SemaDeclCXX.cpp revision 44d95b55711bc5c2e4055ebf1b5156e7fd3f0196
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 CXXRecordDecl *ClassDecl) {
2129  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2130  if (!LangOpts.CPlusPlus0x)
2131    return Diag(NameLoc, diag::err_delegating_ctor)
2132      << TInfo->getTypeLoc().getLocalSourceRange();
2133  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2134
2135  // Initialize the object.
2136  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2137                                     QualType(ClassDecl->getTypeForDecl(), 0));
2138  InitializationKind Kind =
2139    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2140                                     Args.getEndLoc());
2141
2142  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2143  if (DelegationInit.isInvalid())
2144    return true;
2145
2146  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2147         "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2159                                          DelegationInit.takeAs<Expr>(),
2160                                          Args.getEndLoc());
2161}
2162
2163MemInitResult
2164Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2165                           const MultiInitializer &Args,
2166                           CXXRecordDecl *ClassDecl,
2167                           SourceLocation EllipsisLoc) {
2168  bool HasDependentArg = Args.isTypeDependent();
2169
2170  SourceLocation BaseLoc
2171    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2172
2173  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2174    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2175             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2176
2177  // C++ [class.base.init]p2:
2178  //   [...] Unless the mem-initializer-id names a nonstatic data
2179  //   member of the constructor's class or a direct or virtual base
2180  //   of that class, the mem-initializer is ill-formed. A
2181  //   mem-initializer-list can initialize a base class using any
2182  //   name that denotes that base class type.
2183  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2184
2185  if (EllipsisLoc.isValid()) {
2186    // This is a pack expansion.
2187    if (!BaseType->containsUnexpandedParameterPack())  {
2188      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2189        << SourceRange(BaseLoc, Args.getEndLoc());
2190
2191      EllipsisLoc = SourceLocation();
2192    }
2193  } else {
2194    // Check for any unexpanded parameter packs.
2195    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2196      return true;
2197
2198    if (Args.DiagnoseUnexpandedParameterPack(*this))
2199      return true;
2200  }
2201
2202  // Check for direct and virtual base classes.
2203  const CXXBaseSpecifier *DirectBaseSpec = 0;
2204  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2205  if (!Dependent) {
2206    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2207                                       BaseType))
2208      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2209
2210    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2211                        VirtualBaseSpec);
2212
2213    // C++ [base.class.init]p2:
2214    // Unless the mem-initializer-id names a nonstatic data member of the
2215    // constructor's class or a direct or virtual base of that class, the
2216    // mem-initializer is ill-formed.
2217    if (!DirectBaseSpec && !VirtualBaseSpec) {
2218      // If the class has any dependent bases, then it's possible that
2219      // one of those types will resolve to the same type as
2220      // BaseType. Therefore, just treat this as a dependent base
2221      // class initialization.  FIXME: Should we try to check the
2222      // initialization anyway? It seems odd.
2223      if (ClassDecl->hasAnyDependentBases())
2224        Dependent = true;
2225      else
2226        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2227          << BaseType << Context.getTypeDeclType(ClassDecl)
2228          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229    }
2230  }
2231
2232  if (Dependent) {
2233    // Can't check initialization for a base of dependent type or when
2234    // any of the arguments are type-dependent expressions.
2235    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2236
2237    DiscardCleanupsInEvaluationContext();
2238
2239    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2240                                            /*IsVirtual=*/false,
2241                                            Args.getStartLoc(), BaseInit,
2242                                            Args.getEndLoc(), EllipsisLoc);
2243  }
2244
2245  // C++ [base.class.init]p2:
2246  //   If a mem-initializer-id is ambiguous because it designates both
2247  //   a direct non-virtual base class and an inherited virtual base
2248  //   class, the mem-initializer is ill-formed.
2249  if (DirectBaseSpec && VirtualBaseSpec)
2250    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2251      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  CXXBaseSpecifier *BaseSpec
2254    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2255  if (!BaseSpec)
2256    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2257
2258  // Initialize the base.
2259  InitializedEntity BaseEntity =
2260    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2261  InitializationKind Kind =
2262    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2263                                     Args.getEndLoc());
2264
2265  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2266  if (BaseInit.isInvalid())
2267    return true;
2268
2269  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2270
2271  // C++0x [class.base.init]p7:
2272  //   The initialization of each base and member constitutes a
2273  //   full-expression.
2274  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2275  if (BaseInit.isInvalid())
2276    return true;
2277
2278  // If we are in a dependent context, template instantiation will
2279  // perform this type-checking again. Just save the arguments that we
2280  // received in a ParenListExpr.
2281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2282  // of the information that we have about the base
2283  // initializer. However, deconstructing the ASTs is a dicey process,
2284  // and this approach is far more likely to get the corner cases right.
2285  if (CurContext->isDependentContext())
2286    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2287
2288  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2289                                          BaseSpec->isVirtual(),
2290                                          Args.getStartLoc(),
2291                                          BaseInit.takeAs<Expr>(),
2292                                          Args.getEndLoc(), EllipsisLoc);
2293}
2294
2295// Create a static_cast\<T&&>(expr).
2296static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2297  QualType ExprType = E->getType();
2298  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2299  SourceLocation ExprLoc = E->getLocStart();
2300  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2301      TargetType, ExprLoc);
2302
2303  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2304                                   SourceRange(ExprLoc, ExprLoc),
2305                                   E->getSourceRange()).take();
2306}
2307
2308/// ImplicitInitializerKind - How an implicit base or member initializer should
2309/// initialize its base or member.
2310enum ImplicitInitializerKind {
2311  IIK_Default,
2312  IIK_Copy,
2313  IIK_Move
2314};
2315
2316static bool
2317BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2318                             ImplicitInitializerKind ImplicitInitKind,
2319                             CXXBaseSpecifier *BaseSpec,
2320                             bool IsInheritedVirtualBase,
2321                             CXXCtorInitializer *&CXXBaseInit) {
2322  InitializedEntity InitEntity
2323    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2324                                        IsInheritedVirtualBase);
2325
2326  ExprResult BaseInit;
2327
2328  switch (ImplicitInitKind) {
2329  case IIK_Default: {
2330    InitializationKind InitKind
2331      = InitializationKind::CreateDefault(Constructor->getLocation());
2332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2333    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2334                               MultiExprArg(SemaRef, 0, 0));
2335    break;
2336  }
2337
2338  case IIK_Move:
2339  case IIK_Copy: {
2340    bool Moving = ImplicitInitKind == IIK_Move;
2341    ParmVarDecl *Param = Constructor->getParamDecl(0);
2342    QualType ParamType = Param->getType().getNonReferenceType();
2343
2344    Expr *CopyCtorArg =
2345      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2346                          Constructor->getLocation(), ParamType,
2347                          VK_LValue, 0);
2348
2349    // Cast to the base class to avoid ambiguities.
2350    QualType ArgTy =
2351      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2352                                       ParamType.getQualifiers());
2353
2354    if (Moving) {
2355      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2356    }
2357
2358    CXXCastPath BasePath;
2359    BasePath.push_back(BaseSpec);
2360    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2361                                            CK_UncheckedDerivedToBase,
2362                                            Moving ? VK_XValue : VK_LValue,
2363                                            &BasePath).take();
2364
2365    InitializationKind InitKind
2366      = InitializationKind::CreateDirect(Constructor->getLocation(),
2367                                         SourceLocation(), SourceLocation());
2368    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2369                                   &CopyCtorArg, 1);
2370    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2371                               MultiExprArg(&CopyCtorArg, 1));
2372    break;
2373  }
2374  }
2375
2376  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2377  if (BaseInit.isInvalid())
2378    return true;
2379
2380  CXXBaseInit =
2381    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2382               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2383                                                        SourceLocation()),
2384                                             BaseSpec->isVirtual(),
2385                                             SourceLocation(),
2386                                             BaseInit.takeAs<Expr>(),
2387                                             SourceLocation(),
2388                                             SourceLocation());
2389
2390  return false;
2391}
2392
2393static bool RefersToRValueRef(Expr *MemRef) {
2394  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2395  return Referenced->getType()->isRValueReferenceType();
2396}
2397
2398static bool
2399BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                               ImplicitInitializerKind ImplicitInitKind,
2401                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2402                               CXXCtorInitializer *&CXXMemberInit) {
2403  if (Field->isInvalidDecl())
2404    return true;
2405
2406  SourceLocation Loc = Constructor->getLocation();
2407
2408  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2409    bool Moving = ImplicitInitKind == IIK_Move;
2410    ParmVarDecl *Param = Constructor->getParamDecl(0);
2411    QualType ParamType = Param->getType().getNonReferenceType();
2412
2413    // Suppress copying zero-width bitfields.
2414    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2415      return false;
2416
2417    Expr *MemberExprBase =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2419                          Loc, ParamType, VK_LValue, 0);
2420
2421    if (Moving) {
2422      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2423    }
2424
2425    // Build a reference to this field within the parameter.
2426    CXXScopeSpec SS;
2427    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2428                              Sema::LookupMemberName);
2429    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2430                                  : cast<ValueDecl>(Field), AS_public);
2431    MemberLookup.resolveKind();
2432    ExprResult CtorArg
2433      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2434                                         ParamType, Loc,
2435                                         /*IsArrow=*/false,
2436                                         SS,
2437                                         /*FirstQualifierInScope=*/0,
2438                                         MemberLookup,
2439                                         /*TemplateArgs=*/0);
2440    if (CtorArg.isInvalid())
2441      return true;
2442
2443    // C++11 [class.copy]p15:
2444    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2445    //     with static_cast<T&&>(x.m);
2446    if (RefersToRValueRef(CtorArg.get())) {
2447      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2448    }
2449
2450    // When the field we are copying is an array, create index variables for
2451    // each dimension of the array. We use these index variables to subscript
2452    // the source array, and other clients (e.g., CodeGen) will perform the
2453    // necessary iteration with these index variables.
2454    SmallVector<VarDecl *, 4> IndexVariables;
2455    QualType BaseType = Field->getType();
2456    QualType SizeType = SemaRef.Context.getSizeType();
2457    bool InitializingArray = false;
2458    while (const ConstantArrayType *Array
2459                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2460      InitializingArray = true;
2461      // Create the iteration variable for this array index.
2462      IdentifierInfo *IterationVarName = 0;
2463      {
2464        llvm::SmallString<8> Str;
2465        llvm::raw_svector_ostream OS(Str);
2466        OS << "__i" << IndexVariables.size();
2467        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2468      }
2469      VarDecl *IterationVar
2470        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2471                          IterationVarName, SizeType,
2472                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2473                          SC_None, SC_None);
2474      IndexVariables.push_back(IterationVar);
2475
2476      // Create a reference to the iteration variable.
2477      ExprResult IterationVarRef
2478        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2479      assert(!IterationVarRef.isInvalid() &&
2480             "Reference to invented variable cannot fail!");
2481
2482      // Subscript the array with this iteration variable.
2483      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2484                                                        IterationVarRef.take(),
2485                                                        Loc);
2486      if (CtorArg.isInvalid())
2487        return true;
2488
2489      BaseType = Array->getElementType();
2490    }
2491
2492    // The array subscript expression is an lvalue, which is wrong for moving.
2493    if (Moving && InitializingArray)
2494      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2495
2496    // Construct the entity that we will be initializing. For an array, this
2497    // will be first element in the array, which may require several levels
2498    // of array-subscript entities.
2499    SmallVector<InitializedEntity, 4> Entities;
2500    Entities.reserve(1 + IndexVariables.size());
2501    if (Indirect)
2502      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2503    else
2504      Entities.push_back(InitializedEntity::InitializeMember(Field));
2505    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2506      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2507                                                              0,
2508                                                              Entities.back()));
2509
2510    // Direct-initialize to use the copy constructor.
2511    InitializationKind InitKind =
2512      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2513
2514    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2515    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2516                                   &CtorArgE, 1);
2517
2518    ExprResult MemberInit
2519      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2520                        MultiExprArg(&CtorArgE, 1));
2521    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2522    if (MemberInit.isInvalid())
2523      return true;
2524
2525    if (Indirect) {
2526      assert(IndexVariables.size() == 0 &&
2527             "Indirect field improperly initialized");
2528      CXXMemberInit
2529        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2530                                                   Loc, Loc,
2531                                                   MemberInit.takeAs<Expr>(),
2532                                                   Loc);
2533    } else
2534      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2535                                                 Loc, MemberInit.takeAs<Expr>(),
2536                                                 Loc,
2537                                                 IndexVariables.data(),
2538                                                 IndexVariables.size());
2539    return false;
2540  }
2541
2542  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2543
2544  QualType FieldBaseElementType =
2545    SemaRef.Context.getBaseElementType(Field->getType());
2546
2547  if (FieldBaseElementType->isRecordType()) {
2548    InitializedEntity InitEntity
2549      = Indirect? InitializedEntity::InitializeMember(Indirect)
2550                : InitializedEntity::InitializeMember(Field);
2551    InitializationKind InitKind =
2552      InitializationKind::CreateDefault(Loc);
2553
2554    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2555    ExprResult MemberInit =
2556      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2557
2558    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2559    if (MemberInit.isInvalid())
2560      return true;
2561
2562    if (Indirect)
2563      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2564                                                               Indirect, Loc,
2565                                                               Loc,
2566                                                               MemberInit.get(),
2567                                                               Loc);
2568    else
2569      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2570                                                               Field, Loc, Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    return false;
2574  }
2575
2576  if (!Field->getParent()->isUnion()) {
2577    if (FieldBaseElementType->isReferenceType()) {
2578      SemaRef.Diag(Constructor->getLocation(),
2579                   diag::err_uninitialized_member_in_ctor)
2580      << (int)Constructor->isImplicit()
2581      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2582      << 0 << Field->getDeclName();
2583      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2584      return true;
2585    }
2586
2587    if (FieldBaseElementType.isConstQualified()) {
2588      SemaRef.Diag(Constructor->getLocation(),
2589                   diag::err_uninitialized_member_in_ctor)
2590      << (int)Constructor->isImplicit()
2591      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2592      << 1 << Field->getDeclName();
2593      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2594      return true;
2595    }
2596  }
2597
2598  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2599      FieldBaseElementType->isObjCRetainableType() &&
2600      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2601      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2602    // Instant objects:
2603    //   Default-initialize Objective-C pointers to NULL.
2604    CXXMemberInit
2605      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2606                                                 Loc, Loc,
2607                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2608                                                 Loc);
2609    return false;
2610  }
2611
2612  // Nothing to initialize.
2613  CXXMemberInit = 0;
2614  return false;
2615}
2616
2617namespace {
2618struct BaseAndFieldInfo {
2619  Sema &S;
2620  CXXConstructorDecl *Ctor;
2621  bool AnyErrorsInInits;
2622  ImplicitInitializerKind IIK;
2623  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2624  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2625
2626  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2627    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2628    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2629    if (Generated && Ctor->isCopyConstructor())
2630      IIK = IIK_Copy;
2631    else if (Generated && Ctor->isMoveConstructor())
2632      IIK = IIK_Move;
2633    else
2634      IIK = IIK_Default;
2635  }
2636
2637  bool isImplicitCopyOrMove() const {
2638    switch (IIK) {
2639    case IIK_Copy:
2640    case IIK_Move:
2641      return true;
2642
2643    case IIK_Default:
2644      return false;
2645    }
2646
2647    return false;
2648  }
2649};
2650}
2651
2652/// \brief Determine whether the given indirect field declaration is somewhere
2653/// within an anonymous union.
2654static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2655  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2656                                      CEnd = F->chain_end();
2657       C != CEnd; ++C)
2658    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2659      if (Record->isUnion())
2660        return true;
2661
2662  return false;
2663}
2664
2665/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2666/// array type.
2667static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2668  if (T->isIncompleteArrayType())
2669    return true;
2670
2671  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2672    if (!ArrayT->getSize())
2673      return true;
2674
2675    T = ArrayT->getElementType();
2676  }
2677
2678  return false;
2679}
2680
2681static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2682                                    FieldDecl *Field,
2683                                    IndirectFieldDecl *Indirect = 0) {
2684
2685  // Overwhelmingly common case: we have a direct initializer for this field.
2686  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2687    Info.AllToInit.push_back(Init);
2688    return false;
2689  }
2690
2691  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2692  // has a brace-or-equal-initializer, the entity is initialized as specified
2693  // in [dcl.init].
2694  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2695    CXXCtorInitializer *Init;
2696    if (Indirect)
2697      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2698                                                      SourceLocation(),
2699                                                      SourceLocation(), 0,
2700                                                      SourceLocation());
2701    else
2702      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2703                                                      SourceLocation(),
2704                                                      SourceLocation(), 0,
2705                                                      SourceLocation());
2706    Info.AllToInit.push_back(Init);
2707    return false;
2708  }
2709
2710  // Don't build an implicit initializer for union members if none was
2711  // explicitly specified.
2712  if (Field->getParent()->isUnion() ||
2713      (Indirect && isWithinAnonymousUnion(Indirect)))
2714    return false;
2715
2716  // Don't initialize incomplete or zero-length arrays.
2717  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2718    return false;
2719
2720  // Don't try to build an implicit initializer if there were semantic
2721  // errors in any of the initializers (and therefore we might be
2722  // missing some that the user actually wrote).
2723  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2724    return false;
2725
2726  CXXCtorInitializer *Init = 0;
2727  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2728                                     Indirect, Init))
2729    return true;
2730
2731  if (Init)
2732    Info.AllToInit.push_back(Init);
2733
2734  return false;
2735}
2736
2737bool
2738Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2739                               CXXCtorInitializer *Initializer) {
2740  assert(Initializer->isDelegatingInitializer());
2741  Constructor->setNumCtorInitializers(1);
2742  CXXCtorInitializer **initializer =
2743    new (Context) CXXCtorInitializer*[1];
2744  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2745  Constructor->setCtorInitializers(initializer);
2746
2747  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2748    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2749    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2750  }
2751
2752  DelegatingCtorDecls.push_back(Constructor);
2753
2754  return false;
2755}
2756
2757bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2758                               CXXCtorInitializer **Initializers,
2759                               unsigned NumInitializers,
2760                               bool AnyErrors) {
2761  if (Constructor->isDependentContext()) {
2762    // Just store the initializers as written, they will be checked during
2763    // instantiation.
2764    if (NumInitializers > 0) {
2765      Constructor->setNumCtorInitializers(NumInitializers);
2766      CXXCtorInitializer **baseOrMemberInitializers =
2767        new (Context) CXXCtorInitializer*[NumInitializers];
2768      memcpy(baseOrMemberInitializers, Initializers,
2769             NumInitializers * sizeof(CXXCtorInitializer*));
2770      Constructor->setCtorInitializers(baseOrMemberInitializers);
2771    }
2772
2773    return false;
2774  }
2775
2776  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2777
2778  // We need to build the initializer AST according to order of construction
2779  // and not what user specified in the Initializers list.
2780  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2781  if (!ClassDecl)
2782    return true;
2783
2784  bool HadError = false;
2785
2786  for (unsigned i = 0; i < NumInitializers; i++) {
2787    CXXCtorInitializer *Member = Initializers[i];
2788
2789    if (Member->isBaseInitializer())
2790      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2791    else
2792      Info.AllBaseFields[Member->getAnyMember()] = Member;
2793  }
2794
2795  // Keep track of the direct virtual bases.
2796  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2797  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2798       E = ClassDecl->bases_end(); I != E; ++I) {
2799    if (I->isVirtual())
2800      DirectVBases.insert(I);
2801  }
2802
2803  // Push virtual bases before others.
2804  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2805       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2806
2807    if (CXXCtorInitializer *Value
2808        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2809      Info.AllToInit.push_back(Value);
2810    } else if (!AnyErrors) {
2811      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2812      CXXCtorInitializer *CXXBaseInit;
2813      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2814                                       VBase, IsInheritedVirtualBase,
2815                                       CXXBaseInit)) {
2816        HadError = true;
2817        continue;
2818      }
2819
2820      Info.AllToInit.push_back(CXXBaseInit);
2821    }
2822  }
2823
2824  // Non-virtual bases.
2825  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2826       E = ClassDecl->bases_end(); Base != E; ++Base) {
2827    // Virtuals are in the virtual base list and already constructed.
2828    if (Base->isVirtual())
2829      continue;
2830
2831    if (CXXCtorInitializer *Value
2832          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2833      Info.AllToInit.push_back(Value);
2834    } else if (!AnyErrors) {
2835      CXXCtorInitializer *CXXBaseInit;
2836      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2837                                       Base, /*IsInheritedVirtualBase=*/false,
2838                                       CXXBaseInit)) {
2839        HadError = true;
2840        continue;
2841      }
2842
2843      Info.AllToInit.push_back(CXXBaseInit);
2844    }
2845  }
2846
2847  // Fields.
2848  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2849                               MemEnd = ClassDecl->decls_end();
2850       Mem != MemEnd; ++Mem) {
2851    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2852      // C++ [class.bit]p2:
2853      //   A declaration for a bit-field that omits the identifier declares an
2854      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2855      //   initialized.
2856      if (F->isUnnamedBitfield())
2857        continue;
2858
2859      // If we're not generating the implicit copy/move constructor, then we'll
2860      // handle anonymous struct/union fields based on their individual
2861      // indirect fields.
2862      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2863        continue;
2864
2865      if (CollectFieldInitializer(*this, Info, F))
2866        HadError = true;
2867      continue;
2868    }
2869
2870    // Beyond this point, we only consider default initialization.
2871    if (Info.IIK != IIK_Default)
2872      continue;
2873
2874    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2875      if (F->getType()->isIncompleteArrayType()) {
2876        assert(ClassDecl->hasFlexibleArrayMember() &&
2877               "Incomplete array type is not valid");
2878        continue;
2879      }
2880
2881      // Initialize each field of an anonymous struct individually.
2882      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2883        HadError = true;
2884
2885      continue;
2886    }
2887  }
2888
2889  NumInitializers = Info.AllToInit.size();
2890  if (NumInitializers > 0) {
2891    Constructor->setNumCtorInitializers(NumInitializers);
2892    CXXCtorInitializer **baseOrMemberInitializers =
2893      new (Context) CXXCtorInitializer*[NumInitializers];
2894    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2895           NumInitializers * sizeof(CXXCtorInitializer*));
2896    Constructor->setCtorInitializers(baseOrMemberInitializers);
2897
2898    // Constructors implicitly reference the base and member
2899    // destructors.
2900    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2901                                           Constructor->getParent());
2902  }
2903
2904  return HadError;
2905}
2906
2907static void *GetKeyForTopLevelField(FieldDecl *Field) {
2908  // For anonymous unions, use the class declaration as the key.
2909  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2910    if (RT->getDecl()->isAnonymousStructOrUnion())
2911      return static_cast<void *>(RT->getDecl());
2912  }
2913  return static_cast<void *>(Field);
2914}
2915
2916static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2917  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2918}
2919
2920static void *GetKeyForMember(ASTContext &Context,
2921                             CXXCtorInitializer *Member) {
2922  if (!Member->isAnyMemberInitializer())
2923    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2924
2925  // For fields injected into the class via declaration of an anonymous union,
2926  // use its anonymous union class declaration as the unique key.
2927  FieldDecl *Field = Member->getAnyMember();
2928
2929  // If the field is a member of an anonymous struct or union, our key
2930  // is the anonymous record decl that's a direct child of the class.
2931  RecordDecl *RD = Field->getParent();
2932  if (RD->isAnonymousStructOrUnion()) {
2933    while (true) {
2934      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2935      if (Parent->isAnonymousStructOrUnion())
2936        RD = Parent;
2937      else
2938        break;
2939    }
2940
2941    return static_cast<void *>(RD);
2942  }
2943
2944  return static_cast<void *>(Field);
2945}
2946
2947static void
2948DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2949                                  const CXXConstructorDecl *Constructor,
2950                                  CXXCtorInitializer **Inits,
2951                                  unsigned NumInits) {
2952  if (Constructor->getDeclContext()->isDependentContext())
2953    return;
2954
2955  // Don't check initializers order unless the warning is enabled at the
2956  // location of at least one initializer.
2957  bool ShouldCheckOrder = false;
2958  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2959    CXXCtorInitializer *Init = Inits[InitIndex];
2960    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2961                                         Init->getSourceLocation())
2962          != DiagnosticsEngine::Ignored) {
2963      ShouldCheckOrder = true;
2964      break;
2965    }
2966  }
2967  if (!ShouldCheckOrder)
2968    return;
2969
2970  // Build the list of bases and members in the order that they'll
2971  // actually be initialized.  The explicit initializers should be in
2972  // this same order but may be missing things.
2973  SmallVector<const void*, 32> IdealInitKeys;
2974
2975  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2976
2977  // 1. Virtual bases.
2978  for (CXXRecordDecl::base_class_const_iterator VBase =
2979       ClassDecl->vbases_begin(),
2980       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2981    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2982
2983  // 2. Non-virtual bases.
2984  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2985       E = ClassDecl->bases_end(); Base != E; ++Base) {
2986    if (Base->isVirtual())
2987      continue;
2988    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2989  }
2990
2991  // 3. Direct fields.
2992  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2993       E = ClassDecl->field_end(); Field != E; ++Field) {
2994    if (Field->isUnnamedBitfield())
2995      continue;
2996
2997    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2998  }
2999
3000  unsigned NumIdealInits = IdealInitKeys.size();
3001  unsigned IdealIndex = 0;
3002
3003  CXXCtorInitializer *PrevInit = 0;
3004  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3005    CXXCtorInitializer *Init = Inits[InitIndex];
3006    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3007
3008    // Scan forward to try to find this initializer in the idealized
3009    // initializers list.
3010    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3011      if (InitKey == IdealInitKeys[IdealIndex])
3012        break;
3013
3014    // If we didn't find this initializer, it must be because we
3015    // scanned past it on a previous iteration.  That can only
3016    // happen if we're out of order;  emit a warning.
3017    if (IdealIndex == NumIdealInits && PrevInit) {
3018      Sema::SemaDiagnosticBuilder D =
3019        SemaRef.Diag(PrevInit->getSourceLocation(),
3020                     diag::warn_initializer_out_of_order);
3021
3022      if (PrevInit->isAnyMemberInitializer())
3023        D << 0 << PrevInit->getAnyMember()->getDeclName();
3024      else
3025        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3026
3027      if (Init->isAnyMemberInitializer())
3028        D << 0 << Init->getAnyMember()->getDeclName();
3029      else
3030        D << 1 << Init->getTypeSourceInfo()->getType();
3031
3032      // Move back to the initializer's location in the ideal list.
3033      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3034        if (InitKey == IdealInitKeys[IdealIndex])
3035          break;
3036
3037      assert(IdealIndex != NumIdealInits &&
3038             "initializer not found in initializer list");
3039    }
3040
3041    PrevInit = Init;
3042  }
3043}
3044
3045namespace {
3046bool CheckRedundantInit(Sema &S,
3047                        CXXCtorInitializer *Init,
3048                        CXXCtorInitializer *&PrevInit) {
3049  if (!PrevInit) {
3050    PrevInit = Init;
3051    return false;
3052  }
3053
3054  if (FieldDecl *Field = Init->getMember())
3055    S.Diag(Init->getSourceLocation(),
3056           diag::err_multiple_mem_initialization)
3057      << Field->getDeclName()
3058      << Init->getSourceRange();
3059  else {
3060    const Type *BaseClass = Init->getBaseClass();
3061    assert(BaseClass && "neither field nor base");
3062    S.Diag(Init->getSourceLocation(),
3063           diag::err_multiple_base_initialization)
3064      << QualType(BaseClass, 0)
3065      << Init->getSourceRange();
3066  }
3067  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3068    << 0 << PrevInit->getSourceRange();
3069
3070  return true;
3071}
3072
3073typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3074typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3075
3076bool CheckRedundantUnionInit(Sema &S,
3077                             CXXCtorInitializer *Init,
3078                             RedundantUnionMap &Unions) {
3079  FieldDecl *Field = Init->getAnyMember();
3080  RecordDecl *Parent = Field->getParent();
3081  NamedDecl *Child = Field;
3082
3083  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3084    if (Parent->isUnion()) {
3085      UnionEntry &En = Unions[Parent];
3086      if (En.first && En.first != Child) {
3087        S.Diag(Init->getSourceLocation(),
3088               diag::err_multiple_mem_union_initialization)
3089          << Field->getDeclName()
3090          << Init->getSourceRange();
3091        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3092          << 0 << En.second->getSourceRange();
3093        return true;
3094      }
3095      if (!En.first) {
3096        En.first = Child;
3097        En.second = Init;
3098      }
3099      if (!Parent->isAnonymousStructOrUnion())
3100        return false;
3101    }
3102
3103    Child = Parent;
3104    Parent = cast<RecordDecl>(Parent->getDeclContext());
3105  }
3106
3107  return false;
3108}
3109}
3110
3111/// ActOnMemInitializers - Handle the member initializers for a constructor.
3112void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3113                                SourceLocation ColonLoc,
3114                                CXXCtorInitializer **meminits,
3115                                unsigned NumMemInits,
3116                                bool AnyErrors) {
3117  if (!ConstructorDecl)
3118    return;
3119
3120  AdjustDeclIfTemplate(ConstructorDecl);
3121
3122  CXXConstructorDecl *Constructor
3123    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3124
3125  if (!Constructor) {
3126    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3127    return;
3128  }
3129
3130  CXXCtorInitializer **MemInits =
3131    reinterpret_cast<CXXCtorInitializer **>(meminits);
3132
3133  // Mapping for the duplicate initializers check.
3134  // For member initializers, this is keyed with a FieldDecl*.
3135  // For base initializers, this is keyed with a Type*.
3136  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3137
3138  // Mapping for the inconsistent anonymous-union initializers check.
3139  RedundantUnionMap MemberUnions;
3140
3141  bool HadError = false;
3142  for (unsigned i = 0; i < NumMemInits; i++) {
3143    CXXCtorInitializer *Init = MemInits[i];
3144
3145    // Set the source order index.
3146    Init->setSourceOrder(i);
3147
3148    if (Init->isAnyMemberInitializer()) {
3149      FieldDecl *Field = Init->getAnyMember();
3150      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3151          CheckRedundantUnionInit(*this, Init, MemberUnions))
3152        HadError = true;
3153    } else if (Init->isBaseInitializer()) {
3154      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3155      if (CheckRedundantInit(*this, Init, Members[Key]))
3156        HadError = true;
3157    } else {
3158      assert(Init->isDelegatingInitializer());
3159      // This must be the only initializer
3160      if (i != 0 || NumMemInits > 1) {
3161        Diag(MemInits[0]->getSourceLocation(),
3162             diag::err_delegating_initializer_alone)
3163          << MemInits[0]->getSourceRange();
3164        HadError = true;
3165        // We will treat this as being the only initializer.
3166      }
3167      SetDelegatingInitializer(Constructor, MemInits[i]);
3168      // Return immediately as the initializer is set.
3169      return;
3170    }
3171  }
3172
3173  if (HadError)
3174    return;
3175
3176  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3177
3178  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3179}
3180
3181void
3182Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3183                                             CXXRecordDecl *ClassDecl) {
3184  // Ignore dependent contexts. Also ignore unions, since their members never
3185  // have destructors implicitly called.
3186  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3187    return;
3188
3189  // FIXME: all the access-control diagnostics are positioned on the
3190  // field/base declaration.  That's probably good; that said, the
3191  // user might reasonably want to know why the destructor is being
3192  // emitted, and we currently don't say.
3193
3194  // Non-static data members.
3195  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3196       E = ClassDecl->field_end(); I != E; ++I) {
3197    FieldDecl *Field = *I;
3198    if (Field->isInvalidDecl())
3199      continue;
3200
3201    // Don't destroy incomplete or zero-length arrays.
3202    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3203      continue;
3204
3205    QualType FieldType = Context.getBaseElementType(Field->getType());
3206
3207    const RecordType* RT = FieldType->getAs<RecordType>();
3208    if (!RT)
3209      continue;
3210
3211    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3212    if (FieldClassDecl->isInvalidDecl())
3213      continue;
3214    if (FieldClassDecl->hasTrivialDestructor())
3215      continue;
3216
3217    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3218    assert(Dtor && "No dtor found for FieldClassDecl!");
3219    CheckDestructorAccess(Field->getLocation(), Dtor,
3220                          PDiag(diag::err_access_dtor_field)
3221                            << Field->getDeclName()
3222                            << FieldType);
3223
3224    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3225  }
3226
3227  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3228
3229  // Bases.
3230  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3231       E = ClassDecl->bases_end(); Base != E; ++Base) {
3232    // Bases are always records in a well-formed non-dependent class.
3233    const RecordType *RT = Base->getType()->getAs<RecordType>();
3234
3235    // Remember direct virtual bases.
3236    if (Base->isVirtual())
3237      DirectVirtualBases.insert(RT);
3238
3239    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3240    // If our base class is invalid, we probably can't get its dtor anyway.
3241    if (BaseClassDecl->isInvalidDecl())
3242      continue;
3243    // Ignore trivial destructors.
3244    if (BaseClassDecl->hasTrivialDestructor())
3245      continue;
3246
3247    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3248    assert(Dtor && "No dtor found for BaseClassDecl!");
3249
3250    // FIXME: caret should be on the start of the class name
3251    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3252                          PDiag(diag::err_access_dtor_base)
3253                            << Base->getType()
3254                            << Base->getSourceRange());
3255
3256    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3257  }
3258
3259  // Virtual bases.
3260  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3261       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3262
3263    // Bases are always records in a well-formed non-dependent class.
3264    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3265
3266    // Ignore direct virtual bases.
3267    if (DirectVirtualBases.count(RT))
3268      continue;
3269
3270    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3271    // If our base class is invalid, we probably can't get its dtor anyway.
3272    if (BaseClassDecl->isInvalidDecl())
3273      continue;
3274    // Ignore trivial destructors.
3275    if (BaseClassDecl->hasTrivialDestructor())
3276      continue;
3277
3278    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3279    assert(Dtor && "No dtor found for BaseClassDecl!");
3280    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3281                          PDiag(diag::err_access_dtor_vbase)
3282                            << VBase->getType());
3283
3284    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3285  }
3286}
3287
3288void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3289  if (!CDtorDecl)
3290    return;
3291
3292  if (CXXConstructorDecl *Constructor
3293      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3294    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3295}
3296
3297bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3298                                  unsigned DiagID, AbstractDiagSelID SelID) {
3299  if (SelID == -1)
3300    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3301  else
3302    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3303}
3304
3305bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3306                                  const PartialDiagnostic &PD) {
3307  if (!getLangOptions().CPlusPlus)
3308    return false;
3309
3310  if (const ArrayType *AT = Context.getAsArrayType(T))
3311    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3312
3313  if (const PointerType *PT = T->getAs<PointerType>()) {
3314    // Find the innermost pointer type.
3315    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3316      PT = T;
3317
3318    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3319      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3320  }
3321
3322  const RecordType *RT = T->getAs<RecordType>();
3323  if (!RT)
3324    return false;
3325
3326  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3327
3328  // We can't answer whether something is abstract until it has a
3329  // definition.  If it's currently being defined, we'll walk back
3330  // over all the declarations when we have a full definition.
3331  const CXXRecordDecl *Def = RD->getDefinition();
3332  if (!Def || Def->isBeingDefined())
3333    return false;
3334
3335  if (!RD->isAbstract())
3336    return false;
3337
3338  Diag(Loc, PD) << RD->getDeclName();
3339  DiagnoseAbstractType(RD);
3340
3341  return true;
3342}
3343
3344void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3345  // Check if we've already emitted the list of pure virtual functions
3346  // for this class.
3347  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3348    return;
3349
3350  CXXFinalOverriderMap FinalOverriders;
3351  RD->getFinalOverriders(FinalOverriders);
3352
3353  // Keep a set of seen pure methods so we won't diagnose the same method
3354  // more than once.
3355  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3356
3357  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3358                                   MEnd = FinalOverriders.end();
3359       M != MEnd;
3360       ++M) {
3361    for (OverridingMethods::iterator SO = M->second.begin(),
3362                                  SOEnd = M->second.end();
3363         SO != SOEnd; ++SO) {
3364      // C++ [class.abstract]p4:
3365      //   A class is abstract if it contains or inherits at least one
3366      //   pure virtual function for which the final overrider is pure
3367      //   virtual.
3368
3369      //
3370      if (SO->second.size() != 1)
3371        continue;
3372
3373      if (!SO->second.front().Method->isPure())
3374        continue;
3375
3376      if (!SeenPureMethods.insert(SO->second.front().Method))
3377        continue;
3378
3379      Diag(SO->second.front().Method->getLocation(),
3380           diag::note_pure_virtual_function)
3381        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3382    }
3383  }
3384
3385  if (!PureVirtualClassDiagSet)
3386    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3387  PureVirtualClassDiagSet->insert(RD);
3388}
3389
3390namespace {
3391struct AbstractUsageInfo {
3392  Sema &S;
3393  CXXRecordDecl *Record;
3394  CanQualType AbstractType;
3395  bool Invalid;
3396
3397  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3398    : S(S), Record(Record),
3399      AbstractType(S.Context.getCanonicalType(
3400                   S.Context.getTypeDeclType(Record))),
3401      Invalid(false) {}
3402
3403  void DiagnoseAbstractType() {
3404    if (Invalid) return;
3405    S.DiagnoseAbstractType(Record);
3406    Invalid = true;
3407  }
3408
3409  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3410};
3411
3412struct CheckAbstractUsage {
3413  AbstractUsageInfo &Info;
3414  const NamedDecl *Ctx;
3415
3416  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3417    : Info(Info), Ctx(Ctx) {}
3418
3419  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3420    switch (TL.getTypeLocClass()) {
3421#define ABSTRACT_TYPELOC(CLASS, PARENT)
3422#define TYPELOC(CLASS, PARENT) \
3423    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3424#include "clang/AST/TypeLocNodes.def"
3425    }
3426  }
3427
3428  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3429    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3430    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3431      if (!TL.getArg(I))
3432        continue;
3433
3434      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3435      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3436    }
3437  }
3438
3439  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3440    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3441  }
3442
3443  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3444    // Visit the type parameters from a permissive context.
3445    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3446      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3447      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3448        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3449          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3450      // TODO: other template argument types?
3451    }
3452  }
3453
3454  // Visit pointee types from a permissive context.
3455#define CheckPolymorphic(Type) \
3456  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3457    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3458  }
3459  CheckPolymorphic(PointerTypeLoc)
3460  CheckPolymorphic(ReferenceTypeLoc)
3461  CheckPolymorphic(MemberPointerTypeLoc)
3462  CheckPolymorphic(BlockPointerTypeLoc)
3463  CheckPolymorphic(AtomicTypeLoc)
3464
3465  /// Handle all the types we haven't given a more specific
3466  /// implementation for above.
3467  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3468    // Every other kind of type that we haven't called out already
3469    // that has an inner type is either (1) sugar or (2) contains that
3470    // inner type in some way as a subobject.
3471    if (TypeLoc Next = TL.getNextTypeLoc())
3472      return Visit(Next, Sel);
3473
3474    // If there's no inner type and we're in a permissive context,
3475    // don't diagnose.
3476    if (Sel == Sema::AbstractNone) return;
3477
3478    // Check whether the type matches the abstract type.
3479    QualType T = TL.getType();
3480    if (T->isArrayType()) {
3481      Sel = Sema::AbstractArrayType;
3482      T = Info.S.Context.getBaseElementType(T);
3483    }
3484    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3485    if (CT != Info.AbstractType) return;
3486
3487    // It matched; do some magic.
3488    if (Sel == Sema::AbstractArrayType) {
3489      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3490        << T << TL.getSourceRange();
3491    } else {
3492      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3493        << Sel << T << TL.getSourceRange();
3494    }
3495    Info.DiagnoseAbstractType();
3496  }
3497};
3498
3499void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3500                                  Sema::AbstractDiagSelID Sel) {
3501  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3502}
3503
3504}
3505
3506/// Check for invalid uses of an abstract type in a method declaration.
3507static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3508                                    CXXMethodDecl *MD) {
3509  // No need to do the check on definitions, which require that
3510  // the return/param types be complete.
3511  if (MD->doesThisDeclarationHaveABody())
3512    return;
3513
3514  // For safety's sake, just ignore it if we don't have type source
3515  // information.  This should never happen for non-implicit methods,
3516  // but...
3517  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3518    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3519}
3520
3521/// Check for invalid uses of an abstract type within a class definition.
3522static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3523                                    CXXRecordDecl *RD) {
3524  for (CXXRecordDecl::decl_iterator
3525         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3526    Decl *D = *I;
3527    if (D->isImplicit()) continue;
3528
3529    // Methods and method templates.
3530    if (isa<CXXMethodDecl>(D)) {
3531      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3532    } else if (isa<FunctionTemplateDecl>(D)) {
3533      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3534      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3535
3536    // Fields and static variables.
3537    } else if (isa<FieldDecl>(D)) {
3538      FieldDecl *FD = cast<FieldDecl>(D);
3539      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3540        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3541    } else if (isa<VarDecl>(D)) {
3542      VarDecl *VD = cast<VarDecl>(D);
3543      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3544        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3545
3546    // Nested classes and class templates.
3547    } else if (isa<CXXRecordDecl>(D)) {
3548      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3549    } else if (isa<ClassTemplateDecl>(D)) {
3550      CheckAbstractClassUsage(Info,
3551                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3552    }
3553  }
3554}
3555
3556/// \brief Perform semantic checks on a class definition that has been
3557/// completing, introducing implicitly-declared members, checking for
3558/// abstract types, etc.
3559void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3560  if (!Record)
3561    return;
3562
3563  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3564    AbstractUsageInfo Info(*this, Record);
3565    CheckAbstractClassUsage(Info, Record);
3566  }
3567
3568  // If this is not an aggregate type and has no user-declared constructor,
3569  // complain about any non-static data members of reference or const scalar
3570  // type, since they will never get initializers.
3571  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3572      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3573    bool Complained = false;
3574    for (RecordDecl::field_iterator F = Record->field_begin(),
3575                                 FEnd = Record->field_end();
3576         F != FEnd; ++F) {
3577      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3578        continue;
3579
3580      if (F->getType()->isReferenceType() ||
3581          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3582        if (!Complained) {
3583          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3584            << Record->getTagKind() << Record;
3585          Complained = true;
3586        }
3587
3588        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3589          << F->getType()->isReferenceType()
3590          << F->getDeclName();
3591      }
3592    }
3593  }
3594
3595  if (Record->isDynamicClass() && !Record->isDependentType())
3596    DynamicClasses.push_back(Record);
3597
3598  if (Record->getIdentifier()) {
3599    // C++ [class.mem]p13:
3600    //   If T is the name of a class, then each of the following shall have a
3601    //   name different from T:
3602    //     - every member of every anonymous union that is a member of class T.
3603    //
3604    // C++ [class.mem]p14:
3605    //   In addition, if class T has a user-declared constructor (12.1), every
3606    //   non-static data member of class T shall have a name different from T.
3607    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3608         R.first != R.second; ++R.first) {
3609      NamedDecl *D = *R.first;
3610      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3611          isa<IndirectFieldDecl>(D)) {
3612        Diag(D->getLocation(), diag::err_member_name_of_class)
3613          << D->getDeclName();
3614        break;
3615      }
3616    }
3617  }
3618
3619  // Warn if the class has virtual methods but non-virtual public destructor.
3620  if (Record->isPolymorphic() && !Record->isDependentType()) {
3621    CXXDestructorDecl *dtor = Record->getDestructor();
3622    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3623      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3624           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3625  }
3626
3627  // See if a method overloads virtual methods in a base
3628  /// class without overriding any.
3629  if (!Record->isDependentType()) {
3630    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3631                                     MEnd = Record->method_end();
3632         M != MEnd; ++M) {
3633      if (!(*M)->isStatic())
3634        DiagnoseHiddenVirtualMethods(Record, *M);
3635    }
3636  }
3637
3638  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3639  // function that is not a constructor declares that member function to be
3640  // const. [...] The class of which that function is a member shall be
3641  // a literal type.
3642  //
3643  // It's fine to diagnose constructors here too: such constructors cannot
3644  // produce a constant expression, so are ill-formed (no diagnostic required).
3645  //
3646  // If the class has virtual bases, any constexpr members will already have
3647  // been diagnosed by the checks performed on the member declaration, so
3648  // suppress this (less useful) diagnostic.
3649  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3650      !Record->isLiteral() && !Record->getNumVBases()) {
3651    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3652                                     MEnd = Record->method_end();
3653         M != MEnd; ++M) {
3654      if ((*M)->isConstexpr()) {
3655        switch (Record->getTemplateSpecializationKind()) {
3656        case TSK_ImplicitInstantiation:
3657        case TSK_ExplicitInstantiationDeclaration:
3658        case TSK_ExplicitInstantiationDefinition:
3659          // If a template instantiates to a non-literal type, but its members
3660          // instantiate to constexpr functions, the template is technically
3661          // ill-formed, but we allow it for sanity. Such members are treated as
3662          // non-constexpr.
3663          (*M)->setConstexpr(false);
3664          continue;
3665
3666        case TSK_Undeclared:
3667        case TSK_ExplicitSpecialization:
3668          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3669                             PDiag(diag::err_constexpr_method_non_literal));
3670          break;
3671        }
3672
3673        // Only produce one error per class.
3674        break;
3675      }
3676    }
3677  }
3678
3679  // Declare inherited constructors. We do this eagerly here because:
3680  // - The standard requires an eager diagnostic for conflicting inherited
3681  //   constructors from different classes.
3682  // - The lazy declaration of the other implicit constructors is so as to not
3683  //   waste space and performance on classes that are not meant to be
3684  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3685  //   have inherited constructors.
3686  DeclareInheritedConstructors(Record);
3687
3688  if (!Record->isDependentType())
3689    CheckExplicitlyDefaultedMethods(Record);
3690}
3691
3692void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3693  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3694                                      ME = Record->method_end();
3695       MI != ME; ++MI) {
3696    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3697      switch (getSpecialMember(*MI)) {
3698      case CXXDefaultConstructor:
3699        CheckExplicitlyDefaultedDefaultConstructor(
3700                                                  cast<CXXConstructorDecl>(*MI));
3701        break;
3702
3703      case CXXDestructor:
3704        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3705        break;
3706
3707      case CXXCopyConstructor:
3708        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3709        break;
3710
3711      case CXXCopyAssignment:
3712        CheckExplicitlyDefaultedCopyAssignment(*MI);
3713        break;
3714
3715      case CXXMoveConstructor:
3716        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3717        break;
3718
3719      case CXXMoveAssignment:
3720        CheckExplicitlyDefaultedMoveAssignment(*MI);
3721        break;
3722
3723      case CXXInvalid:
3724        llvm_unreachable("non-special member explicitly defaulted!");
3725      }
3726    }
3727  }
3728
3729}
3730
3731void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3732  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3733
3734  // Whether this was the first-declared instance of the constructor.
3735  // This affects whether we implicitly add an exception spec (and, eventually,
3736  // constexpr). It is also ill-formed to explicitly default a constructor such
3737  // that it would be deleted. (C++0x [decl.fct.def.default])
3738  bool First = CD == CD->getCanonicalDecl();
3739
3740  bool HadError = false;
3741  if (CD->getNumParams() != 0) {
3742    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3743      << CD->getSourceRange();
3744    HadError = true;
3745  }
3746
3747  ImplicitExceptionSpecification Spec
3748    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3749  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3750  if (EPI.ExceptionSpecType == EST_Delayed) {
3751    // Exception specification depends on some deferred part of the class. We'll
3752    // try again when the class's definition has been fully processed.
3753    return;
3754  }
3755  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3756                          *ExceptionType = Context.getFunctionType(
3757                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3758
3759  if (CtorType->hasExceptionSpec()) {
3760    if (CheckEquivalentExceptionSpec(
3761          PDiag(diag::err_incorrect_defaulted_exception_spec)
3762            << CXXDefaultConstructor,
3763          PDiag(),
3764          ExceptionType, SourceLocation(),
3765          CtorType, CD->getLocation())) {
3766      HadError = true;
3767    }
3768  } else if (First) {
3769    // We set the declaration to have the computed exception spec here.
3770    // We know there are no parameters.
3771    EPI.ExtInfo = CtorType->getExtInfo();
3772    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3773  }
3774
3775  if (HadError) {
3776    CD->setInvalidDecl();
3777    return;
3778  }
3779
3780  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3781    if (First) {
3782      CD->setDeletedAsWritten();
3783    } else {
3784      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3785        << CXXDefaultConstructor;
3786      CD->setInvalidDecl();
3787    }
3788  }
3789}
3790
3791void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3792  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3793
3794  // Whether this was the first-declared instance of the constructor.
3795  bool First = CD == CD->getCanonicalDecl();
3796
3797  bool HadError = false;
3798  if (CD->getNumParams() != 1) {
3799    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3800      << CD->getSourceRange();
3801    HadError = true;
3802  }
3803
3804  ImplicitExceptionSpecification Spec(Context);
3805  bool Const;
3806  llvm::tie(Spec, Const) =
3807    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3808
3809  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3810  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3811                          *ExceptionType = Context.getFunctionType(
3812                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3813
3814  // Check for parameter type matching.
3815  // This is a copy ctor so we know it's a cv-qualified reference to T.
3816  QualType ArgType = CtorType->getArgType(0);
3817  if (ArgType->getPointeeType().isVolatileQualified()) {
3818    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3819    HadError = true;
3820  }
3821  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3822    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3823    HadError = true;
3824  }
3825
3826  if (CtorType->hasExceptionSpec()) {
3827    if (CheckEquivalentExceptionSpec(
3828          PDiag(diag::err_incorrect_defaulted_exception_spec)
3829            << CXXCopyConstructor,
3830          PDiag(),
3831          ExceptionType, SourceLocation(),
3832          CtorType, CD->getLocation())) {
3833      HadError = true;
3834    }
3835  } else if (First) {
3836    // We set the declaration to have the computed exception spec here.
3837    // We duplicate the one parameter type.
3838    EPI.ExtInfo = CtorType->getExtInfo();
3839    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3840  }
3841
3842  if (HadError) {
3843    CD->setInvalidDecl();
3844    return;
3845  }
3846
3847  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3848    if (First) {
3849      CD->setDeletedAsWritten();
3850    } else {
3851      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3852        << CXXCopyConstructor;
3853      CD->setInvalidDecl();
3854    }
3855  }
3856}
3857
3858void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3859  assert(MD->isExplicitlyDefaulted());
3860
3861  // Whether this was the first-declared instance of the operator
3862  bool First = MD == MD->getCanonicalDecl();
3863
3864  bool HadError = false;
3865  if (MD->getNumParams() != 1) {
3866    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3867      << MD->getSourceRange();
3868    HadError = true;
3869  }
3870
3871  QualType ReturnType =
3872    MD->getType()->getAs<FunctionType>()->getResultType();
3873  if (!ReturnType->isLValueReferenceType() ||
3874      !Context.hasSameType(
3875        Context.getCanonicalType(ReturnType->getPointeeType()),
3876        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3877    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3878    HadError = true;
3879  }
3880
3881  ImplicitExceptionSpecification Spec(Context);
3882  bool Const;
3883  llvm::tie(Spec, Const) =
3884    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3885
3886  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3887  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3888                          *ExceptionType = Context.getFunctionType(
3889                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3890
3891  QualType ArgType = OperType->getArgType(0);
3892  if (!ArgType->isLValueReferenceType()) {
3893    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3894    HadError = true;
3895  } else {
3896    if (ArgType->getPointeeType().isVolatileQualified()) {
3897      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3898      HadError = true;
3899    }
3900    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3901      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3902      HadError = true;
3903    }
3904  }
3905
3906  if (OperType->getTypeQuals()) {
3907    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3908    HadError = true;
3909  }
3910
3911  if (OperType->hasExceptionSpec()) {
3912    if (CheckEquivalentExceptionSpec(
3913          PDiag(diag::err_incorrect_defaulted_exception_spec)
3914            << CXXCopyAssignment,
3915          PDiag(),
3916          ExceptionType, SourceLocation(),
3917          OperType, MD->getLocation())) {
3918      HadError = true;
3919    }
3920  } else if (First) {
3921    // We set the declaration to have the computed exception spec here.
3922    // We duplicate the one parameter type.
3923    EPI.RefQualifier = OperType->getRefQualifier();
3924    EPI.ExtInfo = OperType->getExtInfo();
3925    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3926  }
3927
3928  if (HadError) {
3929    MD->setInvalidDecl();
3930    return;
3931  }
3932
3933  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3934    if (First) {
3935      MD->setDeletedAsWritten();
3936    } else {
3937      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3938        << CXXCopyAssignment;
3939      MD->setInvalidDecl();
3940    }
3941  }
3942}
3943
3944void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3945  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3946
3947  // Whether this was the first-declared instance of the constructor.
3948  bool First = CD == CD->getCanonicalDecl();
3949
3950  bool HadError = false;
3951  if (CD->getNumParams() != 1) {
3952    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3953      << CD->getSourceRange();
3954    HadError = true;
3955  }
3956
3957  ImplicitExceptionSpecification Spec(
3958      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3959
3960  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3961  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3962                          *ExceptionType = Context.getFunctionType(
3963                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3964
3965  // Check for parameter type matching.
3966  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3967  QualType ArgType = CtorType->getArgType(0);
3968  if (ArgType->getPointeeType().isVolatileQualified()) {
3969    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3970    HadError = true;
3971  }
3972  if (ArgType->getPointeeType().isConstQualified()) {
3973    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3974    HadError = true;
3975  }
3976
3977  if (CtorType->hasExceptionSpec()) {
3978    if (CheckEquivalentExceptionSpec(
3979          PDiag(diag::err_incorrect_defaulted_exception_spec)
3980            << CXXMoveConstructor,
3981          PDiag(),
3982          ExceptionType, SourceLocation(),
3983          CtorType, CD->getLocation())) {
3984      HadError = true;
3985    }
3986  } else if (First) {
3987    // We set the declaration to have the computed exception spec here.
3988    // We duplicate the one parameter type.
3989    EPI.ExtInfo = CtorType->getExtInfo();
3990    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3991  }
3992
3993  if (HadError) {
3994    CD->setInvalidDecl();
3995    return;
3996  }
3997
3998  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3999    if (First) {
4000      CD->setDeletedAsWritten();
4001    } else {
4002      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4003        << CXXMoveConstructor;
4004      CD->setInvalidDecl();
4005    }
4006  }
4007}
4008
4009void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4010  assert(MD->isExplicitlyDefaulted());
4011
4012  // Whether this was the first-declared instance of the operator
4013  bool First = MD == MD->getCanonicalDecl();
4014
4015  bool HadError = false;
4016  if (MD->getNumParams() != 1) {
4017    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4018      << MD->getSourceRange();
4019    HadError = true;
4020  }
4021
4022  QualType ReturnType =
4023    MD->getType()->getAs<FunctionType>()->getResultType();
4024  if (!ReturnType->isLValueReferenceType() ||
4025      !Context.hasSameType(
4026        Context.getCanonicalType(ReturnType->getPointeeType()),
4027        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4028    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4029    HadError = true;
4030  }
4031
4032  ImplicitExceptionSpecification Spec(
4033      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4034
4035  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4036  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4037                          *ExceptionType = Context.getFunctionType(
4038                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4039
4040  QualType ArgType = OperType->getArgType(0);
4041  if (!ArgType->isRValueReferenceType()) {
4042    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4043    HadError = true;
4044  } else {
4045    if (ArgType->getPointeeType().isVolatileQualified()) {
4046      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4047      HadError = true;
4048    }
4049    if (ArgType->getPointeeType().isConstQualified()) {
4050      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4051      HadError = true;
4052    }
4053  }
4054
4055  if (OperType->getTypeQuals()) {
4056    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4057    HadError = true;
4058  }
4059
4060  if (OperType->hasExceptionSpec()) {
4061    if (CheckEquivalentExceptionSpec(
4062          PDiag(diag::err_incorrect_defaulted_exception_spec)
4063            << CXXMoveAssignment,
4064          PDiag(),
4065          ExceptionType, SourceLocation(),
4066          OperType, MD->getLocation())) {
4067      HadError = true;
4068    }
4069  } else if (First) {
4070    // We set the declaration to have the computed exception spec here.
4071    // We duplicate the one parameter type.
4072    EPI.RefQualifier = OperType->getRefQualifier();
4073    EPI.ExtInfo = OperType->getExtInfo();
4074    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4075  }
4076
4077  if (HadError) {
4078    MD->setInvalidDecl();
4079    return;
4080  }
4081
4082  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4083    if (First) {
4084      MD->setDeletedAsWritten();
4085    } else {
4086      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4087        << CXXMoveAssignment;
4088      MD->setInvalidDecl();
4089    }
4090  }
4091}
4092
4093void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4094  assert(DD->isExplicitlyDefaulted());
4095
4096  // Whether this was the first-declared instance of the destructor.
4097  bool First = DD == DD->getCanonicalDecl();
4098
4099  ImplicitExceptionSpecification Spec
4100    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4101  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4102  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4103                          *ExceptionType = Context.getFunctionType(
4104                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4105
4106  if (DtorType->hasExceptionSpec()) {
4107    if (CheckEquivalentExceptionSpec(
4108          PDiag(diag::err_incorrect_defaulted_exception_spec)
4109            << CXXDestructor,
4110          PDiag(),
4111          ExceptionType, SourceLocation(),
4112          DtorType, DD->getLocation())) {
4113      DD->setInvalidDecl();
4114      return;
4115    }
4116  } else if (First) {
4117    // We set the declaration to have the computed exception spec here.
4118    // There are no parameters.
4119    EPI.ExtInfo = DtorType->getExtInfo();
4120    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4121  }
4122
4123  if (ShouldDeleteDestructor(DD)) {
4124    if (First) {
4125      DD->setDeletedAsWritten();
4126    } else {
4127      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4128        << CXXDestructor;
4129      DD->setInvalidDecl();
4130    }
4131  }
4132}
4133
4134/// This function implements the following C++0x paragraphs:
4135///  - [class.ctor]/5
4136///  - [class.copy]/11
4137bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4138  assert(!MD->isInvalidDecl());
4139  CXXRecordDecl *RD = MD->getParent();
4140  assert(!RD->isDependentType() && "do deletion after instantiation");
4141  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4142    return false;
4143
4144  bool IsUnion = RD->isUnion();
4145  bool IsConstructor = false;
4146  bool IsAssignment = false;
4147  bool IsMove = false;
4148
4149  bool ConstArg = false;
4150
4151  switch (CSM) {
4152  case CXXDefaultConstructor:
4153    IsConstructor = true;
4154    break;
4155  case CXXCopyConstructor:
4156    IsConstructor = true;
4157    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4158    break;
4159  case CXXMoveConstructor:
4160    IsConstructor = true;
4161    IsMove = true;
4162    break;
4163  default:
4164    llvm_unreachable("function only currently implemented for default ctors");
4165  }
4166
4167  SourceLocation Loc = MD->getLocation();
4168
4169  // Do access control from the special member function
4170  ContextRAII MethodContext(*this, MD);
4171
4172  bool AllConst = true;
4173
4174  // We do this because we should never actually use an anonymous
4175  // union's constructor.
4176  if (IsUnion && RD->isAnonymousStructOrUnion())
4177    return false;
4178
4179  // FIXME: We should put some diagnostic logic right into this function.
4180
4181  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4182                                          BE = RD->bases_end();
4183       BI != BE; ++BI) {
4184    // We'll handle this one later
4185    if (BI->isVirtual())
4186      continue;
4187
4188    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4189    assert(BaseDecl && "base isn't a CXXRecordDecl");
4190
4191    // Unless we have an assignment operator, the base's destructor must
4192    // be accessible and not deleted.
4193    if (!IsAssignment) {
4194      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4195      if (BaseDtor->isDeleted())
4196        return true;
4197      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4198          AR_accessible)
4199        return true;
4200    }
4201
4202    // Finding the corresponding member in the base should lead to a
4203    // unique, accessible, non-deleted function. If we are doing
4204    // a destructor, we have already checked this case.
4205    if (CSM != CXXDestructor) {
4206      SpecialMemberOverloadResult *SMOR =
4207        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4208                            false);
4209      if (!SMOR->hasSuccess())
4210        return true;
4211      CXXMethodDecl *BaseMember = SMOR->getMethod();
4212      if (IsConstructor) {
4213        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4214        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4215                                   PDiag()) != AR_accessible)
4216          return true;
4217
4218        // For a move operation, the corresponding operation must actually
4219        // be a move operation (and not a copy selected by overload
4220        // resolution) unless we are working on a trivially copyable class.
4221        if (IsMove && !BaseCtor->isMoveConstructor() &&
4222            !BaseDecl->isTriviallyCopyable())
4223          return true;
4224      }
4225    }
4226  }
4227
4228  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4229                                          BE = RD->vbases_end();
4230       BI != BE; ++BI) {
4231    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4232    assert(BaseDecl && "base isn't a CXXRecordDecl");
4233
4234    // Unless we have an assignment operator, the base's destructor must
4235    // be accessible and not deleted.
4236    if (!IsAssignment) {
4237      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4238      if (BaseDtor->isDeleted())
4239        return true;
4240      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4241          AR_accessible)
4242        return true;
4243    }
4244
4245    // Finding the corresponding member in the base should lead to a
4246    // unique, accessible, non-deleted function.
4247    if (CSM != CXXDestructor) {
4248      SpecialMemberOverloadResult *SMOR =
4249        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4250                            false);
4251      if (!SMOR->hasSuccess())
4252        return true;
4253      CXXMethodDecl *BaseMember = SMOR->getMethod();
4254      if (IsConstructor) {
4255        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4256        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4257                                   PDiag()) != AR_accessible)
4258          return true;
4259
4260        // For a move operation, the corresponding operation must actually
4261        // be a move operation (and not a copy selected by overload
4262        // resolution) unless we are working on a trivially copyable class.
4263        if (IsMove && !BaseCtor->isMoveConstructor() &&
4264            !BaseDecl->isTriviallyCopyable())
4265          return true;
4266      }
4267    }
4268  }
4269
4270  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4271                                     FE = RD->field_end();
4272       FI != FE; ++FI) {
4273    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4274      continue;
4275
4276    QualType FieldType = Context.getBaseElementType(FI->getType());
4277    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4278
4279    // For a default constructor, all references must be initialized in-class
4280    // and, if a union, it must have a non-const member.
4281    if (CSM == CXXDefaultConstructor) {
4282      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4283        return true;
4284
4285      if (IsUnion && !FieldType.isConstQualified())
4286        AllConst = false;
4287    // For a copy constructor, data members must not be of rvalue reference
4288    // type.
4289    } else if (CSM == CXXCopyConstructor) {
4290      if (FieldType->isRValueReferenceType())
4291        return true;
4292    }
4293
4294    if (FieldRecord) {
4295      // For a default constructor, a const member must have a user-provided
4296      // default constructor or else be explicitly initialized.
4297      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4298          !FI->hasInClassInitializer() &&
4299          !FieldRecord->hasUserProvidedDefaultConstructor())
4300        return true;
4301
4302      // Some additional restrictions exist on the variant members.
4303      if (!IsUnion && FieldRecord->isUnion() &&
4304          FieldRecord->isAnonymousStructOrUnion()) {
4305        // We're okay to reuse AllConst here since we only care about the
4306        // value otherwise if we're in a union.
4307        AllConst = true;
4308
4309        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4310                                           UE = FieldRecord->field_end();
4311             UI != UE; ++UI) {
4312          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4313          CXXRecordDecl *UnionFieldRecord =
4314            UnionFieldType->getAsCXXRecordDecl();
4315
4316          if (!UnionFieldType.isConstQualified())
4317            AllConst = false;
4318
4319          if (UnionFieldRecord) {
4320            // FIXME: Checking for accessibility and validity of this
4321            //        destructor is technically going beyond the
4322            //        standard, but this is believed to be a defect.
4323            if (!IsAssignment) {
4324              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4325              if (FieldDtor->isDeleted())
4326                return true;
4327              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4328                  AR_accessible)
4329                return true;
4330              if (!FieldDtor->isTrivial())
4331                return true;
4332            }
4333
4334            if (CSM != CXXDestructor) {
4335              SpecialMemberOverloadResult *SMOR =
4336                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4337                                    false, false, false);
4338              // FIXME: Checking for accessibility and validity of this
4339              //        corresponding member is technically going beyond the
4340              //        standard, but this is believed to be a defect.
4341              if (!SMOR->hasSuccess())
4342                return true;
4343
4344              CXXMethodDecl *FieldMember = SMOR->getMethod();
4345              // A member of a union must have a trivial corresponding
4346              // constructor.
4347              if (!FieldMember->isTrivial())
4348                return true;
4349
4350              if (IsConstructor) {
4351                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4352                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4353                                           PDiag()) != AR_accessible)
4354                return true;
4355              }
4356            }
4357          }
4358        }
4359
4360        // At least one member in each anonymous union must be non-const
4361        if (CSM == CXXDefaultConstructor && AllConst)
4362          return true;
4363
4364        // Don't try to initialize the anonymous union
4365        // This is technically non-conformant, but sanity demands it.
4366        continue;
4367      }
4368
4369      // Unless we're doing assignment, the field's destructor must be
4370      // accessible and not deleted.
4371      if (!IsAssignment) {
4372        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4373        if (FieldDtor->isDeleted())
4374          return true;
4375        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4376            AR_accessible)
4377          return true;
4378      }
4379
4380      // Check that the corresponding member of the field is accessible,
4381      // unique, and non-deleted. We don't do this if it has an explicit
4382      // initialization when default-constructing.
4383      if (CSM != CXXDestructor &&
4384          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4385        SpecialMemberOverloadResult *SMOR =
4386          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4387                              false);
4388        if (!SMOR->hasSuccess())
4389          return true;
4390
4391        CXXMethodDecl *FieldMember = SMOR->getMethod();
4392        if (IsConstructor) {
4393          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4394          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4395                                     PDiag()) != AR_accessible)
4396          return true;
4397
4398          // For a move operation, the corresponding operation must actually
4399          // be a move operation (and not a copy selected by overload
4400          // resolution) unless we are working on a trivially copyable class.
4401          if (IsMove && !FieldCtor->isMoveConstructor() &&
4402              !FieldRecord->isTriviallyCopyable())
4403            return true;
4404        }
4405
4406        // We need the corresponding member of a union to be trivial so that
4407        // we can safely copy them all simultaneously.
4408        // FIXME: Note that performing the check here (where we rely on the lack
4409        // of an in-class initializer) is technically ill-formed. However, this
4410        // seems most obviously to be a bug in the standard.
4411        if (IsUnion && !FieldMember->isTrivial())
4412          return true;
4413      }
4414    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4415               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4416      // We can't initialize a const member of non-class type to any value.
4417      return true;
4418    }
4419  }
4420
4421  // We can't have all const members in a union when default-constructing,
4422  // or else they're all nonsensical garbage values that can't be changed.
4423  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4424    return true;
4425
4426  return false;
4427}
4428
4429bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4430  CXXRecordDecl *RD = MD->getParent();
4431  assert(!RD->isDependentType() && "do deletion after instantiation");
4432  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4433    return false;
4434
4435  SourceLocation Loc = MD->getLocation();
4436
4437  // Do access control from the constructor
4438  ContextRAII MethodContext(*this, MD);
4439
4440  bool Union = RD->isUnion();
4441
4442  unsigned ArgQuals =
4443    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4444      Qualifiers::Const : 0;
4445
4446  // We do this because we should never actually use an anonymous
4447  // union's constructor.
4448  if (Union && RD->isAnonymousStructOrUnion())
4449    return false;
4450
4451  // FIXME: We should put some diagnostic logic right into this function.
4452
4453  // C++0x [class.copy]/20
4454  //    A defaulted [copy] assignment operator for class X is defined as deleted
4455  //    if X has:
4456
4457  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4458                                          BE = RD->bases_end();
4459       BI != BE; ++BI) {
4460    // We'll handle this one later
4461    if (BI->isVirtual())
4462      continue;
4463
4464    QualType BaseType = BI->getType();
4465    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4466    assert(BaseDecl && "base isn't a CXXRecordDecl");
4467
4468    // -- a [direct base class] B that cannot be [copied] because overload
4469    //    resolution, as applied to B's [copy] assignment operator, results in
4470    //    an ambiguity or a function that is deleted or inaccessible from the
4471    //    assignment operator
4472    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4473                                                      0);
4474    if (!CopyOper || CopyOper->isDeleted())
4475      return true;
4476    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4477      return true;
4478  }
4479
4480  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4481                                          BE = RD->vbases_end();
4482       BI != BE; ++BI) {
4483    QualType BaseType = BI->getType();
4484    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4485    assert(BaseDecl && "base isn't a CXXRecordDecl");
4486
4487    // -- a [virtual base class] B that cannot be [copied] because overload
4488    //    resolution, as applied to B's [copy] assignment operator, results in
4489    //    an ambiguity or a function that is deleted or inaccessible from the
4490    //    assignment operator
4491    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4492                                                      0);
4493    if (!CopyOper || CopyOper->isDeleted())
4494      return true;
4495    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4496      return true;
4497  }
4498
4499  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4500                                     FE = RD->field_end();
4501       FI != FE; ++FI) {
4502    if (FI->isUnnamedBitfield())
4503      continue;
4504
4505    QualType FieldType = Context.getBaseElementType(FI->getType());
4506
4507    // -- a non-static data member of reference type
4508    if (FieldType->isReferenceType())
4509      return true;
4510
4511    // -- a non-static data member of const non-class type (or array thereof)
4512    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4513      return true;
4514
4515    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4516
4517    if (FieldRecord) {
4518      // This is an anonymous union
4519      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4520        // Anonymous unions inside unions do not variant members create
4521        if (!Union) {
4522          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4523                                             UE = FieldRecord->field_end();
4524               UI != UE; ++UI) {
4525            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4526            CXXRecordDecl *UnionFieldRecord =
4527              UnionFieldType->getAsCXXRecordDecl();
4528
4529            // -- a variant member with a non-trivial [copy] assignment operator
4530            //    and X is a union-like class
4531            if (UnionFieldRecord &&
4532                !UnionFieldRecord->hasTrivialCopyAssignment())
4533              return true;
4534          }
4535        }
4536
4537        // Don't try to initalize an anonymous union
4538        continue;
4539      // -- a variant member with a non-trivial [copy] assignment operator
4540      //    and X is a union-like class
4541      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4542          return true;
4543      }
4544
4545      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4546                                                        false, 0);
4547      if (!CopyOper || CopyOper->isDeleted())
4548        return true;
4549      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4550        return true;
4551    }
4552  }
4553
4554  return false;
4555}
4556
4557bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4558  CXXRecordDecl *RD = MD->getParent();
4559  assert(!RD->isDependentType() && "do deletion after instantiation");
4560  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4561    return false;
4562
4563  SourceLocation Loc = MD->getLocation();
4564
4565  // Do access control from the constructor
4566  ContextRAII MethodContext(*this, MD);
4567
4568  bool Union = RD->isUnion();
4569
4570  // We do this because we should never actually use an anonymous
4571  // union's constructor.
4572  if (Union && RD->isAnonymousStructOrUnion())
4573    return false;
4574
4575  // C++0x [class.copy]/20
4576  //    A defaulted [move] assignment operator for class X is defined as deleted
4577  //    if X has:
4578
4579  //    -- for the move constructor, [...] any direct or indirect virtual base
4580  //       class.
4581  if (RD->getNumVBases() != 0)
4582    return true;
4583
4584  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4585                                          BE = RD->bases_end();
4586       BI != BE; ++BI) {
4587
4588    QualType BaseType = BI->getType();
4589    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4590    assert(BaseDecl && "base isn't a CXXRecordDecl");
4591
4592    // -- a [direct base class] B that cannot be [moved] because overload
4593    //    resolution, as applied to B's [move] assignment operator, results in
4594    //    an ambiguity or a function that is deleted or inaccessible from the
4595    //    assignment operator
4596    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4597    if (!MoveOper || MoveOper->isDeleted())
4598      return true;
4599    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4600      return true;
4601
4602    // -- for the move assignment operator, a [direct base class] with a type
4603    //    that does not have a move assignment operator and is not trivially
4604    //    copyable.
4605    if (!MoveOper->isMoveAssignmentOperator() &&
4606        !BaseDecl->isTriviallyCopyable())
4607      return true;
4608  }
4609
4610  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4611                                     FE = RD->field_end();
4612       FI != FE; ++FI) {
4613    if (FI->isUnnamedBitfield())
4614      continue;
4615
4616    QualType FieldType = Context.getBaseElementType(FI->getType());
4617
4618    // -- a non-static data member of reference type
4619    if (FieldType->isReferenceType())
4620      return true;
4621
4622    // -- a non-static data member of const non-class type (or array thereof)
4623    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4624      return true;
4625
4626    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4627
4628    if (FieldRecord) {
4629      // This is an anonymous union
4630      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4631        // Anonymous unions inside unions do not variant members create
4632        if (!Union) {
4633          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4634                                             UE = FieldRecord->field_end();
4635               UI != UE; ++UI) {
4636            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4637            CXXRecordDecl *UnionFieldRecord =
4638              UnionFieldType->getAsCXXRecordDecl();
4639
4640            // -- a variant member with a non-trivial [move] assignment operator
4641            //    and X is a union-like class
4642            if (UnionFieldRecord &&
4643                !UnionFieldRecord->hasTrivialMoveAssignment())
4644              return true;
4645          }
4646        }
4647
4648        // Don't try to initalize an anonymous union
4649        continue;
4650      // -- a variant member with a non-trivial [move] assignment operator
4651      //    and X is a union-like class
4652      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4653          return true;
4654      }
4655
4656      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4657      if (!MoveOper || MoveOper->isDeleted())
4658        return true;
4659      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4660        return true;
4661
4662      // -- for the move assignment operator, a [non-static data member] with a
4663      //    type that does not have a move assignment operator and is not
4664      //    trivially copyable.
4665      if (!MoveOper->isMoveAssignmentOperator() &&
4666          !FieldRecord->isTriviallyCopyable())
4667        return true;
4668    }
4669  }
4670
4671  return false;
4672}
4673
4674bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4675  CXXRecordDecl *RD = DD->getParent();
4676  assert(!RD->isDependentType() && "do deletion after instantiation");
4677  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4678    return false;
4679
4680  SourceLocation Loc = DD->getLocation();
4681
4682  // Do access control from the destructor
4683  ContextRAII CtorContext(*this, DD);
4684
4685  bool Union = RD->isUnion();
4686
4687  // We do this because we should never actually use an anonymous
4688  // union's destructor.
4689  if (Union && RD->isAnonymousStructOrUnion())
4690    return false;
4691
4692  // C++0x [class.dtor]p5
4693  //    A defaulted destructor for a class X is defined as deleted if:
4694  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4695                                          BE = RD->bases_end();
4696       BI != BE; ++BI) {
4697    // We'll handle this one later
4698    if (BI->isVirtual())
4699      continue;
4700
4701    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4702    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4703    assert(BaseDtor && "base has no destructor");
4704
4705    // -- any direct or virtual base class has a deleted destructor or
4706    //    a destructor that is inaccessible from the defaulted destructor
4707    if (BaseDtor->isDeleted())
4708      return true;
4709    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4710        AR_accessible)
4711      return true;
4712  }
4713
4714  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4715                                          BE = RD->vbases_end();
4716       BI != BE; ++BI) {
4717    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4718    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4719    assert(BaseDtor && "base has no destructor");
4720
4721    // -- any direct or virtual base class has a deleted destructor or
4722    //    a destructor that is inaccessible from the defaulted destructor
4723    if (BaseDtor->isDeleted())
4724      return true;
4725    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4726        AR_accessible)
4727      return true;
4728  }
4729
4730  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4731                                     FE = RD->field_end();
4732       FI != FE; ++FI) {
4733    QualType FieldType = Context.getBaseElementType(FI->getType());
4734    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4735    if (FieldRecord) {
4736      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4737         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4738                                            UE = FieldRecord->field_end();
4739              UI != UE; ++UI) {
4740           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4741           CXXRecordDecl *UnionFieldRecord =
4742             UnionFieldType->getAsCXXRecordDecl();
4743
4744           // -- X is a union-like class that has a variant member with a non-
4745           //    trivial destructor.
4746           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4747             return true;
4748         }
4749      // Technically we are supposed to do this next check unconditionally.
4750      // But that makes absolutely no sense.
4751      } else {
4752        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4753
4754        // -- any of the non-static data members has class type M (or array
4755        //    thereof) and M has a deleted destructor or a destructor that is
4756        //    inaccessible from the defaulted destructor
4757        if (FieldDtor->isDeleted())
4758          return true;
4759        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4760          AR_accessible)
4761        return true;
4762
4763        // -- X is a union-like class that has a variant member with a non-
4764        //    trivial destructor.
4765        if (Union && !FieldDtor->isTrivial())
4766          return true;
4767      }
4768    }
4769  }
4770
4771  if (DD->isVirtual()) {
4772    FunctionDecl *OperatorDelete = 0;
4773    DeclarationName Name =
4774      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4775    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4776          false))
4777      return true;
4778  }
4779
4780
4781  return false;
4782}
4783
4784/// \brief Data used with FindHiddenVirtualMethod
4785namespace {
4786  struct FindHiddenVirtualMethodData {
4787    Sema *S;
4788    CXXMethodDecl *Method;
4789    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4790    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4791  };
4792}
4793
4794/// \brief Member lookup function that determines whether a given C++
4795/// method overloads virtual methods in a base class without overriding any,
4796/// to be used with CXXRecordDecl::lookupInBases().
4797static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4798                                    CXXBasePath &Path,
4799                                    void *UserData) {
4800  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4801
4802  FindHiddenVirtualMethodData &Data
4803    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4804
4805  DeclarationName Name = Data.Method->getDeclName();
4806  assert(Name.getNameKind() == DeclarationName::Identifier);
4807
4808  bool foundSameNameMethod = false;
4809  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4810  for (Path.Decls = BaseRecord->lookup(Name);
4811       Path.Decls.first != Path.Decls.second;
4812       ++Path.Decls.first) {
4813    NamedDecl *D = *Path.Decls.first;
4814    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4815      MD = MD->getCanonicalDecl();
4816      foundSameNameMethod = true;
4817      // Interested only in hidden virtual methods.
4818      if (!MD->isVirtual())
4819        continue;
4820      // If the method we are checking overrides a method from its base
4821      // don't warn about the other overloaded methods.
4822      if (!Data.S->IsOverload(Data.Method, MD, false))
4823        return true;
4824      // Collect the overload only if its hidden.
4825      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4826        overloadedMethods.push_back(MD);
4827    }
4828  }
4829
4830  if (foundSameNameMethod)
4831    Data.OverloadedMethods.append(overloadedMethods.begin(),
4832                                   overloadedMethods.end());
4833  return foundSameNameMethod;
4834}
4835
4836/// \brief See if a method overloads virtual methods in a base class without
4837/// overriding any.
4838void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4839  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4840                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4841    return;
4842  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4843    return;
4844
4845  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4846                     /*bool RecordPaths=*/false,
4847                     /*bool DetectVirtual=*/false);
4848  FindHiddenVirtualMethodData Data;
4849  Data.Method = MD;
4850  Data.S = this;
4851
4852  // Keep the base methods that were overriden or introduced in the subclass
4853  // by 'using' in a set. A base method not in this set is hidden.
4854  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4855       res.first != res.second; ++res.first) {
4856    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4857      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4858                                          E = MD->end_overridden_methods();
4859           I != E; ++I)
4860        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4861    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4862      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4863        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4864  }
4865
4866  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4867      !Data.OverloadedMethods.empty()) {
4868    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4869      << MD << (Data.OverloadedMethods.size() > 1);
4870
4871    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4872      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4873      Diag(overloadedMD->getLocation(),
4874           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4875    }
4876  }
4877}
4878
4879void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4880                                             Decl *TagDecl,
4881                                             SourceLocation LBrac,
4882                                             SourceLocation RBrac,
4883                                             AttributeList *AttrList) {
4884  if (!TagDecl)
4885    return;
4886
4887  AdjustDeclIfTemplate(TagDecl);
4888
4889  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4890              // strict aliasing violation!
4891              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4892              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4893
4894  CheckCompletedCXXClass(
4895                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4896}
4897
4898/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4899/// special functions, such as the default constructor, copy
4900/// constructor, or destructor, to the given C++ class (C++
4901/// [special]p1).  This routine can only be executed just before the
4902/// definition of the class is complete.
4903void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4904  if (!ClassDecl->hasUserDeclaredConstructor())
4905    ++ASTContext::NumImplicitDefaultConstructors;
4906
4907  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4908    ++ASTContext::NumImplicitCopyConstructors;
4909
4910  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4911    ++ASTContext::NumImplicitCopyAssignmentOperators;
4912
4913    // If we have a dynamic class, then the copy assignment operator may be
4914    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4915    // it shows up in the right place in the vtable and that we diagnose
4916    // problems with the implicit exception specification.
4917    if (ClassDecl->isDynamicClass())
4918      DeclareImplicitCopyAssignment(ClassDecl);
4919  }
4920
4921  if (!ClassDecl->hasUserDeclaredDestructor()) {
4922    ++ASTContext::NumImplicitDestructors;
4923
4924    // If we have a dynamic class, then the destructor may be virtual, so we
4925    // have to declare the destructor immediately. This ensures that, e.g., it
4926    // shows up in the right place in the vtable and that we diagnose problems
4927    // with the implicit exception specification.
4928    if (ClassDecl->isDynamicClass())
4929      DeclareImplicitDestructor(ClassDecl);
4930  }
4931}
4932
4933void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4934  if (!D)
4935    return;
4936
4937  int NumParamList = D->getNumTemplateParameterLists();
4938  for (int i = 0; i < NumParamList; i++) {
4939    TemplateParameterList* Params = D->getTemplateParameterList(i);
4940    for (TemplateParameterList::iterator Param = Params->begin(),
4941                                      ParamEnd = Params->end();
4942          Param != ParamEnd; ++Param) {
4943      NamedDecl *Named = cast<NamedDecl>(*Param);
4944      if (Named->getDeclName()) {
4945        S->AddDecl(Named);
4946        IdResolver.AddDecl(Named);
4947      }
4948    }
4949  }
4950}
4951
4952void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4953  if (!D)
4954    return;
4955
4956  TemplateParameterList *Params = 0;
4957  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4958    Params = Template->getTemplateParameters();
4959  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4960           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4961    Params = PartialSpec->getTemplateParameters();
4962  else
4963    return;
4964
4965  for (TemplateParameterList::iterator Param = Params->begin(),
4966                                    ParamEnd = Params->end();
4967       Param != ParamEnd; ++Param) {
4968    NamedDecl *Named = cast<NamedDecl>(*Param);
4969    if (Named->getDeclName()) {
4970      S->AddDecl(Named);
4971      IdResolver.AddDecl(Named);
4972    }
4973  }
4974}
4975
4976void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4977  if (!RecordD) return;
4978  AdjustDeclIfTemplate(RecordD);
4979  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4980  PushDeclContext(S, Record);
4981}
4982
4983void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4984  if (!RecordD) return;
4985  PopDeclContext();
4986}
4987
4988/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4989/// parsing a top-level (non-nested) C++ class, and we are now
4990/// parsing those parts of the given Method declaration that could
4991/// not be parsed earlier (C++ [class.mem]p2), such as default
4992/// arguments. This action should enter the scope of the given
4993/// Method declaration as if we had just parsed the qualified method
4994/// name. However, it should not bring the parameters into scope;
4995/// that will be performed by ActOnDelayedCXXMethodParameter.
4996void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4997}
4998
4999/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5000/// C++ method declaration. We're (re-)introducing the given
5001/// function parameter into scope for use in parsing later parts of
5002/// the method declaration. For example, we could see an
5003/// ActOnParamDefaultArgument event for this parameter.
5004void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5005  if (!ParamD)
5006    return;
5007
5008  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5009
5010  // If this parameter has an unparsed default argument, clear it out
5011  // to make way for the parsed default argument.
5012  if (Param->hasUnparsedDefaultArg())
5013    Param->setDefaultArg(0);
5014
5015  S->AddDecl(Param);
5016  if (Param->getDeclName())
5017    IdResolver.AddDecl(Param);
5018}
5019
5020/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5021/// processing the delayed method declaration for Method. The method
5022/// declaration is now considered finished. There may be a separate
5023/// ActOnStartOfFunctionDef action later (not necessarily
5024/// immediately!) for this method, if it was also defined inside the
5025/// class body.
5026void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5027  if (!MethodD)
5028    return;
5029
5030  AdjustDeclIfTemplate(MethodD);
5031
5032  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5033
5034  // Now that we have our default arguments, check the constructor
5035  // again. It could produce additional diagnostics or affect whether
5036  // the class has implicitly-declared destructors, among other
5037  // things.
5038  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5039    CheckConstructor(Constructor);
5040
5041  // Check the default arguments, which we may have added.
5042  if (!Method->isInvalidDecl())
5043    CheckCXXDefaultArguments(Method);
5044}
5045
5046/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5047/// the well-formedness of the constructor declarator @p D with type @p
5048/// R. If there are any errors in the declarator, this routine will
5049/// emit diagnostics and set the invalid bit to true.  In any case, the type
5050/// will be updated to reflect a well-formed type for the constructor and
5051/// returned.
5052QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5053                                          StorageClass &SC) {
5054  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5055
5056  // C++ [class.ctor]p3:
5057  //   A constructor shall not be virtual (10.3) or static (9.4). A
5058  //   constructor can be invoked for a const, volatile or const
5059  //   volatile object. A constructor shall not be declared const,
5060  //   volatile, or const volatile (9.3.2).
5061  if (isVirtual) {
5062    if (!D.isInvalidType())
5063      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5064        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5065        << SourceRange(D.getIdentifierLoc());
5066    D.setInvalidType();
5067  }
5068  if (SC == SC_Static) {
5069    if (!D.isInvalidType())
5070      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5071        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5072        << SourceRange(D.getIdentifierLoc());
5073    D.setInvalidType();
5074    SC = SC_None;
5075  }
5076
5077  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5078  if (FTI.TypeQuals != 0) {
5079    if (FTI.TypeQuals & Qualifiers::Const)
5080      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5081        << "const" << SourceRange(D.getIdentifierLoc());
5082    if (FTI.TypeQuals & Qualifiers::Volatile)
5083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5084        << "volatile" << SourceRange(D.getIdentifierLoc());
5085    if (FTI.TypeQuals & Qualifiers::Restrict)
5086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5087        << "restrict" << SourceRange(D.getIdentifierLoc());
5088    D.setInvalidType();
5089  }
5090
5091  // C++0x [class.ctor]p4:
5092  //   A constructor shall not be declared with a ref-qualifier.
5093  if (FTI.hasRefQualifier()) {
5094    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5095      << FTI.RefQualifierIsLValueRef
5096      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5097    D.setInvalidType();
5098  }
5099
5100  // Rebuild the function type "R" without any type qualifiers (in
5101  // case any of the errors above fired) and with "void" as the
5102  // return type, since constructors don't have return types.
5103  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5104  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5105    return R;
5106
5107  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5108  EPI.TypeQuals = 0;
5109  EPI.RefQualifier = RQ_None;
5110
5111  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5112                                 Proto->getNumArgs(), EPI);
5113}
5114
5115/// CheckConstructor - Checks a fully-formed constructor for
5116/// well-formedness, issuing any diagnostics required. Returns true if
5117/// the constructor declarator is invalid.
5118void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5119  CXXRecordDecl *ClassDecl
5120    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5121  if (!ClassDecl)
5122    return Constructor->setInvalidDecl();
5123
5124  // C++ [class.copy]p3:
5125  //   A declaration of a constructor for a class X is ill-formed if
5126  //   its first parameter is of type (optionally cv-qualified) X and
5127  //   either there are no other parameters or else all other
5128  //   parameters have default arguments.
5129  if (!Constructor->isInvalidDecl() &&
5130      ((Constructor->getNumParams() == 1) ||
5131       (Constructor->getNumParams() > 1 &&
5132        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5133      Constructor->getTemplateSpecializationKind()
5134                                              != TSK_ImplicitInstantiation) {
5135    QualType ParamType = Constructor->getParamDecl(0)->getType();
5136    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5137    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5138      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5139      const char *ConstRef
5140        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5141                                                        : " const &";
5142      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5143        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5144
5145      // FIXME: Rather that making the constructor invalid, we should endeavor
5146      // to fix the type.
5147      Constructor->setInvalidDecl();
5148    }
5149  }
5150}
5151
5152/// CheckDestructor - Checks a fully-formed destructor definition for
5153/// well-formedness, issuing any diagnostics required.  Returns true
5154/// on error.
5155bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5156  CXXRecordDecl *RD = Destructor->getParent();
5157
5158  if (Destructor->isVirtual()) {
5159    SourceLocation Loc;
5160
5161    if (!Destructor->isImplicit())
5162      Loc = Destructor->getLocation();
5163    else
5164      Loc = RD->getLocation();
5165
5166    // If we have a virtual destructor, look up the deallocation function
5167    FunctionDecl *OperatorDelete = 0;
5168    DeclarationName Name =
5169    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5170    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5171      return true;
5172
5173    MarkDeclarationReferenced(Loc, OperatorDelete);
5174
5175    Destructor->setOperatorDelete(OperatorDelete);
5176  }
5177
5178  return false;
5179}
5180
5181static inline bool
5182FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5183  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5184          FTI.ArgInfo[0].Param &&
5185          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5186}
5187
5188/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5189/// the well-formednes of the destructor declarator @p D with type @p
5190/// R. If there are any errors in the declarator, this routine will
5191/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5192/// will be updated to reflect a well-formed type for the destructor and
5193/// returned.
5194QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5195                                         StorageClass& SC) {
5196  // C++ [class.dtor]p1:
5197  //   [...] A typedef-name that names a class is a class-name
5198  //   (7.1.3); however, a typedef-name that names a class shall not
5199  //   be used as the identifier in the declarator for a destructor
5200  //   declaration.
5201  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5202  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5203    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5204      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5205  else if (const TemplateSpecializationType *TST =
5206             DeclaratorType->getAs<TemplateSpecializationType>())
5207    if (TST->isTypeAlias())
5208      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5209        << DeclaratorType << 1;
5210
5211  // C++ [class.dtor]p2:
5212  //   A destructor is used to destroy objects of its class type. A
5213  //   destructor takes no parameters, and no return type can be
5214  //   specified for it (not even void). The address of a destructor
5215  //   shall not be taken. A destructor shall not be static. A
5216  //   destructor can be invoked for a const, volatile or const
5217  //   volatile object. A destructor shall not be declared const,
5218  //   volatile or const volatile (9.3.2).
5219  if (SC == SC_Static) {
5220    if (!D.isInvalidType())
5221      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5222        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5223        << SourceRange(D.getIdentifierLoc())
5224        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5225
5226    SC = SC_None;
5227  }
5228  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5229    // Destructors don't have return types, but the parser will
5230    // happily parse something like:
5231    //
5232    //   class X {
5233    //     float ~X();
5234    //   };
5235    //
5236    // The return type will be eliminated later.
5237    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5238      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5239      << SourceRange(D.getIdentifierLoc());
5240  }
5241
5242  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5243  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5244    if (FTI.TypeQuals & Qualifiers::Const)
5245      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5246        << "const" << SourceRange(D.getIdentifierLoc());
5247    if (FTI.TypeQuals & Qualifiers::Volatile)
5248      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5249        << "volatile" << SourceRange(D.getIdentifierLoc());
5250    if (FTI.TypeQuals & Qualifiers::Restrict)
5251      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5252        << "restrict" << SourceRange(D.getIdentifierLoc());
5253    D.setInvalidType();
5254  }
5255
5256  // C++0x [class.dtor]p2:
5257  //   A destructor shall not be declared with a ref-qualifier.
5258  if (FTI.hasRefQualifier()) {
5259    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5260      << FTI.RefQualifierIsLValueRef
5261      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5262    D.setInvalidType();
5263  }
5264
5265  // Make sure we don't have any parameters.
5266  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5267    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5268
5269    // Delete the parameters.
5270    FTI.freeArgs();
5271    D.setInvalidType();
5272  }
5273
5274  // Make sure the destructor isn't variadic.
5275  if (FTI.isVariadic) {
5276    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5277    D.setInvalidType();
5278  }
5279
5280  // Rebuild the function type "R" without any type qualifiers or
5281  // parameters (in case any of the errors above fired) and with
5282  // "void" as the return type, since destructors don't have return
5283  // types.
5284  if (!D.isInvalidType())
5285    return R;
5286
5287  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5288  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5289  EPI.Variadic = false;
5290  EPI.TypeQuals = 0;
5291  EPI.RefQualifier = RQ_None;
5292  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5293}
5294
5295/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5296/// well-formednes of the conversion function declarator @p D with
5297/// type @p R. If there are any errors in the declarator, this routine
5298/// will emit diagnostics and return true. Otherwise, it will return
5299/// false. Either way, the type @p R will be updated to reflect a
5300/// well-formed type for the conversion operator.
5301void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5302                                     StorageClass& SC) {
5303  // C++ [class.conv.fct]p1:
5304  //   Neither parameter types nor return type can be specified. The
5305  //   type of a conversion function (8.3.5) is "function taking no
5306  //   parameter returning conversion-type-id."
5307  if (SC == SC_Static) {
5308    if (!D.isInvalidType())
5309      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5310        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5311        << SourceRange(D.getIdentifierLoc());
5312    D.setInvalidType();
5313    SC = SC_None;
5314  }
5315
5316  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5317
5318  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5319    // Conversion functions don't have return types, but the parser will
5320    // happily parse something like:
5321    //
5322    //   class X {
5323    //     float operator bool();
5324    //   };
5325    //
5326    // The return type will be changed later anyway.
5327    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5328      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5329      << SourceRange(D.getIdentifierLoc());
5330    D.setInvalidType();
5331  }
5332
5333  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5334
5335  // Make sure we don't have any parameters.
5336  if (Proto->getNumArgs() > 0) {
5337    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5338
5339    // Delete the parameters.
5340    D.getFunctionTypeInfo().freeArgs();
5341    D.setInvalidType();
5342  } else if (Proto->isVariadic()) {
5343    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5344    D.setInvalidType();
5345  }
5346
5347  // Diagnose "&operator bool()" and other such nonsense.  This
5348  // is actually a gcc extension which we don't support.
5349  if (Proto->getResultType() != ConvType) {
5350    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5351      << Proto->getResultType();
5352    D.setInvalidType();
5353    ConvType = Proto->getResultType();
5354  }
5355
5356  // C++ [class.conv.fct]p4:
5357  //   The conversion-type-id shall not represent a function type nor
5358  //   an array type.
5359  if (ConvType->isArrayType()) {
5360    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5361    ConvType = Context.getPointerType(ConvType);
5362    D.setInvalidType();
5363  } else if (ConvType->isFunctionType()) {
5364    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5365    ConvType = Context.getPointerType(ConvType);
5366    D.setInvalidType();
5367  }
5368
5369  // Rebuild the function type "R" without any parameters (in case any
5370  // of the errors above fired) and with the conversion type as the
5371  // return type.
5372  if (D.isInvalidType())
5373    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5374
5375  // C++0x explicit conversion operators.
5376  if (D.getDeclSpec().isExplicitSpecified())
5377    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5378         getLangOptions().CPlusPlus0x ?
5379           diag::warn_cxx98_compat_explicit_conversion_functions :
5380           diag::ext_explicit_conversion_functions)
5381      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5382}
5383
5384/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5385/// the declaration of the given C++ conversion function. This routine
5386/// is responsible for recording the conversion function in the C++
5387/// class, if possible.
5388Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5389  assert(Conversion && "Expected to receive a conversion function declaration");
5390
5391  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5392
5393  // Make sure we aren't redeclaring the conversion function.
5394  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5395
5396  // C++ [class.conv.fct]p1:
5397  //   [...] A conversion function is never used to convert a
5398  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5399  //   same object type (or a reference to it), to a (possibly
5400  //   cv-qualified) base class of that type (or a reference to it),
5401  //   or to (possibly cv-qualified) void.
5402  // FIXME: Suppress this warning if the conversion function ends up being a
5403  // virtual function that overrides a virtual function in a base class.
5404  QualType ClassType
5405    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5406  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5407    ConvType = ConvTypeRef->getPointeeType();
5408  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5409      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5410    /* Suppress diagnostics for instantiations. */;
5411  else if (ConvType->isRecordType()) {
5412    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5413    if (ConvType == ClassType)
5414      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5415        << ClassType;
5416    else if (IsDerivedFrom(ClassType, ConvType))
5417      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5418        <<  ClassType << ConvType;
5419  } else if (ConvType->isVoidType()) {
5420    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5421      << ClassType << ConvType;
5422  }
5423
5424  if (FunctionTemplateDecl *ConversionTemplate
5425                                = Conversion->getDescribedFunctionTemplate())
5426    return ConversionTemplate;
5427
5428  return Conversion;
5429}
5430
5431//===----------------------------------------------------------------------===//
5432// Namespace Handling
5433//===----------------------------------------------------------------------===//
5434
5435
5436
5437/// ActOnStartNamespaceDef - This is called at the start of a namespace
5438/// definition.
5439Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5440                                   SourceLocation InlineLoc,
5441                                   SourceLocation NamespaceLoc,
5442                                   SourceLocation IdentLoc,
5443                                   IdentifierInfo *II,
5444                                   SourceLocation LBrace,
5445                                   AttributeList *AttrList) {
5446  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5447  // For anonymous namespace, take the location of the left brace.
5448  SourceLocation Loc = II ? IdentLoc : LBrace;
5449  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5450                                                 StartLoc, Loc, II);
5451  Namespc->setInline(InlineLoc.isValid());
5452
5453  Scope *DeclRegionScope = NamespcScope->getParent();
5454
5455  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5456
5457  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5458    PushNamespaceVisibilityAttr(Attr);
5459
5460  if (II) {
5461    // C++ [namespace.def]p2:
5462    //   The identifier in an original-namespace-definition shall not
5463    //   have been previously defined in the declarative region in
5464    //   which the original-namespace-definition appears. The
5465    //   identifier in an original-namespace-definition is the name of
5466    //   the namespace. Subsequently in that declarative region, it is
5467    //   treated as an original-namespace-name.
5468    //
5469    // Since namespace names are unique in their scope, and we don't
5470    // look through using directives, just look for any ordinary names.
5471
5472    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5473      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5474      Decl::IDNS_Namespace;
5475    NamedDecl *PrevDecl = 0;
5476    for (DeclContext::lookup_result R
5477            = CurContext->getRedeclContext()->lookup(II);
5478         R.first != R.second; ++R.first) {
5479      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5480        PrevDecl = *R.first;
5481        break;
5482      }
5483    }
5484
5485    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5486      // This is an extended namespace definition.
5487      if (Namespc->isInline() != OrigNS->isInline()) {
5488        // inline-ness must match
5489        if (OrigNS->isInline()) {
5490          // The user probably just forgot the 'inline', so suggest that it
5491          // be added back.
5492          Diag(Namespc->getLocation(),
5493               diag::warn_inline_namespace_reopened_noninline)
5494            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5495        } else {
5496          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5497            << Namespc->isInline();
5498        }
5499        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5500
5501        // Recover by ignoring the new namespace's inline status.
5502        Namespc->setInline(OrigNS->isInline());
5503      }
5504
5505      // Attach this namespace decl to the chain of extended namespace
5506      // definitions.
5507      OrigNS->setNextNamespace(Namespc);
5508      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5509
5510      // Remove the previous declaration from the scope.
5511      if (DeclRegionScope->isDeclScope(OrigNS)) {
5512        IdResolver.RemoveDecl(OrigNS);
5513        DeclRegionScope->RemoveDecl(OrigNS);
5514      }
5515    } else if (PrevDecl) {
5516      // This is an invalid name redefinition.
5517      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5518       << Namespc->getDeclName();
5519      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5520      Namespc->setInvalidDecl();
5521      // Continue on to push Namespc as current DeclContext and return it.
5522    } else if (II->isStr("std") &&
5523               CurContext->getRedeclContext()->isTranslationUnit()) {
5524      // This is the first "real" definition of the namespace "std", so update
5525      // our cache of the "std" namespace to point at this definition.
5526      if (NamespaceDecl *StdNS = getStdNamespace()) {
5527        // We had already defined a dummy namespace "std". Link this new
5528        // namespace definition to the dummy namespace "std".
5529        StdNS->setNextNamespace(Namespc);
5530        StdNS->setLocation(IdentLoc);
5531        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5532      }
5533
5534      // Make our StdNamespace cache point at the first real definition of the
5535      // "std" namespace.
5536      StdNamespace = Namespc;
5537
5538      // Add this instance of "std" to the set of known namespaces
5539      KnownNamespaces[Namespc] = false;
5540    } else if (!Namespc->isInline()) {
5541      // Since this is an "original" namespace, add it to the known set of
5542      // namespaces if it is not an inline namespace.
5543      KnownNamespaces[Namespc] = false;
5544    }
5545
5546    PushOnScopeChains(Namespc, DeclRegionScope);
5547  } else {
5548    // Anonymous namespaces.
5549    assert(Namespc->isAnonymousNamespace());
5550
5551    // Link the anonymous namespace into its parent.
5552    NamespaceDecl *PrevDecl;
5553    DeclContext *Parent = CurContext->getRedeclContext();
5554    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5555      PrevDecl = TU->getAnonymousNamespace();
5556      TU->setAnonymousNamespace(Namespc);
5557    } else {
5558      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5559      PrevDecl = ND->getAnonymousNamespace();
5560      ND->setAnonymousNamespace(Namespc);
5561    }
5562
5563    // Link the anonymous namespace with its previous declaration.
5564    if (PrevDecl) {
5565      assert(PrevDecl->isAnonymousNamespace());
5566      assert(!PrevDecl->getNextNamespace());
5567      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5568      PrevDecl->setNextNamespace(Namespc);
5569
5570      if (Namespc->isInline() != PrevDecl->isInline()) {
5571        // inline-ness must match
5572        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5573          << Namespc->isInline();
5574        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5575        Namespc->setInvalidDecl();
5576        // Recover by ignoring the new namespace's inline status.
5577        Namespc->setInline(PrevDecl->isInline());
5578      }
5579    }
5580
5581    CurContext->addDecl(Namespc);
5582
5583    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5584    //   behaves as if it were replaced by
5585    //     namespace unique { /* empty body */ }
5586    //     using namespace unique;
5587    //     namespace unique { namespace-body }
5588    //   where all occurrences of 'unique' in a translation unit are
5589    //   replaced by the same identifier and this identifier differs
5590    //   from all other identifiers in the entire program.
5591
5592    // We just create the namespace with an empty name and then add an
5593    // implicit using declaration, just like the standard suggests.
5594    //
5595    // CodeGen enforces the "universally unique" aspect by giving all
5596    // declarations semantically contained within an anonymous
5597    // namespace internal linkage.
5598
5599    if (!PrevDecl) {
5600      UsingDirectiveDecl* UD
5601        = UsingDirectiveDecl::Create(Context, CurContext,
5602                                     /* 'using' */ LBrace,
5603                                     /* 'namespace' */ SourceLocation(),
5604                                     /* qualifier */ NestedNameSpecifierLoc(),
5605                                     /* identifier */ SourceLocation(),
5606                                     Namespc,
5607                                     /* Ancestor */ CurContext);
5608      UD->setImplicit();
5609      CurContext->addDecl(UD);
5610    }
5611  }
5612
5613  // Although we could have an invalid decl (i.e. the namespace name is a
5614  // redefinition), push it as current DeclContext and try to continue parsing.
5615  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5616  // for the namespace has the declarations that showed up in that particular
5617  // namespace definition.
5618  PushDeclContext(NamespcScope, Namespc);
5619  return Namespc;
5620}
5621
5622/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5623/// is a namespace alias, returns the namespace it points to.
5624static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5625  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5626    return AD->getNamespace();
5627  return dyn_cast_or_null<NamespaceDecl>(D);
5628}
5629
5630/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5631/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5632void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5633  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5634  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5635  Namespc->setRBraceLoc(RBrace);
5636  PopDeclContext();
5637  if (Namespc->hasAttr<VisibilityAttr>())
5638    PopPragmaVisibility();
5639}
5640
5641CXXRecordDecl *Sema::getStdBadAlloc() const {
5642  return cast_or_null<CXXRecordDecl>(
5643                                  StdBadAlloc.get(Context.getExternalSource()));
5644}
5645
5646NamespaceDecl *Sema::getStdNamespace() const {
5647  return cast_or_null<NamespaceDecl>(
5648                                 StdNamespace.get(Context.getExternalSource()));
5649}
5650
5651/// \brief Retrieve the special "std" namespace, which may require us to
5652/// implicitly define the namespace.
5653NamespaceDecl *Sema::getOrCreateStdNamespace() {
5654  if (!StdNamespace) {
5655    // The "std" namespace has not yet been defined, so build one implicitly.
5656    StdNamespace = NamespaceDecl::Create(Context,
5657                                         Context.getTranslationUnitDecl(),
5658                                         SourceLocation(), SourceLocation(),
5659                                         &PP.getIdentifierTable().get("std"));
5660    getStdNamespace()->setImplicit(true);
5661  }
5662
5663  return getStdNamespace();
5664}
5665
5666/// \brief Determine whether a using statement is in a context where it will be
5667/// apply in all contexts.
5668static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5669  switch (CurContext->getDeclKind()) {
5670    case Decl::TranslationUnit:
5671      return true;
5672    case Decl::LinkageSpec:
5673      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5674    default:
5675      return false;
5676  }
5677}
5678
5679static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5680                                       CXXScopeSpec &SS,
5681                                       SourceLocation IdentLoc,
5682                                       IdentifierInfo *Ident) {
5683  R.clear();
5684  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5685                                               R.getLookupKind(), Sc, &SS, NULL,
5686                                               false, S.CTC_NoKeywords, NULL)) {
5687    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5688        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5689      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5690      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5691      if (DeclContext *DC = S.computeDeclContext(SS, false))
5692        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5693          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5694          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5695      else
5696        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5697          << Ident << CorrectedQuotedStr
5698          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5699
5700      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5701           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5702
5703      Ident = Corrected.getCorrectionAsIdentifierInfo();
5704      R.addDecl(Corrected.getCorrectionDecl());
5705      return true;
5706    }
5707    R.setLookupName(Ident);
5708  }
5709  return false;
5710}
5711
5712Decl *Sema::ActOnUsingDirective(Scope *S,
5713                                          SourceLocation UsingLoc,
5714                                          SourceLocation NamespcLoc,
5715                                          CXXScopeSpec &SS,
5716                                          SourceLocation IdentLoc,
5717                                          IdentifierInfo *NamespcName,
5718                                          AttributeList *AttrList) {
5719  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5720  assert(NamespcName && "Invalid NamespcName.");
5721  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5722
5723  // This can only happen along a recovery path.
5724  while (S->getFlags() & Scope::TemplateParamScope)
5725    S = S->getParent();
5726  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5727
5728  UsingDirectiveDecl *UDir = 0;
5729  NestedNameSpecifier *Qualifier = 0;
5730  if (SS.isSet())
5731    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5732
5733  // Lookup namespace name.
5734  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5735  LookupParsedName(R, S, &SS);
5736  if (R.isAmbiguous())
5737    return 0;
5738
5739  if (R.empty()) {
5740    R.clear();
5741    // Allow "using namespace std;" or "using namespace ::std;" even if
5742    // "std" hasn't been defined yet, for GCC compatibility.
5743    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5744        NamespcName->isStr("std")) {
5745      Diag(IdentLoc, diag::ext_using_undefined_std);
5746      R.addDecl(getOrCreateStdNamespace());
5747      R.resolveKind();
5748    }
5749    // Otherwise, attempt typo correction.
5750    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5751  }
5752
5753  if (!R.empty()) {
5754    NamedDecl *Named = R.getFoundDecl();
5755    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5756        && "expected namespace decl");
5757    // C++ [namespace.udir]p1:
5758    //   A using-directive specifies that the names in the nominated
5759    //   namespace can be used in the scope in which the
5760    //   using-directive appears after the using-directive. During
5761    //   unqualified name lookup (3.4.1), the names appear as if they
5762    //   were declared in the nearest enclosing namespace which
5763    //   contains both the using-directive and the nominated
5764    //   namespace. [Note: in this context, "contains" means "contains
5765    //   directly or indirectly". ]
5766
5767    // Find enclosing context containing both using-directive and
5768    // nominated namespace.
5769    NamespaceDecl *NS = getNamespaceDecl(Named);
5770    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5771    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5772      CommonAncestor = CommonAncestor->getParent();
5773
5774    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5775                                      SS.getWithLocInContext(Context),
5776                                      IdentLoc, Named, CommonAncestor);
5777
5778    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5779        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5780      Diag(IdentLoc, diag::warn_using_directive_in_header);
5781    }
5782
5783    PushUsingDirective(S, UDir);
5784  } else {
5785    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5786  }
5787
5788  // FIXME: We ignore attributes for now.
5789  return UDir;
5790}
5791
5792void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5793  // If scope has associated entity, then using directive is at namespace
5794  // or translation unit scope. We add UsingDirectiveDecls, into
5795  // it's lookup structure.
5796  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5797    Ctx->addDecl(UDir);
5798  else
5799    // Otherwise it is block-sope. using-directives will affect lookup
5800    // only to the end of scope.
5801    S->PushUsingDirective(UDir);
5802}
5803
5804
5805Decl *Sema::ActOnUsingDeclaration(Scope *S,
5806                                  AccessSpecifier AS,
5807                                  bool HasUsingKeyword,
5808                                  SourceLocation UsingLoc,
5809                                  CXXScopeSpec &SS,
5810                                  UnqualifiedId &Name,
5811                                  AttributeList *AttrList,
5812                                  bool IsTypeName,
5813                                  SourceLocation TypenameLoc) {
5814  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5815
5816  switch (Name.getKind()) {
5817  case UnqualifiedId::IK_ImplicitSelfParam:
5818  case UnqualifiedId::IK_Identifier:
5819  case UnqualifiedId::IK_OperatorFunctionId:
5820  case UnqualifiedId::IK_LiteralOperatorId:
5821  case UnqualifiedId::IK_ConversionFunctionId:
5822    break;
5823
5824  case UnqualifiedId::IK_ConstructorName:
5825  case UnqualifiedId::IK_ConstructorTemplateId:
5826    // C++0x inherited constructors.
5827    Diag(Name.getSourceRange().getBegin(),
5828         getLangOptions().CPlusPlus0x ?
5829           diag::warn_cxx98_compat_using_decl_constructor :
5830           diag::err_using_decl_constructor)
5831      << SS.getRange();
5832
5833    if (getLangOptions().CPlusPlus0x) break;
5834
5835    return 0;
5836
5837  case UnqualifiedId::IK_DestructorName:
5838    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5839      << SS.getRange();
5840    return 0;
5841
5842  case UnqualifiedId::IK_TemplateId:
5843    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5844      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5845    return 0;
5846  }
5847
5848  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5849  DeclarationName TargetName = TargetNameInfo.getName();
5850  if (!TargetName)
5851    return 0;
5852
5853  // Warn about using declarations.
5854  // TODO: store that the declaration was written without 'using' and
5855  // talk about access decls instead of using decls in the
5856  // diagnostics.
5857  if (!HasUsingKeyword) {
5858    UsingLoc = Name.getSourceRange().getBegin();
5859
5860    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5861      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5862  }
5863
5864  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5865      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5866    return 0;
5867
5868  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5869                                        TargetNameInfo, AttrList,
5870                                        /* IsInstantiation */ false,
5871                                        IsTypeName, TypenameLoc);
5872  if (UD)
5873    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5874
5875  return UD;
5876}
5877
5878/// \brief Determine whether a using declaration considers the given
5879/// declarations as "equivalent", e.g., if they are redeclarations of
5880/// the same entity or are both typedefs of the same type.
5881static bool
5882IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5883                         bool &SuppressRedeclaration) {
5884  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5885    SuppressRedeclaration = false;
5886    return true;
5887  }
5888
5889  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5890    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5891      SuppressRedeclaration = true;
5892      return Context.hasSameType(TD1->getUnderlyingType(),
5893                                 TD2->getUnderlyingType());
5894    }
5895
5896  return false;
5897}
5898
5899
5900/// Determines whether to create a using shadow decl for a particular
5901/// decl, given the set of decls existing prior to this using lookup.
5902bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5903                                const LookupResult &Previous) {
5904  // Diagnose finding a decl which is not from a base class of the
5905  // current class.  We do this now because there are cases where this
5906  // function will silently decide not to build a shadow decl, which
5907  // will pre-empt further diagnostics.
5908  //
5909  // We don't need to do this in C++0x because we do the check once on
5910  // the qualifier.
5911  //
5912  // FIXME: diagnose the following if we care enough:
5913  //   struct A { int foo; };
5914  //   struct B : A { using A::foo; };
5915  //   template <class T> struct C : A {};
5916  //   template <class T> struct D : C<T> { using B::foo; } // <---
5917  // This is invalid (during instantiation) in C++03 because B::foo
5918  // resolves to the using decl in B, which is not a base class of D<T>.
5919  // We can't diagnose it immediately because C<T> is an unknown
5920  // specialization.  The UsingShadowDecl in D<T> then points directly
5921  // to A::foo, which will look well-formed when we instantiate.
5922  // The right solution is to not collapse the shadow-decl chain.
5923  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5924    DeclContext *OrigDC = Orig->getDeclContext();
5925
5926    // Handle enums and anonymous structs.
5927    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5928    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5929    while (OrigRec->isAnonymousStructOrUnion())
5930      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5931
5932    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5933      if (OrigDC == CurContext) {
5934        Diag(Using->getLocation(),
5935             diag::err_using_decl_nested_name_specifier_is_current_class)
5936          << Using->getQualifierLoc().getSourceRange();
5937        Diag(Orig->getLocation(), diag::note_using_decl_target);
5938        return true;
5939      }
5940
5941      Diag(Using->getQualifierLoc().getBeginLoc(),
5942           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5943        << Using->getQualifier()
5944        << cast<CXXRecordDecl>(CurContext)
5945        << Using->getQualifierLoc().getSourceRange();
5946      Diag(Orig->getLocation(), diag::note_using_decl_target);
5947      return true;
5948    }
5949  }
5950
5951  if (Previous.empty()) return false;
5952
5953  NamedDecl *Target = Orig;
5954  if (isa<UsingShadowDecl>(Target))
5955    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5956
5957  // If the target happens to be one of the previous declarations, we
5958  // don't have a conflict.
5959  //
5960  // FIXME: but we might be increasing its access, in which case we
5961  // should redeclare it.
5962  NamedDecl *NonTag = 0, *Tag = 0;
5963  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5964         I != E; ++I) {
5965    NamedDecl *D = (*I)->getUnderlyingDecl();
5966    bool Result;
5967    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5968      return Result;
5969
5970    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5971  }
5972
5973  if (Target->isFunctionOrFunctionTemplate()) {
5974    FunctionDecl *FD;
5975    if (isa<FunctionTemplateDecl>(Target))
5976      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5977    else
5978      FD = cast<FunctionDecl>(Target);
5979
5980    NamedDecl *OldDecl = 0;
5981    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5982    case Ovl_Overload:
5983      return false;
5984
5985    case Ovl_NonFunction:
5986      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5987      break;
5988
5989    // We found a decl with the exact signature.
5990    case Ovl_Match:
5991      // If we're in a record, we want to hide the target, so we
5992      // return true (without a diagnostic) to tell the caller not to
5993      // build a shadow decl.
5994      if (CurContext->isRecord())
5995        return true;
5996
5997      // If we're not in a record, this is an error.
5998      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5999      break;
6000    }
6001
6002    Diag(Target->getLocation(), diag::note_using_decl_target);
6003    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6004    return true;
6005  }
6006
6007  // Target is not a function.
6008
6009  if (isa<TagDecl>(Target)) {
6010    // No conflict between a tag and a non-tag.
6011    if (!Tag) return false;
6012
6013    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6014    Diag(Target->getLocation(), diag::note_using_decl_target);
6015    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6016    return true;
6017  }
6018
6019  // No conflict between a tag and a non-tag.
6020  if (!NonTag) return false;
6021
6022  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6023  Diag(Target->getLocation(), diag::note_using_decl_target);
6024  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6025  return true;
6026}
6027
6028/// Builds a shadow declaration corresponding to a 'using' declaration.
6029UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6030                                            UsingDecl *UD,
6031                                            NamedDecl *Orig) {
6032
6033  // If we resolved to another shadow declaration, just coalesce them.
6034  NamedDecl *Target = Orig;
6035  if (isa<UsingShadowDecl>(Target)) {
6036    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6037    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6038  }
6039
6040  UsingShadowDecl *Shadow
6041    = UsingShadowDecl::Create(Context, CurContext,
6042                              UD->getLocation(), UD, Target);
6043  UD->addShadowDecl(Shadow);
6044
6045  Shadow->setAccess(UD->getAccess());
6046  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6047    Shadow->setInvalidDecl();
6048
6049  if (S)
6050    PushOnScopeChains(Shadow, S);
6051  else
6052    CurContext->addDecl(Shadow);
6053
6054
6055  return Shadow;
6056}
6057
6058/// Hides a using shadow declaration.  This is required by the current
6059/// using-decl implementation when a resolvable using declaration in a
6060/// class is followed by a declaration which would hide or override
6061/// one or more of the using decl's targets; for example:
6062///
6063///   struct Base { void foo(int); };
6064///   struct Derived : Base {
6065///     using Base::foo;
6066///     void foo(int);
6067///   };
6068///
6069/// The governing language is C++03 [namespace.udecl]p12:
6070///
6071///   When a using-declaration brings names from a base class into a
6072///   derived class scope, member functions in the derived class
6073///   override and/or hide member functions with the same name and
6074///   parameter types in a base class (rather than conflicting).
6075///
6076/// There are two ways to implement this:
6077///   (1) optimistically create shadow decls when they're not hidden
6078///       by existing declarations, or
6079///   (2) don't create any shadow decls (or at least don't make them
6080///       visible) until we've fully parsed/instantiated the class.
6081/// The problem with (1) is that we might have to retroactively remove
6082/// a shadow decl, which requires several O(n) operations because the
6083/// decl structures are (very reasonably) not designed for removal.
6084/// (2) avoids this but is very fiddly and phase-dependent.
6085void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6086  if (Shadow->getDeclName().getNameKind() ==
6087        DeclarationName::CXXConversionFunctionName)
6088    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6089
6090  // Remove it from the DeclContext...
6091  Shadow->getDeclContext()->removeDecl(Shadow);
6092
6093  // ...and the scope, if applicable...
6094  if (S) {
6095    S->RemoveDecl(Shadow);
6096    IdResolver.RemoveDecl(Shadow);
6097  }
6098
6099  // ...and the using decl.
6100  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6101
6102  // TODO: complain somehow if Shadow was used.  It shouldn't
6103  // be possible for this to happen, because...?
6104}
6105
6106/// Builds a using declaration.
6107///
6108/// \param IsInstantiation - Whether this call arises from an
6109///   instantiation of an unresolved using declaration.  We treat
6110///   the lookup differently for these declarations.
6111NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6112                                       SourceLocation UsingLoc,
6113                                       CXXScopeSpec &SS,
6114                                       const DeclarationNameInfo &NameInfo,
6115                                       AttributeList *AttrList,
6116                                       bool IsInstantiation,
6117                                       bool IsTypeName,
6118                                       SourceLocation TypenameLoc) {
6119  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6120  SourceLocation IdentLoc = NameInfo.getLoc();
6121  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6122
6123  // FIXME: We ignore attributes for now.
6124
6125  if (SS.isEmpty()) {
6126    Diag(IdentLoc, diag::err_using_requires_qualname);
6127    return 0;
6128  }
6129
6130  // Do the redeclaration lookup in the current scope.
6131  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6132                        ForRedeclaration);
6133  Previous.setHideTags(false);
6134  if (S) {
6135    LookupName(Previous, S);
6136
6137    // It is really dumb that we have to do this.
6138    LookupResult::Filter F = Previous.makeFilter();
6139    while (F.hasNext()) {
6140      NamedDecl *D = F.next();
6141      if (!isDeclInScope(D, CurContext, S))
6142        F.erase();
6143    }
6144    F.done();
6145  } else {
6146    assert(IsInstantiation && "no scope in non-instantiation");
6147    assert(CurContext->isRecord() && "scope not record in instantiation");
6148    LookupQualifiedName(Previous, CurContext);
6149  }
6150
6151  // Check for invalid redeclarations.
6152  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6153    return 0;
6154
6155  // Check for bad qualifiers.
6156  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6157    return 0;
6158
6159  DeclContext *LookupContext = computeDeclContext(SS);
6160  NamedDecl *D;
6161  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6162  if (!LookupContext) {
6163    if (IsTypeName) {
6164      // FIXME: not all declaration name kinds are legal here
6165      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6166                                              UsingLoc, TypenameLoc,
6167                                              QualifierLoc,
6168                                              IdentLoc, NameInfo.getName());
6169    } else {
6170      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6171                                           QualifierLoc, NameInfo);
6172    }
6173  } else {
6174    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6175                          NameInfo, IsTypeName);
6176  }
6177  D->setAccess(AS);
6178  CurContext->addDecl(D);
6179
6180  if (!LookupContext) return D;
6181  UsingDecl *UD = cast<UsingDecl>(D);
6182
6183  if (RequireCompleteDeclContext(SS, LookupContext)) {
6184    UD->setInvalidDecl();
6185    return UD;
6186  }
6187
6188  // Constructor inheriting using decls get special treatment.
6189  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6190    if (CheckInheritedConstructorUsingDecl(UD))
6191      UD->setInvalidDecl();
6192    return UD;
6193  }
6194
6195  // Otherwise, look up the target name.
6196
6197  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6198
6199  // Unlike most lookups, we don't always want to hide tag
6200  // declarations: tag names are visible through the using declaration
6201  // even if hidden by ordinary names, *except* in a dependent context
6202  // where it's important for the sanity of two-phase lookup.
6203  if (!IsInstantiation)
6204    R.setHideTags(false);
6205
6206  LookupQualifiedName(R, LookupContext);
6207
6208  if (R.empty()) {
6209    Diag(IdentLoc, diag::err_no_member)
6210      << NameInfo.getName() << LookupContext << SS.getRange();
6211    UD->setInvalidDecl();
6212    return UD;
6213  }
6214
6215  if (R.isAmbiguous()) {
6216    UD->setInvalidDecl();
6217    return UD;
6218  }
6219
6220  if (IsTypeName) {
6221    // If we asked for a typename and got a non-type decl, error out.
6222    if (!R.getAsSingle<TypeDecl>()) {
6223      Diag(IdentLoc, diag::err_using_typename_non_type);
6224      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6225        Diag((*I)->getUnderlyingDecl()->getLocation(),
6226             diag::note_using_decl_target);
6227      UD->setInvalidDecl();
6228      return UD;
6229    }
6230  } else {
6231    // If we asked for a non-typename and we got a type, error out,
6232    // but only if this is an instantiation of an unresolved using
6233    // decl.  Otherwise just silently find the type name.
6234    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6235      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6236      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6237      UD->setInvalidDecl();
6238      return UD;
6239    }
6240  }
6241
6242  // C++0x N2914 [namespace.udecl]p6:
6243  // A using-declaration shall not name a namespace.
6244  if (R.getAsSingle<NamespaceDecl>()) {
6245    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6246      << SS.getRange();
6247    UD->setInvalidDecl();
6248    return UD;
6249  }
6250
6251  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6252    if (!CheckUsingShadowDecl(UD, *I, Previous))
6253      BuildUsingShadowDecl(S, UD, *I);
6254  }
6255
6256  return UD;
6257}
6258
6259/// Additional checks for a using declaration referring to a constructor name.
6260bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6261  if (UD->isTypeName()) {
6262    // FIXME: Cannot specify typename when specifying constructor
6263    return true;
6264  }
6265
6266  const Type *SourceType = UD->getQualifier()->getAsType();
6267  assert(SourceType &&
6268         "Using decl naming constructor doesn't have type in scope spec.");
6269  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6270
6271  // Check whether the named type is a direct base class.
6272  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6273  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6274  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6275       BaseIt != BaseE; ++BaseIt) {
6276    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6277    if (CanonicalSourceType == BaseType)
6278      break;
6279  }
6280
6281  if (BaseIt == BaseE) {
6282    // Did not find SourceType in the bases.
6283    Diag(UD->getUsingLocation(),
6284         diag::err_using_decl_constructor_not_in_direct_base)
6285      << UD->getNameInfo().getSourceRange()
6286      << QualType(SourceType, 0) << TargetClass;
6287    return true;
6288  }
6289
6290  BaseIt->setInheritConstructors();
6291
6292  return false;
6293}
6294
6295/// Checks that the given using declaration is not an invalid
6296/// redeclaration.  Note that this is checking only for the using decl
6297/// itself, not for any ill-formedness among the UsingShadowDecls.
6298bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6299                                       bool isTypeName,
6300                                       const CXXScopeSpec &SS,
6301                                       SourceLocation NameLoc,
6302                                       const LookupResult &Prev) {
6303  // C++03 [namespace.udecl]p8:
6304  // C++0x [namespace.udecl]p10:
6305  //   A using-declaration is a declaration and can therefore be used
6306  //   repeatedly where (and only where) multiple declarations are
6307  //   allowed.
6308  //
6309  // That's in non-member contexts.
6310  if (!CurContext->getRedeclContext()->isRecord())
6311    return false;
6312
6313  NestedNameSpecifier *Qual
6314    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6315
6316  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6317    NamedDecl *D = *I;
6318
6319    bool DTypename;
6320    NestedNameSpecifier *DQual;
6321    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6322      DTypename = UD->isTypeName();
6323      DQual = UD->getQualifier();
6324    } else if (UnresolvedUsingValueDecl *UD
6325                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6326      DTypename = false;
6327      DQual = UD->getQualifier();
6328    } else if (UnresolvedUsingTypenameDecl *UD
6329                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6330      DTypename = true;
6331      DQual = UD->getQualifier();
6332    } else continue;
6333
6334    // using decls differ if one says 'typename' and the other doesn't.
6335    // FIXME: non-dependent using decls?
6336    if (isTypeName != DTypename) continue;
6337
6338    // using decls differ if they name different scopes (but note that
6339    // template instantiation can cause this check to trigger when it
6340    // didn't before instantiation).
6341    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6342        Context.getCanonicalNestedNameSpecifier(DQual))
6343      continue;
6344
6345    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6346    Diag(D->getLocation(), diag::note_using_decl) << 1;
6347    return true;
6348  }
6349
6350  return false;
6351}
6352
6353
6354/// Checks that the given nested-name qualifier used in a using decl
6355/// in the current context is appropriately related to the current
6356/// scope.  If an error is found, diagnoses it and returns true.
6357bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6358                                   const CXXScopeSpec &SS,
6359                                   SourceLocation NameLoc) {
6360  DeclContext *NamedContext = computeDeclContext(SS);
6361
6362  if (!CurContext->isRecord()) {
6363    // C++03 [namespace.udecl]p3:
6364    // C++0x [namespace.udecl]p8:
6365    //   A using-declaration for a class member shall be a member-declaration.
6366
6367    // If we weren't able to compute a valid scope, it must be a
6368    // dependent class scope.
6369    if (!NamedContext || NamedContext->isRecord()) {
6370      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6371        << SS.getRange();
6372      return true;
6373    }
6374
6375    // Otherwise, everything is known to be fine.
6376    return false;
6377  }
6378
6379  // The current scope is a record.
6380
6381  // If the named context is dependent, we can't decide much.
6382  if (!NamedContext) {
6383    // FIXME: in C++0x, we can diagnose if we can prove that the
6384    // nested-name-specifier does not refer to a base class, which is
6385    // still possible in some cases.
6386
6387    // Otherwise we have to conservatively report that things might be
6388    // okay.
6389    return false;
6390  }
6391
6392  if (!NamedContext->isRecord()) {
6393    // Ideally this would point at the last name in the specifier,
6394    // but we don't have that level of source info.
6395    Diag(SS.getRange().getBegin(),
6396         diag::err_using_decl_nested_name_specifier_is_not_class)
6397      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6398    return true;
6399  }
6400
6401  if (!NamedContext->isDependentContext() &&
6402      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6403    return true;
6404
6405  if (getLangOptions().CPlusPlus0x) {
6406    // C++0x [namespace.udecl]p3:
6407    //   In a using-declaration used as a member-declaration, the
6408    //   nested-name-specifier shall name a base class of the class
6409    //   being defined.
6410
6411    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6412                                 cast<CXXRecordDecl>(NamedContext))) {
6413      if (CurContext == NamedContext) {
6414        Diag(NameLoc,
6415             diag::err_using_decl_nested_name_specifier_is_current_class)
6416          << SS.getRange();
6417        return true;
6418      }
6419
6420      Diag(SS.getRange().getBegin(),
6421           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6422        << (NestedNameSpecifier*) SS.getScopeRep()
6423        << cast<CXXRecordDecl>(CurContext)
6424        << SS.getRange();
6425      return true;
6426    }
6427
6428    return false;
6429  }
6430
6431  // C++03 [namespace.udecl]p4:
6432  //   A using-declaration used as a member-declaration shall refer
6433  //   to a member of a base class of the class being defined [etc.].
6434
6435  // Salient point: SS doesn't have to name a base class as long as
6436  // lookup only finds members from base classes.  Therefore we can
6437  // diagnose here only if we can prove that that can't happen,
6438  // i.e. if the class hierarchies provably don't intersect.
6439
6440  // TODO: it would be nice if "definitely valid" results were cached
6441  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6442  // need to be repeated.
6443
6444  struct UserData {
6445    llvm::DenseSet<const CXXRecordDecl*> Bases;
6446
6447    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6448      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6449      Data->Bases.insert(Base);
6450      return true;
6451    }
6452
6453    bool hasDependentBases(const CXXRecordDecl *Class) {
6454      return !Class->forallBases(collect, this);
6455    }
6456
6457    /// Returns true if the base is dependent or is one of the
6458    /// accumulated base classes.
6459    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6460      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6461      return !Data->Bases.count(Base);
6462    }
6463
6464    bool mightShareBases(const CXXRecordDecl *Class) {
6465      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6466    }
6467  };
6468
6469  UserData Data;
6470
6471  // Returns false if we find a dependent base.
6472  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6473    return false;
6474
6475  // Returns false if the class has a dependent base or if it or one
6476  // of its bases is present in the base set of the current context.
6477  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6478    return false;
6479
6480  Diag(SS.getRange().getBegin(),
6481       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6482    << (NestedNameSpecifier*) SS.getScopeRep()
6483    << cast<CXXRecordDecl>(CurContext)
6484    << SS.getRange();
6485
6486  return true;
6487}
6488
6489Decl *Sema::ActOnAliasDeclaration(Scope *S,
6490                                  AccessSpecifier AS,
6491                                  MultiTemplateParamsArg TemplateParamLists,
6492                                  SourceLocation UsingLoc,
6493                                  UnqualifiedId &Name,
6494                                  TypeResult Type) {
6495  // Skip up to the relevant declaration scope.
6496  while (S->getFlags() & Scope::TemplateParamScope)
6497    S = S->getParent();
6498  assert((S->getFlags() & Scope::DeclScope) &&
6499         "got alias-declaration outside of declaration scope");
6500
6501  if (Type.isInvalid())
6502    return 0;
6503
6504  bool Invalid = false;
6505  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6506  TypeSourceInfo *TInfo = 0;
6507  GetTypeFromParser(Type.get(), &TInfo);
6508
6509  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6510    return 0;
6511
6512  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6513                                      UPPC_DeclarationType)) {
6514    Invalid = true;
6515    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6516                                             TInfo->getTypeLoc().getBeginLoc());
6517  }
6518
6519  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6520  LookupName(Previous, S);
6521
6522  // Warn about shadowing the name of a template parameter.
6523  if (Previous.isSingleResult() &&
6524      Previous.getFoundDecl()->isTemplateParameter()) {
6525    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6526    Previous.clear();
6527  }
6528
6529  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6530         "name in alias declaration must be an identifier");
6531  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6532                                               Name.StartLocation,
6533                                               Name.Identifier, TInfo);
6534
6535  NewTD->setAccess(AS);
6536
6537  if (Invalid)
6538    NewTD->setInvalidDecl();
6539
6540  CheckTypedefForVariablyModifiedType(S, NewTD);
6541  Invalid |= NewTD->isInvalidDecl();
6542
6543  bool Redeclaration = false;
6544
6545  NamedDecl *NewND;
6546  if (TemplateParamLists.size()) {
6547    TypeAliasTemplateDecl *OldDecl = 0;
6548    TemplateParameterList *OldTemplateParams = 0;
6549
6550    if (TemplateParamLists.size() != 1) {
6551      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6552        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6553         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6554    }
6555    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6556
6557    // Only consider previous declarations in the same scope.
6558    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6559                         /*ExplicitInstantiationOrSpecialization*/false);
6560    if (!Previous.empty()) {
6561      Redeclaration = true;
6562
6563      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6564      if (!OldDecl && !Invalid) {
6565        Diag(UsingLoc, diag::err_redefinition_different_kind)
6566          << Name.Identifier;
6567
6568        NamedDecl *OldD = Previous.getRepresentativeDecl();
6569        if (OldD->getLocation().isValid())
6570          Diag(OldD->getLocation(), diag::note_previous_definition);
6571
6572        Invalid = true;
6573      }
6574
6575      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6576        if (TemplateParameterListsAreEqual(TemplateParams,
6577                                           OldDecl->getTemplateParameters(),
6578                                           /*Complain=*/true,
6579                                           TPL_TemplateMatch))
6580          OldTemplateParams = OldDecl->getTemplateParameters();
6581        else
6582          Invalid = true;
6583
6584        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6585        if (!Invalid &&
6586            !Context.hasSameType(OldTD->getUnderlyingType(),
6587                                 NewTD->getUnderlyingType())) {
6588          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6589          // but we can't reasonably accept it.
6590          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6591            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6592          if (OldTD->getLocation().isValid())
6593            Diag(OldTD->getLocation(), diag::note_previous_definition);
6594          Invalid = true;
6595        }
6596      }
6597    }
6598
6599    // Merge any previous default template arguments into our parameters,
6600    // and check the parameter list.
6601    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6602                                   TPC_TypeAliasTemplate))
6603      return 0;
6604
6605    TypeAliasTemplateDecl *NewDecl =
6606      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6607                                    Name.Identifier, TemplateParams,
6608                                    NewTD);
6609
6610    NewDecl->setAccess(AS);
6611
6612    if (Invalid)
6613      NewDecl->setInvalidDecl();
6614    else if (OldDecl)
6615      NewDecl->setPreviousDeclaration(OldDecl);
6616
6617    NewND = NewDecl;
6618  } else {
6619    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6620    NewND = NewTD;
6621  }
6622
6623  if (!Redeclaration)
6624    PushOnScopeChains(NewND, S);
6625
6626  return NewND;
6627}
6628
6629Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6630                                             SourceLocation NamespaceLoc,
6631                                             SourceLocation AliasLoc,
6632                                             IdentifierInfo *Alias,
6633                                             CXXScopeSpec &SS,
6634                                             SourceLocation IdentLoc,
6635                                             IdentifierInfo *Ident) {
6636
6637  // Lookup the namespace name.
6638  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6639  LookupParsedName(R, S, &SS);
6640
6641  // Check if we have a previous declaration with the same name.
6642  NamedDecl *PrevDecl
6643    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6644                       ForRedeclaration);
6645  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6646    PrevDecl = 0;
6647
6648  if (PrevDecl) {
6649    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6650      // We already have an alias with the same name that points to the same
6651      // namespace, so don't create a new one.
6652      // FIXME: At some point, we'll want to create the (redundant)
6653      // declaration to maintain better source information.
6654      if (!R.isAmbiguous() && !R.empty() &&
6655          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6656        return 0;
6657    }
6658
6659    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6660      diag::err_redefinition_different_kind;
6661    Diag(AliasLoc, DiagID) << Alias;
6662    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6663    return 0;
6664  }
6665
6666  if (R.isAmbiguous())
6667    return 0;
6668
6669  if (R.empty()) {
6670    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6671      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6672      return 0;
6673    }
6674  }
6675
6676  NamespaceAliasDecl *AliasDecl =
6677    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6678                               Alias, SS.getWithLocInContext(Context),
6679                               IdentLoc, R.getFoundDecl());
6680
6681  PushOnScopeChains(AliasDecl, S);
6682  return AliasDecl;
6683}
6684
6685namespace {
6686  /// \brief Scoped object used to handle the state changes required in Sema
6687  /// to implicitly define the body of a C++ member function;
6688  class ImplicitlyDefinedFunctionScope {
6689    Sema &S;
6690    Sema::ContextRAII SavedContext;
6691
6692  public:
6693    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6694      : S(S), SavedContext(S, Method)
6695    {
6696      S.PushFunctionScope();
6697      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6698    }
6699
6700    ~ImplicitlyDefinedFunctionScope() {
6701      S.PopExpressionEvaluationContext();
6702      S.PopFunctionOrBlockScope();
6703    }
6704  };
6705}
6706
6707Sema::ImplicitExceptionSpecification
6708Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6709  // C++ [except.spec]p14:
6710  //   An implicitly declared special member function (Clause 12) shall have an
6711  //   exception-specification. [...]
6712  ImplicitExceptionSpecification ExceptSpec(Context);
6713  if (ClassDecl->isInvalidDecl())
6714    return ExceptSpec;
6715
6716  // Direct base-class constructors.
6717  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6718                                       BEnd = ClassDecl->bases_end();
6719       B != BEnd; ++B) {
6720    if (B->isVirtual()) // Handled below.
6721      continue;
6722
6723    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6724      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6725      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6726      // If this is a deleted function, add it anyway. This might be conformant
6727      // with the standard. This might not. I'm not sure. It might not matter.
6728      if (Constructor)
6729        ExceptSpec.CalledDecl(Constructor);
6730    }
6731  }
6732
6733  // Virtual base-class constructors.
6734  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6735                                       BEnd = ClassDecl->vbases_end();
6736       B != BEnd; ++B) {
6737    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6738      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6739      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6740      // If this is a deleted function, add it anyway. This might be conformant
6741      // with the standard. This might not. I'm not sure. It might not matter.
6742      if (Constructor)
6743        ExceptSpec.CalledDecl(Constructor);
6744    }
6745  }
6746
6747  // Field constructors.
6748  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6749                               FEnd = ClassDecl->field_end();
6750       F != FEnd; ++F) {
6751    if (F->hasInClassInitializer()) {
6752      if (Expr *E = F->getInClassInitializer())
6753        ExceptSpec.CalledExpr(E);
6754      else if (!F->isInvalidDecl())
6755        ExceptSpec.SetDelayed();
6756    } else if (const RecordType *RecordTy
6757              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6758      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6759      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6760      // If this is a deleted function, add it anyway. This might be conformant
6761      // with the standard. This might not. I'm not sure. It might not matter.
6762      // In particular, the problem is that this function never gets called. It
6763      // might just be ill-formed because this function attempts to refer to
6764      // a deleted function here.
6765      if (Constructor)
6766        ExceptSpec.CalledDecl(Constructor);
6767    }
6768  }
6769
6770  return ExceptSpec;
6771}
6772
6773CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6774                                                     CXXRecordDecl *ClassDecl) {
6775  // C++ [class.ctor]p5:
6776  //   A default constructor for a class X is a constructor of class X
6777  //   that can be called without an argument. If there is no
6778  //   user-declared constructor for class X, a default constructor is
6779  //   implicitly declared. An implicitly-declared default constructor
6780  //   is an inline public member of its class.
6781  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6782         "Should not build implicit default constructor!");
6783
6784  ImplicitExceptionSpecification Spec =
6785    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6786  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6787
6788  // Create the actual constructor declaration.
6789  CanQualType ClassType
6790    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6791  SourceLocation ClassLoc = ClassDecl->getLocation();
6792  DeclarationName Name
6793    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6794  DeclarationNameInfo NameInfo(Name, ClassLoc);
6795  CXXConstructorDecl *DefaultCon
6796    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6797                                 Context.getFunctionType(Context.VoidTy,
6798                                                         0, 0, EPI),
6799                                 /*TInfo=*/0,
6800                                 /*isExplicit=*/false,
6801                                 /*isInline=*/true,
6802                                 /*isImplicitlyDeclared=*/true,
6803                                 // FIXME: apply the rules for definitions here
6804                                 /*isConstexpr=*/false);
6805  DefaultCon->setAccess(AS_public);
6806  DefaultCon->setDefaulted();
6807  DefaultCon->setImplicit();
6808  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6809
6810  // Note that we have declared this constructor.
6811  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6812
6813  if (Scope *S = getScopeForContext(ClassDecl))
6814    PushOnScopeChains(DefaultCon, S, false);
6815  ClassDecl->addDecl(DefaultCon);
6816
6817  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6818    DefaultCon->setDeletedAsWritten();
6819
6820  return DefaultCon;
6821}
6822
6823void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6824                                            CXXConstructorDecl *Constructor) {
6825  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6826          !Constructor->doesThisDeclarationHaveABody() &&
6827          !Constructor->isDeleted()) &&
6828    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6829
6830  CXXRecordDecl *ClassDecl = Constructor->getParent();
6831  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6832
6833  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6834  DiagnosticErrorTrap Trap(Diags);
6835  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6836      Trap.hasErrorOccurred()) {
6837    Diag(CurrentLocation, diag::note_member_synthesized_at)
6838      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6839    Constructor->setInvalidDecl();
6840    return;
6841  }
6842
6843  SourceLocation Loc = Constructor->getLocation();
6844  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6845
6846  Constructor->setUsed();
6847  MarkVTableUsed(CurrentLocation, ClassDecl);
6848
6849  if (ASTMutationListener *L = getASTMutationListener()) {
6850    L->CompletedImplicitDefinition(Constructor);
6851  }
6852}
6853
6854/// Get any existing defaulted default constructor for the given class. Do not
6855/// implicitly define one if it does not exist.
6856static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6857                                                             CXXRecordDecl *D) {
6858  ASTContext &Context = Self.Context;
6859  QualType ClassType = Context.getTypeDeclType(D);
6860  DeclarationName ConstructorName
6861    = Context.DeclarationNames.getCXXConstructorName(
6862                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6863
6864  DeclContext::lookup_const_iterator Con, ConEnd;
6865  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6866       Con != ConEnd; ++Con) {
6867    // A function template cannot be defaulted.
6868    if (isa<FunctionTemplateDecl>(*Con))
6869      continue;
6870
6871    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6872    if (Constructor->isDefaultConstructor())
6873      return Constructor->isDefaulted() ? Constructor : 0;
6874  }
6875  return 0;
6876}
6877
6878void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6879  if (!D) return;
6880  AdjustDeclIfTemplate(D);
6881
6882  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6883  CXXConstructorDecl *CtorDecl
6884    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6885
6886  if (!CtorDecl) return;
6887
6888  // Compute the exception specification for the default constructor.
6889  const FunctionProtoType *CtorTy =
6890    CtorDecl->getType()->castAs<FunctionProtoType>();
6891  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6892    ImplicitExceptionSpecification Spec =
6893      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6894    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6895    assert(EPI.ExceptionSpecType != EST_Delayed);
6896
6897    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6898  }
6899
6900  // If the default constructor is explicitly defaulted, checking the exception
6901  // specification is deferred until now.
6902  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6903      !ClassDecl->isDependentType())
6904    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6905}
6906
6907void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6908  // We start with an initial pass over the base classes to collect those that
6909  // inherit constructors from. If there are none, we can forgo all further
6910  // processing.
6911  typedef SmallVector<const RecordType *, 4> BasesVector;
6912  BasesVector BasesToInheritFrom;
6913  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6914                                          BaseE = ClassDecl->bases_end();
6915         BaseIt != BaseE; ++BaseIt) {
6916    if (BaseIt->getInheritConstructors()) {
6917      QualType Base = BaseIt->getType();
6918      if (Base->isDependentType()) {
6919        // If we inherit constructors from anything that is dependent, just
6920        // abort processing altogether. We'll get another chance for the
6921        // instantiations.
6922        return;
6923      }
6924      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6925    }
6926  }
6927  if (BasesToInheritFrom.empty())
6928    return;
6929
6930  // Now collect the constructors that we already have in the current class.
6931  // Those take precedence over inherited constructors.
6932  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6933  //   unless there is a user-declared constructor with the same signature in
6934  //   the class where the using-declaration appears.
6935  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6936  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6937                                    CtorE = ClassDecl->ctor_end();
6938       CtorIt != CtorE; ++CtorIt) {
6939    ExistingConstructors.insert(
6940        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6941  }
6942
6943  Scope *S = getScopeForContext(ClassDecl);
6944  DeclarationName CreatedCtorName =
6945      Context.DeclarationNames.getCXXConstructorName(
6946          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6947
6948  // Now comes the true work.
6949  // First, we keep a map from constructor types to the base that introduced
6950  // them. Needed for finding conflicting constructors. We also keep the
6951  // actually inserted declarations in there, for pretty diagnostics.
6952  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6953  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6954  ConstructorToSourceMap InheritedConstructors;
6955  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6956                             BaseE = BasesToInheritFrom.end();
6957       BaseIt != BaseE; ++BaseIt) {
6958    const RecordType *Base = *BaseIt;
6959    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6960    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6961    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6962                                      CtorE = BaseDecl->ctor_end();
6963         CtorIt != CtorE; ++CtorIt) {
6964      // Find the using declaration for inheriting this base's constructors.
6965      DeclarationName Name =
6966          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6967      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6968          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6969      SourceLocation UsingLoc = UD ? UD->getLocation() :
6970                                     ClassDecl->getLocation();
6971
6972      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6973      //   from the class X named in the using-declaration consists of actual
6974      //   constructors and notional constructors that result from the
6975      //   transformation of defaulted parameters as follows:
6976      //   - all non-template default constructors of X, and
6977      //   - for each non-template constructor of X that has at least one
6978      //     parameter with a default argument, the set of constructors that
6979      //     results from omitting any ellipsis parameter specification and
6980      //     successively omitting parameters with a default argument from the
6981      //     end of the parameter-type-list.
6982      CXXConstructorDecl *BaseCtor = *CtorIt;
6983      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6984      const FunctionProtoType *BaseCtorType =
6985          BaseCtor->getType()->getAs<FunctionProtoType>();
6986
6987      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6988                    maxParams = BaseCtor->getNumParams();
6989           params <= maxParams; ++params) {
6990        // Skip default constructors. They're never inherited.
6991        if (params == 0)
6992          continue;
6993        // Skip copy and move constructors for the same reason.
6994        if (CanBeCopyOrMove && params == 1)
6995          continue;
6996
6997        // Build up a function type for this particular constructor.
6998        // FIXME: The working paper does not consider that the exception spec
6999        // for the inheriting constructor might be larger than that of the
7000        // source. This code doesn't yet, either. When it does, this code will
7001        // need to be delayed until after exception specifications and in-class
7002        // member initializers are attached.
7003        const Type *NewCtorType;
7004        if (params == maxParams)
7005          NewCtorType = BaseCtorType;
7006        else {
7007          SmallVector<QualType, 16> Args;
7008          for (unsigned i = 0; i < params; ++i) {
7009            Args.push_back(BaseCtorType->getArgType(i));
7010          }
7011          FunctionProtoType::ExtProtoInfo ExtInfo =
7012              BaseCtorType->getExtProtoInfo();
7013          ExtInfo.Variadic = false;
7014          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7015                                                Args.data(), params, ExtInfo)
7016                       .getTypePtr();
7017        }
7018        const Type *CanonicalNewCtorType =
7019            Context.getCanonicalType(NewCtorType);
7020
7021        // Now that we have the type, first check if the class already has a
7022        // constructor with this signature.
7023        if (ExistingConstructors.count(CanonicalNewCtorType))
7024          continue;
7025
7026        // Then we check if we have already declared an inherited constructor
7027        // with this signature.
7028        std::pair<ConstructorToSourceMap::iterator, bool> result =
7029            InheritedConstructors.insert(std::make_pair(
7030                CanonicalNewCtorType,
7031                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7032        if (!result.second) {
7033          // Already in the map. If it came from a different class, that's an
7034          // error. Not if it's from the same.
7035          CanQualType PreviousBase = result.first->second.first;
7036          if (CanonicalBase != PreviousBase) {
7037            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7038            const CXXConstructorDecl *PrevBaseCtor =
7039                PrevCtor->getInheritedConstructor();
7040            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7041
7042            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7043            Diag(BaseCtor->getLocation(),
7044                 diag::note_using_decl_constructor_conflict_current_ctor);
7045            Diag(PrevBaseCtor->getLocation(),
7046                 diag::note_using_decl_constructor_conflict_previous_ctor);
7047            Diag(PrevCtor->getLocation(),
7048                 diag::note_using_decl_constructor_conflict_previous_using);
7049          }
7050          continue;
7051        }
7052
7053        // OK, we're there, now add the constructor.
7054        // C++0x [class.inhctor]p8: [...] that would be performed by a
7055        //   user-written inline constructor [...]
7056        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7057        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7058            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7059            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7060            /*ImplicitlyDeclared=*/true,
7061            // FIXME: Due to a defect in the standard, we treat inherited
7062            // constructors as constexpr even if that makes them ill-formed.
7063            /*Constexpr=*/BaseCtor->isConstexpr());
7064        NewCtor->setAccess(BaseCtor->getAccess());
7065
7066        // Build up the parameter decls and add them.
7067        SmallVector<ParmVarDecl *, 16> ParamDecls;
7068        for (unsigned i = 0; i < params; ++i) {
7069          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7070                                                   UsingLoc, UsingLoc,
7071                                                   /*IdentifierInfo=*/0,
7072                                                   BaseCtorType->getArgType(i),
7073                                                   /*TInfo=*/0, SC_None,
7074                                                   SC_None, /*DefaultArg=*/0));
7075        }
7076        NewCtor->setParams(ParamDecls);
7077        NewCtor->setInheritedConstructor(BaseCtor);
7078
7079        PushOnScopeChains(NewCtor, S, false);
7080        ClassDecl->addDecl(NewCtor);
7081        result.first->second.second = NewCtor;
7082      }
7083    }
7084  }
7085}
7086
7087Sema::ImplicitExceptionSpecification
7088Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7089  // C++ [except.spec]p14:
7090  //   An implicitly declared special member function (Clause 12) shall have
7091  //   an exception-specification.
7092  ImplicitExceptionSpecification ExceptSpec(Context);
7093  if (ClassDecl->isInvalidDecl())
7094    return ExceptSpec;
7095
7096  // Direct base-class destructors.
7097  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7098                                       BEnd = ClassDecl->bases_end();
7099       B != BEnd; ++B) {
7100    if (B->isVirtual()) // Handled below.
7101      continue;
7102
7103    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7104      ExceptSpec.CalledDecl(
7105                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7106  }
7107
7108  // Virtual base-class destructors.
7109  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7110                                       BEnd = ClassDecl->vbases_end();
7111       B != BEnd; ++B) {
7112    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7113      ExceptSpec.CalledDecl(
7114                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7115  }
7116
7117  // Field destructors.
7118  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7119                               FEnd = ClassDecl->field_end();
7120       F != FEnd; ++F) {
7121    if (const RecordType *RecordTy
7122        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7123      ExceptSpec.CalledDecl(
7124                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7125  }
7126
7127  return ExceptSpec;
7128}
7129
7130CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7131  // C++ [class.dtor]p2:
7132  //   If a class has no user-declared destructor, a destructor is
7133  //   declared implicitly. An implicitly-declared destructor is an
7134  //   inline public member of its class.
7135
7136  ImplicitExceptionSpecification Spec =
7137      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7138  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7139
7140  // Create the actual destructor declaration.
7141  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7142
7143  CanQualType ClassType
7144    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7145  SourceLocation ClassLoc = ClassDecl->getLocation();
7146  DeclarationName Name
7147    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7148  DeclarationNameInfo NameInfo(Name, ClassLoc);
7149  CXXDestructorDecl *Destructor
7150      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7151                                  /*isInline=*/true,
7152                                  /*isImplicitlyDeclared=*/true);
7153  Destructor->setAccess(AS_public);
7154  Destructor->setDefaulted();
7155  Destructor->setImplicit();
7156  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7157
7158  // Note that we have declared this destructor.
7159  ++ASTContext::NumImplicitDestructorsDeclared;
7160
7161  // Introduce this destructor into its scope.
7162  if (Scope *S = getScopeForContext(ClassDecl))
7163    PushOnScopeChains(Destructor, S, false);
7164  ClassDecl->addDecl(Destructor);
7165
7166  // This could be uniqued if it ever proves significant.
7167  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7168
7169  if (ShouldDeleteDestructor(Destructor))
7170    Destructor->setDeletedAsWritten();
7171
7172  AddOverriddenMethods(ClassDecl, Destructor);
7173
7174  return Destructor;
7175}
7176
7177void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7178                                    CXXDestructorDecl *Destructor) {
7179  assert((Destructor->isDefaulted() &&
7180          !Destructor->doesThisDeclarationHaveABody()) &&
7181         "DefineImplicitDestructor - call it for implicit default dtor");
7182  CXXRecordDecl *ClassDecl = Destructor->getParent();
7183  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7184
7185  if (Destructor->isInvalidDecl())
7186    return;
7187
7188  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7189
7190  DiagnosticErrorTrap Trap(Diags);
7191  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7192                                         Destructor->getParent());
7193
7194  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7195    Diag(CurrentLocation, diag::note_member_synthesized_at)
7196      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7197
7198    Destructor->setInvalidDecl();
7199    return;
7200  }
7201
7202  SourceLocation Loc = Destructor->getLocation();
7203  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7204  Destructor->setImplicitlyDefined(true);
7205  Destructor->setUsed();
7206  MarkVTableUsed(CurrentLocation, ClassDecl);
7207
7208  if (ASTMutationListener *L = getASTMutationListener()) {
7209    L->CompletedImplicitDefinition(Destructor);
7210  }
7211}
7212
7213void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7214                                         CXXDestructorDecl *destructor) {
7215  // C++11 [class.dtor]p3:
7216  //   A declaration of a destructor that does not have an exception-
7217  //   specification is implicitly considered to have the same exception-
7218  //   specification as an implicit declaration.
7219  const FunctionProtoType *dtorType = destructor->getType()->
7220                                        getAs<FunctionProtoType>();
7221  if (dtorType->hasExceptionSpec())
7222    return;
7223
7224  ImplicitExceptionSpecification exceptSpec =
7225      ComputeDefaultedDtorExceptionSpec(classDecl);
7226
7227  // Replace the destructor's type, building off the existing one. Fortunately,
7228  // the only thing of interest in the destructor type is its extended info.
7229  // The return and arguments are fixed.
7230  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7231  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7232  epi.NumExceptions = exceptSpec.size();
7233  epi.Exceptions = exceptSpec.data();
7234  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7235
7236  destructor->setType(ty);
7237
7238  // FIXME: If the destructor has a body that could throw, and the newly created
7239  // spec doesn't allow exceptions, we should emit a warning, because this
7240  // change in behavior can break conforming C++03 programs at runtime.
7241  // However, we don't have a body yet, so it needs to be done somewhere else.
7242}
7243
7244/// \brief Builds a statement that copies/moves the given entity from \p From to
7245/// \c To.
7246///
7247/// This routine is used to copy/move the members of a class with an
7248/// implicitly-declared copy/move assignment operator. When the entities being
7249/// copied are arrays, this routine builds for loops to copy them.
7250///
7251/// \param S The Sema object used for type-checking.
7252///
7253/// \param Loc The location where the implicit copy/move is being generated.
7254///
7255/// \param T The type of the expressions being copied/moved. Both expressions
7256/// must have this type.
7257///
7258/// \param To The expression we are copying/moving to.
7259///
7260/// \param From The expression we are copying/moving from.
7261///
7262/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7263/// Otherwise, it's a non-static member subobject.
7264///
7265/// \param Copying Whether we're copying or moving.
7266///
7267/// \param Depth Internal parameter recording the depth of the recursion.
7268///
7269/// \returns A statement or a loop that copies the expressions.
7270static StmtResult
7271BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7272                      Expr *To, Expr *From,
7273                      bool CopyingBaseSubobject, bool Copying,
7274                      unsigned Depth = 0) {
7275  // C++0x [class.copy]p28:
7276  //   Each subobject is assigned in the manner appropriate to its type:
7277  //
7278  //     - if the subobject is of class type, as if by a call to operator= with
7279  //       the subobject as the object expression and the corresponding
7280  //       subobject of x as a single function argument (as if by explicit
7281  //       qualification; that is, ignoring any possible virtual overriding
7282  //       functions in more derived classes);
7283  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7284    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7285
7286    // Look for operator=.
7287    DeclarationName Name
7288      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7289    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7290    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7291
7292    // Filter out any result that isn't a copy/move-assignment operator.
7293    LookupResult::Filter F = OpLookup.makeFilter();
7294    while (F.hasNext()) {
7295      NamedDecl *D = F.next();
7296      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7297        if (Copying ? Method->isCopyAssignmentOperator() :
7298                      Method->isMoveAssignmentOperator())
7299          continue;
7300
7301      F.erase();
7302    }
7303    F.done();
7304
7305    // Suppress the protected check (C++ [class.protected]) for each of the
7306    // assignment operators we found. This strange dance is required when
7307    // we're assigning via a base classes's copy-assignment operator. To
7308    // ensure that we're getting the right base class subobject (without
7309    // ambiguities), we need to cast "this" to that subobject type; to
7310    // ensure that we don't go through the virtual call mechanism, we need
7311    // to qualify the operator= name with the base class (see below). However,
7312    // this means that if the base class has a protected copy assignment
7313    // operator, the protected member access check will fail. So, we
7314    // rewrite "protected" access to "public" access in this case, since we
7315    // know by construction that we're calling from a derived class.
7316    if (CopyingBaseSubobject) {
7317      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7318           L != LEnd; ++L) {
7319        if (L.getAccess() == AS_protected)
7320          L.setAccess(AS_public);
7321      }
7322    }
7323
7324    // Create the nested-name-specifier that will be used to qualify the
7325    // reference to operator=; this is required to suppress the virtual
7326    // call mechanism.
7327    CXXScopeSpec SS;
7328    SS.MakeTrivial(S.Context,
7329                   NestedNameSpecifier::Create(S.Context, 0, false,
7330                                               T.getTypePtr()),
7331                   Loc);
7332
7333    // Create the reference to operator=.
7334    ExprResult OpEqualRef
7335      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7336                                   /*FirstQualifierInScope=*/0, OpLookup,
7337                                   /*TemplateArgs=*/0,
7338                                   /*SuppressQualifierCheck=*/true);
7339    if (OpEqualRef.isInvalid())
7340      return StmtError();
7341
7342    // Build the call to the assignment operator.
7343
7344    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7345                                                  OpEqualRef.takeAs<Expr>(),
7346                                                  Loc, &From, 1, Loc);
7347    if (Call.isInvalid())
7348      return StmtError();
7349
7350    return S.Owned(Call.takeAs<Stmt>());
7351  }
7352
7353  //     - if the subobject is of scalar type, the built-in assignment
7354  //       operator is used.
7355  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7356  if (!ArrayTy) {
7357    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7358    if (Assignment.isInvalid())
7359      return StmtError();
7360
7361    return S.Owned(Assignment.takeAs<Stmt>());
7362  }
7363
7364  //     - if the subobject is an array, each element is assigned, in the
7365  //       manner appropriate to the element type;
7366
7367  // Construct a loop over the array bounds, e.g.,
7368  //
7369  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7370  //
7371  // that will copy each of the array elements.
7372  QualType SizeType = S.Context.getSizeType();
7373
7374  // Create the iteration variable.
7375  IdentifierInfo *IterationVarName = 0;
7376  {
7377    llvm::SmallString<8> Str;
7378    llvm::raw_svector_ostream OS(Str);
7379    OS << "__i" << Depth;
7380    IterationVarName = &S.Context.Idents.get(OS.str());
7381  }
7382  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7383                                          IterationVarName, SizeType,
7384                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7385                                          SC_None, SC_None);
7386
7387  // Initialize the iteration variable to zero.
7388  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7389  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7390
7391  // Create a reference to the iteration variable; we'll use this several
7392  // times throughout.
7393  Expr *IterationVarRef
7394    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7395  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7396
7397  // Create the DeclStmt that holds the iteration variable.
7398  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7399
7400  // Create the comparison against the array bound.
7401  llvm::APInt Upper
7402    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7403  Expr *Comparison
7404    = new (S.Context) BinaryOperator(IterationVarRef,
7405                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7406                                     BO_NE, S.Context.BoolTy,
7407                                     VK_RValue, OK_Ordinary, Loc);
7408
7409  // Create the pre-increment of the iteration variable.
7410  Expr *Increment
7411    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7412                                    VK_LValue, OK_Ordinary, Loc);
7413
7414  // Subscript the "from" and "to" expressions with the iteration variable.
7415  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7416                                                         IterationVarRef, Loc));
7417  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7418                                                       IterationVarRef, Loc));
7419  if (!Copying) // Cast to rvalue
7420    From = CastForMoving(S, From);
7421
7422  // Build the copy/move for an individual element of the array.
7423  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7424                                          To, From, CopyingBaseSubobject,
7425                                          Copying, Depth + 1);
7426  if (Copy.isInvalid())
7427    return StmtError();
7428
7429  // Construct the loop that copies all elements of this array.
7430  return S.ActOnForStmt(Loc, Loc, InitStmt,
7431                        S.MakeFullExpr(Comparison),
7432                        0, S.MakeFullExpr(Increment),
7433                        Loc, Copy.take());
7434}
7435
7436std::pair<Sema::ImplicitExceptionSpecification, bool>
7437Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7438                                                   CXXRecordDecl *ClassDecl) {
7439  if (ClassDecl->isInvalidDecl())
7440    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7441
7442  // C++ [class.copy]p10:
7443  //   If the class definition does not explicitly declare a copy
7444  //   assignment operator, one is declared implicitly.
7445  //   The implicitly-defined copy assignment operator for a class X
7446  //   will have the form
7447  //
7448  //       X& X::operator=(const X&)
7449  //
7450  //   if
7451  bool HasConstCopyAssignment = true;
7452
7453  //       -- each direct base class B of X has a copy assignment operator
7454  //          whose parameter is of type const B&, const volatile B& or B,
7455  //          and
7456  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7457                                       BaseEnd = ClassDecl->bases_end();
7458       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7459    // We'll handle this below
7460    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7461      continue;
7462
7463    assert(!Base->getType()->isDependentType() &&
7464           "Cannot generate implicit members for class with dependent bases.");
7465    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7466    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7467                            &HasConstCopyAssignment);
7468  }
7469
7470  // In C++11, the above citation has "or virtual" added
7471  if (LangOpts.CPlusPlus0x) {
7472    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7473                                         BaseEnd = ClassDecl->vbases_end();
7474         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7475      assert(!Base->getType()->isDependentType() &&
7476             "Cannot generate implicit members for class with dependent bases.");
7477      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7478      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7479                              &HasConstCopyAssignment);
7480    }
7481  }
7482
7483  //       -- for all the nonstatic data members of X that are of a class
7484  //          type M (or array thereof), each such class type has a copy
7485  //          assignment operator whose parameter is of type const M&,
7486  //          const volatile M& or M.
7487  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7488                                  FieldEnd = ClassDecl->field_end();
7489       HasConstCopyAssignment && Field != FieldEnd;
7490       ++Field) {
7491    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7492    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7493      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7494                              &HasConstCopyAssignment);
7495    }
7496  }
7497
7498  //   Otherwise, the implicitly declared copy assignment operator will
7499  //   have the form
7500  //
7501  //       X& X::operator=(X&)
7502
7503  // C++ [except.spec]p14:
7504  //   An implicitly declared special member function (Clause 12) shall have an
7505  //   exception-specification. [...]
7506
7507  // It is unspecified whether or not an implicit copy assignment operator
7508  // attempts to deduplicate calls to assignment operators of virtual bases are
7509  // made. As such, this exception specification is effectively unspecified.
7510  // Based on a similar decision made for constness in C++0x, we're erring on
7511  // the side of assuming such calls to be made regardless of whether they
7512  // actually happen.
7513  ImplicitExceptionSpecification ExceptSpec(Context);
7514  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7515  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7516                                       BaseEnd = ClassDecl->bases_end();
7517       Base != BaseEnd; ++Base) {
7518    if (Base->isVirtual())
7519      continue;
7520
7521    CXXRecordDecl *BaseClassDecl
7522      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7523    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7524                                                            ArgQuals, false, 0))
7525      ExceptSpec.CalledDecl(CopyAssign);
7526  }
7527
7528  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7529                                       BaseEnd = ClassDecl->vbases_end();
7530       Base != BaseEnd; ++Base) {
7531    CXXRecordDecl *BaseClassDecl
7532      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7533    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7534                                                            ArgQuals, false, 0))
7535      ExceptSpec.CalledDecl(CopyAssign);
7536  }
7537
7538  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7539                                  FieldEnd = ClassDecl->field_end();
7540       Field != FieldEnd;
7541       ++Field) {
7542    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7543    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7544      if (CXXMethodDecl *CopyAssign =
7545          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7546        ExceptSpec.CalledDecl(CopyAssign);
7547    }
7548  }
7549
7550  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7551}
7552
7553CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7554  // Note: The following rules are largely analoguous to the copy
7555  // constructor rules. Note that virtual bases are not taken into account
7556  // for determining the argument type of the operator. Note also that
7557  // operators taking an object instead of a reference are allowed.
7558
7559  ImplicitExceptionSpecification Spec(Context);
7560  bool Const;
7561  llvm::tie(Spec, Const) =
7562    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7563
7564  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7565  QualType RetType = Context.getLValueReferenceType(ArgType);
7566  if (Const)
7567    ArgType = ArgType.withConst();
7568  ArgType = Context.getLValueReferenceType(ArgType);
7569
7570  //   An implicitly-declared copy assignment operator is an inline public
7571  //   member of its class.
7572  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7573  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7574  SourceLocation ClassLoc = ClassDecl->getLocation();
7575  DeclarationNameInfo NameInfo(Name, ClassLoc);
7576  CXXMethodDecl *CopyAssignment
7577    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7578                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7579                            /*TInfo=*/0, /*isStatic=*/false,
7580                            /*StorageClassAsWritten=*/SC_None,
7581                            /*isInline=*/true, /*isConstexpr=*/false,
7582                            SourceLocation());
7583  CopyAssignment->setAccess(AS_public);
7584  CopyAssignment->setDefaulted();
7585  CopyAssignment->setImplicit();
7586  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7587
7588  // Add the parameter to the operator.
7589  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7590                                               ClassLoc, ClassLoc, /*Id=*/0,
7591                                               ArgType, /*TInfo=*/0,
7592                                               SC_None,
7593                                               SC_None, 0);
7594  CopyAssignment->setParams(FromParam);
7595
7596  // Note that we have added this copy-assignment operator.
7597  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7598
7599  if (Scope *S = getScopeForContext(ClassDecl))
7600    PushOnScopeChains(CopyAssignment, S, false);
7601  ClassDecl->addDecl(CopyAssignment);
7602
7603  // C++0x [class.copy]p18:
7604  //   ... If the class definition declares a move constructor or move
7605  //   assignment operator, the implicitly declared copy assignment operator is
7606  //   defined as deleted; ...
7607  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7608      ClassDecl->hasUserDeclaredMoveAssignment() ||
7609      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7610    CopyAssignment->setDeletedAsWritten();
7611
7612  AddOverriddenMethods(ClassDecl, CopyAssignment);
7613  return CopyAssignment;
7614}
7615
7616void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7617                                        CXXMethodDecl *CopyAssignOperator) {
7618  assert((CopyAssignOperator->isDefaulted() &&
7619          CopyAssignOperator->isOverloadedOperator() &&
7620          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7621          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7622         "DefineImplicitCopyAssignment called for wrong function");
7623
7624  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7625
7626  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7627    CopyAssignOperator->setInvalidDecl();
7628    return;
7629  }
7630
7631  CopyAssignOperator->setUsed();
7632
7633  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7634  DiagnosticErrorTrap Trap(Diags);
7635
7636  // C++0x [class.copy]p30:
7637  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7638  //   for a non-union class X performs memberwise copy assignment of its
7639  //   subobjects. The direct base classes of X are assigned first, in the
7640  //   order of their declaration in the base-specifier-list, and then the
7641  //   immediate non-static data members of X are assigned, in the order in
7642  //   which they were declared in the class definition.
7643
7644  // The statements that form the synthesized function body.
7645  ASTOwningVector<Stmt*> Statements(*this);
7646
7647  // The parameter for the "other" object, which we are copying from.
7648  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7649  Qualifiers OtherQuals = Other->getType().getQualifiers();
7650  QualType OtherRefType = Other->getType();
7651  if (const LValueReferenceType *OtherRef
7652                                = OtherRefType->getAs<LValueReferenceType>()) {
7653    OtherRefType = OtherRef->getPointeeType();
7654    OtherQuals = OtherRefType.getQualifiers();
7655  }
7656
7657  // Our location for everything implicitly-generated.
7658  SourceLocation Loc = CopyAssignOperator->getLocation();
7659
7660  // Construct a reference to the "other" object. We'll be using this
7661  // throughout the generated ASTs.
7662  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7663  assert(OtherRef && "Reference to parameter cannot fail!");
7664
7665  // Construct the "this" pointer. We'll be using this throughout the generated
7666  // ASTs.
7667  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7668  assert(This && "Reference to this cannot fail!");
7669
7670  // Assign base classes.
7671  bool Invalid = false;
7672  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7673       E = ClassDecl->bases_end(); Base != E; ++Base) {
7674    // Form the assignment:
7675    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7676    QualType BaseType = Base->getType().getUnqualifiedType();
7677    if (!BaseType->isRecordType()) {
7678      Invalid = true;
7679      continue;
7680    }
7681
7682    CXXCastPath BasePath;
7683    BasePath.push_back(Base);
7684
7685    // Construct the "from" expression, which is an implicit cast to the
7686    // appropriately-qualified base type.
7687    Expr *From = OtherRef;
7688    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7689                             CK_UncheckedDerivedToBase,
7690                             VK_LValue, &BasePath).take();
7691
7692    // Dereference "this".
7693    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7694
7695    // Implicitly cast "this" to the appropriately-qualified base type.
7696    To = ImpCastExprToType(To.take(),
7697                           Context.getCVRQualifiedType(BaseType,
7698                                     CopyAssignOperator->getTypeQualifiers()),
7699                           CK_UncheckedDerivedToBase,
7700                           VK_LValue, &BasePath);
7701
7702    // Build the copy.
7703    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7704                                            To.get(), From,
7705                                            /*CopyingBaseSubobject=*/true,
7706                                            /*Copying=*/true);
7707    if (Copy.isInvalid()) {
7708      Diag(CurrentLocation, diag::note_member_synthesized_at)
7709        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7710      CopyAssignOperator->setInvalidDecl();
7711      return;
7712    }
7713
7714    // Success! Record the copy.
7715    Statements.push_back(Copy.takeAs<Expr>());
7716  }
7717
7718  // \brief Reference to the __builtin_memcpy function.
7719  Expr *BuiltinMemCpyRef = 0;
7720  // \brief Reference to the __builtin_objc_memmove_collectable function.
7721  Expr *CollectableMemCpyRef = 0;
7722
7723  // Assign non-static members.
7724  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7725                                  FieldEnd = ClassDecl->field_end();
7726       Field != FieldEnd; ++Field) {
7727    if (Field->isUnnamedBitfield())
7728      continue;
7729
7730    // Check for members of reference type; we can't copy those.
7731    if (Field->getType()->isReferenceType()) {
7732      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7733        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7734      Diag(Field->getLocation(), diag::note_declared_at);
7735      Diag(CurrentLocation, diag::note_member_synthesized_at)
7736        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7737      Invalid = true;
7738      continue;
7739    }
7740
7741    // Check for members of const-qualified, non-class type.
7742    QualType BaseType = Context.getBaseElementType(Field->getType());
7743    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7744      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7745        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7746      Diag(Field->getLocation(), diag::note_declared_at);
7747      Diag(CurrentLocation, diag::note_member_synthesized_at)
7748        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7749      Invalid = true;
7750      continue;
7751    }
7752
7753    // Suppress assigning zero-width bitfields.
7754    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7755      continue;
7756
7757    QualType FieldType = Field->getType().getNonReferenceType();
7758    if (FieldType->isIncompleteArrayType()) {
7759      assert(ClassDecl->hasFlexibleArrayMember() &&
7760             "Incomplete array type is not valid");
7761      continue;
7762    }
7763
7764    // Build references to the field in the object we're copying from and to.
7765    CXXScopeSpec SS; // Intentionally empty
7766    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7767                              LookupMemberName);
7768    MemberLookup.addDecl(*Field);
7769    MemberLookup.resolveKind();
7770    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7771                                               Loc, /*IsArrow=*/false,
7772                                               SS, 0, MemberLookup, 0);
7773    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7774                                             Loc, /*IsArrow=*/true,
7775                                             SS, 0, MemberLookup, 0);
7776    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7777    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7778
7779    // If the field should be copied with __builtin_memcpy rather than via
7780    // explicit assignments, do so. This optimization only applies for arrays
7781    // of scalars and arrays of class type with trivial copy-assignment
7782    // operators.
7783    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7784        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7785      // Compute the size of the memory buffer to be copied.
7786      QualType SizeType = Context.getSizeType();
7787      llvm::APInt Size(Context.getTypeSize(SizeType),
7788                       Context.getTypeSizeInChars(BaseType).getQuantity());
7789      for (const ConstantArrayType *Array
7790              = Context.getAsConstantArrayType(FieldType);
7791           Array;
7792           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7793        llvm::APInt ArraySize
7794          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7795        Size *= ArraySize;
7796      }
7797
7798      // Take the address of the field references for "from" and "to".
7799      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7800      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7801
7802      bool NeedsCollectableMemCpy =
7803          (BaseType->isRecordType() &&
7804           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7805
7806      if (NeedsCollectableMemCpy) {
7807        if (!CollectableMemCpyRef) {
7808          // Create a reference to the __builtin_objc_memmove_collectable function.
7809          LookupResult R(*this,
7810                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7811                         Loc, LookupOrdinaryName);
7812          LookupName(R, TUScope, true);
7813
7814          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7815          if (!CollectableMemCpy) {
7816            // Something went horribly wrong earlier, and we will have
7817            // complained about it.
7818            Invalid = true;
7819            continue;
7820          }
7821
7822          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7823                                                  CollectableMemCpy->getType(),
7824                                                  VK_LValue, Loc, 0).take();
7825          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7826        }
7827      }
7828      // Create a reference to the __builtin_memcpy builtin function.
7829      else if (!BuiltinMemCpyRef) {
7830        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7831                       LookupOrdinaryName);
7832        LookupName(R, TUScope, true);
7833
7834        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7835        if (!BuiltinMemCpy) {
7836          // Something went horribly wrong earlier, and we will have complained
7837          // about it.
7838          Invalid = true;
7839          continue;
7840        }
7841
7842        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7843                                            BuiltinMemCpy->getType(),
7844                                            VK_LValue, Loc, 0).take();
7845        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7846      }
7847
7848      ASTOwningVector<Expr*> CallArgs(*this);
7849      CallArgs.push_back(To.takeAs<Expr>());
7850      CallArgs.push_back(From.takeAs<Expr>());
7851      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7852      ExprResult Call = ExprError();
7853      if (NeedsCollectableMemCpy)
7854        Call = ActOnCallExpr(/*Scope=*/0,
7855                             CollectableMemCpyRef,
7856                             Loc, move_arg(CallArgs),
7857                             Loc);
7858      else
7859        Call = ActOnCallExpr(/*Scope=*/0,
7860                             BuiltinMemCpyRef,
7861                             Loc, move_arg(CallArgs),
7862                             Loc);
7863
7864      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7865      Statements.push_back(Call.takeAs<Expr>());
7866      continue;
7867    }
7868
7869    // Build the copy of this field.
7870    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7871                                            To.get(), From.get(),
7872                                            /*CopyingBaseSubobject=*/false,
7873                                            /*Copying=*/true);
7874    if (Copy.isInvalid()) {
7875      Diag(CurrentLocation, diag::note_member_synthesized_at)
7876        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7877      CopyAssignOperator->setInvalidDecl();
7878      return;
7879    }
7880
7881    // Success! Record the copy.
7882    Statements.push_back(Copy.takeAs<Stmt>());
7883  }
7884
7885  if (!Invalid) {
7886    // Add a "return *this;"
7887    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7888
7889    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7890    if (Return.isInvalid())
7891      Invalid = true;
7892    else {
7893      Statements.push_back(Return.takeAs<Stmt>());
7894
7895      if (Trap.hasErrorOccurred()) {
7896        Diag(CurrentLocation, diag::note_member_synthesized_at)
7897          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7898        Invalid = true;
7899      }
7900    }
7901  }
7902
7903  if (Invalid) {
7904    CopyAssignOperator->setInvalidDecl();
7905    return;
7906  }
7907
7908  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7909                                            /*isStmtExpr=*/false);
7910  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7911  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7912
7913  if (ASTMutationListener *L = getASTMutationListener()) {
7914    L->CompletedImplicitDefinition(CopyAssignOperator);
7915  }
7916}
7917
7918Sema::ImplicitExceptionSpecification
7919Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7920  ImplicitExceptionSpecification ExceptSpec(Context);
7921
7922  if (ClassDecl->isInvalidDecl())
7923    return ExceptSpec;
7924
7925  // C++0x [except.spec]p14:
7926  //   An implicitly declared special member function (Clause 12) shall have an
7927  //   exception-specification. [...]
7928
7929  // It is unspecified whether or not an implicit move assignment operator
7930  // attempts to deduplicate calls to assignment operators of virtual bases are
7931  // made. As such, this exception specification is effectively unspecified.
7932  // Based on a similar decision made for constness in C++0x, we're erring on
7933  // the side of assuming such calls to be made regardless of whether they
7934  // actually happen.
7935  // Note that a move constructor is not implicitly declared when there are
7936  // virtual bases, but it can still be user-declared and explicitly defaulted.
7937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7938                                       BaseEnd = ClassDecl->bases_end();
7939       Base != BaseEnd; ++Base) {
7940    if (Base->isVirtual())
7941      continue;
7942
7943    CXXRecordDecl *BaseClassDecl
7944      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7945    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7946                                                           false, 0))
7947      ExceptSpec.CalledDecl(MoveAssign);
7948  }
7949
7950  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7951                                       BaseEnd = ClassDecl->vbases_end();
7952       Base != BaseEnd; ++Base) {
7953    CXXRecordDecl *BaseClassDecl
7954      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7955    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7956                                                           false, 0))
7957      ExceptSpec.CalledDecl(MoveAssign);
7958  }
7959
7960  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7961                                  FieldEnd = ClassDecl->field_end();
7962       Field != FieldEnd;
7963       ++Field) {
7964    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7965    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7966      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7967                                                             false, 0))
7968        ExceptSpec.CalledDecl(MoveAssign);
7969    }
7970  }
7971
7972  return ExceptSpec;
7973}
7974
7975CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7976  // Note: The following rules are largely analoguous to the move
7977  // constructor rules.
7978
7979  ImplicitExceptionSpecification Spec(
7980      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7981
7982  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7983  QualType RetType = Context.getLValueReferenceType(ArgType);
7984  ArgType = Context.getRValueReferenceType(ArgType);
7985
7986  //   An implicitly-declared move assignment operator is an inline public
7987  //   member of its class.
7988  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7989  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7990  SourceLocation ClassLoc = ClassDecl->getLocation();
7991  DeclarationNameInfo NameInfo(Name, ClassLoc);
7992  CXXMethodDecl *MoveAssignment
7993    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7994                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7995                            /*TInfo=*/0, /*isStatic=*/false,
7996                            /*StorageClassAsWritten=*/SC_None,
7997                            /*isInline=*/true,
7998                            /*isConstexpr=*/false,
7999                            SourceLocation());
8000  MoveAssignment->setAccess(AS_public);
8001  MoveAssignment->setDefaulted();
8002  MoveAssignment->setImplicit();
8003  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8004
8005  // Add the parameter to the operator.
8006  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8007                                               ClassLoc, ClassLoc, /*Id=*/0,
8008                                               ArgType, /*TInfo=*/0,
8009                                               SC_None,
8010                                               SC_None, 0);
8011  MoveAssignment->setParams(FromParam);
8012
8013  // Note that we have added this copy-assignment operator.
8014  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8015
8016  // C++0x [class.copy]p9:
8017  //   If the definition of a class X does not explicitly declare a move
8018  //   assignment operator, one will be implicitly declared as defaulted if and
8019  //   only if:
8020  //   [...]
8021  //   - the move assignment operator would not be implicitly defined as
8022  //     deleted.
8023  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8024    // Cache this result so that we don't try to generate this over and over
8025    // on every lookup, leaking memory and wasting time.
8026    ClassDecl->setFailedImplicitMoveAssignment();
8027    return 0;
8028  }
8029
8030  if (Scope *S = getScopeForContext(ClassDecl))
8031    PushOnScopeChains(MoveAssignment, S, false);
8032  ClassDecl->addDecl(MoveAssignment);
8033
8034  AddOverriddenMethods(ClassDecl, MoveAssignment);
8035  return MoveAssignment;
8036}
8037
8038void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8039                                        CXXMethodDecl *MoveAssignOperator) {
8040  assert((MoveAssignOperator->isDefaulted() &&
8041          MoveAssignOperator->isOverloadedOperator() &&
8042          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8043          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8044         "DefineImplicitMoveAssignment called for wrong function");
8045
8046  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8047
8048  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8049    MoveAssignOperator->setInvalidDecl();
8050    return;
8051  }
8052
8053  MoveAssignOperator->setUsed();
8054
8055  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8056  DiagnosticErrorTrap Trap(Diags);
8057
8058  // C++0x [class.copy]p28:
8059  //   The implicitly-defined or move assignment operator for a non-union class
8060  //   X performs memberwise move assignment of its subobjects. The direct base
8061  //   classes of X are assigned first, in the order of their declaration in the
8062  //   base-specifier-list, and then the immediate non-static data members of X
8063  //   are assigned, in the order in which they were declared in the class
8064  //   definition.
8065
8066  // The statements that form the synthesized function body.
8067  ASTOwningVector<Stmt*> Statements(*this);
8068
8069  // The parameter for the "other" object, which we are move from.
8070  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8071  QualType OtherRefType = Other->getType()->
8072      getAs<RValueReferenceType>()->getPointeeType();
8073  assert(OtherRefType.getQualifiers() == 0 &&
8074         "Bad argument type of defaulted move assignment");
8075
8076  // Our location for everything implicitly-generated.
8077  SourceLocation Loc = MoveAssignOperator->getLocation();
8078
8079  // Construct a reference to the "other" object. We'll be using this
8080  // throughout the generated ASTs.
8081  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8082  assert(OtherRef && "Reference to parameter cannot fail!");
8083  // Cast to rvalue.
8084  OtherRef = CastForMoving(*this, OtherRef);
8085
8086  // Construct the "this" pointer. We'll be using this throughout the generated
8087  // ASTs.
8088  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8089  assert(This && "Reference to this cannot fail!");
8090
8091  // Assign base classes.
8092  bool Invalid = false;
8093  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8094       E = ClassDecl->bases_end(); Base != E; ++Base) {
8095    // Form the assignment:
8096    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8097    QualType BaseType = Base->getType().getUnqualifiedType();
8098    if (!BaseType->isRecordType()) {
8099      Invalid = true;
8100      continue;
8101    }
8102
8103    CXXCastPath BasePath;
8104    BasePath.push_back(Base);
8105
8106    // Construct the "from" expression, which is an implicit cast to the
8107    // appropriately-qualified base type.
8108    Expr *From = OtherRef;
8109    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8110                             VK_XValue, &BasePath).take();
8111
8112    // Dereference "this".
8113    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8114
8115    // Implicitly cast "this" to the appropriately-qualified base type.
8116    To = ImpCastExprToType(To.take(),
8117                           Context.getCVRQualifiedType(BaseType,
8118                                     MoveAssignOperator->getTypeQualifiers()),
8119                           CK_UncheckedDerivedToBase,
8120                           VK_LValue, &BasePath);
8121
8122    // Build the move.
8123    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8124                                            To.get(), From,
8125                                            /*CopyingBaseSubobject=*/true,
8126                                            /*Copying=*/false);
8127    if (Move.isInvalid()) {
8128      Diag(CurrentLocation, diag::note_member_synthesized_at)
8129        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8130      MoveAssignOperator->setInvalidDecl();
8131      return;
8132    }
8133
8134    // Success! Record the move.
8135    Statements.push_back(Move.takeAs<Expr>());
8136  }
8137
8138  // \brief Reference to the __builtin_memcpy function.
8139  Expr *BuiltinMemCpyRef = 0;
8140  // \brief Reference to the __builtin_objc_memmove_collectable function.
8141  Expr *CollectableMemCpyRef = 0;
8142
8143  // Assign non-static members.
8144  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8145                                  FieldEnd = ClassDecl->field_end();
8146       Field != FieldEnd; ++Field) {
8147    if (Field->isUnnamedBitfield())
8148      continue;
8149
8150    // Check for members of reference type; we can't move those.
8151    if (Field->getType()->isReferenceType()) {
8152      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8153        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8154      Diag(Field->getLocation(), diag::note_declared_at);
8155      Diag(CurrentLocation, diag::note_member_synthesized_at)
8156        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8157      Invalid = true;
8158      continue;
8159    }
8160
8161    // Check for members of const-qualified, non-class type.
8162    QualType BaseType = Context.getBaseElementType(Field->getType());
8163    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8164      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8165        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8166      Diag(Field->getLocation(), diag::note_declared_at);
8167      Diag(CurrentLocation, diag::note_member_synthesized_at)
8168        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8169      Invalid = true;
8170      continue;
8171    }
8172
8173    // Suppress assigning zero-width bitfields.
8174    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8175      continue;
8176
8177    QualType FieldType = Field->getType().getNonReferenceType();
8178    if (FieldType->isIncompleteArrayType()) {
8179      assert(ClassDecl->hasFlexibleArrayMember() &&
8180             "Incomplete array type is not valid");
8181      continue;
8182    }
8183
8184    // Build references to the field in the object we're copying from and to.
8185    CXXScopeSpec SS; // Intentionally empty
8186    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8187                              LookupMemberName);
8188    MemberLookup.addDecl(*Field);
8189    MemberLookup.resolveKind();
8190    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8191                                               Loc, /*IsArrow=*/false,
8192                                               SS, 0, MemberLookup, 0);
8193    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8194                                             Loc, /*IsArrow=*/true,
8195                                             SS, 0, MemberLookup, 0);
8196    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8197    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8198
8199    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8200        "Member reference with rvalue base must be rvalue except for reference "
8201        "members, which aren't allowed for move assignment.");
8202
8203    // If the field should be copied with __builtin_memcpy rather than via
8204    // explicit assignments, do so. This optimization only applies for arrays
8205    // of scalars and arrays of class type with trivial move-assignment
8206    // operators.
8207    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8208        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8209      // Compute the size of the memory buffer to be copied.
8210      QualType SizeType = Context.getSizeType();
8211      llvm::APInt Size(Context.getTypeSize(SizeType),
8212                       Context.getTypeSizeInChars(BaseType).getQuantity());
8213      for (const ConstantArrayType *Array
8214              = Context.getAsConstantArrayType(FieldType);
8215           Array;
8216           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8217        llvm::APInt ArraySize
8218          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8219        Size *= ArraySize;
8220      }
8221
8222      // Take the address of the field references for "from" and "to". We
8223      // directly construct UnaryOperators here because semantic analysis
8224      // does not permit us to take the address of an xvalue.
8225      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8226                             Context.getPointerType(From.get()->getType()),
8227                             VK_RValue, OK_Ordinary, Loc);
8228      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8229                           Context.getPointerType(To.get()->getType()),
8230                           VK_RValue, OK_Ordinary, Loc);
8231
8232      bool NeedsCollectableMemCpy =
8233          (BaseType->isRecordType() &&
8234           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8235
8236      if (NeedsCollectableMemCpy) {
8237        if (!CollectableMemCpyRef) {
8238          // Create a reference to the __builtin_objc_memmove_collectable function.
8239          LookupResult R(*this,
8240                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8241                         Loc, LookupOrdinaryName);
8242          LookupName(R, TUScope, true);
8243
8244          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8245          if (!CollectableMemCpy) {
8246            // Something went horribly wrong earlier, and we will have
8247            // complained about it.
8248            Invalid = true;
8249            continue;
8250          }
8251
8252          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8253                                                  CollectableMemCpy->getType(),
8254                                                  VK_LValue, Loc, 0).take();
8255          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8256        }
8257      }
8258      // Create a reference to the __builtin_memcpy builtin function.
8259      else if (!BuiltinMemCpyRef) {
8260        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8261                       LookupOrdinaryName);
8262        LookupName(R, TUScope, true);
8263
8264        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8265        if (!BuiltinMemCpy) {
8266          // Something went horribly wrong earlier, and we will have complained
8267          // about it.
8268          Invalid = true;
8269          continue;
8270        }
8271
8272        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8273                                            BuiltinMemCpy->getType(),
8274                                            VK_LValue, Loc, 0).take();
8275        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8276      }
8277
8278      ASTOwningVector<Expr*> CallArgs(*this);
8279      CallArgs.push_back(To.takeAs<Expr>());
8280      CallArgs.push_back(From.takeAs<Expr>());
8281      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8282      ExprResult Call = ExprError();
8283      if (NeedsCollectableMemCpy)
8284        Call = ActOnCallExpr(/*Scope=*/0,
8285                             CollectableMemCpyRef,
8286                             Loc, move_arg(CallArgs),
8287                             Loc);
8288      else
8289        Call = ActOnCallExpr(/*Scope=*/0,
8290                             BuiltinMemCpyRef,
8291                             Loc, move_arg(CallArgs),
8292                             Loc);
8293
8294      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8295      Statements.push_back(Call.takeAs<Expr>());
8296      continue;
8297    }
8298
8299    // Build the move of this field.
8300    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8301                                            To.get(), From.get(),
8302                                            /*CopyingBaseSubobject=*/false,
8303                                            /*Copying=*/false);
8304    if (Move.isInvalid()) {
8305      Diag(CurrentLocation, diag::note_member_synthesized_at)
8306        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8307      MoveAssignOperator->setInvalidDecl();
8308      return;
8309    }
8310
8311    // Success! Record the copy.
8312    Statements.push_back(Move.takeAs<Stmt>());
8313  }
8314
8315  if (!Invalid) {
8316    // Add a "return *this;"
8317    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8318
8319    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8320    if (Return.isInvalid())
8321      Invalid = true;
8322    else {
8323      Statements.push_back(Return.takeAs<Stmt>());
8324
8325      if (Trap.hasErrorOccurred()) {
8326        Diag(CurrentLocation, diag::note_member_synthesized_at)
8327          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8328        Invalid = true;
8329      }
8330    }
8331  }
8332
8333  if (Invalid) {
8334    MoveAssignOperator->setInvalidDecl();
8335    return;
8336  }
8337
8338  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8339                                            /*isStmtExpr=*/false);
8340  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8341  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8342
8343  if (ASTMutationListener *L = getASTMutationListener()) {
8344    L->CompletedImplicitDefinition(MoveAssignOperator);
8345  }
8346}
8347
8348std::pair<Sema::ImplicitExceptionSpecification, bool>
8349Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8350  if (ClassDecl->isInvalidDecl())
8351    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8352
8353  // C++ [class.copy]p5:
8354  //   The implicitly-declared copy constructor for a class X will
8355  //   have the form
8356  //
8357  //       X::X(const X&)
8358  //
8359  //   if
8360  // FIXME: It ought to be possible to store this on the record.
8361  bool HasConstCopyConstructor = true;
8362
8363  //     -- each direct or virtual base class B of X has a copy
8364  //        constructor whose first parameter is of type const B& or
8365  //        const volatile B&, and
8366  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8367                                       BaseEnd = ClassDecl->bases_end();
8368       HasConstCopyConstructor && Base != BaseEnd;
8369       ++Base) {
8370    // Virtual bases are handled below.
8371    if (Base->isVirtual())
8372      continue;
8373
8374    CXXRecordDecl *BaseClassDecl
8375      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8376    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8377                             &HasConstCopyConstructor);
8378  }
8379
8380  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8381                                       BaseEnd = ClassDecl->vbases_end();
8382       HasConstCopyConstructor && Base != BaseEnd;
8383       ++Base) {
8384    CXXRecordDecl *BaseClassDecl
8385      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8386    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8387                             &HasConstCopyConstructor);
8388  }
8389
8390  //     -- for all the nonstatic data members of X that are of a
8391  //        class type M (or array thereof), each such class type
8392  //        has a copy constructor whose first parameter is of type
8393  //        const M& or const volatile M&.
8394  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8395                                  FieldEnd = ClassDecl->field_end();
8396       HasConstCopyConstructor && Field != FieldEnd;
8397       ++Field) {
8398    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8399    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8400      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8401                               &HasConstCopyConstructor);
8402    }
8403  }
8404  //   Otherwise, the implicitly declared copy constructor will have
8405  //   the form
8406  //
8407  //       X::X(X&)
8408
8409  // C++ [except.spec]p14:
8410  //   An implicitly declared special member function (Clause 12) shall have an
8411  //   exception-specification. [...]
8412  ImplicitExceptionSpecification ExceptSpec(Context);
8413  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8414  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8415                                       BaseEnd = ClassDecl->bases_end();
8416       Base != BaseEnd;
8417       ++Base) {
8418    // Virtual bases are handled below.
8419    if (Base->isVirtual())
8420      continue;
8421
8422    CXXRecordDecl *BaseClassDecl
8423      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8424    if (CXXConstructorDecl *CopyConstructor =
8425          LookupCopyingConstructor(BaseClassDecl, Quals))
8426      ExceptSpec.CalledDecl(CopyConstructor);
8427  }
8428  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8429                                       BaseEnd = ClassDecl->vbases_end();
8430       Base != BaseEnd;
8431       ++Base) {
8432    CXXRecordDecl *BaseClassDecl
8433      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8434    if (CXXConstructorDecl *CopyConstructor =
8435          LookupCopyingConstructor(BaseClassDecl, Quals))
8436      ExceptSpec.CalledDecl(CopyConstructor);
8437  }
8438  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8439                                  FieldEnd = ClassDecl->field_end();
8440       Field != FieldEnd;
8441       ++Field) {
8442    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8443    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8444      if (CXXConstructorDecl *CopyConstructor =
8445        LookupCopyingConstructor(FieldClassDecl, Quals))
8446      ExceptSpec.CalledDecl(CopyConstructor);
8447    }
8448  }
8449
8450  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8451}
8452
8453CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8454                                                    CXXRecordDecl *ClassDecl) {
8455  // C++ [class.copy]p4:
8456  //   If the class definition does not explicitly declare a copy
8457  //   constructor, one is declared implicitly.
8458
8459  ImplicitExceptionSpecification Spec(Context);
8460  bool Const;
8461  llvm::tie(Spec, Const) =
8462    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8463
8464  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8465  QualType ArgType = ClassType;
8466  if (Const)
8467    ArgType = ArgType.withConst();
8468  ArgType = Context.getLValueReferenceType(ArgType);
8469
8470  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8471
8472  DeclarationName Name
8473    = Context.DeclarationNames.getCXXConstructorName(
8474                                           Context.getCanonicalType(ClassType));
8475  SourceLocation ClassLoc = ClassDecl->getLocation();
8476  DeclarationNameInfo NameInfo(Name, ClassLoc);
8477
8478  //   An implicitly-declared copy constructor is an inline public
8479  //   member of its class.
8480  CXXConstructorDecl *CopyConstructor
8481    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8482                                 Context.getFunctionType(Context.VoidTy,
8483                                                         &ArgType, 1, EPI),
8484                                 /*TInfo=*/0,
8485                                 /*isExplicit=*/false,
8486                                 /*isInline=*/true,
8487                                 /*isImplicitlyDeclared=*/true,
8488                                 // FIXME: apply the rules for definitions here
8489                                 /*isConstexpr=*/false);
8490  CopyConstructor->setAccess(AS_public);
8491  CopyConstructor->setDefaulted();
8492  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8493
8494  // Note that we have declared this constructor.
8495  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8496
8497  // Add the parameter to the constructor.
8498  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8499                                               ClassLoc, ClassLoc,
8500                                               /*IdentifierInfo=*/0,
8501                                               ArgType, /*TInfo=*/0,
8502                                               SC_None,
8503                                               SC_None, 0);
8504  CopyConstructor->setParams(FromParam);
8505
8506  if (Scope *S = getScopeForContext(ClassDecl))
8507    PushOnScopeChains(CopyConstructor, S, false);
8508  ClassDecl->addDecl(CopyConstructor);
8509
8510  // C++0x [class.copy]p7:
8511  //   ... If the class definition declares a move constructor or move
8512  //   assignment operator, the implicitly declared constructor is defined as
8513  //   deleted; ...
8514  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8515      ClassDecl->hasUserDeclaredMoveAssignment() ||
8516      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8517    CopyConstructor->setDeletedAsWritten();
8518
8519  return CopyConstructor;
8520}
8521
8522void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8523                                   CXXConstructorDecl *CopyConstructor) {
8524  assert((CopyConstructor->isDefaulted() &&
8525          CopyConstructor->isCopyConstructor() &&
8526          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8527         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8528
8529  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8530  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8531
8532  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8533  DiagnosticErrorTrap Trap(Diags);
8534
8535  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8536      Trap.hasErrorOccurred()) {
8537    Diag(CurrentLocation, diag::note_member_synthesized_at)
8538      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8539    CopyConstructor->setInvalidDecl();
8540  }  else {
8541    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8542                                               CopyConstructor->getLocation(),
8543                                               MultiStmtArg(*this, 0, 0),
8544                                               /*isStmtExpr=*/false)
8545                                                              .takeAs<Stmt>());
8546    CopyConstructor->setImplicitlyDefined(true);
8547  }
8548
8549  CopyConstructor->setUsed();
8550  if (ASTMutationListener *L = getASTMutationListener()) {
8551    L->CompletedImplicitDefinition(CopyConstructor);
8552  }
8553}
8554
8555Sema::ImplicitExceptionSpecification
8556Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8557  // C++ [except.spec]p14:
8558  //   An implicitly declared special member function (Clause 12) shall have an
8559  //   exception-specification. [...]
8560  ImplicitExceptionSpecification ExceptSpec(Context);
8561  if (ClassDecl->isInvalidDecl())
8562    return ExceptSpec;
8563
8564  // Direct base-class constructors.
8565  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8566                                       BEnd = ClassDecl->bases_end();
8567       B != BEnd; ++B) {
8568    if (B->isVirtual()) // Handled below.
8569      continue;
8570
8571    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8572      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8573      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8574      // If this is a deleted function, add it anyway. This might be conformant
8575      // with the standard. This might not. I'm not sure. It might not matter.
8576      if (Constructor)
8577        ExceptSpec.CalledDecl(Constructor);
8578    }
8579  }
8580
8581  // Virtual base-class constructors.
8582  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8583                                       BEnd = ClassDecl->vbases_end();
8584       B != BEnd; ++B) {
8585    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8586      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8587      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8588      // If this is a deleted function, add it anyway. This might be conformant
8589      // with the standard. This might not. I'm not sure. It might not matter.
8590      if (Constructor)
8591        ExceptSpec.CalledDecl(Constructor);
8592    }
8593  }
8594
8595  // Field constructors.
8596  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8597                               FEnd = ClassDecl->field_end();
8598       F != FEnd; ++F) {
8599    if (const RecordType *RecordTy
8600              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8601      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8602      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8603      // If this is a deleted function, add it anyway. This might be conformant
8604      // with the standard. This might not. I'm not sure. It might not matter.
8605      // In particular, the problem is that this function never gets called. It
8606      // might just be ill-formed because this function attempts to refer to
8607      // a deleted function here.
8608      if (Constructor)
8609        ExceptSpec.CalledDecl(Constructor);
8610    }
8611  }
8612
8613  return ExceptSpec;
8614}
8615
8616CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8617                                                    CXXRecordDecl *ClassDecl) {
8618  ImplicitExceptionSpecification Spec(
8619      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8620
8621  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8622  QualType ArgType = Context.getRValueReferenceType(ClassType);
8623
8624  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8625
8626  DeclarationName Name
8627    = Context.DeclarationNames.getCXXConstructorName(
8628                                           Context.getCanonicalType(ClassType));
8629  SourceLocation ClassLoc = ClassDecl->getLocation();
8630  DeclarationNameInfo NameInfo(Name, ClassLoc);
8631
8632  // C++0x [class.copy]p11:
8633  //   An implicitly-declared copy/move constructor is an inline public
8634  //   member of its class.
8635  CXXConstructorDecl *MoveConstructor
8636    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8637                                 Context.getFunctionType(Context.VoidTy,
8638                                                         &ArgType, 1, EPI),
8639                                 /*TInfo=*/0,
8640                                 /*isExplicit=*/false,
8641                                 /*isInline=*/true,
8642                                 /*isImplicitlyDeclared=*/true,
8643                                 // FIXME: apply the rules for definitions here
8644                                 /*isConstexpr=*/false);
8645  MoveConstructor->setAccess(AS_public);
8646  MoveConstructor->setDefaulted();
8647  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8648
8649  // Add the parameter to the constructor.
8650  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8651                                               ClassLoc, ClassLoc,
8652                                               /*IdentifierInfo=*/0,
8653                                               ArgType, /*TInfo=*/0,
8654                                               SC_None,
8655                                               SC_None, 0);
8656  MoveConstructor->setParams(FromParam);
8657
8658  // C++0x [class.copy]p9:
8659  //   If the definition of a class X does not explicitly declare a move
8660  //   constructor, one will be implicitly declared as defaulted if and only if:
8661  //   [...]
8662  //   - the move constructor would not be implicitly defined as deleted.
8663  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8664    // Cache this result so that we don't try to generate this over and over
8665    // on every lookup, leaking memory and wasting time.
8666    ClassDecl->setFailedImplicitMoveConstructor();
8667    return 0;
8668  }
8669
8670  // Note that we have declared this constructor.
8671  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8672
8673  if (Scope *S = getScopeForContext(ClassDecl))
8674    PushOnScopeChains(MoveConstructor, S, false);
8675  ClassDecl->addDecl(MoveConstructor);
8676
8677  return MoveConstructor;
8678}
8679
8680void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8681                                   CXXConstructorDecl *MoveConstructor) {
8682  assert((MoveConstructor->isDefaulted() &&
8683          MoveConstructor->isMoveConstructor() &&
8684          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8685         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8686
8687  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8688  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8689
8690  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8691  DiagnosticErrorTrap Trap(Diags);
8692
8693  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8694      Trap.hasErrorOccurred()) {
8695    Diag(CurrentLocation, diag::note_member_synthesized_at)
8696      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8697    MoveConstructor->setInvalidDecl();
8698  }  else {
8699    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8700                                               MoveConstructor->getLocation(),
8701                                               MultiStmtArg(*this, 0, 0),
8702                                               /*isStmtExpr=*/false)
8703                                                              .takeAs<Stmt>());
8704    MoveConstructor->setImplicitlyDefined(true);
8705  }
8706
8707  MoveConstructor->setUsed();
8708
8709  if (ASTMutationListener *L = getASTMutationListener()) {
8710    L->CompletedImplicitDefinition(MoveConstructor);
8711  }
8712}
8713
8714ExprResult
8715Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8716                            CXXConstructorDecl *Constructor,
8717                            MultiExprArg ExprArgs,
8718                            bool HadMultipleCandidates,
8719                            bool RequiresZeroInit,
8720                            unsigned ConstructKind,
8721                            SourceRange ParenRange) {
8722  bool Elidable = false;
8723
8724  // C++0x [class.copy]p34:
8725  //   When certain criteria are met, an implementation is allowed to
8726  //   omit the copy/move construction of a class object, even if the
8727  //   copy/move constructor and/or destructor for the object have
8728  //   side effects. [...]
8729  //     - when a temporary class object that has not been bound to a
8730  //       reference (12.2) would be copied/moved to a class object
8731  //       with the same cv-unqualified type, the copy/move operation
8732  //       can be omitted by constructing the temporary object
8733  //       directly into the target of the omitted copy/move
8734  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8735      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8736    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8737    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8738  }
8739
8740  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8741                               Elidable, move(ExprArgs), HadMultipleCandidates,
8742                               RequiresZeroInit, ConstructKind, ParenRange);
8743}
8744
8745/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8746/// including handling of its default argument expressions.
8747ExprResult
8748Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8749                            CXXConstructorDecl *Constructor, bool Elidable,
8750                            MultiExprArg ExprArgs,
8751                            bool HadMultipleCandidates,
8752                            bool RequiresZeroInit,
8753                            unsigned ConstructKind,
8754                            SourceRange ParenRange) {
8755  unsigned NumExprs = ExprArgs.size();
8756  Expr **Exprs = (Expr **)ExprArgs.release();
8757
8758  for (specific_attr_iterator<NonNullAttr>
8759           i = Constructor->specific_attr_begin<NonNullAttr>(),
8760           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8761    const NonNullAttr *NonNull = *i;
8762    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8763  }
8764
8765  MarkDeclarationReferenced(ConstructLoc, Constructor);
8766  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8767                                        Constructor, Elidable, Exprs, NumExprs,
8768                                        HadMultipleCandidates, RequiresZeroInit,
8769              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8770                                        ParenRange));
8771}
8772
8773bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8774                                        CXXConstructorDecl *Constructor,
8775                                        MultiExprArg Exprs,
8776                                        bool HadMultipleCandidates) {
8777  // FIXME: Provide the correct paren SourceRange when available.
8778  ExprResult TempResult =
8779    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8780                          move(Exprs), HadMultipleCandidates, false,
8781                          CXXConstructExpr::CK_Complete, SourceRange());
8782  if (TempResult.isInvalid())
8783    return true;
8784
8785  Expr *Temp = TempResult.takeAs<Expr>();
8786  CheckImplicitConversions(Temp, VD->getLocation());
8787  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8788  Temp = MaybeCreateExprWithCleanups(Temp);
8789  VD->setInit(Temp);
8790
8791  return false;
8792}
8793
8794void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8795  if (VD->isInvalidDecl()) return;
8796
8797  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8798  if (ClassDecl->isInvalidDecl()) return;
8799  if (ClassDecl->hasTrivialDestructor()) return;
8800  if (ClassDecl->isDependentContext()) return;
8801
8802  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8803  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8804  CheckDestructorAccess(VD->getLocation(), Destructor,
8805                        PDiag(diag::err_access_dtor_var)
8806                        << VD->getDeclName()
8807                        << VD->getType());
8808
8809  if (!VD->hasGlobalStorage()) return;
8810
8811  // Emit warning for non-trivial dtor in global scope (a real global,
8812  // class-static, function-static).
8813  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8814
8815  // TODO: this should be re-enabled for static locals by !CXAAtExit
8816  if (!VD->isStaticLocal())
8817    Diag(VD->getLocation(), diag::warn_global_destructor);
8818}
8819
8820/// AddCXXDirectInitializerToDecl - This action is called immediately after
8821/// ActOnDeclarator, when a C++ direct initializer is present.
8822/// e.g: "int x(1);"
8823void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8824                                         SourceLocation LParenLoc,
8825                                         MultiExprArg Exprs,
8826                                         SourceLocation RParenLoc,
8827                                         bool TypeMayContainAuto) {
8828  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8829
8830  // If there is no declaration, there was an error parsing it.  Just ignore
8831  // the initializer.
8832  if (RealDecl == 0)
8833    return;
8834
8835  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8836  if (!VDecl) {
8837    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8838    RealDecl->setInvalidDecl();
8839    return;
8840  }
8841
8842  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8843  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8844    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8845    if (Exprs.size() > 1) {
8846      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8847           diag::err_auto_var_init_multiple_expressions)
8848        << VDecl->getDeclName() << VDecl->getType()
8849        << VDecl->getSourceRange();
8850      RealDecl->setInvalidDecl();
8851      return;
8852    }
8853
8854    Expr *Init = Exprs.get()[0];
8855    TypeSourceInfo *DeducedType = 0;
8856    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8857      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8858        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8859        << Init->getSourceRange();
8860    if (!DeducedType) {
8861      RealDecl->setInvalidDecl();
8862      return;
8863    }
8864    VDecl->setTypeSourceInfo(DeducedType);
8865    VDecl->setType(DeducedType->getType());
8866
8867    // In ARC, infer lifetime.
8868    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8869      VDecl->setInvalidDecl();
8870
8871    // If this is a redeclaration, check that the type we just deduced matches
8872    // the previously declared type.
8873    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8874      MergeVarDeclTypes(VDecl, Old);
8875  }
8876
8877  // We will represent direct-initialization similarly to copy-initialization:
8878  //    int x(1);  -as-> int x = 1;
8879  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8880  //
8881  // Clients that want to distinguish between the two forms, can check for
8882  // direct initializer using VarDecl::hasCXXDirectInitializer().
8883  // A major benefit is that clients that don't particularly care about which
8884  // exactly form was it (like the CodeGen) can handle both cases without
8885  // special case code.
8886
8887  // C++ 8.5p11:
8888  // The form of initialization (using parentheses or '=') is generally
8889  // insignificant, but does matter when the entity being initialized has a
8890  // class type.
8891
8892  if (!VDecl->getType()->isDependentType() &&
8893      !VDecl->getType()->isIncompleteArrayType() &&
8894      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8895                          diag::err_typecheck_decl_incomplete_type)) {
8896    VDecl->setInvalidDecl();
8897    return;
8898  }
8899
8900  // The variable can not have an abstract class type.
8901  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8902                             diag::err_abstract_type_in_decl,
8903                             AbstractVariableType))
8904    VDecl->setInvalidDecl();
8905
8906  const VarDecl *Def;
8907  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8908    Diag(VDecl->getLocation(), diag::err_redefinition)
8909    << VDecl->getDeclName();
8910    Diag(Def->getLocation(), diag::note_previous_definition);
8911    VDecl->setInvalidDecl();
8912    return;
8913  }
8914
8915  // C++ [class.static.data]p4
8916  //   If a static data member is of const integral or const
8917  //   enumeration type, its declaration in the class definition can
8918  //   specify a constant-initializer which shall be an integral
8919  //   constant expression (5.19). In that case, the member can appear
8920  //   in integral constant expressions. The member shall still be
8921  //   defined in a namespace scope if it is used in the program and the
8922  //   namespace scope definition shall not contain an initializer.
8923  //
8924  // We already performed a redefinition check above, but for static
8925  // data members we also need to check whether there was an in-class
8926  // declaration with an initializer.
8927  const VarDecl* PrevInit = 0;
8928  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8929    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8930    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8931    return;
8932  }
8933
8934  bool IsDependent = false;
8935  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8936    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8937      VDecl->setInvalidDecl();
8938      return;
8939    }
8940
8941    if (Exprs.get()[I]->isTypeDependent())
8942      IsDependent = true;
8943  }
8944
8945  // If either the declaration has a dependent type or if any of the
8946  // expressions is type-dependent, we represent the initialization
8947  // via a ParenListExpr for later use during template instantiation.
8948  if (VDecl->getType()->isDependentType() || IsDependent) {
8949    // Let clients know that initialization was done with a direct initializer.
8950    VDecl->setCXXDirectInitializer(true);
8951
8952    // Store the initialization expressions as a ParenListExpr.
8953    unsigned NumExprs = Exprs.size();
8954    VDecl->setInit(new (Context) ParenListExpr(
8955        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8956        VDecl->getType().getNonReferenceType()));
8957    return;
8958  }
8959
8960  // Capture the variable that is being initialized and the style of
8961  // initialization.
8962  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8963
8964  // FIXME: Poor source location information.
8965  InitializationKind Kind
8966    = InitializationKind::CreateDirect(VDecl->getLocation(),
8967                                       LParenLoc, RParenLoc);
8968
8969  QualType T = VDecl->getType();
8970  InitializationSequence InitSeq(*this, Entity, Kind,
8971                                 Exprs.get(), Exprs.size());
8972  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8973  if (Result.isInvalid()) {
8974    VDecl->setInvalidDecl();
8975    return;
8976  } else if (T != VDecl->getType()) {
8977    VDecl->setType(T);
8978    Result.get()->setType(T);
8979  }
8980
8981
8982  Expr *Init = Result.get();
8983  CheckImplicitConversions(Init, LParenLoc);
8984
8985  Init = MaybeCreateExprWithCleanups(Init);
8986  VDecl->setInit(Init);
8987  VDecl->setCXXDirectInitializer(true);
8988
8989  CheckCompleteVariableDeclaration(VDecl);
8990}
8991
8992/// \brief Given a constructor and the set of arguments provided for the
8993/// constructor, convert the arguments and add any required default arguments
8994/// to form a proper call to this constructor.
8995///
8996/// \returns true if an error occurred, false otherwise.
8997bool
8998Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8999                              MultiExprArg ArgsPtr,
9000                              SourceLocation Loc,
9001                              ASTOwningVector<Expr*> &ConvertedArgs) {
9002  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9003  unsigned NumArgs = ArgsPtr.size();
9004  Expr **Args = (Expr **)ArgsPtr.get();
9005
9006  const FunctionProtoType *Proto
9007    = Constructor->getType()->getAs<FunctionProtoType>();
9008  assert(Proto && "Constructor without a prototype?");
9009  unsigned NumArgsInProto = Proto->getNumArgs();
9010
9011  // If too few arguments are available, we'll fill in the rest with defaults.
9012  if (NumArgs < NumArgsInProto)
9013    ConvertedArgs.reserve(NumArgsInProto);
9014  else
9015    ConvertedArgs.reserve(NumArgs);
9016
9017  VariadicCallType CallType =
9018    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9019  SmallVector<Expr *, 8> AllArgs;
9020  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9021                                        Proto, 0, Args, NumArgs, AllArgs,
9022                                        CallType);
9023  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9024    ConvertedArgs.push_back(AllArgs[i]);
9025  return Invalid;
9026}
9027
9028static inline bool
9029CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9030                                       const FunctionDecl *FnDecl) {
9031  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9032  if (isa<NamespaceDecl>(DC)) {
9033    return SemaRef.Diag(FnDecl->getLocation(),
9034                        diag::err_operator_new_delete_declared_in_namespace)
9035      << FnDecl->getDeclName();
9036  }
9037
9038  if (isa<TranslationUnitDecl>(DC) &&
9039      FnDecl->getStorageClass() == SC_Static) {
9040    return SemaRef.Diag(FnDecl->getLocation(),
9041                        diag::err_operator_new_delete_declared_static)
9042      << FnDecl->getDeclName();
9043  }
9044
9045  return false;
9046}
9047
9048static inline bool
9049CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9050                            CanQualType ExpectedResultType,
9051                            CanQualType ExpectedFirstParamType,
9052                            unsigned DependentParamTypeDiag,
9053                            unsigned InvalidParamTypeDiag) {
9054  QualType ResultType =
9055    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9056
9057  // Check that the result type is not dependent.
9058  if (ResultType->isDependentType())
9059    return SemaRef.Diag(FnDecl->getLocation(),
9060                        diag::err_operator_new_delete_dependent_result_type)
9061    << FnDecl->getDeclName() << ExpectedResultType;
9062
9063  // Check that the result type is what we expect.
9064  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9065    return SemaRef.Diag(FnDecl->getLocation(),
9066                        diag::err_operator_new_delete_invalid_result_type)
9067    << FnDecl->getDeclName() << ExpectedResultType;
9068
9069  // A function template must have at least 2 parameters.
9070  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9071    return SemaRef.Diag(FnDecl->getLocation(),
9072                      diag::err_operator_new_delete_template_too_few_parameters)
9073        << FnDecl->getDeclName();
9074
9075  // The function decl must have at least 1 parameter.
9076  if (FnDecl->getNumParams() == 0)
9077    return SemaRef.Diag(FnDecl->getLocation(),
9078                        diag::err_operator_new_delete_too_few_parameters)
9079      << FnDecl->getDeclName();
9080
9081  // Check the the first parameter type is not dependent.
9082  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9083  if (FirstParamType->isDependentType())
9084    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9085      << FnDecl->getDeclName() << ExpectedFirstParamType;
9086
9087  // Check that the first parameter type is what we expect.
9088  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9089      ExpectedFirstParamType)
9090    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9091    << FnDecl->getDeclName() << ExpectedFirstParamType;
9092
9093  return false;
9094}
9095
9096static bool
9097CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9098  // C++ [basic.stc.dynamic.allocation]p1:
9099  //   A program is ill-formed if an allocation function is declared in a
9100  //   namespace scope other than global scope or declared static in global
9101  //   scope.
9102  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9103    return true;
9104
9105  CanQualType SizeTy =
9106    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9107
9108  // C++ [basic.stc.dynamic.allocation]p1:
9109  //  The return type shall be void*. The first parameter shall have type
9110  //  std::size_t.
9111  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9112                                  SizeTy,
9113                                  diag::err_operator_new_dependent_param_type,
9114                                  diag::err_operator_new_param_type))
9115    return true;
9116
9117  // C++ [basic.stc.dynamic.allocation]p1:
9118  //  The first parameter shall not have an associated default argument.
9119  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9120    return SemaRef.Diag(FnDecl->getLocation(),
9121                        diag::err_operator_new_default_arg)
9122      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9123
9124  return false;
9125}
9126
9127static bool
9128CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9129  // C++ [basic.stc.dynamic.deallocation]p1:
9130  //   A program is ill-formed if deallocation functions are declared in a
9131  //   namespace scope other than global scope or declared static in global
9132  //   scope.
9133  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9134    return true;
9135
9136  // C++ [basic.stc.dynamic.deallocation]p2:
9137  //   Each deallocation function shall return void and its first parameter
9138  //   shall be void*.
9139  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9140                                  SemaRef.Context.VoidPtrTy,
9141                                 diag::err_operator_delete_dependent_param_type,
9142                                 diag::err_operator_delete_param_type))
9143    return true;
9144
9145  return false;
9146}
9147
9148/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9149/// of this overloaded operator is well-formed. If so, returns false;
9150/// otherwise, emits appropriate diagnostics and returns true.
9151bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9152  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9153         "Expected an overloaded operator declaration");
9154
9155  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9156
9157  // C++ [over.oper]p5:
9158  //   The allocation and deallocation functions, operator new,
9159  //   operator new[], operator delete and operator delete[], are
9160  //   described completely in 3.7.3. The attributes and restrictions
9161  //   found in the rest of this subclause do not apply to them unless
9162  //   explicitly stated in 3.7.3.
9163  if (Op == OO_Delete || Op == OO_Array_Delete)
9164    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9165
9166  if (Op == OO_New || Op == OO_Array_New)
9167    return CheckOperatorNewDeclaration(*this, FnDecl);
9168
9169  // C++ [over.oper]p6:
9170  //   An operator function shall either be a non-static member
9171  //   function or be a non-member function and have at least one
9172  //   parameter whose type is a class, a reference to a class, an
9173  //   enumeration, or a reference to an enumeration.
9174  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9175    if (MethodDecl->isStatic())
9176      return Diag(FnDecl->getLocation(),
9177                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9178  } else {
9179    bool ClassOrEnumParam = false;
9180    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9181                                   ParamEnd = FnDecl->param_end();
9182         Param != ParamEnd; ++Param) {
9183      QualType ParamType = (*Param)->getType().getNonReferenceType();
9184      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9185          ParamType->isEnumeralType()) {
9186        ClassOrEnumParam = true;
9187        break;
9188      }
9189    }
9190
9191    if (!ClassOrEnumParam)
9192      return Diag(FnDecl->getLocation(),
9193                  diag::err_operator_overload_needs_class_or_enum)
9194        << FnDecl->getDeclName();
9195  }
9196
9197  // C++ [over.oper]p8:
9198  //   An operator function cannot have default arguments (8.3.6),
9199  //   except where explicitly stated below.
9200  //
9201  // Only the function-call operator allows default arguments
9202  // (C++ [over.call]p1).
9203  if (Op != OO_Call) {
9204    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9205         Param != FnDecl->param_end(); ++Param) {
9206      if ((*Param)->hasDefaultArg())
9207        return Diag((*Param)->getLocation(),
9208                    diag::err_operator_overload_default_arg)
9209          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9210    }
9211  }
9212
9213  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9214    { false, false, false }
9215#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9216    , { Unary, Binary, MemberOnly }
9217#include "clang/Basic/OperatorKinds.def"
9218  };
9219
9220  bool CanBeUnaryOperator = OperatorUses[Op][0];
9221  bool CanBeBinaryOperator = OperatorUses[Op][1];
9222  bool MustBeMemberOperator = OperatorUses[Op][2];
9223
9224  // C++ [over.oper]p8:
9225  //   [...] Operator functions cannot have more or fewer parameters
9226  //   than the number required for the corresponding operator, as
9227  //   described in the rest of this subclause.
9228  unsigned NumParams = FnDecl->getNumParams()
9229                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9230  if (Op != OO_Call &&
9231      ((NumParams == 1 && !CanBeUnaryOperator) ||
9232       (NumParams == 2 && !CanBeBinaryOperator) ||
9233       (NumParams < 1) || (NumParams > 2))) {
9234    // We have the wrong number of parameters.
9235    unsigned ErrorKind;
9236    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9237      ErrorKind = 2;  // 2 -> unary or binary.
9238    } else if (CanBeUnaryOperator) {
9239      ErrorKind = 0;  // 0 -> unary
9240    } else {
9241      assert(CanBeBinaryOperator &&
9242             "All non-call overloaded operators are unary or binary!");
9243      ErrorKind = 1;  // 1 -> binary
9244    }
9245
9246    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9247      << FnDecl->getDeclName() << NumParams << ErrorKind;
9248  }
9249
9250  // Overloaded operators other than operator() cannot be variadic.
9251  if (Op != OO_Call &&
9252      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9253    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9254      << FnDecl->getDeclName();
9255  }
9256
9257  // Some operators must be non-static member functions.
9258  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9259    return Diag(FnDecl->getLocation(),
9260                diag::err_operator_overload_must_be_member)
9261      << FnDecl->getDeclName();
9262  }
9263
9264  // C++ [over.inc]p1:
9265  //   The user-defined function called operator++ implements the
9266  //   prefix and postfix ++ operator. If this function is a member
9267  //   function with no parameters, or a non-member function with one
9268  //   parameter of class or enumeration type, it defines the prefix
9269  //   increment operator ++ for objects of that type. If the function
9270  //   is a member function with one parameter (which shall be of type
9271  //   int) or a non-member function with two parameters (the second
9272  //   of which shall be of type int), it defines the postfix
9273  //   increment operator ++ for objects of that type.
9274  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9275    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9276    bool ParamIsInt = false;
9277    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9278      ParamIsInt = BT->getKind() == BuiltinType::Int;
9279
9280    if (!ParamIsInt)
9281      return Diag(LastParam->getLocation(),
9282                  diag::err_operator_overload_post_incdec_must_be_int)
9283        << LastParam->getType() << (Op == OO_MinusMinus);
9284  }
9285
9286  return false;
9287}
9288
9289/// CheckLiteralOperatorDeclaration - Check whether the declaration
9290/// of this literal operator function is well-formed. If so, returns
9291/// false; otherwise, emits appropriate diagnostics and returns true.
9292bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9293  DeclContext *DC = FnDecl->getDeclContext();
9294  Decl::Kind Kind = DC->getDeclKind();
9295  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9296      Kind != Decl::LinkageSpec) {
9297    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9298      << FnDecl->getDeclName();
9299    return true;
9300  }
9301
9302  bool Valid = false;
9303
9304  // template <char...> type operator "" name() is the only valid template
9305  // signature, and the only valid signature with no parameters.
9306  if (FnDecl->param_size() == 0) {
9307    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9308      // Must have only one template parameter
9309      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9310      if (Params->size() == 1) {
9311        NonTypeTemplateParmDecl *PmDecl =
9312          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9313
9314        // The template parameter must be a char parameter pack.
9315        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9316            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9317          Valid = true;
9318      }
9319    }
9320  } else {
9321    // Check the first parameter
9322    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9323
9324    QualType T = (*Param)->getType();
9325
9326    // unsigned long long int, long double, and any character type are allowed
9327    // as the only parameters.
9328    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9329        Context.hasSameType(T, Context.LongDoubleTy) ||
9330        Context.hasSameType(T, Context.CharTy) ||
9331        Context.hasSameType(T, Context.WCharTy) ||
9332        Context.hasSameType(T, Context.Char16Ty) ||
9333        Context.hasSameType(T, Context.Char32Ty)) {
9334      if (++Param == FnDecl->param_end())
9335        Valid = true;
9336      goto FinishedParams;
9337    }
9338
9339    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9340    const PointerType *PT = T->getAs<PointerType>();
9341    if (!PT)
9342      goto FinishedParams;
9343    T = PT->getPointeeType();
9344    if (!T.isConstQualified())
9345      goto FinishedParams;
9346    T = T.getUnqualifiedType();
9347
9348    // Move on to the second parameter;
9349    ++Param;
9350
9351    // If there is no second parameter, the first must be a const char *
9352    if (Param == FnDecl->param_end()) {
9353      if (Context.hasSameType(T, Context.CharTy))
9354        Valid = true;
9355      goto FinishedParams;
9356    }
9357
9358    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9359    // are allowed as the first parameter to a two-parameter function
9360    if (!(Context.hasSameType(T, Context.CharTy) ||
9361          Context.hasSameType(T, Context.WCharTy) ||
9362          Context.hasSameType(T, Context.Char16Ty) ||
9363          Context.hasSameType(T, Context.Char32Ty)))
9364      goto FinishedParams;
9365
9366    // The second and final parameter must be an std::size_t
9367    T = (*Param)->getType().getUnqualifiedType();
9368    if (Context.hasSameType(T, Context.getSizeType()) &&
9369        ++Param == FnDecl->param_end())
9370      Valid = true;
9371  }
9372
9373  // FIXME: This diagnostic is absolutely terrible.
9374FinishedParams:
9375  if (!Valid) {
9376    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9377      << FnDecl->getDeclName();
9378    return true;
9379  }
9380
9381  StringRef LiteralName
9382    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9383  if (LiteralName[0] != '_') {
9384    // C++0x [usrlit.suffix]p1:
9385    //   Literal suffix identifiers that do not start with an underscore are
9386    //   reserved for future standardization.
9387    bool IsHexFloat = true;
9388    if (LiteralName.size() > 1 &&
9389        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9390      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9391        if (!isdigit(LiteralName[I])) {
9392          IsHexFloat = false;
9393          break;
9394        }
9395      }
9396    }
9397
9398    if (IsHexFloat)
9399      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9400        << LiteralName;
9401    else
9402      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9403  }
9404
9405  return false;
9406}
9407
9408/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9409/// linkage specification, including the language and (if present)
9410/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9411/// the location of the language string literal, which is provided
9412/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9413/// the '{' brace. Otherwise, this linkage specification does not
9414/// have any braces.
9415Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9416                                           SourceLocation LangLoc,
9417                                           StringRef Lang,
9418                                           SourceLocation LBraceLoc) {
9419  LinkageSpecDecl::LanguageIDs Language;
9420  if (Lang == "\"C\"")
9421    Language = LinkageSpecDecl::lang_c;
9422  else if (Lang == "\"C++\"")
9423    Language = LinkageSpecDecl::lang_cxx;
9424  else {
9425    Diag(LangLoc, diag::err_bad_language);
9426    return 0;
9427  }
9428
9429  // FIXME: Add all the various semantics of linkage specifications
9430
9431  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9432                                               ExternLoc, LangLoc, Language);
9433  CurContext->addDecl(D);
9434  PushDeclContext(S, D);
9435  return D;
9436}
9437
9438/// ActOnFinishLinkageSpecification - Complete the definition of
9439/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9440/// valid, it's the position of the closing '}' brace in a linkage
9441/// specification that uses braces.
9442Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9443                                            Decl *LinkageSpec,
9444                                            SourceLocation RBraceLoc) {
9445  if (LinkageSpec) {
9446    if (RBraceLoc.isValid()) {
9447      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9448      LSDecl->setRBraceLoc(RBraceLoc);
9449    }
9450    PopDeclContext();
9451  }
9452  return LinkageSpec;
9453}
9454
9455/// \brief Perform semantic analysis for the variable declaration that
9456/// occurs within a C++ catch clause, returning the newly-created
9457/// variable.
9458VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9459                                         TypeSourceInfo *TInfo,
9460                                         SourceLocation StartLoc,
9461                                         SourceLocation Loc,
9462                                         IdentifierInfo *Name) {
9463  bool Invalid = false;
9464  QualType ExDeclType = TInfo->getType();
9465
9466  // Arrays and functions decay.
9467  if (ExDeclType->isArrayType())
9468    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9469  else if (ExDeclType->isFunctionType())
9470    ExDeclType = Context.getPointerType(ExDeclType);
9471
9472  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9473  // The exception-declaration shall not denote a pointer or reference to an
9474  // incomplete type, other than [cv] void*.
9475  // N2844 forbids rvalue references.
9476  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9477    Diag(Loc, diag::err_catch_rvalue_ref);
9478    Invalid = true;
9479  }
9480
9481  // GCC allows catching pointers and references to incomplete types
9482  // as an extension; so do we, but we warn by default.
9483
9484  QualType BaseType = ExDeclType;
9485  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9486  unsigned DK = diag::err_catch_incomplete;
9487  bool IncompleteCatchIsInvalid = true;
9488  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9489    BaseType = Ptr->getPointeeType();
9490    Mode = 1;
9491    DK = diag::ext_catch_incomplete_ptr;
9492    IncompleteCatchIsInvalid = false;
9493  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9494    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9495    BaseType = Ref->getPointeeType();
9496    Mode = 2;
9497    DK = diag::ext_catch_incomplete_ref;
9498    IncompleteCatchIsInvalid = false;
9499  }
9500  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9501      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9502      IncompleteCatchIsInvalid)
9503    Invalid = true;
9504
9505  if (!Invalid && !ExDeclType->isDependentType() &&
9506      RequireNonAbstractType(Loc, ExDeclType,
9507                             diag::err_abstract_type_in_decl,
9508                             AbstractVariableType))
9509    Invalid = true;
9510
9511  // Only the non-fragile NeXT runtime currently supports C++ catches
9512  // of ObjC types, and no runtime supports catching ObjC types by value.
9513  if (!Invalid && getLangOptions().ObjC1) {
9514    QualType T = ExDeclType;
9515    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9516      T = RT->getPointeeType();
9517
9518    if (T->isObjCObjectType()) {
9519      Diag(Loc, diag::err_objc_object_catch);
9520      Invalid = true;
9521    } else if (T->isObjCObjectPointerType()) {
9522      if (!getLangOptions().ObjCNonFragileABI)
9523        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9524    }
9525  }
9526
9527  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9528                                    ExDeclType, TInfo, SC_None, SC_None);
9529  ExDecl->setExceptionVariable(true);
9530
9531  if (!Invalid && !ExDeclType->isDependentType()) {
9532    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9533      // C++ [except.handle]p16:
9534      //   The object declared in an exception-declaration or, if the
9535      //   exception-declaration does not specify a name, a temporary (12.2) is
9536      //   copy-initialized (8.5) from the exception object. [...]
9537      //   The object is destroyed when the handler exits, after the destruction
9538      //   of any automatic objects initialized within the handler.
9539      //
9540      // We just pretend to initialize the object with itself, then make sure
9541      // it can be destroyed later.
9542      QualType initType = ExDeclType;
9543
9544      InitializedEntity entity =
9545        InitializedEntity::InitializeVariable(ExDecl);
9546      InitializationKind initKind =
9547        InitializationKind::CreateCopy(Loc, SourceLocation());
9548
9549      Expr *opaqueValue =
9550        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9551      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9552      ExprResult result = sequence.Perform(*this, entity, initKind,
9553                                           MultiExprArg(&opaqueValue, 1));
9554      if (result.isInvalid())
9555        Invalid = true;
9556      else {
9557        // If the constructor used was non-trivial, set this as the
9558        // "initializer".
9559        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9560        if (!construct->getConstructor()->isTrivial()) {
9561          Expr *init = MaybeCreateExprWithCleanups(construct);
9562          ExDecl->setInit(init);
9563        }
9564
9565        // And make sure it's destructable.
9566        FinalizeVarWithDestructor(ExDecl, recordType);
9567      }
9568    }
9569  }
9570
9571  if (Invalid)
9572    ExDecl->setInvalidDecl();
9573
9574  return ExDecl;
9575}
9576
9577/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9578/// handler.
9579Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9580  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9581  bool Invalid = D.isInvalidType();
9582
9583  // Check for unexpanded parameter packs.
9584  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9585                                               UPPC_ExceptionType)) {
9586    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9587                                             D.getIdentifierLoc());
9588    Invalid = true;
9589  }
9590
9591  IdentifierInfo *II = D.getIdentifier();
9592  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9593                                             LookupOrdinaryName,
9594                                             ForRedeclaration)) {
9595    // The scope should be freshly made just for us. There is just no way
9596    // it contains any previous declaration.
9597    assert(!S->isDeclScope(PrevDecl));
9598    if (PrevDecl->isTemplateParameter()) {
9599      // Maybe we will complain about the shadowed template parameter.
9600      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9601      PrevDecl = 0;
9602    }
9603  }
9604
9605  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9606    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9607      << D.getCXXScopeSpec().getRange();
9608    Invalid = true;
9609  }
9610
9611  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9612                                              D.getSourceRange().getBegin(),
9613                                              D.getIdentifierLoc(),
9614                                              D.getIdentifier());
9615  if (Invalid)
9616    ExDecl->setInvalidDecl();
9617
9618  // Add the exception declaration into this scope.
9619  if (II)
9620    PushOnScopeChains(ExDecl, S);
9621  else
9622    CurContext->addDecl(ExDecl);
9623
9624  ProcessDeclAttributes(S, ExDecl, D);
9625  return ExDecl;
9626}
9627
9628Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9629                                         Expr *AssertExpr,
9630                                         Expr *AssertMessageExpr_,
9631                                         SourceLocation RParenLoc) {
9632  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9633
9634  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9635    llvm::APSInt Value(32);
9636    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9637      Diag(StaticAssertLoc,
9638           diag::err_static_assert_expression_is_not_constant) <<
9639        AssertExpr->getSourceRange();
9640      return 0;
9641    }
9642
9643    if (Value == 0) {
9644      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9645        << AssertMessage->getString() << AssertExpr->getSourceRange();
9646    }
9647  }
9648
9649  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9650    return 0;
9651
9652  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9653                                        AssertExpr, AssertMessage, RParenLoc);
9654
9655  CurContext->addDecl(Decl);
9656  return Decl;
9657}
9658
9659/// \brief Perform semantic analysis of the given friend type declaration.
9660///
9661/// \returns A friend declaration that.
9662FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9663                                      SourceLocation FriendLoc,
9664                                      TypeSourceInfo *TSInfo) {
9665  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9666
9667  QualType T = TSInfo->getType();
9668  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9669
9670  // C++03 [class.friend]p2:
9671  //   An elaborated-type-specifier shall be used in a friend declaration
9672  //   for a class.*
9673  //
9674  //   * The class-key of the elaborated-type-specifier is required.
9675  if (!ActiveTemplateInstantiations.empty()) {
9676    // Do not complain about the form of friend template types during
9677    // template instantiation; we will already have complained when the
9678    // template was declared.
9679  } else if (!T->isElaboratedTypeSpecifier()) {
9680    // If we evaluated the type to a record type, suggest putting
9681    // a tag in front.
9682    if (const RecordType *RT = T->getAs<RecordType>()) {
9683      RecordDecl *RD = RT->getDecl();
9684
9685      std::string InsertionText = std::string(" ") + RD->getKindName();
9686
9687      Diag(TypeRange.getBegin(),
9688           getLangOptions().CPlusPlus0x ?
9689             diag::warn_cxx98_compat_unelaborated_friend_type :
9690             diag::ext_unelaborated_friend_type)
9691        << (unsigned) RD->getTagKind()
9692        << T
9693        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9694                                      InsertionText);
9695    } else {
9696      Diag(FriendLoc,
9697           getLangOptions().CPlusPlus0x ?
9698             diag::warn_cxx98_compat_nonclass_type_friend :
9699             diag::ext_nonclass_type_friend)
9700        << T
9701        << SourceRange(FriendLoc, TypeRange.getEnd());
9702    }
9703  } else if (T->getAs<EnumType>()) {
9704    Diag(FriendLoc,
9705         getLangOptions().CPlusPlus0x ?
9706           diag::warn_cxx98_compat_enum_friend :
9707           diag::ext_enum_friend)
9708      << T
9709      << SourceRange(FriendLoc, TypeRange.getEnd());
9710  }
9711
9712  // C++0x [class.friend]p3:
9713  //   If the type specifier in a friend declaration designates a (possibly
9714  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9715  //   the friend declaration is ignored.
9716
9717  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9718  // in [class.friend]p3 that we do not implement.
9719
9720  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9721}
9722
9723/// Handle a friend tag declaration where the scope specifier was
9724/// templated.
9725Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9726                                    unsigned TagSpec, SourceLocation TagLoc,
9727                                    CXXScopeSpec &SS,
9728                                    IdentifierInfo *Name, SourceLocation NameLoc,
9729                                    AttributeList *Attr,
9730                                    MultiTemplateParamsArg TempParamLists) {
9731  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9732
9733  bool isExplicitSpecialization = false;
9734  bool Invalid = false;
9735
9736  if (TemplateParameterList *TemplateParams
9737        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9738                                                  TempParamLists.get(),
9739                                                  TempParamLists.size(),
9740                                                  /*friend*/ true,
9741                                                  isExplicitSpecialization,
9742                                                  Invalid)) {
9743    if (TemplateParams->size() > 0) {
9744      // This is a declaration of a class template.
9745      if (Invalid)
9746        return 0;
9747
9748      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9749                                SS, Name, NameLoc, Attr,
9750                                TemplateParams, AS_public,
9751                                /*ModulePrivateLoc=*/SourceLocation(),
9752                                TempParamLists.size() - 1,
9753                   (TemplateParameterList**) TempParamLists.release()).take();
9754    } else {
9755      // The "template<>" header is extraneous.
9756      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9757        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9758      isExplicitSpecialization = true;
9759    }
9760  }
9761
9762  if (Invalid) return 0;
9763
9764  bool isAllExplicitSpecializations = true;
9765  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9766    if (TempParamLists.get()[I]->size()) {
9767      isAllExplicitSpecializations = false;
9768      break;
9769    }
9770  }
9771
9772  // FIXME: don't ignore attributes.
9773
9774  // If it's explicit specializations all the way down, just forget
9775  // about the template header and build an appropriate non-templated
9776  // friend.  TODO: for source fidelity, remember the headers.
9777  if (isAllExplicitSpecializations) {
9778    if (SS.isEmpty()) {
9779      bool Owned = false;
9780      bool IsDependent = false;
9781      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9782                      Attr, AS_public,
9783                      /*ModulePrivateLoc=*/SourceLocation(),
9784                      MultiTemplateParamsArg(), Owned, IsDependent,
9785                      /*ScopedEnum=*/false,
9786                      /*ScopedEnumUsesClassTag=*/false,
9787                      /*UnderlyingType=*/TypeResult());
9788    }
9789
9790    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9791    ElaboratedTypeKeyword Keyword
9792      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9793    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9794                                   *Name, NameLoc);
9795    if (T.isNull())
9796      return 0;
9797
9798    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9799    if (isa<DependentNameType>(T)) {
9800      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9801      TL.setKeywordLoc(TagLoc);
9802      TL.setQualifierLoc(QualifierLoc);
9803      TL.setNameLoc(NameLoc);
9804    } else {
9805      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9806      TL.setKeywordLoc(TagLoc);
9807      TL.setQualifierLoc(QualifierLoc);
9808      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9809    }
9810
9811    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9812                                            TSI, FriendLoc);
9813    Friend->setAccess(AS_public);
9814    CurContext->addDecl(Friend);
9815    return Friend;
9816  }
9817
9818  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9819
9820
9821
9822  // Handle the case of a templated-scope friend class.  e.g.
9823  //   template <class T> class A<T>::B;
9824  // FIXME: we don't support these right now.
9825  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9826  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9827  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9828  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9829  TL.setKeywordLoc(TagLoc);
9830  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9831  TL.setNameLoc(NameLoc);
9832
9833  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9834                                          TSI, FriendLoc);
9835  Friend->setAccess(AS_public);
9836  Friend->setUnsupportedFriend(true);
9837  CurContext->addDecl(Friend);
9838  return Friend;
9839}
9840
9841
9842/// Handle a friend type declaration.  This works in tandem with
9843/// ActOnTag.
9844///
9845/// Notes on friend class templates:
9846///
9847/// We generally treat friend class declarations as if they were
9848/// declaring a class.  So, for example, the elaborated type specifier
9849/// in a friend declaration is required to obey the restrictions of a
9850/// class-head (i.e. no typedefs in the scope chain), template
9851/// parameters are required to match up with simple template-ids, &c.
9852/// However, unlike when declaring a template specialization, it's
9853/// okay to refer to a template specialization without an empty
9854/// template parameter declaration, e.g.
9855///   friend class A<T>::B<unsigned>;
9856/// We permit this as a special case; if there are any template
9857/// parameters present at all, require proper matching, i.e.
9858///   template <> template <class T> friend class A<int>::B;
9859Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9860                                MultiTemplateParamsArg TempParams) {
9861  SourceLocation Loc = DS.getSourceRange().getBegin();
9862
9863  assert(DS.isFriendSpecified());
9864  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9865
9866  // Try to convert the decl specifier to a type.  This works for
9867  // friend templates because ActOnTag never produces a ClassTemplateDecl
9868  // for a TUK_Friend.
9869  Declarator TheDeclarator(DS, Declarator::MemberContext);
9870  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9871  QualType T = TSI->getType();
9872  if (TheDeclarator.isInvalidType())
9873    return 0;
9874
9875  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9876    return 0;
9877
9878  // This is definitely an error in C++98.  It's probably meant to
9879  // be forbidden in C++0x, too, but the specification is just
9880  // poorly written.
9881  //
9882  // The problem is with declarations like the following:
9883  //   template <T> friend A<T>::foo;
9884  // where deciding whether a class C is a friend or not now hinges
9885  // on whether there exists an instantiation of A that causes
9886  // 'foo' to equal C.  There are restrictions on class-heads
9887  // (which we declare (by fiat) elaborated friend declarations to
9888  // be) that makes this tractable.
9889  //
9890  // FIXME: handle "template <> friend class A<T>;", which
9891  // is possibly well-formed?  Who even knows?
9892  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9893    Diag(Loc, diag::err_tagless_friend_type_template)
9894      << DS.getSourceRange();
9895    return 0;
9896  }
9897
9898  // C++98 [class.friend]p1: A friend of a class is a function
9899  //   or class that is not a member of the class . . .
9900  // This is fixed in DR77, which just barely didn't make the C++03
9901  // deadline.  It's also a very silly restriction that seriously
9902  // affects inner classes and which nobody else seems to implement;
9903  // thus we never diagnose it, not even in -pedantic.
9904  //
9905  // But note that we could warn about it: it's always useless to
9906  // friend one of your own members (it's not, however, worthless to
9907  // friend a member of an arbitrary specialization of your template).
9908
9909  Decl *D;
9910  if (unsigned NumTempParamLists = TempParams.size())
9911    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9912                                   NumTempParamLists,
9913                                   TempParams.release(),
9914                                   TSI,
9915                                   DS.getFriendSpecLoc());
9916  else
9917    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9918
9919  if (!D)
9920    return 0;
9921
9922  D->setAccess(AS_public);
9923  CurContext->addDecl(D);
9924
9925  return D;
9926}
9927
9928Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9929                                    MultiTemplateParamsArg TemplateParams) {
9930  const DeclSpec &DS = D.getDeclSpec();
9931
9932  assert(DS.isFriendSpecified());
9933  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9934
9935  SourceLocation Loc = D.getIdentifierLoc();
9936  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9937
9938  // C++ [class.friend]p1
9939  //   A friend of a class is a function or class....
9940  // Note that this sees through typedefs, which is intended.
9941  // It *doesn't* see through dependent types, which is correct
9942  // according to [temp.arg.type]p3:
9943  //   If a declaration acquires a function type through a
9944  //   type dependent on a template-parameter and this causes
9945  //   a declaration that does not use the syntactic form of a
9946  //   function declarator to have a function type, the program
9947  //   is ill-formed.
9948  if (!TInfo->getType()->isFunctionType()) {
9949    Diag(Loc, diag::err_unexpected_friend);
9950
9951    // It might be worthwhile to try to recover by creating an
9952    // appropriate declaration.
9953    return 0;
9954  }
9955
9956  // C++ [namespace.memdef]p3
9957  //  - If a friend declaration in a non-local class first declares a
9958  //    class or function, the friend class or function is a member
9959  //    of the innermost enclosing namespace.
9960  //  - The name of the friend is not found by simple name lookup
9961  //    until a matching declaration is provided in that namespace
9962  //    scope (either before or after the class declaration granting
9963  //    friendship).
9964  //  - If a friend function is called, its name may be found by the
9965  //    name lookup that considers functions from namespaces and
9966  //    classes associated with the types of the function arguments.
9967  //  - When looking for a prior declaration of a class or a function
9968  //    declared as a friend, scopes outside the innermost enclosing
9969  //    namespace scope are not considered.
9970
9971  CXXScopeSpec &SS = D.getCXXScopeSpec();
9972  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9973  DeclarationName Name = NameInfo.getName();
9974  assert(Name);
9975
9976  // Check for unexpanded parameter packs.
9977  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9978      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9979      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9980    return 0;
9981
9982  // The context we found the declaration in, or in which we should
9983  // create the declaration.
9984  DeclContext *DC;
9985  Scope *DCScope = S;
9986  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9987                        ForRedeclaration);
9988
9989  // FIXME: there are different rules in local classes
9990
9991  // There are four cases here.
9992  //   - There's no scope specifier, in which case we just go to the
9993  //     appropriate scope and look for a function or function template
9994  //     there as appropriate.
9995  // Recover from invalid scope qualifiers as if they just weren't there.
9996  if (SS.isInvalid() || !SS.isSet()) {
9997    // C++0x [namespace.memdef]p3:
9998    //   If the name in a friend declaration is neither qualified nor
9999    //   a template-id and the declaration is a function or an
10000    //   elaborated-type-specifier, the lookup to determine whether
10001    //   the entity has been previously declared shall not consider
10002    //   any scopes outside the innermost enclosing namespace.
10003    // C++0x [class.friend]p11:
10004    //   If a friend declaration appears in a local class and the name
10005    //   specified is an unqualified name, a prior declaration is
10006    //   looked up without considering scopes that are outside the
10007    //   innermost enclosing non-class scope. For a friend function
10008    //   declaration, if there is no prior declaration, the program is
10009    //   ill-formed.
10010    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10011    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10012
10013    // Find the appropriate context according to the above.
10014    DC = CurContext;
10015    while (true) {
10016      // Skip class contexts.  If someone can cite chapter and verse
10017      // for this behavior, that would be nice --- it's what GCC and
10018      // EDG do, and it seems like a reasonable intent, but the spec
10019      // really only says that checks for unqualified existing
10020      // declarations should stop at the nearest enclosing namespace,
10021      // not that they should only consider the nearest enclosing
10022      // namespace.
10023      while (DC->isRecord())
10024        DC = DC->getParent();
10025
10026      LookupQualifiedName(Previous, DC);
10027
10028      // TODO: decide what we think about using declarations.
10029      if (isLocal || !Previous.empty())
10030        break;
10031
10032      if (isTemplateId) {
10033        if (isa<TranslationUnitDecl>(DC)) break;
10034      } else {
10035        if (DC->isFileContext()) break;
10036      }
10037      DC = DC->getParent();
10038    }
10039
10040    // C++ [class.friend]p1: A friend of a class is a function or
10041    //   class that is not a member of the class . . .
10042    // C++11 changes this for both friend types and functions.
10043    // Most C++ 98 compilers do seem to give an error here, so
10044    // we do, too.
10045    if (!Previous.empty() && DC->Equals(CurContext))
10046      Diag(DS.getFriendSpecLoc(),
10047           getLangOptions().CPlusPlus0x ?
10048             diag::warn_cxx98_compat_friend_is_member :
10049             diag::err_friend_is_member);
10050
10051    DCScope = getScopeForDeclContext(S, DC);
10052
10053    // C++ [class.friend]p6:
10054    //   A function can be defined in a friend declaration of a class if and
10055    //   only if the class is a non-local class (9.8), the function name is
10056    //   unqualified, and the function has namespace scope.
10057    if (isLocal && D.isFunctionDefinition()) {
10058      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10059    }
10060
10061  //   - There's a non-dependent scope specifier, in which case we
10062  //     compute it and do a previous lookup there for a function
10063  //     or function template.
10064  } else if (!SS.getScopeRep()->isDependent()) {
10065    DC = computeDeclContext(SS);
10066    if (!DC) return 0;
10067
10068    if (RequireCompleteDeclContext(SS, DC)) return 0;
10069
10070    LookupQualifiedName(Previous, DC);
10071
10072    // Ignore things found implicitly in the wrong scope.
10073    // TODO: better diagnostics for this case.  Suggesting the right
10074    // qualified scope would be nice...
10075    LookupResult::Filter F = Previous.makeFilter();
10076    while (F.hasNext()) {
10077      NamedDecl *D = F.next();
10078      if (!DC->InEnclosingNamespaceSetOf(
10079              D->getDeclContext()->getRedeclContext()))
10080        F.erase();
10081    }
10082    F.done();
10083
10084    if (Previous.empty()) {
10085      D.setInvalidType();
10086      Diag(Loc, diag::err_qualified_friend_not_found)
10087          << Name << TInfo->getType();
10088      return 0;
10089    }
10090
10091    // C++ [class.friend]p1: A friend of a class is a function or
10092    //   class that is not a member of the class . . .
10093    if (DC->Equals(CurContext))
10094      Diag(DS.getFriendSpecLoc(),
10095           getLangOptions().CPlusPlus0x ?
10096             diag::warn_cxx98_compat_friend_is_member :
10097             diag::err_friend_is_member);
10098
10099    if (D.isFunctionDefinition()) {
10100      // C++ [class.friend]p6:
10101      //   A function can be defined in a friend declaration of a class if and
10102      //   only if the class is a non-local class (9.8), the function name is
10103      //   unqualified, and the function has namespace scope.
10104      SemaDiagnosticBuilder DB
10105        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10106
10107      DB << SS.getScopeRep();
10108      if (DC->isFileContext())
10109        DB << FixItHint::CreateRemoval(SS.getRange());
10110      SS.clear();
10111    }
10112
10113  //   - There's a scope specifier that does not match any template
10114  //     parameter lists, in which case we use some arbitrary context,
10115  //     create a method or method template, and wait for instantiation.
10116  //   - There's a scope specifier that does match some template
10117  //     parameter lists, which we don't handle right now.
10118  } else {
10119    if (D.isFunctionDefinition()) {
10120      // C++ [class.friend]p6:
10121      //   A function can be defined in a friend declaration of a class if and
10122      //   only if the class is a non-local class (9.8), the function name is
10123      //   unqualified, and the function has namespace scope.
10124      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10125        << SS.getScopeRep();
10126    }
10127
10128    DC = CurContext;
10129    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10130  }
10131
10132  if (!DC->isRecord()) {
10133    // This implies that it has to be an operator or function.
10134    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10135        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10136        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10137      Diag(Loc, diag::err_introducing_special_friend) <<
10138        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10139         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10140      return 0;
10141    }
10142  }
10143
10144  // FIXME: This is an egregious hack to cope with cases where the scope stack
10145  // does not contain the declaration context, i.e., in an out-of-line
10146  // definition of a class.
10147  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10148  if (!DCScope) {
10149    FakeDCScope.setEntity(DC);
10150    DCScope = &FakeDCScope;
10151  }
10152
10153  bool AddToScope = true;
10154  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10155                                          move(TemplateParams), AddToScope);
10156  if (!ND) return 0;
10157
10158  assert(ND->getDeclContext() == DC);
10159  assert(ND->getLexicalDeclContext() == CurContext);
10160
10161  // Add the function declaration to the appropriate lookup tables,
10162  // adjusting the redeclarations list as necessary.  We don't
10163  // want to do this yet if the friending class is dependent.
10164  //
10165  // Also update the scope-based lookup if the target context's
10166  // lookup context is in lexical scope.
10167  if (!CurContext->isDependentContext()) {
10168    DC = DC->getRedeclContext();
10169    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10170    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10171      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10172  }
10173
10174  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10175                                       D.getIdentifierLoc(), ND,
10176                                       DS.getFriendSpecLoc());
10177  FrD->setAccess(AS_public);
10178  CurContext->addDecl(FrD);
10179
10180  if (ND->isInvalidDecl())
10181    FrD->setInvalidDecl();
10182  else {
10183    FunctionDecl *FD;
10184    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10185      FD = FTD->getTemplatedDecl();
10186    else
10187      FD = cast<FunctionDecl>(ND);
10188
10189    // Mark templated-scope function declarations as unsupported.
10190    if (FD->getNumTemplateParameterLists())
10191      FrD->setUnsupportedFriend(true);
10192  }
10193
10194  return ND;
10195}
10196
10197void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10198  AdjustDeclIfTemplate(Dcl);
10199
10200  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10201  if (!Fn) {
10202    Diag(DelLoc, diag::err_deleted_non_function);
10203    return;
10204  }
10205  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10206    Diag(DelLoc, diag::err_deleted_decl_not_first);
10207    Diag(Prev->getLocation(), diag::note_previous_declaration);
10208    // If the declaration wasn't the first, we delete the function anyway for
10209    // recovery.
10210  }
10211  Fn->setDeletedAsWritten();
10212}
10213
10214void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10215  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10216
10217  if (MD) {
10218    if (MD->getParent()->isDependentType()) {
10219      MD->setDefaulted();
10220      MD->setExplicitlyDefaulted();
10221      return;
10222    }
10223
10224    CXXSpecialMember Member = getSpecialMember(MD);
10225    if (Member == CXXInvalid) {
10226      Diag(DefaultLoc, diag::err_default_special_members);
10227      return;
10228    }
10229
10230    MD->setDefaulted();
10231    MD->setExplicitlyDefaulted();
10232
10233    // If this definition appears within the record, do the checking when
10234    // the record is complete.
10235    const FunctionDecl *Primary = MD;
10236    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10237      // Find the uninstantiated declaration that actually had the '= default'
10238      // on it.
10239      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10240
10241    if (Primary == Primary->getCanonicalDecl())
10242      return;
10243
10244    switch (Member) {
10245    case CXXDefaultConstructor: {
10246      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10247      CheckExplicitlyDefaultedDefaultConstructor(CD);
10248      if (!CD->isInvalidDecl())
10249        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10250      break;
10251    }
10252
10253    case CXXCopyConstructor: {
10254      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10255      CheckExplicitlyDefaultedCopyConstructor(CD);
10256      if (!CD->isInvalidDecl())
10257        DefineImplicitCopyConstructor(DefaultLoc, CD);
10258      break;
10259    }
10260
10261    case CXXCopyAssignment: {
10262      CheckExplicitlyDefaultedCopyAssignment(MD);
10263      if (!MD->isInvalidDecl())
10264        DefineImplicitCopyAssignment(DefaultLoc, MD);
10265      break;
10266    }
10267
10268    case CXXDestructor: {
10269      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10270      CheckExplicitlyDefaultedDestructor(DD);
10271      if (!DD->isInvalidDecl())
10272        DefineImplicitDestructor(DefaultLoc, DD);
10273      break;
10274    }
10275
10276    case CXXMoveConstructor: {
10277      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10278      CheckExplicitlyDefaultedMoveConstructor(CD);
10279      if (!CD->isInvalidDecl())
10280        DefineImplicitMoveConstructor(DefaultLoc, CD);
10281      break;
10282    }
10283
10284    case CXXMoveAssignment: {
10285      CheckExplicitlyDefaultedMoveAssignment(MD);
10286      if (!MD->isInvalidDecl())
10287        DefineImplicitMoveAssignment(DefaultLoc, MD);
10288      break;
10289    }
10290
10291    case CXXInvalid:
10292      llvm_unreachable("Invalid special member.");
10293    }
10294  } else {
10295    Diag(DefaultLoc, diag::err_default_special_members);
10296  }
10297}
10298
10299static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10300  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10301    Stmt *SubStmt = *CI;
10302    if (!SubStmt)
10303      continue;
10304    if (isa<ReturnStmt>(SubStmt))
10305      Self.Diag(SubStmt->getSourceRange().getBegin(),
10306           diag::err_return_in_constructor_handler);
10307    if (!isa<Expr>(SubStmt))
10308      SearchForReturnInStmt(Self, SubStmt);
10309  }
10310}
10311
10312void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10313  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10314    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10315    SearchForReturnInStmt(*this, Handler);
10316  }
10317}
10318
10319bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10320                                             const CXXMethodDecl *Old) {
10321  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10322  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10323
10324  if (Context.hasSameType(NewTy, OldTy) ||
10325      NewTy->isDependentType() || OldTy->isDependentType())
10326    return false;
10327
10328  // Check if the return types are covariant
10329  QualType NewClassTy, OldClassTy;
10330
10331  /// Both types must be pointers or references to classes.
10332  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10333    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10334      NewClassTy = NewPT->getPointeeType();
10335      OldClassTy = OldPT->getPointeeType();
10336    }
10337  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10338    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10339      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10340        NewClassTy = NewRT->getPointeeType();
10341        OldClassTy = OldRT->getPointeeType();
10342      }
10343    }
10344  }
10345
10346  // The return types aren't either both pointers or references to a class type.
10347  if (NewClassTy.isNull()) {
10348    Diag(New->getLocation(),
10349         diag::err_different_return_type_for_overriding_virtual_function)
10350      << New->getDeclName() << NewTy << OldTy;
10351    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10352
10353    return true;
10354  }
10355
10356  // C++ [class.virtual]p6:
10357  //   If the return type of D::f differs from the return type of B::f, the
10358  //   class type in the return type of D::f shall be complete at the point of
10359  //   declaration of D::f or shall be the class type D.
10360  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10361    if (!RT->isBeingDefined() &&
10362        RequireCompleteType(New->getLocation(), NewClassTy,
10363                            PDiag(diag::err_covariant_return_incomplete)
10364                              << New->getDeclName()))
10365    return true;
10366  }
10367
10368  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10369    // Check if the new class derives from the old class.
10370    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10371      Diag(New->getLocation(),
10372           diag::err_covariant_return_not_derived)
10373      << New->getDeclName() << NewTy << OldTy;
10374      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10375      return true;
10376    }
10377
10378    // Check if we the conversion from derived to base is valid.
10379    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10380                    diag::err_covariant_return_inaccessible_base,
10381                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10382                    // FIXME: Should this point to the return type?
10383                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10384      // FIXME: this note won't trigger for delayed access control
10385      // diagnostics, and it's impossible to get an undelayed error
10386      // here from access control during the original parse because
10387      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10388      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10389      return true;
10390    }
10391  }
10392
10393  // The qualifiers of the return types must be the same.
10394  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10395    Diag(New->getLocation(),
10396         diag::err_covariant_return_type_different_qualifications)
10397    << New->getDeclName() << NewTy << OldTy;
10398    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10399    return true;
10400  };
10401
10402
10403  // The new class type must have the same or less qualifiers as the old type.
10404  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10405    Diag(New->getLocation(),
10406         diag::err_covariant_return_type_class_type_more_qualified)
10407    << New->getDeclName() << NewTy << OldTy;
10408    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10409    return true;
10410  };
10411
10412  return false;
10413}
10414
10415/// \brief Mark the given method pure.
10416///
10417/// \param Method the method to be marked pure.
10418///
10419/// \param InitRange the source range that covers the "0" initializer.
10420bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10421  SourceLocation EndLoc = InitRange.getEnd();
10422  if (EndLoc.isValid())
10423    Method->setRangeEnd(EndLoc);
10424
10425  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10426    Method->setPure();
10427    return false;
10428  }
10429
10430  if (!Method->isInvalidDecl())
10431    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10432      << Method->getDeclName() << InitRange;
10433  return true;
10434}
10435
10436/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10437/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10438/// is a fresh scope pushed for just this purpose.
10439///
10440/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10441/// static data member of class X, names should be looked up in the scope of
10442/// class X.
10443void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10444  // If there is no declaration, there was an error parsing it.
10445  if (D == 0 || D->isInvalidDecl()) return;
10446
10447  // We should only get called for declarations with scope specifiers, like:
10448  //   int foo::bar;
10449  assert(D->isOutOfLine());
10450  EnterDeclaratorContext(S, D->getDeclContext());
10451}
10452
10453/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10454/// initializer for the out-of-line declaration 'D'.
10455void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10456  // If there is no declaration, there was an error parsing it.
10457  if (D == 0 || D->isInvalidDecl()) return;
10458
10459  assert(D->isOutOfLine());
10460  ExitDeclaratorContext(S);
10461}
10462
10463/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10464/// C++ if/switch/while/for statement.
10465/// e.g: "if (int x = f()) {...}"
10466DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10467  // C++ 6.4p2:
10468  // The declarator shall not specify a function or an array.
10469  // The type-specifier-seq shall not contain typedef and shall not declare a
10470  // new class or enumeration.
10471  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10472         "Parser allowed 'typedef' as storage class of condition decl.");
10473
10474  Decl *Dcl = ActOnDeclarator(S, D);
10475  if (!Dcl)
10476    return true;
10477
10478  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10479    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10480      << D.getSourceRange();
10481    return true;
10482  }
10483
10484  return Dcl;
10485}
10486
10487void Sema::LoadExternalVTableUses() {
10488  if (!ExternalSource)
10489    return;
10490
10491  SmallVector<ExternalVTableUse, 4> VTables;
10492  ExternalSource->ReadUsedVTables(VTables);
10493  SmallVector<VTableUse, 4> NewUses;
10494  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10495    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10496      = VTablesUsed.find(VTables[I].Record);
10497    // Even if a definition wasn't required before, it may be required now.
10498    if (Pos != VTablesUsed.end()) {
10499      if (!Pos->second && VTables[I].DefinitionRequired)
10500        Pos->second = true;
10501      continue;
10502    }
10503
10504    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10505    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10506  }
10507
10508  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10509}
10510
10511void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10512                          bool DefinitionRequired) {
10513  // Ignore any vtable uses in unevaluated operands or for classes that do
10514  // not have a vtable.
10515  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10516      CurContext->isDependentContext() ||
10517      ExprEvalContexts.back().Context == Unevaluated)
10518    return;
10519
10520  // Try to insert this class into the map.
10521  LoadExternalVTableUses();
10522  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10523  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10524    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10525  if (!Pos.second) {
10526    // If we already had an entry, check to see if we are promoting this vtable
10527    // to required a definition. If so, we need to reappend to the VTableUses
10528    // list, since we may have already processed the first entry.
10529    if (DefinitionRequired && !Pos.first->second) {
10530      Pos.first->second = true;
10531    } else {
10532      // Otherwise, we can early exit.
10533      return;
10534    }
10535  }
10536
10537  // Local classes need to have their virtual members marked
10538  // immediately. For all other classes, we mark their virtual members
10539  // at the end of the translation unit.
10540  if (Class->isLocalClass())
10541    MarkVirtualMembersReferenced(Loc, Class);
10542  else
10543    VTableUses.push_back(std::make_pair(Class, Loc));
10544}
10545
10546bool Sema::DefineUsedVTables() {
10547  LoadExternalVTableUses();
10548  if (VTableUses.empty())
10549    return false;
10550
10551  // Note: The VTableUses vector could grow as a result of marking
10552  // the members of a class as "used", so we check the size each
10553  // time through the loop and prefer indices (with are stable) to
10554  // iterators (which are not).
10555  bool DefinedAnything = false;
10556  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10557    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10558    if (!Class)
10559      continue;
10560
10561    SourceLocation Loc = VTableUses[I].second;
10562
10563    // If this class has a key function, but that key function is
10564    // defined in another translation unit, we don't need to emit the
10565    // vtable even though we're using it.
10566    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10567    if (KeyFunction && !KeyFunction->hasBody()) {
10568      switch (KeyFunction->getTemplateSpecializationKind()) {
10569      case TSK_Undeclared:
10570      case TSK_ExplicitSpecialization:
10571      case TSK_ExplicitInstantiationDeclaration:
10572        // The key function is in another translation unit.
10573        continue;
10574
10575      case TSK_ExplicitInstantiationDefinition:
10576      case TSK_ImplicitInstantiation:
10577        // We will be instantiating the key function.
10578        break;
10579      }
10580    } else if (!KeyFunction) {
10581      // If we have a class with no key function that is the subject
10582      // of an explicit instantiation declaration, suppress the
10583      // vtable; it will live with the explicit instantiation
10584      // definition.
10585      bool IsExplicitInstantiationDeclaration
10586        = Class->getTemplateSpecializationKind()
10587                                      == TSK_ExplicitInstantiationDeclaration;
10588      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10589                                 REnd = Class->redecls_end();
10590           R != REnd; ++R) {
10591        TemplateSpecializationKind TSK
10592          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10593        if (TSK == TSK_ExplicitInstantiationDeclaration)
10594          IsExplicitInstantiationDeclaration = true;
10595        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10596          IsExplicitInstantiationDeclaration = false;
10597          break;
10598        }
10599      }
10600
10601      if (IsExplicitInstantiationDeclaration)
10602        continue;
10603    }
10604
10605    // Mark all of the virtual members of this class as referenced, so
10606    // that we can build a vtable. Then, tell the AST consumer that a
10607    // vtable for this class is required.
10608    DefinedAnything = true;
10609    MarkVirtualMembersReferenced(Loc, Class);
10610    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10611    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10612
10613    // Optionally warn if we're emitting a weak vtable.
10614    if (Class->getLinkage() == ExternalLinkage &&
10615        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10616      const FunctionDecl *KeyFunctionDef = 0;
10617      if (!KeyFunction ||
10618          (KeyFunction->hasBody(KeyFunctionDef) &&
10619           KeyFunctionDef->isInlined()))
10620        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10621             TSK_ExplicitInstantiationDefinition
10622             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10623          << Class;
10624    }
10625  }
10626  VTableUses.clear();
10627
10628  return DefinedAnything;
10629}
10630
10631void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10632                                        const CXXRecordDecl *RD) {
10633  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10634       e = RD->method_end(); i != e; ++i) {
10635    CXXMethodDecl *MD = *i;
10636
10637    // C++ [basic.def.odr]p2:
10638    //   [...] A virtual member function is used if it is not pure. [...]
10639    if (MD->isVirtual() && !MD->isPure())
10640      MarkDeclarationReferenced(Loc, MD);
10641  }
10642
10643  // Only classes that have virtual bases need a VTT.
10644  if (RD->getNumVBases() == 0)
10645    return;
10646
10647  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10648           e = RD->bases_end(); i != e; ++i) {
10649    const CXXRecordDecl *Base =
10650        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10651    if (Base->getNumVBases() == 0)
10652      continue;
10653    MarkVirtualMembersReferenced(Loc, Base);
10654  }
10655}
10656
10657/// SetIvarInitializers - This routine builds initialization ASTs for the
10658/// Objective-C implementation whose ivars need be initialized.
10659void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10660  if (!getLangOptions().CPlusPlus)
10661    return;
10662  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10663    SmallVector<ObjCIvarDecl*, 8> ivars;
10664    CollectIvarsToConstructOrDestruct(OID, ivars);
10665    if (ivars.empty())
10666      return;
10667    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10668    for (unsigned i = 0; i < ivars.size(); i++) {
10669      FieldDecl *Field = ivars[i];
10670      if (Field->isInvalidDecl())
10671        continue;
10672
10673      CXXCtorInitializer *Member;
10674      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10675      InitializationKind InitKind =
10676        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10677
10678      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10679      ExprResult MemberInit =
10680        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10681      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10682      // Note, MemberInit could actually come back empty if no initialization
10683      // is required (e.g., because it would call a trivial default constructor)
10684      if (!MemberInit.get() || MemberInit.isInvalid())
10685        continue;
10686
10687      Member =
10688        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10689                                         SourceLocation(),
10690                                         MemberInit.takeAs<Expr>(),
10691                                         SourceLocation());
10692      AllToInit.push_back(Member);
10693
10694      // Be sure that the destructor is accessible and is marked as referenced.
10695      if (const RecordType *RecordTy
10696                  = Context.getBaseElementType(Field->getType())
10697                                                        ->getAs<RecordType>()) {
10698                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10699        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10700          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10701          CheckDestructorAccess(Field->getLocation(), Destructor,
10702                            PDiag(diag::err_access_dtor_ivar)
10703                              << Context.getBaseElementType(Field->getType()));
10704        }
10705      }
10706    }
10707    ObjCImplementation->setIvarInitializers(Context,
10708                                            AllToInit.data(), AllToInit.size());
10709  }
10710}
10711
10712static
10713void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10714                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10715                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10716                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10717                           Sema &S) {
10718  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10719                                                   CE = Current.end();
10720  if (Ctor->isInvalidDecl())
10721    return;
10722
10723  const FunctionDecl *FNTarget = 0;
10724  CXXConstructorDecl *Target;
10725
10726  // We ignore the result here since if we don't have a body, Target will be
10727  // null below.
10728  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10729  Target
10730= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10731
10732  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10733                     // Avoid dereferencing a null pointer here.
10734                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10735
10736  if (!Current.insert(Canonical))
10737    return;
10738
10739  // We know that beyond here, we aren't chaining into a cycle.
10740  if (!Target || !Target->isDelegatingConstructor() ||
10741      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10742    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10743      Valid.insert(*CI);
10744    Current.clear();
10745  // We've hit a cycle.
10746  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10747             Current.count(TCanonical)) {
10748    // If we haven't diagnosed this cycle yet, do so now.
10749    if (!Invalid.count(TCanonical)) {
10750      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10751             diag::warn_delegating_ctor_cycle)
10752        << Ctor;
10753
10754      // Don't add a note for a function delegating directo to itself.
10755      if (TCanonical != Canonical)
10756        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10757
10758      CXXConstructorDecl *C = Target;
10759      while (C->getCanonicalDecl() != Canonical) {
10760        (void)C->getTargetConstructor()->hasBody(FNTarget);
10761        assert(FNTarget && "Ctor cycle through bodiless function");
10762
10763        C
10764       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10765        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10766      }
10767    }
10768
10769    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10770      Invalid.insert(*CI);
10771    Current.clear();
10772  } else {
10773    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10774  }
10775}
10776
10777
10778void Sema::CheckDelegatingCtorCycles() {
10779  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10780
10781  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10782                                                   CE = Current.end();
10783
10784  for (DelegatingCtorDeclsType::iterator
10785         I = DelegatingCtorDecls.begin(ExternalSource),
10786         E = DelegatingCtorDecls.end();
10787       I != E; ++I) {
10788   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10789  }
10790
10791  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10792    (*CI)->setInvalidDecl();
10793}
10794
10795/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10796Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10797  // Implicitly declared functions (e.g. copy constructors) are
10798  // __host__ __device__
10799  if (D->isImplicit())
10800    return CFT_HostDevice;
10801
10802  if (D->hasAttr<CUDAGlobalAttr>())
10803    return CFT_Global;
10804
10805  if (D->hasAttr<CUDADeviceAttr>()) {
10806    if (D->hasAttr<CUDAHostAttr>())
10807      return CFT_HostDevice;
10808    else
10809      return CFT_Device;
10810  }
10811
10812  return CFT_Host;
10813}
10814
10815bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10816                           CUDAFunctionTarget CalleeTarget) {
10817  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10818  // Callable from the device only."
10819  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10820    return true;
10821
10822  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10823  // Callable from the host only."
10824  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10825  // Callable from the host only."
10826  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10827      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10828    return true;
10829
10830  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10831    return true;
10832
10833  return false;
10834}
10835