SemaDeclCXX.cpp revision 3d752dbee56ff1988d81644613aa595fc8d7bfa4
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  assert(!DS.isFriendSpecified());
554
555  // C++ 9.2p6: A member shall not be declared to have automatic storage
556  // duration (auto, register) or with the extern storage-class-specifier.
557  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
558  // data members and cannot be applied to names declared const or static,
559  // and cannot be applied to reference members.
560  switch (DS.getStorageClassSpec()) {
561    case DeclSpec::SCS_unspecified:
562    case DeclSpec::SCS_typedef:
563    case DeclSpec::SCS_static:
564      // FALL THROUGH.
565      break;
566    case DeclSpec::SCS_mutable:
567      if (isFunc) {
568        if (DS.getStorageClassSpecLoc().isValid())
569          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
570        else
571          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
572
573        // FIXME: It would be nicer if the keyword was ignored only for this
574        // declarator. Otherwise we could get follow-up errors.
575        D.getMutableDeclSpec().ClearStorageClassSpecs();
576      } else {
577        QualType T = GetTypeForDeclarator(D, S);
578        diag::kind err = static_cast<diag::kind>(0);
579        if (T->isReferenceType())
580          err = diag::err_mutable_reference;
581        else if (T.isConstQualified())
582          err = diag::err_mutable_const;
583        if (err != 0) {
584          if (DS.getStorageClassSpecLoc().isValid())
585            Diag(DS.getStorageClassSpecLoc(), err);
586          else
587            Diag(DS.getThreadSpecLoc(), err);
588          // FIXME: It would be nicer if the keyword was ignored only for this
589          // declarator. Otherwise we could get follow-up errors.
590          D.getMutableDeclSpec().ClearStorageClassSpecs();
591        }
592      }
593      break;
594    default:
595      if (DS.getStorageClassSpecLoc().isValid())
596        Diag(DS.getStorageClassSpecLoc(),
597             diag::err_storageclass_invalid_for_member);
598      else
599        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
600      D.getMutableDeclSpec().ClearStorageClassSpecs();
601  }
602
603  if (!isFunc &&
604      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
605      D.getNumTypeObjects() == 0) {
606    // Check also for this case:
607    //
608    // typedef int f();
609    // f a;
610    //
611    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
612    isFunc = TDType->isFunctionType();
613  }
614
615  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
616                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
617                      !isFunc);
618
619  Decl *Member;
620  if (isInstField) {
621    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
622                         AS);
623    assert(Member && "HandleField never returns null");
624  } else {
625    Member = ActOnDeclarator(S, D).getAs<Decl>();
626    if (!Member) {
627      if (BitWidth) DeleteExpr(BitWidth);
628      return DeclPtrTy();
629    }
630
631    // Non-instance-fields can't have a bitfield.
632    if (BitWidth) {
633      if (Member->isInvalidDecl()) {
634        // don't emit another diagnostic.
635      } else if (isa<VarDecl>(Member)) {
636        // C++ 9.6p3: A bit-field shall not be a static member.
637        // "static member 'A' cannot be a bit-field"
638        Diag(Loc, diag::err_static_not_bitfield)
639          << Name << BitWidth->getSourceRange();
640      } else if (isa<TypedefDecl>(Member)) {
641        // "typedef member 'x' cannot be a bit-field"
642        Diag(Loc, diag::err_typedef_not_bitfield)
643          << Name << BitWidth->getSourceRange();
644      } else {
645        // A function typedef ("typedef int f(); f a;").
646        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
647        Diag(Loc, diag::err_not_integral_type_bitfield)
648          << Name << cast<ValueDecl>(Member)->getType()
649          << BitWidth->getSourceRange();
650      }
651
652      DeleteExpr(BitWidth);
653      BitWidth = 0;
654      Member->setInvalidDecl();
655    }
656
657    Member->setAccess(AS);
658  }
659
660  assert((Name || isInstField) && "No identifier for non-field ?");
661
662  if (Init)
663    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
664  if (Deleted) // FIXME: Source location is not very good.
665    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
666
667  if (isInstField) {
668    FieldCollector->Add(cast<FieldDecl>(Member));
669    return DeclPtrTy();
670  }
671  return DeclPtrTy::make(Member);
672}
673
674/// ActOnMemInitializer - Handle a C++ member initializer.
675Sema::MemInitResult
676Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
677                          Scope *S,
678                          const CXXScopeSpec &SS,
679                          IdentifierInfo *MemberOrBase,
680                          TypeTy *TemplateTypeTy,
681                          SourceLocation IdLoc,
682                          SourceLocation LParenLoc,
683                          ExprTy **Args, unsigned NumArgs,
684                          SourceLocation *CommaLocs,
685                          SourceLocation RParenLoc) {
686  if (!ConstructorD)
687    return true;
688
689  CXXConstructorDecl *Constructor
690    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
691  if (!Constructor) {
692    // The user wrote a constructor initializer on a function that is
693    // not a C++ constructor. Ignore the error for now, because we may
694    // have more member initializers coming; we'll diagnose it just
695    // once in ActOnMemInitializers.
696    return true;
697  }
698
699  CXXRecordDecl *ClassDecl = Constructor->getParent();
700
701  // C++ [class.base.init]p2:
702  //   Names in a mem-initializer-id are looked up in the scope of the
703  //   constructor’s class and, if not found in that scope, are looked
704  //   up in the scope containing the constructor’s
705  //   definition. [Note: if the constructor’s class contains a member
706  //   with the same name as a direct or virtual base class of the
707  //   class, a mem-initializer-id naming the member or base class and
708  //   composed of a single identifier refers to the class member. A
709  //   mem-initializer-id for the hidden base class may be specified
710  //   using a qualified name. ]
711  if (!SS.getScopeRep() && !TemplateTypeTy) {
712    // Look for a member, first.
713    FieldDecl *Member = 0;
714    DeclContext::lookup_result Result
715      = ClassDecl->lookup(MemberOrBase);
716    if (Result.first != Result.second)
717      Member = dyn_cast<FieldDecl>(*Result.first);
718
719    // FIXME: Handle members of an anonymous union.
720
721    if (Member)
722      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
723                                    RParenLoc);
724  }
725  // It didn't name a member, so see if it names a class.
726  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
727                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
728  if (!BaseTy)
729    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
730      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
731
732  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
733
734  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
735                              RParenLoc, ClassDecl);
736}
737
738Sema::MemInitResult
739Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
740                             unsigned NumArgs, SourceLocation IdLoc,
741                             SourceLocation RParenLoc) {
742  bool HasDependentArg = false;
743  for (unsigned i = 0; i < NumArgs; i++)
744    HasDependentArg |= Args[i]->isTypeDependent();
745
746  CXXConstructorDecl *C = 0;
747  QualType FieldType = Member->getType();
748  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
749    FieldType = Array->getElementType();
750  if (FieldType->isDependentType()) {
751    // Can't check init for dependent type.
752  } else if (FieldType->getAs<RecordType>()) {
753    if (!HasDependentArg)
754      C = PerformInitializationByConstructor(
755            FieldType, (Expr **)Args, NumArgs, IdLoc,
756            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
757  } else if (NumArgs != 1) {
758    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
759                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
760  } else if (!HasDependentArg) {
761    Expr *NewExp = (Expr*)Args[0];
762    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
763      return true;
764    Args[0] = NewExp;
765  }
766  // FIXME: Perform direct initialization of the member.
767  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
768                                                  NumArgs, C, IdLoc);
769}
770
771Sema::MemInitResult
772Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
773                           unsigned NumArgs, SourceLocation IdLoc,
774                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
775  bool HasDependentArg = false;
776  for (unsigned i = 0; i < NumArgs; i++)
777    HasDependentArg |= Args[i]->isTypeDependent();
778
779  if (!BaseType->isDependentType()) {
780    if (!BaseType->isRecordType())
781      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
782        << BaseType << SourceRange(IdLoc, RParenLoc);
783
784    // C++ [class.base.init]p2:
785    //   [...] Unless the mem-initializer-id names a nonstatic data
786    //   member of the constructor’s class or a direct or virtual base
787    //   of that class, the mem-initializer is ill-formed. A
788    //   mem-initializer-list can initialize a base class using any
789    //   name that denotes that base class type.
790
791    // First, check for a direct base class.
792    const CXXBaseSpecifier *DirectBaseSpec = 0;
793    for (CXXRecordDecl::base_class_const_iterator Base =
794         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
795      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
796          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
797        // We found a direct base of this type. That's what we're
798        // initializing.
799        DirectBaseSpec = &*Base;
800        break;
801      }
802    }
803
804    // Check for a virtual base class.
805    // FIXME: We might be able to short-circuit this if we know in advance that
806    // there are no virtual bases.
807    const CXXBaseSpecifier *VirtualBaseSpec = 0;
808    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
809      // We haven't found a base yet; search the class hierarchy for a
810      // virtual base class.
811      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
812                      /*DetectVirtual=*/false);
813      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
814        for (BasePaths::paths_iterator Path = Paths.begin();
815             Path != Paths.end(); ++Path) {
816          if (Path->back().Base->isVirtual()) {
817            VirtualBaseSpec = Path->back().Base;
818            break;
819          }
820        }
821      }
822    }
823
824    // C++ [base.class.init]p2:
825    //   If a mem-initializer-id is ambiguous because it designates both
826    //   a direct non-virtual base class and an inherited virtual base
827    //   class, the mem-initializer is ill-formed.
828    if (DirectBaseSpec && VirtualBaseSpec)
829      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
830        << BaseType << SourceRange(IdLoc, RParenLoc);
831    // C++ [base.class.init]p2:
832    // Unless the mem-initializer-id names a nonstatic data membeer of the
833    // constructor's class ot a direst or virtual base of that class, the
834    // mem-initializer is ill-formed.
835    if (!DirectBaseSpec && !VirtualBaseSpec)
836      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
837      << BaseType << ClassDecl->getNameAsCString()
838      << SourceRange(IdLoc, RParenLoc);
839  }
840
841  CXXConstructorDecl *C = 0;
842  if (!BaseType->isDependentType() && !HasDependentArg) {
843    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
844                                            Context.getCanonicalType(BaseType));
845    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
846                                           IdLoc, SourceRange(IdLoc, RParenLoc),
847                                           Name, IK_Direct);
848  }
849
850  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
851                                                  NumArgs, C, IdLoc);
852}
853
854void
855Sema::BuildBaseOrMemberInitializers(ASTContext &C,
856                                 CXXConstructorDecl *Constructor,
857                                 CXXBaseOrMemberInitializer **Initializers,
858                                 unsigned NumInitializers
859                                 ) {
860  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
861  llvm::SmallVector<FieldDecl *, 4>Members;
862
863  Constructor->setBaseOrMemberInitializers(C,
864                                           Initializers, NumInitializers,
865                                           Bases, Members);
866  for (unsigned int i = 0; i < Bases.size(); i++)
867    Diag(Bases[i]->getSourceRange().getBegin(),
868         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
869  for (unsigned int i = 0; i < Members.size(); i++)
870    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
871          << 1 << Members[i]->getType();
872}
873
874static void *GetKeyForTopLevelField(FieldDecl *Field) {
875  // For anonymous unions, use the class declaration as the key.
876  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
877    if (RT->getDecl()->isAnonymousStructOrUnion())
878      return static_cast<void *>(RT->getDecl());
879  }
880  return static_cast<void *>(Field);
881}
882
883static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
884                             bool MemberMaybeAnon=false) {
885  // For fields injected into the class via declaration of an anonymous union,
886  // use its anonymous union class declaration as the unique key.
887  if (FieldDecl *Field = Member->getMember()) {
888    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
889    // data member of the class. Data member used in the initializer list is
890    // in AnonUnionMember field.
891    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
892      Field = Member->getAnonUnionMember();
893    if (Field->getDeclContext()->isRecord()) {
894      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
895      if (RD->isAnonymousStructOrUnion())
896        return static_cast<void *>(RD);
897    }
898    return static_cast<void *>(Field);
899  }
900  return static_cast<RecordType *>(Member->getBaseClass());
901}
902
903void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
904                                SourceLocation ColonLoc,
905                                MemInitTy **MemInits, unsigned NumMemInits) {
906  if (!ConstructorDecl)
907    return;
908
909  CXXConstructorDecl *Constructor
910    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
911
912  if (!Constructor) {
913    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
914    return;
915  }
916  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
917  bool err = false;
918  for (unsigned i = 0; i < NumMemInits; i++) {
919    CXXBaseOrMemberInitializer *Member =
920      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
921    void *KeyToMember = GetKeyForMember(Member);
922    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
923    if (!PrevMember) {
924      PrevMember = Member;
925      continue;
926    }
927    if (FieldDecl *Field = Member->getMember())
928      Diag(Member->getSourceLocation(),
929           diag::error_multiple_mem_initialization)
930      << Field->getNameAsString();
931    else {
932      Type *BaseClass = Member->getBaseClass();
933      assert(BaseClass && "ActOnMemInitializers - neither field or base");
934      Diag(Member->getSourceLocation(),
935           diag::error_multiple_base_initialization)
936        << BaseClass->getDesugaredType(true);
937    }
938    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
939      << 0;
940    err = true;
941  }
942  if (!err)
943    BuildBaseOrMemberInitializers(Context, Constructor,
944                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
945                      NumMemInits);
946
947  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
948               != Diagnostic::Ignored ||
949               Diags.getDiagnosticLevel(diag::warn_field_initialized)
950               != Diagnostic::Ignored)) {
951    // Also issue warning if order of ctor-initializer list does not match order
952    // of 1) base class declarations and 2) order of non-static data members.
953    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
954
955    CXXRecordDecl *ClassDecl
956      = cast<CXXRecordDecl>(Constructor->getDeclContext());
957    // Push virtual bases before others.
958    for (CXXRecordDecl::base_class_iterator VBase =
959         ClassDecl->vbases_begin(),
960         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
961      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
962
963    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
964         E = ClassDecl->bases_end(); Base != E; ++Base) {
965      // Virtuals are alread in the virtual base list and are constructed
966      // first.
967      if (Base->isVirtual())
968        continue;
969      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
970    }
971
972    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
973         E = ClassDecl->field_end(); Field != E; ++Field)
974      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
975
976    int Last = AllBaseOrMembers.size();
977    int curIndex = 0;
978    CXXBaseOrMemberInitializer *PrevMember = 0;
979    for (unsigned i = 0; i < NumMemInits; i++) {
980      CXXBaseOrMemberInitializer *Member =
981        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
982      void *MemberInCtorList = GetKeyForMember(Member, true);
983
984      for (; curIndex < Last; curIndex++)
985        if (MemberInCtorList == AllBaseOrMembers[curIndex])
986          break;
987      if (curIndex == Last) {
988        assert(PrevMember && "Member not in member list?!");
989        // Initializer as specified in ctor-initializer list is out of order.
990        // Issue a warning diagnostic.
991        if (PrevMember->isBaseInitializer()) {
992          // Diagnostics is for an initialized base class.
993          Type *BaseClass = PrevMember->getBaseClass();
994          Diag(PrevMember->getSourceLocation(),
995               diag::warn_base_initialized)
996                << BaseClass->getDesugaredType(true);
997        } else {
998          FieldDecl *Field = PrevMember->getMember();
999          Diag(PrevMember->getSourceLocation(),
1000               diag::warn_field_initialized)
1001            << Field->getNameAsString();
1002        }
1003        // Also the note!
1004        if (FieldDecl *Field = Member->getMember())
1005          Diag(Member->getSourceLocation(),
1006               diag::note_fieldorbase_initialized_here) << 0
1007            << Field->getNameAsString();
1008        else {
1009          Type *BaseClass = Member->getBaseClass();
1010          Diag(Member->getSourceLocation(),
1011               diag::note_fieldorbase_initialized_here) << 1
1012            << BaseClass->getDesugaredType(true);
1013        }
1014        for (curIndex = 0; curIndex < Last; curIndex++)
1015          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1016            break;
1017      }
1018      PrevMember = Member;
1019    }
1020  }
1021}
1022
1023void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1024  if (!CDtorDecl)
1025    return;
1026
1027  if (CXXConstructorDecl *Constructor
1028      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1029    BuildBaseOrMemberInitializers(Context,
1030                                     Constructor,
1031                                     (CXXBaseOrMemberInitializer **)0, 0);
1032}
1033
1034namespace {
1035  /// PureVirtualMethodCollector - traverses a class and its superclasses
1036  /// and determines if it has any pure virtual methods.
1037  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1038    ASTContext &Context;
1039
1040  public:
1041    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1042
1043  private:
1044    MethodList Methods;
1045
1046    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1047
1048  public:
1049    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1050      : Context(Ctx) {
1051
1052      MethodList List;
1053      Collect(RD, List);
1054
1055      // Copy the temporary list to methods, and make sure to ignore any
1056      // null entries.
1057      for (size_t i = 0, e = List.size(); i != e; ++i) {
1058        if (List[i])
1059          Methods.push_back(List[i]);
1060      }
1061    }
1062
1063    bool empty() const { return Methods.empty(); }
1064
1065    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1066    MethodList::const_iterator methods_end() { return Methods.end(); }
1067  };
1068
1069  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1070                                           MethodList& Methods) {
1071    // First, collect the pure virtual methods for the base classes.
1072    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1073         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1074      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1075        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1076        if (BaseDecl && BaseDecl->isAbstract())
1077          Collect(BaseDecl, Methods);
1078      }
1079    }
1080
1081    // Next, zero out any pure virtual methods that this class overrides.
1082    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1083
1084    MethodSetTy OverriddenMethods;
1085    size_t MethodsSize = Methods.size();
1086
1087    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1088         i != e; ++i) {
1089      // Traverse the record, looking for methods.
1090      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1091        // If the method is pure virtual, add it to the methods vector.
1092        if (MD->isPure()) {
1093          Methods.push_back(MD);
1094          continue;
1095        }
1096
1097        // Otherwise, record all the overridden methods in our set.
1098        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1099             E = MD->end_overridden_methods(); I != E; ++I) {
1100          // Keep track of the overridden methods.
1101          OverriddenMethods.insert(*I);
1102        }
1103      }
1104    }
1105
1106    // Now go through the methods and zero out all the ones we know are
1107    // overridden.
1108    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1109      if (OverriddenMethods.count(Methods[i]))
1110        Methods[i] = 0;
1111    }
1112
1113  }
1114}
1115
1116bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1117                                  unsigned DiagID, AbstractDiagSelID SelID,
1118                                  const CXXRecordDecl *CurrentRD) {
1119
1120  if (!getLangOptions().CPlusPlus)
1121    return false;
1122
1123  if (const ArrayType *AT = Context.getAsArrayType(T))
1124    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1125                                  CurrentRD);
1126
1127  if (const PointerType *PT = T->getAs<PointerType>()) {
1128    // Find the innermost pointer type.
1129    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1130      PT = T;
1131
1132    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1133      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1134                                    CurrentRD);
1135  }
1136
1137  const RecordType *RT = T->getAs<RecordType>();
1138  if (!RT)
1139    return false;
1140
1141  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1142  if (!RD)
1143    return false;
1144
1145  if (CurrentRD && CurrentRD != RD)
1146    return false;
1147
1148  if (!RD->isAbstract())
1149    return false;
1150
1151  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1152
1153  // Check if we've already emitted the list of pure virtual functions for this
1154  // class.
1155  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1156    return true;
1157
1158  PureVirtualMethodCollector Collector(Context, RD);
1159
1160  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1161       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1162    const CXXMethodDecl *MD = *I;
1163
1164    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1165      MD->getDeclName();
1166  }
1167
1168  if (!PureVirtualClassDiagSet)
1169    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1170  PureVirtualClassDiagSet->insert(RD);
1171
1172  return true;
1173}
1174
1175namespace {
1176  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1177    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1178    Sema &SemaRef;
1179    CXXRecordDecl *AbstractClass;
1180
1181    bool VisitDeclContext(const DeclContext *DC) {
1182      bool Invalid = false;
1183
1184      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1185           E = DC->decls_end(); I != E; ++I)
1186        Invalid |= Visit(*I);
1187
1188      return Invalid;
1189    }
1190
1191  public:
1192    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1193      : SemaRef(SemaRef), AbstractClass(ac) {
1194        Visit(SemaRef.Context.getTranslationUnitDecl());
1195    }
1196
1197    bool VisitFunctionDecl(const FunctionDecl *FD) {
1198      if (FD->isThisDeclarationADefinition()) {
1199        // No need to do the check if we're in a definition, because it requires
1200        // that the return/param types are complete.
1201        // because that requires
1202        return VisitDeclContext(FD);
1203      }
1204
1205      // Check the return type.
1206      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1207      bool Invalid =
1208        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1209                                       diag::err_abstract_type_in_decl,
1210                                       Sema::AbstractReturnType,
1211                                       AbstractClass);
1212
1213      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1214           E = FD->param_end(); I != E; ++I) {
1215        const ParmVarDecl *VD = *I;
1216        Invalid |=
1217          SemaRef.RequireNonAbstractType(VD->getLocation(),
1218                                         VD->getOriginalType(),
1219                                         diag::err_abstract_type_in_decl,
1220                                         Sema::AbstractParamType,
1221                                         AbstractClass);
1222      }
1223
1224      return Invalid;
1225    }
1226
1227    bool VisitDecl(const Decl* D) {
1228      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1229        return VisitDeclContext(DC);
1230
1231      return false;
1232    }
1233  };
1234}
1235
1236void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1237                                             DeclPtrTy TagDecl,
1238                                             SourceLocation LBrac,
1239                                             SourceLocation RBrac) {
1240  if (!TagDecl)
1241    return;
1242
1243  AdjustDeclIfTemplate(TagDecl);
1244  ActOnFields(S, RLoc, TagDecl,
1245              (DeclPtrTy*)FieldCollector->getCurFields(),
1246              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1247
1248  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1249  if (!RD->isAbstract()) {
1250    // Collect all the pure virtual methods and see if this is an abstract
1251    // class after all.
1252    PureVirtualMethodCollector Collector(Context, RD);
1253    if (!Collector.empty())
1254      RD->setAbstract(true);
1255  }
1256
1257  if (RD->isAbstract())
1258    AbstractClassUsageDiagnoser(*this, RD);
1259
1260  if (!RD->isDependentType())
1261    AddImplicitlyDeclaredMembersToClass(RD);
1262}
1263
1264/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1265/// special functions, such as the default constructor, copy
1266/// constructor, or destructor, to the given C++ class (C++
1267/// [special]p1).  This routine can only be executed just before the
1268/// definition of the class is complete.
1269void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1270  CanQualType ClassType
1271    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1272
1273  // FIXME: Implicit declarations have exception specifications, which are
1274  // the union of the specifications of the implicitly called functions.
1275
1276  if (!ClassDecl->hasUserDeclaredConstructor()) {
1277    // C++ [class.ctor]p5:
1278    //   A default constructor for a class X is a constructor of class X
1279    //   that can be called without an argument. If there is no
1280    //   user-declared constructor for class X, a default constructor is
1281    //   implicitly declared. An implicitly-declared default constructor
1282    //   is an inline public member of its class.
1283    DeclarationName Name
1284      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1285    CXXConstructorDecl *DefaultCon =
1286      CXXConstructorDecl::Create(Context, ClassDecl,
1287                                 ClassDecl->getLocation(), Name,
1288                                 Context.getFunctionType(Context.VoidTy,
1289                                                         0, 0, false, 0),
1290                                 /*isExplicit=*/false,
1291                                 /*isInline=*/true,
1292                                 /*isImplicitlyDeclared=*/true);
1293    DefaultCon->setAccess(AS_public);
1294    DefaultCon->setImplicit();
1295    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1296    ClassDecl->addDecl(DefaultCon);
1297  }
1298
1299  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1300    // C++ [class.copy]p4:
1301    //   If the class definition does not explicitly declare a copy
1302    //   constructor, one is declared implicitly.
1303
1304    // C++ [class.copy]p5:
1305    //   The implicitly-declared copy constructor for a class X will
1306    //   have the form
1307    //
1308    //       X::X(const X&)
1309    //
1310    //   if
1311    bool HasConstCopyConstructor = true;
1312
1313    //     -- each direct or virtual base class B of X has a copy
1314    //        constructor whose first parameter is of type const B& or
1315    //        const volatile B&, and
1316    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1317         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1318      const CXXRecordDecl *BaseClassDecl
1319        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1320      HasConstCopyConstructor
1321        = BaseClassDecl->hasConstCopyConstructor(Context);
1322    }
1323
1324    //     -- for all the nonstatic data members of X that are of a
1325    //        class type M (or array thereof), each such class type
1326    //        has a copy constructor whose first parameter is of type
1327    //        const M& or const volatile M&.
1328    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1329         HasConstCopyConstructor && Field != ClassDecl->field_end();
1330         ++Field) {
1331      QualType FieldType = (*Field)->getType();
1332      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1333        FieldType = Array->getElementType();
1334      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1335        const CXXRecordDecl *FieldClassDecl
1336          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1337        HasConstCopyConstructor
1338          = FieldClassDecl->hasConstCopyConstructor(Context);
1339      }
1340    }
1341
1342    //   Otherwise, the implicitly declared copy constructor will have
1343    //   the form
1344    //
1345    //       X::X(X&)
1346    QualType ArgType = ClassType;
1347    if (HasConstCopyConstructor)
1348      ArgType = ArgType.withConst();
1349    ArgType = Context.getLValueReferenceType(ArgType);
1350
1351    //   An implicitly-declared copy constructor is an inline public
1352    //   member of its class.
1353    DeclarationName Name
1354      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1355    CXXConstructorDecl *CopyConstructor
1356      = CXXConstructorDecl::Create(Context, ClassDecl,
1357                                   ClassDecl->getLocation(), Name,
1358                                   Context.getFunctionType(Context.VoidTy,
1359                                                           &ArgType, 1,
1360                                                           false, 0),
1361                                   /*isExplicit=*/false,
1362                                   /*isInline=*/true,
1363                                   /*isImplicitlyDeclared=*/true);
1364    CopyConstructor->setAccess(AS_public);
1365    CopyConstructor->setImplicit();
1366    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1367
1368    // Add the parameter to the constructor.
1369    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1370                                                 ClassDecl->getLocation(),
1371                                                 /*IdentifierInfo=*/0,
1372                                                 ArgType, VarDecl::None, 0);
1373    CopyConstructor->setParams(Context, &FromParam, 1);
1374    ClassDecl->addDecl(CopyConstructor);
1375  }
1376
1377  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1378    // Note: The following rules are largely analoguous to the copy
1379    // constructor rules. Note that virtual bases are not taken into account
1380    // for determining the argument type of the operator. Note also that
1381    // operators taking an object instead of a reference are allowed.
1382    //
1383    // C++ [class.copy]p10:
1384    //   If the class definition does not explicitly declare a copy
1385    //   assignment operator, one is declared implicitly.
1386    //   The implicitly-defined copy assignment operator for a class X
1387    //   will have the form
1388    //
1389    //       X& X::operator=(const X&)
1390    //
1391    //   if
1392    bool HasConstCopyAssignment = true;
1393
1394    //       -- each direct base class B of X has a copy assignment operator
1395    //          whose parameter is of type const B&, const volatile B& or B,
1396    //          and
1397    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1398         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1399      const CXXRecordDecl *BaseClassDecl
1400        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1401      const CXXMethodDecl *MD = 0;
1402      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1403                                                                     MD);
1404    }
1405
1406    //       -- for all the nonstatic data members of X that are of a class
1407    //          type M (or array thereof), each such class type has a copy
1408    //          assignment operator whose parameter is of type const M&,
1409    //          const volatile M& or M.
1410    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1411         HasConstCopyAssignment && Field != ClassDecl->field_end();
1412         ++Field) {
1413      QualType FieldType = (*Field)->getType();
1414      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1415        FieldType = Array->getElementType();
1416      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1417        const CXXRecordDecl *FieldClassDecl
1418          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1419        const CXXMethodDecl *MD = 0;
1420        HasConstCopyAssignment
1421          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1422      }
1423    }
1424
1425    //   Otherwise, the implicitly declared copy assignment operator will
1426    //   have the form
1427    //
1428    //       X& X::operator=(X&)
1429    QualType ArgType = ClassType;
1430    QualType RetType = Context.getLValueReferenceType(ArgType);
1431    if (HasConstCopyAssignment)
1432      ArgType = ArgType.withConst();
1433    ArgType = Context.getLValueReferenceType(ArgType);
1434
1435    //   An implicitly-declared copy assignment operator is an inline public
1436    //   member of its class.
1437    DeclarationName Name =
1438      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1439    CXXMethodDecl *CopyAssignment =
1440      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1441                            Context.getFunctionType(RetType, &ArgType, 1,
1442                                                    false, 0),
1443                            /*isStatic=*/false, /*isInline=*/true);
1444    CopyAssignment->setAccess(AS_public);
1445    CopyAssignment->setImplicit();
1446    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1447    CopyAssignment->setCopyAssignment(true);
1448
1449    // Add the parameter to the operator.
1450    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1451                                                 ClassDecl->getLocation(),
1452                                                 /*IdentifierInfo=*/0,
1453                                                 ArgType, VarDecl::None, 0);
1454    CopyAssignment->setParams(Context, &FromParam, 1);
1455
1456    // Don't call addedAssignmentOperator. There is no way to distinguish an
1457    // implicit from an explicit assignment operator.
1458    ClassDecl->addDecl(CopyAssignment);
1459  }
1460
1461  if (!ClassDecl->hasUserDeclaredDestructor()) {
1462    // C++ [class.dtor]p2:
1463    //   If a class has no user-declared destructor, a destructor is
1464    //   declared implicitly. An implicitly-declared destructor is an
1465    //   inline public member of its class.
1466    DeclarationName Name
1467      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1468    CXXDestructorDecl *Destructor
1469      = CXXDestructorDecl::Create(Context, ClassDecl,
1470                                  ClassDecl->getLocation(), Name,
1471                                  Context.getFunctionType(Context.VoidTy,
1472                                                          0, 0, false, 0),
1473                                  /*isInline=*/true,
1474                                  /*isImplicitlyDeclared=*/true);
1475    Destructor->setAccess(AS_public);
1476    Destructor->setImplicit();
1477    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1478    ClassDecl->addDecl(Destructor);
1479  }
1480}
1481
1482void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1483  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1484  if (!Template)
1485    return;
1486
1487  TemplateParameterList *Params = Template->getTemplateParameters();
1488  for (TemplateParameterList::iterator Param = Params->begin(),
1489                                    ParamEnd = Params->end();
1490       Param != ParamEnd; ++Param) {
1491    NamedDecl *Named = cast<NamedDecl>(*Param);
1492    if (Named->getDeclName()) {
1493      S->AddDecl(DeclPtrTy::make(Named));
1494      IdResolver.AddDecl(Named);
1495    }
1496  }
1497}
1498
1499/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1500/// parsing a top-level (non-nested) C++ class, and we are now
1501/// parsing those parts of the given Method declaration that could
1502/// not be parsed earlier (C++ [class.mem]p2), such as default
1503/// arguments. This action should enter the scope of the given
1504/// Method declaration as if we had just parsed the qualified method
1505/// name. However, it should not bring the parameters into scope;
1506/// that will be performed by ActOnDelayedCXXMethodParameter.
1507void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1508  if (!MethodD)
1509    return;
1510
1511  CXXScopeSpec SS;
1512  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1513  QualType ClassTy
1514    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1515  SS.setScopeRep(
1516    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1517  ActOnCXXEnterDeclaratorScope(S, SS);
1518}
1519
1520/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1521/// C++ method declaration. We're (re-)introducing the given
1522/// function parameter into scope for use in parsing later parts of
1523/// the method declaration. For example, we could see an
1524/// ActOnParamDefaultArgument event for this parameter.
1525void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1526  if (!ParamD)
1527    return;
1528
1529  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1530
1531  // If this parameter has an unparsed default argument, clear it out
1532  // to make way for the parsed default argument.
1533  if (Param->hasUnparsedDefaultArg())
1534    Param->setDefaultArg(0);
1535
1536  S->AddDecl(DeclPtrTy::make(Param));
1537  if (Param->getDeclName())
1538    IdResolver.AddDecl(Param);
1539}
1540
1541/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1542/// processing the delayed method declaration for Method. The method
1543/// declaration is now considered finished. There may be a separate
1544/// ActOnStartOfFunctionDef action later (not necessarily
1545/// immediately!) for this method, if it was also defined inside the
1546/// class body.
1547void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1548  if (!MethodD)
1549    return;
1550
1551  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1552  CXXScopeSpec SS;
1553  QualType ClassTy
1554    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1555  SS.setScopeRep(
1556    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1557  ActOnCXXExitDeclaratorScope(S, SS);
1558
1559  // Now that we have our default arguments, check the constructor
1560  // again. It could produce additional diagnostics or affect whether
1561  // the class has implicitly-declared destructors, among other
1562  // things.
1563  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1564    CheckConstructor(Constructor);
1565
1566  // Check the default arguments, which we may have added.
1567  if (!Method->isInvalidDecl())
1568    CheckCXXDefaultArguments(Method);
1569}
1570
1571/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1572/// the well-formedness of the constructor declarator @p D with type @p
1573/// R. If there are any errors in the declarator, this routine will
1574/// emit diagnostics and set the invalid bit to true.  In any case, the type
1575/// will be updated to reflect a well-formed type for the constructor and
1576/// returned.
1577QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1578                                          FunctionDecl::StorageClass &SC) {
1579  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1580
1581  // C++ [class.ctor]p3:
1582  //   A constructor shall not be virtual (10.3) or static (9.4). A
1583  //   constructor can be invoked for a const, volatile or const
1584  //   volatile object. A constructor shall not be declared const,
1585  //   volatile, or const volatile (9.3.2).
1586  if (isVirtual) {
1587    if (!D.isInvalidType())
1588      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1589        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1590        << SourceRange(D.getIdentifierLoc());
1591    D.setInvalidType();
1592  }
1593  if (SC == FunctionDecl::Static) {
1594    if (!D.isInvalidType())
1595      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1596        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1597        << SourceRange(D.getIdentifierLoc());
1598    D.setInvalidType();
1599    SC = FunctionDecl::None;
1600  }
1601
1602  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1603  if (FTI.TypeQuals != 0) {
1604    if (FTI.TypeQuals & QualType::Const)
1605      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1606        << "const" << SourceRange(D.getIdentifierLoc());
1607    if (FTI.TypeQuals & QualType::Volatile)
1608      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1609        << "volatile" << SourceRange(D.getIdentifierLoc());
1610    if (FTI.TypeQuals & QualType::Restrict)
1611      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1612        << "restrict" << SourceRange(D.getIdentifierLoc());
1613  }
1614
1615  // Rebuild the function type "R" without any type qualifiers (in
1616  // case any of the errors above fired) and with "void" as the
1617  // return type, since constructors don't have return types. We
1618  // *always* have to do this, because GetTypeForDeclarator will
1619  // put in a result type of "int" when none was specified.
1620  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1621  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1622                                 Proto->getNumArgs(),
1623                                 Proto->isVariadic(), 0);
1624}
1625
1626/// CheckConstructor - Checks a fully-formed constructor for
1627/// well-formedness, issuing any diagnostics required. Returns true if
1628/// the constructor declarator is invalid.
1629void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1630  CXXRecordDecl *ClassDecl
1631    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1632  if (!ClassDecl)
1633    return Constructor->setInvalidDecl();
1634
1635  // C++ [class.copy]p3:
1636  //   A declaration of a constructor for a class X is ill-formed if
1637  //   its first parameter is of type (optionally cv-qualified) X and
1638  //   either there are no other parameters or else all other
1639  //   parameters have default arguments.
1640  if (!Constructor->isInvalidDecl() &&
1641      ((Constructor->getNumParams() == 1) ||
1642       (Constructor->getNumParams() > 1 &&
1643        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1644    QualType ParamType = Constructor->getParamDecl(0)->getType();
1645    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1646    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1647      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1648      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1649        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1650      Constructor->setInvalidDecl();
1651    }
1652  }
1653
1654  // Notify the class that we've added a constructor.
1655  ClassDecl->addedConstructor(Context, Constructor);
1656}
1657
1658static inline bool
1659FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1660  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1661          FTI.ArgInfo[0].Param &&
1662          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1663}
1664
1665/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1666/// the well-formednes of the destructor declarator @p D with type @p
1667/// R. If there are any errors in the declarator, this routine will
1668/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1669/// will be updated to reflect a well-formed type for the destructor and
1670/// returned.
1671QualType Sema::CheckDestructorDeclarator(Declarator &D,
1672                                         FunctionDecl::StorageClass& SC) {
1673  // C++ [class.dtor]p1:
1674  //   [...] A typedef-name that names a class is a class-name
1675  //   (7.1.3); however, a typedef-name that names a class shall not
1676  //   be used as the identifier in the declarator for a destructor
1677  //   declaration.
1678  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1679  if (isa<TypedefType>(DeclaratorType)) {
1680    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1681      << DeclaratorType;
1682    D.setInvalidType();
1683  }
1684
1685  // C++ [class.dtor]p2:
1686  //   A destructor is used to destroy objects of its class type. A
1687  //   destructor takes no parameters, and no return type can be
1688  //   specified for it (not even void). The address of a destructor
1689  //   shall not be taken. A destructor shall not be static. A
1690  //   destructor can be invoked for a const, volatile or const
1691  //   volatile object. A destructor shall not be declared const,
1692  //   volatile or const volatile (9.3.2).
1693  if (SC == FunctionDecl::Static) {
1694    if (!D.isInvalidType())
1695      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1696        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1697        << SourceRange(D.getIdentifierLoc());
1698    SC = FunctionDecl::None;
1699    D.setInvalidType();
1700  }
1701  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1702    // Destructors don't have return types, but the parser will
1703    // happily parse something like:
1704    //
1705    //   class X {
1706    //     float ~X();
1707    //   };
1708    //
1709    // The return type will be eliminated later.
1710    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1711      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1712      << SourceRange(D.getIdentifierLoc());
1713  }
1714
1715  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1716  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1717    if (FTI.TypeQuals & QualType::Const)
1718      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1719        << "const" << SourceRange(D.getIdentifierLoc());
1720    if (FTI.TypeQuals & QualType::Volatile)
1721      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1722        << "volatile" << SourceRange(D.getIdentifierLoc());
1723    if (FTI.TypeQuals & QualType::Restrict)
1724      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1725        << "restrict" << SourceRange(D.getIdentifierLoc());
1726    D.setInvalidType();
1727  }
1728
1729  // Make sure we don't have any parameters.
1730  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1731    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1732
1733    // Delete the parameters.
1734    FTI.freeArgs();
1735    D.setInvalidType();
1736  }
1737
1738  // Make sure the destructor isn't variadic.
1739  if (FTI.isVariadic) {
1740    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1741    D.setInvalidType();
1742  }
1743
1744  // Rebuild the function type "R" without any type qualifiers or
1745  // parameters (in case any of the errors above fired) and with
1746  // "void" as the return type, since destructors don't have return
1747  // types. We *always* have to do this, because GetTypeForDeclarator
1748  // will put in a result type of "int" when none was specified.
1749  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1750}
1751
1752/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1753/// well-formednes of the conversion function declarator @p D with
1754/// type @p R. If there are any errors in the declarator, this routine
1755/// will emit diagnostics and return true. Otherwise, it will return
1756/// false. Either way, the type @p R will be updated to reflect a
1757/// well-formed type for the conversion operator.
1758void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1759                                     FunctionDecl::StorageClass& SC) {
1760  // C++ [class.conv.fct]p1:
1761  //   Neither parameter types nor return type can be specified. The
1762  //   type of a conversion function (8.3.5) is "function taking no
1763  //   parameter returning conversion-type-id."
1764  if (SC == FunctionDecl::Static) {
1765    if (!D.isInvalidType())
1766      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1767        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1768        << SourceRange(D.getIdentifierLoc());
1769    D.setInvalidType();
1770    SC = FunctionDecl::None;
1771  }
1772  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1773    // Conversion functions don't have return types, but the parser will
1774    // happily parse something like:
1775    //
1776    //   class X {
1777    //     float operator bool();
1778    //   };
1779    //
1780    // The return type will be changed later anyway.
1781    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1782      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1783      << SourceRange(D.getIdentifierLoc());
1784  }
1785
1786  // Make sure we don't have any parameters.
1787  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1788    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1789
1790    // Delete the parameters.
1791    D.getTypeObject(0).Fun.freeArgs();
1792    D.setInvalidType();
1793  }
1794
1795  // Make sure the conversion function isn't variadic.
1796  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1797    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1798    D.setInvalidType();
1799  }
1800
1801  // C++ [class.conv.fct]p4:
1802  //   The conversion-type-id shall not represent a function type nor
1803  //   an array type.
1804  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1805  if (ConvType->isArrayType()) {
1806    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1807    ConvType = Context.getPointerType(ConvType);
1808    D.setInvalidType();
1809  } else if (ConvType->isFunctionType()) {
1810    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1811    ConvType = Context.getPointerType(ConvType);
1812    D.setInvalidType();
1813  }
1814
1815  // Rebuild the function type "R" without any parameters (in case any
1816  // of the errors above fired) and with the conversion type as the
1817  // return type.
1818  R = Context.getFunctionType(ConvType, 0, 0, false,
1819                              R->getAsFunctionProtoType()->getTypeQuals());
1820
1821  // C++0x explicit conversion operators.
1822  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1823    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1824         diag::warn_explicit_conversion_functions)
1825      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1826}
1827
1828/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1829/// the declaration of the given C++ conversion function. This routine
1830/// is responsible for recording the conversion function in the C++
1831/// class, if possible.
1832Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1833  assert(Conversion && "Expected to receive a conversion function declaration");
1834
1835  // Set the lexical context of this conversion function
1836  Conversion->setLexicalDeclContext(CurContext);
1837
1838  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1839
1840  // Make sure we aren't redeclaring the conversion function.
1841  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1842
1843  // C++ [class.conv.fct]p1:
1844  //   [...] A conversion function is never used to convert a
1845  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1846  //   same object type (or a reference to it), to a (possibly
1847  //   cv-qualified) base class of that type (or a reference to it),
1848  //   or to (possibly cv-qualified) void.
1849  // FIXME: Suppress this warning if the conversion function ends up being a
1850  // virtual function that overrides a virtual function in a base class.
1851  QualType ClassType
1852    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1853  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1854    ConvType = ConvTypeRef->getPointeeType();
1855  if (ConvType->isRecordType()) {
1856    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1857    if (ConvType == ClassType)
1858      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1859        << ClassType;
1860    else if (IsDerivedFrom(ClassType, ConvType))
1861      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1862        <<  ClassType << ConvType;
1863  } else if (ConvType->isVoidType()) {
1864    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1865      << ClassType << ConvType;
1866  }
1867
1868  if (Conversion->getPreviousDeclaration()) {
1869    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1870    for (OverloadedFunctionDecl::function_iterator
1871           Conv = Conversions->function_begin(),
1872           ConvEnd = Conversions->function_end();
1873         Conv != ConvEnd; ++Conv) {
1874      if (*Conv
1875            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1876        *Conv = Conversion;
1877        return DeclPtrTy::make(Conversion);
1878      }
1879    }
1880    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1881  } else
1882    ClassDecl->addConversionFunction(Context, Conversion);
1883
1884  return DeclPtrTy::make(Conversion);
1885}
1886
1887//===----------------------------------------------------------------------===//
1888// Namespace Handling
1889//===----------------------------------------------------------------------===//
1890
1891/// ActOnStartNamespaceDef - This is called at the start of a namespace
1892/// definition.
1893Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1894                                             SourceLocation IdentLoc,
1895                                             IdentifierInfo *II,
1896                                             SourceLocation LBrace) {
1897  NamespaceDecl *Namespc =
1898      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1899  Namespc->setLBracLoc(LBrace);
1900
1901  Scope *DeclRegionScope = NamespcScope->getParent();
1902
1903  if (II) {
1904    // C++ [namespace.def]p2:
1905    // The identifier in an original-namespace-definition shall not have been
1906    // previously defined in the declarative region in which the
1907    // original-namespace-definition appears. The identifier in an
1908    // original-namespace-definition is the name of the namespace. Subsequently
1909    // in that declarative region, it is treated as an original-namespace-name.
1910
1911    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1912                                     true);
1913
1914    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1915      // This is an extended namespace definition.
1916      // Attach this namespace decl to the chain of extended namespace
1917      // definitions.
1918      OrigNS->setNextNamespace(Namespc);
1919      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1920
1921      // Remove the previous declaration from the scope.
1922      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1923        IdResolver.RemoveDecl(OrigNS);
1924        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1925      }
1926    } else if (PrevDecl) {
1927      // This is an invalid name redefinition.
1928      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1929       << Namespc->getDeclName();
1930      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1931      Namespc->setInvalidDecl();
1932      // Continue on to push Namespc as current DeclContext and return it.
1933    }
1934
1935    PushOnScopeChains(Namespc, DeclRegionScope);
1936  } else {
1937    // FIXME: Handle anonymous namespaces
1938  }
1939
1940  // Although we could have an invalid decl (i.e. the namespace name is a
1941  // redefinition), push it as current DeclContext and try to continue parsing.
1942  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1943  // for the namespace has the declarations that showed up in that particular
1944  // namespace definition.
1945  PushDeclContext(NamespcScope, Namespc);
1946  return DeclPtrTy::make(Namespc);
1947}
1948
1949/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1950/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1951void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1952  Decl *Dcl = D.getAs<Decl>();
1953  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1954  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1955  Namespc->setRBracLoc(RBrace);
1956  PopDeclContext();
1957}
1958
1959Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1960                                          SourceLocation UsingLoc,
1961                                          SourceLocation NamespcLoc,
1962                                          const CXXScopeSpec &SS,
1963                                          SourceLocation IdentLoc,
1964                                          IdentifierInfo *NamespcName,
1965                                          AttributeList *AttrList) {
1966  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1967  assert(NamespcName && "Invalid NamespcName.");
1968  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1969  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1970
1971  UsingDirectiveDecl *UDir = 0;
1972
1973  // Lookup namespace name.
1974  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1975                                    LookupNamespaceName, false);
1976  if (R.isAmbiguous()) {
1977    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1978    return DeclPtrTy();
1979  }
1980  if (NamedDecl *NS = R) {
1981    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1982    // C++ [namespace.udir]p1:
1983    //   A using-directive specifies that the names in the nominated
1984    //   namespace can be used in the scope in which the
1985    //   using-directive appears after the using-directive. During
1986    //   unqualified name lookup (3.4.1), the names appear as if they
1987    //   were declared in the nearest enclosing namespace which
1988    //   contains both the using-directive and the nominated
1989    //   namespace. [Note: in this context, "contains" means "contains
1990    //   directly or indirectly". ]
1991
1992    // Find enclosing context containing both using-directive and
1993    // nominated namespace.
1994    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1995    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1996      CommonAncestor = CommonAncestor->getParent();
1997
1998    UDir = UsingDirectiveDecl::Create(Context,
1999                                      CurContext, UsingLoc,
2000                                      NamespcLoc,
2001                                      SS.getRange(),
2002                                      (NestedNameSpecifier *)SS.getScopeRep(),
2003                                      IdentLoc,
2004                                      cast<NamespaceDecl>(NS),
2005                                      CommonAncestor);
2006    PushUsingDirective(S, UDir);
2007  } else {
2008    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2009  }
2010
2011  // FIXME: We ignore attributes for now.
2012  delete AttrList;
2013  return DeclPtrTy::make(UDir);
2014}
2015
2016void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2017  // If scope has associated entity, then using directive is at namespace
2018  // or translation unit scope. We add UsingDirectiveDecls, into
2019  // it's lookup structure.
2020  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2021    Ctx->addDecl(UDir);
2022  else
2023    // Otherwise it is block-sope. using-directives will affect lookup
2024    // only to the end of scope.
2025    S->PushUsingDirective(DeclPtrTy::make(UDir));
2026}
2027
2028
2029Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2030                                          SourceLocation UsingLoc,
2031                                          const CXXScopeSpec &SS,
2032                                          SourceLocation IdentLoc,
2033                                          IdentifierInfo *TargetName,
2034                                          OverloadedOperatorKind Op,
2035                                          AttributeList *AttrList,
2036                                          bool IsTypeName) {
2037  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2038  assert((TargetName || Op) && "Invalid TargetName.");
2039  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2040  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2041
2042  UsingDecl *UsingAlias = 0;
2043
2044  DeclarationName Name;
2045  if (TargetName)
2046    Name = TargetName;
2047  else
2048    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2049
2050  // Lookup target name.
2051  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2052
2053  if (NamedDecl *NS = R) {
2054    if (IsTypeName && !isa<TypeDecl>(NS)) {
2055      Diag(IdentLoc, diag::err_using_typename_non_type);
2056    }
2057    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2058        NS->getLocation(), UsingLoc, NS,
2059        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2060        IsTypeName);
2061    PushOnScopeChains(UsingAlias, S);
2062  } else {
2063    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2064  }
2065
2066  // FIXME: We ignore attributes for now.
2067  delete AttrList;
2068  return DeclPtrTy::make(UsingAlias);
2069}
2070
2071/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2072/// is a namespace alias, returns the namespace it points to.
2073static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2074  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2075    return AD->getNamespace();
2076  return dyn_cast_or_null<NamespaceDecl>(D);
2077}
2078
2079Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2080                                             SourceLocation NamespaceLoc,
2081                                             SourceLocation AliasLoc,
2082                                             IdentifierInfo *Alias,
2083                                             const CXXScopeSpec &SS,
2084                                             SourceLocation IdentLoc,
2085                                             IdentifierInfo *Ident) {
2086
2087  // Lookup the namespace name.
2088  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2089
2090  // Check if we have a previous declaration with the same name.
2091  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2092    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2093      // We already have an alias with the same name that points to the same
2094      // namespace, so don't create a new one.
2095      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2096        return DeclPtrTy();
2097    }
2098
2099    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2100      diag::err_redefinition_different_kind;
2101    Diag(AliasLoc, DiagID) << Alias;
2102    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2103    return DeclPtrTy();
2104  }
2105
2106  if (R.isAmbiguous()) {
2107    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2108    return DeclPtrTy();
2109  }
2110
2111  if (!R) {
2112    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2113    return DeclPtrTy();
2114  }
2115
2116  NamespaceAliasDecl *AliasDecl =
2117    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2118                               Alias, SS.getRange(),
2119                               (NestedNameSpecifier *)SS.getScopeRep(),
2120                               IdentLoc, R);
2121
2122  CurContext->addDecl(AliasDecl);
2123  return DeclPtrTy::make(AliasDecl);
2124}
2125
2126void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2127                                            CXXConstructorDecl *Constructor) {
2128  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2129          !Constructor->isUsed()) &&
2130    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2131
2132  CXXRecordDecl *ClassDecl
2133    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2134  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2135  // Before the implicitly-declared default constructor for a class is
2136  // implicitly defined, all the implicitly-declared default constructors
2137  // for its base class and its non-static data members shall have been
2138  // implicitly defined.
2139  bool err = false;
2140  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2141       E = ClassDecl->bases_end(); Base != E; ++Base) {
2142    CXXRecordDecl *BaseClassDecl
2143      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2144    if (!BaseClassDecl->hasTrivialConstructor()) {
2145      if (CXXConstructorDecl *BaseCtor =
2146            BaseClassDecl->getDefaultConstructor(Context))
2147        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2148      else {
2149        Diag(CurrentLocation, diag::err_defining_default_ctor)
2150          << Context.getTagDeclType(ClassDecl) << 1
2151          << Context.getTagDeclType(BaseClassDecl);
2152        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2153              << Context.getTagDeclType(BaseClassDecl);
2154        err = true;
2155      }
2156    }
2157  }
2158  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2159       E = ClassDecl->field_end(); Field != E; ++Field) {
2160    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2161    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2162      FieldType = Array->getElementType();
2163    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2164      CXXRecordDecl *FieldClassDecl
2165        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2166      if (!FieldClassDecl->hasTrivialConstructor()) {
2167        if (CXXConstructorDecl *FieldCtor =
2168            FieldClassDecl->getDefaultConstructor(Context))
2169          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2170        else {
2171          Diag(CurrentLocation, diag::err_defining_default_ctor)
2172          << Context.getTagDeclType(ClassDecl) << 0 <<
2173              Context.getTagDeclType(FieldClassDecl);
2174          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2175          << Context.getTagDeclType(FieldClassDecl);
2176          err = true;
2177        }
2178      }
2179    } else if (FieldType->isReferenceType()) {
2180      Diag(CurrentLocation, diag::err_unintialized_member)
2181        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2182      Diag((*Field)->getLocation(), diag::note_declared_at);
2183      err = true;
2184    } else if (FieldType.isConstQualified()) {
2185      Diag(CurrentLocation, diag::err_unintialized_member)
2186        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2187       Diag((*Field)->getLocation(), diag::note_declared_at);
2188      err = true;
2189    }
2190  }
2191  if (!err)
2192    Constructor->setUsed();
2193  else
2194    Constructor->setInvalidDecl();
2195}
2196
2197void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2198                                            CXXDestructorDecl *Destructor) {
2199  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2200         "DefineImplicitDestructor - call it for implicit default dtor");
2201
2202  CXXRecordDecl *ClassDecl
2203  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2204  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2205  // C++ [class.dtor] p5
2206  // Before the implicitly-declared default destructor for a class is
2207  // implicitly defined, all the implicitly-declared default destructors
2208  // for its base class and its non-static data members shall have been
2209  // implicitly defined.
2210  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2211       E = ClassDecl->bases_end(); Base != E; ++Base) {
2212    CXXRecordDecl *BaseClassDecl
2213      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2214    if (!BaseClassDecl->hasTrivialDestructor()) {
2215      if (CXXDestructorDecl *BaseDtor =
2216          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2217        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2218      else
2219        assert(false &&
2220               "DefineImplicitDestructor - missing dtor in a base class");
2221    }
2222  }
2223
2224  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2225       E = ClassDecl->field_end(); Field != E; ++Field) {
2226    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2227    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2228      FieldType = Array->getElementType();
2229    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2230      CXXRecordDecl *FieldClassDecl
2231        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2232      if (!FieldClassDecl->hasTrivialDestructor()) {
2233        if (CXXDestructorDecl *FieldDtor =
2234            const_cast<CXXDestructorDecl*>(
2235                                        FieldClassDecl->getDestructor(Context)))
2236          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2237        else
2238          assert(false &&
2239          "DefineImplicitDestructor - missing dtor in class of a data member");
2240      }
2241    }
2242  }
2243  Destructor->setUsed();
2244}
2245
2246void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2247                                          CXXMethodDecl *MethodDecl) {
2248  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2249          MethodDecl->getOverloadedOperator() == OO_Equal &&
2250          !MethodDecl->isUsed()) &&
2251         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2252
2253  CXXRecordDecl *ClassDecl
2254    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2255
2256  // C++[class.copy] p12
2257  // Before the implicitly-declared copy assignment operator for a class is
2258  // implicitly defined, all implicitly-declared copy assignment operators
2259  // for its direct base classes and its nonstatic data members shall have
2260  // been implicitly defined.
2261  bool err = false;
2262  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2263       E = ClassDecl->bases_end(); Base != E; ++Base) {
2264    CXXRecordDecl *BaseClassDecl
2265      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2266    if (CXXMethodDecl *BaseAssignOpMethod =
2267          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2268      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2269  }
2270  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2271       E = ClassDecl->field_end(); Field != E; ++Field) {
2272    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2273    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2274      FieldType = Array->getElementType();
2275    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2276      CXXRecordDecl *FieldClassDecl
2277        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2278      if (CXXMethodDecl *FieldAssignOpMethod =
2279          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2280        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2281    } else if (FieldType->isReferenceType()) {
2282      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2283      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2284      Diag(Field->getLocation(), diag::note_declared_at);
2285      Diag(CurrentLocation, diag::note_first_required_here);
2286      err = true;
2287    } else if (FieldType.isConstQualified()) {
2288      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2289      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2290      Diag(Field->getLocation(), diag::note_declared_at);
2291      Diag(CurrentLocation, diag::note_first_required_here);
2292      err = true;
2293    }
2294  }
2295  if (!err)
2296    MethodDecl->setUsed();
2297}
2298
2299CXXMethodDecl *
2300Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2301                              CXXRecordDecl *ClassDecl) {
2302  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2303  QualType RHSType(LHSType);
2304  // If class's assignment operator argument is const/volatile qualified,
2305  // look for operator = (const/volatile B&). Otherwise, look for
2306  // operator = (B&).
2307  if (ParmDecl->getType().isConstQualified())
2308    RHSType.addConst();
2309  if (ParmDecl->getType().isVolatileQualified())
2310    RHSType.addVolatile();
2311  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2312                                                          LHSType,
2313                                                          SourceLocation()));
2314  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2315                                                          RHSType,
2316                                                          SourceLocation()));
2317  Expr *Args[2] = { &*LHS, &*RHS };
2318  OverloadCandidateSet CandidateSet;
2319  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2320                              CandidateSet);
2321  OverloadCandidateSet::iterator Best;
2322  if (BestViableFunction(CandidateSet,
2323                         ClassDecl->getLocation(), Best) == OR_Success)
2324    return cast<CXXMethodDecl>(Best->Function);
2325  assert(false &&
2326         "getAssignOperatorMethod - copy assignment operator method not found");
2327  return 0;
2328}
2329
2330void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2331                                   CXXConstructorDecl *CopyConstructor,
2332                                   unsigned TypeQuals) {
2333  assert((CopyConstructor->isImplicit() &&
2334          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2335          !CopyConstructor->isUsed()) &&
2336         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2337
2338  CXXRecordDecl *ClassDecl
2339    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2340  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2341  // C++ [class.copy] p209
2342  // Before the implicitly-declared copy constructor for a class is
2343  // implicitly defined, all the implicitly-declared copy constructors
2344  // for its base class and its non-static data members shall have been
2345  // implicitly defined.
2346  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2347       Base != ClassDecl->bases_end(); ++Base) {
2348    CXXRecordDecl *BaseClassDecl
2349      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2350    if (CXXConstructorDecl *BaseCopyCtor =
2351        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2352      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2353  }
2354  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2355                                  FieldEnd = ClassDecl->field_end();
2356       Field != FieldEnd; ++Field) {
2357    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2358    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2359      FieldType = Array->getElementType();
2360    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2361      CXXRecordDecl *FieldClassDecl
2362        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2363      if (CXXConstructorDecl *FieldCopyCtor =
2364          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2365        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2366    }
2367  }
2368  CopyConstructor->setUsed();
2369}
2370
2371/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2372/// including handling of its default argument expressions.
2373Expr *Sema::BuildCXXConstructExpr(ASTContext &C,
2374                                  QualType DeclInitType,
2375                                  CXXConstructorDecl *Constructor,
2376                                  bool Elidable,
2377                                  Expr **Exprs, unsigned NumExprs) {
2378  CXXConstructExpr *Temp = CXXConstructExpr::Create(C, DeclInitType,
2379                                                    Constructor,
2380                                                    Elidable, Exprs, NumExprs);
2381  // default arguments must be added to constructor call expression.
2382  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2383  unsigned NumArgsInProto = FDecl->param_size();
2384  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2385    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2386
2387    // If the default expression creates temporaries, we need to
2388    // push them to the current stack of expression temporaries so they'll
2389    // be properly destroyed.
2390    if (CXXExprWithTemporaries *E
2391        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2392      assert(!E->shouldDestroyTemporaries() &&
2393             "Can't destroy temporaries in a default argument expr!");
2394      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2395        ExprTemporaries.push_back(E->getTemporary(I));
2396    }
2397    Expr *Arg = CXXDefaultArgExpr::Create(C, FDecl->getParamDecl(j));
2398    Temp->setArg(j, Arg);
2399  }
2400  return Temp;
2401}
2402
2403void Sema::InitializeVarWithConstructor(VarDecl *VD,
2404                                        CXXConstructorDecl *Constructor,
2405                                        QualType DeclInitType,
2406                                        Expr **Exprs, unsigned NumExprs) {
2407  Expr *Temp = BuildCXXConstructExpr(Context,
2408                                     DeclInitType, Constructor,
2409                                     false, Exprs, NumExprs);
2410  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2411  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2412  VD->setInit(Context, Temp);
2413}
2414
2415void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2416{
2417  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2418                                  DeclInitType->getAs<RecordType>()->getDecl());
2419  if (!ClassDecl->hasTrivialDestructor())
2420    if (CXXDestructorDecl *Destructor =
2421        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2422      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2423}
2424
2425/// AddCXXDirectInitializerToDecl - This action is called immediately after
2426/// ActOnDeclarator, when a C++ direct initializer is present.
2427/// e.g: "int x(1);"
2428void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2429                                         SourceLocation LParenLoc,
2430                                         MultiExprArg Exprs,
2431                                         SourceLocation *CommaLocs,
2432                                         SourceLocation RParenLoc) {
2433  unsigned NumExprs = Exprs.size();
2434  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2435  Decl *RealDecl = Dcl.getAs<Decl>();
2436
2437  // If there is no declaration, there was an error parsing it.  Just ignore
2438  // the initializer.
2439  if (RealDecl == 0)
2440    return;
2441
2442  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2443  if (!VDecl) {
2444    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2445    RealDecl->setInvalidDecl();
2446    return;
2447  }
2448
2449  // FIXME: Need to handle dependent types and expressions here.
2450
2451  // We will treat direct-initialization as a copy-initialization:
2452  //    int x(1);  -as-> int x = 1;
2453  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2454  //
2455  // Clients that want to distinguish between the two forms, can check for
2456  // direct initializer using VarDecl::hasCXXDirectInitializer().
2457  // A major benefit is that clients that don't particularly care about which
2458  // exactly form was it (like the CodeGen) can handle both cases without
2459  // special case code.
2460
2461  // C++ 8.5p11:
2462  // The form of initialization (using parentheses or '=') is generally
2463  // insignificant, but does matter when the entity being initialized has a
2464  // class type.
2465  QualType DeclInitType = VDecl->getType();
2466  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2467    DeclInitType = Array->getElementType();
2468
2469  // FIXME: This isn't the right place to complete the type.
2470  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2471                          diag::err_typecheck_decl_incomplete_type)) {
2472    VDecl->setInvalidDecl();
2473    return;
2474  }
2475
2476  if (VDecl->getType()->isRecordType()) {
2477    CXXConstructorDecl *Constructor
2478      = PerformInitializationByConstructor(DeclInitType,
2479                                           (Expr **)Exprs.get(), NumExprs,
2480                                           VDecl->getLocation(),
2481                                           SourceRange(VDecl->getLocation(),
2482                                                       RParenLoc),
2483                                           VDecl->getDeclName(),
2484                                           IK_Direct);
2485    if (!Constructor)
2486      RealDecl->setInvalidDecl();
2487    else {
2488      VDecl->setCXXDirectInitializer(true);
2489      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2490                                   (Expr**)Exprs.release(), NumExprs);
2491      FinalizeVarWithDestructor(VDecl, DeclInitType);
2492    }
2493    return;
2494  }
2495
2496  if (NumExprs > 1) {
2497    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2498      << SourceRange(VDecl->getLocation(), RParenLoc);
2499    RealDecl->setInvalidDecl();
2500    return;
2501  }
2502
2503  // Let clients know that initialization was done with a direct initializer.
2504  VDecl->setCXXDirectInitializer(true);
2505
2506  assert(NumExprs == 1 && "Expected 1 expression");
2507  // Set the init expression, handles conversions.
2508  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2509                       /*DirectInit=*/true);
2510}
2511
2512/// PerformInitializationByConstructor - Perform initialization by
2513/// constructor (C++ [dcl.init]p14), which may occur as part of
2514/// direct-initialization or copy-initialization. We are initializing
2515/// an object of type @p ClassType with the given arguments @p
2516/// Args. @p Loc is the location in the source code where the
2517/// initializer occurs (e.g., a declaration, member initializer,
2518/// functional cast, etc.) while @p Range covers the whole
2519/// initialization. @p InitEntity is the entity being initialized,
2520/// which may by the name of a declaration or a type. @p Kind is the
2521/// kind of initialization we're performing, which affects whether
2522/// explicit constructors will be considered. When successful, returns
2523/// the constructor that will be used to perform the initialization;
2524/// when the initialization fails, emits a diagnostic and returns
2525/// null.
2526CXXConstructorDecl *
2527Sema::PerformInitializationByConstructor(QualType ClassType,
2528                                         Expr **Args, unsigned NumArgs,
2529                                         SourceLocation Loc, SourceRange Range,
2530                                         DeclarationName InitEntity,
2531                                         InitializationKind Kind) {
2532  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2533  assert(ClassRec && "Can only initialize a class type here");
2534
2535  // C++ [dcl.init]p14:
2536  //
2537  //   If the initialization is direct-initialization, or if it is
2538  //   copy-initialization where the cv-unqualified version of the
2539  //   source type is the same class as, or a derived class of, the
2540  //   class of the destination, constructors are considered. The
2541  //   applicable constructors are enumerated (13.3.1.3), and the
2542  //   best one is chosen through overload resolution (13.3). The
2543  //   constructor so selected is called to initialize the object,
2544  //   with the initializer expression(s) as its argument(s). If no
2545  //   constructor applies, or the overload resolution is ambiguous,
2546  //   the initialization is ill-formed.
2547  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2548  OverloadCandidateSet CandidateSet;
2549
2550  // Add constructors to the overload set.
2551  DeclarationName ConstructorName
2552    = Context.DeclarationNames.getCXXConstructorName(
2553                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2554  DeclContext::lookup_const_iterator Con, ConEnd;
2555  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2556       Con != ConEnd; ++Con) {
2557    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2558    if ((Kind == IK_Direct) ||
2559        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2560        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2561      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2562  }
2563
2564  // FIXME: When we decide not to synthesize the implicitly-declared
2565  // constructors, we'll need to make them appear here.
2566
2567  OverloadCandidateSet::iterator Best;
2568  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2569  case OR_Success:
2570    // We found a constructor. Return it.
2571    return cast<CXXConstructorDecl>(Best->Function);
2572
2573  case OR_No_Viable_Function:
2574    if (InitEntity)
2575      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2576        << InitEntity << Range;
2577    else
2578      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2579        << ClassType << Range;
2580    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2581    return 0;
2582
2583  case OR_Ambiguous:
2584    if (InitEntity)
2585      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2586    else
2587      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2588    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2589    return 0;
2590
2591  case OR_Deleted:
2592    if (InitEntity)
2593      Diag(Loc, diag::err_ovl_deleted_init)
2594        << Best->Function->isDeleted()
2595        << InitEntity << Range;
2596    else
2597      Diag(Loc, diag::err_ovl_deleted_init)
2598        << Best->Function->isDeleted()
2599        << InitEntity << Range;
2600    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2601    return 0;
2602  }
2603
2604  return 0;
2605}
2606
2607/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2608/// determine whether they are reference-related,
2609/// reference-compatible, reference-compatible with added
2610/// qualification, or incompatible, for use in C++ initialization by
2611/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2612/// type, and the first type (T1) is the pointee type of the reference
2613/// type being initialized.
2614Sema::ReferenceCompareResult
2615Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2616                                   bool& DerivedToBase) {
2617  assert(!T1->isReferenceType() &&
2618    "T1 must be the pointee type of the reference type");
2619  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2620
2621  T1 = Context.getCanonicalType(T1);
2622  T2 = Context.getCanonicalType(T2);
2623  QualType UnqualT1 = T1.getUnqualifiedType();
2624  QualType UnqualT2 = T2.getUnqualifiedType();
2625
2626  // C++ [dcl.init.ref]p4:
2627  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2628  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2629  //   T1 is a base class of T2.
2630  if (UnqualT1 == UnqualT2)
2631    DerivedToBase = false;
2632  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2633    DerivedToBase = true;
2634  else
2635    return Ref_Incompatible;
2636
2637  // At this point, we know that T1 and T2 are reference-related (at
2638  // least).
2639
2640  // C++ [dcl.init.ref]p4:
2641  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2642  //   reference-related to T2 and cv1 is the same cv-qualification
2643  //   as, or greater cv-qualification than, cv2. For purposes of
2644  //   overload resolution, cases for which cv1 is greater
2645  //   cv-qualification than cv2 are identified as
2646  //   reference-compatible with added qualification (see 13.3.3.2).
2647  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2648    return Ref_Compatible;
2649  else if (T1.isMoreQualifiedThan(T2))
2650    return Ref_Compatible_With_Added_Qualification;
2651  else
2652    return Ref_Related;
2653}
2654
2655/// CheckReferenceInit - Check the initialization of a reference
2656/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2657/// the initializer (either a simple initializer or an initializer
2658/// list), and DeclType is the type of the declaration. When ICS is
2659/// non-null, this routine will compute the implicit conversion
2660/// sequence according to C++ [over.ics.ref] and will not produce any
2661/// diagnostics; when ICS is null, it will emit diagnostics when any
2662/// errors are found. Either way, a return value of true indicates
2663/// that there was a failure, a return value of false indicates that
2664/// the reference initialization succeeded.
2665///
2666/// When @p SuppressUserConversions, user-defined conversions are
2667/// suppressed.
2668/// When @p AllowExplicit, we also permit explicit user-defined
2669/// conversion functions.
2670/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2671bool
2672Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2673                         ImplicitConversionSequence *ICS,
2674                         bool SuppressUserConversions,
2675                         bool AllowExplicit, bool ForceRValue) {
2676  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2677
2678  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2679  QualType T2 = Init->getType();
2680
2681  // If the initializer is the address of an overloaded function, try
2682  // to resolve the overloaded function. If all goes well, T2 is the
2683  // type of the resulting function.
2684  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2685    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2686                                                          ICS != 0);
2687    if (Fn) {
2688      // Since we're performing this reference-initialization for
2689      // real, update the initializer with the resulting function.
2690      if (!ICS) {
2691        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2692          return true;
2693
2694        FixOverloadedFunctionReference(Init, Fn);
2695      }
2696
2697      T2 = Fn->getType();
2698    }
2699  }
2700
2701  // Compute some basic properties of the types and the initializer.
2702  bool isRValRef = DeclType->isRValueReferenceType();
2703  bool DerivedToBase = false;
2704  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2705                                                  Init->isLvalue(Context);
2706  ReferenceCompareResult RefRelationship
2707    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2708
2709  // Most paths end in a failed conversion.
2710  if (ICS)
2711    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2712
2713  // C++ [dcl.init.ref]p5:
2714  //   A reference to type "cv1 T1" is initialized by an expression
2715  //   of type "cv2 T2" as follows:
2716
2717  //     -- If the initializer expression
2718
2719  // Rvalue references cannot bind to lvalues (N2812).
2720  // There is absolutely no situation where they can. In particular, note that
2721  // this is ill-formed, even if B has a user-defined conversion to A&&:
2722  //   B b;
2723  //   A&& r = b;
2724  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2725    if (!ICS)
2726      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2727        << Init->getSourceRange();
2728    return true;
2729  }
2730
2731  bool BindsDirectly = false;
2732  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2733  //          reference-compatible with "cv2 T2," or
2734  //
2735  // Note that the bit-field check is skipped if we are just computing
2736  // the implicit conversion sequence (C++ [over.best.ics]p2).
2737  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2738      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2739    BindsDirectly = true;
2740
2741    if (ICS) {
2742      // C++ [over.ics.ref]p1:
2743      //   When a parameter of reference type binds directly (8.5.3)
2744      //   to an argument expression, the implicit conversion sequence
2745      //   is the identity conversion, unless the argument expression
2746      //   has a type that is a derived class of the parameter type,
2747      //   in which case the implicit conversion sequence is a
2748      //   derived-to-base Conversion (13.3.3.1).
2749      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2750      ICS->Standard.First = ICK_Identity;
2751      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2752      ICS->Standard.Third = ICK_Identity;
2753      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2754      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2755      ICS->Standard.ReferenceBinding = true;
2756      ICS->Standard.DirectBinding = true;
2757      ICS->Standard.RRefBinding = false;
2758      ICS->Standard.CopyConstructor = 0;
2759
2760      // Nothing more to do: the inaccessibility/ambiguity check for
2761      // derived-to-base conversions is suppressed when we're
2762      // computing the implicit conversion sequence (C++
2763      // [over.best.ics]p2).
2764      return false;
2765    } else {
2766      // Perform the conversion.
2767      // FIXME: Binding to a subobject of the lvalue is going to require more
2768      // AST annotation than this.
2769      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2770    }
2771  }
2772
2773  //       -- has a class type (i.e., T2 is a class type) and can be
2774  //          implicitly converted to an lvalue of type "cv3 T3,"
2775  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2776  //          92) (this conversion is selected by enumerating the
2777  //          applicable conversion functions (13.3.1.6) and choosing
2778  //          the best one through overload resolution (13.3)),
2779  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2780    // FIXME: Look for conversions in base classes!
2781    CXXRecordDecl *T2RecordDecl
2782      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2783
2784    OverloadCandidateSet CandidateSet;
2785    OverloadedFunctionDecl *Conversions
2786      = T2RecordDecl->getConversionFunctions();
2787    for (OverloadedFunctionDecl::function_iterator Func
2788           = Conversions->function_begin();
2789         Func != Conversions->function_end(); ++Func) {
2790      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2791
2792      // If the conversion function doesn't return a reference type,
2793      // it can't be considered for this conversion.
2794      if (Conv->getConversionType()->isLValueReferenceType() &&
2795          (AllowExplicit || !Conv->isExplicit()))
2796        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2797    }
2798
2799    OverloadCandidateSet::iterator Best;
2800    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2801    case OR_Success:
2802      // This is a direct binding.
2803      BindsDirectly = true;
2804
2805      if (ICS) {
2806        // C++ [over.ics.ref]p1:
2807        //
2808        //   [...] If the parameter binds directly to the result of
2809        //   applying a conversion function to the argument
2810        //   expression, the implicit conversion sequence is a
2811        //   user-defined conversion sequence (13.3.3.1.2), with the
2812        //   second standard conversion sequence either an identity
2813        //   conversion or, if the conversion function returns an
2814        //   entity of a type that is a derived class of the parameter
2815        //   type, a derived-to-base Conversion.
2816        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2817        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2818        ICS->UserDefined.After = Best->FinalConversion;
2819        ICS->UserDefined.ConversionFunction = Best->Function;
2820        assert(ICS->UserDefined.After.ReferenceBinding &&
2821               ICS->UserDefined.After.DirectBinding &&
2822               "Expected a direct reference binding!");
2823        return false;
2824      } else {
2825        // Perform the conversion.
2826        // FIXME: Binding to a subobject of the lvalue is going to require more
2827        // AST annotation than this.
2828        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2829      }
2830      break;
2831
2832    case OR_Ambiguous:
2833      assert(false && "Ambiguous reference binding conversions not implemented.");
2834      return true;
2835
2836    case OR_No_Viable_Function:
2837    case OR_Deleted:
2838      // There was no suitable conversion, or we found a deleted
2839      // conversion; continue with other checks.
2840      break;
2841    }
2842  }
2843
2844  if (BindsDirectly) {
2845    // C++ [dcl.init.ref]p4:
2846    //   [...] In all cases where the reference-related or
2847    //   reference-compatible relationship of two types is used to
2848    //   establish the validity of a reference binding, and T1 is a
2849    //   base class of T2, a program that necessitates such a binding
2850    //   is ill-formed if T1 is an inaccessible (clause 11) or
2851    //   ambiguous (10.2) base class of T2.
2852    //
2853    // Note that we only check this condition when we're allowed to
2854    // complain about errors, because we should not be checking for
2855    // ambiguity (or inaccessibility) unless the reference binding
2856    // actually happens.
2857    if (DerivedToBase)
2858      return CheckDerivedToBaseConversion(T2, T1,
2859                                          Init->getSourceRange().getBegin(),
2860                                          Init->getSourceRange());
2861    else
2862      return false;
2863  }
2864
2865  //     -- Otherwise, the reference shall be to a non-volatile const
2866  //        type (i.e., cv1 shall be const), or the reference shall be an
2867  //        rvalue reference and the initializer expression shall be an rvalue.
2868  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2869    if (!ICS)
2870      Diag(Init->getSourceRange().getBegin(),
2871           diag::err_not_reference_to_const_init)
2872        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2873        << T2 << Init->getSourceRange();
2874    return true;
2875  }
2876
2877  //       -- If the initializer expression is an rvalue, with T2 a
2878  //          class type, and "cv1 T1" is reference-compatible with
2879  //          "cv2 T2," the reference is bound in one of the
2880  //          following ways (the choice is implementation-defined):
2881  //
2882  //          -- The reference is bound to the object represented by
2883  //             the rvalue (see 3.10) or to a sub-object within that
2884  //             object.
2885  //
2886  //          -- A temporary of type "cv1 T2" [sic] is created, and
2887  //             a constructor is called to copy the entire rvalue
2888  //             object into the temporary. The reference is bound to
2889  //             the temporary or to a sub-object within the
2890  //             temporary.
2891  //
2892  //          The constructor that would be used to make the copy
2893  //          shall be callable whether or not the copy is actually
2894  //          done.
2895  //
2896  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2897  // freedom, so we will always take the first option and never build
2898  // a temporary in this case. FIXME: We will, however, have to check
2899  // for the presence of a copy constructor in C++98/03 mode.
2900  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2901      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2902    if (ICS) {
2903      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2904      ICS->Standard.First = ICK_Identity;
2905      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2906      ICS->Standard.Third = ICK_Identity;
2907      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2908      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2909      ICS->Standard.ReferenceBinding = true;
2910      ICS->Standard.DirectBinding = false;
2911      ICS->Standard.RRefBinding = isRValRef;
2912      ICS->Standard.CopyConstructor = 0;
2913    } else {
2914      // FIXME: Binding to a subobject of the rvalue is going to require more
2915      // AST annotation than this.
2916      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2917    }
2918    return false;
2919  }
2920
2921  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2922  //          initialized from the initializer expression using the
2923  //          rules for a non-reference copy initialization (8.5). The
2924  //          reference is then bound to the temporary. If T1 is
2925  //          reference-related to T2, cv1 must be the same
2926  //          cv-qualification as, or greater cv-qualification than,
2927  //          cv2; otherwise, the program is ill-formed.
2928  if (RefRelationship == Ref_Related) {
2929    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2930    // we would be reference-compatible or reference-compatible with
2931    // added qualification. But that wasn't the case, so the reference
2932    // initialization fails.
2933    if (!ICS)
2934      Diag(Init->getSourceRange().getBegin(),
2935           diag::err_reference_init_drops_quals)
2936        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2937        << T2 << Init->getSourceRange();
2938    return true;
2939  }
2940
2941  // If at least one of the types is a class type, the types are not
2942  // related, and we aren't allowed any user conversions, the
2943  // reference binding fails. This case is important for breaking
2944  // recursion, since TryImplicitConversion below will attempt to
2945  // create a temporary through the use of a copy constructor.
2946  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2947      (T1->isRecordType() || T2->isRecordType())) {
2948    if (!ICS)
2949      Diag(Init->getSourceRange().getBegin(),
2950           diag::err_typecheck_convert_incompatible)
2951        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2952    return true;
2953  }
2954
2955  // Actually try to convert the initializer to T1.
2956  if (ICS) {
2957    // C++ [over.ics.ref]p2:
2958    //
2959    //   When a parameter of reference type is not bound directly to
2960    //   an argument expression, the conversion sequence is the one
2961    //   required to convert the argument expression to the
2962    //   underlying type of the reference according to
2963    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2964    //   to copy-initializing a temporary of the underlying type with
2965    //   the argument expression. Any difference in top-level
2966    //   cv-qualification is subsumed by the initialization itself
2967    //   and does not constitute a conversion.
2968    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2969    // Of course, that's still a reference binding.
2970    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2971      ICS->Standard.ReferenceBinding = true;
2972      ICS->Standard.RRefBinding = isRValRef;
2973    } else if(ICS->ConversionKind ==
2974              ImplicitConversionSequence::UserDefinedConversion) {
2975      ICS->UserDefined.After.ReferenceBinding = true;
2976      ICS->UserDefined.After.RRefBinding = isRValRef;
2977    }
2978    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2979  } else {
2980    return PerformImplicitConversion(Init, T1, "initializing");
2981  }
2982}
2983
2984/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2985/// of this overloaded operator is well-formed. If so, returns false;
2986/// otherwise, emits appropriate diagnostics and returns true.
2987bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2988  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2989         "Expected an overloaded operator declaration");
2990
2991  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2992
2993  // C++ [over.oper]p5:
2994  //   The allocation and deallocation functions, operator new,
2995  //   operator new[], operator delete and operator delete[], are
2996  //   described completely in 3.7.3. The attributes and restrictions
2997  //   found in the rest of this subclause do not apply to them unless
2998  //   explicitly stated in 3.7.3.
2999  // FIXME: Write a separate routine for checking this. For now, just allow it.
3000  if (Op == OO_New || Op == OO_Array_New ||
3001      Op == OO_Delete || Op == OO_Array_Delete)
3002    return false;
3003
3004  // C++ [over.oper]p6:
3005  //   An operator function shall either be a non-static member
3006  //   function or be a non-member function and have at least one
3007  //   parameter whose type is a class, a reference to a class, an
3008  //   enumeration, or a reference to an enumeration.
3009  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3010    if (MethodDecl->isStatic())
3011      return Diag(FnDecl->getLocation(),
3012                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3013  } else {
3014    bool ClassOrEnumParam = false;
3015    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3016                                   ParamEnd = FnDecl->param_end();
3017         Param != ParamEnd; ++Param) {
3018      QualType ParamType = (*Param)->getType().getNonReferenceType();
3019      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3020          ParamType->isEnumeralType()) {
3021        ClassOrEnumParam = true;
3022        break;
3023      }
3024    }
3025
3026    if (!ClassOrEnumParam)
3027      return Diag(FnDecl->getLocation(),
3028                  diag::err_operator_overload_needs_class_or_enum)
3029        << FnDecl->getDeclName();
3030  }
3031
3032  // C++ [over.oper]p8:
3033  //   An operator function cannot have default arguments (8.3.6),
3034  //   except where explicitly stated below.
3035  //
3036  // Only the function-call operator allows default arguments
3037  // (C++ [over.call]p1).
3038  if (Op != OO_Call) {
3039    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3040         Param != FnDecl->param_end(); ++Param) {
3041      if ((*Param)->hasUnparsedDefaultArg())
3042        return Diag((*Param)->getLocation(),
3043                    diag::err_operator_overload_default_arg)
3044          << FnDecl->getDeclName();
3045      else if (Expr *DefArg = (*Param)->getDefaultArg())
3046        return Diag((*Param)->getLocation(),
3047                    diag::err_operator_overload_default_arg)
3048          << FnDecl->getDeclName() << DefArg->getSourceRange();
3049    }
3050  }
3051
3052  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3053    { false, false, false }
3054#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3055    , { Unary, Binary, MemberOnly }
3056#include "clang/Basic/OperatorKinds.def"
3057  };
3058
3059  bool CanBeUnaryOperator = OperatorUses[Op][0];
3060  bool CanBeBinaryOperator = OperatorUses[Op][1];
3061  bool MustBeMemberOperator = OperatorUses[Op][2];
3062
3063  // C++ [over.oper]p8:
3064  //   [...] Operator functions cannot have more or fewer parameters
3065  //   than the number required for the corresponding operator, as
3066  //   described in the rest of this subclause.
3067  unsigned NumParams = FnDecl->getNumParams()
3068                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3069  if (Op != OO_Call &&
3070      ((NumParams == 1 && !CanBeUnaryOperator) ||
3071       (NumParams == 2 && !CanBeBinaryOperator) ||
3072       (NumParams < 1) || (NumParams > 2))) {
3073    // We have the wrong number of parameters.
3074    unsigned ErrorKind;
3075    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3076      ErrorKind = 2;  // 2 -> unary or binary.
3077    } else if (CanBeUnaryOperator) {
3078      ErrorKind = 0;  // 0 -> unary
3079    } else {
3080      assert(CanBeBinaryOperator &&
3081             "All non-call overloaded operators are unary or binary!");
3082      ErrorKind = 1;  // 1 -> binary
3083    }
3084
3085    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3086      << FnDecl->getDeclName() << NumParams << ErrorKind;
3087  }
3088
3089  // Overloaded operators other than operator() cannot be variadic.
3090  if (Op != OO_Call &&
3091      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3092    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3093      << FnDecl->getDeclName();
3094  }
3095
3096  // Some operators must be non-static member functions.
3097  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3098    return Diag(FnDecl->getLocation(),
3099                diag::err_operator_overload_must_be_member)
3100      << FnDecl->getDeclName();
3101  }
3102
3103  // C++ [over.inc]p1:
3104  //   The user-defined function called operator++ implements the
3105  //   prefix and postfix ++ operator. If this function is a member
3106  //   function with no parameters, or a non-member function with one
3107  //   parameter of class or enumeration type, it defines the prefix
3108  //   increment operator ++ for objects of that type. If the function
3109  //   is a member function with one parameter (which shall be of type
3110  //   int) or a non-member function with two parameters (the second
3111  //   of which shall be of type int), it defines the postfix
3112  //   increment operator ++ for objects of that type.
3113  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3114    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3115    bool ParamIsInt = false;
3116    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3117      ParamIsInt = BT->getKind() == BuiltinType::Int;
3118
3119    if (!ParamIsInt)
3120      return Diag(LastParam->getLocation(),
3121                  diag::err_operator_overload_post_incdec_must_be_int)
3122        << LastParam->getType() << (Op == OO_MinusMinus);
3123  }
3124
3125  // Notify the class if it got an assignment operator.
3126  if (Op == OO_Equal) {
3127    // Would have returned earlier otherwise.
3128    assert(isa<CXXMethodDecl>(FnDecl) &&
3129      "Overloaded = not member, but not filtered.");
3130    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3131    Method->setCopyAssignment(true);
3132    Method->getParent()->addedAssignmentOperator(Context, Method);
3133  }
3134
3135  return false;
3136}
3137
3138/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3139/// linkage specification, including the language and (if present)
3140/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3141/// the location of the language string literal, which is provided
3142/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3143/// the '{' brace. Otherwise, this linkage specification does not
3144/// have any braces.
3145Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3146                                                     SourceLocation ExternLoc,
3147                                                     SourceLocation LangLoc,
3148                                                     const char *Lang,
3149                                                     unsigned StrSize,
3150                                                     SourceLocation LBraceLoc) {
3151  LinkageSpecDecl::LanguageIDs Language;
3152  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3153    Language = LinkageSpecDecl::lang_c;
3154  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3155    Language = LinkageSpecDecl::lang_cxx;
3156  else {
3157    Diag(LangLoc, diag::err_bad_language);
3158    return DeclPtrTy();
3159  }
3160
3161  // FIXME: Add all the various semantics of linkage specifications
3162
3163  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3164                                               LangLoc, Language,
3165                                               LBraceLoc.isValid());
3166  CurContext->addDecl(D);
3167  PushDeclContext(S, D);
3168  return DeclPtrTy::make(D);
3169}
3170
3171/// ActOnFinishLinkageSpecification - Completely the definition of
3172/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3173/// valid, it's the position of the closing '}' brace in a linkage
3174/// specification that uses braces.
3175Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3176                                                      DeclPtrTy LinkageSpec,
3177                                                      SourceLocation RBraceLoc) {
3178  if (LinkageSpec)
3179    PopDeclContext();
3180  return LinkageSpec;
3181}
3182
3183/// \brief Perform semantic analysis for the variable declaration that
3184/// occurs within a C++ catch clause, returning the newly-created
3185/// variable.
3186VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3187                                         IdentifierInfo *Name,
3188                                         SourceLocation Loc,
3189                                         SourceRange Range) {
3190  bool Invalid = false;
3191
3192  // Arrays and functions decay.
3193  if (ExDeclType->isArrayType())
3194    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3195  else if (ExDeclType->isFunctionType())
3196    ExDeclType = Context.getPointerType(ExDeclType);
3197
3198  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3199  // The exception-declaration shall not denote a pointer or reference to an
3200  // incomplete type, other than [cv] void*.
3201  // N2844 forbids rvalue references.
3202  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3203    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3204    Invalid = true;
3205  }
3206
3207  QualType BaseType = ExDeclType;
3208  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3209  unsigned DK = diag::err_catch_incomplete;
3210  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3211    BaseType = Ptr->getPointeeType();
3212    Mode = 1;
3213    DK = diag::err_catch_incomplete_ptr;
3214  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3215    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3216    BaseType = Ref->getPointeeType();
3217    Mode = 2;
3218    DK = diag::err_catch_incomplete_ref;
3219  }
3220  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3221      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3222    Invalid = true;
3223
3224  if (!Invalid && !ExDeclType->isDependentType() &&
3225      RequireNonAbstractType(Loc, ExDeclType,
3226                             diag::err_abstract_type_in_decl,
3227                             AbstractVariableType))
3228    Invalid = true;
3229
3230  // FIXME: Need to test for ability to copy-construct and destroy the
3231  // exception variable.
3232
3233  // FIXME: Need to check for abstract classes.
3234
3235  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3236                                    Name, ExDeclType, VarDecl::None,
3237                                    Range.getBegin());
3238
3239  if (Invalid)
3240    ExDecl->setInvalidDecl();
3241
3242  return ExDecl;
3243}
3244
3245/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3246/// handler.
3247Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3248  QualType ExDeclType = GetTypeForDeclarator(D, S);
3249
3250  bool Invalid = D.isInvalidType();
3251  IdentifierInfo *II = D.getIdentifier();
3252  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3253    // The scope should be freshly made just for us. There is just no way
3254    // it contains any previous declaration.
3255    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3256    if (PrevDecl->isTemplateParameter()) {
3257      // Maybe we will complain about the shadowed template parameter.
3258      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3259    }
3260  }
3261
3262  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3263    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3264      << D.getCXXScopeSpec().getRange();
3265    Invalid = true;
3266  }
3267
3268  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3269                                              D.getIdentifier(),
3270                                              D.getIdentifierLoc(),
3271                                            D.getDeclSpec().getSourceRange());
3272
3273  if (Invalid)
3274    ExDecl->setInvalidDecl();
3275
3276  // Add the exception declaration into this scope.
3277  if (II)
3278    PushOnScopeChains(ExDecl, S);
3279  else
3280    CurContext->addDecl(ExDecl);
3281
3282  ProcessDeclAttributes(S, ExDecl, D);
3283  return DeclPtrTy::make(ExDecl);
3284}
3285
3286Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3287                                                   ExprArg assertexpr,
3288                                                   ExprArg assertmessageexpr) {
3289  Expr *AssertExpr = (Expr *)assertexpr.get();
3290  StringLiteral *AssertMessage =
3291    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3292
3293  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3294    llvm::APSInt Value(32);
3295    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3296      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3297        AssertExpr->getSourceRange();
3298      return DeclPtrTy();
3299    }
3300
3301    if (Value == 0) {
3302      std::string str(AssertMessage->getStrData(),
3303                      AssertMessage->getByteLength());
3304      Diag(AssertLoc, diag::err_static_assert_failed)
3305        << str << AssertExpr->getSourceRange();
3306    }
3307  }
3308
3309  assertexpr.release();
3310  assertmessageexpr.release();
3311  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3312                                        AssertExpr, AssertMessage);
3313
3314  CurContext->addDecl(Decl);
3315  return DeclPtrTy::make(Decl);
3316}
3317
3318Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3319                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3320                                      bool IsDefinition) {
3321  Declarator *D = DU.dyn_cast<Declarator*>();
3322  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3323
3324  assert(DS.isFriendSpecified());
3325  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3326
3327  // If there's no declarator, then this can only be a friend class
3328  // declaration (or else it's just syntactically invalid).
3329  if (!D) {
3330    SourceLocation Loc = DS.getSourceRange().getBegin();
3331
3332    QualType T;
3333    DeclContext *DC;
3334
3335    // In C++0x, we just accept any old type.
3336    if (getLangOptions().CPlusPlus0x) {
3337      bool invalid = false;
3338      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3339      if (invalid)
3340        return DeclPtrTy();
3341
3342      // The semantic context in which to create the decl.  If it's not
3343      // a record decl (or we don't yet know if it is), create it in the
3344      // current context.
3345      DC = CurContext;
3346      if (const RecordType *RT = T->getAs<RecordType>())
3347        DC = RT->getDecl()->getDeclContext();
3348
3349    // The C++98 rules are somewhat more complex.
3350    } else {
3351      // C++ [class.friend]p2:
3352      //   An elaborated-type-specifier shall be used in a friend declaration
3353      //   for a class.*
3354      //   * The class-key of the elaborated-type-specifier is required.
3355      CXXRecordDecl *RD = 0;
3356
3357      switch (DS.getTypeSpecType()) {
3358      case DeclSpec::TST_class:
3359      case DeclSpec::TST_struct:
3360      case DeclSpec::TST_union:
3361        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3362        if (!RD) return DeclPtrTy();
3363        break;
3364
3365      case DeclSpec::TST_typename:
3366        if (const RecordType *RT =
3367            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3368          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3369        // fallthrough
3370      default:
3371        if (RD) {
3372          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3373            << (RD->isUnion())
3374            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3375                                         RD->isUnion() ? " union" : " class");
3376          return DeclPtrTy::make(RD);
3377        }
3378
3379        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3380          << DS.getSourceRange();
3381        return DeclPtrTy();
3382      }
3383
3384      // The record declaration we get from friend declarations is not
3385      // canonicalized; see ActOnTag.
3386      assert(RD);
3387
3388      // C++ [class.friend]p2: A class shall not be defined inside
3389      //   a friend declaration.
3390      if (RD->isDefinition())
3391        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3392          << RD->getSourceRange();
3393
3394      // C++98 [class.friend]p1: A friend of a class is a function
3395      //   or class that is not a member of the class . . .
3396      // But that's a silly restriction which nobody implements for
3397      // inner classes, and C++0x removes it anyway, so we only report
3398      // this (as a warning) if we're being pedantic.
3399      //
3400      // Also, definitions currently get treated in a way that causes
3401      // this error, so only report it if we didn't see a definition.
3402      else if (RD->getDeclContext() == CurContext &&
3403               !getLangOptions().CPlusPlus0x)
3404        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3405
3406      T = QualType(RD->getTypeForDecl(), 0);
3407      DC = RD->getDeclContext();
3408    }
3409
3410    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3411                                                   DS.getFriendSpecLoc());
3412    FCD->setLexicalDeclContext(CurContext);
3413
3414    if (CurContext->isDependentContext())
3415      CurContext->addHiddenDecl(FCD);
3416    else
3417      CurContext->addDecl(FCD);
3418
3419    return DeclPtrTy::make(FCD);
3420  }
3421
3422  // We have a declarator.
3423  assert(D);
3424
3425  SourceLocation Loc = D->getIdentifierLoc();
3426  QualType T = GetTypeForDeclarator(*D, S);
3427
3428  // C++ [class.friend]p1
3429  //   A friend of a class is a function or class....
3430  // Note that this sees through typedefs, which is intended.
3431  if (!T->isFunctionType()) {
3432    Diag(Loc, diag::err_unexpected_friend);
3433
3434    // It might be worthwhile to try to recover by creating an
3435    // appropriate declaration.
3436    return DeclPtrTy();
3437  }
3438
3439  // C++ [namespace.memdef]p3
3440  //  - If a friend declaration in a non-local class first declares a
3441  //    class or function, the friend class or function is a member
3442  //    of the innermost enclosing namespace.
3443  //  - The name of the friend is not found by simple name lookup
3444  //    until a matching declaration is provided in that namespace
3445  //    scope (either before or after the class declaration granting
3446  //    friendship).
3447  //  - If a friend function is called, its name may be found by the
3448  //    name lookup that considers functions from namespaces and
3449  //    classes associated with the types of the function arguments.
3450  //  - When looking for a prior declaration of a class or a function
3451  //    declared as a friend, scopes outside the innermost enclosing
3452  //    namespace scope are not considered.
3453
3454  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3455  DeclarationName Name = GetNameForDeclarator(*D);
3456  assert(Name);
3457
3458  // The existing declaration we found.
3459  FunctionDecl *FD = NULL;
3460
3461  // The context we found the declaration in, or in which we should
3462  // create the declaration.
3463  DeclContext *DC;
3464
3465  // FIXME: handle local classes
3466
3467  // Recover from invalid scope qualifiers as if they just weren't there.
3468  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3469    DC = computeDeclContext(ScopeQual);
3470
3471    // FIXME: handle dependent contexts
3472    if (!DC) return DeclPtrTy();
3473
3474    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3475
3476    // If searching in that context implicitly found a declaration in
3477    // a different context, treat it like it wasn't found at all.
3478    // TODO: better diagnostics for this case.  Suggesting the right
3479    // qualified scope would be nice...
3480    if (!Dec || Dec->getDeclContext() != DC) {
3481      D->setInvalidType();
3482      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3483      return DeclPtrTy();
3484    }
3485
3486    // C++ [class.friend]p1: A friend of a class is a function or
3487    //   class that is not a member of the class . . .
3488    if (DC == CurContext)
3489      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3490
3491    FD = cast<FunctionDecl>(Dec);
3492
3493  // Otherwise walk out to the nearest namespace scope looking for matches.
3494  } else {
3495    // TODO: handle local class contexts.
3496
3497    DC = CurContext;
3498    while (true) {
3499      // Skip class contexts.  If someone can cite chapter and verse
3500      // for this behavior, that would be nice --- it's what GCC and
3501      // EDG do, and it seems like a reasonable intent, but the spec
3502      // really only says that checks for unqualified existing
3503      // declarations should stop at the nearest enclosing namespace,
3504      // not that they should only consider the nearest enclosing
3505      // namespace.
3506      while (DC->isRecord()) DC = DC->getParent();
3507
3508      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3509
3510      // TODO: decide what we think about using declarations.
3511      if (Dec) {
3512        FD = cast<FunctionDecl>(Dec);
3513        break;
3514      }
3515      if (DC->isFileContext()) break;
3516      DC = DC->getParent();
3517    }
3518
3519    // C++ [class.friend]p1: A friend of a class is a function or
3520    //   class that is not a member of the class . . .
3521    // C++0x changes this for both friend types and functions.
3522    // Most C++ 98 compilers do seem to give an error here, so
3523    // we do, too.
3524    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3525      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3526  }
3527
3528  bool Redeclaration = (FD != 0);
3529
3530  // If we found a match, create a friend function declaration with
3531  // that function as the previous declaration.
3532  if (Redeclaration) {
3533    // Create it in the semantic context of the original declaration.
3534    DC = FD->getDeclContext();
3535
3536  // If we didn't find something matching the type exactly, create
3537  // a declaration.  This declaration should only be findable via
3538  // argument-dependent lookup.
3539  } else {
3540    assert(DC->isFileContext());
3541
3542    // This implies that it has to be an operator or function.
3543    if (D->getKind() == Declarator::DK_Constructor ||
3544        D->getKind() == Declarator::DK_Destructor ||
3545        D->getKind() == Declarator::DK_Conversion) {
3546      Diag(Loc, diag::err_introducing_special_friend) <<
3547        (D->getKind() == Declarator::DK_Constructor ? 0 :
3548         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3549      return DeclPtrTy();
3550    }
3551  }
3552
3553  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T,
3554                                          /* PrevDecl = */ FD,
3555                                          MultiTemplateParamsArg(*this),
3556                                          IsDefinition,
3557                                          Redeclaration);
3558  FD = cast_or_null<FriendFunctionDecl>(ND);
3559
3560  // If this is a dependent context, just add the decl to the
3561  // class's decl list and don't both with the lookup tables.  This
3562  // doesn't affect lookup because any call that might find this
3563  // function via ADL necessarily has to involve dependently-typed
3564  // arguments and hence can't be resolved until
3565  // template-instantiation anyway.
3566  if (CurContext->isDependentContext())
3567    CurContext->addHiddenDecl(FD);
3568  else
3569    CurContext->addDecl(FD);
3570
3571  return DeclPtrTy::make(FD);
3572}
3573
3574void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3575  Decl *Dcl = dcl.getAs<Decl>();
3576  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3577  if (!Fn) {
3578    Diag(DelLoc, diag::err_deleted_non_function);
3579    return;
3580  }
3581  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3582    Diag(DelLoc, diag::err_deleted_decl_not_first);
3583    Diag(Prev->getLocation(), diag::note_previous_declaration);
3584    // If the declaration wasn't the first, we delete the function anyway for
3585    // recovery.
3586  }
3587  Fn->setDeleted();
3588}
3589
3590static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3591  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3592       ++CI) {
3593    Stmt *SubStmt = *CI;
3594    if (!SubStmt)
3595      continue;
3596    if (isa<ReturnStmt>(SubStmt))
3597      Self.Diag(SubStmt->getSourceRange().getBegin(),
3598           diag::err_return_in_constructor_handler);
3599    if (!isa<Expr>(SubStmt))
3600      SearchForReturnInStmt(Self, SubStmt);
3601  }
3602}
3603
3604void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3605  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3606    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3607    SearchForReturnInStmt(*this, Handler);
3608  }
3609}
3610
3611bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3612                                             const CXXMethodDecl *Old) {
3613  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3614  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3615
3616  QualType CNewTy = Context.getCanonicalType(NewTy);
3617  QualType COldTy = Context.getCanonicalType(OldTy);
3618
3619  if (CNewTy == COldTy &&
3620      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3621    return false;
3622
3623  // Check if the return types are covariant
3624  QualType NewClassTy, OldClassTy;
3625
3626  /// Both types must be pointers or references to classes.
3627  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3628    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3629      NewClassTy = NewPT->getPointeeType();
3630      OldClassTy = OldPT->getPointeeType();
3631    }
3632  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3633    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3634      NewClassTy = NewRT->getPointeeType();
3635      OldClassTy = OldRT->getPointeeType();
3636    }
3637  }
3638
3639  // The return types aren't either both pointers or references to a class type.
3640  if (NewClassTy.isNull()) {
3641    Diag(New->getLocation(),
3642         diag::err_different_return_type_for_overriding_virtual_function)
3643      << New->getDeclName() << NewTy << OldTy;
3644    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3645
3646    return true;
3647  }
3648
3649  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3650    // Check if the new class derives from the old class.
3651    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3652      Diag(New->getLocation(),
3653           diag::err_covariant_return_not_derived)
3654      << New->getDeclName() << NewTy << OldTy;
3655      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3656      return true;
3657    }
3658
3659    // Check if we the conversion from derived to base is valid.
3660    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3661                      diag::err_covariant_return_inaccessible_base,
3662                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3663                      // FIXME: Should this point to the return type?
3664                      New->getLocation(), SourceRange(), New->getDeclName())) {
3665      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3666      return true;
3667    }
3668  }
3669
3670  // The qualifiers of the return types must be the same.
3671  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3672    Diag(New->getLocation(),
3673         diag::err_covariant_return_type_different_qualifications)
3674    << New->getDeclName() << NewTy << OldTy;
3675    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3676    return true;
3677  };
3678
3679
3680  // The new class type must have the same or less qualifiers as the old type.
3681  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3682    Diag(New->getLocation(),
3683         diag::err_covariant_return_type_class_type_more_qualified)
3684    << New->getDeclName() << NewTy << OldTy;
3685    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3686    return true;
3687  };
3688
3689  return false;
3690}
3691
3692bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3693                                                const CXXMethodDecl *Old)
3694{
3695  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3696                                  diag::note_overridden_virtual_function,
3697                                  Old->getType()->getAsFunctionProtoType(),
3698                                  Old->getLocation(),
3699                                  New->getType()->getAsFunctionProtoType(),
3700                                  New->getLocation());
3701}
3702
3703/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3704/// initializer for the declaration 'Dcl'.
3705/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3706/// static data member of class X, names should be looked up in the scope of
3707/// class X.
3708void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3709  Decl *D = Dcl.getAs<Decl>();
3710  // If there is no declaration, there was an error parsing it.
3711  if (D == 0)
3712    return;
3713
3714  // Check whether it is a declaration with a nested name specifier like
3715  // int foo::bar;
3716  if (!D->isOutOfLine())
3717    return;
3718
3719  // C++ [basic.lookup.unqual]p13
3720  //
3721  // A name used in the definition of a static data member of class X
3722  // (after the qualified-id of the static member) is looked up as if the name
3723  // was used in a member function of X.
3724
3725  // Change current context into the context of the initializing declaration.
3726  EnterDeclaratorContext(S, D->getDeclContext());
3727}
3728
3729/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3730/// initializer for the declaration 'Dcl'.
3731void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3732  Decl *D = Dcl.getAs<Decl>();
3733  // If there is no declaration, there was an error parsing it.
3734  if (D == 0)
3735    return;
3736
3737  // Check whether it is a declaration with a nested name specifier like
3738  // int foo::bar;
3739  if (!D->isOutOfLine())
3740    return;
3741
3742  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3743  ExitDeclaratorContext(S);
3744}
3745