SemaDeclCXX.cpp revision 4355a39424035ba0bcdfa3f89bda6eff5ec6de3b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc)
108{
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
258    ParmVarDecl *OldParam = Old->getParamDecl(p);
259    ParmVarDecl *NewParam = New->getParamDecl(p);
260
261    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
262      Diag(NewParam->getLocation(),
263           diag::err_param_default_argument_redefinition)
264        << NewParam->getDefaultArg()->getSourceRange();
265      Diag(OldParam->getLocation(), diag::note_previous_definition);
266      Invalid = true;
267    } else if (OldParam->getDefaultArg()) {
268      // Merge the old default argument into the new parameter
269      NewParam->setDefaultArg(OldParam->getDefaultArg());
270    }
271  }
272
273  if (CheckEquivalentExceptionSpec(
274          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
275          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
276    Invalid = true;
277  }
278
279  return Invalid;
280}
281
282/// CheckCXXDefaultArguments - Verify that the default arguments for a
283/// function declaration are well-formed according to C++
284/// [dcl.fct.default].
285void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
286  unsigned NumParams = FD->getNumParams();
287  unsigned p;
288
289  // Find first parameter with a default argument
290  for (p = 0; p < NumParams; ++p) {
291    ParmVarDecl *Param = FD->getParamDecl(p);
292    if (Param->hasDefaultArg())
293      break;
294  }
295
296  // C++ [dcl.fct.default]p4:
297  //   In a given function declaration, all parameters
298  //   subsequent to a parameter with a default argument shall
299  //   have default arguments supplied in this or previous
300  //   declarations. A default argument shall not be redefined
301  //   by a later declaration (not even to the same value).
302  unsigned LastMissingDefaultArg = 0;
303  for(; p < NumParams; ++p) {
304    ParmVarDecl *Param = FD->getParamDecl(p);
305    if (!Param->hasDefaultArg()) {
306      if (Param->isInvalidDecl())
307        /* We already complained about this parameter. */;
308      else if (Param->getIdentifier())
309        Diag(Param->getLocation(),
310             diag::err_param_default_argument_missing_name)
311          << Param->getIdentifier();
312      else
313        Diag(Param->getLocation(),
314             diag::err_param_default_argument_missing);
315
316      LastMissingDefaultArg = p;
317    }
318  }
319
320  if (LastMissingDefaultArg > 0) {
321    // Some default arguments were missing. Clear out all of the
322    // default arguments up to (and including) the last missing
323    // default argument, so that we leave the function parameters
324    // in a semantically valid state.
325    for (p = 0; p <= LastMissingDefaultArg; ++p) {
326      ParmVarDecl *Param = FD->getParamDecl(p);
327      if (Param->hasDefaultArg()) {
328        if (!Param->hasUnparsedDefaultArg())
329          Param->getDefaultArg()->Destroy(Context);
330        Param->setDefaultArg(0);
331      }
332    }
333  }
334}
335
336/// isCurrentClassName - Determine whether the identifier II is the
337/// name of the class type currently being defined. In the case of
338/// nested classes, this will only return true if II is the name of
339/// the innermost class.
340bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
341                              const CXXScopeSpec *SS) {
342  CXXRecordDecl *CurDecl;
343  if (SS && SS->isSet() && !SS->isInvalid()) {
344    DeclContext *DC = computeDeclContext(*SS, true);
345    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
346  } else
347    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
348
349  if (CurDecl)
350    return &II == CurDecl->getIdentifier();
351  else
352    return false;
353}
354
355/// \brief Check the validity of a C++ base class specifier.
356///
357/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
358/// and returns NULL otherwise.
359CXXBaseSpecifier *
360Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
361                         SourceRange SpecifierRange,
362                         bool Virtual, AccessSpecifier Access,
363                         QualType BaseType,
364                         SourceLocation BaseLoc) {
365  // C++ [class.union]p1:
366  //   A union shall not have base classes.
367  if (Class->isUnion()) {
368    Diag(Class->getLocation(), diag::err_base_clause_on_union)
369      << SpecifierRange;
370    return 0;
371  }
372
373  if (BaseType->isDependentType())
374    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
375                                Class->getTagKind() == RecordDecl::TK_class,
376                                Access, BaseType);
377
378  // Base specifiers must be record types.
379  if (!BaseType->isRecordType()) {
380    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
381    return 0;
382  }
383
384  // C++ [class.union]p1:
385  //   A union shall not be used as a base class.
386  if (BaseType->isUnionType()) {
387    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
388    return 0;
389  }
390
391  // C++ [class.derived]p2:
392  //   The class-name in a base-specifier shall not be an incompletely
393  //   defined class.
394  if (RequireCompleteType(BaseLoc, BaseType,
395                          PDiag(diag::err_incomplete_base_class)
396                            << SpecifierRange))
397    return 0;
398
399  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
400  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
401  assert(BaseDecl && "Record type has no declaration");
402  BaseDecl = BaseDecl->getDefinition(Context);
403  assert(BaseDecl && "Base type is not incomplete, but has no definition");
404  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
405  assert(CXXBaseDecl && "Base type is not a C++ type");
406  if (!CXXBaseDecl->isEmpty())
407    Class->setEmpty(false);
408  if (CXXBaseDecl->isPolymorphic())
409    Class->setPolymorphic(true);
410
411  // C++ [dcl.init.aggr]p1:
412  //   An aggregate is [...] a class with [...] no base classes [...].
413  Class->setAggregate(false);
414  Class->setPOD(false);
415
416  if (Virtual) {
417    // C++ [class.ctor]p5:
418    //   A constructor is trivial if its class has no virtual base classes.
419    Class->setHasTrivialConstructor(false);
420
421    // C++ [class.copy]p6:
422    //   A copy constructor is trivial if its class has no virtual base classes.
423    Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if its class has no virtual
427    //   base classes.
428    Class->setHasTrivialCopyAssignment(false);
429
430    // C++0x [meta.unary.prop] is_empty:
431    //    T is a class type, but not a union type, with ... no virtual base
432    //    classes
433    Class->setEmpty(false);
434  } else {
435    // C++ [class.ctor]p5:
436    //   A constructor is trivial if all the direct base classes of its
437    //   class have trivial constructors.
438    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
439      Class->setHasTrivialConstructor(false);
440
441    // C++ [class.copy]p6:
442    //   A copy constructor is trivial if all the direct base classes of its
443    //   class have trivial copy constructors.
444    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
445      Class->setHasTrivialCopyConstructor(false);
446
447    // C++ [class.copy]p11:
448    //   A copy assignment operator is trivial if all the direct base classes
449    //   of its class have trivial copy assignment operators.
450    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
451      Class->setHasTrivialCopyAssignment(false);
452  }
453
454  // C++ [class.ctor]p3:
455  //   A destructor is trivial if all the direct base classes of its class
456  //   have trivial destructors.
457  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
458    Class->setHasTrivialDestructor(false);
459
460  // Create the base specifier.
461  // FIXME: Allocate via ASTContext?
462  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                              Class->getTagKind() == RecordDecl::TK_class,
464                              Access, BaseType);
465}
466
467/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
468/// one entry in the base class list of a class specifier, for
469/// example:
470///    class foo : public bar, virtual private baz {
471/// 'public bar' and 'virtual private baz' are each base-specifiers.
472Sema::BaseResult
473Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
474                         bool Virtual, AccessSpecifier Access,
475                         TypeTy *basetype, SourceLocation BaseLoc) {
476  if (!classdecl)
477    return true;
478
479  AdjustDeclIfTemplate(classdecl);
480  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
481  QualType BaseType = GetTypeFromParser(basetype);
482  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
483                                                      Virtual, Access,
484                                                      BaseType, BaseLoc))
485    return BaseSpec;
486
487  return true;
488}
489
490/// \brief Performs the actual work of attaching the given base class
491/// specifiers to a C++ class.
492bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
493                                unsigned NumBases) {
494 if (NumBases == 0)
495    return false;
496
497  // Used to keep track of which base types we have already seen, so
498  // that we can properly diagnose redundant direct base types. Note
499  // that the key is always the unqualified canonical type of the base
500  // class.
501  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
502
503  // Copy non-redundant base specifiers into permanent storage.
504  unsigned NumGoodBases = 0;
505  bool Invalid = false;
506  for (unsigned idx = 0; idx < NumBases; ++idx) {
507    QualType NewBaseType
508      = Context.getCanonicalType(Bases[idx]->getType());
509    NewBaseType = NewBaseType.getUnqualifiedType();
510
511    if (KnownBaseTypes[NewBaseType]) {
512      // C++ [class.mi]p3:
513      //   A class shall not be specified as a direct base class of a
514      //   derived class more than once.
515      Diag(Bases[idx]->getSourceRange().getBegin(),
516           diag::err_duplicate_base_class)
517        << KnownBaseTypes[NewBaseType]->getType()
518        << Bases[idx]->getSourceRange();
519
520      // Delete the duplicate base class specifier; we're going to
521      // overwrite its pointer later.
522      Context.Deallocate(Bases[idx]);
523
524      Invalid = true;
525    } else {
526      // Okay, add this new base class.
527      KnownBaseTypes[NewBaseType] = Bases[idx];
528      Bases[NumGoodBases++] = Bases[idx];
529    }
530  }
531
532  // Attach the remaining base class specifiers to the derived class.
533  Class->setBases(Context, Bases, NumGoodBases);
534
535  // Delete the remaining (good) base class specifiers, since their
536  // data has been copied into the CXXRecordDecl.
537  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
538    Context.Deallocate(Bases[idx]);
539
540  return Invalid;
541}
542
543/// ActOnBaseSpecifiers - Attach the given base specifiers to the
544/// class, after checking whether there are any duplicate base
545/// classes.
546void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
547                               unsigned NumBases) {
548  if (!ClassDecl || !Bases || !NumBases)
549    return;
550
551  AdjustDeclIfTemplate(ClassDecl);
552  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
553                       (CXXBaseSpecifier**)(Bases), NumBases);
554}
555
556//===----------------------------------------------------------------------===//
557// C++ class member Handling
558//===----------------------------------------------------------------------===//
559
560/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
561/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
562/// bitfield width if there is one and 'InitExpr' specifies the initializer if
563/// any.
564Sema::DeclPtrTy
565Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
566                               MultiTemplateParamsArg TemplateParameterLists,
567                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
568  const DeclSpec &DS = D.getDeclSpec();
569  DeclarationName Name = GetNameForDeclarator(D);
570  Expr *BitWidth = static_cast<Expr*>(BW);
571  Expr *Init = static_cast<Expr*>(InitExpr);
572  SourceLocation Loc = D.getIdentifierLoc();
573
574  bool isFunc = D.isFunctionDeclarator();
575
576  assert(!DS.isFriendSpecified());
577
578  // C++ 9.2p6: A member shall not be declared to have automatic storage
579  // duration (auto, register) or with the extern storage-class-specifier.
580  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
581  // data members and cannot be applied to names declared const or static,
582  // and cannot be applied to reference members.
583  switch (DS.getStorageClassSpec()) {
584    case DeclSpec::SCS_unspecified:
585    case DeclSpec::SCS_typedef:
586    case DeclSpec::SCS_static:
587      // FALL THROUGH.
588      break;
589    case DeclSpec::SCS_mutable:
590      if (isFunc) {
591        if (DS.getStorageClassSpecLoc().isValid())
592          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
593        else
594          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
595
596        // FIXME: It would be nicer if the keyword was ignored only for this
597        // declarator. Otherwise we could get follow-up errors.
598        D.getMutableDeclSpec().ClearStorageClassSpecs();
599      } else {
600        QualType T = GetTypeForDeclarator(D, S);
601        diag::kind err = static_cast<diag::kind>(0);
602        if (T->isReferenceType())
603          err = diag::err_mutable_reference;
604        else if (T.isConstQualified())
605          err = diag::err_mutable_const;
606        if (err != 0) {
607          if (DS.getStorageClassSpecLoc().isValid())
608            Diag(DS.getStorageClassSpecLoc(), err);
609          else
610            Diag(DS.getThreadSpecLoc(), err);
611          // FIXME: It would be nicer if the keyword was ignored only for this
612          // declarator. Otherwise we could get follow-up errors.
613          D.getMutableDeclSpec().ClearStorageClassSpecs();
614        }
615      }
616      break;
617    default:
618      if (DS.getStorageClassSpecLoc().isValid())
619        Diag(DS.getStorageClassSpecLoc(),
620             diag::err_storageclass_invalid_for_member);
621      else
622        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
623      D.getMutableDeclSpec().ClearStorageClassSpecs();
624  }
625
626  if (!isFunc &&
627      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
628      D.getNumTypeObjects() == 0) {
629    // Check also for this case:
630    //
631    // typedef int f();
632    // f a;
633    //
634    QualType TDType = GetTypeFromParser(DS.getTypeRep());
635    isFunc = TDType->isFunctionType();
636  }
637
638  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
639                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
640                      !isFunc);
641
642  Decl *Member;
643  if (isInstField) {
644    // FIXME: Check for template parameters!
645    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
646                         AS);
647    assert(Member && "HandleField never returns null");
648  } else {
649    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
650               .getAs<Decl>();
651    if (!Member) {
652      if (BitWidth) DeleteExpr(BitWidth);
653      return DeclPtrTy();
654    }
655
656    // Non-instance-fields can't have a bitfield.
657    if (BitWidth) {
658      if (Member->isInvalidDecl()) {
659        // don't emit another diagnostic.
660      } else if (isa<VarDecl>(Member)) {
661        // C++ 9.6p3: A bit-field shall not be a static member.
662        // "static member 'A' cannot be a bit-field"
663        Diag(Loc, diag::err_static_not_bitfield)
664          << Name << BitWidth->getSourceRange();
665      } else if (isa<TypedefDecl>(Member)) {
666        // "typedef member 'x' cannot be a bit-field"
667        Diag(Loc, diag::err_typedef_not_bitfield)
668          << Name << BitWidth->getSourceRange();
669      } else {
670        // A function typedef ("typedef int f(); f a;").
671        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
672        Diag(Loc, diag::err_not_integral_type_bitfield)
673          << Name << cast<ValueDecl>(Member)->getType()
674          << BitWidth->getSourceRange();
675      }
676
677      DeleteExpr(BitWidth);
678      BitWidth = 0;
679      Member->setInvalidDecl();
680    }
681
682    Member->setAccess(AS);
683
684    // If we have declared a member function template, set the access of the
685    // templated declaration as well.
686    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
687      FunTmpl->getTemplatedDecl()->setAccess(AS);
688  }
689
690  assert((Name || isInstField) && "No identifier for non-field ?");
691
692  if (Init)
693    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
694  if (Deleted) // FIXME: Source location is not very good.
695    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
696
697  if (isInstField) {
698    FieldCollector->Add(cast<FieldDecl>(Member));
699    return DeclPtrTy();
700  }
701  return DeclPtrTy::make(Member);
702}
703
704/// ActOnMemInitializer - Handle a C++ member initializer.
705Sema::MemInitResult
706Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
707                          Scope *S,
708                          const CXXScopeSpec &SS,
709                          IdentifierInfo *MemberOrBase,
710                          TypeTy *TemplateTypeTy,
711                          SourceLocation IdLoc,
712                          SourceLocation LParenLoc,
713                          ExprTy **Args, unsigned NumArgs,
714                          SourceLocation *CommaLocs,
715                          SourceLocation RParenLoc) {
716  if (!ConstructorD)
717    return true;
718
719  AdjustDeclIfTemplate(ConstructorD);
720
721  CXXConstructorDecl *Constructor
722    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
723  if (!Constructor) {
724    // The user wrote a constructor initializer on a function that is
725    // not a C++ constructor. Ignore the error for now, because we may
726    // have more member initializers coming; we'll diagnose it just
727    // once in ActOnMemInitializers.
728    return true;
729  }
730
731  CXXRecordDecl *ClassDecl = Constructor->getParent();
732
733  // C++ [class.base.init]p2:
734  //   Names in a mem-initializer-id are looked up in the scope of the
735  //   constructor’s class and, if not found in that scope, are looked
736  //   up in the scope containing the constructor’s
737  //   definition. [Note: if the constructor’s class contains a member
738  //   with the same name as a direct or virtual base class of the
739  //   class, a mem-initializer-id naming the member or base class and
740  //   composed of a single identifier refers to the class member. A
741  //   mem-initializer-id for the hidden base class may be specified
742  //   using a qualified name. ]
743  if (!SS.getScopeRep() && !TemplateTypeTy) {
744    // Look for a member, first.
745    FieldDecl *Member = 0;
746    DeclContext::lookup_result Result
747      = ClassDecl->lookup(MemberOrBase);
748    if (Result.first != Result.second)
749      Member = dyn_cast<FieldDecl>(*Result.first);
750
751    // FIXME: Handle members of an anonymous union.
752
753    if (Member)
754      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
755                                    RParenLoc);
756  }
757  // It didn't name a member, so see if it names a class.
758  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
759                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
760  if (!BaseTy)
761    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763
764  QualType BaseType = GetTypeFromParser(BaseTy);
765
766  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
767                              RParenLoc, ClassDecl);
768}
769
770Sema::MemInitResult
771Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
772                             unsigned NumArgs, SourceLocation IdLoc,
773                             SourceLocation RParenLoc) {
774  bool HasDependentArg = false;
775  for (unsigned i = 0; i < NumArgs; i++)
776    HasDependentArg |= Args[i]->isTypeDependent();
777
778  CXXConstructorDecl *C = 0;
779  QualType FieldType = Member->getType();
780  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781    FieldType = Array->getElementType();
782  if (FieldType->isDependentType()) {
783    // Can't check init for dependent type.
784  } else if (FieldType->getAs<RecordType>()) {
785    if (!HasDependentArg)
786      C = PerformInitializationByConstructor(
787            FieldType, (Expr **)Args, NumArgs, IdLoc,
788            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
789  } else if (NumArgs != 1) {
790    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
791                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
792  } else if (!HasDependentArg) {
793    Expr *NewExp = (Expr*)Args[0];
794    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
795      return true;
796    Args[0] = NewExp;
797  }
798  // FIXME: Perform direct initialization of the member.
799  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
800                                                  NumArgs, C, IdLoc, RParenLoc);
801}
802
803Sema::MemInitResult
804Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
805                           unsigned NumArgs, SourceLocation IdLoc,
806                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
807  bool HasDependentArg = false;
808  for (unsigned i = 0; i < NumArgs; i++)
809    HasDependentArg |= Args[i]->isTypeDependent();
810
811  if (!BaseType->isDependentType()) {
812    if (!BaseType->isRecordType())
813      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
814        << BaseType << SourceRange(IdLoc, RParenLoc);
815
816    // C++ [class.base.init]p2:
817    //   [...] Unless the mem-initializer-id names a nonstatic data
818    //   member of the constructor’s class or a direct or virtual base
819    //   of that class, the mem-initializer is ill-formed. A
820    //   mem-initializer-list can initialize a base class using any
821    //   name that denotes that base class type.
822
823    // First, check for a direct base class.
824    const CXXBaseSpecifier *DirectBaseSpec = 0;
825    for (CXXRecordDecl::base_class_const_iterator Base =
826         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
827      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
828          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
829        // We found a direct base of this type. That's what we're
830        // initializing.
831        DirectBaseSpec = &*Base;
832        break;
833      }
834    }
835
836    // Check for a virtual base class.
837    // FIXME: We might be able to short-circuit this if we know in advance that
838    // there are no virtual bases.
839    const CXXBaseSpecifier *VirtualBaseSpec = 0;
840    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
841      // We haven't found a base yet; search the class hierarchy for a
842      // virtual base class.
843      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
844                      /*DetectVirtual=*/false);
845      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
846        for (BasePaths::paths_iterator Path = Paths.begin();
847             Path != Paths.end(); ++Path) {
848          if (Path->back().Base->isVirtual()) {
849            VirtualBaseSpec = Path->back().Base;
850            break;
851          }
852        }
853      }
854    }
855
856    // C++ [base.class.init]p2:
857    //   If a mem-initializer-id is ambiguous because it designates both
858    //   a direct non-virtual base class and an inherited virtual base
859    //   class, the mem-initializer is ill-formed.
860    if (DirectBaseSpec && VirtualBaseSpec)
861      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
862        << BaseType << SourceRange(IdLoc, RParenLoc);
863    // C++ [base.class.init]p2:
864    // Unless the mem-initializer-id names a nonstatic data membeer of the
865    // constructor's class ot a direst or virtual base of that class, the
866    // mem-initializer is ill-formed.
867    if (!DirectBaseSpec && !VirtualBaseSpec)
868      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
869      << BaseType << ClassDecl->getNameAsCString()
870      << SourceRange(IdLoc, RParenLoc);
871  }
872
873  CXXConstructorDecl *C = 0;
874  if (!BaseType->isDependentType() && !HasDependentArg) {
875    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
876                                            Context.getCanonicalType(BaseType));
877    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
878                                           IdLoc, SourceRange(IdLoc, RParenLoc),
879                                           Name, IK_Direct);
880  }
881
882  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
883                                                  NumArgs, C, IdLoc, RParenLoc);
884}
885
886void
887Sema::BuildBaseOrMemberInitializers(ASTContext &C,
888                                 CXXConstructorDecl *Constructor,
889                                 CXXBaseOrMemberInitializer **Initializers,
890                                 unsigned NumInitializers
891                                 ) {
892  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
893  llvm::SmallVector<FieldDecl *, 4>Members;
894
895  Constructor->setBaseOrMemberInitializers(C,
896                                           Initializers, NumInitializers,
897                                           Bases, Members);
898  for (unsigned int i = 0; i < Bases.size(); i++)
899    Diag(Bases[i]->getSourceRange().getBegin(),
900         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
901  for (unsigned int i = 0; i < Members.size(); i++)
902    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
903          << 1 << Members[i]->getType();
904}
905
906static void *GetKeyForTopLevelField(FieldDecl *Field) {
907  // For anonymous unions, use the class declaration as the key.
908  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
909    if (RT->getDecl()->isAnonymousStructOrUnion())
910      return static_cast<void *>(RT->getDecl());
911  }
912  return static_cast<void *>(Field);
913}
914
915static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
916                             bool MemberMaybeAnon=false) {
917  // For fields injected into the class via declaration of an anonymous union,
918  // use its anonymous union class declaration as the unique key.
919  if (FieldDecl *Field = Member->getMember()) {
920    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
921    // data member of the class. Data member used in the initializer list is
922    // in AnonUnionMember field.
923    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
924      Field = Member->getAnonUnionMember();
925    if (Field->getDeclContext()->isRecord()) {
926      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
927      if (RD->isAnonymousStructOrUnion())
928        return static_cast<void *>(RD);
929    }
930    return static_cast<void *>(Field);
931  }
932  return static_cast<RecordType *>(Member->getBaseClass());
933}
934
935void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
936                                SourceLocation ColonLoc,
937                                MemInitTy **MemInits, unsigned NumMemInits) {
938  if (!ConstructorDecl)
939    return;
940
941  AdjustDeclIfTemplate(ConstructorDecl);
942
943  CXXConstructorDecl *Constructor
944    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
945
946  if (!Constructor) {
947    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
948    return;
949  }
950
951  if (!Constructor->isDependentContext()) {
952    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
953    bool err = false;
954    for (unsigned i = 0; i < NumMemInits; i++) {
955      CXXBaseOrMemberInitializer *Member =
956        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
957      void *KeyToMember = GetKeyForMember(Member);
958      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
959      if (!PrevMember) {
960        PrevMember = Member;
961        continue;
962      }
963      if (FieldDecl *Field = Member->getMember())
964        Diag(Member->getSourceLocation(),
965             diag::error_multiple_mem_initialization)
966        << Field->getNameAsString();
967      else {
968        Type *BaseClass = Member->getBaseClass();
969        assert(BaseClass && "ActOnMemInitializers - neither field or base");
970        Diag(Member->getSourceLocation(),
971             diag::error_multiple_base_initialization)
972          << BaseClass->getDesugaredType(true);
973      }
974      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
975        << 0;
976      err = true;
977    }
978
979    if (err)
980      return;
981  }
982
983  BuildBaseOrMemberInitializers(Context, Constructor,
984                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
985                      NumMemInits);
986
987  if (Constructor->isDependentContext())
988    return;
989
990  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
991      Diagnostic::Ignored &&
992      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
993      Diagnostic::Ignored)
994    return;
995
996  // Also issue warning if order of ctor-initializer list does not match order
997  // of 1) base class declarations and 2) order of non-static data members.
998  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
999
1000  CXXRecordDecl *ClassDecl
1001    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1002  // Push virtual bases before others.
1003  for (CXXRecordDecl::base_class_iterator VBase =
1004       ClassDecl->vbases_begin(),
1005       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1006    AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
1007
1008  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1009       E = ClassDecl->bases_end(); Base != E; ++Base) {
1010    // Virtuals are alread in the virtual base list and are constructed
1011    // first.
1012    if (Base->isVirtual())
1013      continue;
1014    AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
1015  }
1016
1017  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1018       E = ClassDecl->field_end(); Field != E; ++Field)
1019    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1020
1021  int Last = AllBaseOrMembers.size();
1022  int curIndex = 0;
1023  CXXBaseOrMemberInitializer *PrevMember = 0;
1024  for (unsigned i = 0; i < NumMemInits; i++) {
1025    CXXBaseOrMemberInitializer *Member =
1026      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1027    void *MemberInCtorList = GetKeyForMember(Member, true);
1028
1029    for (; curIndex < Last; curIndex++)
1030      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1031        break;
1032    if (curIndex == Last) {
1033      assert(PrevMember && "Member not in member list?!");
1034      // Initializer as specified in ctor-initializer list is out of order.
1035      // Issue a warning diagnostic.
1036      if (PrevMember->isBaseInitializer()) {
1037        // Diagnostics is for an initialized base class.
1038        Type *BaseClass = PrevMember->getBaseClass();
1039        Diag(PrevMember->getSourceLocation(),
1040             diag::warn_base_initialized)
1041              << BaseClass->getDesugaredType(true);
1042      } else {
1043        FieldDecl *Field = PrevMember->getMember();
1044        Diag(PrevMember->getSourceLocation(),
1045             diag::warn_field_initialized)
1046          << Field->getNameAsString();
1047      }
1048      // Also the note!
1049      if (FieldDecl *Field = Member->getMember())
1050        Diag(Member->getSourceLocation(),
1051             diag::note_fieldorbase_initialized_here) << 0
1052          << Field->getNameAsString();
1053      else {
1054        Type *BaseClass = Member->getBaseClass();
1055        Diag(Member->getSourceLocation(),
1056             diag::note_fieldorbase_initialized_here) << 1
1057          << BaseClass->getDesugaredType(true);
1058      }
1059      for (curIndex = 0; curIndex < Last; curIndex++)
1060        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1061          break;
1062    }
1063    PrevMember = Member;
1064  }
1065}
1066
1067void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1068  if (!CDtorDecl)
1069    return;
1070
1071  AdjustDeclIfTemplate(CDtorDecl);
1072
1073  if (CXXConstructorDecl *Constructor
1074      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1075    BuildBaseOrMemberInitializers(Context,
1076                                     Constructor,
1077                                     (CXXBaseOrMemberInitializer **)0, 0);
1078}
1079
1080namespace {
1081  /// PureVirtualMethodCollector - traverses a class and its superclasses
1082  /// and determines if it has any pure virtual methods.
1083  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1084    ASTContext &Context;
1085
1086  public:
1087    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1088
1089  private:
1090    MethodList Methods;
1091
1092    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1093
1094  public:
1095    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1096      : Context(Ctx) {
1097
1098      MethodList List;
1099      Collect(RD, List);
1100
1101      // Copy the temporary list to methods, and make sure to ignore any
1102      // null entries.
1103      for (size_t i = 0, e = List.size(); i != e; ++i) {
1104        if (List[i])
1105          Methods.push_back(List[i]);
1106      }
1107    }
1108
1109    bool empty() const { return Methods.empty(); }
1110
1111    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1112    MethodList::const_iterator methods_end() { return Methods.end(); }
1113  };
1114
1115  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1116                                           MethodList& Methods) {
1117    // First, collect the pure virtual methods for the base classes.
1118    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1119         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1120      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1121        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1122        if (BaseDecl && BaseDecl->isAbstract())
1123          Collect(BaseDecl, Methods);
1124      }
1125    }
1126
1127    // Next, zero out any pure virtual methods that this class overrides.
1128    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1129
1130    MethodSetTy OverriddenMethods;
1131    size_t MethodsSize = Methods.size();
1132
1133    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1134         i != e; ++i) {
1135      // Traverse the record, looking for methods.
1136      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1137        // If the method is pure virtual, add it to the methods vector.
1138        if (MD->isPure()) {
1139          Methods.push_back(MD);
1140          continue;
1141        }
1142
1143        // Otherwise, record all the overridden methods in our set.
1144        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1145             E = MD->end_overridden_methods(); I != E; ++I) {
1146          // Keep track of the overridden methods.
1147          OverriddenMethods.insert(*I);
1148        }
1149      }
1150    }
1151
1152    // Now go through the methods and zero out all the ones we know are
1153    // overridden.
1154    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1155      if (OverriddenMethods.count(Methods[i]))
1156        Methods[i] = 0;
1157    }
1158
1159  }
1160}
1161
1162
1163bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1164                                  unsigned DiagID, AbstractDiagSelID SelID,
1165                                  const CXXRecordDecl *CurrentRD) {
1166  if (SelID == -1)
1167    return RequireNonAbstractType(Loc, T,
1168                                  PDiag(DiagID), CurrentRD);
1169  else
1170    return RequireNonAbstractType(Loc, T,
1171                                  PDiag(DiagID) << SelID, CurrentRD);
1172}
1173
1174bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1175                                  const PartialDiagnostic &PD,
1176                                  const CXXRecordDecl *CurrentRD) {
1177  if (!getLangOptions().CPlusPlus)
1178    return false;
1179
1180  if (const ArrayType *AT = Context.getAsArrayType(T))
1181    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1182                                  CurrentRD);
1183
1184  if (const PointerType *PT = T->getAs<PointerType>()) {
1185    // Find the innermost pointer type.
1186    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1187      PT = T;
1188
1189    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1190      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1191  }
1192
1193  const RecordType *RT = T->getAs<RecordType>();
1194  if (!RT)
1195    return false;
1196
1197  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1198  if (!RD)
1199    return false;
1200
1201  if (CurrentRD && CurrentRD != RD)
1202    return false;
1203
1204  if (!RD->isAbstract())
1205    return false;
1206
1207  Diag(Loc, PD) << RD->getDeclName();
1208
1209  // Check if we've already emitted the list of pure virtual functions for this
1210  // class.
1211  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1212    return true;
1213
1214  PureVirtualMethodCollector Collector(Context, RD);
1215
1216  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1217       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1218    const CXXMethodDecl *MD = *I;
1219
1220    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1221      MD->getDeclName();
1222  }
1223
1224  if (!PureVirtualClassDiagSet)
1225    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1226  PureVirtualClassDiagSet->insert(RD);
1227
1228  return true;
1229}
1230
1231namespace {
1232  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1233    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1234    Sema &SemaRef;
1235    CXXRecordDecl *AbstractClass;
1236
1237    bool VisitDeclContext(const DeclContext *DC) {
1238      bool Invalid = false;
1239
1240      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1241           E = DC->decls_end(); I != E; ++I)
1242        Invalid |= Visit(*I);
1243
1244      return Invalid;
1245    }
1246
1247  public:
1248    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1249      : SemaRef(SemaRef), AbstractClass(ac) {
1250        Visit(SemaRef.Context.getTranslationUnitDecl());
1251    }
1252
1253    bool VisitFunctionDecl(const FunctionDecl *FD) {
1254      if (FD->isThisDeclarationADefinition()) {
1255        // No need to do the check if we're in a definition, because it requires
1256        // that the return/param types are complete.
1257        // because that requires
1258        return VisitDeclContext(FD);
1259      }
1260
1261      // Check the return type.
1262      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1263      bool Invalid =
1264        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1265                                       diag::err_abstract_type_in_decl,
1266                                       Sema::AbstractReturnType,
1267                                       AbstractClass);
1268
1269      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1270           E = FD->param_end(); I != E; ++I) {
1271        const ParmVarDecl *VD = *I;
1272        Invalid |=
1273          SemaRef.RequireNonAbstractType(VD->getLocation(),
1274                                         VD->getOriginalType(),
1275                                         diag::err_abstract_type_in_decl,
1276                                         Sema::AbstractParamType,
1277                                         AbstractClass);
1278      }
1279
1280      return Invalid;
1281    }
1282
1283    bool VisitDecl(const Decl* D) {
1284      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1285        return VisitDeclContext(DC);
1286
1287      return false;
1288    }
1289  };
1290}
1291
1292void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1293                                             DeclPtrTy TagDecl,
1294                                             SourceLocation LBrac,
1295                                             SourceLocation RBrac) {
1296  if (!TagDecl)
1297    return;
1298
1299  AdjustDeclIfTemplate(TagDecl);
1300  ActOnFields(S, RLoc, TagDecl,
1301              (DeclPtrTy*)FieldCollector->getCurFields(),
1302              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1303
1304  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1305  if (!RD->isAbstract()) {
1306    // Collect all the pure virtual methods and see if this is an abstract
1307    // class after all.
1308    PureVirtualMethodCollector Collector(Context, RD);
1309    if (!Collector.empty())
1310      RD->setAbstract(true);
1311  }
1312
1313  if (RD->isAbstract())
1314    AbstractClassUsageDiagnoser(*this, RD);
1315
1316  if (!RD->isDependentType())
1317    AddImplicitlyDeclaredMembersToClass(RD);
1318}
1319
1320/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1321/// special functions, such as the default constructor, copy
1322/// constructor, or destructor, to the given C++ class (C++
1323/// [special]p1).  This routine can only be executed just before the
1324/// definition of the class is complete.
1325void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1326  CanQualType ClassType
1327    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1328
1329  // FIXME: Implicit declarations have exception specifications, which are
1330  // the union of the specifications of the implicitly called functions.
1331
1332  if (!ClassDecl->hasUserDeclaredConstructor()) {
1333    // C++ [class.ctor]p5:
1334    //   A default constructor for a class X is a constructor of class X
1335    //   that can be called without an argument. If there is no
1336    //   user-declared constructor for class X, a default constructor is
1337    //   implicitly declared. An implicitly-declared default constructor
1338    //   is an inline public member of its class.
1339    DeclarationName Name
1340      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1341    CXXConstructorDecl *DefaultCon =
1342      CXXConstructorDecl::Create(Context, ClassDecl,
1343                                 ClassDecl->getLocation(), Name,
1344                                 Context.getFunctionType(Context.VoidTy,
1345                                                         0, 0, false, 0),
1346                                 /*DInfo=*/0,
1347                                 /*isExplicit=*/false,
1348                                 /*isInline=*/true,
1349                                 /*isImplicitlyDeclared=*/true);
1350    DefaultCon->setAccess(AS_public);
1351    DefaultCon->setImplicit();
1352    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1353    ClassDecl->addDecl(DefaultCon);
1354  }
1355
1356  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1357    // C++ [class.copy]p4:
1358    //   If the class definition does not explicitly declare a copy
1359    //   constructor, one is declared implicitly.
1360
1361    // C++ [class.copy]p5:
1362    //   The implicitly-declared copy constructor for a class X will
1363    //   have the form
1364    //
1365    //       X::X(const X&)
1366    //
1367    //   if
1368    bool HasConstCopyConstructor = true;
1369
1370    //     -- each direct or virtual base class B of X has a copy
1371    //        constructor whose first parameter is of type const B& or
1372    //        const volatile B&, and
1373    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1374         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1375      const CXXRecordDecl *BaseClassDecl
1376        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1377      HasConstCopyConstructor
1378        = BaseClassDecl->hasConstCopyConstructor(Context);
1379    }
1380
1381    //     -- for all the nonstatic data members of X that are of a
1382    //        class type M (or array thereof), each such class type
1383    //        has a copy constructor whose first parameter is of type
1384    //        const M& or const volatile M&.
1385    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1386         HasConstCopyConstructor && Field != ClassDecl->field_end();
1387         ++Field) {
1388      QualType FieldType = (*Field)->getType();
1389      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1390        FieldType = Array->getElementType();
1391      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1392        const CXXRecordDecl *FieldClassDecl
1393          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1394        HasConstCopyConstructor
1395          = FieldClassDecl->hasConstCopyConstructor(Context);
1396      }
1397    }
1398
1399    //   Otherwise, the implicitly declared copy constructor will have
1400    //   the form
1401    //
1402    //       X::X(X&)
1403    QualType ArgType = ClassType;
1404    if (HasConstCopyConstructor)
1405      ArgType = ArgType.withConst();
1406    ArgType = Context.getLValueReferenceType(ArgType);
1407
1408    //   An implicitly-declared copy constructor is an inline public
1409    //   member of its class.
1410    DeclarationName Name
1411      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1412    CXXConstructorDecl *CopyConstructor
1413      = CXXConstructorDecl::Create(Context, ClassDecl,
1414                                   ClassDecl->getLocation(), Name,
1415                                   Context.getFunctionType(Context.VoidTy,
1416                                                           &ArgType, 1,
1417                                                           false, 0),
1418                                   /*DInfo=*/0,
1419                                   /*isExplicit=*/false,
1420                                   /*isInline=*/true,
1421                                   /*isImplicitlyDeclared=*/true);
1422    CopyConstructor->setAccess(AS_public);
1423    CopyConstructor->setImplicit();
1424    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1425
1426    // Add the parameter to the constructor.
1427    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1428                                                 ClassDecl->getLocation(),
1429                                                 /*IdentifierInfo=*/0,
1430                                                 ArgType, /*DInfo=*/0,
1431                                                 VarDecl::None, 0);
1432    CopyConstructor->setParams(Context, &FromParam, 1);
1433    ClassDecl->addDecl(CopyConstructor);
1434  }
1435
1436  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1437    // Note: The following rules are largely analoguous to the copy
1438    // constructor rules. Note that virtual bases are not taken into account
1439    // for determining the argument type of the operator. Note also that
1440    // operators taking an object instead of a reference are allowed.
1441    //
1442    // C++ [class.copy]p10:
1443    //   If the class definition does not explicitly declare a copy
1444    //   assignment operator, one is declared implicitly.
1445    //   The implicitly-defined copy assignment operator for a class X
1446    //   will have the form
1447    //
1448    //       X& X::operator=(const X&)
1449    //
1450    //   if
1451    bool HasConstCopyAssignment = true;
1452
1453    //       -- each direct base class B of X has a copy assignment operator
1454    //          whose parameter is of type const B&, const volatile B& or B,
1455    //          and
1456    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1457         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1458      const CXXRecordDecl *BaseClassDecl
1459        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1460      const CXXMethodDecl *MD = 0;
1461      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1462                                                                     MD);
1463    }
1464
1465    //       -- for all the nonstatic data members of X that are of a class
1466    //          type M (or array thereof), each such class type has a copy
1467    //          assignment operator whose parameter is of type const M&,
1468    //          const volatile M& or M.
1469    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1470         HasConstCopyAssignment && Field != ClassDecl->field_end();
1471         ++Field) {
1472      QualType FieldType = (*Field)->getType();
1473      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1474        FieldType = Array->getElementType();
1475      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1476        const CXXRecordDecl *FieldClassDecl
1477          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1478        const CXXMethodDecl *MD = 0;
1479        HasConstCopyAssignment
1480          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1481      }
1482    }
1483
1484    //   Otherwise, the implicitly declared copy assignment operator will
1485    //   have the form
1486    //
1487    //       X& X::operator=(X&)
1488    QualType ArgType = ClassType;
1489    QualType RetType = Context.getLValueReferenceType(ArgType);
1490    if (HasConstCopyAssignment)
1491      ArgType = ArgType.withConst();
1492    ArgType = Context.getLValueReferenceType(ArgType);
1493
1494    //   An implicitly-declared copy assignment operator is an inline public
1495    //   member of its class.
1496    DeclarationName Name =
1497      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1498    CXXMethodDecl *CopyAssignment =
1499      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1500                            Context.getFunctionType(RetType, &ArgType, 1,
1501                                                    false, 0),
1502                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1503    CopyAssignment->setAccess(AS_public);
1504    CopyAssignment->setImplicit();
1505    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1506    CopyAssignment->setCopyAssignment(true);
1507
1508    // Add the parameter to the operator.
1509    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1510                                                 ClassDecl->getLocation(),
1511                                                 /*IdentifierInfo=*/0,
1512                                                 ArgType, /*DInfo=*/0,
1513                                                 VarDecl::None, 0);
1514    CopyAssignment->setParams(Context, &FromParam, 1);
1515
1516    // Don't call addedAssignmentOperator. There is no way to distinguish an
1517    // implicit from an explicit assignment operator.
1518    ClassDecl->addDecl(CopyAssignment);
1519  }
1520
1521  if (!ClassDecl->hasUserDeclaredDestructor()) {
1522    // C++ [class.dtor]p2:
1523    //   If a class has no user-declared destructor, a destructor is
1524    //   declared implicitly. An implicitly-declared destructor is an
1525    //   inline public member of its class.
1526    DeclarationName Name
1527      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1528    CXXDestructorDecl *Destructor
1529      = CXXDestructorDecl::Create(Context, ClassDecl,
1530                                  ClassDecl->getLocation(), Name,
1531                                  Context.getFunctionType(Context.VoidTy,
1532                                                          0, 0, false, 0),
1533                                  /*isInline=*/true,
1534                                  /*isImplicitlyDeclared=*/true);
1535    Destructor->setAccess(AS_public);
1536    Destructor->setImplicit();
1537    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1538    ClassDecl->addDecl(Destructor);
1539  }
1540}
1541
1542void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1543  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1544  if (!Template)
1545    return;
1546
1547  TemplateParameterList *Params = Template->getTemplateParameters();
1548  for (TemplateParameterList::iterator Param = Params->begin(),
1549                                    ParamEnd = Params->end();
1550       Param != ParamEnd; ++Param) {
1551    NamedDecl *Named = cast<NamedDecl>(*Param);
1552    if (Named->getDeclName()) {
1553      S->AddDecl(DeclPtrTy::make(Named));
1554      IdResolver.AddDecl(Named);
1555    }
1556  }
1557}
1558
1559/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1560/// parsing a top-level (non-nested) C++ class, and we are now
1561/// parsing those parts of the given Method declaration that could
1562/// not be parsed earlier (C++ [class.mem]p2), such as default
1563/// arguments. This action should enter the scope of the given
1564/// Method declaration as if we had just parsed the qualified method
1565/// name. However, it should not bring the parameters into scope;
1566/// that will be performed by ActOnDelayedCXXMethodParameter.
1567void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1568  if (!MethodD)
1569    return;
1570
1571  AdjustDeclIfTemplate(MethodD);
1572
1573  CXXScopeSpec SS;
1574  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1575  QualType ClassTy
1576    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1577  SS.setScopeRep(
1578    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1579  ActOnCXXEnterDeclaratorScope(S, SS);
1580}
1581
1582/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1583/// C++ method declaration. We're (re-)introducing the given
1584/// function parameter into scope for use in parsing later parts of
1585/// the method declaration. For example, we could see an
1586/// ActOnParamDefaultArgument event for this parameter.
1587void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1588  if (!ParamD)
1589    return;
1590
1591  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1592
1593  // If this parameter has an unparsed default argument, clear it out
1594  // to make way for the parsed default argument.
1595  if (Param->hasUnparsedDefaultArg())
1596    Param->setDefaultArg(0);
1597
1598  S->AddDecl(DeclPtrTy::make(Param));
1599  if (Param->getDeclName())
1600    IdResolver.AddDecl(Param);
1601}
1602
1603/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1604/// processing the delayed method declaration for Method. The method
1605/// declaration is now considered finished. There may be a separate
1606/// ActOnStartOfFunctionDef action later (not necessarily
1607/// immediately!) for this method, if it was also defined inside the
1608/// class body.
1609void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1610  if (!MethodD)
1611    return;
1612
1613  AdjustDeclIfTemplate(MethodD);
1614
1615  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1616  CXXScopeSpec SS;
1617  QualType ClassTy
1618    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1619  SS.setScopeRep(
1620    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1621  ActOnCXXExitDeclaratorScope(S, SS);
1622
1623  // Now that we have our default arguments, check the constructor
1624  // again. It could produce additional diagnostics or affect whether
1625  // the class has implicitly-declared destructors, among other
1626  // things.
1627  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1628    CheckConstructor(Constructor);
1629
1630  // Check the default arguments, which we may have added.
1631  if (!Method->isInvalidDecl())
1632    CheckCXXDefaultArguments(Method);
1633}
1634
1635/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1636/// the well-formedness of the constructor declarator @p D with type @p
1637/// R. If there are any errors in the declarator, this routine will
1638/// emit diagnostics and set the invalid bit to true.  In any case, the type
1639/// will be updated to reflect a well-formed type for the constructor and
1640/// returned.
1641QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1642                                          FunctionDecl::StorageClass &SC) {
1643  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1644
1645  // C++ [class.ctor]p3:
1646  //   A constructor shall not be virtual (10.3) or static (9.4). A
1647  //   constructor can be invoked for a const, volatile or const
1648  //   volatile object. A constructor shall not be declared const,
1649  //   volatile, or const volatile (9.3.2).
1650  if (isVirtual) {
1651    if (!D.isInvalidType())
1652      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1653        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1654        << SourceRange(D.getIdentifierLoc());
1655    D.setInvalidType();
1656  }
1657  if (SC == FunctionDecl::Static) {
1658    if (!D.isInvalidType())
1659      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1660        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1661        << SourceRange(D.getIdentifierLoc());
1662    D.setInvalidType();
1663    SC = FunctionDecl::None;
1664  }
1665
1666  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1667  if (FTI.TypeQuals != 0) {
1668    if (FTI.TypeQuals & QualType::Const)
1669      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1670        << "const" << SourceRange(D.getIdentifierLoc());
1671    if (FTI.TypeQuals & QualType::Volatile)
1672      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1673        << "volatile" << SourceRange(D.getIdentifierLoc());
1674    if (FTI.TypeQuals & QualType::Restrict)
1675      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1676        << "restrict" << SourceRange(D.getIdentifierLoc());
1677  }
1678
1679  // Rebuild the function type "R" without any type qualifiers (in
1680  // case any of the errors above fired) and with "void" as the
1681  // return type, since constructors don't have return types. We
1682  // *always* have to do this, because GetTypeForDeclarator will
1683  // put in a result type of "int" when none was specified.
1684  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1685  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1686                                 Proto->getNumArgs(),
1687                                 Proto->isVariadic(), 0);
1688}
1689
1690/// CheckConstructor - Checks a fully-formed constructor for
1691/// well-formedness, issuing any diagnostics required. Returns true if
1692/// the constructor declarator is invalid.
1693void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1694  CXXRecordDecl *ClassDecl
1695    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1696  if (!ClassDecl)
1697    return Constructor->setInvalidDecl();
1698
1699  // C++ [class.copy]p3:
1700  //   A declaration of a constructor for a class X is ill-formed if
1701  //   its first parameter is of type (optionally cv-qualified) X and
1702  //   either there are no other parameters or else all other
1703  //   parameters have default arguments.
1704  if (!Constructor->isInvalidDecl() &&
1705      ((Constructor->getNumParams() == 1) ||
1706       (Constructor->getNumParams() > 1 &&
1707        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1708    QualType ParamType = Constructor->getParamDecl(0)->getType();
1709    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1710    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1711      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1712      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1713        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1714      Constructor->setInvalidDecl();
1715    }
1716  }
1717
1718  // Notify the class that we've added a constructor.
1719  ClassDecl->addedConstructor(Context, Constructor);
1720}
1721
1722static inline bool
1723FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1724  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1725          FTI.ArgInfo[0].Param &&
1726          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1727}
1728
1729/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1730/// the well-formednes of the destructor declarator @p D with type @p
1731/// R. If there are any errors in the declarator, this routine will
1732/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1733/// will be updated to reflect a well-formed type for the destructor and
1734/// returned.
1735QualType Sema::CheckDestructorDeclarator(Declarator &D,
1736                                         FunctionDecl::StorageClass& SC) {
1737  // C++ [class.dtor]p1:
1738  //   [...] A typedef-name that names a class is a class-name
1739  //   (7.1.3); however, a typedef-name that names a class shall not
1740  //   be used as the identifier in the declarator for a destructor
1741  //   declaration.
1742  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1743  if (isa<TypedefType>(DeclaratorType)) {
1744    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1745      << DeclaratorType;
1746    D.setInvalidType();
1747  }
1748
1749  // C++ [class.dtor]p2:
1750  //   A destructor is used to destroy objects of its class type. A
1751  //   destructor takes no parameters, and no return type can be
1752  //   specified for it (not even void). The address of a destructor
1753  //   shall not be taken. A destructor shall not be static. A
1754  //   destructor can be invoked for a const, volatile or const
1755  //   volatile object. A destructor shall not be declared const,
1756  //   volatile or const volatile (9.3.2).
1757  if (SC == FunctionDecl::Static) {
1758    if (!D.isInvalidType())
1759      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1760        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1761        << SourceRange(D.getIdentifierLoc());
1762    SC = FunctionDecl::None;
1763    D.setInvalidType();
1764  }
1765  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1766    // Destructors don't have return types, but the parser will
1767    // happily parse something like:
1768    //
1769    //   class X {
1770    //     float ~X();
1771    //   };
1772    //
1773    // The return type will be eliminated later.
1774    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1775      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1776      << SourceRange(D.getIdentifierLoc());
1777  }
1778
1779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1780  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1781    if (FTI.TypeQuals & QualType::Const)
1782      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1783        << "const" << SourceRange(D.getIdentifierLoc());
1784    if (FTI.TypeQuals & QualType::Volatile)
1785      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1786        << "volatile" << SourceRange(D.getIdentifierLoc());
1787    if (FTI.TypeQuals & QualType::Restrict)
1788      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1789        << "restrict" << SourceRange(D.getIdentifierLoc());
1790    D.setInvalidType();
1791  }
1792
1793  // Make sure we don't have any parameters.
1794  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1795    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1796
1797    // Delete the parameters.
1798    FTI.freeArgs();
1799    D.setInvalidType();
1800  }
1801
1802  // Make sure the destructor isn't variadic.
1803  if (FTI.isVariadic) {
1804    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1805    D.setInvalidType();
1806  }
1807
1808  // Rebuild the function type "R" without any type qualifiers or
1809  // parameters (in case any of the errors above fired) and with
1810  // "void" as the return type, since destructors don't have return
1811  // types. We *always* have to do this, because GetTypeForDeclarator
1812  // will put in a result type of "int" when none was specified.
1813  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1814}
1815
1816/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1817/// well-formednes of the conversion function declarator @p D with
1818/// type @p R. If there are any errors in the declarator, this routine
1819/// will emit diagnostics and return true. Otherwise, it will return
1820/// false. Either way, the type @p R will be updated to reflect a
1821/// well-formed type for the conversion operator.
1822void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1823                                     FunctionDecl::StorageClass& SC) {
1824  // C++ [class.conv.fct]p1:
1825  //   Neither parameter types nor return type can be specified. The
1826  //   type of a conversion function (8.3.5) is "function taking no
1827  //   parameter returning conversion-type-id."
1828  if (SC == FunctionDecl::Static) {
1829    if (!D.isInvalidType())
1830      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1831        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1832        << SourceRange(D.getIdentifierLoc());
1833    D.setInvalidType();
1834    SC = FunctionDecl::None;
1835  }
1836  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1837    // Conversion functions don't have return types, but the parser will
1838    // happily parse something like:
1839    //
1840    //   class X {
1841    //     float operator bool();
1842    //   };
1843    //
1844    // The return type will be changed later anyway.
1845    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1846      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1847      << SourceRange(D.getIdentifierLoc());
1848  }
1849
1850  // Make sure we don't have any parameters.
1851  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1852    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1853
1854    // Delete the parameters.
1855    D.getTypeObject(0).Fun.freeArgs();
1856    D.setInvalidType();
1857  }
1858
1859  // Make sure the conversion function isn't variadic.
1860  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1861    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1862    D.setInvalidType();
1863  }
1864
1865  // C++ [class.conv.fct]p4:
1866  //   The conversion-type-id shall not represent a function type nor
1867  //   an array type.
1868  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1869  if (ConvType->isArrayType()) {
1870    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1871    ConvType = Context.getPointerType(ConvType);
1872    D.setInvalidType();
1873  } else if (ConvType->isFunctionType()) {
1874    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1875    ConvType = Context.getPointerType(ConvType);
1876    D.setInvalidType();
1877  }
1878
1879  // Rebuild the function type "R" without any parameters (in case any
1880  // of the errors above fired) and with the conversion type as the
1881  // return type.
1882  R = Context.getFunctionType(ConvType, 0, 0, false,
1883                              R->getAsFunctionProtoType()->getTypeQuals());
1884
1885  // C++0x explicit conversion operators.
1886  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1887    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1888         diag::warn_explicit_conversion_functions)
1889      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1890}
1891
1892/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1893/// the declaration of the given C++ conversion function. This routine
1894/// is responsible for recording the conversion function in the C++
1895/// class, if possible.
1896Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1897  assert(Conversion && "Expected to receive a conversion function declaration");
1898
1899  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1900
1901  // Make sure we aren't redeclaring the conversion function.
1902  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1903
1904  // C++ [class.conv.fct]p1:
1905  //   [...] A conversion function is never used to convert a
1906  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1907  //   same object type (or a reference to it), to a (possibly
1908  //   cv-qualified) base class of that type (or a reference to it),
1909  //   or to (possibly cv-qualified) void.
1910  // FIXME: Suppress this warning if the conversion function ends up being a
1911  // virtual function that overrides a virtual function in a base class.
1912  QualType ClassType
1913    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1914  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1915    ConvType = ConvTypeRef->getPointeeType();
1916  if (ConvType->isRecordType()) {
1917    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1918    if (ConvType == ClassType)
1919      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1920        << ClassType;
1921    else if (IsDerivedFrom(ClassType, ConvType))
1922      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1923        <<  ClassType << ConvType;
1924  } else if (ConvType->isVoidType()) {
1925    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1926      << ClassType << ConvType;
1927  }
1928
1929  if (Conversion->getPreviousDeclaration()) {
1930    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
1931    if (FunctionTemplateDecl *ConversionTemplate
1932          = Conversion->getDescribedFunctionTemplate())
1933      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
1934    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1935    for (OverloadedFunctionDecl::function_iterator
1936           Conv = Conversions->function_begin(),
1937           ConvEnd = Conversions->function_end();
1938         Conv != ConvEnd; ++Conv) {
1939      if (*Conv == ExpectedPrevDecl) {
1940        *Conv = Conversion;
1941        return DeclPtrTy::make(Conversion);
1942      }
1943    }
1944    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1945  } else if (FunctionTemplateDecl *ConversionTemplate
1946               = Conversion->getDescribedFunctionTemplate())
1947    ClassDecl->addConversionFunction(Context, ConversionTemplate);
1948  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
1949    ClassDecl->addConversionFunction(Context, Conversion);
1950
1951  return DeclPtrTy::make(Conversion);
1952}
1953
1954//===----------------------------------------------------------------------===//
1955// Namespace Handling
1956//===----------------------------------------------------------------------===//
1957
1958/// ActOnStartNamespaceDef - This is called at the start of a namespace
1959/// definition.
1960Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1961                                             SourceLocation IdentLoc,
1962                                             IdentifierInfo *II,
1963                                             SourceLocation LBrace) {
1964  NamespaceDecl *Namespc =
1965      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1966  Namespc->setLBracLoc(LBrace);
1967
1968  Scope *DeclRegionScope = NamespcScope->getParent();
1969
1970  if (II) {
1971    // C++ [namespace.def]p2:
1972    // The identifier in an original-namespace-definition shall not have been
1973    // previously defined in the declarative region in which the
1974    // original-namespace-definition appears. The identifier in an
1975    // original-namespace-definition is the name of the namespace. Subsequently
1976    // in that declarative region, it is treated as an original-namespace-name.
1977
1978    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1979                                     true);
1980
1981    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1982      // This is an extended namespace definition.
1983      // Attach this namespace decl to the chain of extended namespace
1984      // definitions.
1985      OrigNS->setNextNamespace(Namespc);
1986      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1987
1988      // Remove the previous declaration from the scope.
1989      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1990        IdResolver.RemoveDecl(OrigNS);
1991        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1992      }
1993    } else if (PrevDecl) {
1994      // This is an invalid name redefinition.
1995      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1996       << Namespc->getDeclName();
1997      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1998      Namespc->setInvalidDecl();
1999      // Continue on to push Namespc as current DeclContext and return it.
2000    }
2001
2002    PushOnScopeChains(Namespc, DeclRegionScope);
2003  } else {
2004    // FIXME: Handle anonymous namespaces
2005  }
2006
2007  // Although we could have an invalid decl (i.e. the namespace name is a
2008  // redefinition), push it as current DeclContext and try to continue parsing.
2009  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2010  // for the namespace has the declarations that showed up in that particular
2011  // namespace definition.
2012  PushDeclContext(NamespcScope, Namespc);
2013  return DeclPtrTy::make(Namespc);
2014}
2015
2016/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2017/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2018void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2019  Decl *Dcl = D.getAs<Decl>();
2020  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2021  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2022  Namespc->setRBracLoc(RBrace);
2023  PopDeclContext();
2024}
2025
2026Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2027                                          SourceLocation UsingLoc,
2028                                          SourceLocation NamespcLoc,
2029                                          const CXXScopeSpec &SS,
2030                                          SourceLocation IdentLoc,
2031                                          IdentifierInfo *NamespcName,
2032                                          AttributeList *AttrList) {
2033  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2034  assert(NamespcName && "Invalid NamespcName.");
2035  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2036  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2037
2038  UsingDirectiveDecl *UDir = 0;
2039
2040  // Lookup namespace name.
2041  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2042                                    LookupNamespaceName, false);
2043  if (R.isAmbiguous()) {
2044    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2045    return DeclPtrTy();
2046  }
2047  if (NamedDecl *NS = R) {
2048    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2049    // C++ [namespace.udir]p1:
2050    //   A using-directive specifies that the names in the nominated
2051    //   namespace can be used in the scope in which the
2052    //   using-directive appears after the using-directive. During
2053    //   unqualified name lookup (3.4.1), the names appear as if they
2054    //   were declared in the nearest enclosing namespace which
2055    //   contains both the using-directive and the nominated
2056    //   namespace. [Note: in this context, "contains" means "contains
2057    //   directly or indirectly". ]
2058
2059    // Find enclosing context containing both using-directive and
2060    // nominated namespace.
2061    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2062    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2063      CommonAncestor = CommonAncestor->getParent();
2064
2065    UDir = UsingDirectiveDecl::Create(Context,
2066                                      CurContext, UsingLoc,
2067                                      NamespcLoc,
2068                                      SS.getRange(),
2069                                      (NestedNameSpecifier *)SS.getScopeRep(),
2070                                      IdentLoc,
2071                                      cast<NamespaceDecl>(NS),
2072                                      CommonAncestor);
2073    PushUsingDirective(S, UDir);
2074  } else {
2075    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2076  }
2077
2078  // FIXME: We ignore attributes for now.
2079  delete AttrList;
2080  return DeclPtrTy::make(UDir);
2081}
2082
2083void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2084  // If scope has associated entity, then using directive is at namespace
2085  // or translation unit scope. We add UsingDirectiveDecls, into
2086  // it's lookup structure.
2087  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2088    Ctx->addDecl(UDir);
2089  else
2090    // Otherwise it is block-sope. using-directives will affect lookup
2091    // only to the end of scope.
2092    S->PushUsingDirective(DeclPtrTy::make(UDir));
2093}
2094
2095
2096Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2097                                            AccessSpecifier AS,
2098                                            SourceLocation UsingLoc,
2099                                            const CXXScopeSpec &SS,
2100                                            SourceLocation IdentLoc,
2101                                            IdentifierInfo *TargetName,
2102                                            OverloadedOperatorKind Op,
2103                                            AttributeList *AttrList,
2104                                            bool IsTypeName) {
2105  assert((TargetName || Op) && "Invalid TargetName.");
2106  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2107
2108  DeclarationName Name;
2109  if (TargetName)
2110    Name = TargetName;
2111  else
2112    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2113
2114  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2115                                        Name, AttrList, IsTypeName);
2116  if (UD) {
2117    PushOnScopeChains(UD, S);
2118    UD->setAccess(AS);
2119  }
2120
2121  return DeclPtrTy::make(UD);
2122}
2123
2124NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2125                                       const CXXScopeSpec &SS,
2126                                       SourceLocation IdentLoc,
2127                                       DeclarationName Name,
2128                                       AttributeList *AttrList,
2129                                       bool IsTypeName) {
2130  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2131  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2132
2133  // FIXME: We ignore attributes for now.
2134  delete AttrList;
2135
2136  if (SS.isEmpty()) {
2137    Diag(IdentLoc, diag::err_using_requires_qualname);
2138    return 0;
2139  }
2140
2141  NestedNameSpecifier *NNS =
2142    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2143
2144  if (isUnknownSpecialization(SS)) {
2145    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2146                                       SS.getRange(), NNS,
2147                                       IdentLoc, Name, IsTypeName);
2148  }
2149
2150  DeclContext *LookupContext = 0;
2151
2152  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2153    // C++0x N2914 [namespace.udecl]p3:
2154    // A using-declaration used as a member-declaration shall refer to a member
2155    // of a base class of the class being defined, shall refer to a member of an
2156    // anonymous union that is a member of a base class of the class being
2157    // defined, or shall refer to an enumerator for an enumeration type that is
2158    // a member of a base class of the class being defined.
2159    const Type *Ty = NNS->getAsType();
2160    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2161      Diag(SS.getRange().getBegin(),
2162           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2163        << NNS << RD->getDeclName();
2164      return 0;
2165    }
2166
2167    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2168    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2169  } else {
2170    // C++0x N2914 [namespace.udecl]p8:
2171    // A using-declaration for a class member shall be a member-declaration.
2172    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2173      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2174        << SS.getRange();
2175      return 0;
2176    }
2177
2178    // C++0x N2914 [namespace.udecl]p9:
2179    // In a using-declaration, a prefix :: refers to the global namespace.
2180    if (NNS->getKind() == NestedNameSpecifier::Global)
2181      LookupContext = Context.getTranslationUnitDecl();
2182    else
2183      LookupContext = NNS->getAsNamespace();
2184  }
2185
2186
2187  // Lookup target name.
2188  LookupResult R = LookupQualifiedName(LookupContext,
2189                                       Name, LookupOrdinaryName);
2190
2191  if (!R) {
2192    Diag(IdentLoc, diag::err_typecheck_no_member_deprecated) << Name << SS.getRange();
2193    return 0;
2194  }
2195
2196  NamedDecl *ND = R.getAsDecl();
2197
2198  if (IsTypeName && !isa<TypeDecl>(ND)) {
2199    Diag(IdentLoc, diag::err_using_typename_non_type);
2200    return 0;
2201  }
2202
2203  // C++0x N2914 [namespace.udecl]p6:
2204  // A using-declaration shall not name a namespace.
2205  if (isa<NamespaceDecl>(ND)) {
2206    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2207      << SS.getRange();
2208    return 0;
2209  }
2210
2211  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2212                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2213}
2214
2215/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2216/// is a namespace alias, returns the namespace it points to.
2217static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2218  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2219    return AD->getNamespace();
2220  return dyn_cast_or_null<NamespaceDecl>(D);
2221}
2222
2223Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2224                                             SourceLocation NamespaceLoc,
2225                                             SourceLocation AliasLoc,
2226                                             IdentifierInfo *Alias,
2227                                             const CXXScopeSpec &SS,
2228                                             SourceLocation IdentLoc,
2229                                             IdentifierInfo *Ident) {
2230
2231  // Lookup the namespace name.
2232  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2233
2234  // Check if we have a previous declaration with the same name.
2235  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2236    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2237      // We already have an alias with the same name that points to the same
2238      // namespace, so don't create a new one.
2239      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2240        return DeclPtrTy();
2241    }
2242
2243    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2244      diag::err_redefinition_different_kind;
2245    Diag(AliasLoc, DiagID) << Alias;
2246    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2247    return DeclPtrTy();
2248  }
2249
2250  if (R.isAmbiguous()) {
2251    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2252    return DeclPtrTy();
2253  }
2254
2255  if (!R) {
2256    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2257    return DeclPtrTy();
2258  }
2259
2260  NamespaceAliasDecl *AliasDecl =
2261    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2262                               Alias, SS.getRange(),
2263                               (NestedNameSpecifier *)SS.getScopeRep(),
2264                               IdentLoc, R);
2265
2266  CurContext->addDecl(AliasDecl);
2267  return DeclPtrTy::make(AliasDecl);
2268}
2269
2270void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2271                                            CXXConstructorDecl *Constructor) {
2272  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2273          !Constructor->isUsed()) &&
2274    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2275
2276  CXXRecordDecl *ClassDecl
2277    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2278  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2279  // Before the implicitly-declared default constructor for a class is
2280  // implicitly defined, all the implicitly-declared default constructors
2281  // for its base class and its non-static data members shall have been
2282  // implicitly defined.
2283  bool err = false;
2284  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2285       E = ClassDecl->bases_end(); Base != E; ++Base) {
2286    CXXRecordDecl *BaseClassDecl
2287      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2288    if (!BaseClassDecl->hasTrivialConstructor()) {
2289      if (CXXConstructorDecl *BaseCtor =
2290            BaseClassDecl->getDefaultConstructor(Context))
2291        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2292      else {
2293        Diag(CurrentLocation, diag::err_defining_default_ctor)
2294          << Context.getTagDeclType(ClassDecl) << 1
2295          << Context.getTagDeclType(BaseClassDecl);
2296        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2297              << Context.getTagDeclType(BaseClassDecl);
2298        err = true;
2299      }
2300    }
2301  }
2302  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2303       E = ClassDecl->field_end(); Field != E; ++Field) {
2304    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2305    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2306      FieldType = Array->getElementType();
2307    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2308      CXXRecordDecl *FieldClassDecl
2309        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2310      if (!FieldClassDecl->hasTrivialConstructor()) {
2311        if (CXXConstructorDecl *FieldCtor =
2312            FieldClassDecl->getDefaultConstructor(Context))
2313          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2314        else {
2315          Diag(CurrentLocation, diag::err_defining_default_ctor)
2316          << Context.getTagDeclType(ClassDecl) << 0 <<
2317              Context.getTagDeclType(FieldClassDecl);
2318          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2319          << Context.getTagDeclType(FieldClassDecl);
2320          err = true;
2321        }
2322      }
2323    } else if (FieldType->isReferenceType()) {
2324      Diag(CurrentLocation, diag::err_unintialized_member)
2325        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2326      Diag((*Field)->getLocation(), diag::note_declared_at);
2327      err = true;
2328    } else if (FieldType.isConstQualified()) {
2329      Diag(CurrentLocation, diag::err_unintialized_member)
2330        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2331       Diag((*Field)->getLocation(), diag::note_declared_at);
2332      err = true;
2333    }
2334  }
2335  if (!err)
2336    Constructor->setUsed();
2337  else
2338    Constructor->setInvalidDecl();
2339}
2340
2341void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2342                                            CXXDestructorDecl *Destructor) {
2343  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2344         "DefineImplicitDestructor - call it for implicit default dtor");
2345
2346  CXXRecordDecl *ClassDecl
2347  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2348  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2349  // C++ [class.dtor] p5
2350  // Before the implicitly-declared default destructor for a class is
2351  // implicitly defined, all the implicitly-declared default destructors
2352  // for its base class and its non-static data members shall have been
2353  // implicitly defined.
2354  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2355       E = ClassDecl->bases_end(); Base != E; ++Base) {
2356    CXXRecordDecl *BaseClassDecl
2357      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2358    if (!BaseClassDecl->hasTrivialDestructor()) {
2359      if (CXXDestructorDecl *BaseDtor =
2360          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2361        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2362      else
2363        assert(false &&
2364               "DefineImplicitDestructor - missing dtor in a base class");
2365    }
2366  }
2367
2368  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2369       E = ClassDecl->field_end(); Field != E; ++Field) {
2370    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2371    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2372      FieldType = Array->getElementType();
2373    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2374      CXXRecordDecl *FieldClassDecl
2375        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2376      if (!FieldClassDecl->hasTrivialDestructor()) {
2377        if (CXXDestructorDecl *FieldDtor =
2378            const_cast<CXXDestructorDecl*>(
2379                                        FieldClassDecl->getDestructor(Context)))
2380          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2381        else
2382          assert(false &&
2383          "DefineImplicitDestructor - missing dtor in class of a data member");
2384      }
2385    }
2386  }
2387  Destructor->setUsed();
2388}
2389
2390void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2391                                          CXXMethodDecl *MethodDecl) {
2392  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2393          MethodDecl->getOverloadedOperator() == OO_Equal &&
2394          !MethodDecl->isUsed()) &&
2395         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2396
2397  CXXRecordDecl *ClassDecl
2398    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2399
2400  // C++[class.copy] p12
2401  // Before the implicitly-declared copy assignment operator for a class is
2402  // implicitly defined, all implicitly-declared copy assignment operators
2403  // for its direct base classes and its nonstatic data members shall have
2404  // been implicitly defined.
2405  bool err = false;
2406  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2407       E = ClassDecl->bases_end(); Base != E; ++Base) {
2408    CXXRecordDecl *BaseClassDecl
2409      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2410    if (CXXMethodDecl *BaseAssignOpMethod =
2411          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2412      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2413  }
2414  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2415       E = ClassDecl->field_end(); Field != E; ++Field) {
2416    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2417    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2418      FieldType = Array->getElementType();
2419    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2420      CXXRecordDecl *FieldClassDecl
2421        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2422      if (CXXMethodDecl *FieldAssignOpMethod =
2423          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2424        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2425    } else if (FieldType->isReferenceType()) {
2426      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2427      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2428      Diag(Field->getLocation(), diag::note_declared_at);
2429      Diag(CurrentLocation, diag::note_first_required_here);
2430      err = true;
2431    } else if (FieldType.isConstQualified()) {
2432      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2433      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2434      Diag(Field->getLocation(), diag::note_declared_at);
2435      Diag(CurrentLocation, diag::note_first_required_here);
2436      err = true;
2437    }
2438  }
2439  if (!err)
2440    MethodDecl->setUsed();
2441}
2442
2443CXXMethodDecl *
2444Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2445                              CXXRecordDecl *ClassDecl) {
2446  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2447  QualType RHSType(LHSType);
2448  // If class's assignment operator argument is const/volatile qualified,
2449  // look for operator = (const/volatile B&). Otherwise, look for
2450  // operator = (B&).
2451  if (ParmDecl->getType().isConstQualified())
2452    RHSType.addConst();
2453  if (ParmDecl->getType().isVolatileQualified())
2454    RHSType.addVolatile();
2455  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2456                                                          LHSType,
2457                                                          SourceLocation()));
2458  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2459                                                          RHSType,
2460                                                          SourceLocation()));
2461  Expr *Args[2] = { &*LHS, &*RHS };
2462  OverloadCandidateSet CandidateSet;
2463  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2464                              CandidateSet);
2465  OverloadCandidateSet::iterator Best;
2466  if (BestViableFunction(CandidateSet,
2467                         ClassDecl->getLocation(), Best) == OR_Success)
2468    return cast<CXXMethodDecl>(Best->Function);
2469  assert(false &&
2470         "getAssignOperatorMethod - copy assignment operator method not found");
2471  return 0;
2472}
2473
2474void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2475                                   CXXConstructorDecl *CopyConstructor,
2476                                   unsigned TypeQuals) {
2477  assert((CopyConstructor->isImplicit() &&
2478          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2479          !CopyConstructor->isUsed()) &&
2480         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2481
2482  CXXRecordDecl *ClassDecl
2483    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2484  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2485  // C++ [class.copy] p209
2486  // Before the implicitly-declared copy constructor for a class is
2487  // implicitly defined, all the implicitly-declared copy constructors
2488  // for its base class and its non-static data members shall have been
2489  // implicitly defined.
2490  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2491       Base != ClassDecl->bases_end(); ++Base) {
2492    CXXRecordDecl *BaseClassDecl
2493      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2494    if (CXXConstructorDecl *BaseCopyCtor =
2495        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2496      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2497  }
2498  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2499                                  FieldEnd = ClassDecl->field_end();
2500       Field != FieldEnd; ++Field) {
2501    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2502    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2503      FieldType = Array->getElementType();
2504    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2505      CXXRecordDecl *FieldClassDecl
2506        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2507      if (CXXConstructorDecl *FieldCopyCtor =
2508          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2509        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2510    }
2511  }
2512  CopyConstructor->setUsed();
2513}
2514
2515Sema::OwningExprResult
2516Sema::BuildCXXConstructExpr(QualType DeclInitType,
2517                            CXXConstructorDecl *Constructor,
2518                            Expr **Exprs, unsigned NumExprs) {
2519  bool Elidable = false;
2520
2521  // [class.copy]p15:
2522  // Whenever a temporary class object is copied using a copy constructor, and
2523  // this object and the copy have the same cv-unqualified type, an
2524  // implementation is permitted to treat the original and the copy as two
2525  // different ways of referring to the same object and not perform a copy at
2526  //all, even if the class copy constructor or destructor have side effects.
2527
2528  // FIXME: Is this enough?
2529  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2530    Expr *E = Exprs[0];
2531    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2532      E = BE->getSubExpr();
2533
2534    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2535      Elidable = true;
2536  }
2537
2538  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2539                               Exprs, NumExprs);
2540}
2541
2542/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2543/// including handling of its default argument expressions.
2544Sema::OwningExprResult
2545Sema::BuildCXXConstructExpr(QualType DeclInitType,
2546                            CXXConstructorDecl *Constructor,
2547                            bool Elidable,
2548                            Expr **Exprs,
2549                            unsigned NumExprs) {
2550  ExprOwningPtr<CXXConstructExpr> Temp(this,
2551                                       CXXConstructExpr::Create(Context,
2552                                                                DeclInitType,
2553                                                                Constructor,
2554                                                                Elidable,
2555                                                                Exprs,
2556                                                                NumExprs));
2557  // Default arguments must be added to constructor call expression.
2558  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2559  unsigned NumArgsInProto = FDecl->param_size();
2560  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2561    ParmVarDecl *Param = FDecl->getParamDecl(j);
2562
2563    OwningExprResult ArgExpr =
2564      BuildCXXDefaultArgExpr(/*FIXME:*/SourceLocation(),
2565                             FDecl, Param);
2566    if (ArgExpr.isInvalid())
2567      return ExprError();
2568
2569    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2570  }
2571  return move(Temp);
2572}
2573
2574Sema::OwningExprResult
2575Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2576                                  QualType Ty,
2577                                  SourceLocation TyBeginLoc,
2578                                  MultiExprArg Args,
2579                                  SourceLocation RParenLoc) {
2580  CXXTemporaryObjectExpr *E
2581    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2582                                           (Expr **)Args.get(),
2583                                           Args.size(), RParenLoc);
2584
2585  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2586
2587    // Default arguments must be added to constructor call expression.
2588  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2589  unsigned NumArgsInProto = FDecl->param_size();
2590  for (unsigned j = Args.size(); j != NumArgsInProto; j++) {
2591    ParmVarDecl *Param = FDecl->getParamDecl(j);
2592
2593    OwningExprResult ArgExpr = BuildCXXDefaultArgExpr(TyBeginLoc, FDecl, Param);
2594    if (ArgExpr.isInvalid())
2595      return ExprError();
2596
2597    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2598  }
2599
2600  Args.release();
2601  return move(Temp);
2602}
2603
2604
2605bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2606                                        CXXConstructorDecl *Constructor,
2607                                        QualType DeclInitType,
2608                                        Expr **Exprs, unsigned NumExprs) {
2609  OwningExprResult TempResult = BuildCXXConstructExpr(DeclInitType, Constructor,
2610                                                      Exprs, NumExprs);
2611  if (TempResult.isInvalid())
2612    return true;
2613
2614  Expr *Temp = TempResult.takeAs<Expr>();
2615  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2616  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2617  VD->setInit(Context, Temp);
2618
2619  return false;
2620}
2621
2622void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2623{
2624  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2625                                  DeclInitType->getAs<RecordType>()->getDecl());
2626  if (!ClassDecl->hasTrivialDestructor())
2627    if (CXXDestructorDecl *Destructor =
2628        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2629      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2630}
2631
2632/// AddCXXDirectInitializerToDecl - This action is called immediately after
2633/// ActOnDeclarator, when a C++ direct initializer is present.
2634/// e.g: "int x(1);"
2635void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2636                                         SourceLocation LParenLoc,
2637                                         MultiExprArg Exprs,
2638                                         SourceLocation *CommaLocs,
2639                                         SourceLocation RParenLoc) {
2640  unsigned NumExprs = Exprs.size();
2641  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2642  Decl *RealDecl = Dcl.getAs<Decl>();
2643
2644  // If there is no declaration, there was an error parsing it.  Just ignore
2645  // the initializer.
2646  if (RealDecl == 0)
2647    return;
2648
2649  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2650  if (!VDecl) {
2651    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2652    RealDecl->setInvalidDecl();
2653    return;
2654  }
2655
2656  // We will represent direct-initialization similarly to copy-initialization:
2657  //    int x(1);  -as-> int x = 1;
2658  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2659  //
2660  // Clients that want to distinguish between the two forms, can check for
2661  // direct initializer using VarDecl::hasCXXDirectInitializer().
2662  // A major benefit is that clients that don't particularly care about which
2663  // exactly form was it (like the CodeGen) can handle both cases without
2664  // special case code.
2665
2666  // If either the declaration has a dependent type or if any of the expressions
2667  // is type-dependent, we represent the initialization via a ParenListExpr for
2668  // later use during template instantiation.
2669  if (VDecl->getType()->isDependentType() ||
2670      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2671    // Let clients know that initialization was done with a direct initializer.
2672    VDecl->setCXXDirectInitializer(true);
2673
2674    // Store the initialization expressions as a ParenListExpr.
2675    unsigned NumExprs = Exprs.size();
2676    VDecl->setInit(Context,
2677                   new (Context) ParenListExpr(Context, LParenLoc,
2678                                               (Expr **)Exprs.release(),
2679                                               NumExprs, RParenLoc));
2680    return;
2681  }
2682
2683
2684  // C++ 8.5p11:
2685  // The form of initialization (using parentheses or '=') is generally
2686  // insignificant, but does matter when the entity being initialized has a
2687  // class type.
2688  QualType DeclInitType = VDecl->getType();
2689  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2690    DeclInitType = Array->getElementType();
2691
2692  // FIXME: This isn't the right place to complete the type.
2693  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2694                          diag::err_typecheck_decl_incomplete_type)) {
2695    VDecl->setInvalidDecl();
2696    return;
2697  }
2698
2699  if (VDecl->getType()->isRecordType()) {
2700    CXXConstructorDecl *Constructor
2701      = PerformInitializationByConstructor(DeclInitType,
2702                                           (Expr **)Exprs.get(), NumExprs,
2703                                           VDecl->getLocation(),
2704                                           SourceRange(VDecl->getLocation(),
2705                                                       RParenLoc),
2706                                           VDecl->getDeclName(),
2707                                           IK_Direct);
2708    if (!Constructor)
2709      RealDecl->setInvalidDecl();
2710    else {
2711      VDecl->setCXXDirectInitializer(true);
2712      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2713                                       (Expr**)Exprs.release(), NumExprs))
2714        RealDecl->setInvalidDecl();
2715      FinalizeVarWithDestructor(VDecl, DeclInitType);
2716    }
2717    return;
2718  }
2719
2720  if (NumExprs > 1) {
2721    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2722      << SourceRange(VDecl->getLocation(), RParenLoc);
2723    RealDecl->setInvalidDecl();
2724    return;
2725  }
2726
2727  // Let clients know that initialization was done with a direct initializer.
2728  VDecl->setCXXDirectInitializer(true);
2729
2730  assert(NumExprs == 1 && "Expected 1 expression");
2731  // Set the init expression, handles conversions.
2732  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2733                       /*DirectInit=*/true);
2734}
2735
2736/// PerformInitializationByConstructor - Perform initialization by
2737/// constructor (C++ [dcl.init]p14), which may occur as part of
2738/// direct-initialization or copy-initialization. We are initializing
2739/// an object of type @p ClassType with the given arguments @p
2740/// Args. @p Loc is the location in the source code where the
2741/// initializer occurs (e.g., a declaration, member initializer,
2742/// functional cast, etc.) while @p Range covers the whole
2743/// initialization. @p InitEntity is the entity being initialized,
2744/// which may by the name of a declaration or a type. @p Kind is the
2745/// kind of initialization we're performing, which affects whether
2746/// explicit constructors will be considered. When successful, returns
2747/// the constructor that will be used to perform the initialization;
2748/// when the initialization fails, emits a diagnostic and returns
2749/// null.
2750CXXConstructorDecl *
2751Sema::PerformInitializationByConstructor(QualType ClassType,
2752                                         Expr **Args, unsigned NumArgs,
2753                                         SourceLocation Loc, SourceRange Range,
2754                                         DeclarationName InitEntity,
2755                                         InitializationKind Kind) {
2756  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2757  assert(ClassRec && "Can only initialize a class type here");
2758
2759  // C++ [dcl.init]p14:
2760  //
2761  //   If the initialization is direct-initialization, or if it is
2762  //   copy-initialization where the cv-unqualified version of the
2763  //   source type is the same class as, or a derived class of, the
2764  //   class of the destination, constructors are considered. The
2765  //   applicable constructors are enumerated (13.3.1.3), and the
2766  //   best one is chosen through overload resolution (13.3). The
2767  //   constructor so selected is called to initialize the object,
2768  //   with the initializer expression(s) as its argument(s). If no
2769  //   constructor applies, or the overload resolution is ambiguous,
2770  //   the initialization is ill-formed.
2771  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2772  OverloadCandidateSet CandidateSet;
2773
2774  // Add constructors to the overload set.
2775  DeclarationName ConstructorName
2776    = Context.DeclarationNames.getCXXConstructorName(
2777                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2778  DeclContext::lookup_const_iterator Con, ConEnd;
2779  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2780       Con != ConEnd; ++Con) {
2781    // Find the constructor (which may be a template).
2782    CXXConstructorDecl *Constructor = 0;
2783    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2784    if (ConstructorTmpl)
2785      Constructor
2786        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2787    else
2788      Constructor = cast<CXXConstructorDecl>(*Con);
2789
2790    if ((Kind == IK_Direct) ||
2791        (Kind == IK_Copy &&
2792         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
2793        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
2794      if (ConstructorTmpl)
2795        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
2796                                     Args, NumArgs, CandidateSet);
2797      else
2798        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2799    }
2800  }
2801
2802  // FIXME: When we decide not to synthesize the implicitly-declared
2803  // constructors, we'll need to make them appear here.
2804
2805  OverloadCandidateSet::iterator Best;
2806  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2807  case OR_Success:
2808    // We found a constructor. Return it.
2809    return cast<CXXConstructorDecl>(Best->Function);
2810
2811  case OR_No_Viable_Function:
2812    if (InitEntity)
2813      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2814        << InitEntity << Range;
2815    else
2816      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2817        << ClassType << Range;
2818    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2819    return 0;
2820
2821  case OR_Ambiguous:
2822    if (InitEntity)
2823      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2824    else
2825      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2826    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2827    return 0;
2828
2829  case OR_Deleted:
2830    if (InitEntity)
2831      Diag(Loc, diag::err_ovl_deleted_init)
2832        << Best->Function->isDeleted()
2833        << InitEntity << Range;
2834    else
2835      Diag(Loc, diag::err_ovl_deleted_init)
2836        << Best->Function->isDeleted()
2837        << InitEntity << Range;
2838    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2839    return 0;
2840  }
2841
2842  return 0;
2843}
2844
2845/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2846/// determine whether they are reference-related,
2847/// reference-compatible, reference-compatible with added
2848/// qualification, or incompatible, for use in C++ initialization by
2849/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2850/// type, and the first type (T1) is the pointee type of the reference
2851/// type being initialized.
2852Sema::ReferenceCompareResult
2853Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2854                                   bool& DerivedToBase) {
2855  assert(!T1->isReferenceType() &&
2856    "T1 must be the pointee type of the reference type");
2857  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2858
2859  T1 = Context.getCanonicalType(T1);
2860  T2 = Context.getCanonicalType(T2);
2861  QualType UnqualT1 = T1.getUnqualifiedType();
2862  QualType UnqualT2 = T2.getUnqualifiedType();
2863
2864  // C++ [dcl.init.ref]p4:
2865  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2866  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2867  //   T1 is a base class of T2.
2868  if (UnqualT1 == UnqualT2)
2869    DerivedToBase = false;
2870  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2871    DerivedToBase = true;
2872  else
2873    return Ref_Incompatible;
2874
2875  // At this point, we know that T1 and T2 are reference-related (at
2876  // least).
2877
2878  // C++ [dcl.init.ref]p4:
2879  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2880  //   reference-related to T2 and cv1 is the same cv-qualification
2881  //   as, or greater cv-qualification than, cv2. For purposes of
2882  //   overload resolution, cases for which cv1 is greater
2883  //   cv-qualification than cv2 are identified as
2884  //   reference-compatible with added qualification (see 13.3.3.2).
2885  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2886    return Ref_Compatible;
2887  else if (T1.isMoreQualifiedThan(T2))
2888    return Ref_Compatible_With_Added_Qualification;
2889  else
2890    return Ref_Related;
2891}
2892
2893/// CheckReferenceInit - Check the initialization of a reference
2894/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2895/// the initializer (either a simple initializer or an initializer
2896/// list), and DeclType is the type of the declaration. When ICS is
2897/// non-null, this routine will compute the implicit conversion
2898/// sequence according to C++ [over.ics.ref] and will not produce any
2899/// diagnostics; when ICS is null, it will emit diagnostics when any
2900/// errors are found. Either way, a return value of true indicates
2901/// that there was a failure, a return value of false indicates that
2902/// the reference initialization succeeded.
2903///
2904/// When @p SuppressUserConversions, user-defined conversions are
2905/// suppressed.
2906/// When @p AllowExplicit, we also permit explicit user-defined
2907/// conversion functions.
2908/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2909bool
2910Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2911                         bool SuppressUserConversions,
2912                         bool AllowExplicit, bool ForceRValue,
2913                         ImplicitConversionSequence *ICS) {
2914  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2915
2916  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2917  QualType T2 = Init->getType();
2918
2919  // If the initializer is the address of an overloaded function, try
2920  // to resolve the overloaded function. If all goes well, T2 is the
2921  // type of the resulting function.
2922  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2923    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2924                                                          ICS != 0);
2925    if (Fn) {
2926      // Since we're performing this reference-initialization for
2927      // real, update the initializer with the resulting function.
2928      if (!ICS) {
2929        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2930          return true;
2931
2932        FixOverloadedFunctionReference(Init, Fn);
2933      }
2934
2935      T2 = Fn->getType();
2936    }
2937  }
2938
2939  // Compute some basic properties of the types and the initializer.
2940  bool isRValRef = DeclType->isRValueReferenceType();
2941  bool DerivedToBase = false;
2942  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2943                                                  Init->isLvalue(Context);
2944  ReferenceCompareResult RefRelationship
2945    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2946
2947  // Most paths end in a failed conversion.
2948  if (ICS)
2949    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2950
2951  // C++ [dcl.init.ref]p5:
2952  //   A reference to type "cv1 T1" is initialized by an expression
2953  //   of type "cv2 T2" as follows:
2954
2955  //     -- If the initializer expression
2956
2957  // Rvalue references cannot bind to lvalues (N2812).
2958  // There is absolutely no situation where they can. In particular, note that
2959  // this is ill-formed, even if B has a user-defined conversion to A&&:
2960  //   B b;
2961  //   A&& r = b;
2962  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2963    if (!ICS)
2964      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2965        << Init->getSourceRange();
2966    return true;
2967  }
2968
2969  bool BindsDirectly = false;
2970  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2971  //          reference-compatible with "cv2 T2," or
2972  //
2973  // Note that the bit-field check is skipped if we are just computing
2974  // the implicit conversion sequence (C++ [over.best.ics]p2).
2975  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2976      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2977    BindsDirectly = true;
2978
2979    if (ICS) {
2980      // C++ [over.ics.ref]p1:
2981      //   When a parameter of reference type binds directly (8.5.3)
2982      //   to an argument expression, the implicit conversion sequence
2983      //   is the identity conversion, unless the argument expression
2984      //   has a type that is a derived class of the parameter type,
2985      //   in which case the implicit conversion sequence is a
2986      //   derived-to-base Conversion (13.3.3.1).
2987      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2988      ICS->Standard.First = ICK_Identity;
2989      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2990      ICS->Standard.Third = ICK_Identity;
2991      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2992      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2993      ICS->Standard.ReferenceBinding = true;
2994      ICS->Standard.DirectBinding = true;
2995      ICS->Standard.RRefBinding = false;
2996      ICS->Standard.CopyConstructor = 0;
2997
2998      // Nothing more to do: the inaccessibility/ambiguity check for
2999      // derived-to-base conversions is suppressed when we're
3000      // computing the implicit conversion sequence (C++
3001      // [over.best.ics]p2).
3002      return false;
3003    } else {
3004      // Perform the conversion.
3005      // FIXME: Binding to a subobject of the lvalue is going to require more
3006      // AST annotation than this.
3007      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3008    }
3009  }
3010
3011  //       -- has a class type (i.e., T2 is a class type) and can be
3012  //          implicitly converted to an lvalue of type "cv3 T3,"
3013  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3014  //          92) (this conversion is selected by enumerating the
3015  //          applicable conversion functions (13.3.1.6) and choosing
3016  //          the best one through overload resolution (13.3)),
3017  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3018      !RequireCompleteType(SourceLocation(), T2, 0)) {
3019    // FIXME: Look for conversions in base classes!
3020    CXXRecordDecl *T2RecordDecl
3021      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3022
3023    OverloadCandidateSet CandidateSet;
3024    OverloadedFunctionDecl *Conversions
3025      = T2RecordDecl->getConversionFunctions();
3026    for (OverloadedFunctionDecl::function_iterator Func
3027           = Conversions->function_begin();
3028         Func != Conversions->function_end(); ++Func) {
3029      FunctionTemplateDecl *ConvTemplate
3030        = dyn_cast<FunctionTemplateDecl>(*Func);
3031      CXXConversionDecl *Conv;
3032      if (ConvTemplate)
3033        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3034      else
3035        Conv = cast<CXXConversionDecl>(*Func);
3036
3037      // If the conversion function doesn't return a reference type,
3038      // it can't be considered for this conversion.
3039      if (Conv->getConversionType()->isLValueReferenceType() &&
3040          (AllowExplicit || !Conv->isExplicit())) {
3041        if (ConvTemplate)
3042          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3043                                         CandidateSet);
3044        else
3045          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3046      }
3047    }
3048
3049    OverloadCandidateSet::iterator Best;
3050    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3051    case OR_Success:
3052      // This is a direct binding.
3053      BindsDirectly = true;
3054
3055      if (ICS) {
3056        // C++ [over.ics.ref]p1:
3057        //
3058        //   [...] If the parameter binds directly to the result of
3059        //   applying a conversion function to the argument
3060        //   expression, the implicit conversion sequence is a
3061        //   user-defined conversion sequence (13.3.3.1.2), with the
3062        //   second standard conversion sequence either an identity
3063        //   conversion or, if the conversion function returns an
3064        //   entity of a type that is a derived class of the parameter
3065        //   type, a derived-to-base Conversion.
3066        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3067        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3068        ICS->UserDefined.After = Best->FinalConversion;
3069        ICS->UserDefined.ConversionFunction = Best->Function;
3070        assert(ICS->UserDefined.After.ReferenceBinding &&
3071               ICS->UserDefined.After.DirectBinding &&
3072               "Expected a direct reference binding!");
3073        return false;
3074      } else {
3075        // Perform the conversion.
3076        // FIXME: Binding to a subobject of the lvalue is going to require more
3077        // AST annotation than this.
3078        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3079      }
3080      break;
3081
3082    case OR_Ambiguous:
3083      assert(false && "Ambiguous reference binding conversions not implemented.");
3084      return true;
3085
3086    case OR_No_Viable_Function:
3087    case OR_Deleted:
3088      // There was no suitable conversion, or we found a deleted
3089      // conversion; continue with other checks.
3090      break;
3091    }
3092  }
3093
3094  if (BindsDirectly) {
3095    // C++ [dcl.init.ref]p4:
3096    //   [...] In all cases where the reference-related or
3097    //   reference-compatible relationship of two types is used to
3098    //   establish the validity of a reference binding, and T1 is a
3099    //   base class of T2, a program that necessitates such a binding
3100    //   is ill-formed if T1 is an inaccessible (clause 11) or
3101    //   ambiguous (10.2) base class of T2.
3102    //
3103    // Note that we only check this condition when we're allowed to
3104    // complain about errors, because we should not be checking for
3105    // ambiguity (or inaccessibility) unless the reference binding
3106    // actually happens.
3107    if (DerivedToBase)
3108      return CheckDerivedToBaseConversion(T2, T1,
3109                                          Init->getSourceRange().getBegin(),
3110                                          Init->getSourceRange());
3111    else
3112      return false;
3113  }
3114
3115  //     -- Otherwise, the reference shall be to a non-volatile const
3116  //        type (i.e., cv1 shall be const), or the reference shall be an
3117  //        rvalue reference and the initializer expression shall be an rvalue.
3118  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3119    if (!ICS)
3120      Diag(Init->getSourceRange().getBegin(),
3121           diag::err_not_reference_to_const_init)
3122        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3123        << T2 << Init->getSourceRange();
3124    return true;
3125  }
3126
3127  //       -- If the initializer expression is an rvalue, with T2 a
3128  //          class type, and "cv1 T1" is reference-compatible with
3129  //          "cv2 T2," the reference is bound in one of the
3130  //          following ways (the choice is implementation-defined):
3131  //
3132  //          -- The reference is bound to the object represented by
3133  //             the rvalue (see 3.10) or to a sub-object within that
3134  //             object.
3135  //
3136  //          -- A temporary of type "cv1 T2" [sic] is created, and
3137  //             a constructor is called to copy the entire rvalue
3138  //             object into the temporary. The reference is bound to
3139  //             the temporary or to a sub-object within the
3140  //             temporary.
3141  //
3142  //          The constructor that would be used to make the copy
3143  //          shall be callable whether or not the copy is actually
3144  //          done.
3145  //
3146  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3147  // freedom, so we will always take the first option and never build
3148  // a temporary in this case. FIXME: We will, however, have to check
3149  // for the presence of a copy constructor in C++98/03 mode.
3150  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3151      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3152    if (ICS) {
3153      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3154      ICS->Standard.First = ICK_Identity;
3155      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3156      ICS->Standard.Third = ICK_Identity;
3157      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3158      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3159      ICS->Standard.ReferenceBinding = true;
3160      ICS->Standard.DirectBinding = false;
3161      ICS->Standard.RRefBinding = isRValRef;
3162      ICS->Standard.CopyConstructor = 0;
3163    } else {
3164      // FIXME: Binding to a subobject of the rvalue is going to require more
3165      // AST annotation than this.
3166      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3167    }
3168    return false;
3169  }
3170
3171  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3172  //          initialized from the initializer expression using the
3173  //          rules for a non-reference copy initialization (8.5). The
3174  //          reference is then bound to the temporary. If T1 is
3175  //          reference-related to T2, cv1 must be the same
3176  //          cv-qualification as, or greater cv-qualification than,
3177  //          cv2; otherwise, the program is ill-formed.
3178  if (RefRelationship == Ref_Related) {
3179    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3180    // we would be reference-compatible or reference-compatible with
3181    // added qualification. But that wasn't the case, so the reference
3182    // initialization fails.
3183    if (!ICS)
3184      Diag(Init->getSourceRange().getBegin(),
3185           diag::err_reference_init_drops_quals)
3186        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3187        << T2 << Init->getSourceRange();
3188    return true;
3189  }
3190
3191  // If at least one of the types is a class type, the types are not
3192  // related, and we aren't allowed any user conversions, the
3193  // reference binding fails. This case is important for breaking
3194  // recursion, since TryImplicitConversion below will attempt to
3195  // create a temporary through the use of a copy constructor.
3196  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3197      (T1->isRecordType() || T2->isRecordType())) {
3198    if (!ICS)
3199      Diag(Init->getSourceRange().getBegin(),
3200           diag::err_typecheck_convert_incompatible)
3201        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3202    return true;
3203  }
3204
3205  // Actually try to convert the initializer to T1.
3206  if (ICS) {
3207    // C++ [over.ics.ref]p2:
3208    //
3209    //   When a parameter of reference type is not bound directly to
3210    //   an argument expression, the conversion sequence is the one
3211    //   required to convert the argument expression to the
3212    //   underlying type of the reference according to
3213    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3214    //   to copy-initializing a temporary of the underlying type with
3215    //   the argument expression. Any difference in top-level
3216    //   cv-qualification is subsumed by the initialization itself
3217    //   and does not constitute a conversion.
3218    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3219                                 /*AllowExplicit=*/false,
3220                                 /*ForceRValue=*/false,
3221                                 /*InOverloadResolution=*/false);
3222
3223    // Of course, that's still a reference binding.
3224    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3225      ICS->Standard.ReferenceBinding = true;
3226      ICS->Standard.RRefBinding = isRValRef;
3227    } else if(ICS->ConversionKind ==
3228              ImplicitConversionSequence::UserDefinedConversion) {
3229      ICS->UserDefined.After.ReferenceBinding = true;
3230      ICS->UserDefined.After.RRefBinding = isRValRef;
3231    }
3232    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3233  } else {
3234    return PerformImplicitConversion(Init, T1, "initializing");
3235  }
3236}
3237
3238/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3239/// of this overloaded operator is well-formed. If so, returns false;
3240/// otherwise, emits appropriate diagnostics and returns true.
3241bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3242  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3243         "Expected an overloaded operator declaration");
3244
3245  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3246
3247  // C++ [over.oper]p5:
3248  //   The allocation and deallocation functions, operator new,
3249  //   operator new[], operator delete and operator delete[], are
3250  //   described completely in 3.7.3. The attributes and restrictions
3251  //   found in the rest of this subclause do not apply to them unless
3252  //   explicitly stated in 3.7.3.
3253  // FIXME: Write a separate routine for checking this. For now, just allow it.
3254  if (Op == OO_New || Op == OO_Array_New ||
3255      Op == OO_Delete || Op == OO_Array_Delete)
3256    return false;
3257
3258  // C++ [over.oper]p6:
3259  //   An operator function shall either be a non-static member
3260  //   function or be a non-member function and have at least one
3261  //   parameter whose type is a class, a reference to a class, an
3262  //   enumeration, or a reference to an enumeration.
3263  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3264    if (MethodDecl->isStatic())
3265      return Diag(FnDecl->getLocation(),
3266                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3267  } else {
3268    bool ClassOrEnumParam = false;
3269    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3270                                   ParamEnd = FnDecl->param_end();
3271         Param != ParamEnd; ++Param) {
3272      QualType ParamType = (*Param)->getType().getNonReferenceType();
3273      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3274          ParamType->isEnumeralType()) {
3275        ClassOrEnumParam = true;
3276        break;
3277      }
3278    }
3279
3280    if (!ClassOrEnumParam)
3281      return Diag(FnDecl->getLocation(),
3282                  diag::err_operator_overload_needs_class_or_enum)
3283        << FnDecl->getDeclName();
3284  }
3285
3286  // C++ [over.oper]p8:
3287  //   An operator function cannot have default arguments (8.3.6),
3288  //   except where explicitly stated below.
3289  //
3290  // Only the function-call operator allows default arguments
3291  // (C++ [over.call]p1).
3292  if (Op != OO_Call) {
3293    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3294         Param != FnDecl->param_end(); ++Param) {
3295      if ((*Param)->hasUnparsedDefaultArg())
3296        return Diag((*Param)->getLocation(),
3297                    diag::err_operator_overload_default_arg)
3298          << FnDecl->getDeclName();
3299      else if (Expr *DefArg = (*Param)->getDefaultArg())
3300        return Diag((*Param)->getLocation(),
3301                    diag::err_operator_overload_default_arg)
3302          << FnDecl->getDeclName() << DefArg->getSourceRange();
3303    }
3304  }
3305
3306  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3307    { false, false, false }
3308#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3309    , { Unary, Binary, MemberOnly }
3310#include "clang/Basic/OperatorKinds.def"
3311  };
3312
3313  bool CanBeUnaryOperator = OperatorUses[Op][0];
3314  bool CanBeBinaryOperator = OperatorUses[Op][1];
3315  bool MustBeMemberOperator = OperatorUses[Op][2];
3316
3317  // C++ [over.oper]p8:
3318  //   [...] Operator functions cannot have more or fewer parameters
3319  //   than the number required for the corresponding operator, as
3320  //   described in the rest of this subclause.
3321  unsigned NumParams = FnDecl->getNumParams()
3322                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3323  if (Op != OO_Call &&
3324      ((NumParams == 1 && !CanBeUnaryOperator) ||
3325       (NumParams == 2 && !CanBeBinaryOperator) ||
3326       (NumParams < 1) || (NumParams > 2))) {
3327    // We have the wrong number of parameters.
3328    unsigned ErrorKind;
3329    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3330      ErrorKind = 2;  // 2 -> unary or binary.
3331    } else if (CanBeUnaryOperator) {
3332      ErrorKind = 0;  // 0 -> unary
3333    } else {
3334      assert(CanBeBinaryOperator &&
3335             "All non-call overloaded operators are unary or binary!");
3336      ErrorKind = 1;  // 1 -> binary
3337    }
3338
3339    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3340      << FnDecl->getDeclName() << NumParams << ErrorKind;
3341  }
3342
3343  // Overloaded operators other than operator() cannot be variadic.
3344  if (Op != OO_Call &&
3345      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3346    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3347      << FnDecl->getDeclName();
3348  }
3349
3350  // Some operators must be non-static member functions.
3351  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3352    return Diag(FnDecl->getLocation(),
3353                diag::err_operator_overload_must_be_member)
3354      << FnDecl->getDeclName();
3355  }
3356
3357  // C++ [over.inc]p1:
3358  //   The user-defined function called operator++ implements the
3359  //   prefix and postfix ++ operator. If this function is a member
3360  //   function with no parameters, or a non-member function with one
3361  //   parameter of class or enumeration type, it defines the prefix
3362  //   increment operator ++ for objects of that type. If the function
3363  //   is a member function with one parameter (which shall be of type
3364  //   int) or a non-member function with two parameters (the second
3365  //   of which shall be of type int), it defines the postfix
3366  //   increment operator ++ for objects of that type.
3367  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3368    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3369    bool ParamIsInt = false;
3370    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3371      ParamIsInt = BT->getKind() == BuiltinType::Int;
3372
3373    if (!ParamIsInt)
3374      return Diag(LastParam->getLocation(),
3375                  diag::err_operator_overload_post_incdec_must_be_int)
3376        << LastParam->getType() << (Op == OO_MinusMinus);
3377  }
3378
3379  // Notify the class if it got an assignment operator.
3380  if (Op == OO_Equal) {
3381    // Would have returned earlier otherwise.
3382    assert(isa<CXXMethodDecl>(FnDecl) &&
3383      "Overloaded = not member, but not filtered.");
3384    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3385    Method->setCopyAssignment(true);
3386    Method->getParent()->addedAssignmentOperator(Context, Method);
3387  }
3388
3389  return false;
3390}
3391
3392/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3393/// linkage specification, including the language and (if present)
3394/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3395/// the location of the language string literal, which is provided
3396/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3397/// the '{' brace. Otherwise, this linkage specification does not
3398/// have any braces.
3399Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3400                                                     SourceLocation ExternLoc,
3401                                                     SourceLocation LangLoc,
3402                                                     const char *Lang,
3403                                                     unsigned StrSize,
3404                                                     SourceLocation LBraceLoc) {
3405  LinkageSpecDecl::LanguageIDs Language;
3406  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3407    Language = LinkageSpecDecl::lang_c;
3408  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3409    Language = LinkageSpecDecl::lang_cxx;
3410  else {
3411    Diag(LangLoc, diag::err_bad_language);
3412    return DeclPtrTy();
3413  }
3414
3415  // FIXME: Add all the various semantics of linkage specifications
3416
3417  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3418                                               LangLoc, Language,
3419                                               LBraceLoc.isValid());
3420  CurContext->addDecl(D);
3421  PushDeclContext(S, D);
3422  return DeclPtrTy::make(D);
3423}
3424
3425/// ActOnFinishLinkageSpecification - Completely the definition of
3426/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3427/// valid, it's the position of the closing '}' brace in a linkage
3428/// specification that uses braces.
3429Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3430                                                      DeclPtrTy LinkageSpec,
3431                                                      SourceLocation RBraceLoc) {
3432  if (LinkageSpec)
3433    PopDeclContext();
3434  return LinkageSpec;
3435}
3436
3437/// \brief Perform semantic analysis for the variable declaration that
3438/// occurs within a C++ catch clause, returning the newly-created
3439/// variable.
3440VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3441                                         DeclaratorInfo *DInfo,
3442                                         IdentifierInfo *Name,
3443                                         SourceLocation Loc,
3444                                         SourceRange Range) {
3445  bool Invalid = false;
3446
3447  // Arrays and functions decay.
3448  if (ExDeclType->isArrayType())
3449    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3450  else if (ExDeclType->isFunctionType())
3451    ExDeclType = Context.getPointerType(ExDeclType);
3452
3453  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3454  // The exception-declaration shall not denote a pointer or reference to an
3455  // incomplete type, other than [cv] void*.
3456  // N2844 forbids rvalue references.
3457  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3458    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3459    Invalid = true;
3460  }
3461
3462  QualType BaseType = ExDeclType;
3463  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3464  unsigned DK = diag::err_catch_incomplete;
3465  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3466    BaseType = Ptr->getPointeeType();
3467    Mode = 1;
3468    DK = diag::err_catch_incomplete_ptr;
3469  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3470    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3471    BaseType = Ref->getPointeeType();
3472    Mode = 2;
3473    DK = diag::err_catch_incomplete_ref;
3474  }
3475  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3476      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3477    Invalid = true;
3478
3479  if (!Invalid && !ExDeclType->isDependentType() &&
3480      RequireNonAbstractType(Loc, ExDeclType,
3481                             diag::err_abstract_type_in_decl,
3482                             AbstractVariableType))
3483    Invalid = true;
3484
3485  // FIXME: Need to test for ability to copy-construct and destroy the
3486  // exception variable.
3487
3488  // FIXME: Need to check for abstract classes.
3489
3490  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3491                                    Name, ExDeclType, DInfo, VarDecl::None);
3492
3493  if (Invalid)
3494    ExDecl->setInvalidDecl();
3495
3496  return ExDecl;
3497}
3498
3499/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3500/// handler.
3501Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3502  DeclaratorInfo *DInfo = 0;
3503  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3504
3505  bool Invalid = D.isInvalidType();
3506  IdentifierInfo *II = D.getIdentifier();
3507  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3508    // The scope should be freshly made just for us. There is just no way
3509    // it contains any previous declaration.
3510    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3511    if (PrevDecl->isTemplateParameter()) {
3512      // Maybe we will complain about the shadowed template parameter.
3513      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3514    }
3515  }
3516
3517  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3518    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3519      << D.getCXXScopeSpec().getRange();
3520    Invalid = true;
3521  }
3522
3523  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3524                                              D.getIdentifier(),
3525                                              D.getIdentifierLoc(),
3526                                            D.getDeclSpec().getSourceRange());
3527
3528  if (Invalid)
3529    ExDecl->setInvalidDecl();
3530
3531  // Add the exception declaration into this scope.
3532  if (II)
3533    PushOnScopeChains(ExDecl, S);
3534  else
3535    CurContext->addDecl(ExDecl);
3536
3537  ProcessDeclAttributes(S, ExDecl, D);
3538  return DeclPtrTy::make(ExDecl);
3539}
3540
3541Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3542                                                   ExprArg assertexpr,
3543                                                   ExprArg assertmessageexpr) {
3544  Expr *AssertExpr = (Expr *)assertexpr.get();
3545  StringLiteral *AssertMessage =
3546    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3547
3548  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3549    llvm::APSInt Value(32);
3550    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3551      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3552        AssertExpr->getSourceRange();
3553      return DeclPtrTy();
3554    }
3555
3556    if (Value == 0) {
3557      std::string str(AssertMessage->getStrData(),
3558                      AssertMessage->getByteLength());
3559      Diag(AssertLoc, diag::err_static_assert_failed)
3560        << str << AssertExpr->getSourceRange();
3561    }
3562  }
3563
3564  assertexpr.release();
3565  assertmessageexpr.release();
3566  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3567                                        AssertExpr, AssertMessage);
3568
3569  CurContext->addDecl(Decl);
3570  return DeclPtrTy::make(Decl);
3571}
3572
3573Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3574                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3575                                      bool IsDefinition) {
3576  if (DU.is<Declarator*>())
3577    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3578  else
3579    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3580}
3581
3582Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3583                                          const DeclSpec &DS,
3584                                          bool IsDefinition) {
3585  SourceLocation Loc = DS.getSourceRange().getBegin();
3586
3587  assert(DS.isFriendSpecified());
3588  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3589
3590  // Check to see if the decl spec was syntactically like "struct foo".
3591  RecordDecl *RD = NULL;
3592
3593  switch (DS.getTypeSpecType()) {
3594  case DeclSpec::TST_class:
3595  case DeclSpec::TST_struct:
3596  case DeclSpec::TST_union:
3597    RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3598    if (!RD) return DeclPtrTy();
3599
3600    // The parser doesn't quite handle
3601    //   friend class A {}
3602    // as we'd like, because it might have been the (valid) prefix of
3603    //   friend class A {} foo();
3604    // So even in C++0x mode we don't want to
3605    IsDefinition |= RD->isDefinition();
3606    break;
3607
3608  default: break;
3609  }
3610
3611  FriendDecl::FriendUnion FU = RD;
3612
3613  // C++ [class.friend]p2:
3614  //   An elaborated-type-specifier shall be used in a friend declaration
3615  //   for a class.*
3616  //   * The class-key of the elaborated-type-specifier is required.
3617  // So if we didn't get a record decl above, we're invalid in C++98 mode.
3618  if (!RD) {
3619    bool invalid = false;
3620    QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3621    if (invalid) return DeclPtrTy();
3622
3623    if (const RecordType *RT = T->getAs<RecordType>()) {
3624      FU = RD = cast<CXXRecordDecl>(RT->getDecl());
3625
3626      // Untagged typenames are invalid prior to C++0x, but we can
3627      // suggest an easy fix which should work.
3628      if (!getLangOptions().CPlusPlus0x) {
3629        Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3630          << (RD->isUnion())
3631          << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3632                                        RD->isUnion() ? " union" : " class");
3633        return DeclPtrTy();
3634      }
3635    }else if (!getLangOptions().CPlusPlus0x) {
3636      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3637          << DS.getSourceRange();
3638      return DeclPtrTy();
3639    }else {
3640      FU = T.getTypePtr();
3641    }
3642  }
3643
3644  assert(FU && "should have a friend decl/type by here!");
3645
3646  // C++ [class.friend]p2: A class shall not be defined inside
3647  //   a friend declaration.
3648  if (IsDefinition) {
3649    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3650      << DS.getSourceRange();
3651    return DeclPtrTy();
3652  }
3653
3654  // C++98 [class.friend]p1: A friend of a class is a function
3655  //   or class that is not a member of the class . . .
3656  // But that's a silly restriction which nobody implements for
3657  // inner classes, and C++0x removes it anyway, so we only report
3658  // this (as a warning) if we're being pedantic.
3659  if (!getLangOptions().CPlusPlus0x) {
3660    assert(RD && "must have a record decl in C++98 mode");
3661    if (RD->getDeclContext() == CurContext)
3662      Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3663  }
3664
3665  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
3666                                      DS.getFriendSpecLoc());
3667  FD->setAccess(AS_public);
3668  CurContext->addDecl(FD);
3669
3670  return DeclPtrTy::make(FD);
3671}
3672
3673Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
3674                                              Declarator &D,
3675                                              bool IsDefinition) {
3676  const DeclSpec &DS = D.getDeclSpec();
3677
3678  assert(DS.isFriendSpecified());
3679  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3680
3681  SourceLocation Loc = D.getIdentifierLoc();
3682  DeclaratorInfo *DInfo = 0;
3683  QualType T = GetTypeForDeclarator(D, S, &DInfo);
3684
3685  // C++ [class.friend]p1
3686  //   A friend of a class is a function or class....
3687  // Note that this sees through typedefs, which is intended.
3688  // It *doesn't* see through dependent types, which is correct
3689  // according to [temp.arg.type]p3:
3690  //   If a declaration acquires a function type through a
3691  //   type dependent on a template-parameter and this causes
3692  //   a declaration that does not use the syntactic form of a
3693  //   function declarator to have a function type, the program
3694  //   is ill-formed.
3695  if (!T->isFunctionType()) {
3696    Diag(Loc, diag::err_unexpected_friend);
3697
3698    // It might be worthwhile to try to recover by creating an
3699    // appropriate declaration.
3700    return DeclPtrTy();
3701  }
3702
3703  // C++ [namespace.memdef]p3
3704  //  - If a friend declaration in a non-local class first declares a
3705  //    class or function, the friend class or function is a member
3706  //    of the innermost enclosing namespace.
3707  //  - The name of the friend is not found by simple name lookup
3708  //    until a matching declaration is provided in that namespace
3709  //    scope (either before or after the class declaration granting
3710  //    friendship).
3711  //  - If a friend function is called, its name may be found by the
3712  //    name lookup that considers functions from namespaces and
3713  //    classes associated with the types of the function arguments.
3714  //  - When looking for a prior declaration of a class or a function
3715  //    declared as a friend, scopes outside the innermost enclosing
3716  //    namespace scope are not considered.
3717
3718  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
3719  DeclarationName Name = GetNameForDeclarator(D);
3720  assert(Name);
3721
3722  // The existing declaration we found.
3723  FunctionDecl *FD = NULL;
3724
3725  // The context we found the declaration in, or in which we should
3726  // create the declaration.
3727  DeclContext *DC;
3728
3729  // FIXME: handle local classes
3730
3731  // Recover from invalid scope qualifiers as if they just weren't there.
3732  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3733    DC = computeDeclContext(ScopeQual);
3734
3735    // FIXME: handle dependent contexts
3736    if (!DC) return DeclPtrTy();
3737
3738    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3739
3740    // If searching in that context implicitly found a declaration in
3741    // a different context, treat it like it wasn't found at all.
3742    // TODO: better diagnostics for this case.  Suggesting the right
3743    // qualified scope would be nice...
3744    if (!Dec || Dec->getDeclContext() != DC) {
3745      D.setInvalidType();
3746      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3747      return DeclPtrTy();
3748    }
3749
3750    // C++ [class.friend]p1: A friend of a class is a function or
3751    //   class that is not a member of the class . . .
3752    if (DC == CurContext)
3753      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3754
3755    FD = cast<FunctionDecl>(Dec);
3756
3757  // Otherwise walk out to the nearest namespace scope looking for matches.
3758  } else {
3759    // TODO: handle local class contexts.
3760
3761    DC = CurContext;
3762    while (true) {
3763      // Skip class contexts.  If someone can cite chapter and verse
3764      // for this behavior, that would be nice --- it's what GCC and
3765      // EDG do, and it seems like a reasonable intent, but the spec
3766      // really only says that checks for unqualified existing
3767      // declarations should stop at the nearest enclosing namespace,
3768      // not that they should only consider the nearest enclosing
3769      // namespace.
3770      while (DC->isRecord()) DC = DC->getParent();
3771
3772      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3773
3774      // TODO: decide what we think about using declarations.
3775      if (Dec) {
3776        FD = cast<FunctionDecl>(Dec);
3777        break;
3778      }
3779      if (DC->isFileContext()) break;
3780      DC = DC->getParent();
3781    }
3782
3783    // C++ [class.friend]p1: A friend of a class is a function or
3784    //   class that is not a member of the class . . .
3785    // C++0x changes this for both friend types and functions.
3786    // Most C++ 98 compilers do seem to give an error here, so
3787    // we do, too.
3788    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3789      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3790  }
3791
3792  bool Redeclaration = (FD != 0);
3793
3794  // If we found a match, create a friend function declaration with
3795  // that function as the previous declaration.
3796  if (Redeclaration) {
3797    // Create it in the semantic context of the original declaration.
3798    DC = FD->getDeclContext();
3799
3800  // If we didn't find something matching the type exactly, create
3801  // a declaration.  This declaration should only be findable via
3802  // argument-dependent lookup.
3803  } else {
3804    assert(DC->isFileContext());
3805
3806    // This implies that it has to be an operator or function.
3807    if (D.getKind() == Declarator::DK_Constructor ||
3808        D.getKind() == Declarator::DK_Destructor ||
3809        D.getKind() == Declarator::DK_Conversion) {
3810      Diag(Loc, diag::err_introducing_special_friend) <<
3811        (D.getKind() == Declarator::DK_Constructor ? 0 :
3812         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
3813      return DeclPtrTy();
3814    }
3815  }
3816
3817  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
3818                                          /* PrevDecl = */ FD,
3819                                          MultiTemplateParamsArg(*this),
3820                                          IsDefinition,
3821                                          Redeclaration);
3822  if (!ND) return DeclPtrTy();
3823  FD = cast<FunctionDecl>(ND);
3824
3825  assert(FD->getDeclContext() == DC);
3826  assert(FD->getLexicalDeclContext() == CurContext);
3827
3828  // We only add the function declaration to the lookup tables, not
3829  // the decl list, and only if the context isn't dependent.
3830  if (!CurContext->isDependentContext())
3831    DC->makeDeclVisibleInContext(FD);
3832
3833  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
3834                                       D.getIdentifierLoc(), FD,
3835                                       DS.getFriendSpecLoc());
3836  FrD->setAccess(AS_public);
3837  CurContext->addDecl(FrD);
3838
3839  return DeclPtrTy::make(FD);
3840}
3841
3842void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3843  AdjustDeclIfTemplate(dcl);
3844
3845  Decl *Dcl = dcl.getAs<Decl>();
3846  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3847  if (!Fn) {
3848    Diag(DelLoc, diag::err_deleted_non_function);
3849    return;
3850  }
3851  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3852    Diag(DelLoc, diag::err_deleted_decl_not_first);
3853    Diag(Prev->getLocation(), diag::note_previous_declaration);
3854    // If the declaration wasn't the first, we delete the function anyway for
3855    // recovery.
3856  }
3857  Fn->setDeleted();
3858}
3859
3860static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3861  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3862       ++CI) {
3863    Stmt *SubStmt = *CI;
3864    if (!SubStmt)
3865      continue;
3866    if (isa<ReturnStmt>(SubStmt))
3867      Self.Diag(SubStmt->getSourceRange().getBegin(),
3868           diag::err_return_in_constructor_handler);
3869    if (!isa<Expr>(SubStmt))
3870      SearchForReturnInStmt(Self, SubStmt);
3871  }
3872}
3873
3874void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3875  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3876    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3877    SearchForReturnInStmt(*this, Handler);
3878  }
3879}
3880
3881bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3882                                             const CXXMethodDecl *Old) {
3883  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3884  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3885
3886  QualType CNewTy = Context.getCanonicalType(NewTy);
3887  QualType COldTy = Context.getCanonicalType(OldTy);
3888
3889  if (CNewTy == COldTy &&
3890      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3891    return false;
3892
3893  // Check if the return types are covariant
3894  QualType NewClassTy, OldClassTy;
3895
3896  /// Both types must be pointers or references to classes.
3897  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3898    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3899      NewClassTy = NewPT->getPointeeType();
3900      OldClassTy = OldPT->getPointeeType();
3901    }
3902  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3903    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3904      NewClassTy = NewRT->getPointeeType();
3905      OldClassTy = OldRT->getPointeeType();
3906    }
3907  }
3908
3909  // The return types aren't either both pointers or references to a class type.
3910  if (NewClassTy.isNull()) {
3911    Diag(New->getLocation(),
3912         diag::err_different_return_type_for_overriding_virtual_function)
3913      << New->getDeclName() << NewTy << OldTy;
3914    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3915
3916    return true;
3917  }
3918
3919  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3920    // Check if the new class derives from the old class.
3921    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3922      Diag(New->getLocation(),
3923           diag::err_covariant_return_not_derived)
3924      << New->getDeclName() << NewTy << OldTy;
3925      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3926      return true;
3927    }
3928
3929    // Check if we the conversion from derived to base is valid.
3930    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3931                      diag::err_covariant_return_inaccessible_base,
3932                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3933                      // FIXME: Should this point to the return type?
3934                      New->getLocation(), SourceRange(), New->getDeclName())) {
3935      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3936      return true;
3937    }
3938  }
3939
3940  // The qualifiers of the return types must be the same.
3941  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3942    Diag(New->getLocation(),
3943         diag::err_covariant_return_type_different_qualifications)
3944    << New->getDeclName() << NewTy << OldTy;
3945    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3946    return true;
3947  };
3948
3949
3950  // The new class type must have the same or less qualifiers as the old type.
3951  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3952    Diag(New->getLocation(),
3953         diag::err_covariant_return_type_class_type_more_qualified)
3954    << New->getDeclName() << NewTy << OldTy;
3955    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3956    return true;
3957  };
3958
3959  return false;
3960}
3961
3962bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3963                                                const CXXMethodDecl *Old)
3964{
3965  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3966                                  diag::note_overridden_virtual_function,
3967                                  Old->getType()->getAsFunctionProtoType(),
3968                                  Old->getLocation(),
3969                                  New->getType()->getAsFunctionProtoType(),
3970                                  New->getLocation());
3971}
3972
3973/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3974/// initializer for the declaration 'Dcl'.
3975/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3976/// static data member of class X, names should be looked up in the scope of
3977/// class X.
3978void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3979  AdjustDeclIfTemplate(Dcl);
3980
3981  Decl *D = Dcl.getAs<Decl>();
3982  // If there is no declaration, there was an error parsing it.
3983  if (D == 0)
3984    return;
3985
3986  // Check whether it is a declaration with a nested name specifier like
3987  // int foo::bar;
3988  if (!D->isOutOfLine())
3989    return;
3990
3991  // C++ [basic.lookup.unqual]p13
3992  //
3993  // A name used in the definition of a static data member of class X
3994  // (after the qualified-id of the static member) is looked up as if the name
3995  // was used in a member function of X.
3996
3997  // Change current context into the context of the initializing declaration.
3998  EnterDeclaratorContext(S, D->getDeclContext());
3999}
4000
4001/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4002/// initializer for the declaration 'Dcl'.
4003void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4004  AdjustDeclIfTemplate(Dcl);
4005
4006  Decl *D = Dcl.getAs<Decl>();
4007  // If there is no declaration, there was an error parsing it.
4008  if (D == 0)
4009    return;
4010
4011  // Check whether it is a declaration with a nested name specifier like
4012  // int foo::bar;
4013  if (!D->isOutOfLine())
4014    return;
4015
4016  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4017  ExitDeclaratorContext(S);
4018}
4019