SemaDeclCXX.cpp revision 42a552f8200ba5948661aee0106fce0c04e39818
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param,
78                     Param->getName(), DefaultArg->getSourceRange());
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local,
86                       VDecl->getName(), DefaultArg->getSourceRange());
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this,
99                   ThisE->getSourceRange());
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument,
116         DefaultArg->getSourceRange());
117    return;
118  }
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  Expr *DefaultArgPtr = DefaultArg.get();
127  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
128                                                     "in default argument");
129  if (DefaultArgPtr != DefaultArg.get()) {
130    DefaultArg.take();
131    DefaultArg.reset(DefaultArgPtr);
132  }
133  if (DefaultInitFailed) {
134    return;
135  }
136
137  // Check that the default argument is well-formed
138  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
139  if (DefaultArgChecker.Visit(DefaultArg.get()))
140    return;
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(DefaultArg.take());
144}
145
146/// CheckExtraCXXDefaultArguments - Check for any extra default
147/// arguments in the declarator, which is not a function declaration
148/// or definition and therefore is not permitted to have default
149/// arguments. This routine should be invoked for every declarator
150/// that is not a function declaration or definition.
151void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
152  // C++ [dcl.fct.default]p3
153  //   A default argument expression shall be specified only in the
154  //   parameter-declaration-clause of a function declaration or in a
155  //   template-parameter (14.1). It shall not be specified for a
156  //   parameter pack. If it is specified in a
157  //   parameter-declaration-clause, it shall not occur within a
158  //   declarator or abstract-declarator of a parameter-declaration.
159  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
160    DeclaratorChunk &chunk = D.getTypeObject(i);
161    if (chunk.Kind == DeclaratorChunk::Function) {
162      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
163        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
164        if (Param->getDefaultArg()) {
165          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
166               Param->getDefaultArg()->getSourceRange());
167          Param->setDefaultArg(0);
168        }
169      }
170    }
171  }
172}
173
174// MergeCXXFunctionDecl - Merge two declarations of the same C++
175// function, once we already know that they have the same
176// type. Subroutine of MergeFunctionDecl.
177FunctionDecl *
178Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
179  // C++ [dcl.fct.default]p4:
180  //
181  //   For non-template functions, default arguments can be added in
182  //   later declarations of a function in the same
183  //   scope. Declarations in different scopes have completely
184  //   distinct sets of default arguments. That is, declarations in
185  //   inner scopes do not acquire default arguments from
186  //   declarations in outer scopes, and vice versa. In a given
187  //   function declaration, all parameters subsequent to a
188  //   parameter with a default argument shall have default
189  //   arguments supplied in this or previous declarations. A
190  //   default argument shall not be redefined by a later
191  //   declaration (not even to the same value).
192  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
193    ParmVarDecl *OldParam = Old->getParamDecl(p);
194    ParmVarDecl *NewParam = New->getParamDecl(p);
195
196    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
197      Diag(NewParam->getLocation(),
198           diag::err_param_default_argument_redefinition,
199           NewParam->getDefaultArg()->getSourceRange());
200      Diag(OldParam->getLocation(), diag::err_previous_definition);
201    } else if (OldParam->getDefaultArg()) {
202      // Merge the old default argument into the new parameter
203      NewParam->setDefaultArg(OldParam->getDefaultArg());
204    }
205  }
206
207  return New;
208}
209
210/// CheckCXXDefaultArguments - Verify that the default arguments for a
211/// function declaration are well-formed according to C++
212/// [dcl.fct.default].
213void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
214  unsigned NumParams = FD->getNumParams();
215  unsigned p;
216
217  // Find first parameter with a default argument
218  for (p = 0; p < NumParams; ++p) {
219    ParmVarDecl *Param = FD->getParamDecl(p);
220    if (Param->getDefaultArg())
221      break;
222  }
223
224  // C++ [dcl.fct.default]p4:
225  //   In a given function declaration, all parameters
226  //   subsequent to a parameter with a default argument shall
227  //   have default arguments supplied in this or previous
228  //   declarations. A default argument shall not be redefined
229  //   by a later declaration (not even to the same value).
230  unsigned LastMissingDefaultArg = 0;
231  for(; p < NumParams; ++p) {
232    ParmVarDecl *Param = FD->getParamDecl(p);
233    if (!Param->getDefaultArg()) {
234      if (Param->getIdentifier())
235        Diag(Param->getLocation(),
236             diag::err_param_default_argument_missing_name,
237             Param->getIdentifier()->getName());
238      else
239        Diag(Param->getLocation(),
240             diag::err_param_default_argument_missing);
241
242      LastMissingDefaultArg = p;
243    }
244  }
245
246  if (LastMissingDefaultArg > 0) {
247    // Some default arguments were missing. Clear out all of the
248    // default arguments up to (and including) the last missing
249    // default argument, so that we leave the function parameters
250    // in a semantically valid state.
251    for (p = 0; p <= LastMissingDefaultArg; ++p) {
252      ParmVarDecl *Param = FD->getParamDecl(p);
253      if (Param->getDefaultArg()) {
254        delete Param->getDefaultArg();
255        Param->setDefaultArg(0);
256      }
257    }
258  }
259}
260
261/// isCurrentClassName - Determine whether the identifier II is the
262/// name of the class type currently being defined. In the case of
263/// nested classes, this will only return true if II is the name of
264/// the innermost class.
265bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *) {
266  if (CXXRecordDecl *CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext))
267    return &II == CurDecl->getIdentifier();
268  else
269    return false;
270}
271
272/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
273/// one entry in the base class list of a class specifier, for
274/// example:
275///    class foo : public bar, virtual private baz {
276/// 'public bar' and 'virtual private baz' are each base-specifiers.
277Sema::BaseResult
278Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
279                         bool Virtual, AccessSpecifier Access,
280                         TypeTy *basetype, SourceLocation BaseLoc) {
281  RecordDecl *Decl = (RecordDecl*)classdecl;
282  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
283
284  // Base specifiers must be record types.
285  if (!BaseType->isRecordType()) {
286    Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
287    return true;
288  }
289
290  // C++ [class.union]p1:
291  //   A union shall not be used as a base class.
292  if (BaseType->isUnionType()) {
293    Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
294    return true;
295  }
296
297  // C++ [class.union]p1:
298  //   A union shall not have base classes.
299  if (Decl->isUnion()) {
300    Diag(Decl->getLocation(), diag::err_base_clause_on_union,
301         SpecifierRange);
302    return true;
303  }
304
305  // C++ [class.derived]p2:
306  //   The class-name in a base-specifier shall not be an incompletely
307  //   defined class.
308  if (BaseType->isIncompleteType()) {
309    Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
310    return true;
311  }
312
313  // Create the base specifier.
314  return new CXXBaseSpecifier(SpecifierRange, Virtual,
315                              BaseType->isClassType(), Access, BaseType);
316}
317
318/// ActOnBaseSpecifiers - Attach the given base specifiers to the
319/// class, after checking whether there are any duplicate base
320/// classes.
321void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
322                               unsigned NumBases) {
323  if (NumBases == 0)
324    return;
325
326  // Used to keep track of which base types we have already seen, so
327  // that we can properly diagnose redundant direct base types. Note
328  // that the key is always the unqualified canonical type of the base
329  // class.
330  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
331
332  // Copy non-redundant base specifiers into permanent storage.
333  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
334  unsigned NumGoodBases = 0;
335  for (unsigned idx = 0; idx < NumBases; ++idx) {
336    QualType NewBaseType
337      = Context.getCanonicalType(BaseSpecs[idx]->getType());
338    NewBaseType = NewBaseType.getUnqualifiedType();
339
340    if (KnownBaseTypes[NewBaseType]) {
341      // C++ [class.mi]p3:
342      //   A class shall not be specified as a direct base class of a
343      //   derived class more than once.
344      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
345           diag::err_duplicate_base_class,
346           KnownBaseTypes[NewBaseType]->getType().getAsString(),
347           BaseSpecs[idx]->getSourceRange());
348
349      // Delete the duplicate base class specifier; we're going to
350      // overwrite its pointer later.
351      delete BaseSpecs[idx];
352    } else {
353      // Okay, add this new base class.
354      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
355      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
356    }
357  }
358
359  // Attach the remaining base class specifiers to the derived class.
360  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
361  Decl->setBases(BaseSpecs, NumGoodBases);
362
363  // Delete the remaining (good) base class specifiers, since their
364  // data has been copied into the CXXRecordDecl.
365  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
366    delete BaseSpecs[idx];
367}
368
369//===----------------------------------------------------------------------===//
370// C++ class member Handling
371//===----------------------------------------------------------------------===//
372
373/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
374/// definition, when on C++.
375void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
376  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
377  PushDeclContext(Dcl);
378  FieldCollector->StartClass();
379
380  if (Dcl->getIdentifier()) {
381    // C++ [class]p2:
382    //   [...] The class-name is also inserted into the scope of the
383    //   class itself; this is known as the injected-class-name. For
384    //   purposes of access checking, the injected-class-name is treated
385    //   as if it were a public member name.
386    // FIXME: this should probably have its own kind of type node.
387    TypedefDecl *InjectedClassName
388      = TypedefDecl::Create(Context, Dcl, LBrace, Dcl->getIdentifier(),
389                            Context.getTypeDeclType(Dcl), /*PrevDecl=*/0);
390    PushOnScopeChains(InjectedClassName, S);
391  }
392}
393
394/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
395/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
396/// bitfield width if there is one and 'InitExpr' specifies the initializer if
397/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
398/// declarators on it.
399///
400/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
401/// an instance field is declared, a new CXXFieldDecl is created but the method
402/// does *not* return it; it returns LastInGroup instead. The other C++ members
403/// (which are all ScopedDecls) are returned after appending them to
404/// LastInGroup.
405Sema::DeclTy *
406Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
407                               ExprTy *BW, ExprTy *InitExpr,
408                               DeclTy *LastInGroup) {
409  const DeclSpec &DS = D.getDeclSpec();
410  IdentifierInfo *II = D.getIdentifier();
411  Expr *BitWidth = static_cast<Expr*>(BW);
412  Expr *Init = static_cast<Expr*>(InitExpr);
413  SourceLocation Loc = D.getIdentifierLoc();
414
415  // C++ 9.2p6: A member shall not be declared to have automatic storage
416  // duration (auto, register) or with the extern storage-class-specifier.
417  switch (DS.getStorageClassSpec()) {
418    case DeclSpec::SCS_unspecified:
419    case DeclSpec::SCS_typedef:
420    case DeclSpec::SCS_static:
421      // FALL THROUGH.
422      break;
423    default:
424      if (DS.getStorageClassSpecLoc().isValid())
425        Diag(DS.getStorageClassSpecLoc(),
426             diag::err_storageclass_invalid_for_member);
427      else
428        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
429      D.getMutableDeclSpec().ClearStorageClassSpecs();
430  }
431
432  bool isFunc = D.isFunctionDeclarator();
433  if (!isFunc &&
434      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
435      D.getNumTypeObjects() == 0) {
436    // Check also for this case:
437    //
438    // typedef int f();
439    // f a;
440    //
441    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
442    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
443  }
444
445  bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
446                      !isFunc);
447
448  Decl *Member;
449  bool InvalidDecl = false;
450
451  if (isInstField)
452    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
453  else
454    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
455
456  if (!Member) return LastInGroup;
457
458  assert((II || isInstField) && "No identifier for non-field ?");
459
460  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
461  // specific methods. Use a wrapper class that can be used with all C++ class
462  // member decls.
463  CXXClassMemberWrapper(Member).setAccess(AS);
464
465  // C++ [dcl.init.aggr]p1:
466  //   An aggregate is an array or a class (clause 9) with [...] no
467  //   private or protected non-static data members (clause 11).
468  if (isInstField && (AS == AS_private || AS == AS_protected))
469    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
470
471  // FIXME: If the member is a virtual function, mark it its class as
472  // a non-aggregate.
473
474  if (BitWidth) {
475    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
476    // constant-expression be a value equal to zero.
477    // FIXME: Check this.
478
479    if (D.isFunctionDeclarator()) {
480      // FIXME: Emit diagnostic about only constructors taking base initializers
481      // or something similar, when constructor support is in place.
482      Diag(Loc, diag::err_not_bitfield_type,
483           II->getName(), BitWidth->getSourceRange());
484      InvalidDecl = true;
485
486    } else if (isInstField) {
487      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
488      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
489        Diag(Loc, diag::err_not_integral_type_bitfield,
490             II->getName(), BitWidth->getSourceRange());
491        InvalidDecl = true;
492      }
493
494    } else if (isa<FunctionDecl>(Member)) {
495      // A function typedef ("typedef int f(); f a;").
496      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
497      Diag(Loc, diag::err_not_integral_type_bitfield,
498           II->getName(), BitWidth->getSourceRange());
499      InvalidDecl = true;
500
501    } else if (isa<TypedefDecl>(Member)) {
502      // "cannot declare 'A' to be a bit-field type"
503      Diag(Loc, diag::err_not_bitfield_type, II->getName(),
504           BitWidth->getSourceRange());
505      InvalidDecl = true;
506
507    } else {
508      assert(isa<CXXClassVarDecl>(Member) &&
509             "Didn't we cover all member kinds?");
510      // C++ 9.6p3: A bit-field shall not be a static member.
511      // "static member 'A' cannot be a bit-field"
512      Diag(Loc, diag::err_static_not_bitfield, II->getName(),
513           BitWidth->getSourceRange());
514      InvalidDecl = true;
515    }
516  }
517
518  if (Init) {
519    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
520    // if it declares a static member of const integral or const enumeration
521    // type.
522    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
523      // ...static member of...
524      CVD->setInit(Init);
525      // ...const integral or const enumeration type.
526      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
527          CVD->getType()->isIntegralType()) {
528        // constant-initializer
529        if (CheckForConstantInitializer(Init, CVD->getType()))
530          InvalidDecl = true;
531
532      } else {
533        // not const integral.
534        Diag(Loc, diag::err_member_initialization,
535             II->getName(), Init->getSourceRange());
536        InvalidDecl = true;
537      }
538
539    } else {
540      // not static member.
541      Diag(Loc, diag::err_member_initialization,
542           II->getName(), Init->getSourceRange());
543      InvalidDecl = true;
544    }
545  }
546
547  if (InvalidDecl)
548    Member->setInvalidDecl();
549
550  if (isInstField) {
551    FieldCollector->Add(cast<CXXFieldDecl>(Member));
552    return LastInGroup;
553  }
554  return Member;
555}
556
557/// ActOnMemInitializer - Handle a C++ member initializer.
558Sema::MemInitResult
559Sema::ActOnMemInitializer(DeclTy *ConstructorD,
560                          Scope *S,
561                          IdentifierInfo *MemberOrBase,
562                          SourceLocation IdLoc,
563                          SourceLocation LParenLoc,
564                          ExprTy **Args, unsigned NumArgs,
565                          SourceLocation *CommaLocs,
566                          SourceLocation RParenLoc) {
567  CXXConstructorDecl *Constructor
568    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
569  if (!Constructor) {
570    // The user wrote a constructor initializer on a function that is
571    // not a C++ constructor. Ignore the error for now, because we may
572    // have more member initializers coming; we'll diagnose it just
573    // once in ActOnMemInitializers.
574    return true;
575  }
576
577  CXXRecordDecl *ClassDecl = Constructor->getParent();
578
579  // C++ [class.base.init]p2:
580  //   Names in a mem-initializer-id are looked up in the scope of the
581  //   constructor’s class and, if not found in that scope, are looked
582  //   up in the scope containing the constructor’s
583  //   definition. [Note: if the constructor’s class contains a member
584  //   with the same name as a direct or virtual base class of the
585  //   class, a mem-initializer-id naming the member or base class and
586  //   composed of a single identifier refers to the class member. A
587  //   mem-initializer-id for the hidden base class may be specified
588  //   using a qualified name. ]
589  // Look for a member, first.
590  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
591
592  // FIXME: Handle members of an anonymous union.
593
594  if (Member) {
595    // FIXME: Perform direct initialization of the member.
596    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
597  }
598
599  // It didn't name a member, so see if it names a class.
600  TypeTy *BaseTy = isTypeName(*MemberOrBase, S);
601  if (!BaseTy)
602    return Diag(IdLoc, diag::err_mem_init_not_member_or_class,
603                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
604
605  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
606  if (!BaseType->isRecordType())
607    return Diag(IdLoc, diag::err_base_init_does_not_name_class,
608                BaseType.getAsString(), SourceRange(IdLoc, RParenLoc));
609
610  // C++ [class.base.init]p2:
611  //   [...] Unless the mem-initializer-id names a nonstatic data
612  //   member of the constructor’s class or a direct or virtual base
613  //   of that class, the mem-initializer is ill-formed. A
614  //   mem-initializer-list can initialize a base class using any
615  //   name that denotes that base class type.
616
617  // First, check for a direct base class.
618  const CXXBaseSpecifier *DirectBaseSpec = 0;
619  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
620       Base != ClassDecl->bases_end(); ++Base) {
621    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
622        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
623      // We found a direct base of this type. That's what we're
624      // initializing.
625      DirectBaseSpec = &*Base;
626      break;
627    }
628  }
629
630  // Check for a virtual base class.
631  // FIXME: We might be able to short-circuit this if we know in
632  // advance that there are no virtual bases.
633  const CXXBaseSpecifier *VirtualBaseSpec = 0;
634  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
635    // We haven't found a base yet; search the class hierarchy for a
636    // virtual base class.
637    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
638                    /*DetectVirtual=*/false);
639    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
640      for (BasePaths::paths_iterator Path = Paths.begin();
641           Path != Paths.end(); ++Path) {
642        if (Path->back().Base->isVirtual()) {
643          VirtualBaseSpec = Path->back().Base;
644          break;
645        }
646      }
647    }
648  }
649
650  // C++ [base.class.init]p2:
651  //   If a mem-initializer-id is ambiguous because it designates both
652  //   a direct non-virtual base class and an inherited virtual base
653  //   class, the mem-initializer is ill-formed.
654  if (DirectBaseSpec && VirtualBaseSpec)
655    return Diag(IdLoc, diag::err_base_init_direct_and_virtual,
656                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
657
658  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
659}
660
661
662void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
663                                             DeclTy *TagDecl,
664                                             SourceLocation LBrac,
665                                             SourceLocation RBrac) {
666  ActOnFields(S, RLoc, TagDecl,
667              (DeclTy**)FieldCollector->getCurFields(),
668              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
669}
670
671/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
672/// special functions, such as the default constructor, copy
673/// constructor, or destructor, to the given C++ class (C++
674/// [special]p1).  This routine can only be executed just before the
675/// definition of the class is complete.
676void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
677  if (!ClassDecl->hasUserDeclaredConstructor()) {
678    // C++ [class.ctor]p5:
679    //   A default constructor for a class X is a constructor of class X
680    //   that can be called without an argument. If there is no
681    //   user-declared constructor for class X, a default constructor is
682    //   implicitly declared. An implicitly-declared default constructor
683    //   is an inline public member of its class.
684    CXXConstructorDecl *DefaultCon =
685      CXXConstructorDecl::Create(Context, ClassDecl,
686                                 ClassDecl->getLocation(),
687                                 ClassDecl->getIdentifier(),
688                                 Context.getFunctionType(Context.VoidTy,
689                                                         0, 0, false, 0),
690                                 /*isExplicit=*/false,
691                                 /*isInline=*/true,
692                                 /*isImplicitlyDeclared=*/true);
693    DefaultCon->setAccess(AS_public);
694    ClassDecl->addConstructor(Context, DefaultCon);
695  }
696
697  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
698    // C++ [class.copy]p4:
699    //   If the class definition does not explicitly declare a copy
700    //   constructor, one is declared implicitly.
701
702    // C++ [class.copy]p5:
703    //   The implicitly-declared copy constructor for a class X will
704    //   have the form
705    //
706    //       X::X(const X&)
707    //
708    //   if
709    bool HasConstCopyConstructor = true;
710
711    //     -- each direct or virtual base class B of X has a copy
712    //        constructor whose first parameter is of type const B& or
713    //        const volatile B&, and
714    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
715         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
716      const CXXRecordDecl *BaseClassDecl
717        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
718      HasConstCopyConstructor
719        = BaseClassDecl->hasConstCopyConstructor(Context);
720    }
721
722    //     -- for all the nonstatic data members of X that are of a
723    //        class type M (or array thereof), each such class type
724    //        has a copy constructor whose first parameter is of type
725    //        const M& or const volatile M&.
726    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
727         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
728      QualType FieldType = (*Field)->getType();
729      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
730        FieldType = Array->getElementType();
731      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
732        const CXXRecordDecl *FieldClassDecl
733          = cast<CXXRecordDecl>(FieldClassType->getDecl());
734        HasConstCopyConstructor
735          = FieldClassDecl->hasConstCopyConstructor(Context);
736      }
737    }
738
739    //  Otherwise, the implicitly declared copy constructor will have
740    //  the form
741    //
742    //       X::X(X&)
743    QualType ArgType = Context.getTypeDeclType(ClassDecl);
744    if (HasConstCopyConstructor)
745      ArgType = ArgType.withConst();
746    ArgType = Context.getReferenceType(ArgType);
747
748    //  An implicitly-declared copy constructor is an inline public
749    //  member of its class.
750    CXXConstructorDecl *CopyConstructor
751      = CXXConstructorDecl::Create(Context, ClassDecl,
752                                   ClassDecl->getLocation(),
753                                   ClassDecl->getIdentifier(),
754                                   Context.getFunctionType(Context.VoidTy,
755                                                           &ArgType, 1,
756                                                           false, 0),
757                                   /*isExplicit=*/false,
758                                   /*isInline=*/true,
759                                   /*isImplicitlyDeclared=*/true);
760    CopyConstructor->setAccess(AS_public);
761
762    // Add the parameter to the constructor.
763    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
764                                                 ClassDecl->getLocation(),
765                                                 /*IdentifierInfo=*/0,
766                                                 ArgType, VarDecl::None, 0, 0);
767    CopyConstructor->setParams(&FromParam, 1);
768
769    ClassDecl->addConstructor(Context, CopyConstructor);
770  }
771
772  if (!ClassDecl->getDestructor()) {
773    // C++ [class.dtor]p2:
774    //   If a class has no user-declared destructor, a destructor is
775    //   declared implicitly. An implicitly-declared destructor is an
776    //   inline public member of its class.
777    std::string DestructorName = "~";
778    DestructorName += ClassDecl->getName();
779    CXXDestructorDecl *Destructor
780      = CXXDestructorDecl::Create(Context, ClassDecl,
781                                  ClassDecl->getLocation(),
782                                  &PP.getIdentifierTable().get(DestructorName),
783                                  Context.getFunctionType(Context.VoidTy,
784                                                          0, 0, false, 0),
785                                  /*isInline=*/true,
786                                  /*isImplicitlyDeclared=*/true);
787    Destructor->setAccess(AS_public);
788    ClassDecl->setDestructor(Destructor);
789  }
790
791  // FIXME: Implicit copy assignment operator
792}
793
794void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
795  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
796  FieldCollector->FinishClass();
797  AddImplicitlyDeclaredMembersToClass(Rec);
798  PopDeclContext();
799
800  // Everything, including inline method definitions, have been parsed.
801  // Let the consumer know of the new TagDecl definition.
802  Consumer.HandleTagDeclDefinition(Rec);
803}
804
805/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
806/// the well-formednes of the constructor declarator @p D with type @p
807/// R. If there are any errors in the declarator, this routine will
808/// emit diagnostics and return true. Otherwise, it will return
809/// false. Either way, the type @p R will be updated to reflect a
810/// well-formed type for the constructor.
811bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
812                                      FunctionDecl::StorageClass& SC) {
813  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
814  bool isInvalid = false;
815
816  // C++ [class.ctor]p3:
817  //   A constructor shall not be virtual (10.3) or static (9.4). A
818  //   constructor can be invoked for a const, volatile or const
819  //   volatile object. A constructor shall not be declared const,
820  //   volatile, or const volatile (9.3.2).
821  if (isVirtual) {
822    Diag(D.getIdentifierLoc(),
823         diag::err_constructor_cannot_be,
824         "virtual",
825         SourceRange(D.getDeclSpec().getVirtualSpecLoc()),
826         SourceRange(D.getIdentifierLoc()));
827    isInvalid = true;
828  }
829  if (SC == FunctionDecl::Static) {
830    Diag(D.getIdentifierLoc(),
831         diag::err_constructor_cannot_be,
832         "static",
833         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
834         SourceRange(D.getIdentifierLoc()));
835    isInvalid = true;
836    SC = FunctionDecl::None;
837  }
838  if (D.getDeclSpec().hasTypeSpecifier()) {
839    // Constructors don't have return types, but the parser will
840    // happily parse something like:
841    //
842    //   class X {
843    //     float X(float);
844    //   };
845    //
846    // The return type will be eliminated later.
847    Diag(D.getIdentifierLoc(),
848         diag::err_constructor_return_type,
849         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
850         SourceRange(D.getIdentifierLoc()));
851  }
852  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
853    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
854    if (FTI.TypeQuals & QualType::Const)
855      Diag(D.getIdentifierLoc(),
856           diag::err_invalid_qualified_constructor,
857           "const",
858           SourceRange(D.getIdentifierLoc()));
859    if (FTI.TypeQuals & QualType::Volatile)
860      Diag(D.getIdentifierLoc(),
861           diag::err_invalid_qualified_constructor,
862           "volatile",
863           SourceRange(D.getIdentifierLoc()));
864    if (FTI.TypeQuals & QualType::Restrict)
865      Diag(D.getIdentifierLoc(),
866           diag::err_invalid_qualified_constructor,
867           "restrict",
868           SourceRange(D.getIdentifierLoc()));
869  }
870
871  // Rebuild the function type "R" without any type qualifiers (in
872  // case any of the errors above fired) and with "void" as the
873  // return type, since constructors don't have return types. We
874  // *always* have to do this, because GetTypeForDeclarator will
875  // put in a result type of "int" when none was specified.
876  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
877  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
878                              Proto->getNumArgs(),
879                              Proto->isVariadic(),
880                              0);
881
882  return isInvalid;
883}
884
885/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
886/// the well-formednes of the destructor declarator @p D with type @p
887/// R. If there are any errors in the declarator, this routine will
888/// emit diagnostics and return true. Otherwise, it will return
889/// false. Either way, the type @p R will be updated to reflect a
890/// well-formed type for the destructor.
891bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
892                                     FunctionDecl::StorageClass& SC) {
893  bool isInvalid = false;
894
895  // C++ [class.dtor]p1:
896  //   [...] A typedef-name that names a class is a class-name
897  //   (7.1.3); however, a typedef-name that names a class shall not
898  //   be used as the identifier in the declarator for a destructor
899  //   declaration.
900  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
901  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
902    if (TypedefD->getIdentifier() !=
903          cast<CXXRecordDecl>(CurContext)->getIdentifier()) {
904      // FIXME: This would be easier if we could just look at whether
905      // we found the injected-class-name.
906      Diag(D.getIdentifierLoc(),
907           diag::err_destructor_typedef_name,
908           TypedefD->getName());
909      isInvalid = true;
910    }
911  }
912
913  // C++ [class.dtor]p2:
914  //   A destructor is used to destroy objects of its class type. A
915  //   destructor takes no parameters, and no return type can be
916  //   specified for it (not even void). The address of a destructor
917  //   shall not be taken. A destructor shall not be static. A
918  //   destructor can be invoked for a const, volatile or const
919  //   volatile object. A destructor shall not be declared const,
920  //   volatile or const volatile (9.3.2).
921  if (SC == FunctionDecl::Static) {
922    Diag(D.getIdentifierLoc(),
923         diag::err_destructor_cannot_be,
924         "static",
925         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
926         SourceRange(D.getIdentifierLoc()));
927    isInvalid = true;
928    SC = FunctionDecl::None;
929  }
930  if (D.getDeclSpec().hasTypeSpecifier()) {
931    // Destructors don't have return types, but the parser will
932    // happily parse something like:
933    //
934    //   class X {
935    //     float ~X();
936    //   };
937    //
938    // The return type will be eliminated later.
939    Diag(D.getIdentifierLoc(),
940         diag::err_destructor_return_type,
941         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
942         SourceRange(D.getIdentifierLoc()));
943  }
944  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
945    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
946    if (FTI.TypeQuals & QualType::Const)
947      Diag(D.getIdentifierLoc(),
948           diag::err_invalid_qualified_destructor,
949           "const",
950           SourceRange(D.getIdentifierLoc()));
951    if (FTI.TypeQuals & QualType::Volatile)
952      Diag(D.getIdentifierLoc(),
953           diag::err_invalid_qualified_destructor,
954           "volatile",
955           SourceRange(D.getIdentifierLoc()));
956    if (FTI.TypeQuals & QualType::Restrict)
957      Diag(D.getIdentifierLoc(),
958           diag::err_invalid_qualified_destructor,
959           "restrict",
960           SourceRange(D.getIdentifierLoc()));
961  }
962
963  // Make sure we don't have any parameters.
964  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
965    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
966
967    // Delete the parameters.
968    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
969    if (FTI.NumArgs) {
970      delete [] FTI.ArgInfo;
971      FTI.NumArgs = 0;
972      FTI.ArgInfo = 0;
973    }
974  }
975
976  // Make sure the destructor isn't variadic.
977  if (R->getAsFunctionTypeProto()->isVariadic())
978    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
979
980  // Rebuild the function type "R" without any type qualifiers or
981  // parameters (in case any of the errors above fired) and with
982  // "void" as the return type, since destructors don't have return
983  // types. We *always* have to do this, because GetTypeForDeclarator
984  // will put in a result type of "int" when none was specified.
985  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
986
987  return isInvalid;
988}
989
990/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
991/// the declaration of the given C++ constructor ConDecl that was
992/// built from declarator D. This routine is responsible for checking
993/// that the newly-created constructor declaration is well-formed and
994/// for recording it in the C++ class. Example:
995///
996/// @code
997/// class X {
998///   X(); // X::X() will be the ConDecl.
999/// };
1000/// @endcode
1001Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
1002  assert(ConDecl && "Expected to receive a constructor declaration");
1003
1004  // Check default arguments on the constructor
1005  CheckCXXDefaultArguments(ConDecl);
1006
1007  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1008  if (!ClassDecl) {
1009    ConDecl->setInvalidDecl();
1010    return ConDecl;
1011  }
1012
1013  // Make sure this constructor is an overload of the existing
1014  // constructors.
1015  OverloadedFunctionDecl::function_iterator MatchedDecl;
1016  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
1017    Diag(ConDecl->getLocation(),
1018         diag::err_constructor_redeclared,
1019         SourceRange(ConDecl->getLocation()));
1020    Diag((*MatchedDecl)->getLocation(),
1021         diag::err_previous_declaration,
1022         SourceRange((*MatchedDecl)->getLocation()));
1023    ConDecl->setInvalidDecl();
1024    return ConDecl;
1025  }
1026
1027
1028  // C++ [class.copy]p3:
1029  //   A declaration of a constructor for a class X is ill-formed if
1030  //   its first parameter is of type (optionally cv-qualified) X and
1031  //   either there are no other parameters or else all other
1032  //   parameters have default arguments.
1033  if ((ConDecl->getNumParams() == 1) ||
1034      (ConDecl->getNumParams() > 1 &&
1035       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
1036    QualType ParamType = ConDecl->getParamDecl(0)->getType();
1037    QualType ClassTy = Context.getTagDeclType(
1038                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
1039    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1040      Diag(ConDecl->getLocation(),
1041           diag::err_constructor_byvalue_arg,
1042           SourceRange(ConDecl->getParamDecl(0)->getLocation()));
1043      ConDecl->setInvalidDecl();
1044      return ConDecl;
1045    }
1046  }
1047
1048  // Add this constructor to the set of constructors of the current
1049  // class.
1050  ClassDecl->addConstructor(Context, ConDecl);
1051  return (DeclTy *)ConDecl;
1052}
1053
1054/// ActOnDestructorDeclarator - Called by ActOnDeclarator to complete
1055/// the declaration of the given C++ @p Destructor. This routine is
1056/// responsible for recording the destructor in the C++ class, if
1057/// possible.
1058Sema::DeclTy *Sema::ActOnDestructorDeclarator(CXXDestructorDecl *Destructor) {
1059  assert(Destructor && "Expected to receive a destructor declaration");
1060
1061  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1062
1063  // Make sure we aren't redeclaring the destructor.
1064  if (CXXDestructorDecl *PrevDestructor = ClassDecl->getDestructor()) {
1065    Diag(Destructor->getLocation(), diag::err_destructor_redeclared);
1066    Diag(PrevDestructor->getLocation(),
1067         PrevDestructor->isThisDeclarationADefinition()?
1068             diag::err_previous_definition
1069           : diag::err_previous_declaration);
1070    Destructor->setInvalidDecl();
1071    return Destructor;
1072  }
1073
1074  ClassDecl->setDestructor(Destructor);
1075  return (DeclTy *)Destructor;
1076}
1077
1078//===----------------------------------------------------------------------===//
1079// Namespace Handling
1080//===----------------------------------------------------------------------===//
1081
1082/// ActOnStartNamespaceDef - This is called at the start of a namespace
1083/// definition.
1084Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1085                                           SourceLocation IdentLoc,
1086                                           IdentifierInfo *II,
1087                                           SourceLocation LBrace) {
1088  NamespaceDecl *Namespc =
1089      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1090  Namespc->setLBracLoc(LBrace);
1091
1092  Scope *DeclRegionScope = NamespcScope->getParent();
1093
1094  if (II) {
1095    // C++ [namespace.def]p2:
1096    // The identifier in an original-namespace-definition shall not have been
1097    // previously defined in the declarative region in which the
1098    // original-namespace-definition appears. The identifier in an
1099    // original-namespace-definition is the name of the namespace. Subsequently
1100    // in that declarative region, it is treated as an original-namespace-name.
1101
1102    Decl *PrevDecl =
1103        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope,
1104                   /*enableLazyBuiltinCreation=*/false);
1105
1106    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
1107      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
1108        // This is an extended namespace definition.
1109        // Attach this namespace decl to the chain of extended namespace
1110        // definitions.
1111        NamespaceDecl *NextNS = OrigNS;
1112        while (NextNS->getNextNamespace())
1113          NextNS = NextNS->getNextNamespace();
1114
1115        NextNS->setNextNamespace(Namespc);
1116        Namespc->setOriginalNamespace(OrigNS);
1117
1118        // We won't add this decl to the current scope. We want the namespace
1119        // name to return the original namespace decl during a name lookup.
1120      } else {
1121        // This is an invalid name redefinition.
1122        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
1123          Namespc->getName());
1124        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1125        Namespc->setInvalidDecl();
1126        // Continue on to push Namespc as current DeclContext and return it.
1127      }
1128    } else {
1129      // This namespace name is declared for the first time.
1130      PushOnScopeChains(Namespc, DeclRegionScope);
1131    }
1132  }
1133  else {
1134    // FIXME: Handle anonymous namespaces
1135  }
1136
1137  // Although we could have an invalid decl (i.e. the namespace name is a
1138  // redefinition), push it as current DeclContext and try to continue parsing.
1139  PushDeclContext(Namespc->getOriginalNamespace());
1140  return Namespc;
1141}
1142
1143/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1144/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1145void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1146  Decl *Dcl = static_cast<Decl *>(D);
1147  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1148  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1149  Namespc->setRBracLoc(RBrace);
1150  PopDeclContext();
1151}
1152
1153
1154/// AddCXXDirectInitializerToDecl - This action is called immediately after
1155/// ActOnDeclarator, when a C++ direct initializer is present.
1156/// e.g: "int x(1);"
1157void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1158                                         ExprTy **ExprTys, unsigned NumExprs,
1159                                         SourceLocation *CommaLocs,
1160                                         SourceLocation RParenLoc) {
1161  assert(NumExprs != 0 && ExprTys && "missing expressions");
1162  Decl *RealDecl = static_cast<Decl *>(Dcl);
1163
1164  // If there is no declaration, there was an error parsing it.  Just ignore
1165  // the initializer.
1166  if (RealDecl == 0) {
1167    for (unsigned i = 0; i != NumExprs; ++i)
1168      delete static_cast<Expr *>(ExprTys[i]);
1169    return;
1170  }
1171
1172  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1173  if (!VDecl) {
1174    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1175    RealDecl->setInvalidDecl();
1176    return;
1177  }
1178
1179  // We will treat direct-initialization as a copy-initialization:
1180  //    int x(1);  -as-> int x = 1;
1181  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1182  //
1183  // Clients that want to distinguish between the two forms, can check for
1184  // direct initializer using VarDecl::hasCXXDirectInitializer().
1185  // A major benefit is that clients that don't particularly care about which
1186  // exactly form was it (like the CodeGen) can handle both cases without
1187  // special case code.
1188
1189  // C++ 8.5p11:
1190  // The form of initialization (using parentheses or '=') is generally
1191  // insignificant, but does matter when the entity being initialized has a
1192  // class type.
1193  QualType DeclInitType = VDecl->getType();
1194  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1195    DeclInitType = Array->getElementType();
1196
1197  if (VDecl->getType()->isRecordType()) {
1198    CXXConstructorDecl *Constructor
1199      = PerformInitializationByConstructor(DeclInitType,
1200                                           (Expr **)ExprTys, NumExprs,
1201                                           VDecl->getLocation(),
1202                                           SourceRange(VDecl->getLocation(),
1203                                                       RParenLoc),
1204                                           VDecl->getName(),
1205                                           IK_Direct);
1206    if (!Constructor) {
1207      RealDecl->setInvalidDecl();
1208    }
1209
1210    // Let clients know that initialization was done with a direct
1211    // initializer.
1212    VDecl->setCXXDirectInitializer(true);
1213
1214    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1215    // the initializer.
1216    return;
1217  }
1218
1219  if (NumExprs > 1) {
1220    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
1221         SourceRange(VDecl->getLocation(), RParenLoc));
1222    RealDecl->setInvalidDecl();
1223    return;
1224  }
1225
1226  // Let clients know that initialization was done with a direct initializer.
1227  VDecl->setCXXDirectInitializer(true);
1228
1229  assert(NumExprs == 1 && "Expected 1 expression");
1230  // Set the init expression, handles conversions.
1231  AddInitializerToDecl(Dcl, ExprTys[0]);
1232}
1233
1234/// PerformInitializationByConstructor - Perform initialization by
1235/// constructor (C++ [dcl.init]p14), which may occur as part of
1236/// direct-initialization or copy-initialization. We are initializing
1237/// an object of type @p ClassType with the given arguments @p
1238/// Args. @p Loc is the location in the source code where the
1239/// initializer occurs (e.g., a declaration, member initializer,
1240/// functional cast, etc.) while @p Range covers the whole
1241/// initialization. @p InitEntity is the entity being initialized,
1242/// which may by the name of a declaration or a type. @p Kind is the
1243/// kind of initialization we're performing, which affects whether
1244/// explicit constructors will be considered. When successful, returns
1245/// the constructor that will be used to perform the initialization;
1246/// when the initialization fails, emits a diagnostic and returns
1247/// null.
1248CXXConstructorDecl *
1249Sema::PerformInitializationByConstructor(QualType ClassType,
1250                                         Expr **Args, unsigned NumArgs,
1251                                         SourceLocation Loc, SourceRange Range,
1252                                         std::string InitEntity,
1253                                         InitializationKind Kind) {
1254  const RecordType *ClassRec = ClassType->getAsRecordType();
1255  assert(ClassRec && "Can only initialize a class type here");
1256
1257  // C++ [dcl.init]p14:
1258  //
1259  //   If the initialization is direct-initialization, or if it is
1260  //   copy-initialization where the cv-unqualified version of the
1261  //   source type is the same class as, or a derived class of, the
1262  //   class of the destination, constructors are considered. The
1263  //   applicable constructors are enumerated (13.3.1.3), and the
1264  //   best one is chosen through overload resolution (13.3). The
1265  //   constructor so selected is called to initialize the object,
1266  //   with the initializer expression(s) as its argument(s). If no
1267  //   constructor applies, or the overload resolution is ambiguous,
1268  //   the initialization is ill-formed.
1269  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1270  OverloadCandidateSet CandidateSet;
1271
1272  // Add constructors to the overload set.
1273  OverloadedFunctionDecl *Constructors
1274    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1275  for (OverloadedFunctionDecl::function_iterator Con
1276         = Constructors->function_begin();
1277       Con != Constructors->function_end(); ++Con) {
1278    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1279    if ((Kind == IK_Direct) ||
1280        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1281        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1282      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1283  }
1284
1285  OverloadCandidateSet::iterator Best;
1286  switch (BestViableFunction(CandidateSet, Best)) {
1287  case OR_Success:
1288    // We found a constructor. Return it.
1289    return cast<CXXConstructorDecl>(Best->Function);
1290
1291  case OR_No_Viable_Function:
1292    if (CandidateSet.empty())
1293      Diag(Loc, diag::err_ovl_no_viable_function_in_init,
1294           InitEntity, Range);
1295    else {
1296      Diag(Loc, diag::err_ovl_no_viable_function_in_init_with_cands,
1297           InitEntity, Range);
1298      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1299    }
1300    return 0;
1301
1302  case OR_Ambiguous:
1303    Diag(Loc, diag::err_ovl_ambiguous_init,
1304         InitEntity, Range);
1305    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1306    return 0;
1307  }
1308
1309  return 0;
1310}
1311
1312/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1313/// determine whether they are reference-related,
1314/// reference-compatible, reference-compatible with added
1315/// qualification, or incompatible, for use in C++ initialization by
1316/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1317/// type, and the first type (T1) is the pointee type of the reference
1318/// type being initialized.
1319Sema::ReferenceCompareResult
1320Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1321                                   bool& DerivedToBase) {
1322  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1323  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1324
1325  T1 = Context.getCanonicalType(T1);
1326  T2 = Context.getCanonicalType(T2);
1327  QualType UnqualT1 = T1.getUnqualifiedType();
1328  QualType UnqualT2 = T2.getUnqualifiedType();
1329
1330  // C++ [dcl.init.ref]p4:
1331  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1332  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1333  //   T1 is a base class of T2.
1334  if (UnqualT1 == UnqualT2)
1335    DerivedToBase = false;
1336  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1337    DerivedToBase = true;
1338  else
1339    return Ref_Incompatible;
1340
1341  // At this point, we know that T1 and T2 are reference-related (at
1342  // least).
1343
1344  // C++ [dcl.init.ref]p4:
1345  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1346  //   reference-related to T2 and cv1 is the same cv-qualification
1347  //   as, or greater cv-qualification than, cv2. For purposes of
1348  //   overload resolution, cases for which cv1 is greater
1349  //   cv-qualification than cv2 are identified as
1350  //   reference-compatible with added qualification (see 13.3.3.2).
1351  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1352    return Ref_Compatible;
1353  else if (T1.isMoreQualifiedThan(T2))
1354    return Ref_Compatible_With_Added_Qualification;
1355  else
1356    return Ref_Related;
1357}
1358
1359/// CheckReferenceInit - Check the initialization of a reference
1360/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1361/// the initializer (either a simple initializer or an initializer
1362/// list), and DeclType is the type of the declaration. When ICS is
1363/// non-null, this routine will compute the implicit conversion
1364/// sequence according to C++ [over.ics.ref] and will not produce any
1365/// diagnostics; when ICS is null, it will emit diagnostics when any
1366/// errors are found. Either way, a return value of true indicates
1367/// that there was a failure, a return value of false indicates that
1368/// the reference initialization succeeded.
1369///
1370/// When @p SuppressUserConversions, user-defined conversions are
1371/// suppressed.
1372bool
1373Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1374                         ImplicitConversionSequence *ICS,
1375                         bool SuppressUserConversions) {
1376  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1377
1378  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1379  QualType T2 = Init->getType();
1380
1381  // Compute some basic properties of the types and the initializer.
1382  bool DerivedToBase = false;
1383  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1384  ReferenceCompareResult RefRelationship
1385    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1386
1387  // Most paths end in a failed conversion.
1388  if (ICS)
1389    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1390
1391  // C++ [dcl.init.ref]p5:
1392  //   A reference to type “cv1 T1” is initialized by an expression
1393  //   of type “cv2 T2” as follows:
1394
1395  //     -- If the initializer expression
1396
1397  bool BindsDirectly = false;
1398  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1399  //          reference-compatible with “cv2 T2,” or
1400  //
1401  // Note that the bit-field check is skipped if we are just computing
1402  // the implicit conversion sequence (C++ [over.best.ics]p2).
1403  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1404      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1405    BindsDirectly = true;
1406
1407    if (ICS) {
1408      // C++ [over.ics.ref]p1:
1409      //   When a parameter of reference type binds directly (8.5.3)
1410      //   to an argument expression, the implicit conversion sequence
1411      //   is the identity conversion, unless the argument expression
1412      //   has a type that is a derived class of the parameter type,
1413      //   in which case the implicit conversion sequence is a
1414      //   derived-to-base Conversion (13.3.3.1).
1415      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1416      ICS->Standard.First = ICK_Identity;
1417      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1418      ICS->Standard.Third = ICK_Identity;
1419      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1420      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1421      ICS->Standard.ReferenceBinding = true;
1422      ICS->Standard.DirectBinding = true;
1423
1424      // Nothing more to do: the inaccessibility/ambiguity check for
1425      // derived-to-base conversions is suppressed when we're
1426      // computing the implicit conversion sequence (C++
1427      // [over.best.ics]p2).
1428      return false;
1429    } else {
1430      // Perform the conversion.
1431      // FIXME: Binding to a subobject of the lvalue is going to require
1432      // more AST annotation than this.
1433      ImpCastExprToType(Init, T1);
1434    }
1435  }
1436
1437  //       -- has a class type (i.e., T2 is a class type) and can be
1438  //          implicitly converted to an lvalue of type “cv3 T3,”
1439  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1440  //          92) (this conversion is selected by enumerating the
1441  //          applicable conversion functions (13.3.1.6) and choosing
1442  //          the best one through overload resolution (13.3)),
1443  // FIXME: Implement this second bullet, once we have conversion
1444  //        functions. Also remember C++ [over.ics.ref]p1, second part.
1445
1446  if (BindsDirectly) {
1447    // C++ [dcl.init.ref]p4:
1448    //   [...] In all cases where the reference-related or
1449    //   reference-compatible relationship of two types is used to
1450    //   establish the validity of a reference binding, and T1 is a
1451    //   base class of T2, a program that necessitates such a binding
1452    //   is ill-formed if T1 is an inaccessible (clause 11) or
1453    //   ambiguous (10.2) base class of T2.
1454    //
1455    // Note that we only check this condition when we're allowed to
1456    // complain about errors, because we should not be checking for
1457    // ambiguity (or inaccessibility) unless the reference binding
1458    // actually happens.
1459    if (DerivedToBase)
1460      return CheckDerivedToBaseConversion(T2, T1,
1461                                          Init->getSourceRange().getBegin(),
1462                                          Init->getSourceRange());
1463    else
1464      return false;
1465  }
1466
1467  //     -- Otherwise, the reference shall be to a non-volatile const
1468  //        type (i.e., cv1 shall be const).
1469  if (T1.getCVRQualifiers() != QualType::Const) {
1470    if (!ICS)
1471      Diag(Init->getSourceRange().getBegin(),
1472           diag::err_not_reference_to_const_init,
1473           T1.getAsString(),
1474           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1475           T2.getAsString(), Init->getSourceRange());
1476    return true;
1477  }
1478
1479  //       -- If the initializer expression is an rvalue, with T2 a
1480  //          class type, and “cv1 T1” is reference-compatible with
1481  //          “cv2 T2,” the reference is bound in one of the
1482  //          following ways (the choice is implementation-defined):
1483  //
1484  //          -- The reference is bound to the object represented by
1485  //             the rvalue (see 3.10) or to a sub-object within that
1486  //             object.
1487  //
1488  //          -- A temporary of type “cv1 T2” [sic] is created, and
1489  //             a constructor is called to copy the entire rvalue
1490  //             object into the temporary. The reference is bound to
1491  //             the temporary or to a sub-object within the
1492  //             temporary.
1493  //
1494  //
1495  //          The constructor that would be used to make the copy
1496  //          shall be callable whether or not the copy is actually
1497  //          done.
1498  //
1499  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1500  // freedom, so we will always take the first option and never build
1501  // a temporary in this case. FIXME: We will, however, have to check
1502  // for the presence of a copy constructor in C++98/03 mode.
1503  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1504      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1505    if (ICS) {
1506      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1507      ICS->Standard.First = ICK_Identity;
1508      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1509      ICS->Standard.Third = ICK_Identity;
1510      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1511      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1512      ICS->Standard.ReferenceBinding = true;
1513      ICS->Standard.DirectBinding = false;
1514    } else {
1515      // FIXME: Binding to a subobject of the rvalue is going to require
1516      // more AST annotation than this.
1517      ImpCastExprToType(Init, T1);
1518    }
1519    return false;
1520  }
1521
1522  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1523  //          initialized from the initializer expression using the
1524  //          rules for a non-reference copy initialization (8.5). The
1525  //          reference is then bound to the temporary. If T1 is
1526  //          reference-related to T2, cv1 must be the same
1527  //          cv-qualification as, or greater cv-qualification than,
1528  //          cv2; otherwise, the program is ill-formed.
1529  if (RefRelationship == Ref_Related) {
1530    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1531    // we would be reference-compatible or reference-compatible with
1532    // added qualification. But that wasn't the case, so the reference
1533    // initialization fails.
1534    if (!ICS)
1535      Diag(Init->getSourceRange().getBegin(),
1536           diag::err_reference_init_drops_quals,
1537           T1.getAsString(),
1538           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1539           T2.getAsString(), Init->getSourceRange());
1540    return true;
1541  }
1542
1543  // Actually try to convert the initializer to T1.
1544  if (ICS) {
1545    /// C++ [over.ics.ref]p2:
1546    ///
1547    ///   When a parameter of reference type is not bound directly to
1548    ///   an argument expression, the conversion sequence is the one
1549    ///   required to convert the argument expression to the
1550    ///   underlying type of the reference according to
1551    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1552    ///   to copy-initializing a temporary of the underlying type with
1553    ///   the argument expression. Any difference in top-level
1554    ///   cv-qualification is subsumed by the initialization itself
1555    ///   and does not constitute a conversion.
1556    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1557    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1558  } else {
1559    return PerformImplicitConversion(Init, T1);
1560  }
1561}
1562