be used in the scope in which the
3454    //   using-directive appears after the using-directive. During
3455    //   unqualified name lookup (3.4.1), the names appear as if they
3456    //   were declared in the nearest enclosing namespace which
3457    //   contains both the using-directive and the nominated
3458    //   namespace. [Note: in this context, "contains" means "contains
3459    //   directly or indirectly". ]
3460
3461    // Find enclosing context containing both using-directive and
3462    // nominated namespace.
3463    NamespaceDecl *NS = getNamespaceDecl(Named);
3464    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3465    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3466      CommonAncestor = CommonAncestor->getParent();
3467
3468    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3469                                      SS.getRange(),
3470                                      (NestedNameSpecifier *)SS.getScopeRep(),
3471                                      IdentLoc, Named, CommonAncestor);
3472    PushUsingDirective(S, UDir);
3473  } else {
3474    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3475  }
3476
3477  // FIXME: We ignore attributes for now.
3478  delete AttrList;
3479  return DeclPtrTy::make(UDir);
3480}
3481
3482void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3483  // If scope has associated entity, then using directive is at namespace
3484  // or translation unit scope. We add UsingDirectiveDecls, into
3485  // it's lookup structure.
3486  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3487    Ctx->addDecl(UDir);
3488  else
3489    // Otherwise it is block-sope. using-directives will affect lookup
3490    // only to the end of scope.
3491    S->PushUsingDirective(DeclPtrTy::make(UDir));
3492}
3493
3494
3495Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3496                                            AccessSpecifier AS,
3497                                            bool HasUsingKeyword,
3498                                            SourceLocation UsingLoc,
3499                                            CXXScopeSpec &SS,
3500                                            UnqualifiedId &Name,
3501                                            AttributeList *AttrList,
3502                                            bool IsTypeName,
3503                                            SourceLocation TypenameLoc) {
3504  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3505
3506  switch (Name.getKind()) {
3507  case UnqualifiedId::IK_Identifier:
3508  case UnqualifiedId::IK_OperatorFunctionId:
3509  case UnqualifiedId::IK_LiteralOperatorId:
3510  case UnqualifiedId::IK_ConversionFunctionId:
3511    break;
3512
3513  case UnqualifiedId::IK_ConstructorName:
3514  case UnqualifiedId::IK_ConstructorTemplateId:
3515    // C++0x inherited constructors.
3516    if (getLangOptions().CPlusPlus0x) break;
3517
3518    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3519      << SS.getRange();
3520    return DeclPtrTy();
3521
3522  case UnqualifiedId::IK_DestructorName:
3523    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3524      << SS.getRange();
3525    return DeclPtrTy();
3526
3527  case UnqualifiedId::IK_TemplateId:
3528    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3529      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3530    return DeclPtrTy();
3531  }
3532
3533  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3534  if (!TargetName)
3535    return DeclPtrTy();
3536
3537  // Warn about using declarations.
3538  // TODO: store that the declaration was written without 'using' and
3539  // talk about access decls instead of using decls in the
3540  // diagnostics.
3541  if (!HasUsingKeyword) {
3542    UsingLoc = Name.getSourceRange().getBegin();
3543
3544    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3545      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3546  }
3547
3548  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3549                                        Name.getSourceRange().getBegin(),
3550                                        TargetName, AttrList,
3551                                        /* IsInstantiation */ false,
3552                                        IsTypeName, TypenameLoc);
3553  if (UD)
3554    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3555
3556  return DeclPtrTy::make(UD);
3557}
3558
3559/// Determines whether to create a using shadow decl for a particular
3560/// decl, given the set of decls existing prior to this using lookup.
3561bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3562                                const LookupResult &Previous) {
3563  // Diagnose finding a decl which is not from a base class of the
3564  // current class.  We do this now because there are cases where this
3565  // function will silently decide not to build a shadow decl, which
3566  // will pre-empt further diagnostics.
3567  //
3568  // We don't need to do this in C++0x because we do the check once on
3569  // the qualifier.
3570  //
3571  // FIXME: diagnose the following if we care enough:
3572  //   struct A { int foo; };
3573  //   struct B : A { using A::foo; };
3574  //   template <class T> struct C : A {};
3575  //   template <class T> struct D : C<T> { using B::foo; } // <---
3576  // This is invalid (during instantiation) in C++03 because B::foo
3577  // resolves to the using decl in B, which is not a base class of D<T>.
3578  // We can't diagnose it immediately because C<T> is an unknown
3579  // specialization.  The UsingShadowDecl in D<T> then points directly
3580  // to A::foo, which will look well-formed when we instantiate.
3581  // The right solution is to not collapse the shadow-decl chain.
3582  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3583    DeclContext *OrigDC = Orig->getDeclContext();
3584
3585    // Handle enums and anonymous structs.
3586    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3587    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3588    while (OrigRec->isAnonymousStructOrUnion())
3589      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3590
3591    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3592      if (OrigDC == CurContext) {
3593        Diag(Using->getLocation(),
3594             diag::err_using_decl_nested_name_specifier_is_current_class)
3595          << Using->getNestedNameRange();
3596        Diag(Orig->getLocation(), diag::note_using_decl_target);
3597        return true;
3598      }
3599
3600      Diag(Using->getNestedNameRange().getBegin(),
3601           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3602        << Using->getTargetNestedNameDecl()
3603        << cast<CXXRecordDecl>(CurContext)
3604        << Using->getNestedNameRange();
3605      Diag(Orig->getLocation(), diag::note_using_decl_target);
3606      return true;
3607    }
3608  }
3609
3610  if (Previous.empty()) return false;
3611
3612  NamedDecl *Target = Orig;
3613  if (isa<UsingShadowDecl>(Target))
3614    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3615
3616  // If the target happens to be one of the previous declarations, we
3617  // don't have a conflict.
3618  //
3619  // FIXME: but we might be increasing its access, in which case we
3620  // should redeclare it.
3621  NamedDecl *NonTag = 0, *Tag = 0;
3622  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3623         I != E; ++I) {
3624    NamedDecl *D = (*I)->getUnderlyingDecl();
3625    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3626      return false;
3627
3628    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3629  }
3630
3631  if (Target->isFunctionOrFunctionTemplate()) {
3632    FunctionDecl *FD;
3633    if (isa<FunctionTemplateDecl>(Target))
3634      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3635    else
3636      FD = cast<FunctionDecl>(Target);
3637
3638    NamedDecl *OldDecl = 0;
3639    switch (CheckOverload(FD, Previous, OldDecl)) {
3640    case Ovl_Overload:
3641      return false;
3642
3643    case Ovl_NonFunction:
3644      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3645      break;
3646
3647    // We found a decl with the exact signature.
3648    case Ovl_Match:
3649      if (isa<UsingShadowDecl>(OldDecl)) {
3650        // Silently ignore the possible conflict.
3651        return false;
3652      }
3653
3654      // If we're in a record, we want to hide the target, so we
3655      // return true (without a diagnostic) to tell the caller not to
3656      // build a shadow decl.
3657      if (CurContext->isRecord())
3658        return true;
3659
3660      // If we're not in a record, this is an error.
3661      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3662      break;
3663    }
3664
3665    Diag(Target->getLocation(), diag::note_using_decl_target);
3666    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3667    return true;
3668  }
3669
3670  // Target is not a function.
3671
3672  if (isa<TagDecl>(Target)) {
3673    // No conflict between a tag and a non-tag.
3674    if (!Tag) return false;
3675
3676    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3677    Diag(Target->getLocation(), diag::note_using_decl_target);
3678    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3679    return true;
3680  }
3681
3682  // No conflict between a tag and a non-tag.
3683  if (!NonTag) return false;
3684
3685  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3686  Diag(Target->getLocation(), diag::note_using_decl_target);
3687  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3688  return true;
3689}
3690
3691/// Builds a shadow declaration corresponding to a 'using' declaration.
3692UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3693                                            UsingDecl *UD,
3694                                            NamedDecl *Orig) {
3695
3696  // If we resolved to another shadow declaration, just coalesce them.
3697  NamedDecl *Target = Orig;
3698  if (isa<UsingShadowDecl>(Target)) {
3699    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3700    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3701  }
3702
3703  UsingShadowDecl *Shadow
3704    = UsingShadowDecl::Create(Context, CurContext,
3705                              UD->getLocation(), UD, Target);
3706  UD->addShadowDecl(Shadow);
3707
3708  if (S)
3709    PushOnScopeChains(Shadow, S);
3710  else
3711    CurContext->addDecl(Shadow);
3712  Shadow->setAccess(UD->getAccess());
3713
3714  // Register it as a conversion if appropriate.
3715  if (Shadow->getDeclName().getNameKind()
3716        == DeclarationName::CXXConversionFunctionName)
3717    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3718
3719  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3720    Shadow->setInvalidDecl();
3721
3722  return Shadow;
3723}
3724
3725/// Hides a using shadow declaration.  This is required by the current
3726/// using-decl implementation when a resolvable using declaration in a
3727/// class is followed by a declaration which would hide or override
3728/// one or more of the using decl's targets; for example:
3729///
3730///   struct Base { void foo(int); };
3731///   struct Derived : Base {
3732///     using Base::foo;
3733///     void foo(int);
3734///   };
3735///
3736/// The governing language is C++03 [namespace.udecl]p12:
3737///
3738///   When a using-declaration brings names from a base class into a
3739///   derived class scope, member functions in the derived class
3740///   override and/or hide member functions with the same name and
3741///   parameter types in a base class (rather than conflicting).
3742///
3743/// There are two ways to implement this:
3744///   (1) optimistically create shadow decls when they're not hidden
3745///       by existing declarations, or
3746///   (2) don't create any shadow decls (or at least don't make them
3747///       visible) until we've fully parsed/instantiated the class.
3748/// The problem with (1) is that we might have to retroactively remove
3749/// a shadow decl, which requires several O(n) operations because the
3750/// decl structures are (very reasonably) not designed for removal.
3751/// (2) avoids this but is very fiddly and phase-dependent.
3752void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3753  if (Shadow->getDeclName().getNameKind() ==
3754        DeclarationName::CXXConversionFunctionName)
3755    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3756
3757  // Remove it from the DeclContext...
3758  Shadow->getDeclContext()->removeDecl(Shadow);
3759
3760  // ...and the scope, if applicable...
3761  if (S) {
3762    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3763    IdResolver.RemoveDecl(Shadow);
3764  }
3765
3766  // ...and the using decl.
3767  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3768
3769  // TODO: complain somehow if Shadow was used.  It shouldn't
3770  // be possible for this to happen, because...?
3771}
3772
3773/// Builds a using declaration.
3774///
3775/// \param IsInstantiation - Whether this call arises from an
3776///   instantiation of an unresolved using declaration.  We treat
3777///   the lookup differently for these declarations.
3778NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3779                                       SourceLocation UsingLoc,
3780                                       CXXScopeSpec &SS,
3781                                       SourceLocation IdentLoc,
3782                                       DeclarationName Name,
3783                                       AttributeList *AttrList,
3784                                       bool IsInstantiation,
3785                                       bool IsTypeName,
3786                                       SourceLocation TypenameLoc) {
3787  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3788  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3789
3790  // FIXME: We ignore attributes for now.
3791  delete AttrList;
3792
3793  if (SS.isEmpty()) {
3794    Diag(IdentLoc, diag::err_using_requires_qualname);
3795    return 0;
3796  }
3797
3798  // Do the redeclaration lookup in the current scope.
3799  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3800                        ForRedeclaration);
3801  Previous.setHideTags(false);
3802  if (S) {
3803    LookupName(Previous, S);
3804
3805    // It is really dumb that we have to do this.
3806    LookupResult::Filter F = Previous.makeFilter();
3807    while (F.hasNext()) {
3808      NamedDecl *D = F.next();
3809      if (!isDeclInScope(D, CurContext, S))
3810        F.erase();
3811    }
3812    F.done();
3813  } else {
3814    assert(IsInstantiation && "no scope in non-instantiation");
3815    assert(CurContext->isRecord() && "scope not record in instantiation");
3816    LookupQualifiedName(Previous, CurContext);
3817  }
3818
3819  NestedNameSpecifier *NNS =
3820    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3821
3822  // Check for invalid redeclarations.
3823  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3824    return 0;
3825
3826  // Check for bad qualifiers.
3827  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3828    return 0;
3829
3830  DeclContext *LookupContext = computeDeclContext(SS);
3831  NamedDecl *D;
3832  if (!LookupContext) {
3833    if (IsTypeName) {
3834      // FIXME: not all declaration name kinds are legal here
3835      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3836                                              UsingLoc, TypenameLoc,
3837                                              SS.getRange(), NNS,
3838                                              IdentLoc, Name);
3839    } else {
3840      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3841                                           UsingLoc, SS.getRange(), NNS,
3842                                           IdentLoc, Name);
3843    }
3844  } else {
3845    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3846                          SS.getRange(), UsingLoc, NNS, Name,
3847                          IsTypeName);
3848  }
3849  D->setAccess(AS);
3850  CurContext->addDecl(D);
3851
3852  if (!LookupContext) return D;
3853  UsingDecl *UD = cast<UsingDecl>(D);
3854
3855  if (RequireCompleteDeclContext(SS, LookupContext)) {
3856    UD->setInvalidDecl();
3857    return UD;
3858  }
3859
3860  // Look up the target name.
3861
3862  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3863
3864  // Unlike most lookups, we don't always want to hide tag
3865  // declarations: tag names are visible through the using declaration
3866  // even if hidden by ordinary names, *except* in a dependent context
3867  // where it's important for the sanity of two-phase lookup.
3868  if (!IsInstantiation)
3869    R.setHideTags(false);
3870
3871  LookupQualifiedName(R, LookupContext);
3872
3873  if (R.empty()) {
3874    Diag(IdentLoc, diag::err_no_member)
3875      << Name << LookupContext << SS.getRange();
3876    UD->setInvalidDecl();
3877    return UD;
3878  }
3879
3880  if (R.isAmbiguous()) {
3881    UD->setInvalidDecl();
3882    return UD;
3883  }
3884
3885  if (IsTypeName) {
3886    // If we asked for a typename and got a non-type decl, error out.
3887    if (!R.getAsSingle<TypeDecl>()) {
3888      Diag(IdentLoc, diag::err_using_typename_non_type);
3889      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3890        Diag((*I)->getUnderlyingDecl()->getLocation(),
3891             diag::note_using_decl_target);
3892      UD->setInvalidDecl();
3893      return UD;
3894    }
3895  } else {
3896    // If we asked for a non-typename and we got a type, error out,
3897    // but only if this is an instantiation of an unresolved using
3898    // decl.  Otherwise just silently find the type name.
3899    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3900      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3901      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3902      UD->setInvalidDecl();
3903      return UD;
3904    }
3905  }
3906
3907  // C++0x N2914 [namespace.udecl]p6:
3908  // A using-declaration shall not name a namespace.
3909  if (R.getAsSingle<NamespaceDecl>()) {
3910    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3911      << SS.getRange();
3912    UD->setInvalidDecl();
3913    return UD;
3914  }
3915
3916  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3917    if (!CheckUsingShadowDecl(UD, *I, Previous))
3918      BuildUsingShadowDecl(S, UD, *I);
3919  }
3920
3921  return UD;
3922}
3923
3924/// Checks that the given using declaration is not an invalid
3925/// redeclaration.  Note that this is checking only for the using decl
3926/// itself, not for any ill-formedness among the UsingShadowDecls.
3927bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3928                                       bool isTypeName,
3929                                       const CXXScopeSpec &SS,
3930                                       SourceLocation NameLoc,
3931                                       const LookupResult &Prev) {
3932  // C++03 [namespace.udecl]p8:
3933  // C++0x [namespace.udecl]p10:
3934  //   A using-declaration is a declaration and can therefore be used
3935  //   repeatedly where (and only where) multiple declarations are
3936  //   allowed.
3937  //
3938  // That's in non-member contexts.
3939  if (!CurContext->getLookupContext()->isRecord())
3940    return false;
3941
3942  NestedNameSpecifier *Qual
3943    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3944
3945  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3946    NamedDecl *D = *I;
3947
3948    bool DTypename;
3949    NestedNameSpecifier *DQual;
3950    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3951      DTypename = UD->isTypeName();
3952      DQual = UD->getTargetNestedNameDecl();
3953    } else if (UnresolvedUsingValueDecl *UD
3954                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3955      DTypename = false;
3956      DQual = UD->getTargetNestedNameSpecifier();
3957    } else if (UnresolvedUsingTypenameDecl *UD
3958                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3959      DTypename = true;
3960      DQual = UD->getTargetNestedNameSpecifier();
3961    } else continue;
3962
3963    // using decls differ if one says 'typename' and the other doesn't.
3964    // FIXME: non-dependent using decls?
3965    if (isTypeName != DTypename) continue;
3966
3967    // using decls differ if they name different scopes (but note that
3968    // template instantiation can cause this check to trigger when it
3969    // didn't before instantiation).
3970    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3971        Context.getCanonicalNestedNameSpecifier(DQual))
3972      continue;
3973
3974    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3975    Diag(D->getLocation(), diag::note_using_decl) << 1;
3976    return true;
3977  }
3978
3979  return false;
3980}
3981
3982
3983/// Checks that the given nested-name qualifier used in a using decl
3984/// in the current context is appropriately related to the current
3985/// scope.  If an error is found, diagnoses it and returns true.
3986bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3987                                   const CXXScopeSpec &SS,
3988                                   SourceLocation NameLoc) {
3989  DeclContext *NamedContext = computeDeclContext(SS);
3990
3991  if (!CurContext->isRecord()) {
3992    // C++03 [namespace.udecl]p3:
3993    // C++0x [namespace.udecl]p8:
3994    //   A using-declaration for a class member shall be a member-declaration.
3995
3996    // If we weren't able to compute a valid scope, it must be a
3997    // dependent class scope.
3998    if (!NamedContext || NamedContext->isRecord()) {
3999      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4000        << SS.getRange();
4001      return true;
4002    }
4003
4004    // Otherwise, everything is known to be fine.
4005    return false;
4006  }
4007
4008  // The current scope is a record.
4009
4010  // If the named context is dependent, we can't decide much.
4011  if (!NamedContext) {
4012    // FIXME: in C++0x, we can diagnose if we can prove that the
4013    // nested-name-specifier does not refer to a base class, which is
4014    // still possible in some cases.
4015
4016    // Otherwise we have to conservatively report that things might be
4017    // okay.
4018    return false;
4019  }
4020
4021  if (!NamedContext->isRecord()) {
4022    // Ideally this would point at the last name in the specifier,
4023    // but we don't have that level of source info.
4024    Diag(SS.getRange().getBegin(),
4025         diag::err_using_decl_nested_name_specifier_is_not_class)
4026      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4027    return true;
4028  }
4029
4030  if (getLangOptions().CPlusPlus0x) {
4031    // C++0x [namespace.udecl]p3:
4032    //   In a using-declaration used as a member-declaration, the
4033    //   nested-name-specifier shall name a base class of the class
4034    //   being defined.
4035
4036    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4037                                 cast<CXXRecordDecl>(NamedContext))) {
4038      if (CurContext == NamedContext) {
4039        Diag(NameLoc,
4040             diag::err_using_decl_nested_name_specifier_is_current_class)
4041          << SS.getRange();
4042        return true;
4043      }
4044
4045      Diag(SS.getRange().getBegin(),
4046           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4047        << (NestedNameSpecifier*) SS.getScopeRep()
4048        << cast<CXXRecordDecl>(CurContext)
4049        << SS.getRange();
4050      return true;
4051    }
4052
4053    return false;
4054  }
4055
4056  // C++03 [namespace.udecl]p4:
4057  //   A using-declaration used as a member-declaration shall refer
4058  //   to a member of a base class of the class being defined [etc.].
4059
4060  // Salient point: SS doesn't have to name a base class as long as
4061  // lookup only finds members from base classes.  Therefore we can
4062  // diagnose here only if we can prove that that can't happen,
4063  // i.e. if the class hierarchies provably don't intersect.
4064
4065  // TODO: it would be nice if "definitely valid" results were cached
4066  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4067  // need to be repeated.
4068
4069  struct UserData {
4070    llvm::DenseSet<const CXXRecordDecl*> Bases;
4071
4072    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4073      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4074      Data->Bases.insert(Base);
4075      return true;
4076    }
4077
4078    bool hasDependentBases(const CXXRecordDecl *Class) {
4079      return !Class->forallBases(collect, this);
4080    }
4081
4082    /// Returns true if the base is dependent or is one of the
4083    /// accumulated base classes.
4084    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4085      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4086      return !Data->Bases.count(Base);
4087    }
4088
4089    bool mightShareBases(const CXXRecordDecl *Class) {
4090      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4091    }
4092  };
4093
4094  UserData Data;
4095
4096  // Returns false if we find a dependent base.
4097  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4098    return false;
4099
4100  // Returns false if the class has a dependent base or if it or one
4101  // of its bases is present in the base set of the current context.
4102  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4103    return false;
4104
4105  Diag(SS.getRange().getBegin(),
4106       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4107    << (NestedNameSpecifier*) SS.getScopeRep()
4108    << cast<CXXRecordDecl>(CurContext)
4109    << SS.getRange();
4110
4111  return true;
4112}
4113
4114Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4115                                             SourceLocation NamespaceLoc,
4116                                             SourceLocation AliasLoc,
4117                                             IdentifierInfo *Alias,
4118                                             CXXScopeSpec &SS,
4119                                             SourceLocation IdentLoc,
4120                                             IdentifierInfo *Ident) {
4121
4122  // Lookup the namespace name.
4123  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4124  LookupParsedName(R, S, &SS);
4125
4126  // Check if we have a previous declaration with the same name.
4127  NamedDecl *PrevDecl
4128    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4129                       ForRedeclaration);
4130  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4131    PrevDecl = 0;
4132
4133  if (PrevDecl) {
4134    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4135      // We already have an alias with the same name that points to the same
4136      // namespace, so don't create a new one.
4137      // FIXME: At some point, we'll want to create the (redundant)
4138      // declaration to maintain better source information.
4139      if (!R.isAmbiguous() && !R.empty() &&
4140          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4141        return DeclPtrTy();
4142    }
4143
4144    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4145      diag::err_redefinition_different_kind;
4146    Diag(AliasLoc, DiagID) << Alias;
4147    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4148    return DeclPtrTy();
4149  }
4150
4151  if (R.isAmbiguous())
4152    return DeclPtrTy();
4153
4154  if (R.empty()) {
4155    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4156    return DeclPtrTy();
4157  }
4158
4159  NamespaceAliasDecl *AliasDecl =
4160    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4161                               Alias, SS.getRange(),
4162                               (NestedNameSpecifier *)SS.getScopeRep(),
4163                               IdentLoc, R.getFoundDecl());
4164
4165  PushOnScopeChains(AliasDecl, S);
4166  return DeclPtrTy::make(AliasDecl);
4167}
4168
4169namespace {
4170  /// \brief Scoped object used to handle the state changes required in Sema
4171  /// to implicitly define the body of a C++ member function;
4172  class ImplicitlyDefinedFunctionScope {
4173    Sema &S;
4174    DeclContext *PreviousContext;
4175
4176  public:
4177    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4178      : S(S), PreviousContext(S.CurContext)
4179    {
4180      S.CurContext = Method;
4181      S.PushFunctionScope();
4182      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4183    }
4184
4185    ~ImplicitlyDefinedFunctionScope() {
4186      S.PopExpressionEvaluationContext();
4187      S.PopFunctionOrBlockScope();
4188      S.CurContext = PreviousContext;
4189    }
4190  };
4191}
4192
4193void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4194                                            CXXConstructorDecl *Constructor) {
4195  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4196          !Constructor->isUsed()) &&
4197    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4198
4199  CXXRecordDecl *ClassDecl = Constructor->getParent();
4200  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4201
4202  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4203  ErrorTrap Trap(*this);
4204  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4205      Trap.hasErrorOccurred()) {
4206    Diag(CurrentLocation, diag::note_member_synthesized_at)
4207      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4208    Constructor->setInvalidDecl();
4209  } else {
4210    Constructor->setUsed();
4211    MarkVTableUsed(CurrentLocation, ClassDecl);
4212  }
4213}
4214
4215void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4216                                    CXXDestructorDecl *Destructor) {
4217  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4218         "DefineImplicitDestructor - call it for implicit default dtor");
4219  CXXRecordDecl *ClassDecl = Destructor->getParent();
4220  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4221
4222  if (Destructor->isInvalidDecl())
4223    return;
4224
4225  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4226
4227  ErrorTrap Trap(*this);
4228  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4229                                         Destructor->getParent());
4230
4231  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4232    Diag(CurrentLocation, diag::note_member_synthesized_at)
4233      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4234
4235    Destructor->setInvalidDecl();
4236    return;
4237  }
4238
4239  Destructor->setUsed();
4240  MarkVTableUsed(CurrentLocation, ClassDecl);
4241}
4242
4243/// \brief Builds a statement that copies the given entity from \p From to
4244/// \c To.
4245///
4246/// This routine is used to copy the members of a class with an
4247/// implicitly-declared copy assignment operator. When the entities being
4248/// copied are arrays, this routine builds for loops to copy them.
4249///
4250/// \param S The Sema object used for type-checking.
4251///
4252/// \param Loc The location where the implicit copy is being generated.
4253///
4254/// \param T The type of the expressions being copied. Both expressions must
4255/// have this type.
4256///
4257/// \param To The expression we are copying to.
4258///
4259/// \param From The expression we are copying from.
4260///
4261/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4262/// Otherwise, it's a non-static member subobject.
4263///
4264/// \param Depth Internal parameter recording the depth of the recursion.
4265///
4266/// \returns A statement or a loop that copies the expressions.
4267static Sema::OwningStmtResult
4268BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4269                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4270                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4271  typedef Sema::OwningStmtResult OwningStmtResult;
4272  typedef Sema::OwningExprResult OwningExprResult;
4273
4274  // C++0x [class.copy]p30:
4275  //   Each subobject is assigned in the manner appropriate to its type:
4276  //
4277  //     - if the subobject is of class type, the copy assignment operator
4278  //       for the class is used (as if by explicit qualification; that is,
4279  //       ignoring any possible virtual overriding functions in more derived
4280  //       classes);
4281  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4282    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4283
4284    // Look for operator=.
4285    DeclarationName Name
4286      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4287    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4288    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4289
4290    // Filter out any result that isn't a copy-assignment operator.
4291    LookupResult::Filter F = OpLookup.makeFilter();
4292    while (F.hasNext()) {
4293      NamedDecl *D = F.next();
4294      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4295        if (Method->isCopyAssignmentOperator())
4296          continue;
4297
4298      F.erase();
4299    }
4300    F.done();
4301
4302    // Suppress the protected check (C++ [class.protected]) for each of the
4303    // assignment operators we found. This strange dance is required when
4304    // we're assigning via a base classes's copy-assignment operator. To
4305    // ensure that we're getting the right base class subobject (without
4306    // ambiguities), we need to cast "this" to that subobject type; to
4307    // ensure that we don't go through the virtual call mechanism, we need
4308    // to qualify the operator= name with the base class (see below). However,
4309    // this means that if the base class has a protected copy assignment
4310    // operator, the protected member access check will fail. So, we
4311    // rewrite "protected" access to "public" access in this case, since we
4312    // know by construction that we're calling from a derived class.
4313    if (CopyingBaseSubobject) {
4314      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4315           L != LEnd; ++L) {
4316        if (L.getAccess() == AS_protected)
4317          L.setAccess(AS_public);
4318      }
4319    }
4320
4321    // Create the nested-name-specifier that will be used to qualify the
4322    // reference to operator=; this is required to suppress the virtual
4323    // call mechanism.
4324    CXXScopeSpec SS;
4325    SS.setRange(Loc);
4326    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4327                                               T.getTypePtr()));
4328
4329    // Create the reference to operator=.
4330    OwningExprResult OpEqualRef
4331      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4332                                   /*FirstQualifierInScope=*/0, OpLookup,
4333                                   /*TemplateArgs=*/0,
4334                                   /*SuppressQualifierCheck=*/true);
4335    if (OpEqualRef.isInvalid())
4336      return S.StmtError();
4337
4338    // Build the call to the assignment operator.
4339    Expr *FromE = From.takeAs<Expr>();
4340    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4341                                                      OpEqualRef.takeAs<Expr>(),
4342                                                        Loc, &FromE, 1, 0, Loc);
4343    if (Call.isInvalid())
4344      return S.StmtError();
4345
4346    return S.Owned(Call.takeAs<Stmt>());
4347  }
4348
4349  //     - if the subobject is of scalar type, the built-in assignment
4350  //       operator is used.
4351  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4352  if (!ArrayTy) {
4353    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4354                                                       BinaryOperator::Assign,
4355                                                       To.takeAs<Expr>(),
4356                                                       From.takeAs<Expr>());
4357    if (Assignment.isInvalid())
4358      return S.StmtError();
4359
4360    return S.Owned(Assignment.takeAs<Stmt>());
4361  }
4362
4363  //     - if the subobject is an array, each element is assigned, in the
4364  //       manner appropriate to the element type;
4365
4366  // Construct a loop over the array bounds, e.g.,
4367  //
4368  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4369  //
4370  // that will copy each of the array elements.
4371  QualType SizeType = S.Context.getSizeType();
4372
4373  // Create the iteration variable.
4374  IdentifierInfo *IterationVarName = 0;
4375  {
4376    llvm::SmallString<8> Str;
4377    llvm::raw_svector_ostream OS(Str);
4378    OS << "__i" << Depth;
4379    IterationVarName = &S.Context.Idents.get(OS.str());
4380  }
4381  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4382                                          IterationVarName, SizeType,
4383                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4384                                          VarDecl::None, VarDecl::None);
4385
4386  // Initialize the iteration variable to zero.
4387  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4388  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4389
4390  // Create a reference to the iteration variable; we'll use this several
4391  // times throughout.
4392  Expr *IterationVarRef
4393    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4394  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4395
4396  // Create the DeclStmt that holds the iteration variable.
4397  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4398
4399  // Create the comparison against the array bound.
4400  llvm::APInt Upper = ArrayTy->getSize();
4401  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4402  OwningExprResult Comparison
4403    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4404                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4405                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4406
4407  // Create the pre-increment of the iteration variable.
4408  OwningExprResult Increment
4409    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4410                                            UnaryOperator::PreInc,
4411                                            SizeType, Loc));
4412
4413  // Subscript the "from" and "to" expressions with the iteration variable.
4414  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4415                                           S.Owned(IterationVarRef->Retain()),
4416                                           Loc);
4417  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4418                                         S.Owned(IterationVarRef->Retain()),
4419                                         Loc);
4420  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4421  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4422
4423  // Build the copy for an individual element of the array.
4424  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4425                                                ArrayTy->getElementType(),
4426                                                move(To), move(From),
4427                                                CopyingBaseSubobject, Depth+1);
4428  if (Copy.isInvalid()) {
4429    InitStmt->Destroy(S.Context);
4430    return S.StmtError();
4431  }
4432
4433  // Construct the loop that copies all elements of this array.
4434  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4435                        S.MakeFullExpr(Comparison),
4436                        Sema::DeclPtrTy(),
4437                        S.MakeFullExpr(Increment),
4438                        Loc, move(Copy));
4439}
4440
4441void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4442                                        CXXMethodDecl *CopyAssignOperator) {
4443  assert((CopyAssignOperator->isImplicit() &&
4444          CopyAssignOperator->isOverloadedOperator() &&
4445          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4446          !CopyAssignOperator->isUsed()) &&
4447         "DefineImplicitCopyAssignment called for wrong function");
4448
4449  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4450
4451  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4452    CopyAssignOperator->setInvalidDecl();
4453    return;
4454  }
4455
4456  CopyAssignOperator->setUsed();
4457
4458  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4459  ErrorTrap Trap(*this);
4460
4461  // C++0x [class.copy]p30:
4462  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4463  //   for a non-union class X performs memberwise copy assignment of its
4464  //   subobjects. The direct base classes of X are assigned first, in the
4465  //   order of their declaration in the base-specifier-list, and then the
4466  //   immediate non-static data members of X are assigned, in the order in
4467  //   which they were declared in the class definition.
4468
4469  // The statements that form the synthesized function body.
4470  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4471
4472  // The parameter for the "other" object, which we are copying from.
4473  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4474  Qualifiers OtherQuals = Other->getType().getQualifiers();
4475  QualType OtherRefType = Other->getType();
4476  if (const LValueReferenceType *OtherRef
4477                                = OtherRefType->getAs<LValueReferenceType>()) {
4478    OtherRefType = OtherRef->getPointeeType();
4479    OtherQuals = OtherRefType.getQualifiers();
4480  }
4481
4482  // Our location for everything implicitly-generated.
4483  SourceLocation Loc = CopyAssignOperator->getLocation();
4484
4485  // Construct a reference to the "other" object. We'll be using this
4486  // throughout the generated ASTs.
4487  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4488  assert(OtherRef && "Reference to parameter cannot fail!");
4489
4490  // Construct the "this" pointer. We'll be using this throughout the generated
4491  // ASTs.
4492  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4493  assert(This && "Reference to this cannot fail!");
4494
4495  // Assign base classes.
4496  bool Invalid = false;
4497  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4498       E = ClassDecl->bases_end(); Base != E; ++Base) {
4499    // Form the assignment:
4500    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4501    QualType BaseType = Base->getType().getUnqualifiedType();
4502    CXXRecordDecl *BaseClassDecl = 0;
4503    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4504      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4505    else {
4506      Invalid = true;
4507      continue;
4508    }
4509
4510    // Construct the "from" expression, which is an implicit cast to the
4511    // appropriately-qualified base type.
4512    Expr *From = OtherRef->Retain();
4513    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4514                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4515                      CXXBaseSpecifierArray(Base));
4516
4517    // Dereference "this".
4518    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4519                                               Owned(This->Retain()));
4520
4521    // Implicitly cast "this" to the appropriately-qualified base type.
4522    Expr *ToE = To.takeAs<Expr>();
4523    ImpCastExprToType(ToE,
4524                      Context.getCVRQualifiedType(BaseType,
4525                                      CopyAssignOperator->getTypeQualifiers()),
4526                      CastExpr::CK_UncheckedDerivedToBase,
4527                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4528    To = Owned(ToE);
4529
4530    // Build the copy.
4531    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4532                                                  move(To), Owned(From),
4533                                                /*CopyingBaseSubobject=*/true);
4534    if (Copy.isInvalid()) {
4535      Diag(CurrentLocation, diag::note_member_synthesized_at)
4536        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4537      CopyAssignOperator->setInvalidDecl();
4538      return;
4539    }
4540
4541    // Success! Record the copy.
4542    Statements.push_back(Copy.takeAs<Expr>());
4543  }
4544
4545  // \brief Reference to the __builtin_memcpy function.
4546  Expr *BuiltinMemCpyRef = 0;
4547
4548  // Assign non-static members.
4549  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4550                                  FieldEnd = ClassDecl->field_end();
4551       Field != FieldEnd; ++Field) {
4552    // Check for members of reference type; we can't copy those.
4553    if (Field->getType()->isReferenceType()) {
4554      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4555        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4556      Diag(Field->getLocation(), diag::note_declared_at);
4557      Diag(CurrentLocation, diag::note_member_synthesized_at)
4558        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4559      Invalid = true;
4560      continue;
4561    }
4562
4563    // Check for members of const-qualified, non-class type.
4564    QualType BaseType = Context.getBaseElementType(Field->getType());
4565    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4566      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4567        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4568      Diag(Field->getLocation(), diag::note_declared_at);
4569      Diag(CurrentLocation, diag::note_member_synthesized_at)
4570        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4571      Invalid = true;
4572      continue;
4573    }
4574
4575    QualType FieldType = Field->getType().getNonReferenceType();
4576    if (FieldType->isIncompleteArrayType()) {
4577      assert(ClassDecl->hasFlexibleArrayMember() &&
4578             "Incomplete array type is not valid");
4579      continue;
4580    }
4581
4582    // Build references to the field in the object we're copying from and to.
4583    CXXScopeSpec SS; // Intentionally empty
4584    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4585                              LookupMemberName);
4586    MemberLookup.addDecl(*Field);
4587    MemberLookup.resolveKind();
4588    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4589                                                     OtherRefType,
4590                                                     Loc, /*IsArrow=*/false,
4591                                                     SS, 0, MemberLookup, 0);
4592    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4593                                                   This->getType(),
4594                                                   Loc, /*IsArrow=*/true,
4595                                                   SS, 0, MemberLookup, 0);
4596    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4597    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4598
4599    // If the field should be copied with __builtin_memcpy rather than via
4600    // explicit assignments, do so. This optimization only applies for arrays
4601    // of scalars and arrays of class type with trivial copy-assignment
4602    // operators.
4603    if (FieldType->isArrayType() &&
4604        (!BaseType->isRecordType() ||
4605         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4606           ->hasTrivialCopyAssignment())) {
4607      // Compute the size of the memory buffer to be copied.
4608      QualType SizeType = Context.getSizeType();
4609      llvm::APInt Size(Context.getTypeSize(SizeType),
4610                       Context.getTypeSizeInChars(BaseType).getQuantity());
4611      for (const ConstantArrayType *Array
4612              = Context.getAsConstantArrayType(FieldType);
4613           Array;
4614           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4615        llvm::APInt ArraySize = Array->getSize();
4616        ArraySize.zextOrTrunc(Size.getBitWidth());
4617        Size *= ArraySize;
4618      }
4619
4620      // Take the address of the field references for "from" and "to".
4621      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4622      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4623
4624      // Create a reference to the __builtin_memcpy builtin function.
4625      if (!BuiltinMemCpyRef) {
4626        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4627                       LookupOrdinaryName);
4628        LookupName(R, TUScope, true);
4629
4630        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4631        if (!BuiltinMemCpy) {
4632          // Something went horribly wrong earlier, and we will have complained
4633          // about it.
4634          Invalid = true;
4635          continue;
4636        }
4637
4638        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4639                                            BuiltinMemCpy->getType(),
4640                                            Loc, 0).takeAs<Expr>();
4641        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4642      }
4643
4644      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4645      CallArgs.push_back(To.takeAs<Expr>());
4646      CallArgs.push_back(From.takeAs<Expr>());
4647      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4648      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4649      Commas.push_back(Loc);
4650      Commas.push_back(Loc);
4651      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4652                                            Owned(BuiltinMemCpyRef->Retain()),
4653                                            Loc, move_arg(CallArgs),
4654                                            Commas.data(), Loc);
4655      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4656      Statements.push_back(Call.takeAs<Expr>());
4657      continue;
4658    }
4659
4660    // Build the copy of this field.
4661    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4662                                                  move(To), move(From),
4663                                              /*CopyingBaseSubobject=*/false);
4664    if (Copy.isInvalid()) {
4665      Diag(CurrentLocation, diag::note_member_synthesized_at)
4666        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4667      CopyAssignOperator->setInvalidDecl();
4668      return;
4669    }
4670
4671    // Success! Record the copy.
4672    Statements.push_back(Copy.takeAs<Stmt>());
4673  }
4674
4675  if (!Invalid) {
4676    // Add a "return *this;"
4677    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4678                                                    Owned(This->Retain()));
4679
4680    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4681    if (Return.isInvalid())
4682      Invalid = true;
4683    else {
4684      Statements.push_back(Return.takeAs<Stmt>());
4685
4686      if (Trap.hasErrorOccurred()) {
4687        Diag(CurrentLocation, diag::note_member_synthesized_at)
4688          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4689        Invalid = true;
4690      }
4691    }
4692  }
4693
4694  if (Invalid) {
4695    CopyAssignOperator->setInvalidDecl();
4696    return;
4697  }
4698
4699  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4700                                            /*isStmtExpr=*/false);
4701  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4702  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4703}
4704
4705void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4706                                   CXXConstructorDecl *CopyConstructor,
4707                                   unsigned TypeQuals) {
4708  assert((CopyConstructor->isImplicit() &&
4709          CopyConstructor->isCopyConstructor(TypeQuals) &&
4710          !CopyConstructor->isUsed()) &&
4711         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4712
4713  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4714  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4715
4716  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4717  ErrorTrap Trap(*this);
4718
4719  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4720      Trap.hasErrorOccurred()) {
4721    Diag(CurrentLocation, diag::note_member_synthesized_at)
4722      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4723    CopyConstructor->setInvalidDecl();
4724  }  else {
4725    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4726                                               CopyConstructor->getLocation(),
4727                                               MultiStmtArg(*this, 0, 0),
4728                                               /*isStmtExpr=*/false)
4729                                                              .takeAs<Stmt>());
4730  }
4731
4732  CopyConstructor->setUsed();
4733}
4734
4735Sema::OwningExprResult
4736Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4737                            CXXConstructorDecl *Constructor,
4738                            MultiExprArg ExprArgs,
4739                            bool RequiresZeroInit,
4740                            CXXConstructExpr::ConstructionKind ConstructKind) {
4741  bool Elidable = false;
4742
4743  // C++0x [class.copy]p34:
4744  //   When certain criteria are met, an implementation is allowed to
4745  //   omit the copy/move construction of a class object, even if the
4746  //   copy/move constructor and/or destructor for the object have
4747  //   side effects. [...]
4748  //     - when a temporary class object that has not been bound to a
4749  //       reference (12.2) would be copied/moved to a class object
4750  //       with the same cv-unqualified type, the copy/move operation
4751  //       can be omitted by constructing the temporary object
4752  //       directly into the target of the omitted copy/move
4753  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4754    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4755    Elidable = SubExpr->isTemporaryObject() &&
4756      Context.hasSameUnqualifiedType(SubExpr->getType(),
4757                           Context.getTypeDeclType(Constructor->getParent()));
4758  }
4759
4760  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4761                               Elidable, move(ExprArgs), RequiresZeroInit,
4762                               ConstructKind);
4763}
4764
4765/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4766/// including handling of its default argument expressions.
4767Sema::OwningExprResult
4768Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4769                            CXXConstructorDecl *Constructor, bool Elidable,
4770                            MultiExprArg ExprArgs,
4771                            bool RequiresZeroInit,
4772                            CXXConstructExpr::ConstructionKind ConstructKind) {
4773  unsigned NumExprs = ExprArgs.size();
4774  Expr **Exprs = (Expr **)ExprArgs.release();
4775
4776  MarkDeclarationReferenced(ConstructLoc, Constructor);
4777  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4778                                        Constructor, Elidable, Exprs, NumExprs,
4779                                        RequiresZeroInit, ConstructKind));
4780}
4781
4782bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4783                                        CXXConstructorDecl *Constructor,
4784                                        MultiExprArg Exprs) {
4785  OwningExprResult TempResult =
4786    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4787                          move(Exprs));
4788  if (TempResult.isInvalid())
4789    return true;
4790
4791  Expr *Temp = TempResult.takeAs<Expr>();
4792  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4793  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4794  VD->setInit(Temp);
4795
4796  return false;
4797}
4798
4799void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4800  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4801  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4802      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4803    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4804    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4805    CheckDestructorAccess(VD->getLocation(), Destructor,
4806                          PDiag(diag::err_access_dtor_var)
4807                            << VD->getDeclName()
4808                            << VD->getType());
4809  }
4810}
4811
4812/// AddCXXDirectInitializerToDecl - This action is called immediately after
4813/// ActOnDeclarator, when a C++ direct initializer is present.
4814/// e.g: "int x(1);"
4815void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4816                                         SourceLocation LParenLoc,
4817                                         MultiExprArg Exprs,
4818                                         SourceLocation *CommaLocs,
4819                                         SourceLocation RParenLoc) {
4820  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4821  Decl *RealDecl = Dcl.getAs<Decl>();
4822
4823  // If there is no declaration, there was an error parsing it.  Just ignore
4824  // the initializer.
4825  if (RealDecl == 0)
4826    return;
4827
4828  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4829  if (!VDecl) {
4830    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4831    RealDecl->setInvalidDecl();
4832    return;
4833  }
4834
4835  // We will represent direct-initialization similarly to copy-initialization:
4836  //    int x(1);  -as-> int x = 1;
4837  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4838  //
4839  // Clients that want to distinguish between the two forms, can check for
4840  // direct initializer using VarDecl::hasCXXDirectInitializer().
4841  // A major benefit is that clients that don't particularly care about which
4842  // exactly form was it (like the CodeGen) can handle both cases without
4843  // special case code.
4844
4845  // C++ 8.5p11:
4846  // The form of initialization (using parentheses or '=') is generally
4847  // insignificant, but does matter when the entity being initialized has a
4848  // class type.
4849  QualType DeclInitType = VDecl->getType();
4850  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4851    DeclInitType = Context.getBaseElementType(Array);
4852
4853  if (!VDecl->getType()->isDependentType() &&
4854      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4855                          diag::err_typecheck_decl_incomplete_type)) {
4856    VDecl->setInvalidDecl();
4857    return;
4858  }
4859
4860  // The variable can not have an abstract class type.
4861  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4862                             diag::err_abstract_type_in_decl,
4863                             AbstractVariableType))
4864    VDecl->setInvalidDecl();
4865
4866  const VarDecl *Def;
4867  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4868    Diag(VDecl->getLocation(), diag::err_redefinition)
4869    << VDecl->getDeclName();
4870    Diag(Def->getLocation(), diag::note_previous_definition);
4871    VDecl->setInvalidDecl();
4872    return;
4873  }
4874
4875  // If either the declaration has a dependent type or if any of the
4876  // expressions is type-dependent, we represent the initialization
4877  // via a ParenListExpr for later use during template instantiation.
4878  if (VDecl->getType()->isDependentType() ||
4879      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4880    // Let clients know that initialization was done with a direct initializer.
4881    VDecl->setCXXDirectInitializer(true);
4882
4883    // Store the initialization expressions as a ParenListExpr.
4884    unsigned NumExprs = Exprs.size();
4885    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4886                                               (Expr **)Exprs.release(),
4887                                               NumExprs, RParenLoc));
4888    return;
4889  }
4890
4891  // Capture the variable that is being initialized and the style of
4892  // initialization.
4893  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4894
4895  // FIXME: Poor source location information.
4896  InitializationKind Kind
4897    = InitializationKind::CreateDirect(VDecl->getLocation(),
4898                                       LParenLoc, RParenLoc);
4899
4900  InitializationSequence InitSeq(*this, Entity, Kind,
4901                                 (Expr**)Exprs.get(), Exprs.size());
4902  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4903  if (Result.isInvalid()) {
4904    VDecl->setInvalidDecl();
4905    return;
4906  }
4907
4908  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4909  VDecl->setInit(Result.takeAs<Expr>());
4910  VDecl->setCXXDirectInitializer(true);
4911
4912  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4913    FinalizeVarWithDestructor(VDecl, Record);
4914}
4915
4916/// \brief Given a constructor and the set of arguments provided for the
4917/// constructor, convert the arguments and add any required default arguments
4918/// to form a proper call to this constructor.
4919///
4920/// \returns true if an error occurred, false otherwise.
4921bool
4922Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4923                              MultiExprArg ArgsPtr,
4924                              SourceLocation Loc,
4925                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4926  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4927  unsigned NumArgs = ArgsPtr.size();
4928  Expr **Args = (Expr **)ArgsPtr.get();
4929
4930  const FunctionProtoType *Proto
4931    = Constructor->getType()->getAs<FunctionProtoType>();
4932  assert(Proto && "Constructor without a prototype?");
4933  unsigned NumArgsInProto = Proto->getNumArgs();
4934
4935  // If too few arguments are available, we'll fill in the rest with defaults.
4936  if (NumArgs < NumArgsInProto)
4937    ConvertedArgs.reserve(NumArgsInProto);
4938  else
4939    ConvertedArgs.reserve(NumArgs);
4940
4941  VariadicCallType CallType =
4942    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4943  llvm::SmallVector<Expr *, 8> AllArgs;
4944  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4945                                        Proto, 0, Args, NumArgs, AllArgs,
4946                                        CallType);
4947  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4948    ConvertedArgs.push_back(AllArgs[i]);
4949  return Invalid;
4950}
4951
4952static inline bool
4953CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4954                                       const FunctionDecl *FnDecl) {
4955  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4956  if (isa<NamespaceDecl>(DC)) {
4957    return SemaRef.Diag(FnDecl->getLocation(),
4958                        diag::err_operator_new_delete_declared_in_namespace)
4959      << FnDecl->getDeclName();
4960  }
4961
4962  if (isa<TranslationUnitDecl>(DC) &&
4963      FnDecl->getStorageClass() == FunctionDecl::Static) {
4964    return SemaRef.Diag(FnDecl->getLocation(),
4965                        diag::err_operator_new_delete_declared_static)
4966      << FnDecl->getDeclName();
4967  }
4968
4969  return false;
4970}
4971
4972static inline bool
4973CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4974                            CanQualType ExpectedResultType,
4975                            CanQualType ExpectedFirstParamType,
4976                            unsigned DependentParamTypeDiag,
4977                            unsigned InvalidParamTypeDiag) {
4978  QualType ResultType =
4979    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4980
4981  // Check that the result type is not dependent.
4982  if (ResultType->isDependentType())
4983    return SemaRef.Diag(FnDecl->getLocation(),
4984                        diag::err_operator_new_delete_dependent_result_type)
4985    << FnDecl->getDeclName() << ExpectedResultType;
4986
4987  // Check that the result type is what we expect.
4988  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4989    return SemaRef.Diag(FnDecl->getLocation(),
4990                        diag::err_operator_new_delete_invalid_result_type)
4991    << FnDecl->getDeclName() << ExpectedResultType;
4992
4993  // A function template must have at least 2 parameters.
4994  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4995    return SemaRef.Diag(FnDecl->getLocation(),
4996                      diag::err_operator_new_delete_template_too_few_parameters)
4997        << FnDecl->getDeclName();
4998
4999  // The function decl must have at least 1 parameter.
5000  if (FnDecl->getNumParams() == 0)
5001    return SemaRef.Diag(FnDecl->getLocation(),
5002                        diag::err_operator_new_delete_too_few_parameters)
5003      << FnDecl->getDeclName();
5004
5005  // Check the the first parameter type is not dependent.
5006  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5007  if (FirstParamType->isDependentType())
5008    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5009      << FnDecl->getDeclName() << ExpectedFirstParamType;
5010
5011  // Check that the first parameter type is what we expect.
5012  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5013      ExpectedFirstParamType)
5014    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5015    << FnDecl->getDeclName() << ExpectedFirstParamType;
5016
5017  return false;
5018}
5019
5020static bool
5021CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5022  // C++ [basic.stc.dynamic.allocation]p1:
5023  //   A program is ill-formed if an allocation function is declared in a
5024  //   namespace scope other than global scope or declared static in global
5025  //   scope.
5026  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5027    return true;
5028
5029  CanQualType SizeTy =
5030    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5031
5032  // C++ [basic.stc.dynamic.allocation]p1:
5033  //  The return type shall be void*. The first parameter shall have type
5034  //  std::size_t.
5035  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5036                                  SizeTy,
5037                                  diag::err_operator_new_dependent_param_type,
5038                                  diag::err_operator_new_param_type))
5039    return true;
5040
5041  // C++ [basic.stc.dynamic.allocation]p1:
5042  //  The first parameter shall not have an associated default argument.
5043  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5044    return SemaRef.Diag(FnDecl->getLocation(),
5045                        diag::err_operator_new_default_arg)
5046      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5047
5048  return false;
5049}
5050
5051static bool
5052CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5053  // C++ [basic.stc.dynamic.deallocation]p1:
5054  //   A program is ill-formed if deallocation functions are declared in a
5055  //   namespace scope other than global scope or declared static in global
5056  //   scope.
5057  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5058    return true;
5059
5060  // C++ [basic.stc.dynamic.deallocation]p2:
5061  //   Each deallocation function shall return void and its first parameter
5062  //   shall be void*.
5063  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5064                                  SemaRef.Context.VoidPtrTy,
5065                                 diag::err_operator_delete_dependent_param_type,
5066                                 diag::err_operator_delete_param_type))
5067    return true;
5068
5069  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5070  if (FirstParamType->isDependentType())
5071    return SemaRef.Diag(FnDecl->getLocation(),
5072                        diag::err_operator_delete_dependent_param_type)
5073    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5074
5075  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5076      SemaRef.Context.VoidPtrTy)
5077    return SemaRef.Diag(FnDecl->getLocation(),
5078                        diag::err_operator_delete_param_type)
5079      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5080
5081  return false;
5082}
5083
5084/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5085/// of this overloaded operator is well-formed. If so, returns false;
5086/// otherwise, emits appropriate diagnostics and returns true.
5087bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5088  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5089         "Expected an overloaded operator declaration");
5090
5091  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5092
5093  // C++ [over.oper]p5:
5094  //   The allocation and deallocation functions, operator new,
5095  //   operator new[], operator delete and operator delete[], are
5096  //   described completely in 3.7.3. The attributes and restrictions
5097  //   found in the rest of this subclause do not apply to them unless
5098  //   explicitly stated in 3.7.3.
5099  if (Op == OO_Delete || Op == OO_Array_Delete)
5100    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5101
5102  if (Op == OO_New || Op == OO_Array_New)
5103    return CheckOperatorNewDeclaration(*this, FnDecl);
5104
5105  // C++ [over.oper]p6:
5106  //   An operator function shall either be a non-static member
5107  //   function or be a non-member function and have at least one
5108  //   parameter whose type is a class, a reference to a class, an
5109  //   enumeration, or a reference to an enumeration.
5110  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5111    if (MethodDecl->isStatic())
5112      return Diag(FnDecl->getLocation(),
5113                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5114  } else {
5115    bool ClassOrEnumParam = false;
5116    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5117                                   ParamEnd = FnDecl->param_end();
5118         Param != ParamEnd; ++Param) {
5119      QualType ParamType = (*Param)->getType().getNonReferenceType();
5120      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5121          ParamType->isEnumeralType()) {
5122        ClassOrEnumParam = true;
5123        break;
5124      }
5125    }
5126
5127    if (!ClassOrEnumParam)
5128      return Diag(FnDecl->getLocation(),
5129                  diag::err_operator_overload_needs_class_or_enum)
5130        << FnDecl->getDeclName();
5131  }
5132
5133  // C++ [over.oper]p8:
5134  //   An operator function cannot have default arguments (8.3.6),
5135  //   except where explicitly stated below.
5136  //
5137  // Only the function-call operator allows default arguments
5138  // (C++ [over.call]p1).
5139  if (Op != OO_Call) {
5140    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5141         Param != FnDecl->param_end(); ++Param) {
5142      if ((*Param)->hasDefaultArg())
5143        return Diag((*Param)->getLocation(),
5144                    diag::err_operator_overload_default_arg)
5145          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5146    }
5147  }
5148
5149  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5150    { false, false, false }
5151#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5152    , { Unary, Binary, MemberOnly }
5153#include "clang/Basic/OperatorKinds.def"
5154  };
5155
5156  bool CanBeUnaryOperator = OperatorUses[Op][0];
5157  bool CanBeBinaryOperator = OperatorUses[Op][1];
5158  bool MustBeMemberOperator = OperatorUses[Op][2];
5159
5160  // C++ [over.oper]p8:
5161  //   [...] Operator functions cannot have more or fewer parameters
5162  //   than the number required for the corresponding operator, as
5163  //   described in the rest of this subclause.
5164  unsigned NumParams = FnDecl->getNumParams()
5165                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5166  if (Op != OO_Call &&
5167      ((NumParams == 1 && !CanBeUnaryOperator) ||
5168       (NumParams == 2 && !CanBeBinaryOperator) ||
5169       (NumParams < 1) || (NumParams > 2))) {
5170    // We have the wrong number of parameters.
5171    unsigned ErrorKind;
5172    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5173      ErrorKind = 2;  // 2 -> unary or binary.
5174    } else if (CanBeUnaryOperator) {
5175      ErrorKind = 0;  // 0 -> unary
5176    } else {
5177      assert(CanBeBinaryOperator &&
5178             "All non-call overloaded operators are unary or binary!");
5179      ErrorKind = 1;  // 1 -> binary
5180    }
5181
5182    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5183      << FnDecl->getDeclName() << NumParams << ErrorKind;
5184  }
5185
5186  // Overloaded operators other than operator() cannot be variadic.
5187  if (Op != OO_Call &&
5188      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5189    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5190      << FnDecl->getDeclName();
5191  }
5192
5193  // Some operators must be non-static member functions.
5194  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5195    return Diag(FnDecl->getLocation(),
5196                diag::err_operator_overload_must_be_member)
5197      << FnDecl->getDeclName();
5198  }
5199
5200  // C++ [over.inc]p1:
5201  //   The user-defined function called operator++ implements the
5202  //   prefix and postfix ++ operator. If this function is a member
5203  //   function with no parameters, or a non-member function with one
5204  //   parameter of class or enumeration type, it defines the prefix
5205  //   increment operator ++ for objects of that type. If the function
5206  //   is a member function with one parameter (which shall be of type
5207  //   int) or a non-member function with two parameters (the second
5208  //   of which shall be of type int), it defines the postfix
5209  //   increment operator ++ for objects of that type.
5210  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5211    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5212    bool ParamIsInt = false;
5213    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5214      ParamIsInt = BT->getKind() == BuiltinType::Int;
5215
5216    if (!ParamIsInt)
5217      return Diag(LastParam->getLocation(),
5218                  diag::err_operator_overload_post_incdec_must_be_int)
5219        << LastParam->getType() << (Op == OO_MinusMinus);
5220  }
5221
5222  // Notify the class if it got an assignment operator.
5223  if (Op == OO_Equal) {
5224    // Would have returned earlier otherwise.
5225    assert(isa<CXXMethodDecl>(FnDecl) &&
5226      "Overloaded = not member, but not filtered.");
5227    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5228    Method->getParent()->addedAssignmentOperator(Context, Method);
5229  }
5230
5231  return false;
5232}
5233
5234/// CheckLiteralOperatorDeclaration - Check whether the declaration
5235/// of this literal operator function is well-formed. If so, returns
5236/// false; otherwise, emits appropriate diagnostics and returns true.
5237bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5238  DeclContext *DC = FnDecl->getDeclContext();
5239  Decl::Kind Kind = DC->getDeclKind();
5240  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5241      Kind != Decl::LinkageSpec) {
5242    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5243      << FnDecl->getDeclName();
5244    return true;
5245  }
5246
5247  bool Valid = false;
5248
5249  // template <char...> type operator "" name() is the only valid template
5250  // signature, and the only valid signature with no parameters.
5251  if (FnDecl->param_size() == 0) {
5252    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5253      // Must have only one template parameter
5254      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5255      if (Params->size() == 1) {
5256        NonTypeTemplateParmDecl *PmDecl =
5257          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5258
5259        // The template parameter must be a char parameter pack.
5260        // FIXME: This test will always fail because non-type parameter packs
5261        //   have not been implemented.
5262        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5263            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5264          Valid = true;
5265      }
5266    }
5267  } else {
5268    // Check the first parameter
5269    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5270
5271    QualType T = (*Param)->getType();
5272
5273    // unsigned long long int, long double, and any character type are allowed
5274    // as the only parameters.
5275    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5276        Context.hasSameType(T, Context.LongDoubleTy) ||
5277        Context.hasSameType(T, Context.CharTy) ||
5278        Context.hasSameType(T, Context.WCharTy) ||
5279        Context.hasSameType(T, Context.Char16Ty) ||
5280        Context.hasSameType(T, Context.Char32Ty)) {
5281      if (++Param == FnDecl->param_end())
5282        Valid = true;
5283      goto FinishedParams;
5284    }
5285
5286    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5287    const PointerType *PT = T->getAs<PointerType>();
5288    if (!PT)
5289      goto FinishedParams;
5290    T = PT->getPointeeType();
5291    if (!T.isConstQualified())
5292      goto FinishedParams;
5293    T = T.getUnqualifiedType();
5294
5295    // Move on to the second parameter;
5296    ++Param;
5297
5298    // If there is no second parameter, the first must be a const char *
5299    if (Param == FnDecl->param_end()) {
5300      if (Context.hasSameType(T, Context.CharTy))
5301        Valid = true;
5302      goto FinishedParams;
5303    }
5304
5305    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5306    // are allowed as the first parameter to a two-parameter function
5307    if (!(Context.hasSameType(T, Context.CharTy) ||
5308          Context.hasSameType(T, Context.WCharTy) ||
5309          Context.hasSameType(T, Context.Char16Ty) ||
5310          Context.hasSameType(T, Context.Char32Ty)))
5311      goto FinishedParams;
5312
5313    // The second and final parameter must be an std::size_t
5314    T = (*Param)->getType().getUnqualifiedType();
5315    if (Context.hasSameType(T, Context.getSizeType()) &&
5316        ++Param == FnDecl->param_end())
5317      Valid = true;
5318  }
5319
5320  // FIXME: This diagnostic is absolutely terrible.
5321FinishedParams:
5322  if (!Valid) {
5323    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5324      << FnDecl->getDeclName();
5325    return true;
5326  }
5327
5328  return false;
5329}
5330
5331/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5332/// linkage specification, including the language and (if present)
5333/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5334/// the location of the language string literal, which is provided
5335/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5336/// the '{' brace. Otherwise, this linkage specification does not
5337/// have any braces.
5338Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5339                                                     SourceLocation ExternLoc,
5340                                                     SourceLocation LangLoc,
5341                                                     llvm::StringRef Lang,
5342                                                     SourceLocation LBraceLoc) {
5343  LinkageSpecDecl::LanguageIDs Language;
5344  if (Lang == "\"C\"")
5345    Language = LinkageSpecDecl::lang_c;
5346  else if (Lang == "\"C++\"")
5347    Language = LinkageSpecDecl::lang_cxx;
5348  else {
5349    Diag(LangLoc, diag::err_bad_language);
5350    return DeclPtrTy();
5351  }
5352
5353  // FIXME: Add all the various semantics of linkage specifications
5354
5355  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5356                                               LangLoc, Language,
5357                                               LBraceLoc.isValid());
5358  CurContext->addDecl(D);
5359  PushDeclContext(S, D);
5360  return DeclPtrTy::make(D);
5361}
5362
5363/// ActOnFinishLinkageSpecification - Completely the definition of
5364/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5365/// valid, it's the position of the closing '}' brace in a linkage
5366/// specification that uses braces.
5367Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5368                                                      DeclPtrTy LinkageSpec,
5369                                                      SourceLocation RBraceLoc) {
5370  if (LinkageSpec)
5371    PopDeclContext();
5372  return LinkageSpec;
5373}
5374
5375/// \brief Perform semantic analysis for the variable declaration that
5376/// occurs within a C++ catch clause, returning the newly-created
5377/// variable.
5378VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5379                                         TypeSourceInfo *TInfo,
5380                                         IdentifierInfo *Name,
5381                                         SourceLocation Loc,
5382                                         SourceRange Range) {
5383  bool Invalid = false;
5384
5385  // Arrays and functions decay.
5386  if (ExDeclType->isArrayType())
5387    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5388  else if (ExDeclType->isFunctionType())
5389    ExDeclType = Context.getPointerType(ExDeclType);
5390
5391  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5392  // The exception-declaration shall not denote a pointer or reference to an
5393  // incomplete type, other than [cv] void*.
5394  // N2844 forbids rvalue references.
5395  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5396    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5397    Invalid = true;
5398  }
5399
5400  // GCC allows catching pointers and references to incomplete types
5401  // as an extension; so do we, but we warn by default.
5402
5403  QualType BaseType = ExDeclType;
5404  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5405  unsigned DK = diag::err_catch_incomplete;
5406  bool IncompleteCatchIsInvalid = true;
5407  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5408    BaseType = Ptr->getPointeeType();
5409    Mode = 1;
5410    DK = diag::ext_catch_incomplete_ptr;
5411    IncompleteCatchIsInvalid = false;
5412  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5413    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5414    BaseType = Ref->getPointeeType();
5415    Mode = 2;
5416    DK = diag::ext_catch_incomplete_ref;
5417    IncompleteCatchIsInvalid = false;
5418  }
5419  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5420      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5421      IncompleteCatchIsInvalid)
5422    Invalid = true;
5423
5424  if (!Invalid && !ExDeclType->isDependentType() &&
5425      RequireNonAbstractType(Loc, ExDeclType,
5426                             diag::err_abstract_type_in_decl,
5427                             AbstractVariableType))
5428    Invalid = true;
5429
5430  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5431                                    Name, ExDeclType, TInfo, VarDecl::None,
5432                                    VarDecl::None);
5433  ExDecl->setExceptionVariable(true);
5434
5435  if (!Invalid) {
5436    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5437      // C++ [except.handle]p16:
5438      //   The object declared in an exception-declaration or, if the
5439      //   exception-declaration does not specify a name, a temporary (12.2) is
5440      //   copy-initialized (8.5) from the exception object. [...]
5441      //   The object is destroyed when the handler exits, after the destruction
5442      //   of any automatic objects initialized within the handler.
5443      //
5444      // We just pretend to initialize the object with itself, then make sure
5445      // it can be destroyed later.
5446      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5447      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5448                                            Loc, ExDeclType, 0);
5449      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5450                                                               SourceLocation());
5451      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5452      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5453                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5454      if (Result.isInvalid())
5455        Invalid = true;
5456      else
5457        FinalizeVarWithDestructor(ExDecl, RecordTy);
5458    }
5459  }
5460
5461  if (Invalid)
5462    ExDecl->setInvalidDecl();
5463
5464  return ExDecl;
5465}
5466
5467/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5468/// handler.
5469Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5470  TypeSourceInfo *TInfo = 0;
5471  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5472
5473  bool Invalid = D.isInvalidType();
5474  IdentifierInfo *II = D.getIdentifier();
5475  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5476                                             LookupOrdinaryName,
5477                                             ForRedeclaration)) {
5478    // The scope should be freshly made just for us. There is just no way
5479    // it contains any previous declaration.
5480    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5481    if (PrevDecl->isTemplateParameter()) {
5482      // Maybe we will complain about the shadowed template parameter.
5483      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5484    }
5485  }
5486
5487  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5488    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5489      << D.getCXXScopeSpec().getRange();
5490    Invalid = true;
5491  }
5492
5493  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5494                                              D.getIdentifier(),
5495                                              D.getIdentifierLoc(),
5496                                            D.getDeclSpec().getSourceRange());
5497
5498  if (Invalid)
5499    ExDecl->setInvalidDecl();
5500
5501  // Add the exception declaration into this scope.
5502  if (II)
5503    PushOnScopeChains(ExDecl, S);
5504  else
5505    CurContext->addDecl(ExDecl);
5506
5507  ProcessDeclAttributes(S, ExDecl, D);
5508  return DeclPtrTy::make(ExDecl);
5509}
5510
5511Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5512                                                   ExprArg assertexpr,
5513                                                   ExprArg assertmessageexpr) {
5514  Expr *AssertExpr = (Expr *)assertexpr.get();
5515  StringLiteral *AssertMessage =
5516    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5517
5518  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5519    llvm::APSInt Value(32);
5520    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5521      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5522        AssertExpr->getSourceRange();
5523      return DeclPtrTy();
5524    }
5525
5526    if (Value == 0) {
5527      Diag(AssertLoc, diag::err_static_assert_failed)
5528        << AssertMessage->getString() << AssertExpr->getSourceRange();
5529    }
5530  }
5531
5532  assertexpr.release();
5533  assertmessageexpr.release();
5534  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5535                                        AssertExpr, AssertMessage);
5536
5537  CurContext->addDecl(Decl);
5538  return DeclPtrTy::make(Decl);
5539}
5540
5541/// \brief Perform semantic analysis of the given friend type declaration.
5542///
5543/// \returns A friend declaration that.
5544FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5545                                      TypeSourceInfo *TSInfo) {
5546  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5547
5548  QualType T = TSInfo->getType();
5549  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5550
5551  if (!getLangOptions().CPlusPlus0x) {
5552    // C++03 [class.friend]p2:
5553    //   An elaborated-type-specifier shall be used in a friend declaration
5554    //   for a class.*
5555    //
5556    //   * The class-key of the elaborated-type-specifier is required.
5557    if (!ActiveTemplateInstantiations.empty()) {
5558      // Do not complain about the form of friend template types during
5559      // template instantiation; we will already have complained when the
5560      // template was declared.
5561    } else if (!T->isElaboratedTypeSpecifier()) {
5562      // If we evaluated the type to a record type, suggest putting
5563      // a tag in front.
5564      if (const RecordType *RT = T->getAs<RecordType>()) {
5565        RecordDecl *RD = RT->getDecl();
5566
5567        std::string InsertionText = std::string(" ") + RD->getKindName();
5568
5569        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5570          << (unsigned) RD->getTagKind()
5571          << T
5572          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5573                                        InsertionText);
5574      } else {
5575        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5576          << T
5577          << SourceRange(FriendLoc, TypeRange.getEnd());
5578      }
5579    } else if (T->getAs<EnumType>()) {
5580      Diag(FriendLoc, diag::ext_enum_friend)
5581        << T
5582        << SourceRange(FriendLoc, TypeRange.getEnd());
5583    }
5584  }
5585
5586  // C++0x [class.friend]p3:
5587  //   If the type specifier in a friend declaration designates a (possibly
5588  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5589  //   the friend declaration is ignored.
5590
5591  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5592  // in [class.friend]p3 that we do not implement.
5593
5594  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5595}
5596
5597/// Handle a friend type declaration.  This works in tandem with
5598/// ActOnTag.
5599///
5600/// Notes on friend class templates:
5601///
5602/// We generally treat friend class declarations as if they were
5603/// declaring a class.  So, for example, the elaborated type specifier
5604/// in a friend declaration is required to obey the restrictions of a
5605/// class-head (i.e. no typedefs in the scope chain), template
5606/// parameters are required to match up with simple template-ids, &c.
5607/// However, unlike when declaring a template specialization, it's
5608/// okay to refer to a template specialization without an empty
5609/// template parameter declaration, e.g.
5610///   friend class A<T>::B<unsigned>;
5611/// We permit this as a special case; if there are any template
5612/// parameters present at all, require proper matching, i.e.
5613///   template <> template <class T> friend class A<int>::B;
5614Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5615                                          MultiTemplateParamsArg TempParams) {
5616  SourceLocation Loc = DS.getSourceRange().getBegin();
5617
5618  assert(DS.isFriendSpecified());
5619  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5620
5621  // Try to convert the decl specifier to a type.  This works for
5622  // friend templates because ActOnTag never produces a ClassTemplateDecl
5623  // for a TUK_Friend.
5624  Declarator TheDeclarator(DS, Declarator::MemberContext);
5625  TypeSourceInfo *TSI;
5626  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5627  if (TheDeclarator.isInvalidType())
5628    return DeclPtrTy();
5629
5630  if (!TSI)
5631    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5632
5633  // This is definitely an error in C++98.  It's probably meant to
5634  // be forbidden in C++0x, too, but the specification is just
5635  // poorly written.
5636  //
5637  // The problem is with declarations like the following:
5638  //   template <T> friend A<T>::foo;
5639  // where deciding whether a class C is a friend or not now hinges
5640  // on whether there exists an instantiation of A that causes
5641  // 'foo' to equal C.  There are restrictions on class-heads
5642  // (which we declare (by fiat) elaborated friend declarations to
5643  // be) that makes this tractable.
5644  //
5645  // FIXME: handle "template <> friend class A<T>;", which
5646  // is possibly well-formed?  Who even knows?
5647  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5648    Diag(Loc, diag::err_tagless_friend_type_template)
5649      << DS.getSourceRange();
5650    return DeclPtrTy();
5651  }
5652
5653  // C++98 [class.friend]p1: A friend of a class is a function
5654  //   or class that is not a member of the class . . .
5655  // This is fixed in DR77, which just barely didn't make the C++03
5656  // deadline.  It's also a very silly restriction that seriously
5657  // affects inner classes and which nobody else seems to implement;
5658  // thus we never diagnose it, not even in -pedantic.
5659  //
5660  // But note that we could warn about it: it's always useless to
5661  // friend one of your own members (it's not, however, worthless to
5662  // friend a member of an arbitrary specialization of your template).
5663
5664  Decl *D;
5665  if (unsigned NumTempParamLists = TempParams.size())
5666    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5667                                   NumTempParamLists,
5668                                 (TemplateParameterList**) TempParams.release(),
5669                                   TSI,
5670                                   DS.getFriendSpecLoc());
5671  else
5672    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5673
5674  if (!D)
5675    return DeclPtrTy();
5676
5677  D->setAccess(AS_public);
5678  CurContext->addDecl(D);
5679
5680  return DeclPtrTy::make(D);
5681}
5682
5683Sema::DeclPtrTy
5684Sema::ActOnFriendFunctionDecl(Scope *S,
5685                              Declarator &D,
5686                              bool IsDefinition,
5687                              MultiTemplateParamsArg TemplateParams) {
5688  const DeclSpec &DS = D.getDeclSpec();
5689
5690  assert(DS.isFriendSpecified());
5691  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5692
5693  SourceLocation Loc = D.getIdentifierLoc();
5694  TypeSourceInfo *TInfo = 0;
5695  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5696
5697  // C++ [class.friend]p1
5698  //   A friend of a class is a function or class....
5699  // Note that this sees through typedefs, which is intended.
5700  // It *doesn't* see through dependent types, which is correct
5701  // according to [temp.arg.type]p3:
5702  //   If a declaration acquires a function type through a
5703  //   type dependent on a template-parameter and this causes
5704  //   a declaration that does not use the syntactic form of a
5705  //   function declarator to have a function type, the program
5706  //   is ill-formed.
5707  if (!T->isFunctionType()) {
5708    Diag(Loc, diag::err_unexpected_friend);
5709
5710    // It might be worthwhile to try to recover by creating an
5711    // appropriate declaration.
5712    return DeclPtrTy();
5713  }
5714
5715  // C++ [namespace.memdef]p3
5716  //  - If a friend declaration in a non-local class first declares a
5717  //    class or function, the friend class or function is a member
5718  //    of the innermost enclosing namespace.
5719  //  - The name of the friend is not found by simple name lookup
5720  //    until a matching declaration is provided in that namespace
5721  //    scope (either before or after the class declaration granting
5722  //    friendship).
5723  //  - If a friend function is called, its name may be found by the
5724  //    name lookup that considers functions from namespaces and
5725  //    classes associated with the types of the function arguments.
5726  //  - When looking for a prior declaration of a class or a function
5727  //    declared as a friend, scopes outside the innermost enclosing
5728  //    namespace scope are not considered.
5729
5730  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5731  DeclarationName Name = GetNameForDeclarator(D);
5732  assert(Name);
5733
5734  // The context we found the declaration in, or in which we should
5735  // create the declaration.
5736  DeclContext *DC;
5737
5738  // FIXME: handle local classes
5739
5740  // Recover from invalid scope qualifiers as if they just weren't there.
5741  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5742                        ForRedeclaration);
5743  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5744    DC = computeDeclContext(ScopeQual);
5745
5746    // FIXME: handle dependent contexts
5747    if (!DC) return DeclPtrTy();
5748    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5749
5750    LookupQualifiedName(Previous, DC);
5751
5752    // Ignore things found implicitly in the wrong scope.
5753    // TODO: better diagnostics for this case.  Suggesting the right
5754    // qualified scope would be nice...
5755    LookupResult::Filter F = Previous.makeFilter();
5756    while (F.hasNext()) {
5757      NamedDecl *D = F.next();
5758      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5759        F.erase();
5760    }
5761    F.done();
5762
5763    if (Previous.empty()) {
5764      D.setInvalidType();
5765      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5766      return DeclPtrTy();
5767    }
5768
5769    // C++ [class.friend]p1: A friend of a class is a function or
5770    //   class that is not a member of the class . . .
5771    if (DC->Equals(CurContext))
5772      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5773
5774  // Otherwise walk out to the nearest namespace scope looking for matches.
5775  } else {
5776    // TODO: handle local class contexts.
5777
5778    DC = CurContext;
5779    while (true) {
5780      // Skip class contexts.  If someone can cite chapter and verse
5781      // for this behavior, that would be nice --- it's what GCC and
5782      // EDG do, and it seems like a reasonable intent, but the spec
5783      // really only says that checks for unqualified existing
5784      // declarations should stop at the nearest enclosing namespace,
5785      // not that they should only consider the nearest enclosing
5786      // namespace.
5787      while (DC->isRecord())
5788        DC = DC->getParent();
5789
5790      LookupQualifiedName(Previous, DC);
5791
5792      // TODO: decide what we think about using declarations.
5793      if (!Previous.empty())
5794        break;
5795
5796      if (DC->isFileContext()) break;
5797      DC = DC->getParent();
5798    }
5799
5800    // C++ [class.friend]p1: A friend of a class is a function or
5801    //   class that is not a member of the class . . .
5802    // C++0x changes this for both friend types and functions.
5803    // Most C++ 98 compilers do seem to give an error here, so
5804    // we do, too.
5805    if (!Previous.empty() && DC->Equals(CurContext)
5806        && !getLangOptions().CPlusPlus0x)
5807      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5808  }
5809
5810  if (DC->isFileContext()) {
5811    // This implies that it has to be an operator or function.
5812    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5813        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5814        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5815      Diag(Loc, diag::err_introducing_special_friend) <<
5816        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5817         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5818      return DeclPtrTy();
5819    }
5820  }
5821
5822  bool Redeclaration = false;
5823  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5824                                          move(TemplateParams),
5825                                          IsDefinition,
5826                                          Redeclaration);
5827  if (!ND) return DeclPtrTy();
5828
5829  assert(ND->getDeclContext() == DC);
5830  assert(ND->getLexicalDeclContext() == CurContext);
5831
5832  // Add the function declaration to the appropriate lookup tables,
5833  // adjusting the redeclarations list as necessary.  We don't
5834  // want to do this yet if the friending class is dependent.
5835  //
5836  // Also update the scope-based lookup if the target context's
5837  // lookup context is in lexical scope.
5838  if (!CurContext->isDependentContext()) {
5839    DC = DC->getLookupContext();
5840    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5841    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5842      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5843  }
5844
5845  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5846                                       D.getIdentifierLoc(), ND,
5847                                       DS.getFriendSpecLoc());
5848  FrD->setAccess(AS_public);
5849  CurContext->addDecl(FrD);
5850
5851  return DeclPtrTy::make(ND);
5852}
5853
5854void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5855  AdjustDeclIfTemplate(dcl);
5856
5857  Decl *Dcl = dcl.getAs<Decl>();
5858  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5859  if (!Fn) {
5860    Diag(DelLoc, diag::err_deleted_non_function);
5861    return;
5862  }
5863  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5864    Diag(DelLoc, diag::err_deleted_decl_not_first);
5865    Diag(Prev->getLocation(), diag::note_previous_declaration);
5866    // If the declaration wasn't the first, we delete the function anyway for
5867    // recovery.
5868  }
5869  Fn->setDeleted();
5870}
5871
5872static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5873  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5874       ++CI) {
5875    Stmt *SubStmt = *CI;
5876    if (!SubStmt)
5877      continue;
5878    if (isa<ReturnStmt>(SubStmt))
5879      Self.Diag(SubStmt->getSourceRange().getBegin(),
5880           diag::err_return_in_constructor_handler);
5881    if (!isa<Expr>(SubStmt))
5882      SearchForReturnInStmt(Self, SubStmt);
5883  }
5884}
5885
5886void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5887  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5888    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5889    SearchForReturnInStmt(*this, Handler);
5890  }
5891}
5892
5893bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5894                                             const CXXMethodDecl *Old) {
5895  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5896  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5897
5898  if (Context.hasSameType(NewTy, OldTy) ||
5899      NewTy->isDependentType() || OldTy->isDependentType())
5900    return false;
5901
5902  // Check if the return types are covariant
5903  QualType NewClassTy, OldClassTy;
5904
5905  /// Both types must be pointers or references to classes.
5906  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5907    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5908      NewClassTy = NewPT->getPointeeType();
5909      OldClassTy = OldPT->getPointeeType();
5910    }
5911  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5912    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5913      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5914        NewClassTy = NewRT->getPointeeType();
5915        OldClassTy = OldRT->getPointeeType();
5916      }
5917    }
5918  }
5919
5920  // The return types aren't either both pointers or references to a class type.
5921  if (NewClassTy.isNull()) {
5922    Diag(New->getLocation(),
5923         diag::err_different_return_type_for_overriding_virtual_function)
5924      << New->getDeclName() << NewTy << OldTy;
5925    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5926
5927    return true;
5928  }
5929
5930  // C++ [class.virtual]p6:
5931  //   If the return type of D::f differs from the return type of B::f, the
5932  //   class type in the return type of D::f shall be complete at the point of
5933  //   declaration of D::f or shall be the class type D.
5934  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5935    if (!RT->isBeingDefined() &&
5936        RequireCompleteType(New->getLocation(), NewClassTy,
5937                            PDiag(diag::err_covariant_return_incomplete)
5938                              << New->getDeclName()))
5939    return true;
5940  }
5941
5942  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5943    // Check if the new class derives from the old class.
5944    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5945      Diag(New->getLocation(),
5946           diag::err_covariant_return_not_derived)
5947      << New->getDeclName() << NewTy << OldTy;
5948      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5949      return true;
5950    }
5951
5952    // Check if we the conversion from derived to base is valid.
5953    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5954                    diag::err_covariant_return_inaccessible_base,
5955                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5956                    // FIXME: Should this point to the return type?
5957                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5958      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5959      return true;
5960    }
5961  }
5962
5963  // The qualifiers of the return types must be the same.
5964  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5965    Diag(New->getLocation(),
5966         diag::err_covariant_return_type_different_qualifications)
5967    << New->getDeclName() << NewTy << OldTy;
5968    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5969    return true;
5970  };
5971
5972
5973  // The new class type must have the same or less qualifiers as the old type.
5974  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5975    Diag(New->getLocation(),
5976         diag::err_covariant_return_type_class_type_more_qualified)
5977    << New->getDeclName() << NewTy << OldTy;
5978    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5979    return true;
5980  };
5981
5982  return false;
5983}
5984
5985bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5986                                             const CXXMethodDecl *Old)
5987{
5988  if (Old->hasAttr<FinalAttr>()) {
5989    Diag(New->getLocation(), diag::err_final_function_overridden)
5990      << New->getDeclName();
5991    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5992    return true;
5993  }
5994
5995  return false;
5996}
5997
5998/// \brief Mark the given method pure.
5999///
6000/// \param Method the method to be marked pure.
6001///
6002/// \param InitRange the source range that covers the "0" initializer.
6003bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6004  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6005    Method->setPure();
6006
6007    // A class is abstract if at least one function is pure virtual.
6008    Method->getParent()->setAbstract(true);
6009    return false;
6010  }
6011
6012  if (!Method->isInvalidDecl())
6013    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6014      << Method->getDeclName() << InitRange;
6015  return true;
6016}
6017
6018/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6019/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6020/// is a fresh scope pushed for just this purpose.
6021///
6022/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6023/// static data member of class X, names should be looked up in the scope of
6024/// class X.
6025void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6026  // If there is no declaration, there was an error parsing it.
6027  Decl *D = Dcl.getAs<Decl>();
6028  if (D == 0) return;
6029
6030  // We should only get called for declarations with scope specifiers, like:
6031  //   int foo::bar;
6032  assert(D->isOutOfLine());
6033  EnterDeclaratorContext(S, D->getDeclContext());
6034}
6035
6036/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6037/// initializer for the out-of-line declaration 'Dcl'.
6038void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6039  // If there is no declaration, there was an error parsing it.
6040  Decl *D = Dcl.getAs<Decl>();
6041  if (D == 0) return;
6042
6043  assert(D->isOutOfLine());
6044  ExitDeclaratorContext(S);
6045}
6046
6047/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6048/// C++ if/switch/while/for statement.
6049/// e.g: "if (int x = f()) {...}"
6050Action::DeclResult
6051Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6052  // C++ 6.4p2:
6053  // The declarator shall not specify a function or an array.
6054  // The type-specifier-seq shall not contain typedef and shall not declare a
6055  // new class or enumeration.
6056  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6057         "Parser allowed 'typedef' as storage class of condition decl.");
6058
6059  TypeSourceInfo *TInfo = 0;
6060  TagDecl *OwnedTag = 0;
6061  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
6062
6063  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6064                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6065                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6066    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6067      << D.getSourceRange();
6068    return DeclResult();
6069  } else if (OwnedTag && OwnedTag->isDefinition()) {
6070    // The type-specifier-seq shall not declare a new class or enumeration.
6071    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6072  }
6073
6074  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6075  if (!Dcl)
6076    return DeclResult();
6077
6078  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6079  VD->setDeclaredInCondition(true);
6080  return Dcl;
6081}
6082
6083void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6084                          bool DefinitionRequired) {
6085  // Ignore any vtable uses in unevaluated operands or for classes that do
6086  // not have a vtable.
6087  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6088      CurContext->isDependentContext() ||
6089      ExprEvalContexts.back().Context == Unevaluated)
6090    return;
6091
6092  // Try to insert this class into the map.
6093  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6094  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6095    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6096  if (!Pos.second) {
6097    // If we already had an entry, check to see if we are promoting this vtable
6098    // to required a definition. If so, we need to reappend to the VTableUses
6099    // list, since we may have already processed the first entry.
6100    if (DefinitionRequired && !Pos.first->second) {
6101      Pos.first->second = true;
6102    } else {
6103      // Otherwise, we can early exit.
6104      return;
6105    }
6106  }
6107
6108  // Local classes need to have their virtual members marked
6109  // immediately. For all other classes, we mark their virtual members
6110  // at the end of the translation unit.
6111  if (Class->isLocalClass())
6112    MarkVirtualMembersReferenced(Loc, Class);
6113  else
6114    VTableUses.push_back(std::make_pair(Class, Loc));
6115}
6116
6117bool Sema::DefineUsedVTables() {
6118  // If any dynamic classes have their key function defined within
6119  // this translation unit, then those vtables are considered "used" and must
6120  // be emitted.
6121  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6122    if (const CXXMethodDecl *KeyFunction
6123                             = Context.getKeyFunction(DynamicClasses[I])) {
6124      const FunctionDecl *Definition = 0;
6125      if (KeyFunction->getBody(Definition))
6126        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6127    }
6128  }
6129
6130  if (VTableUses.empty())
6131    return false;
6132
6133  // Note: The VTableUses vector could grow as a result of marking
6134  // the members of a class as "used", so we check the size each
6135  // time through the loop and prefer indices (with are stable) to
6136  // iterators (which are not).
6137  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6138    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6139    if (!Class)
6140      continue;
6141
6142    SourceLocation Loc = VTableUses[I].second;
6143
6144    // If this class has a key function, but that key function is
6145    // defined in another translation unit, we don't need to emit the
6146    // vtable even though we're using it.
6147    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6148    if (KeyFunction && !KeyFunction->getBody()) {
6149      switch (KeyFunction->getTemplateSpecializationKind()) {
6150      case TSK_Undeclared:
6151      case TSK_ExplicitSpecialization:
6152      case TSK_ExplicitInstantiationDeclaration:
6153        // The key function is in another translation unit.
6154        continue;
6155
6156      case TSK_ExplicitInstantiationDefinition:
6157      case TSK_ImplicitInstantiation:
6158        // We will be instantiating the key function.
6159        break;
6160      }
6161    } else if (!KeyFunction) {
6162      // If we have a class with no key function that is the subject
6163      // of an explicit instantiation declaration, suppress the
6164      // vtable; it will live with the explicit instantiation
6165      // definition.
6166      bool IsExplicitInstantiationDeclaration
6167        = Class->getTemplateSpecializationKind()
6168                                      == TSK_ExplicitInstantiationDeclaration;
6169      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6170                                 REnd = Class->redecls_end();
6171           R != REnd; ++R) {
6172        TemplateSpecializationKind TSK
6173          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6174        if (TSK == TSK_ExplicitInstantiationDeclaration)
6175          IsExplicitInstantiationDeclaration = true;
6176        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6177          IsExplicitInstantiationDeclaration = false;
6178          break;
6179        }
6180      }
6181
6182      if (IsExplicitInstantiationDeclaration)
6183        continue;
6184    }
6185
6186    // Mark all of the virtual members of this class as referenced, so
6187    // that we can build a vtable. Then, tell the AST consumer that a
6188    // vtable for this class is required.
6189    MarkVirtualMembersReferenced(Loc, Class);
6190    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6191    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6192
6193    // Optionally warn if we're emitting a weak vtable.
6194    if (Class->getLinkage() == ExternalLinkage &&
6195        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6196      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6197        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6198    }
6199  }
6200  VTableUses.clear();
6201
6202  return true;
6203}
6204
6205void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6206                                        const CXXRecordDecl *RD) {
6207  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6208       e = RD->method_end(); i != e; ++i) {
6209    CXXMethodDecl *MD = *i;
6210
6211    // C++ [basic.def.odr]p2:
6212    //   [...] A virtual member function is used if it is not pure. [...]
6213    if (MD->isVirtual() && !MD->isPure())
6214      MarkDeclarationReferenced(Loc, MD);
6215  }
6216
6217  // Only classes that have virtual bases need a VTT.
6218  if (RD->getNumVBases() == 0)
6219    return;
6220
6221  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6222           e = RD->bases_end(); i != e; ++i) {
6223    const CXXRecordDecl *Base =
6224        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6225    if (i->isVirtual())
6226      continue;
6227    if (Base->getNumVBases() == 0)
6228      continue;
6229    MarkVirtualMembersReferenced(Loc, Base);
6230  }
6231}
6232
6233/// SetIvarInitializers - This routine builds initialization ASTs for the
6234/// Objective-C implementation whose ivars need be initialized.
6235void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6236  if (!getLangOptions().CPlusPlus)
6237    return;
6238  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6239    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6240    CollectIvarsToConstructOrDestruct(OID, ivars);
6241    if (ivars.empty())
6242      return;
6243    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6244    for (unsigned i = 0; i < ivars.size(); i++) {
6245      FieldDecl *Field = ivars[i];
6246      if (Field->isInvalidDecl())
6247        continue;
6248
6249      CXXBaseOrMemberInitializer *Member;
6250      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6251      InitializationKind InitKind =
6252        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6253
6254      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6255      Sema::OwningExprResult MemberInit =
6256        InitSeq.Perform(*this, InitEntity, InitKind,
6257                        Sema::MultiExprArg(*this, 0, 0));
6258      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6259      // Note, MemberInit could actually come back empty if no initialization
6260      // is required (e.g., because it would call a trivial default constructor)
6261      if (!MemberInit.get() || MemberInit.isInvalid())
6262        continue;
6263
6264      Member =
6265        new (Context) CXXBaseOrMemberInitializer(Context,
6266                                                 Field, SourceLocation(),
6267                                                 SourceLocation(),
6268                                                 MemberInit.takeAs<Expr>(),
6269                                                 SourceLocation());
6270      AllToInit.push_back(Member);
6271
6272      // Be sure that the destructor is accessible and is marked as referenced.
6273      if (const RecordType *RecordTy
6274                  = Context.getBaseElementType(Field->getType())
6275                                                        ->getAs<RecordType>()) {
6276                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6277        if (CXXDestructorDecl *Destructor
6278              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6279          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6280          CheckDestructorAccess(Field->getLocation(), Destructor,
6281                            PDiag(diag::err_access_dtor_ivar)
6282                              << Context.getBaseElementType(Field->getType()));
6283        }
6284      }
6285    }
6286    ObjCImplementation->setIvarInitializers(Context,
6287                                            AllToInit.data(), AllToInit.size());
6288  }
6289}
6290