SemaDeclCXX.cpp revision 432780cf116423246d49f5f08384fb4a96d7a2a7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (DiagnoseIncompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                             SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  CXXRecordDecl *Class = (CXXRecordDecl*)classdecl;
387  QualType BaseType = QualType::getFromOpaquePtr(basetype);
388  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
389                                                      Virtual, Access,
390                                                      BaseType, BaseLoc))
391    return BaseSpec;
392
393  return true;
394}
395
396/// \brief Performs the actual work of attaching the given base class
397/// specifiers to a C++ class.
398bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
399                                unsigned NumBases) {
400 if (NumBases == 0)
401    return false;
402
403  // Used to keep track of which base types we have already seen, so
404  // that we can properly diagnose redundant direct base types. Note
405  // that the key is always the unqualified canonical type of the base
406  // class.
407  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
408
409  // Copy non-redundant base specifiers into permanent storage.
410  unsigned NumGoodBases = 0;
411  bool Invalid = false;
412  for (unsigned idx = 0; idx < NumBases; ++idx) {
413    QualType NewBaseType
414      = Context.getCanonicalType(Bases[idx]->getType());
415    NewBaseType = NewBaseType.getUnqualifiedType();
416
417    if (KnownBaseTypes[NewBaseType]) {
418      // C++ [class.mi]p3:
419      //   A class shall not be specified as a direct base class of a
420      //   derived class more than once.
421      Diag(Bases[idx]->getSourceRange().getBegin(),
422           diag::err_duplicate_base_class)
423        << KnownBaseTypes[NewBaseType]->getType()
424        << Bases[idx]->getSourceRange();
425
426      // Delete the duplicate base class specifier; we're going to
427      // overwrite its pointer later.
428      delete Bases[idx];
429
430      Invalid = true;
431    } else {
432      // Okay, add this new base class.
433      KnownBaseTypes[NewBaseType] = Bases[idx];
434      Bases[NumGoodBases++] = Bases[idx];
435    }
436  }
437
438  // Attach the remaining base class specifiers to the derived class.
439  Class->setBases(Bases, NumGoodBases);
440
441  // Delete the remaining (good) base class specifiers, since their
442  // data has been copied into the CXXRecordDecl.
443  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
444    delete Bases[idx];
445
446  return Invalid;
447}
448
449/// ActOnBaseSpecifiers - Attach the given base specifiers to the
450/// class, after checking whether there are any duplicate base
451/// classes.
452void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
453                               unsigned NumBases) {
454  if (!ClassDecl || !Bases || !NumBases)
455    return;
456
457  AdjustDeclIfTemplate(ClassDecl);
458  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
459                       (CXXBaseSpecifier**)(Bases), NumBases);
460}
461
462//===----------------------------------------------------------------------===//
463// C++ class member Handling
464//===----------------------------------------------------------------------===//
465
466/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
467/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
468/// bitfield width if there is one and 'InitExpr' specifies the initializer if
469/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
470/// declarators on it.
471Sema::DeclTy *
472Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
473                               ExprTy *BW, ExprTy *InitExpr,
474                               DeclTy *LastInGroup) {
475  const DeclSpec &DS = D.getDeclSpec();
476  DeclarationName Name = GetNameForDeclarator(D);
477  Expr *BitWidth = static_cast<Expr*>(BW);
478  Expr *Init = static_cast<Expr*>(InitExpr);
479  SourceLocation Loc = D.getIdentifierLoc();
480
481  bool isFunc = D.isFunctionDeclarator();
482
483  // C++ 9.2p6: A member shall not be declared to have automatic storage
484  // duration (auto, register) or with the extern storage-class-specifier.
485  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
486  // data members and cannot be applied to names declared const or static,
487  // and cannot be applied to reference members.
488  switch (DS.getStorageClassSpec()) {
489    case DeclSpec::SCS_unspecified:
490    case DeclSpec::SCS_typedef:
491    case DeclSpec::SCS_static:
492      // FALL THROUGH.
493      break;
494    case DeclSpec::SCS_mutable:
495      if (isFunc) {
496        if (DS.getStorageClassSpecLoc().isValid())
497          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
498        else
499          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
500
501        // FIXME: It would be nicer if the keyword was ignored only for this
502        // declarator. Otherwise we could get follow-up errors.
503        D.getMutableDeclSpec().ClearStorageClassSpecs();
504      } else {
505        QualType T = GetTypeForDeclarator(D, S);
506        diag::kind err = static_cast<diag::kind>(0);
507        if (T->isReferenceType())
508          err = diag::err_mutable_reference;
509        else if (T.isConstQualified())
510          err = diag::err_mutable_const;
511        if (err != 0) {
512          if (DS.getStorageClassSpecLoc().isValid())
513            Diag(DS.getStorageClassSpecLoc(), err);
514          else
515            Diag(DS.getThreadSpecLoc(), err);
516          // FIXME: It would be nicer if the keyword was ignored only for this
517          // declarator. Otherwise we could get follow-up errors.
518          D.getMutableDeclSpec().ClearStorageClassSpecs();
519        }
520      }
521      break;
522    default:
523      if (DS.getStorageClassSpecLoc().isValid())
524        Diag(DS.getStorageClassSpecLoc(),
525             diag::err_storageclass_invalid_for_member);
526      else
527        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
528      D.getMutableDeclSpec().ClearStorageClassSpecs();
529  }
530
531  if (!isFunc &&
532      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
533      D.getNumTypeObjects() == 0) {
534    // Check also for this case:
535    //
536    // typedef int f();
537    // f a;
538    //
539    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
540    isFunc = TDType->isFunctionType();
541  }
542
543  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
544                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
545                      !isFunc);
546
547  Decl *Member;
548  if (isInstField) {
549    FieldDecl *FD =
550      HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth);
551    // Refresh our notion of bitwidth.
552    BitWidth = FD->getBitWidth();
553    Member = FD;
554  } else {
555    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
556
557    // Non-instance-fields can't have a bitfield.
558    if (BitWidth) {
559      if (Member->isInvalidDecl()) {
560        // don't emit another diagnostic.
561      } else if (isa<CXXClassVarDecl>(Member)) {
562        // C++ 9.6p3: A bit-field shall not be a static member.
563        // "static member 'A' cannot be a bit-field"
564        Diag(Loc, diag::err_static_not_bitfield)
565          << Name << BitWidth->getSourceRange();
566      } else if (isa<TypedefDecl>(Member)) {
567        // "typedef member 'x' cannot be a bit-field"
568        Diag(Loc, diag::err_typedef_not_bitfield)
569          << Name << BitWidth->getSourceRange();
570      } else {
571        // A function typedef ("typedef int f(); f a;").
572        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
573        Diag(Loc, diag::err_not_integral_type_bitfield)
574          << Name << BitWidth->getSourceRange();
575      }
576
577      DeleteExpr(BitWidth);
578      BitWidth = 0;
579      Member->setInvalidDecl();
580    }
581  }
582
583  if (!Member) return LastInGroup;
584
585  assert((Name || isInstField) && "No identifier for non-field ?");
586
587  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
588  // specific methods. Use a wrapper class that can be used with all C++ class
589  // member decls.
590  CXXClassMemberWrapper(Member).setAccess(AS);
591
592  // C++ [dcl.init.aggr]p1:
593  //   An aggregate is an array or a class (clause 9) with [...] no
594  //   private or protected non-static data members (clause 11).
595  // A POD must be an aggregate.
596  if (isInstField && (AS == AS_private || AS == AS_protected)) {
597    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
598    Record->setAggregate(false);
599    Record->setPOD(false);
600  }
601
602  if (DS.isVirtualSpecified()) {
603    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
604      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
605      Member->setInvalidDecl();
606    } else {
607      cast<CXXMethodDecl>(Member)->setVirtual();
608      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
609      CurClass->setAggregate(false);
610      CurClass->setPOD(false);
611      CurClass->setPolymorphic(true);
612    }
613  }
614
615  // FIXME: The above definition of virtual is not sufficient. A function is
616  // also virtual if it overrides an already virtual function. This is important
617  // to do here because it decides the validity of a pure specifier.
618
619  if (Init) {
620    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
621    // if it declares a static member of const integral or const enumeration
622    // type.
623    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
624      // ...static member of...
625      CVD->setInit(Init);
626      // ...const integral or const enumeration type.
627      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
628          CVD->getType()->isIntegralType()) {
629        // constant-initializer
630        if (CheckForConstantInitializer(Init, CVD->getType()))
631          Member->setInvalidDecl();
632
633      } else {
634        // not const integral.
635        Diag(Loc, diag::err_member_initialization)
636          << Name << Init->getSourceRange();
637        Member->setInvalidDecl();
638      }
639
640    } else {
641      // not static member. perhaps virtual function?
642      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
643        // With declarators parsed the way they are, the parser cannot
644        // distinguish between a normal initializer and a pure-specifier.
645        // Thus this grotesque test.
646        IntegerLiteral *IL;
647        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
648            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
649          if (MD->isVirtual())
650            MD->setPure();
651          else {
652            Diag(Loc, diag::err_non_virtual_pure)
653              << Name << Init->getSourceRange();
654            Member->setInvalidDecl();
655          }
656        } else {
657          Diag(Loc, diag::err_member_function_initialization)
658            << Name << Init->getSourceRange();
659          Member->setInvalidDecl();
660        }
661      } else {
662        Diag(Loc, diag::err_member_initialization)
663          << Name << Init->getSourceRange();
664        Member->setInvalidDecl();
665      }
666    }
667  }
668
669  if (isInstField) {
670    FieldCollector->Add(cast<FieldDecl>(Member));
671    return LastInGroup;
672  }
673  return Member;
674}
675
676/// ActOnMemInitializer - Handle a C++ member initializer.
677Sema::MemInitResult
678Sema::ActOnMemInitializer(DeclTy *ConstructorD,
679                          Scope *S,
680                          IdentifierInfo *MemberOrBase,
681                          SourceLocation IdLoc,
682                          SourceLocation LParenLoc,
683                          ExprTy **Args, unsigned NumArgs,
684                          SourceLocation *CommaLocs,
685                          SourceLocation RParenLoc) {
686  CXXConstructorDecl *Constructor
687    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
688  if (!Constructor) {
689    // The user wrote a constructor initializer on a function that is
690    // not a C++ constructor. Ignore the error for now, because we may
691    // have more member initializers coming; we'll diagnose it just
692    // once in ActOnMemInitializers.
693    return true;
694  }
695
696  CXXRecordDecl *ClassDecl = Constructor->getParent();
697
698  // C++ [class.base.init]p2:
699  //   Names in a mem-initializer-id are looked up in the scope of the
700  //   constructor’s class and, if not found in that scope, are looked
701  //   up in the scope containing the constructor’s
702  //   definition. [Note: if the constructor’s class contains a member
703  //   with the same name as a direct or virtual base class of the
704  //   class, a mem-initializer-id naming the member or base class and
705  //   composed of a single identifier refers to the class member. A
706  //   mem-initializer-id for the hidden base class may be specified
707  //   using a qualified name. ]
708  // Look for a member, first.
709  FieldDecl *Member = 0;
710  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
711  if (Result.first != Result.second)
712    Member = dyn_cast<FieldDecl>(*Result.first);
713
714  // FIXME: Handle members of an anonymous union.
715
716  if (Member) {
717    // FIXME: Perform direct initialization of the member.
718    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
719  }
720
721  // It didn't name a member, so see if it names a class.
722  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
723  if (!BaseTy)
724    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
725      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
726
727  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
728  if (!BaseType->isRecordType())
729    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
730      << BaseType << SourceRange(IdLoc, RParenLoc);
731
732  // C++ [class.base.init]p2:
733  //   [...] Unless the mem-initializer-id names a nonstatic data
734  //   member of the constructor’s class or a direct or virtual base
735  //   of that class, the mem-initializer is ill-formed. A
736  //   mem-initializer-list can initialize a base class using any
737  //   name that denotes that base class type.
738
739  // First, check for a direct base class.
740  const CXXBaseSpecifier *DirectBaseSpec = 0;
741  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
742       Base != ClassDecl->bases_end(); ++Base) {
743    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
744        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
745      // We found a direct base of this type. That's what we're
746      // initializing.
747      DirectBaseSpec = &*Base;
748      break;
749    }
750  }
751
752  // Check for a virtual base class.
753  // FIXME: We might be able to short-circuit this if we know in
754  // advance that there are no virtual bases.
755  const CXXBaseSpecifier *VirtualBaseSpec = 0;
756  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
757    // We haven't found a base yet; search the class hierarchy for a
758    // virtual base class.
759    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
760                    /*DetectVirtual=*/false);
761    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
762      for (BasePaths::paths_iterator Path = Paths.begin();
763           Path != Paths.end(); ++Path) {
764        if (Path->back().Base->isVirtual()) {
765          VirtualBaseSpec = Path->back().Base;
766          break;
767        }
768      }
769    }
770  }
771
772  // C++ [base.class.init]p2:
773  //   If a mem-initializer-id is ambiguous because it designates both
774  //   a direct non-virtual base class and an inherited virtual base
775  //   class, the mem-initializer is ill-formed.
776  if (DirectBaseSpec && VirtualBaseSpec)
777    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
778      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
779
780  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
781}
782
783
784void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
785                                             DeclTy *TagDecl,
786                                             SourceLocation LBrac,
787                                             SourceLocation RBrac) {
788  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
789  ActOnFields(S, RLoc, TagDecl,
790              (DeclTy**)FieldCollector->getCurFields(),
791              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
792
793  if (!Template)
794    AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
795}
796
797/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
798/// special functions, such as the default constructor, copy
799/// constructor, or destructor, to the given C++ class (C++
800/// [special]p1).  This routine can only be executed just before the
801/// definition of the class is complete.
802void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
803  QualType ClassType = Context.getTypeDeclType(ClassDecl);
804  ClassType = Context.getCanonicalType(ClassType);
805
806  if (!ClassDecl->hasUserDeclaredConstructor()) {
807    // C++ [class.ctor]p5:
808    //   A default constructor for a class X is a constructor of class X
809    //   that can be called without an argument. If there is no
810    //   user-declared constructor for class X, a default constructor is
811    //   implicitly declared. An implicitly-declared default constructor
812    //   is an inline public member of its class.
813    DeclarationName Name
814      = Context.DeclarationNames.getCXXConstructorName(ClassType);
815    CXXConstructorDecl *DefaultCon =
816      CXXConstructorDecl::Create(Context, ClassDecl,
817                                 ClassDecl->getLocation(), Name,
818                                 Context.getFunctionType(Context.VoidTy,
819                                                         0, 0, false, 0),
820                                 /*isExplicit=*/false,
821                                 /*isInline=*/true,
822                                 /*isImplicitlyDeclared=*/true);
823    DefaultCon->setAccess(AS_public);
824    DefaultCon->setImplicit();
825    ClassDecl->addDecl(DefaultCon);
826
827    // Notify the class that we've added a constructor.
828    ClassDecl->addedConstructor(Context, DefaultCon);
829  }
830
831  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
832    // C++ [class.copy]p4:
833    //   If the class definition does not explicitly declare a copy
834    //   constructor, one is declared implicitly.
835
836    // C++ [class.copy]p5:
837    //   The implicitly-declared copy constructor for a class X will
838    //   have the form
839    //
840    //       X::X(const X&)
841    //
842    //   if
843    bool HasConstCopyConstructor = true;
844
845    //     -- each direct or virtual base class B of X has a copy
846    //        constructor whose first parameter is of type const B& or
847    //        const volatile B&, and
848    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
849         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
850      const CXXRecordDecl *BaseClassDecl
851        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
852      HasConstCopyConstructor
853        = BaseClassDecl->hasConstCopyConstructor(Context);
854    }
855
856    //     -- for all the nonstatic data members of X that are of a
857    //        class type M (or array thereof), each such class type
858    //        has a copy constructor whose first parameter is of type
859    //        const M& or const volatile M&.
860    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
861         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
862      QualType FieldType = (*Field)->getType();
863      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
864        FieldType = Array->getElementType();
865      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
866        const CXXRecordDecl *FieldClassDecl
867          = cast<CXXRecordDecl>(FieldClassType->getDecl());
868        HasConstCopyConstructor
869          = FieldClassDecl->hasConstCopyConstructor(Context);
870      }
871    }
872
873    //   Otherwise, the implicitly declared copy constructor will have
874    //   the form
875    //
876    //       X::X(X&)
877    QualType ArgType = ClassType;
878    if (HasConstCopyConstructor)
879      ArgType = ArgType.withConst();
880    ArgType = Context.getReferenceType(ArgType);
881
882    //   An implicitly-declared copy constructor is an inline public
883    //   member of its class.
884    DeclarationName Name
885      = Context.DeclarationNames.getCXXConstructorName(ClassType);
886    CXXConstructorDecl *CopyConstructor
887      = CXXConstructorDecl::Create(Context, ClassDecl,
888                                   ClassDecl->getLocation(), Name,
889                                   Context.getFunctionType(Context.VoidTy,
890                                                           &ArgType, 1,
891                                                           false, 0),
892                                   /*isExplicit=*/false,
893                                   /*isInline=*/true,
894                                   /*isImplicitlyDeclared=*/true);
895    CopyConstructor->setAccess(AS_public);
896    CopyConstructor->setImplicit();
897
898    // Add the parameter to the constructor.
899    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
900                                                 ClassDecl->getLocation(),
901                                                 /*IdentifierInfo=*/0,
902                                                 ArgType, VarDecl::None, 0);
903    CopyConstructor->setParams(Context, &FromParam, 1);
904
905    ClassDecl->addedConstructor(Context, CopyConstructor);
906    ClassDecl->addDecl(CopyConstructor);
907  }
908
909  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
910    // Note: The following rules are largely analoguous to the copy
911    // constructor rules. Note that virtual bases are not taken into account
912    // for determining the argument type of the operator. Note also that
913    // operators taking an object instead of a reference are allowed.
914    //
915    // C++ [class.copy]p10:
916    //   If the class definition does not explicitly declare a copy
917    //   assignment operator, one is declared implicitly.
918    //   The implicitly-defined copy assignment operator for a class X
919    //   will have the form
920    //
921    //       X& X::operator=(const X&)
922    //
923    //   if
924    bool HasConstCopyAssignment = true;
925
926    //       -- each direct base class B of X has a copy assignment operator
927    //          whose parameter is of type const B&, const volatile B& or B,
928    //          and
929    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
930         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
931      const CXXRecordDecl *BaseClassDecl
932        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
933      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
934    }
935
936    //       -- for all the nonstatic data members of X that are of a class
937    //          type M (or array thereof), each such class type has a copy
938    //          assignment operator whose parameter is of type const M&,
939    //          const volatile M& or M.
940    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
941         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
942      QualType FieldType = (*Field)->getType();
943      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
944        FieldType = Array->getElementType();
945      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
946        const CXXRecordDecl *FieldClassDecl
947          = cast<CXXRecordDecl>(FieldClassType->getDecl());
948        HasConstCopyAssignment
949          = FieldClassDecl->hasConstCopyAssignment(Context);
950      }
951    }
952
953    //   Otherwise, the implicitly declared copy assignment operator will
954    //   have the form
955    //
956    //       X& X::operator=(X&)
957    QualType ArgType = ClassType;
958    QualType RetType = Context.getReferenceType(ArgType);
959    if (HasConstCopyAssignment)
960      ArgType = ArgType.withConst();
961    ArgType = Context.getReferenceType(ArgType);
962
963    //   An implicitly-declared copy assignment operator is an inline public
964    //   member of its class.
965    DeclarationName Name =
966      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
967    CXXMethodDecl *CopyAssignment =
968      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
969                            Context.getFunctionType(RetType, &ArgType, 1,
970                                                    false, 0),
971                            /*isStatic=*/false, /*isInline=*/true);
972    CopyAssignment->setAccess(AS_public);
973    CopyAssignment->setImplicit();
974
975    // Add the parameter to the operator.
976    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
977                                                 ClassDecl->getLocation(),
978                                                 /*IdentifierInfo=*/0,
979                                                 ArgType, VarDecl::None, 0);
980    CopyAssignment->setParams(Context, &FromParam, 1);
981
982    // Don't call addedAssignmentOperator. There is no way to distinguish an
983    // implicit from an explicit assignment operator.
984    ClassDecl->addDecl(CopyAssignment);
985  }
986
987  if (!ClassDecl->hasUserDeclaredDestructor()) {
988    // C++ [class.dtor]p2:
989    //   If a class has no user-declared destructor, a destructor is
990    //   declared implicitly. An implicitly-declared destructor is an
991    //   inline public member of its class.
992    DeclarationName Name
993      = Context.DeclarationNames.getCXXDestructorName(ClassType);
994    CXXDestructorDecl *Destructor
995      = CXXDestructorDecl::Create(Context, ClassDecl,
996                                  ClassDecl->getLocation(), Name,
997                                  Context.getFunctionType(Context.VoidTy,
998                                                          0, 0, false, 0),
999                                  /*isInline=*/true,
1000                                  /*isImplicitlyDeclared=*/true);
1001    Destructor->setAccess(AS_public);
1002    Destructor->setImplicit();
1003    ClassDecl->addDecl(Destructor);
1004  }
1005}
1006
1007/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1008/// parsing a top-level (non-nested) C++ class, and we are now
1009/// parsing those parts of the given Method declaration that could
1010/// not be parsed earlier (C++ [class.mem]p2), such as default
1011/// arguments. This action should enter the scope of the given
1012/// Method declaration as if we had just parsed the qualified method
1013/// name. However, it should not bring the parameters into scope;
1014/// that will be performed by ActOnDelayedCXXMethodParameter.
1015void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1016  CXXScopeSpec SS;
1017  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1018  ActOnCXXEnterDeclaratorScope(S, SS);
1019}
1020
1021/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1022/// C++ method declaration. We're (re-)introducing the given
1023/// function parameter into scope for use in parsing later parts of
1024/// the method declaration. For example, we could see an
1025/// ActOnParamDefaultArgument event for this parameter.
1026void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1027  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1028
1029  // If this parameter has an unparsed default argument, clear it out
1030  // to make way for the parsed default argument.
1031  if (Param->hasUnparsedDefaultArg())
1032    Param->setDefaultArg(0);
1033
1034  S->AddDecl(Param);
1035  if (Param->getDeclName())
1036    IdResolver.AddDecl(Param);
1037}
1038
1039/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1040/// processing the delayed method declaration for Method. The method
1041/// declaration is now considered finished. There may be a separate
1042/// ActOnStartOfFunctionDef action later (not necessarily
1043/// immediately!) for this method, if it was also defined inside the
1044/// class body.
1045void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1046  FunctionDecl *Method = (FunctionDecl*)MethodD;
1047  CXXScopeSpec SS;
1048  SS.setScopeRep(Method->getDeclContext());
1049  ActOnCXXExitDeclaratorScope(S, SS);
1050
1051  // Now that we have our default arguments, check the constructor
1052  // again. It could produce additional diagnostics or affect whether
1053  // the class has implicitly-declared destructors, among other
1054  // things.
1055  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1056    if (CheckConstructor(Constructor))
1057      Constructor->setInvalidDecl();
1058  }
1059
1060  // Check the default arguments, which we may have added.
1061  if (!Method->isInvalidDecl())
1062    CheckCXXDefaultArguments(Method);
1063}
1064
1065/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1066/// the well-formedness of the constructor declarator @p D with type @p
1067/// R. If there are any errors in the declarator, this routine will
1068/// emit diagnostics and return true. Otherwise, it will return
1069/// false. Either way, the type @p R will be updated to reflect a
1070/// well-formed type for the constructor.
1071bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1072                                      FunctionDecl::StorageClass& SC) {
1073  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1074  bool isInvalid = false;
1075
1076  // C++ [class.ctor]p3:
1077  //   A constructor shall not be virtual (10.3) or static (9.4). A
1078  //   constructor can be invoked for a const, volatile or const
1079  //   volatile object. A constructor shall not be declared const,
1080  //   volatile, or const volatile (9.3.2).
1081  if (isVirtual) {
1082    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1083      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1084      << SourceRange(D.getIdentifierLoc());
1085    isInvalid = true;
1086  }
1087  if (SC == FunctionDecl::Static) {
1088    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1089      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1090      << SourceRange(D.getIdentifierLoc());
1091    isInvalid = true;
1092    SC = FunctionDecl::None;
1093  }
1094  if (D.getDeclSpec().hasTypeSpecifier()) {
1095    // Constructors don't have return types, but the parser will
1096    // happily parse something like:
1097    //
1098    //   class X {
1099    //     float X(float);
1100    //   };
1101    //
1102    // The return type will be eliminated later.
1103    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1104      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1105      << SourceRange(D.getIdentifierLoc());
1106  }
1107  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1108    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1109    if (FTI.TypeQuals & QualType::Const)
1110      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1111        << "const" << SourceRange(D.getIdentifierLoc());
1112    if (FTI.TypeQuals & QualType::Volatile)
1113      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1114        << "volatile" << SourceRange(D.getIdentifierLoc());
1115    if (FTI.TypeQuals & QualType::Restrict)
1116      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1117        << "restrict" << SourceRange(D.getIdentifierLoc());
1118  }
1119
1120  // Rebuild the function type "R" without any type qualifiers (in
1121  // case any of the errors above fired) and with "void" as the
1122  // return type, since constructors don't have return types. We
1123  // *always* have to do this, because GetTypeForDeclarator will
1124  // put in a result type of "int" when none was specified.
1125  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1126  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1127                              Proto->getNumArgs(),
1128                              Proto->isVariadic(),
1129                              0);
1130
1131  return isInvalid;
1132}
1133
1134/// CheckConstructor - Checks a fully-formed constructor for
1135/// well-formedness, issuing any diagnostics required. Returns true if
1136/// the constructor declarator is invalid.
1137bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1138  if (Constructor->isInvalidDecl())
1139    return true;
1140
1141  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1142  bool Invalid = false;
1143
1144  // C++ [class.copy]p3:
1145  //   A declaration of a constructor for a class X is ill-formed if
1146  //   its first parameter is of type (optionally cv-qualified) X and
1147  //   either there are no other parameters or else all other
1148  //   parameters have default arguments.
1149  if ((Constructor->getNumParams() == 1) ||
1150      (Constructor->getNumParams() > 1 &&
1151       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1152    QualType ParamType = Constructor->getParamDecl(0)->getType();
1153    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1154    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1155      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1156        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1157      Invalid = true;
1158    }
1159  }
1160
1161  // Notify the class that we've added a constructor.
1162  ClassDecl->addedConstructor(Context, Constructor);
1163
1164  return Invalid;
1165}
1166
1167/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1168/// the well-formednes of the destructor declarator @p D with type @p
1169/// R. If there are any errors in the declarator, this routine will
1170/// emit diagnostics and return true. Otherwise, it will return
1171/// false. Either way, the type @p R will be updated to reflect a
1172/// well-formed type for the destructor.
1173bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1174                                     FunctionDecl::StorageClass& SC) {
1175  bool isInvalid = false;
1176
1177  // C++ [class.dtor]p1:
1178  //   [...] A typedef-name that names a class is a class-name
1179  //   (7.1.3); however, a typedef-name that names a class shall not
1180  //   be used as the identifier in the declarator for a destructor
1181  //   declaration.
1182  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1183  if (DeclaratorType->getAsTypedefType()) {
1184    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1185      << DeclaratorType;
1186    isInvalid = true;
1187  }
1188
1189  // C++ [class.dtor]p2:
1190  //   A destructor is used to destroy objects of its class type. A
1191  //   destructor takes no parameters, and no return type can be
1192  //   specified for it (not even void). The address of a destructor
1193  //   shall not be taken. A destructor shall not be static. A
1194  //   destructor can be invoked for a const, volatile or const
1195  //   volatile object. A destructor shall not be declared const,
1196  //   volatile or const volatile (9.3.2).
1197  if (SC == FunctionDecl::Static) {
1198    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1199      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1200      << SourceRange(D.getIdentifierLoc());
1201    isInvalid = true;
1202    SC = FunctionDecl::None;
1203  }
1204  if (D.getDeclSpec().hasTypeSpecifier()) {
1205    // Destructors don't have return types, but the parser will
1206    // happily parse something like:
1207    //
1208    //   class X {
1209    //     float ~X();
1210    //   };
1211    //
1212    // The return type will be eliminated later.
1213    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1214      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1215      << SourceRange(D.getIdentifierLoc());
1216  }
1217  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1218    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1219    if (FTI.TypeQuals & QualType::Const)
1220      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1221        << "const" << SourceRange(D.getIdentifierLoc());
1222    if (FTI.TypeQuals & QualType::Volatile)
1223      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1224        << "volatile" << SourceRange(D.getIdentifierLoc());
1225    if (FTI.TypeQuals & QualType::Restrict)
1226      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1227        << "restrict" << SourceRange(D.getIdentifierLoc());
1228  }
1229
1230  // Make sure we don't have any parameters.
1231  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1232    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1233
1234    // Delete the parameters.
1235    D.getTypeObject(0).Fun.freeArgs();
1236  }
1237
1238  // Make sure the destructor isn't variadic.
1239  if (R->getAsFunctionProtoType()->isVariadic())
1240    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1241
1242  // Rebuild the function type "R" without any type qualifiers or
1243  // parameters (in case any of the errors above fired) and with
1244  // "void" as the return type, since destructors don't have return
1245  // types. We *always* have to do this, because GetTypeForDeclarator
1246  // will put in a result type of "int" when none was specified.
1247  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1248
1249  return isInvalid;
1250}
1251
1252/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1253/// well-formednes of the conversion function declarator @p D with
1254/// type @p R. If there are any errors in the declarator, this routine
1255/// will emit diagnostics and return true. Otherwise, it will return
1256/// false. Either way, the type @p R will be updated to reflect a
1257/// well-formed type for the conversion operator.
1258bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1259                                     FunctionDecl::StorageClass& SC) {
1260  bool isInvalid = false;
1261
1262  // C++ [class.conv.fct]p1:
1263  //   Neither parameter types nor return type can be specified. The
1264  //   type of a conversion function (8.3.5) is “function taking no
1265  //   parameter returning conversion-type-id.”
1266  if (SC == FunctionDecl::Static) {
1267    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1268      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1269      << SourceRange(D.getIdentifierLoc());
1270    isInvalid = true;
1271    SC = FunctionDecl::None;
1272  }
1273  if (D.getDeclSpec().hasTypeSpecifier()) {
1274    // Conversion functions don't have return types, but the parser will
1275    // happily parse something like:
1276    //
1277    //   class X {
1278    //     float operator bool();
1279    //   };
1280    //
1281    // The return type will be changed later anyway.
1282    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1283      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1284      << SourceRange(D.getIdentifierLoc());
1285  }
1286
1287  // Make sure we don't have any parameters.
1288  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1289    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1290
1291    // Delete the parameters.
1292    D.getTypeObject(0).Fun.freeArgs();
1293  }
1294
1295  // Make sure the conversion function isn't variadic.
1296  if (R->getAsFunctionProtoType()->isVariadic())
1297    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1298
1299  // C++ [class.conv.fct]p4:
1300  //   The conversion-type-id shall not represent a function type nor
1301  //   an array type.
1302  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1303  if (ConvType->isArrayType()) {
1304    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1305    ConvType = Context.getPointerType(ConvType);
1306  } else if (ConvType->isFunctionType()) {
1307    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1308    ConvType = Context.getPointerType(ConvType);
1309  }
1310
1311  // Rebuild the function type "R" without any parameters (in case any
1312  // of the errors above fired) and with the conversion type as the
1313  // return type.
1314  R = Context.getFunctionType(ConvType, 0, 0, false,
1315                              R->getAsFunctionProtoType()->getTypeQuals());
1316
1317  // C++0x explicit conversion operators.
1318  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1319    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1320         diag::warn_explicit_conversion_functions)
1321      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1322
1323  return isInvalid;
1324}
1325
1326/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1327/// the declaration of the given C++ conversion function. This routine
1328/// is responsible for recording the conversion function in the C++
1329/// class, if possible.
1330Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1331  assert(Conversion && "Expected to receive a conversion function declaration");
1332
1333  // Set the lexical context of this conversion function
1334  Conversion->setLexicalDeclContext(CurContext);
1335
1336  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1337
1338  // Make sure we aren't redeclaring the conversion function.
1339  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1340
1341  // C++ [class.conv.fct]p1:
1342  //   [...] A conversion function is never used to convert a
1343  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1344  //   same object type (or a reference to it), to a (possibly
1345  //   cv-qualified) base class of that type (or a reference to it),
1346  //   or to (possibly cv-qualified) void.
1347  // FIXME: Suppress this warning if the conversion function ends up
1348  // being a virtual function that overrides a virtual function in a
1349  // base class.
1350  QualType ClassType
1351    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1352  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1353    ConvType = ConvTypeRef->getPointeeType();
1354  if (ConvType->isRecordType()) {
1355    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1356    if (ConvType == ClassType)
1357      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1358        << ClassType;
1359    else if (IsDerivedFrom(ClassType, ConvType))
1360      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1361        <<  ClassType << ConvType;
1362  } else if (ConvType->isVoidType()) {
1363    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1364      << ClassType << ConvType;
1365  }
1366
1367  if (Conversion->getPreviousDeclaration()) {
1368    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1369    for (OverloadedFunctionDecl::function_iterator
1370           Conv = Conversions->function_begin(),
1371           ConvEnd = Conversions->function_end();
1372         Conv != ConvEnd; ++Conv) {
1373      if (*Conv == Conversion->getPreviousDeclaration()) {
1374        *Conv = Conversion;
1375        return (DeclTy *)Conversion;
1376      }
1377    }
1378    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1379  } else
1380    ClassDecl->addConversionFunction(Context, Conversion);
1381
1382  return (DeclTy *)Conversion;
1383}
1384
1385//===----------------------------------------------------------------------===//
1386// Namespace Handling
1387//===----------------------------------------------------------------------===//
1388
1389/// ActOnStartNamespaceDef - This is called at the start of a namespace
1390/// definition.
1391Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1392                                           SourceLocation IdentLoc,
1393                                           IdentifierInfo *II,
1394                                           SourceLocation LBrace) {
1395  NamespaceDecl *Namespc =
1396      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1397  Namespc->setLBracLoc(LBrace);
1398
1399  Scope *DeclRegionScope = NamespcScope->getParent();
1400
1401  if (II) {
1402    // C++ [namespace.def]p2:
1403    // The identifier in an original-namespace-definition shall not have been
1404    // previously defined in the declarative region in which the
1405    // original-namespace-definition appears. The identifier in an
1406    // original-namespace-definition is the name of the namespace. Subsequently
1407    // in that declarative region, it is treated as an original-namespace-name.
1408
1409    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1410                                     true);
1411
1412    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1413      // This is an extended namespace definition.
1414      // Attach this namespace decl to the chain of extended namespace
1415      // definitions.
1416      OrigNS->setNextNamespace(Namespc);
1417      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1418
1419      // Remove the previous declaration from the scope.
1420      if (DeclRegionScope->isDeclScope(OrigNS)) {
1421        IdResolver.RemoveDecl(OrigNS);
1422        DeclRegionScope->RemoveDecl(OrigNS);
1423      }
1424    } else if (PrevDecl) {
1425      // This is an invalid name redefinition.
1426      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1427       << Namespc->getDeclName();
1428      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1429      Namespc->setInvalidDecl();
1430      // Continue on to push Namespc as current DeclContext and return it.
1431    }
1432
1433    PushOnScopeChains(Namespc, DeclRegionScope);
1434  } else {
1435    // FIXME: Handle anonymous namespaces
1436  }
1437
1438  // Although we could have an invalid decl (i.e. the namespace name is a
1439  // redefinition), push it as current DeclContext and try to continue parsing.
1440  // FIXME: We should be able to push Namespc here, so that the
1441  // each DeclContext for the namespace has the declarations
1442  // that showed up in that particular namespace definition.
1443  PushDeclContext(NamespcScope, Namespc);
1444  return Namespc;
1445}
1446
1447/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1448/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1449void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1450  Decl *Dcl = static_cast<Decl *>(D);
1451  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1452  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1453  Namespc->setRBracLoc(RBrace);
1454  PopDeclContext();
1455}
1456
1457Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1458                                        SourceLocation UsingLoc,
1459                                        SourceLocation NamespcLoc,
1460                                        const CXXScopeSpec &SS,
1461                                        SourceLocation IdentLoc,
1462                                        IdentifierInfo *NamespcName,
1463                                        AttributeList *AttrList) {
1464  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1465  assert(NamespcName && "Invalid NamespcName.");
1466  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1467  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1468
1469  UsingDirectiveDecl *UDir = 0;
1470
1471  // Lookup namespace name.
1472  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1473                                    LookupNamespaceName, false);
1474  if (R.isAmbiguous()) {
1475    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1476    return 0;
1477  }
1478  if (NamedDecl *NS = R) {
1479    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1480    // C++ [namespace.udir]p1:
1481    //   A using-directive specifies that the names in the nominated
1482    //   namespace can be used in the scope in which the
1483    //   using-directive appears after the using-directive. During
1484    //   unqualified name lookup (3.4.1), the names appear as if they
1485    //   were declared in the nearest enclosing namespace which
1486    //   contains both the using-directive and the nominated
1487    //   namespace. [Note: in this context, “contains” means “contains
1488    //   directly or indirectly”. ]
1489
1490    // Find enclosing context containing both using-directive and
1491    // nominated namespace.
1492    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1493    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1494      CommonAncestor = CommonAncestor->getParent();
1495
1496    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1497                                      NamespcLoc, IdentLoc,
1498                                      cast<NamespaceDecl>(NS),
1499                                      CommonAncestor);
1500    PushUsingDirective(S, UDir);
1501  } else {
1502    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1503  }
1504
1505  // FIXME: We ignore attributes for now.
1506  delete AttrList;
1507  return UDir;
1508}
1509
1510void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1511  // If scope has associated entity, then using directive is at namespace
1512  // or translation unit scope. We add UsingDirectiveDecls, into
1513  // it's lookup structure.
1514  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1515    Ctx->addDecl(UDir);
1516  else
1517    // Otherwise it is block-sope. using-directives will affect lookup
1518    // only to the end of scope.
1519    S->PushUsingDirective(UDir);
1520}
1521
1522/// AddCXXDirectInitializerToDecl - This action is called immediately after
1523/// ActOnDeclarator, when a C++ direct initializer is present.
1524/// e.g: "int x(1);"
1525void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1526                                         ExprTy **ExprTys, unsigned NumExprs,
1527                                         SourceLocation *CommaLocs,
1528                                         SourceLocation RParenLoc) {
1529  assert(NumExprs != 0 && ExprTys && "missing expressions");
1530  Decl *RealDecl = static_cast<Decl *>(Dcl);
1531
1532  // If there is no declaration, there was an error parsing it.  Just ignore
1533  // the initializer.
1534  if (RealDecl == 0) {
1535    for (unsigned i = 0; i != NumExprs; ++i)
1536      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1537    return;
1538  }
1539
1540  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1541  if (!VDecl) {
1542    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1543    RealDecl->setInvalidDecl();
1544    return;
1545  }
1546
1547  // We will treat direct-initialization as a copy-initialization:
1548  //    int x(1);  -as-> int x = 1;
1549  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1550  //
1551  // Clients that want to distinguish between the two forms, can check for
1552  // direct initializer using VarDecl::hasCXXDirectInitializer().
1553  // A major benefit is that clients that don't particularly care about which
1554  // exactly form was it (like the CodeGen) can handle both cases without
1555  // special case code.
1556
1557  // C++ 8.5p11:
1558  // The form of initialization (using parentheses or '=') is generally
1559  // insignificant, but does matter when the entity being initialized has a
1560  // class type.
1561  QualType DeclInitType = VDecl->getType();
1562  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1563    DeclInitType = Array->getElementType();
1564
1565  if (VDecl->getType()->isRecordType()) {
1566    CXXConstructorDecl *Constructor
1567      = PerformInitializationByConstructor(DeclInitType,
1568                                           (Expr **)ExprTys, NumExprs,
1569                                           VDecl->getLocation(),
1570                                           SourceRange(VDecl->getLocation(),
1571                                                       RParenLoc),
1572                                           VDecl->getDeclName(),
1573                                           IK_Direct);
1574    if (!Constructor) {
1575      RealDecl->setInvalidDecl();
1576    }
1577
1578    // Let clients know that initialization was done with a direct
1579    // initializer.
1580    VDecl->setCXXDirectInitializer(true);
1581
1582    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1583    // the initializer.
1584    return;
1585  }
1586
1587  if (NumExprs > 1) {
1588    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1589      << SourceRange(VDecl->getLocation(), RParenLoc);
1590    RealDecl->setInvalidDecl();
1591    return;
1592  }
1593
1594  // Let clients know that initialization was done with a direct initializer.
1595  VDecl->setCXXDirectInitializer(true);
1596
1597  assert(NumExprs == 1 && "Expected 1 expression");
1598  // Set the init expression, handles conversions.
1599  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1600}
1601
1602/// PerformInitializationByConstructor - Perform initialization by
1603/// constructor (C++ [dcl.init]p14), which may occur as part of
1604/// direct-initialization or copy-initialization. We are initializing
1605/// an object of type @p ClassType with the given arguments @p
1606/// Args. @p Loc is the location in the source code where the
1607/// initializer occurs (e.g., a declaration, member initializer,
1608/// functional cast, etc.) while @p Range covers the whole
1609/// initialization. @p InitEntity is the entity being initialized,
1610/// which may by the name of a declaration or a type. @p Kind is the
1611/// kind of initialization we're performing, which affects whether
1612/// explicit constructors will be considered. When successful, returns
1613/// the constructor that will be used to perform the initialization;
1614/// when the initialization fails, emits a diagnostic and returns
1615/// null.
1616CXXConstructorDecl *
1617Sema::PerformInitializationByConstructor(QualType ClassType,
1618                                         Expr **Args, unsigned NumArgs,
1619                                         SourceLocation Loc, SourceRange Range,
1620                                         DeclarationName InitEntity,
1621                                         InitializationKind Kind) {
1622  const RecordType *ClassRec = ClassType->getAsRecordType();
1623  assert(ClassRec && "Can only initialize a class type here");
1624
1625  // C++ [dcl.init]p14:
1626  //
1627  //   If the initialization is direct-initialization, or if it is
1628  //   copy-initialization where the cv-unqualified version of the
1629  //   source type is the same class as, or a derived class of, the
1630  //   class of the destination, constructors are considered. The
1631  //   applicable constructors are enumerated (13.3.1.3), and the
1632  //   best one is chosen through overload resolution (13.3). The
1633  //   constructor so selected is called to initialize the object,
1634  //   with the initializer expression(s) as its argument(s). If no
1635  //   constructor applies, or the overload resolution is ambiguous,
1636  //   the initialization is ill-formed.
1637  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1638  OverloadCandidateSet CandidateSet;
1639
1640  // Add constructors to the overload set.
1641  DeclarationName ConstructorName
1642    = Context.DeclarationNames.getCXXConstructorName(
1643                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1644  DeclContext::lookup_const_iterator Con, ConEnd;
1645  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1646       Con != ConEnd; ++Con) {
1647    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1648    if ((Kind == IK_Direct) ||
1649        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1650        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1651      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1652  }
1653
1654  // FIXME: When we decide not to synthesize the implicitly-declared
1655  // constructors, we'll need to make them appear here.
1656
1657  OverloadCandidateSet::iterator Best;
1658  switch (BestViableFunction(CandidateSet, Best)) {
1659  case OR_Success:
1660    // We found a constructor. Return it.
1661    return cast<CXXConstructorDecl>(Best->Function);
1662
1663  case OR_No_Viable_Function:
1664    if (InitEntity)
1665      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1666        << InitEntity << Range;
1667    else
1668      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1669        << ClassType << Range;
1670    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1671    return 0;
1672
1673  case OR_Ambiguous:
1674    if (InitEntity)
1675      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1676    else
1677      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1678    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1679    return 0;
1680
1681  case OR_Deleted:
1682    if (InitEntity)
1683      Diag(Loc, diag::err_ovl_deleted_init)
1684        << Best->Function->isDeleted()
1685        << InitEntity << Range;
1686    else
1687      Diag(Loc, diag::err_ovl_deleted_init)
1688        << Best->Function->isDeleted()
1689        << InitEntity << Range;
1690    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1691    return 0;
1692  }
1693
1694  return 0;
1695}
1696
1697/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1698/// determine whether they are reference-related,
1699/// reference-compatible, reference-compatible with added
1700/// qualification, or incompatible, for use in C++ initialization by
1701/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1702/// type, and the first type (T1) is the pointee type of the reference
1703/// type being initialized.
1704Sema::ReferenceCompareResult
1705Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1706                                   bool& DerivedToBase) {
1707  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1708  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1709
1710  T1 = Context.getCanonicalType(T1);
1711  T2 = Context.getCanonicalType(T2);
1712  QualType UnqualT1 = T1.getUnqualifiedType();
1713  QualType UnqualT2 = T2.getUnqualifiedType();
1714
1715  // C++ [dcl.init.ref]p4:
1716  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1717  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1718  //   T1 is a base class of T2.
1719  if (UnqualT1 == UnqualT2)
1720    DerivedToBase = false;
1721  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1722    DerivedToBase = true;
1723  else
1724    return Ref_Incompatible;
1725
1726  // At this point, we know that T1 and T2 are reference-related (at
1727  // least).
1728
1729  // C++ [dcl.init.ref]p4:
1730  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1731  //   reference-related to T2 and cv1 is the same cv-qualification
1732  //   as, or greater cv-qualification than, cv2. For purposes of
1733  //   overload resolution, cases for which cv1 is greater
1734  //   cv-qualification than cv2 are identified as
1735  //   reference-compatible with added qualification (see 13.3.3.2).
1736  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1737    return Ref_Compatible;
1738  else if (T1.isMoreQualifiedThan(T2))
1739    return Ref_Compatible_With_Added_Qualification;
1740  else
1741    return Ref_Related;
1742}
1743
1744/// CheckReferenceInit - Check the initialization of a reference
1745/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1746/// the initializer (either a simple initializer or an initializer
1747/// list), and DeclType is the type of the declaration. When ICS is
1748/// non-null, this routine will compute the implicit conversion
1749/// sequence according to C++ [over.ics.ref] and will not produce any
1750/// diagnostics; when ICS is null, it will emit diagnostics when any
1751/// errors are found. Either way, a return value of true indicates
1752/// that there was a failure, a return value of false indicates that
1753/// the reference initialization succeeded.
1754///
1755/// When @p SuppressUserConversions, user-defined conversions are
1756/// suppressed.
1757/// When @p AllowExplicit, we also permit explicit user-defined
1758/// conversion functions.
1759bool
1760Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1761                         ImplicitConversionSequence *ICS,
1762                         bool SuppressUserConversions,
1763                         bool AllowExplicit) {
1764  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1765
1766  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1767  QualType T2 = Init->getType();
1768
1769  // If the initializer is the address of an overloaded function, try
1770  // to resolve the overloaded function. If all goes well, T2 is the
1771  // type of the resulting function.
1772  if (T2->isOverloadType()) {
1773    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1774                                                          ICS != 0);
1775    if (Fn) {
1776      // Since we're performing this reference-initialization for
1777      // real, update the initializer with the resulting function.
1778      if (!ICS) {
1779        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1780          return true;
1781
1782        FixOverloadedFunctionReference(Init, Fn);
1783      }
1784
1785      T2 = Fn->getType();
1786    }
1787  }
1788
1789  // Compute some basic properties of the types and the initializer.
1790  bool DerivedToBase = false;
1791  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1792  ReferenceCompareResult RefRelationship
1793    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1794
1795  // Most paths end in a failed conversion.
1796  if (ICS)
1797    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1798
1799  // C++ [dcl.init.ref]p5:
1800  //   A reference to type “cv1 T1” is initialized by an expression
1801  //   of type “cv2 T2” as follows:
1802
1803  //     -- If the initializer expression
1804
1805  bool BindsDirectly = false;
1806  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1807  //          reference-compatible with “cv2 T2,” or
1808  //
1809  // Note that the bit-field check is skipped if we are just computing
1810  // the implicit conversion sequence (C++ [over.best.ics]p2).
1811  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1812      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1813    BindsDirectly = true;
1814
1815    if (ICS) {
1816      // C++ [over.ics.ref]p1:
1817      //   When a parameter of reference type binds directly (8.5.3)
1818      //   to an argument expression, the implicit conversion sequence
1819      //   is the identity conversion, unless the argument expression
1820      //   has a type that is a derived class of the parameter type,
1821      //   in which case the implicit conversion sequence is a
1822      //   derived-to-base Conversion (13.3.3.1).
1823      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1824      ICS->Standard.First = ICK_Identity;
1825      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1826      ICS->Standard.Third = ICK_Identity;
1827      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1828      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1829      ICS->Standard.ReferenceBinding = true;
1830      ICS->Standard.DirectBinding = true;
1831
1832      // Nothing more to do: the inaccessibility/ambiguity check for
1833      // derived-to-base conversions is suppressed when we're
1834      // computing the implicit conversion sequence (C++
1835      // [over.best.ics]p2).
1836      return false;
1837    } else {
1838      // Perform the conversion.
1839      // FIXME: Binding to a subobject of the lvalue is going to require
1840      // more AST annotation than this.
1841      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1842    }
1843  }
1844
1845  //       -- has a class type (i.e., T2 is a class type) and can be
1846  //          implicitly converted to an lvalue of type “cv3 T3,”
1847  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1848  //          92) (this conversion is selected by enumerating the
1849  //          applicable conversion functions (13.3.1.6) and choosing
1850  //          the best one through overload resolution (13.3)),
1851  if (!SuppressUserConversions && T2->isRecordType()) {
1852    // FIXME: Look for conversions in base classes!
1853    CXXRecordDecl *T2RecordDecl
1854      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1855
1856    OverloadCandidateSet CandidateSet;
1857    OverloadedFunctionDecl *Conversions
1858      = T2RecordDecl->getConversionFunctions();
1859    for (OverloadedFunctionDecl::function_iterator Func
1860           = Conversions->function_begin();
1861         Func != Conversions->function_end(); ++Func) {
1862      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1863
1864      // If the conversion function doesn't return a reference type,
1865      // it can't be considered for this conversion.
1866      // FIXME: This will change when we support rvalue references.
1867      if (Conv->getConversionType()->isReferenceType() &&
1868          (AllowExplicit || !Conv->isExplicit()))
1869        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1870    }
1871
1872    OverloadCandidateSet::iterator Best;
1873    switch (BestViableFunction(CandidateSet, Best)) {
1874    case OR_Success:
1875      // This is a direct binding.
1876      BindsDirectly = true;
1877
1878      if (ICS) {
1879        // C++ [over.ics.ref]p1:
1880        //
1881        //   [...] If the parameter binds directly to the result of
1882        //   applying a conversion function to the argument
1883        //   expression, the implicit conversion sequence is a
1884        //   user-defined conversion sequence (13.3.3.1.2), with the
1885        //   second standard conversion sequence either an identity
1886        //   conversion or, if the conversion function returns an
1887        //   entity of a type that is a derived class of the parameter
1888        //   type, a derived-to-base Conversion.
1889        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1890        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1891        ICS->UserDefined.After = Best->FinalConversion;
1892        ICS->UserDefined.ConversionFunction = Best->Function;
1893        assert(ICS->UserDefined.After.ReferenceBinding &&
1894               ICS->UserDefined.After.DirectBinding &&
1895               "Expected a direct reference binding!");
1896        return false;
1897      } else {
1898        // Perform the conversion.
1899        // FIXME: Binding to a subobject of the lvalue is going to require
1900        // more AST annotation than this.
1901        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1902      }
1903      break;
1904
1905    case OR_Ambiguous:
1906      assert(false && "Ambiguous reference binding conversions not implemented.");
1907      return true;
1908
1909    case OR_No_Viable_Function:
1910    case OR_Deleted:
1911      // There was no suitable conversion, or we found a deleted
1912      // conversion; continue with other checks.
1913      break;
1914    }
1915  }
1916
1917  if (BindsDirectly) {
1918    // C++ [dcl.init.ref]p4:
1919    //   [...] In all cases where the reference-related or
1920    //   reference-compatible relationship of two types is used to
1921    //   establish the validity of a reference binding, and T1 is a
1922    //   base class of T2, a program that necessitates such a binding
1923    //   is ill-formed if T1 is an inaccessible (clause 11) or
1924    //   ambiguous (10.2) base class of T2.
1925    //
1926    // Note that we only check this condition when we're allowed to
1927    // complain about errors, because we should not be checking for
1928    // ambiguity (or inaccessibility) unless the reference binding
1929    // actually happens.
1930    if (DerivedToBase)
1931      return CheckDerivedToBaseConversion(T2, T1,
1932                                          Init->getSourceRange().getBegin(),
1933                                          Init->getSourceRange());
1934    else
1935      return false;
1936  }
1937
1938  //     -- Otherwise, the reference shall be to a non-volatile const
1939  //        type (i.e., cv1 shall be const).
1940  if (T1.getCVRQualifiers() != QualType::Const) {
1941    if (!ICS)
1942      Diag(Init->getSourceRange().getBegin(),
1943           diag::err_not_reference_to_const_init)
1944        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1945        << T2 << Init->getSourceRange();
1946    return true;
1947  }
1948
1949  //       -- If the initializer expression is an rvalue, with T2 a
1950  //          class type, and “cv1 T1” is reference-compatible with
1951  //          “cv2 T2,” the reference is bound in one of the
1952  //          following ways (the choice is implementation-defined):
1953  //
1954  //          -- The reference is bound to the object represented by
1955  //             the rvalue (see 3.10) or to a sub-object within that
1956  //             object.
1957  //
1958  //          -- A temporary of type “cv1 T2” [sic] is created, and
1959  //             a constructor is called to copy the entire rvalue
1960  //             object into the temporary. The reference is bound to
1961  //             the temporary or to a sub-object within the
1962  //             temporary.
1963  //
1964  //          The constructor that would be used to make the copy
1965  //          shall be callable whether or not the copy is actually
1966  //          done.
1967  //
1968  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1969  // freedom, so we will always take the first option and never build
1970  // a temporary in this case. FIXME: We will, however, have to check
1971  // for the presence of a copy constructor in C++98/03 mode.
1972  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1973      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1974    if (ICS) {
1975      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1976      ICS->Standard.First = ICK_Identity;
1977      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1978      ICS->Standard.Third = ICK_Identity;
1979      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1980      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1981      ICS->Standard.ReferenceBinding = true;
1982      ICS->Standard.DirectBinding = false;
1983    } else {
1984      // FIXME: Binding to a subobject of the rvalue is going to require
1985      // more AST annotation than this.
1986      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1987    }
1988    return false;
1989  }
1990
1991  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1992  //          initialized from the initializer expression using the
1993  //          rules for a non-reference copy initialization (8.5). The
1994  //          reference is then bound to the temporary. If T1 is
1995  //          reference-related to T2, cv1 must be the same
1996  //          cv-qualification as, or greater cv-qualification than,
1997  //          cv2; otherwise, the program is ill-formed.
1998  if (RefRelationship == Ref_Related) {
1999    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2000    // we would be reference-compatible or reference-compatible with
2001    // added qualification. But that wasn't the case, so the reference
2002    // initialization fails.
2003    if (!ICS)
2004      Diag(Init->getSourceRange().getBegin(),
2005           diag::err_reference_init_drops_quals)
2006        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2007        << T2 << Init->getSourceRange();
2008    return true;
2009  }
2010
2011  // If at least one of the types is a class type, the types are not
2012  // related, and we aren't allowed any user conversions, the
2013  // reference binding fails. This case is important for breaking
2014  // recursion, since TryImplicitConversion below will attempt to
2015  // create a temporary through the use of a copy constructor.
2016  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2017      (T1->isRecordType() || T2->isRecordType())) {
2018    if (!ICS)
2019      Diag(Init->getSourceRange().getBegin(),
2020           diag::err_typecheck_convert_incompatible)
2021        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2022    return true;
2023  }
2024
2025  // Actually try to convert the initializer to T1.
2026  if (ICS) {
2027    /// C++ [over.ics.ref]p2:
2028    ///
2029    ///   When a parameter of reference type is not bound directly to
2030    ///   an argument expression, the conversion sequence is the one
2031    ///   required to convert the argument expression to the
2032    ///   underlying type of the reference according to
2033    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2034    ///   to copy-initializing a temporary of the underlying type with
2035    ///   the argument expression. Any difference in top-level
2036    ///   cv-qualification is subsumed by the initialization itself
2037    ///   and does not constitute a conversion.
2038    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2039    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2040  } else {
2041    return PerformImplicitConversion(Init, T1, "initializing");
2042  }
2043}
2044
2045/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2046/// of this overloaded operator is well-formed. If so, returns false;
2047/// otherwise, emits appropriate diagnostics and returns true.
2048bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2049  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2050         "Expected an overloaded operator declaration");
2051
2052  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2053
2054  // C++ [over.oper]p5:
2055  //   The allocation and deallocation functions, operator new,
2056  //   operator new[], operator delete and operator delete[], are
2057  //   described completely in 3.7.3. The attributes and restrictions
2058  //   found in the rest of this subclause do not apply to them unless
2059  //   explicitly stated in 3.7.3.
2060  // FIXME: Write a separate routine for checking this. For now, just
2061  // allow it.
2062  if (Op == OO_New || Op == OO_Array_New ||
2063      Op == OO_Delete || Op == OO_Array_Delete)
2064    return false;
2065
2066  // C++ [over.oper]p6:
2067  //   An operator function shall either be a non-static member
2068  //   function or be a non-member function and have at least one
2069  //   parameter whose type is a class, a reference to a class, an
2070  //   enumeration, or a reference to an enumeration.
2071  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2072    if (MethodDecl->isStatic())
2073      return Diag(FnDecl->getLocation(),
2074                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2075  } else {
2076    bool ClassOrEnumParam = false;
2077    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2078                                   ParamEnd = FnDecl->param_end();
2079         Param != ParamEnd; ++Param) {
2080      QualType ParamType = (*Param)->getType().getNonReferenceType();
2081      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2082        ClassOrEnumParam = true;
2083        break;
2084      }
2085    }
2086
2087    if (!ClassOrEnumParam)
2088      return Diag(FnDecl->getLocation(),
2089                  diag::err_operator_overload_needs_class_or_enum)
2090        << FnDecl->getDeclName();
2091  }
2092
2093  // C++ [over.oper]p8:
2094  //   An operator function cannot have default arguments (8.3.6),
2095  //   except where explicitly stated below.
2096  //
2097  // Only the function-call operator allows default arguments
2098  // (C++ [over.call]p1).
2099  if (Op != OO_Call) {
2100    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2101         Param != FnDecl->param_end(); ++Param) {
2102      if ((*Param)->hasUnparsedDefaultArg())
2103        return Diag((*Param)->getLocation(),
2104                    diag::err_operator_overload_default_arg)
2105          << FnDecl->getDeclName();
2106      else if (Expr *DefArg = (*Param)->getDefaultArg())
2107        return Diag((*Param)->getLocation(),
2108                    diag::err_operator_overload_default_arg)
2109          << FnDecl->getDeclName() << DefArg->getSourceRange();
2110    }
2111  }
2112
2113  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2114    { false, false, false }
2115#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2116    , { Unary, Binary, MemberOnly }
2117#include "clang/Basic/OperatorKinds.def"
2118  };
2119
2120  bool CanBeUnaryOperator = OperatorUses[Op][0];
2121  bool CanBeBinaryOperator = OperatorUses[Op][1];
2122  bool MustBeMemberOperator = OperatorUses[Op][2];
2123
2124  // C++ [over.oper]p8:
2125  //   [...] Operator functions cannot have more or fewer parameters
2126  //   than the number required for the corresponding operator, as
2127  //   described in the rest of this subclause.
2128  unsigned NumParams = FnDecl->getNumParams()
2129                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2130  if (Op != OO_Call &&
2131      ((NumParams == 1 && !CanBeUnaryOperator) ||
2132       (NumParams == 2 && !CanBeBinaryOperator) ||
2133       (NumParams < 1) || (NumParams > 2))) {
2134    // We have the wrong number of parameters.
2135    unsigned ErrorKind;
2136    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2137      ErrorKind = 2;  // 2 -> unary or binary.
2138    } else if (CanBeUnaryOperator) {
2139      ErrorKind = 0;  // 0 -> unary
2140    } else {
2141      assert(CanBeBinaryOperator &&
2142             "All non-call overloaded operators are unary or binary!");
2143      ErrorKind = 1;  // 1 -> binary
2144    }
2145
2146    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2147      << FnDecl->getDeclName() << NumParams << ErrorKind;
2148  }
2149
2150  // Overloaded operators other than operator() cannot be variadic.
2151  if (Op != OO_Call &&
2152      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2153    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2154      << FnDecl->getDeclName();
2155  }
2156
2157  // Some operators must be non-static member functions.
2158  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2159    return Diag(FnDecl->getLocation(),
2160                diag::err_operator_overload_must_be_member)
2161      << FnDecl->getDeclName();
2162  }
2163
2164  // C++ [over.inc]p1:
2165  //   The user-defined function called operator++ implements the
2166  //   prefix and postfix ++ operator. If this function is a member
2167  //   function with no parameters, or a non-member function with one
2168  //   parameter of class or enumeration type, it defines the prefix
2169  //   increment operator ++ for objects of that type. If the function
2170  //   is a member function with one parameter (which shall be of type
2171  //   int) or a non-member function with two parameters (the second
2172  //   of which shall be of type int), it defines the postfix
2173  //   increment operator ++ for objects of that type.
2174  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2175    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2176    bool ParamIsInt = false;
2177    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2178      ParamIsInt = BT->getKind() == BuiltinType::Int;
2179
2180    if (!ParamIsInt)
2181      return Diag(LastParam->getLocation(),
2182                  diag::err_operator_overload_post_incdec_must_be_int)
2183        << LastParam->getType() << (Op == OO_MinusMinus);
2184  }
2185
2186  // Notify the class if it got an assignment operator.
2187  if (Op == OO_Equal) {
2188    // Would have returned earlier otherwise.
2189    assert(isa<CXXMethodDecl>(FnDecl) &&
2190      "Overloaded = not member, but not filtered.");
2191    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2192    Method->getParent()->addedAssignmentOperator(Context, Method);
2193  }
2194
2195  return false;
2196}
2197
2198/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2199/// linkage specification, including the language and (if present)
2200/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2201/// the location of the language string literal, which is provided
2202/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2203/// the '{' brace. Otherwise, this linkage specification does not
2204/// have any braces.
2205Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2206                                                   SourceLocation ExternLoc,
2207                                                   SourceLocation LangLoc,
2208                                                   const char *Lang,
2209                                                   unsigned StrSize,
2210                                                   SourceLocation LBraceLoc) {
2211  LinkageSpecDecl::LanguageIDs Language;
2212  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2213    Language = LinkageSpecDecl::lang_c;
2214  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2215    Language = LinkageSpecDecl::lang_cxx;
2216  else {
2217    Diag(LangLoc, diag::err_bad_language);
2218    return 0;
2219  }
2220
2221  // FIXME: Add all the various semantics of linkage specifications
2222
2223  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2224                                               LangLoc, Language,
2225                                               LBraceLoc.isValid());
2226  CurContext->addDecl(D);
2227  PushDeclContext(S, D);
2228  return D;
2229}
2230
2231/// ActOnFinishLinkageSpecification - Completely the definition of
2232/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2233/// valid, it's the position of the closing '}' brace in a linkage
2234/// specification that uses braces.
2235Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2236                                                    DeclTy *LinkageSpec,
2237                                                    SourceLocation RBraceLoc) {
2238  if (LinkageSpec)
2239    PopDeclContext();
2240  return LinkageSpec;
2241}
2242
2243/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2244/// handler.
2245Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2246{
2247  QualType ExDeclType = GetTypeForDeclarator(D, S);
2248  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2249
2250  bool Invalid = false;
2251
2252  // Arrays and functions decay.
2253  if (ExDeclType->isArrayType())
2254    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2255  else if (ExDeclType->isFunctionType())
2256    ExDeclType = Context.getPointerType(ExDeclType);
2257
2258  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2259  // The exception-declaration shall not denote a pointer or reference to an
2260  // incomplete type, other than [cv] void*.
2261  QualType BaseType = ExDeclType;
2262  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2263  unsigned DK = diag::err_catch_incomplete;
2264  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2265    BaseType = Ptr->getPointeeType();
2266    Mode = 1;
2267    DK = diag::err_catch_incomplete_ptr;
2268  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2269    BaseType = Ref->getPointeeType();
2270    Mode = 2;
2271    DK = diag::err_catch_incomplete_ref;
2272  }
2273  if ((Mode == 0 || !BaseType->isVoidType()) &&
2274      DiagnoseIncompleteType(Begin, BaseType, DK))
2275    Invalid = true;
2276
2277  // FIXME: Need to test for ability to copy-construct and destroy the
2278  // exception variable.
2279  // FIXME: Need to check for abstract classes.
2280
2281  IdentifierInfo *II = D.getIdentifier();
2282  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2283    // The scope should be freshly made just for us. There is just no way
2284    // it contains any previous declaration.
2285    assert(!S->isDeclScope(PrevDecl));
2286    if (PrevDecl->isTemplateParameter()) {
2287      // Maybe we will complain about the shadowed template parameter.
2288      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2289
2290    }
2291  }
2292
2293  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2294                                    II, ExDeclType, VarDecl::None, Begin);
2295  if (D.getInvalidType() || Invalid)
2296    ExDecl->setInvalidDecl();
2297
2298  if (D.getCXXScopeSpec().isSet()) {
2299    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2300      << D.getCXXScopeSpec().getRange();
2301    ExDecl->setInvalidDecl();
2302  }
2303
2304  // Add the exception declaration into this scope.
2305  S->AddDecl(ExDecl);
2306  if (II)
2307    IdResolver.AddDecl(ExDecl);
2308
2309  ProcessDeclAttributes(ExDecl, D);
2310  return ExDecl;
2311}
2312