SemaDeclCXX.cpp revision 48026d26fb58e413544874eead5491b1452e2ebf
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If the parameter doesn't have an identifier then the location
274      // points to the '=' which means that the fixit hint won't remove any
275      // extra spaces between the type and the '='.
276      SourceLocation Begin = NewParam->getLocation();
277      if (NewParam->getIdentifier())
278        Begin = PP.getLocForEndOfToken(Begin);
279
280      Diag(NewParam->getLocation(),
281           diag::err_param_default_argument_redefinition)
282        << NewParam->getDefaultArgRange()
283        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
284                                                        NewParam->getLocEnd()));
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl)
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         QualType BaseType,
449                         SourceLocation BaseLoc) {
450  // C++ [class.union]p1:
451  //   A union shall not have base classes.
452  if (Class->isUnion()) {
453    Diag(Class->getLocation(), diag::err_base_clause_on_union)
454      << SpecifierRange;
455    return 0;
456  }
457
458  if (BaseType->isDependentType())
459    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
460                                Class->getTagKind() == RecordDecl::TK_class,
461                                Access, BaseType);
462
463  // Base specifiers must be record types.
464  if (!BaseType->isRecordType()) {
465    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
466    return 0;
467  }
468
469  // C++ [class.union]p1:
470  //   A union shall not be used as a base class.
471  if (BaseType->isUnionType()) {
472    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
473    return 0;
474  }
475
476  // C++ [class.derived]p2:
477  //   The class-name in a base-specifier shall not be an incompletely
478  //   defined class.
479  if (RequireCompleteType(BaseLoc, BaseType,
480                          PDiag(diag::err_incomplete_base_class)
481                            << SpecifierRange))
482    return 0;
483
484  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
485  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
486  assert(BaseDecl && "Record type has no declaration");
487  BaseDecl = BaseDecl->getDefinition(Context);
488  assert(BaseDecl && "Base type is not incomplete, but has no definition");
489  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
490  assert(CXXBaseDecl && "Base type is not a C++ type");
491
492  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
493  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
494    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
495    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
496      << BaseType;
497    return 0;
498  }
499
500  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
501
502  // Create the base specifier.
503  // FIXME: Allocate via ASTContext?
504  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
505                              Class->getTagKind() == RecordDecl::TK_class,
506                              Access, BaseType);
507}
508
509void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
510                                          const CXXRecordDecl *BaseClass,
511                                          bool BaseIsVirtual) {
512  // A class with a non-empty base class is not empty.
513  // FIXME: Standard ref?
514  if (!BaseClass->isEmpty())
515    Class->setEmpty(false);
516
517  // C++ [class.virtual]p1:
518  //   A class that [...] inherits a virtual function is called a polymorphic
519  //   class.
520  if (BaseClass->isPolymorphic())
521    Class->setPolymorphic(true);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is [...] a class with [...] no base classes [...].
525  Class->setAggregate(false);
526
527  // C++ [class]p4:
528  //   A POD-struct is an aggregate class...
529  Class->setPOD(false);
530
531  if (BaseIsVirtual) {
532    // C++ [class.ctor]p5:
533    //   A constructor is trivial if its class has no virtual base classes.
534    Class->setHasTrivialConstructor(false);
535
536    // C++ [class.copy]p6:
537    //   A copy constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialCopyConstructor(false);
539
540    // C++ [class.copy]p11:
541    //   A copy assignment operator is trivial if its class has no virtual
542    //   base classes.
543    Class->setHasTrivialCopyAssignment(false);
544
545    // C++0x [meta.unary.prop] is_empty:
546    //    T is a class type, but not a union type, with ... no virtual base
547    //    classes
548    Class->setEmpty(false);
549  } else {
550    // C++ [class.ctor]p5:
551    //   A constructor is trivial if all the direct base classes of its
552    //   class have trivial constructors.
553    if (!BaseClass->hasTrivialConstructor())
554      Class->setHasTrivialConstructor(false);
555
556    // C++ [class.copy]p6:
557    //   A copy constructor is trivial if all the direct base classes of its
558    //   class have trivial copy constructors.
559    if (!BaseClass->hasTrivialCopyConstructor())
560      Class->setHasTrivialCopyConstructor(false);
561
562    // C++ [class.copy]p11:
563    //   A copy assignment operator is trivial if all the direct base classes
564    //   of its class have trivial copy assignment operators.
565    if (!BaseClass->hasTrivialCopyAssignment())
566      Class->setHasTrivialCopyAssignment(false);
567  }
568
569  // C++ [class.ctor]p3:
570  //   A destructor is trivial if all the direct base classes of its class
571  //   have trivial destructors.
572  if (!BaseClass->hasTrivialDestructor())
573    Class->setHasTrivialDestructor(false);
574}
575
576/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
577/// one entry in the base class list of a class specifier, for
578/// example:
579///    class foo : public bar, virtual private baz {
580/// 'public bar' and 'virtual private baz' are each base-specifiers.
581Sema::BaseResult
582Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
583                         bool Virtual, AccessSpecifier Access,
584                         TypeTy *basetype, SourceLocation BaseLoc) {
585  if (!classdecl)
586    return true;
587
588  AdjustDeclIfTemplate(classdecl);
589  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
590  QualType BaseType = GetTypeFromParser(basetype);
591  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
592                                                      Virtual, Access,
593                                                      BaseType, BaseLoc))
594    return BaseSpec;
595
596  return true;
597}
598
599/// \brief Performs the actual work of attaching the given base class
600/// specifiers to a C++ class.
601bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
602                                unsigned NumBases) {
603 if (NumBases == 0)
604    return false;
605
606  // Used to keep track of which base types we have already seen, so
607  // that we can properly diagnose redundant direct base types. Note
608  // that the key is always the unqualified canonical type of the base
609  // class.
610  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
611
612  // Copy non-redundant base specifiers into permanent storage.
613  unsigned NumGoodBases = 0;
614  bool Invalid = false;
615  for (unsigned idx = 0; idx < NumBases; ++idx) {
616    QualType NewBaseType
617      = Context.getCanonicalType(Bases[idx]->getType());
618    NewBaseType = NewBaseType.getLocalUnqualifiedType();
619
620    if (KnownBaseTypes[NewBaseType]) {
621      // C++ [class.mi]p3:
622      //   A class shall not be specified as a direct base class of a
623      //   derived class more than once.
624      Diag(Bases[idx]->getSourceRange().getBegin(),
625           diag::err_duplicate_base_class)
626        << KnownBaseTypes[NewBaseType]->getType()
627        << Bases[idx]->getSourceRange();
628
629      // Delete the duplicate base class specifier; we're going to
630      // overwrite its pointer later.
631      Context.Deallocate(Bases[idx]);
632
633      Invalid = true;
634    } else {
635      // Okay, add this new base class.
636      KnownBaseTypes[NewBaseType] = Bases[idx];
637      Bases[NumGoodBases++] = Bases[idx];
638    }
639  }
640
641  // Attach the remaining base class specifiers to the derived class.
642  Class->setBases(Context, Bases, NumGoodBases);
643
644  // Delete the remaining (good) base class specifiers, since their
645  // data has been copied into the CXXRecordDecl.
646  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
647    Context.Deallocate(Bases[idx]);
648
649  return Invalid;
650}
651
652/// ActOnBaseSpecifiers - Attach the given base specifiers to the
653/// class, after checking whether there are any duplicate base
654/// classes.
655void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
656                               unsigned NumBases) {
657  if (!ClassDecl || !Bases || !NumBases)
658    return;
659
660  AdjustDeclIfTemplate(ClassDecl);
661  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
662                       (CXXBaseSpecifier**)(Bases), NumBases);
663}
664
665/// \brief Determine whether the type \p Derived is a C++ class that is
666/// derived from the type \p Base.
667bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
668  if (!getLangOptions().CPlusPlus)
669    return false;
670
671  const RecordType *DerivedRT = Derived->getAs<RecordType>();
672  if (!DerivedRT)
673    return false;
674
675  const RecordType *BaseRT = Base->getAs<RecordType>();
676  if (!BaseRT)
677    return false;
678
679  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
680  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
681  return DerivedRD->isDerivedFrom(BaseRD);
682}
683
684/// \brief Determine whether the type \p Derived is a C++ class that is
685/// derived from the type \p Base.
686bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
687  if (!getLangOptions().CPlusPlus)
688    return false;
689
690  const RecordType *DerivedRT = Derived->getAs<RecordType>();
691  if (!DerivedRT)
692    return false;
693
694  const RecordType *BaseRT = Base->getAs<RecordType>();
695  if (!BaseRT)
696    return false;
697
698  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
699  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
700  return DerivedRD->isDerivedFrom(BaseRD, Paths);
701}
702
703/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
704/// conversion (where Derived and Base are class types) is
705/// well-formed, meaning that the conversion is unambiguous (and
706/// that all of the base classes are accessible). Returns true
707/// and emits a diagnostic if the code is ill-formed, returns false
708/// otherwise. Loc is the location where this routine should point to
709/// if there is an error, and Range is the source range to highlight
710/// if there is an error.
711bool
712Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
713                                   unsigned InaccessibleBaseID,
714                                   unsigned AmbigiousBaseConvID,
715                                   SourceLocation Loc, SourceRange Range,
716                                   DeclarationName Name) {
717  // First, determine whether the path from Derived to Base is
718  // ambiguous. This is slightly more expensive than checking whether
719  // the Derived to Base conversion exists, because here we need to
720  // explore multiple paths to determine if there is an ambiguity.
721  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
722                     /*DetectVirtual=*/false);
723  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
724  assert(DerivationOkay &&
725         "Can only be used with a derived-to-base conversion");
726  (void)DerivationOkay;
727
728  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
729    if (InaccessibleBaseID == 0)
730      return false;
731    // Check that the base class can be accessed.
732    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
733                                Name);
734  }
735
736  // We know that the derived-to-base conversion is ambiguous, and
737  // we're going to produce a diagnostic. Perform the derived-to-base
738  // search just one more time to compute all of the possible paths so
739  // that we can print them out. This is more expensive than any of
740  // the previous derived-to-base checks we've done, but at this point
741  // performance isn't as much of an issue.
742  Paths.clear();
743  Paths.setRecordingPaths(true);
744  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
745  assert(StillOkay && "Can only be used with a derived-to-base conversion");
746  (void)StillOkay;
747
748  // Build up a textual representation of the ambiguous paths, e.g.,
749  // D -> B -> A, that will be used to illustrate the ambiguous
750  // conversions in the diagnostic. We only print one of the paths
751  // to each base class subobject.
752  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
753
754  Diag(Loc, AmbigiousBaseConvID)
755  << Derived << Base << PathDisplayStr << Range << Name;
756  return true;
757}
758
759bool
760Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
761                                   SourceLocation Loc, SourceRange Range,
762                                   bool IgnoreAccess) {
763  return CheckDerivedToBaseConversion(Derived, Base,
764                                      IgnoreAccess ? 0 :
765                                        diag::err_conv_to_inaccessible_base,
766                                      diag::err_ambiguous_derived_to_base_conv,
767                                      Loc, Range, DeclarationName());
768}
769
770
771/// @brief Builds a string representing ambiguous paths from a
772/// specific derived class to different subobjects of the same base
773/// class.
774///
775/// This function builds a string that can be used in error messages
776/// to show the different paths that one can take through the
777/// inheritance hierarchy to go from the derived class to different
778/// subobjects of a base class. The result looks something like this:
779/// @code
780/// struct D -> struct B -> struct A
781/// struct D -> struct C -> struct A
782/// @endcode
783std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
784  std::string PathDisplayStr;
785  std::set<unsigned> DisplayedPaths;
786  for (CXXBasePaths::paths_iterator Path = Paths.begin();
787       Path != Paths.end(); ++Path) {
788    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
789      // We haven't displayed a path to this particular base
790      // class subobject yet.
791      PathDisplayStr += "\n    ";
792      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
793      for (CXXBasePath::const_iterator Element = Path->begin();
794           Element != Path->end(); ++Element)
795        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
796    }
797  }
798
799  return PathDisplayStr;
800}
801
802//===----------------------------------------------------------------------===//
803// C++ class member Handling
804//===----------------------------------------------------------------------===//
805
806/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
807/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
808/// bitfield width if there is one and 'InitExpr' specifies the initializer if
809/// any.
810Sema::DeclPtrTy
811Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
812                               MultiTemplateParamsArg TemplateParameterLists,
813                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
814                               bool Deleted) {
815  const DeclSpec &DS = D.getDeclSpec();
816  DeclarationName Name = GetNameForDeclarator(D);
817  Expr *BitWidth = static_cast<Expr*>(BW);
818  Expr *Init = static_cast<Expr*>(InitExpr);
819  SourceLocation Loc = D.getIdentifierLoc();
820
821  bool isFunc = D.isFunctionDeclarator();
822
823  assert(!DS.isFriendSpecified());
824
825  // C++ 9.2p6: A member shall not be declared to have automatic storage
826  // duration (auto, register) or with the extern storage-class-specifier.
827  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
828  // data members and cannot be applied to names declared const or static,
829  // and cannot be applied to reference members.
830  switch (DS.getStorageClassSpec()) {
831    case DeclSpec::SCS_unspecified:
832    case DeclSpec::SCS_typedef:
833    case DeclSpec::SCS_static:
834      // FALL THROUGH.
835      break;
836    case DeclSpec::SCS_mutable:
837      if (isFunc) {
838        if (DS.getStorageClassSpecLoc().isValid())
839          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
840        else
841          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
842
843        // FIXME: It would be nicer if the keyword was ignored only for this
844        // declarator. Otherwise we could get follow-up errors.
845        D.getMutableDeclSpec().ClearStorageClassSpecs();
846      } else {
847        QualType T = GetTypeForDeclarator(D, S);
848        diag::kind err = static_cast<diag::kind>(0);
849        if (T->isReferenceType())
850          err = diag::err_mutable_reference;
851        else if (T.isConstQualified())
852          err = diag::err_mutable_const;
853        if (err != 0) {
854          if (DS.getStorageClassSpecLoc().isValid())
855            Diag(DS.getStorageClassSpecLoc(), err);
856          else
857            Diag(DS.getThreadSpecLoc(), err);
858          // FIXME: It would be nicer if the keyword was ignored only for this
859          // declarator. Otherwise we could get follow-up errors.
860          D.getMutableDeclSpec().ClearStorageClassSpecs();
861        }
862      }
863      break;
864    default:
865      if (DS.getStorageClassSpecLoc().isValid())
866        Diag(DS.getStorageClassSpecLoc(),
867             diag::err_storageclass_invalid_for_member);
868      else
869        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
870      D.getMutableDeclSpec().ClearStorageClassSpecs();
871  }
872
873  if (!isFunc &&
874      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
875      D.getNumTypeObjects() == 0) {
876    // Check also for this case:
877    //
878    // typedef int f();
879    // f a;
880    //
881    QualType TDType = GetTypeFromParser(DS.getTypeRep());
882    isFunc = TDType->isFunctionType();
883  }
884
885  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
886                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
887                      !isFunc);
888
889  Decl *Member;
890  if (isInstField) {
891    // FIXME: Check for template parameters!
892    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
893                         AS);
894    assert(Member && "HandleField never returns null");
895  } else {
896    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
897               .getAs<Decl>();
898    if (!Member) {
899      if (BitWidth) DeleteExpr(BitWidth);
900      return DeclPtrTy();
901    }
902
903    // Non-instance-fields can't have a bitfield.
904    if (BitWidth) {
905      if (Member->isInvalidDecl()) {
906        // don't emit another diagnostic.
907      } else if (isa<VarDecl>(Member)) {
908        // C++ 9.6p3: A bit-field shall not be a static member.
909        // "static member 'A' cannot be a bit-field"
910        Diag(Loc, diag::err_static_not_bitfield)
911          << Name << BitWidth->getSourceRange();
912      } else if (isa<TypedefDecl>(Member)) {
913        // "typedef member 'x' cannot be a bit-field"
914        Diag(Loc, diag::err_typedef_not_bitfield)
915          << Name << BitWidth->getSourceRange();
916      } else {
917        // A function typedef ("typedef int f(); f a;").
918        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
919        Diag(Loc, diag::err_not_integral_type_bitfield)
920          << Name << cast<ValueDecl>(Member)->getType()
921          << BitWidth->getSourceRange();
922      }
923
924      DeleteExpr(BitWidth);
925      BitWidth = 0;
926      Member->setInvalidDecl();
927    }
928
929    Member->setAccess(AS);
930
931    // If we have declared a member function template, set the access of the
932    // templated declaration as well.
933    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
934      FunTmpl->getTemplatedDecl()->setAccess(AS);
935  }
936
937  assert((Name || isInstField) && "No identifier for non-field ?");
938
939  if (Init)
940    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
941  if (Deleted) // FIXME: Source location is not very good.
942    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
943
944  if (isInstField) {
945    FieldCollector->Add(cast<FieldDecl>(Member));
946    return DeclPtrTy();
947  }
948  return DeclPtrTy::make(Member);
949}
950
951/// \brief Find the direct and/or virtual base specifiers that
952/// correspond to the given base type, for use in base initialization
953/// within a constructor.
954static bool FindBaseInitializer(Sema &SemaRef,
955                                CXXRecordDecl *ClassDecl,
956                                QualType BaseType,
957                                const CXXBaseSpecifier *&DirectBaseSpec,
958                                const CXXBaseSpecifier *&VirtualBaseSpec) {
959  // First, check for a direct base class.
960  DirectBaseSpec = 0;
961  for (CXXRecordDecl::base_class_const_iterator Base
962         = ClassDecl->bases_begin();
963       Base != ClassDecl->bases_end(); ++Base) {
964    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
965      // We found a direct base of this type. That's what we're
966      // initializing.
967      DirectBaseSpec = &*Base;
968      break;
969    }
970  }
971
972  // Check for a virtual base class.
973  // FIXME: We might be able to short-circuit this if we know in advance that
974  // there are no virtual bases.
975  VirtualBaseSpec = 0;
976  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
977    // We haven't found a base yet; search the class hierarchy for a
978    // virtual base class.
979    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
980                       /*DetectVirtual=*/false);
981    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
982                              BaseType, Paths)) {
983      for (CXXBasePaths::paths_iterator Path = Paths.begin();
984           Path != Paths.end(); ++Path) {
985        if (Path->back().Base->isVirtual()) {
986          VirtualBaseSpec = Path->back().Base;
987          break;
988        }
989      }
990    }
991  }
992
993  return DirectBaseSpec || VirtualBaseSpec;
994}
995
996/// ActOnMemInitializer - Handle a C++ member initializer.
997Sema::MemInitResult
998Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
999                          Scope *S,
1000                          const CXXScopeSpec &SS,
1001                          IdentifierInfo *MemberOrBase,
1002                          TypeTy *TemplateTypeTy,
1003                          SourceLocation IdLoc,
1004                          SourceLocation LParenLoc,
1005                          ExprTy **Args, unsigned NumArgs,
1006                          SourceLocation *CommaLocs,
1007                          SourceLocation RParenLoc) {
1008  if (!ConstructorD)
1009    return true;
1010
1011  AdjustDeclIfTemplate(ConstructorD);
1012
1013  CXXConstructorDecl *Constructor
1014    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1015  if (!Constructor) {
1016    // The user wrote a constructor initializer on a function that is
1017    // not a C++ constructor. Ignore the error for now, because we may
1018    // have more member initializers coming; we'll diagnose it just
1019    // once in ActOnMemInitializers.
1020    return true;
1021  }
1022
1023  CXXRecordDecl *ClassDecl = Constructor->getParent();
1024
1025  // C++ [class.base.init]p2:
1026  //   Names in a mem-initializer-id are looked up in the scope of the
1027  //   constructor’s class and, if not found in that scope, are looked
1028  //   up in the scope containing the constructor’s
1029  //   definition. [Note: if the constructor’s class contains a member
1030  //   with the same name as a direct or virtual base class of the
1031  //   class, a mem-initializer-id naming the member or base class and
1032  //   composed of a single identifier refers to the class member. A
1033  //   mem-initializer-id for the hidden base class may be specified
1034  //   using a qualified name. ]
1035  if (!SS.getScopeRep() && !TemplateTypeTy) {
1036    // Look for a member, first.
1037    FieldDecl *Member = 0;
1038    DeclContext::lookup_result Result
1039      = ClassDecl->lookup(MemberOrBase);
1040    if (Result.first != Result.second)
1041      Member = dyn_cast<FieldDecl>(*Result.first);
1042
1043    // FIXME: Handle members of an anonymous union.
1044
1045    if (Member)
1046      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1047                                    LParenLoc, RParenLoc);
1048  }
1049  // It didn't name a member, so see if it names a class.
1050  QualType BaseType;
1051  TypeSourceInfo *TInfo = 0;
1052
1053  if (TemplateTypeTy) {
1054    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1055  } else {
1056    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1057    LookupParsedName(R, S, &SS);
1058
1059    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1060    if (!TyD) {
1061      if (R.isAmbiguous()) return true;
1062
1063      // If no results were found, try to correct typos.
1064      if (R.empty() &&
1065          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1066        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1067          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1068            // We have found a non-static data member with a similar
1069            // name to what was typed; complain and initialize that
1070            // member.
1071            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1072              << MemberOrBase << true << R.getLookupName()
1073              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1074                                               R.getLookupName().getAsString());
1075            Diag(Member->getLocation(), diag::note_previous_decl)
1076              << Member->getDeclName();
1077
1078            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1079                                          LParenLoc, RParenLoc);
1080          }
1081        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1082          const CXXBaseSpecifier *DirectBaseSpec;
1083          const CXXBaseSpecifier *VirtualBaseSpec;
1084          if (FindBaseInitializer(*this, ClassDecl,
1085                                  Context.getTypeDeclType(Type),
1086                                  DirectBaseSpec, VirtualBaseSpec)) {
1087            // We have found a direct or virtual base class with a
1088            // similar name to what was typed; complain and initialize
1089            // that base class.
1090            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1091              << MemberOrBase << false << R.getLookupName()
1092              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1093                                               R.getLookupName().getAsString());
1094
1095            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1096                                                             : VirtualBaseSpec;
1097            Diag(BaseSpec->getSourceRange().getBegin(),
1098                 diag::note_base_class_specified_here)
1099              << BaseSpec->getType()
1100              << BaseSpec->getSourceRange();
1101
1102            TyD = Type;
1103          }
1104        }
1105      }
1106
1107      if (!TyD) {
1108        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1109          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1110        return true;
1111      }
1112    }
1113
1114    BaseType = Context.getTypeDeclType(TyD);
1115    if (SS.isSet()) {
1116      NestedNameSpecifier *Qualifier =
1117        static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1118
1119      // FIXME: preserve source range information
1120      BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1121    }
1122  }
1123
1124  if (!TInfo)
1125    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1126
1127  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1128                              LParenLoc, RParenLoc, ClassDecl);
1129}
1130
1131/// Checks an initializer expression for use of uninitialized fields, such as
1132/// containing the field that is being initialized. Returns true if there is an
1133/// uninitialized field was used an updates the SourceLocation parameter; false
1134/// otherwise.
1135static bool InitExprContainsUninitializedFields(const Stmt* S,
1136                                                const FieldDecl* LhsField,
1137                                                SourceLocation* L) {
1138  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1139  if (ME) {
1140    const NamedDecl* RhsField = ME->getMemberDecl();
1141    if (RhsField == LhsField) {
1142      // Initializing a field with itself. Throw a warning.
1143      // But wait; there are exceptions!
1144      // Exception #1:  The field may not belong to this record.
1145      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1146      const Expr* base = ME->getBase();
1147      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1148        // Even though the field matches, it does not belong to this record.
1149        return false;
1150      }
1151      // None of the exceptions triggered; return true to indicate an
1152      // uninitialized field was used.
1153      *L = ME->getMemberLoc();
1154      return true;
1155    }
1156  }
1157  bool found = false;
1158  for (Stmt::const_child_iterator it = S->child_begin();
1159       it != S->child_end() && found == false;
1160       ++it) {
1161    if (isa<CallExpr>(S)) {
1162      // Do not descend into function calls or constructors, as the use
1163      // of an uninitialized field may be valid. One would have to inspect
1164      // the contents of the function/ctor to determine if it is safe or not.
1165      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1166      // may be safe, depending on what the function/ctor does.
1167      continue;
1168    }
1169    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1170  }
1171  return found;
1172}
1173
1174Sema::MemInitResult
1175Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1176                             unsigned NumArgs, SourceLocation IdLoc,
1177                             SourceLocation LParenLoc,
1178                             SourceLocation RParenLoc) {
1179  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1180  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1181  ExprTemporaries.clear();
1182
1183  // Diagnose value-uses of fields to initialize themselves, e.g.
1184  //   foo(foo)
1185  // where foo is not also a parameter to the constructor.
1186  // TODO: implement -Wuninitialized and fold this into that framework.
1187  for (unsigned i = 0; i < NumArgs; ++i) {
1188    SourceLocation L;
1189    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1190      // FIXME: Return true in the case when other fields are used before being
1191      // uninitialized. For example, let this field be the i'th field. When
1192      // initializing the i'th field, throw a warning if any of the >= i'th
1193      // fields are used, as they are not yet initialized.
1194      // Right now we are only handling the case where the i'th field uses
1195      // itself in its initializer.
1196      Diag(L, diag::warn_field_is_uninit);
1197    }
1198  }
1199
1200  bool HasDependentArg = false;
1201  for (unsigned i = 0; i < NumArgs; i++)
1202    HasDependentArg |= Args[i]->isTypeDependent();
1203
1204  CXXConstructorDecl *C = 0;
1205  QualType FieldType = Member->getType();
1206  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1207    FieldType = Array->getElementType();
1208  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1209  if (FieldType->isDependentType()) {
1210    // Can't check init for dependent type.
1211  } else if (FieldType->isRecordType()) {
1212    // Member is a record (struct/union/class), so pass the initializer
1213    // arguments down to the record's constructor.
1214    if (!HasDependentArg) {
1215      C = PerformInitializationByConstructor(FieldType,
1216                                             MultiExprArg(*this,
1217                                                          (void**)Args,
1218                                                          NumArgs),
1219                                             IdLoc,
1220                                             SourceRange(IdLoc, RParenLoc),
1221                                             Member->getDeclName(),
1222                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1223                                             ConstructorArgs);
1224
1225      if (C) {
1226        // Take over the constructor arguments as our own.
1227        NumArgs = ConstructorArgs.size();
1228        Args = (Expr **)ConstructorArgs.take();
1229      }
1230    }
1231  } else if (NumArgs != 1 && NumArgs != 0) {
1232    // The member type is not a record type (or an array of record
1233    // types), so it can be only be default- or copy-initialized.
1234    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1235                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1236  } else if (!HasDependentArg) {
1237    Expr *NewExp;
1238    if (NumArgs == 0) {
1239      if (FieldType->isReferenceType()) {
1240        Diag(IdLoc, diag::err_null_intialized_reference_member)
1241              << Member->getDeclName();
1242        return Diag(Member->getLocation(), diag::note_declared_at);
1243      }
1244      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1245      NumArgs = 1;
1246    }
1247    else
1248      NewExp = (Expr*)Args[0];
1249    if (!Member->isInvalidDecl() &&
1250        PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1251      return true;
1252    Args[0] = NewExp;
1253  }
1254
1255  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1256  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1257  ExprTemporaries.clear();
1258
1259  // FIXME: Perform direct initialization of the member.
1260  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1261                                                  C, LParenLoc, (Expr **)Args,
1262                                                  NumArgs, RParenLoc);
1263}
1264
1265Sema::MemInitResult
1266Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1267                           Expr **Args, unsigned NumArgs,
1268                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1269                           CXXRecordDecl *ClassDecl) {
1270  bool HasDependentArg = false;
1271  for (unsigned i = 0; i < NumArgs; i++)
1272    HasDependentArg |= Args[i]->isTypeDependent();
1273
1274  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1275  if (!BaseType->isDependentType()) {
1276    if (!BaseType->isRecordType())
1277      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1278        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1279
1280    // C++ [class.base.init]p2:
1281    //   [...] Unless the mem-initializer-id names a nonstatic data
1282    //   member of the constructor’s class or a direct or virtual base
1283    //   of that class, the mem-initializer is ill-formed. A
1284    //   mem-initializer-list can initialize a base class using any
1285    //   name that denotes that base class type.
1286
1287    // Check for direct and virtual base classes.
1288    const CXXBaseSpecifier *DirectBaseSpec = 0;
1289    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1290    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1291                        VirtualBaseSpec);
1292
1293    // C++ [base.class.init]p2:
1294    //   If a mem-initializer-id is ambiguous because it designates both
1295    //   a direct non-virtual base class and an inherited virtual base
1296    //   class, the mem-initializer is ill-formed.
1297    if (DirectBaseSpec && VirtualBaseSpec)
1298      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1299        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1300    // C++ [base.class.init]p2:
1301    // Unless the mem-initializer-id names a nonstatic data membeer of the
1302    // constructor's class ot a direst or virtual base of that class, the
1303    // mem-initializer is ill-formed.
1304    if (!DirectBaseSpec && !VirtualBaseSpec)
1305      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1306        << BaseType << ClassDecl->getNameAsCString()
1307        << BaseTInfo->getTypeLoc().getSourceRange();
1308  }
1309
1310  CXXConstructorDecl *C = 0;
1311  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1312  if (!BaseType->isDependentType() && !HasDependentArg) {
1313    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1314                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1315
1316    C = PerformInitializationByConstructor(BaseType,
1317                                           MultiExprArg(*this,
1318                                                        (void**)Args, NumArgs),
1319                                           BaseLoc,
1320                                           SourceRange(BaseLoc, RParenLoc),
1321                                           Name,
1322                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1323                                           ConstructorArgs);
1324    if (C) {
1325      // Take over the constructor arguments as our own.
1326      NumArgs = ConstructorArgs.size();
1327      Args = (Expr **)ConstructorArgs.take();
1328    }
1329  }
1330
1331  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1332  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1333  ExprTemporaries.clear();
1334
1335  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1336                                                  LParenLoc, (Expr **)Args,
1337                                                  NumArgs, RParenLoc);
1338}
1339
1340bool
1341Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1342                              CXXBaseOrMemberInitializer **Initializers,
1343                              unsigned NumInitializers,
1344                              bool IsImplicitConstructor) {
1345  // We need to build the initializer AST according to order of construction
1346  // and not what user specified in the Initializers list.
1347  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1348  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1349  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1350  bool HasDependentBaseInit = false;
1351  bool HadError = false;
1352
1353  for (unsigned i = 0; i < NumInitializers; i++) {
1354    CXXBaseOrMemberInitializer *Member = Initializers[i];
1355    if (Member->isBaseInitializer()) {
1356      if (Member->getBaseClass()->isDependentType())
1357        HasDependentBaseInit = true;
1358      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1359    } else {
1360      AllBaseFields[Member->getMember()] = Member;
1361    }
1362  }
1363
1364  if (HasDependentBaseInit) {
1365    // FIXME. This does not preserve the ordering of the initializers.
1366    // Try (with -Wreorder)
1367    // template<class X> struct A {};
1368    // template<class X> struct B : A<X> {
1369    //   B() : x1(10), A<X>() {}
1370    //   int x1;
1371    // };
1372    // B<int> x;
1373    // On seeing one dependent type, we should essentially exit this routine
1374    // while preserving user-declared initializer list. When this routine is
1375    // called during instantiatiation process, this routine will rebuild the
1376    // ordered initializer list correctly.
1377
1378    // If we have a dependent base initialization, we can't determine the
1379    // association between initializers and bases; just dump the known
1380    // initializers into the list, and don't try to deal with other bases.
1381    for (unsigned i = 0; i < NumInitializers; i++) {
1382      CXXBaseOrMemberInitializer *Member = Initializers[i];
1383      if (Member->isBaseInitializer())
1384        AllToInit.push_back(Member);
1385    }
1386  } else {
1387    // Push virtual bases before others.
1388    for (CXXRecordDecl::base_class_iterator VBase =
1389         ClassDecl->vbases_begin(),
1390         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1391      if (VBase->getType()->isDependentType())
1392        continue;
1393      if (CXXBaseOrMemberInitializer *Value
1394            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1395        AllToInit.push_back(Value);
1396      }
1397      else {
1398        CXXRecordDecl *VBaseDecl =
1399          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1400        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1401        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1402        if (!Ctor) {
1403          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1404            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1405            << 0 << VBase->getType();
1406          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1407            << Context.getTagDeclType(VBaseDecl);
1408          HadError = true;
1409          continue;
1410        }
1411
1412        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1413        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1414                                    Constructor->getLocation(), CtorArgs))
1415          continue;
1416
1417        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1418
1419        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1420        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1421        // necessary.
1422        // FIXME: Is there any better source-location information we can give?
1423        ExprTemporaries.clear();
1424        CXXBaseOrMemberInitializer *Member =
1425          new (Context) CXXBaseOrMemberInitializer(Context,
1426                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1427                                                              SourceLocation()),
1428                                                   Ctor,
1429                                                   SourceLocation(),
1430                                                   CtorArgs.takeAs<Expr>(),
1431                                                   CtorArgs.size(),
1432                                                   SourceLocation());
1433        AllToInit.push_back(Member);
1434      }
1435    }
1436
1437    for (CXXRecordDecl::base_class_iterator Base =
1438         ClassDecl->bases_begin(),
1439         E = ClassDecl->bases_end(); Base != E; ++Base) {
1440      // Virtuals are in the virtual base list and already constructed.
1441      if (Base->isVirtual())
1442        continue;
1443      // Skip dependent types.
1444      if (Base->getType()->isDependentType())
1445        continue;
1446      if (CXXBaseOrMemberInitializer *Value
1447            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1448        AllToInit.push_back(Value);
1449      }
1450      else {
1451        CXXRecordDecl *BaseDecl =
1452          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1453        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1454         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1455        if (!Ctor) {
1456          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1457            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1458            << 0 << Base->getType();
1459          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1460            << Context.getTagDeclType(BaseDecl);
1461          HadError = true;
1462          continue;
1463        }
1464
1465        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1466        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1467                                     Constructor->getLocation(), CtorArgs))
1468          continue;
1469
1470        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1471
1472        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1473        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1474        // necessary.
1475        // FIXME: Is there any better source-location information we can give?
1476        ExprTemporaries.clear();
1477        CXXBaseOrMemberInitializer *Member =
1478          new (Context) CXXBaseOrMemberInitializer(Context,
1479                             Context.getTrivialTypeSourceInfo(Base->getType(),
1480                                                              SourceLocation()),
1481                                                   Ctor,
1482                                                   SourceLocation(),
1483                                                   CtorArgs.takeAs<Expr>(),
1484                                                   CtorArgs.size(),
1485                                                   SourceLocation());
1486        AllToInit.push_back(Member);
1487      }
1488    }
1489  }
1490
1491  // non-static data members.
1492  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1493       E = ClassDecl->field_end(); Field != E; ++Field) {
1494    if ((*Field)->isAnonymousStructOrUnion()) {
1495      if (const RecordType *FieldClassType =
1496          Field->getType()->getAs<RecordType>()) {
1497        CXXRecordDecl *FieldClassDecl
1498          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1499        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1500            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1501          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1502            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1503            // set to the anonymous union data member used in the initializer
1504            // list.
1505            Value->setMember(*Field);
1506            Value->setAnonUnionMember(*FA);
1507            AllToInit.push_back(Value);
1508            break;
1509          }
1510        }
1511      }
1512      continue;
1513    }
1514    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1515      AllToInit.push_back(Value);
1516      continue;
1517    }
1518
1519    if ((*Field)->getType()->isDependentType())
1520      continue;
1521
1522    QualType FT = Context.getBaseElementType((*Field)->getType());
1523    if (const RecordType* RT = FT->getAs<RecordType>()) {
1524      CXXConstructorDecl *Ctor =
1525        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1526      if (!Ctor) {
1527        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1528          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1529          << 1 << (*Field)->getDeclName();
1530        Diag(Field->getLocation(), diag::note_field_decl);
1531        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1532          << Context.getTagDeclType(RT->getDecl());
1533        HadError = true;
1534        continue;
1535      }
1536
1537      if (FT.isConstQualified() && Ctor->isTrivial()) {
1538        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1539          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1540          << 1 << (*Field)->getDeclName();
1541        Diag((*Field)->getLocation(), diag::note_declared_at);
1542        HadError = true;
1543      }
1544
1545      // Don't create initializers for trivial constructors, since they don't
1546      // actually need to be run.
1547      if (Ctor->isTrivial())
1548        continue;
1549
1550      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1551      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1552                                  Constructor->getLocation(), CtorArgs))
1553        continue;
1554
1555      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1556      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1557      ExprTemporaries.clear();
1558      CXXBaseOrMemberInitializer *Member =
1559        new (Context) CXXBaseOrMemberInitializer(Context,
1560                                                 *Field, SourceLocation(),
1561                                                 Ctor,
1562                                                 SourceLocation(),
1563                                                 CtorArgs.takeAs<Expr>(),
1564                                                 CtorArgs.size(),
1565                                                 SourceLocation());
1566
1567      AllToInit.push_back(Member);
1568      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1569    }
1570    else if (FT->isReferenceType()) {
1571      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1572        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1573        << 0 << (*Field)->getDeclName();
1574      Diag((*Field)->getLocation(), diag::note_declared_at);
1575      HadError = true;
1576    }
1577    else if (FT.isConstQualified()) {
1578      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1579        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1580        << 1 << (*Field)->getDeclName();
1581      Diag((*Field)->getLocation(), diag::note_declared_at);
1582      HadError = true;
1583    }
1584  }
1585
1586  NumInitializers = AllToInit.size();
1587  if (NumInitializers > 0) {
1588    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1589    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1590      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1591
1592    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1593    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1594      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1595  }
1596
1597  return HadError;
1598}
1599
1600static void *GetKeyForTopLevelField(FieldDecl *Field) {
1601  // For anonymous unions, use the class declaration as the key.
1602  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1603    if (RT->getDecl()->isAnonymousStructOrUnion())
1604      return static_cast<void *>(RT->getDecl());
1605  }
1606  return static_cast<void *>(Field);
1607}
1608
1609static void *GetKeyForBase(QualType BaseType) {
1610  if (const RecordType *RT = BaseType->getAs<RecordType>())
1611    return (void *)RT;
1612
1613  assert(0 && "Unexpected base type!");
1614  return 0;
1615}
1616
1617static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1618                             bool MemberMaybeAnon = false) {
1619  // For fields injected into the class via declaration of an anonymous union,
1620  // use its anonymous union class declaration as the unique key.
1621  if (Member->isMemberInitializer()) {
1622    FieldDecl *Field = Member->getMember();
1623
1624    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1625    // data member of the class. Data member used in the initializer list is
1626    // in AnonUnionMember field.
1627    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1628      Field = Member->getAnonUnionMember();
1629    if (Field->getDeclContext()->isRecord()) {
1630      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1631      if (RD->isAnonymousStructOrUnion())
1632        return static_cast<void *>(RD);
1633    }
1634    return static_cast<void *>(Field);
1635  }
1636
1637  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1638}
1639
1640/// ActOnMemInitializers - Handle the member initializers for a constructor.
1641void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1642                                SourceLocation ColonLoc,
1643                                MemInitTy **MemInits, unsigned NumMemInits) {
1644  if (!ConstructorDecl)
1645    return;
1646
1647  AdjustDeclIfTemplate(ConstructorDecl);
1648
1649  CXXConstructorDecl *Constructor
1650    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1651
1652  if (!Constructor) {
1653    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1654    return;
1655  }
1656
1657  if (!Constructor->isDependentContext()) {
1658    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1659    bool err = false;
1660    for (unsigned i = 0; i < NumMemInits; i++) {
1661      CXXBaseOrMemberInitializer *Member =
1662        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1663      void *KeyToMember = GetKeyForMember(Member);
1664      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1665      if (!PrevMember) {
1666        PrevMember = Member;
1667        continue;
1668      }
1669      if (FieldDecl *Field = Member->getMember())
1670        Diag(Member->getSourceLocation(),
1671             diag::error_multiple_mem_initialization)
1672          << Field->getNameAsString()
1673          << Member->getSourceRange();
1674      else {
1675        Type *BaseClass = Member->getBaseClass();
1676        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1677        Diag(Member->getSourceLocation(),
1678             diag::error_multiple_base_initialization)
1679          << QualType(BaseClass, 0)
1680          << Member->getSourceRange();
1681      }
1682      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1683        << 0;
1684      err = true;
1685    }
1686
1687    if (err)
1688      return;
1689  }
1690
1691  SetBaseOrMemberInitializers(Constructor,
1692                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1693                      NumMemInits, false);
1694
1695  if (Constructor->isDependentContext())
1696    return;
1697
1698  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1699      Diagnostic::Ignored &&
1700      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1701      Diagnostic::Ignored)
1702    return;
1703
1704  // Also issue warning if order of ctor-initializer list does not match order
1705  // of 1) base class declarations and 2) order of non-static data members.
1706  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1707
1708  CXXRecordDecl *ClassDecl
1709    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1710  // Push virtual bases before others.
1711  for (CXXRecordDecl::base_class_iterator VBase =
1712       ClassDecl->vbases_begin(),
1713       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1714    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1715
1716  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1717       E = ClassDecl->bases_end(); Base != E; ++Base) {
1718    // Virtuals are alread in the virtual base list and are constructed
1719    // first.
1720    if (Base->isVirtual())
1721      continue;
1722    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1723  }
1724
1725  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1726       E = ClassDecl->field_end(); Field != E; ++Field)
1727    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1728
1729  int Last = AllBaseOrMembers.size();
1730  int curIndex = 0;
1731  CXXBaseOrMemberInitializer *PrevMember = 0;
1732  for (unsigned i = 0; i < NumMemInits; i++) {
1733    CXXBaseOrMemberInitializer *Member =
1734      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1735    void *MemberInCtorList = GetKeyForMember(Member, true);
1736
1737    for (; curIndex < Last; curIndex++)
1738      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1739        break;
1740    if (curIndex == Last) {
1741      assert(PrevMember && "Member not in member list?!");
1742      // Initializer as specified in ctor-initializer list is out of order.
1743      // Issue a warning diagnostic.
1744      if (PrevMember->isBaseInitializer()) {
1745        // Diagnostics is for an initialized base class.
1746        Type *BaseClass = PrevMember->getBaseClass();
1747        Diag(PrevMember->getSourceLocation(),
1748             diag::warn_base_initialized)
1749          << QualType(BaseClass, 0);
1750      } else {
1751        FieldDecl *Field = PrevMember->getMember();
1752        Diag(PrevMember->getSourceLocation(),
1753             diag::warn_field_initialized)
1754          << Field->getNameAsString();
1755      }
1756      // Also the note!
1757      if (FieldDecl *Field = Member->getMember())
1758        Diag(Member->getSourceLocation(),
1759             diag::note_fieldorbase_initialized_here) << 0
1760          << Field->getNameAsString();
1761      else {
1762        Type *BaseClass = Member->getBaseClass();
1763        Diag(Member->getSourceLocation(),
1764             diag::note_fieldorbase_initialized_here) << 1
1765          << QualType(BaseClass, 0);
1766      }
1767      for (curIndex = 0; curIndex < Last; curIndex++)
1768        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1769          break;
1770    }
1771    PrevMember = Member;
1772  }
1773}
1774
1775void
1776Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1777  // Ignore dependent destructors.
1778  if (Destructor->isDependentContext())
1779    return;
1780
1781  CXXRecordDecl *ClassDecl = Destructor->getParent();
1782
1783  // Non-static data members.
1784  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1785       E = ClassDecl->field_end(); I != E; ++I) {
1786    FieldDecl *Field = *I;
1787
1788    QualType FieldType = Context.getBaseElementType(Field->getType());
1789
1790    const RecordType* RT = FieldType->getAs<RecordType>();
1791    if (!RT)
1792      continue;
1793
1794    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1795    if (FieldClassDecl->hasTrivialDestructor())
1796      continue;
1797
1798    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1799    MarkDeclarationReferenced(Destructor->getLocation(),
1800                              const_cast<CXXDestructorDecl*>(Dtor));
1801  }
1802
1803  // Bases.
1804  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1805       E = ClassDecl->bases_end(); Base != E; ++Base) {
1806    // Ignore virtual bases.
1807    if (Base->isVirtual())
1808      continue;
1809
1810    // Ignore trivial destructors.
1811    CXXRecordDecl *BaseClassDecl
1812      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1813    if (BaseClassDecl->hasTrivialDestructor())
1814      continue;
1815
1816    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1817    MarkDeclarationReferenced(Destructor->getLocation(),
1818                              const_cast<CXXDestructorDecl*>(Dtor));
1819  }
1820
1821  // Virtual bases.
1822  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1823       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1824    // Ignore trivial destructors.
1825    CXXRecordDecl *BaseClassDecl
1826      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1827    if (BaseClassDecl->hasTrivialDestructor())
1828      continue;
1829
1830    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1831    MarkDeclarationReferenced(Destructor->getLocation(),
1832                              const_cast<CXXDestructorDecl*>(Dtor));
1833  }
1834}
1835
1836void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1837  if (!CDtorDecl)
1838    return;
1839
1840  AdjustDeclIfTemplate(CDtorDecl);
1841
1842  if (CXXConstructorDecl *Constructor
1843      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1844    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1845}
1846
1847namespace {
1848  /// PureVirtualMethodCollector - traverses a class and its superclasses
1849  /// and determines if it has any pure virtual methods.
1850  class PureVirtualMethodCollector {
1851    ASTContext &Context;
1852
1853  public:
1854    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1855
1856  private:
1857    MethodList Methods;
1858
1859    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1860
1861  public:
1862    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1863      : Context(Ctx) {
1864
1865      MethodList List;
1866      Collect(RD, List);
1867
1868      // Copy the temporary list to methods, and make sure to ignore any
1869      // null entries.
1870      for (size_t i = 0, e = List.size(); i != e; ++i) {
1871        if (List[i])
1872          Methods.push_back(List[i]);
1873      }
1874    }
1875
1876    bool empty() const { return Methods.empty(); }
1877
1878    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1879    MethodList::const_iterator methods_end() { return Methods.end(); }
1880  };
1881
1882  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1883                                           MethodList& Methods) {
1884    // First, collect the pure virtual methods for the base classes.
1885    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1886         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1887      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1888        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1889        if (BaseDecl && BaseDecl->isAbstract())
1890          Collect(BaseDecl, Methods);
1891      }
1892    }
1893
1894    // Next, zero out any pure virtual methods that this class overrides.
1895    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1896
1897    MethodSetTy OverriddenMethods;
1898    size_t MethodsSize = Methods.size();
1899
1900    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1901         i != e; ++i) {
1902      // Traverse the record, looking for methods.
1903      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1904        // If the method is pure virtual, add it to the methods vector.
1905        if (MD->isPure())
1906          Methods.push_back(MD);
1907
1908        // Record all the overridden methods in our set.
1909        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1910             E = MD->end_overridden_methods(); I != E; ++I) {
1911          // Keep track of the overridden methods.
1912          OverriddenMethods.insert(*I);
1913        }
1914      }
1915    }
1916
1917    // Now go through the methods and zero out all the ones we know are
1918    // overridden.
1919    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1920      if (OverriddenMethods.count(Methods[i]))
1921        Methods[i] = 0;
1922    }
1923
1924  }
1925}
1926
1927
1928bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1929                                  unsigned DiagID, AbstractDiagSelID SelID,
1930                                  const CXXRecordDecl *CurrentRD) {
1931  if (SelID == -1)
1932    return RequireNonAbstractType(Loc, T,
1933                                  PDiag(DiagID), CurrentRD);
1934  else
1935    return RequireNonAbstractType(Loc, T,
1936                                  PDiag(DiagID) << SelID, CurrentRD);
1937}
1938
1939bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1940                                  const PartialDiagnostic &PD,
1941                                  const CXXRecordDecl *CurrentRD) {
1942  if (!getLangOptions().CPlusPlus)
1943    return false;
1944
1945  if (const ArrayType *AT = Context.getAsArrayType(T))
1946    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1947                                  CurrentRD);
1948
1949  if (const PointerType *PT = T->getAs<PointerType>()) {
1950    // Find the innermost pointer type.
1951    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1952      PT = T;
1953
1954    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1955      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1956  }
1957
1958  const RecordType *RT = T->getAs<RecordType>();
1959  if (!RT)
1960    return false;
1961
1962  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1963  if (!RD)
1964    return false;
1965
1966  if (CurrentRD && CurrentRD != RD)
1967    return false;
1968
1969  if (!RD->isAbstract())
1970    return false;
1971
1972  Diag(Loc, PD) << RD->getDeclName();
1973
1974  // Check if we've already emitted the list of pure virtual functions for this
1975  // class.
1976  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1977    return true;
1978
1979  PureVirtualMethodCollector Collector(Context, RD);
1980
1981  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1982       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1983    const CXXMethodDecl *MD = *I;
1984
1985    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1986      MD->getDeclName();
1987  }
1988
1989  if (!PureVirtualClassDiagSet)
1990    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1991  PureVirtualClassDiagSet->insert(RD);
1992
1993  return true;
1994}
1995
1996namespace {
1997  class AbstractClassUsageDiagnoser
1998    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1999    Sema &SemaRef;
2000    CXXRecordDecl *AbstractClass;
2001
2002    bool VisitDeclContext(const DeclContext *DC) {
2003      bool Invalid = false;
2004
2005      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2006           E = DC->decls_end(); I != E; ++I)
2007        Invalid |= Visit(*I);
2008
2009      return Invalid;
2010    }
2011
2012  public:
2013    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2014      : SemaRef(SemaRef), AbstractClass(ac) {
2015        Visit(SemaRef.Context.getTranslationUnitDecl());
2016    }
2017
2018    bool VisitFunctionDecl(const FunctionDecl *FD) {
2019      if (FD->isThisDeclarationADefinition()) {
2020        // No need to do the check if we're in a definition, because it requires
2021        // that the return/param types are complete.
2022        // because that requires
2023        return VisitDeclContext(FD);
2024      }
2025
2026      // Check the return type.
2027      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2028      bool Invalid =
2029        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2030                                       diag::err_abstract_type_in_decl,
2031                                       Sema::AbstractReturnType,
2032                                       AbstractClass);
2033
2034      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2035           E = FD->param_end(); I != E; ++I) {
2036        const ParmVarDecl *VD = *I;
2037        Invalid |=
2038          SemaRef.RequireNonAbstractType(VD->getLocation(),
2039                                         VD->getOriginalType(),
2040                                         diag::err_abstract_type_in_decl,
2041                                         Sema::AbstractParamType,
2042                                         AbstractClass);
2043      }
2044
2045      return Invalid;
2046    }
2047
2048    bool VisitDecl(const Decl* D) {
2049      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2050        return VisitDeclContext(DC);
2051
2052      return false;
2053    }
2054  };
2055}
2056
2057/// \brief Perform semantic checks on a class definition that has been
2058/// completing, introducing implicitly-declared members, checking for
2059/// abstract types, etc.
2060void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2061  if (!Record || Record->isInvalidDecl())
2062    return;
2063
2064  if (!Record->isDependentType())
2065    AddImplicitlyDeclaredMembersToClass(Record);
2066
2067  if (Record->isInvalidDecl())
2068    return;
2069
2070  if (!Record->isAbstract()) {
2071    // Collect all the pure virtual methods and see if this is an abstract
2072    // class after all.
2073    PureVirtualMethodCollector Collector(Context, Record);
2074    if (!Collector.empty())
2075      Record->setAbstract(true);
2076  }
2077
2078  if (Record->isAbstract())
2079    (void)AbstractClassUsageDiagnoser(*this, Record);
2080}
2081
2082void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2083                                             DeclPtrTy TagDecl,
2084                                             SourceLocation LBrac,
2085                                             SourceLocation RBrac) {
2086  if (!TagDecl)
2087    return;
2088
2089  AdjustDeclIfTemplate(TagDecl);
2090
2091  ActOnFields(S, RLoc, TagDecl,
2092              (DeclPtrTy*)FieldCollector->getCurFields(),
2093              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2094
2095  CheckCompletedCXXClass(
2096                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2097}
2098
2099/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2100/// special functions, such as the default constructor, copy
2101/// constructor, or destructor, to the given C++ class (C++
2102/// [special]p1).  This routine can only be executed just before the
2103/// definition of the class is complete.
2104void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2105  CanQualType ClassType
2106    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2107
2108  // FIXME: Implicit declarations have exception specifications, which are
2109  // the union of the specifications of the implicitly called functions.
2110
2111  if (!ClassDecl->hasUserDeclaredConstructor()) {
2112    // C++ [class.ctor]p5:
2113    //   A default constructor for a class X is a constructor of class X
2114    //   that can be called without an argument. If there is no
2115    //   user-declared constructor for class X, a default constructor is
2116    //   implicitly declared. An implicitly-declared default constructor
2117    //   is an inline public member of its class.
2118    DeclarationName Name
2119      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2120    CXXConstructorDecl *DefaultCon =
2121      CXXConstructorDecl::Create(Context, ClassDecl,
2122                                 ClassDecl->getLocation(), Name,
2123                                 Context.getFunctionType(Context.VoidTy,
2124                                                         0, 0, false, 0),
2125                                 /*TInfo=*/0,
2126                                 /*isExplicit=*/false,
2127                                 /*isInline=*/true,
2128                                 /*isImplicitlyDeclared=*/true);
2129    DefaultCon->setAccess(AS_public);
2130    DefaultCon->setImplicit();
2131    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2132    ClassDecl->addDecl(DefaultCon);
2133  }
2134
2135  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2136    // C++ [class.copy]p4:
2137    //   If the class definition does not explicitly declare a copy
2138    //   constructor, one is declared implicitly.
2139
2140    // C++ [class.copy]p5:
2141    //   The implicitly-declared copy constructor for a class X will
2142    //   have the form
2143    //
2144    //       X::X(const X&)
2145    //
2146    //   if
2147    bool HasConstCopyConstructor = true;
2148
2149    //     -- each direct or virtual base class B of X has a copy
2150    //        constructor whose first parameter is of type const B& or
2151    //        const volatile B&, and
2152    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2153         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2154      const CXXRecordDecl *BaseClassDecl
2155        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2156      HasConstCopyConstructor
2157        = BaseClassDecl->hasConstCopyConstructor(Context);
2158    }
2159
2160    //     -- for all the nonstatic data members of X that are of a
2161    //        class type M (or array thereof), each such class type
2162    //        has a copy constructor whose first parameter is of type
2163    //        const M& or const volatile M&.
2164    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2165         HasConstCopyConstructor && Field != ClassDecl->field_end();
2166         ++Field) {
2167      QualType FieldType = (*Field)->getType();
2168      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2169        FieldType = Array->getElementType();
2170      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2171        const CXXRecordDecl *FieldClassDecl
2172          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2173        HasConstCopyConstructor
2174          = FieldClassDecl->hasConstCopyConstructor(Context);
2175      }
2176    }
2177
2178    //   Otherwise, the implicitly declared copy constructor will have
2179    //   the form
2180    //
2181    //       X::X(X&)
2182    QualType ArgType = ClassType;
2183    if (HasConstCopyConstructor)
2184      ArgType = ArgType.withConst();
2185    ArgType = Context.getLValueReferenceType(ArgType);
2186
2187    //   An implicitly-declared copy constructor is an inline public
2188    //   member of its class.
2189    DeclarationName Name
2190      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2191    CXXConstructorDecl *CopyConstructor
2192      = CXXConstructorDecl::Create(Context, ClassDecl,
2193                                   ClassDecl->getLocation(), Name,
2194                                   Context.getFunctionType(Context.VoidTy,
2195                                                           &ArgType, 1,
2196                                                           false, 0),
2197                                   /*TInfo=*/0,
2198                                   /*isExplicit=*/false,
2199                                   /*isInline=*/true,
2200                                   /*isImplicitlyDeclared=*/true);
2201    CopyConstructor->setAccess(AS_public);
2202    CopyConstructor->setImplicit();
2203    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2204
2205    // Add the parameter to the constructor.
2206    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2207                                                 ClassDecl->getLocation(),
2208                                                 /*IdentifierInfo=*/0,
2209                                                 ArgType, /*TInfo=*/0,
2210                                                 VarDecl::None, 0);
2211    CopyConstructor->setParams(Context, &FromParam, 1);
2212    ClassDecl->addDecl(CopyConstructor);
2213  }
2214
2215  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2216    // Note: The following rules are largely analoguous to the copy
2217    // constructor rules. Note that virtual bases are not taken into account
2218    // for determining the argument type of the operator. Note also that
2219    // operators taking an object instead of a reference are allowed.
2220    //
2221    // C++ [class.copy]p10:
2222    //   If the class definition does not explicitly declare a copy
2223    //   assignment operator, one is declared implicitly.
2224    //   The implicitly-defined copy assignment operator for a class X
2225    //   will have the form
2226    //
2227    //       X& X::operator=(const X&)
2228    //
2229    //   if
2230    bool HasConstCopyAssignment = true;
2231
2232    //       -- each direct base class B of X has a copy assignment operator
2233    //          whose parameter is of type const B&, const volatile B& or B,
2234    //          and
2235    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2236         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2237      assert(!Base->getType()->isDependentType() &&
2238            "Cannot generate implicit members for class with dependent bases.");
2239      const CXXRecordDecl *BaseClassDecl
2240        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2241      const CXXMethodDecl *MD = 0;
2242      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2243                                                                     MD);
2244    }
2245
2246    //       -- for all the nonstatic data members of X that are of a class
2247    //          type M (or array thereof), each such class type has a copy
2248    //          assignment operator whose parameter is of type const M&,
2249    //          const volatile M& or M.
2250    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2251         HasConstCopyAssignment && Field != ClassDecl->field_end();
2252         ++Field) {
2253      QualType FieldType = (*Field)->getType();
2254      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2255        FieldType = Array->getElementType();
2256      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2257        const CXXRecordDecl *FieldClassDecl
2258          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2259        const CXXMethodDecl *MD = 0;
2260        HasConstCopyAssignment
2261          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2262      }
2263    }
2264
2265    //   Otherwise, the implicitly declared copy assignment operator will
2266    //   have the form
2267    //
2268    //       X& X::operator=(X&)
2269    QualType ArgType = ClassType;
2270    QualType RetType = Context.getLValueReferenceType(ArgType);
2271    if (HasConstCopyAssignment)
2272      ArgType = ArgType.withConst();
2273    ArgType = Context.getLValueReferenceType(ArgType);
2274
2275    //   An implicitly-declared copy assignment operator is an inline public
2276    //   member of its class.
2277    DeclarationName Name =
2278      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2279    CXXMethodDecl *CopyAssignment =
2280      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2281                            Context.getFunctionType(RetType, &ArgType, 1,
2282                                                    false, 0),
2283                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2284    CopyAssignment->setAccess(AS_public);
2285    CopyAssignment->setImplicit();
2286    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2287    CopyAssignment->setCopyAssignment(true);
2288
2289    // Add the parameter to the operator.
2290    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2291                                                 ClassDecl->getLocation(),
2292                                                 /*IdentifierInfo=*/0,
2293                                                 ArgType, /*TInfo=*/0,
2294                                                 VarDecl::None, 0);
2295    CopyAssignment->setParams(Context, &FromParam, 1);
2296
2297    // Don't call addedAssignmentOperator. There is no way to distinguish an
2298    // implicit from an explicit assignment operator.
2299    ClassDecl->addDecl(CopyAssignment);
2300    AddOverriddenMethods(ClassDecl, CopyAssignment);
2301  }
2302
2303  if (!ClassDecl->hasUserDeclaredDestructor()) {
2304    // C++ [class.dtor]p2:
2305    //   If a class has no user-declared destructor, a destructor is
2306    //   declared implicitly. An implicitly-declared destructor is an
2307    //   inline public member of its class.
2308    DeclarationName Name
2309      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2310    CXXDestructorDecl *Destructor
2311      = CXXDestructorDecl::Create(Context, ClassDecl,
2312                                  ClassDecl->getLocation(), Name,
2313                                  Context.getFunctionType(Context.VoidTy,
2314                                                          0, 0, false, 0),
2315                                  /*isInline=*/true,
2316                                  /*isImplicitlyDeclared=*/true);
2317    Destructor->setAccess(AS_public);
2318    Destructor->setImplicit();
2319    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2320    ClassDecl->addDecl(Destructor);
2321
2322    AddOverriddenMethods(ClassDecl, Destructor);
2323  }
2324}
2325
2326void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2327  Decl *D = TemplateD.getAs<Decl>();
2328  if (!D)
2329    return;
2330
2331  TemplateParameterList *Params = 0;
2332  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2333    Params = Template->getTemplateParameters();
2334  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2335           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2336    Params = PartialSpec->getTemplateParameters();
2337  else
2338    return;
2339
2340  for (TemplateParameterList::iterator Param = Params->begin(),
2341                                    ParamEnd = Params->end();
2342       Param != ParamEnd; ++Param) {
2343    NamedDecl *Named = cast<NamedDecl>(*Param);
2344    if (Named->getDeclName()) {
2345      S->AddDecl(DeclPtrTy::make(Named));
2346      IdResolver.AddDecl(Named);
2347    }
2348  }
2349}
2350
2351void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2352  if (!RecordD) return;
2353  AdjustDeclIfTemplate(RecordD);
2354  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2355  PushDeclContext(S, Record);
2356}
2357
2358void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2359  if (!RecordD) return;
2360  PopDeclContext();
2361}
2362
2363/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2364/// parsing a top-level (non-nested) C++ class, and we are now
2365/// parsing those parts of the given Method declaration that could
2366/// not be parsed earlier (C++ [class.mem]p2), such as default
2367/// arguments. This action should enter the scope of the given
2368/// Method declaration as if we had just parsed the qualified method
2369/// name. However, it should not bring the parameters into scope;
2370/// that will be performed by ActOnDelayedCXXMethodParameter.
2371void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2372}
2373
2374/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2375/// C++ method declaration. We're (re-)introducing the given
2376/// function parameter into scope for use in parsing later parts of
2377/// the method declaration. For example, we could see an
2378/// ActOnParamDefaultArgument event for this parameter.
2379void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2380  if (!ParamD)
2381    return;
2382
2383  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2384
2385  // If this parameter has an unparsed default argument, clear it out
2386  // to make way for the parsed default argument.
2387  if (Param->hasUnparsedDefaultArg())
2388    Param->setDefaultArg(0);
2389
2390  S->AddDecl(DeclPtrTy::make(Param));
2391  if (Param->getDeclName())
2392    IdResolver.AddDecl(Param);
2393}
2394
2395/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2396/// processing the delayed method declaration for Method. The method
2397/// declaration is now considered finished. There may be a separate
2398/// ActOnStartOfFunctionDef action later (not necessarily
2399/// immediately!) for this method, if it was also defined inside the
2400/// class body.
2401void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2402  if (!MethodD)
2403    return;
2404
2405  AdjustDeclIfTemplate(MethodD);
2406
2407  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2408
2409  // Now that we have our default arguments, check the constructor
2410  // again. It could produce additional diagnostics or affect whether
2411  // the class has implicitly-declared destructors, among other
2412  // things.
2413  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2414    CheckConstructor(Constructor);
2415
2416  // Check the default arguments, which we may have added.
2417  if (!Method->isInvalidDecl())
2418    CheckCXXDefaultArguments(Method);
2419}
2420
2421/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2422/// the well-formedness of the constructor declarator @p D with type @p
2423/// R. If there are any errors in the declarator, this routine will
2424/// emit diagnostics and set the invalid bit to true.  In any case, the type
2425/// will be updated to reflect a well-formed type for the constructor and
2426/// returned.
2427QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2428                                          FunctionDecl::StorageClass &SC) {
2429  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2430
2431  // C++ [class.ctor]p3:
2432  //   A constructor shall not be virtual (10.3) or static (9.4). A
2433  //   constructor can be invoked for a const, volatile or const
2434  //   volatile object. A constructor shall not be declared const,
2435  //   volatile, or const volatile (9.3.2).
2436  if (isVirtual) {
2437    if (!D.isInvalidType())
2438      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2439        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2440        << SourceRange(D.getIdentifierLoc());
2441    D.setInvalidType();
2442  }
2443  if (SC == FunctionDecl::Static) {
2444    if (!D.isInvalidType())
2445      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2446        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2447        << SourceRange(D.getIdentifierLoc());
2448    D.setInvalidType();
2449    SC = FunctionDecl::None;
2450  }
2451
2452  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2453  if (FTI.TypeQuals != 0) {
2454    if (FTI.TypeQuals & Qualifiers::Const)
2455      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2456        << "const" << SourceRange(D.getIdentifierLoc());
2457    if (FTI.TypeQuals & Qualifiers::Volatile)
2458      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2459        << "volatile" << SourceRange(D.getIdentifierLoc());
2460    if (FTI.TypeQuals & Qualifiers::Restrict)
2461      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2462        << "restrict" << SourceRange(D.getIdentifierLoc());
2463  }
2464
2465  // Rebuild the function type "R" without any type qualifiers (in
2466  // case any of the errors above fired) and with "void" as the
2467  // return type, since constructors don't have return types. We
2468  // *always* have to do this, because GetTypeForDeclarator will
2469  // put in a result type of "int" when none was specified.
2470  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2471  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2472                                 Proto->getNumArgs(),
2473                                 Proto->isVariadic(), 0);
2474}
2475
2476/// CheckConstructor - Checks a fully-formed constructor for
2477/// well-formedness, issuing any diagnostics required. Returns true if
2478/// the constructor declarator is invalid.
2479void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2480  CXXRecordDecl *ClassDecl
2481    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2482  if (!ClassDecl)
2483    return Constructor->setInvalidDecl();
2484
2485  // C++ [class.copy]p3:
2486  //   A declaration of a constructor for a class X is ill-formed if
2487  //   its first parameter is of type (optionally cv-qualified) X and
2488  //   either there are no other parameters or else all other
2489  //   parameters have default arguments.
2490  if (!Constructor->isInvalidDecl() &&
2491      ((Constructor->getNumParams() == 1) ||
2492       (Constructor->getNumParams() > 1 &&
2493        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2494      Constructor->getTemplateSpecializationKind()
2495                                              != TSK_ImplicitInstantiation) {
2496    QualType ParamType = Constructor->getParamDecl(0)->getType();
2497    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2498    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2499      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2500      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2501        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2502
2503      // FIXME: Rather that making the constructor invalid, we should endeavor
2504      // to fix the type.
2505      Constructor->setInvalidDecl();
2506    }
2507  }
2508
2509  // Notify the class that we've added a constructor.
2510  ClassDecl->addedConstructor(Context, Constructor);
2511}
2512
2513/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2514/// issuing any diagnostics required. Returns true on error.
2515bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2516  CXXRecordDecl *RD = Destructor->getParent();
2517
2518  if (Destructor->isVirtual()) {
2519    SourceLocation Loc;
2520
2521    if (!Destructor->isImplicit())
2522      Loc = Destructor->getLocation();
2523    else
2524      Loc = RD->getLocation();
2525
2526    // If we have a virtual destructor, look up the deallocation function
2527    FunctionDecl *OperatorDelete = 0;
2528    DeclarationName Name =
2529    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2530    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2531      return true;
2532
2533    Destructor->setOperatorDelete(OperatorDelete);
2534  }
2535
2536  return false;
2537}
2538
2539static inline bool
2540FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2541  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2542          FTI.ArgInfo[0].Param &&
2543          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2544}
2545
2546/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2547/// the well-formednes of the destructor declarator @p D with type @p
2548/// R. If there are any errors in the declarator, this routine will
2549/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2550/// will be updated to reflect a well-formed type for the destructor and
2551/// returned.
2552QualType Sema::CheckDestructorDeclarator(Declarator &D,
2553                                         FunctionDecl::StorageClass& SC) {
2554  // C++ [class.dtor]p1:
2555  //   [...] A typedef-name that names a class is a class-name
2556  //   (7.1.3); however, a typedef-name that names a class shall not
2557  //   be used as the identifier in the declarator for a destructor
2558  //   declaration.
2559  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2560  if (isa<TypedefType>(DeclaratorType)) {
2561    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2562      << DeclaratorType;
2563    D.setInvalidType();
2564  }
2565
2566  // C++ [class.dtor]p2:
2567  //   A destructor is used to destroy objects of its class type. A
2568  //   destructor takes no parameters, and no return type can be
2569  //   specified for it (not even void). The address of a destructor
2570  //   shall not be taken. A destructor shall not be static. A
2571  //   destructor can be invoked for a const, volatile or const
2572  //   volatile object. A destructor shall not be declared const,
2573  //   volatile or const volatile (9.3.2).
2574  if (SC == FunctionDecl::Static) {
2575    if (!D.isInvalidType())
2576      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2577        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2578        << SourceRange(D.getIdentifierLoc());
2579    SC = FunctionDecl::None;
2580    D.setInvalidType();
2581  }
2582  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2583    // Destructors don't have return types, but the parser will
2584    // happily parse something like:
2585    //
2586    //   class X {
2587    //     float ~X();
2588    //   };
2589    //
2590    // The return type will be eliminated later.
2591    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2592      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2593      << SourceRange(D.getIdentifierLoc());
2594  }
2595
2596  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2597  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2598    if (FTI.TypeQuals & Qualifiers::Const)
2599      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2600        << "const" << SourceRange(D.getIdentifierLoc());
2601    if (FTI.TypeQuals & Qualifiers::Volatile)
2602      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2603        << "volatile" << SourceRange(D.getIdentifierLoc());
2604    if (FTI.TypeQuals & Qualifiers::Restrict)
2605      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2606        << "restrict" << SourceRange(D.getIdentifierLoc());
2607    D.setInvalidType();
2608  }
2609
2610  // Make sure we don't have any parameters.
2611  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2612    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2613
2614    // Delete the parameters.
2615    FTI.freeArgs();
2616    D.setInvalidType();
2617  }
2618
2619  // Make sure the destructor isn't variadic.
2620  if (FTI.isVariadic) {
2621    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2622    D.setInvalidType();
2623  }
2624
2625  // Rebuild the function type "R" without any type qualifiers or
2626  // parameters (in case any of the errors above fired) and with
2627  // "void" as the return type, since destructors don't have return
2628  // types. We *always* have to do this, because GetTypeForDeclarator
2629  // will put in a result type of "int" when none was specified.
2630  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2631}
2632
2633/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2634/// well-formednes of the conversion function declarator @p D with
2635/// type @p R. If there are any errors in the declarator, this routine
2636/// will emit diagnostics and return true. Otherwise, it will return
2637/// false. Either way, the type @p R will be updated to reflect a
2638/// well-formed type for the conversion operator.
2639void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2640                                     FunctionDecl::StorageClass& SC) {
2641  // C++ [class.conv.fct]p1:
2642  //   Neither parameter types nor return type can be specified. The
2643  //   type of a conversion function (8.3.5) is "function taking no
2644  //   parameter returning conversion-type-id."
2645  if (SC == FunctionDecl::Static) {
2646    if (!D.isInvalidType())
2647      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2648        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2649        << SourceRange(D.getIdentifierLoc());
2650    D.setInvalidType();
2651    SC = FunctionDecl::None;
2652  }
2653  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2654    // Conversion functions don't have return types, but the parser will
2655    // happily parse something like:
2656    //
2657    //   class X {
2658    //     float operator bool();
2659    //   };
2660    //
2661    // The return type will be changed later anyway.
2662    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2663      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2664      << SourceRange(D.getIdentifierLoc());
2665  }
2666
2667  // Make sure we don't have any parameters.
2668  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2669    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2670
2671    // Delete the parameters.
2672    D.getTypeObject(0).Fun.freeArgs();
2673    D.setInvalidType();
2674  }
2675
2676  // Make sure the conversion function isn't variadic.
2677  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2678    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2679    D.setInvalidType();
2680  }
2681
2682  // C++ [class.conv.fct]p4:
2683  //   The conversion-type-id shall not represent a function type nor
2684  //   an array type.
2685  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2686  if (ConvType->isArrayType()) {
2687    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2688    ConvType = Context.getPointerType(ConvType);
2689    D.setInvalidType();
2690  } else if (ConvType->isFunctionType()) {
2691    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2692    ConvType = Context.getPointerType(ConvType);
2693    D.setInvalidType();
2694  }
2695
2696  // Rebuild the function type "R" without any parameters (in case any
2697  // of the errors above fired) and with the conversion type as the
2698  // return type.
2699  R = Context.getFunctionType(ConvType, 0, 0, false,
2700                              R->getAs<FunctionProtoType>()->getTypeQuals());
2701
2702  // C++0x explicit conversion operators.
2703  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2704    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2705         diag::warn_explicit_conversion_functions)
2706      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2707}
2708
2709/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2710/// the declaration of the given C++ conversion function. This routine
2711/// is responsible for recording the conversion function in the C++
2712/// class, if possible.
2713Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2714  assert(Conversion && "Expected to receive a conversion function declaration");
2715
2716  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2717
2718  // Make sure we aren't redeclaring the conversion function.
2719  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2720
2721  // C++ [class.conv.fct]p1:
2722  //   [...] A conversion function is never used to convert a
2723  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2724  //   same object type (or a reference to it), to a (possibly
2725  //   cv-qualified) base class of that type (or a reference to it),
2726  //   or to (possibly cv-qualified) void.
2727  // FIXME: Suppress this warning if the conversion function ends up being a
2728  // virtual function that overrides a virtual function in a base class.
2729  QualType ClassType
2730    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2731  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2732    ConvType = ConvTypeRef->getPointeeType();
2733  if (ConvType->isRecordType()) {
2734    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2735    if (ConvType == ClassType)
2736      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2737        << ClassType;
2738    else if (IsDerivedFrom(ClassType, ConvType))
2739      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2740        <<  ClassType << ConvType;
2741  } else if (ConvType->isVoidType()) {
2742    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2743      << ClassType << ConvType;
2744  }
2745
2746  if (Conversion->getPrimaryTemplate()) {
2747    // ignore specializations
2748  } else if (Conversion->getPreviousDeclaration()) {
2749    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2750    if (FunctionTemplateDecl *ConversionTemplate
2751          = Conversion->getDescribedFunctionTemplate())
2752      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2753    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2754      return DeclPtrTy::make(Conversion);
2755    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2756  } else if (FunctionTemplateDecl *ConversionTemplate
2757               = Conversion->getDescribedFunctionTemplate())
2758    ClassDecl->addConversionFunction(ConversionTemplate);
2759  else
2760    ClassDecl->addConversionFunction(Conversion);
2761
2762  return DeclPtrTy::make(Conversion);
2763}
2764
2765//===----------------------------------------------------------------------===//
2766// Namespace Handling
2767//===----------------------------------------------------------------------===//
2768
2769/// ActOnStartNamespaceDef - This is called at the start of a namespace
2770/// definition.
2771Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2772                                             SourceLocation IdentLoc,
2773                                             IdentifierInfo *II,
2774                                             SourceLocation LBrace) {
2775  NamespaceDecl *Namespc =
2776      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2777  Namespc->setLBracLoc(LBrace);
2778
2779  Scope *DeclRegionScope = NamespcScope->getParent();
2780
2781  if (II) {
2782    // C++ [namespace.def]p2:
2783    // The identifier in an original-namespace-definition shall not have been
2784    // previously defined in the declarative region in which the
2785    // original-namespace-definition appears. The identifier in an
2786    // original-namespace-definition is the name of the namespace. Subsequently
2787    // in that declarative region, it is treated as an original-namespace-name.
2788
2789    NamedDecl *PrevDecl
2790      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2791                         ForRedeclaration);
2792
2793    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2794      // This is an extended namespace definition.
2795      // Attach this namespace decl to the chain of extended namespace
2796      // definitions.
2797      OrigNS->setNextNamespace(Namespc);
2798      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2799
2800      // Remove the previous declaration from the scope.
2801      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2802        IdResolver.RemoveDecl(OrigNS);
2803        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2804      }
2805    } else if (PrevDecl) {
2806      // This is an invalid name redefinition.
2807      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2808       << Namespc->getDeclName();
2809      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2810      Namespc->setInvalidDecl();
2811      // Continue on to push Namespc as current DeclContext and return it.
2812    } else if (II->isStr("std") &&
2813               CurContext->getLookupContext()->isTranslationUnit()) {
2814      // This is the first "real" definition of the namespace "std", so update
2815      // our cache of the "std" namespace to point at this definition.
2816      if (StdNamespace) {
2817        // We had already defined a dummy namespace "std". Link this new
2818        // namespace definition to the dummy namespace "std".
2819        StdNamespace->setNextNamespace(Namespc);
2820        StdNamespace->setLocation(IdentLoc);
2821        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2822      }
2823
2824      // Make our StdNamespace cache point at the first real definition of the
2825      // "std" namespace.
2826      StdNamespace = Namespc;
2827    }
2828
2829    PushOnScopeChains(Namespc, DeclRegionScope);
2830  } else {
2831    // Anonymous namespaces.
2832    assert(Namespc->isAnonymousNamespace());
2833    CurContext->addDecl(Namespc);
2834
2835    // Link the anonymous namespace into its parent.
2836    NamespaceDecl *PrevDecl;
2837    DeclContext *Parent = CurContext->getLookupContext();
2838    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2839      PrevDecl = TU->getAnonymousNamespace();
2840      TU->setAnonymousNamespace(Namespc);
2841    } else {
2842      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2843      PrevDecl = ND->getAnonymousNamespace();
2844      ND->setAnonymousNamespace(Namespc);
2845    }
2846
2847    // Link the anonymous namespace with its previous declaration.
2848    if (PrevDecl) {
2849      assert(PrevDecl->isAnonymousNamespace());
2850      assert(!PrevDecl->getNextNamespace());
2851      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2852      PrevDecl->setNextNamespace(Namespc);
2853    }
2854
2855    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2856    //   behaves as if it were replaced by
2857    //     namespace unique { /* empty body */ }
2858    //     using namespace unique;
2859    //     namespace unique { namespace-body }
2860    //   where all occurrences of 'unique' in a translation unit are
2861    //   replaced by the same identifier and this identifier differs
2862    //   from all other identifiers in the entire program.
2863
2864    // We just create the namespace with an empty name and then add an
2865    // implicit using declaration, just like the standard suggests.
2866    //
2867    // CodeGen enforces the "universally unique" aspect by giving all
2868    // declarations semantically contained within an anonymous
2869    // namespace internal linkage.
2870
2871    if (!PrevDecl) {
2872      UsingDirectiveDecl* UD
2873        = UsingDirectiveDecl::Create(Context, CurContext,
2874                                     /* 'using' */ LBrace,
2875                                     /* 'namespace' */ SourceLocation(),
2876                                     /* qualifier */ SourceRange(),
2877                                     /* NNS */ NULL,
2878                                     /* identifier */ SourceLocation(),
2879                                     Namespc,
2880                                     /* Ancestor */ CurContext);
2881      UD->setImplicit();
2882      CurContext->addDecl(UD);
2883    }
2884  }
2885
2886  // Although we could have an invalid decl (i.e. the namespace name is a
2887  // redefinition), push it as current DeclContext and try to continue parsing.
2888  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2889  // for the namespace has the declarations that showed up in that particular
2890  // namespace definition.
2891  PushDeclContext(NamespcScope, Namespc);
2892  return DeclPtrTy::make(Namespc);
2893}
2894
2895/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2896/// is a namespace alias, returns the namespace it points to.
2897static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2898  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2899    return AD->getNamespace();
2900  return dyn_cast_or_null<NamespaceDecl>(D);
2901}
2902
2903/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2904/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2905void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2906  Decl *Dcl = D.getAs<Decl>();
2907  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2908  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2909  Namespc->setRBracLoc(RBrace);
2910  PopDeclContext();
2911}
2912
2913Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2914                                          SourceLocation UsingLoc,
2915                                          SourceLocation NamespcLoc,
2916                                          const CXXScopeSpec &SS,
2917                                          SourceLocation IdentLoc,
2918                                          IdentifierInfo *NamespcName,
2919                                          AttributeList *AttrList) {
2920  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2921  assert(NamespcName && "Invalid NamespcName.");
2922  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2923  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2924
2925  UsingDirectiveDecl *UDir = 0;
2926
2927  // Lookup namespace name.
2928  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2929  LookupParsedName(R, S, &SS);
2930  if (R.isAmbiguous())
2931    return DeclPtrTy();
2932
2933  if (!R.empty()) {
2934    NamedDecl *Named = R.getFoundDecl();
2935    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2936        && "expected namespace decl");
2937    // C++ [namespace.udir]p1:
2938    //   A using-directive specifies that the names in the nominated
2939    //   namespace can be used in the scope in which the
2940    //   using-directive appears after the using-directive. During
2941    //   unqualified name lookup (3.4.1), the names appear as if they
2942    //   were declared in the nearest enclosing namespace which
2943    //   contains both the using-directive and the nominated
2944    //   namespace. [Note: in this context, "contains" means "contains
2945    //   directly or indirectly". ]
2946
2947    // Find enclosing context containing both using-directive and
2948    // nominated namespace.
2949    NamespaceDecl *NS = getNamespaceDecl(Named);
2950    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2951    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2952      CommonAncestor = CommonAncestor->getParent();
2953
2954    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2955                                      SS.getRange(),
2956                                      (NestedNameSpecifier *)SS.getScopeRep(),
2957                                      IdentLoc, Named, CommonAncestor);
2958    PushUsingDirective(S, UDir);
2959  } else {
2960    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2961  }
2962
2963  // FIXME: We ignore attributes for now.
2964  delete AttrList;
2965  return DeclPtrTy::make(UDir);
2966}
2967
2968void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2969  // If scope has associated entity, then using directive is at namespace
2970  // or translation unit scope. We add UsingDirectiveDecls, into
2971  // it's lookup structure.
2972  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2973    Ctx->addDecl(UDir);
2974  else
2975    // Otherwise it is block-sope. using-directives will affect lookup
2976    // only to the end of scope.
2977    S->PushUsingDirective(DeclPtrTy::make(UDir));
2978}
2979
2980
2981Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2982                                            AccessSpecifier AS,
2983                                            bool HasUsingKeyword,
2984                                            SourceLocation UsingLoc,
2985                                            const CXXScopeSpec &SS,
2986                                            UnqualifiedId &Name,
2987                                            AttributeList *AttrList,
2988                                            bool IsTypeName,
2989                                            SourceLocation TypenameLoc) {
2990  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2991
2992  switch (Name.getKind()) {
2993  case UnqualifiedId::IK_Identifier:
2994  case UnqualifiedId::IK_OperatorFunctionId:
2995  case UnqualifiedId::IK_LiteralOperatorId:
2996  case UnqualifiedId::IK_ConversionFunctionId:
2997    break;
2998
2999  case UnqualifiedId::IK_ConstructorName:
3000    // C++0x inherited constructors.
3001    if (getLangOptions().CPlusPlus0x) break;
3002
3003    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3004      << SS.getRange();
3005    return DeclPtrTy();
3006
3007  case UnqualifiedId::IK_DestructorName:
3008    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3009      << SS.getRange();
3010    return DeclPtrTy();
3011
3012  case UnqualifiedId::IK_TemplateId:
3013    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3014      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3015    return DeclPtrTy();
3016  }
3017
3018  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3019  if (!TargetName)
3020    return DeclPtrTy();
3021
3022  // Warn about using declarations.
3023  // TODO: store that the declaration was written without 'using' and
3024  // talk about access decls instead of using decls in the
3025  // diagnostics.
3026  if (!HasUsingKeyword) {
3027    UsingLoc = Name.getSourceRange().getBegin();
3028
3029    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3030      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3031                                               "using ");
3032  }
3033
3034  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3035                                        Name.getSourceRange().getBegin(),
3036                                        TargetName, AttrList,
3037                                        /* IsInstantiation */ false,
3038                                        IsTypeName, TypenameLoc);
3039  if (UD)
3040    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3041
3042  return DeclPtrTy::make(UD);
3043}
3044
3045/// Determines whether to create a using shadow decl for a particular
3046/// decl, given the set of decls existing prior to this using lookup.
3047bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3048                                const LookupResult &Previous) {
3049  // Diagnose finding a decl which is not from a base class of the
3050  // current class.  We do this now because there are cases where this
3051  // function will silently decide not to build a shadow decl, which
3052  // will pre-empt further diagnostics.
3053  //
3054  // We don't need to do this in C++0x because we do the check once on
3055  // the qualifier.
3056  //
3057  // FIXME: diagnose the following if we care enough:
3058  //   struct A { int foo; };
3059  //   struct B : A { using A::foo; };
3060  //   template <class T> struct C : A {};
3061  //   template <class T> struct D : C<T> { using B::foo; } // <---
3062  // This is invalid (during instantiation) in C++03 because B::foo
3063  // resolves to the using decl in B, which is not a base class of D<T>.
3064  // We can't diagnose it immediately because C<T> is an unknown
3065  // specialization.  The UsingShadowDecl in D<T> then points directly
3066  // to A::foo, which will look well-formed when we instantiate.
3067  // The right solution is to not collapse the shadow-decl chain.
3068  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3069    DeclContext *OrigDC = Orig->getDeclContext();
3070
3071    // Handle enums and anonymous structs.
3072    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3073    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3074    while (OrigRec->isAnonymousStructOrUnion())
3075      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3076
3077    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3078      if (OrigDC == CurContext) {
3079        Diag(Using->getLocation(),
3080             diag::err_using_decl_nested_name_specifier_is_current_class)
3081          << Using->getNestedNameRange();
3082        Diag(Orig->getLocation(), diag::note_using_decl_target);
3083        return true;
3084      }
3085
3086      Diag(Using->getNestedNameRange().getBegin(),
3087           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3088        << Using->getTargetNestedNameDecl()
3089        << cast<CXXRecordDecl>(CurContext)
3090        << Using->getNestedNameRange();
3091      Diag(Orig->getLocation(), diag::note_using_decl_target);
3092      return true;
3093    }
3094  }
3095
3096  if (Previous.empty()) return false;
3097
3098  NamedDecl *Target = Orig;
3099  if (isa<UsingShadowDecl>(Target))
3100    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3101
3102  // If the target happens to be one of the previous declarations, we
3103  // don't have a conflict.
3104  //
3105  // FIXME: but we might be increasing its access, in which case we
3106  // should redeclare it.
3107  NamedDecl *NonTag = 0, *Tag = 0;
3108  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3109         I != E; ++I) {
3110    NamedDecl *D = (*I)->getUnderlyingDecl();
3111    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3112      return false;
3113
3114    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3115  }
3116
3117  if (Target->isFunctionOrFunctionTemplate()) {
3118    FunctionDecl *FD;
3119    if (isa<FunctionTemplateDecl>(Target))
3120      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3121    else
3122      FD = cast<FunctionDecl>(Target);
3123
3124    NamedDecl *OldDecl = 0;
3125    switch (CheckOverload(FD, Previous, OldDecl)) {
3126    case Ovl_Overload:
3127      return false;
3128
3129    case Ovl_NonFunction:
3130      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3131      break;
3132
3133    // We found a decl with the exact signature.
3134    case Ovl_Match:
3135      if (isa<UsingShadowDecl>(OldDecl)) {
3136        // Silently ignore the possible conflict.
3137        return false;
3138      }
3139
3140      // If we're in a record, we want to hide the target, so we
3141      // return true (without a diagnostic) to tell the caller not to
3142      // build a shadow decl.
3143      if (CurContext->isRecord())
3144        return true;
3145
3146      // If we're not in a record, this is an error.
3147      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3148      break;
3149    }
3150
3151    Diag(Target->getLocation(), diag::note_using_decl_target);
3152    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3153    return true;
3154  }
3155
3156  // Target is not a function.
3157
3158  if (isa<TagDecl>(Target)) {
3159    // No conflict between a tag and a non-tag.
3160    if (!Tag) return false;
3161
3162    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3163    Diag(Target->getLocation(), diag::note_using_decl_target);
3164    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3165    return true;
3166  }
3167
3168  // No conflict between a tag and a non-tag.
3169  if (!NonTag) return false;
3170
3171  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3172  Diag(Target->getLocation(), diag::note_using_decl_target);
3173  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3174  return true;
3175}
3176
3177/// Builds a shadow declaration corresponding to a 'using' declaration.
3178UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3179                                            UsingDecl *UD,
3180                                            NamedDecl *Orig) {
3181
3182  // If we resolved to another shadow declaration, just coalesce them.
3183  NamedDecl *Target = Orig;
3184  if (isa<UsingShadowDecl>(Target)) {
3185    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3186    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3187  }
3188
3189  UsingShadowDecl *Shadow
3190    = UsingShadowDecl::Create(Context, CurContext,
3191                              UD->getLocation(), UD, Target);
3192  UD->addShadowDecl(Shadow);
3193
3194  if (S)
3195    PushOnScopeChains(Shadow, S);
3196  else
3197    CurContext->addDecl(Shadow);
3198  Shadow->setAccess(UD->getAccess());
3199
3200  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3201    Shadow->setInvalidDecl();
3202
3203  return Shadow;
3204}
3205
3206/// Hides a using shadow declaration.  This is required by the current
3207/// using-decl implementation when a resolvable using declaration in a
3208/// class is followed by a declaration which would hide or override
3209/// one or more of the using decl's targets; for example:
3210///
3211///   struct Base { void foo(int); };
3212///   struct Derived : Base {
3213///     using Base::foo;
3214///     void foo(int);
3215///   };
3216///
3217/// The governing language is C++03 [namespace.udecl]p12:
3218///
3219///   When a using-declaration brings names from a base class into a
3220///   derived class scope, member functions in the derived class
3221///   override and/or hide member functions with the same name and
3222///   parameter types in a base class (rather than conflicting).
3223///
3224/// There are two ways to implement this:
3225///   (1) optimistically create shadow decls when they're not hidden
3226///       by existing declarations, or
3227///   (2) don't create any shadow decls (or at least don't make them
3228///       visible) until we've fully parsed/instantiated the class.
3229/// The problem with (1) is that we might have to retroactively remove
3230/// a shadow decl, which requires several O(n) operations because the
3231/// decl structures are (very reasonably) not designed for removal.
3232/// (2) avoids this but is very fiddly and phase-dependent.
3233void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3234  // Remove it from the DeclContext...
3235  Shadow->getDeclContext()->removeDecl(Shadow);
3236
3237  // ...and the scope, if applicable...
3238  if (S) {
3239    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3240    IdResolver.RemoveDecl(Shadow);
3241  }
3242
3243  // ...and the using decl.
3244  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3245
3246  // TODO: complain somehow if Shadow was used.  It shouldn't
3247  // be possible for this to happen, because
3248}
3249
3250/// Builds a using declaration.
3251///
3252/// \param IsInstantiation - Whether this call arises from an
3253///   instantiation of an unresolved using declaration.  We treat
3254///   the lookup differently for these declarations.
3255NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3256                                       SourceLocation UsingLoc,
3257                                       const CXXScopeSpec &SS,
3258                                       SourceLocation IdentLoc,
3259                                       DeclarationName Name,
3260                                       AttributeList *AttrList,
3261                                       bool IsInstantiation,
3262                                       bool IsTypeName,
3263                                       SourceLocation TypenameLoc) {
3264  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3265  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3266
3267  // FIXME: We ignore attributes for now.
3268  delete AttrList;
3269
3270  if (SS.isEmpty()) {
3271    Diag(IdentLoc, diag::err_using_requires_qualname);
3272    return 0;
3273  }
3274
3275  // Do the redeclaration lookup in the current scope.
3276  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3277                        ForRedeclaration);
3278  Previous.setHideTags(false);
3279  if (S) {
3280    LookupName(Previous, S);
3281
3282    // It is really dumb that we have to do this.
3283    LookupResult::Filter F = Previous.makeFilter();
3284    while (F.hasNext()) {
3285      NamedDecl *D = F.next();
3286      if (!isDeclInScope(D, CurContext, S))
3287        F.erase();
3288    }
3289    F.done();
3290  } else {
3291    assert(IsInstantiation && "no scope in non-instantiation");
3292    assert(CurContext->isRecord() && "scope not record in instantiation");
3293    LookupQualifiedName(Previous, CurContext);
3294  }
3295
3296  NestedNameSpecifier *NNS =
3297    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3298
3299  // Check for invalid redeclarations.
3300  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3301    return 0;
3302
3303  // Check for bad qualifiers.
3304  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3305    return 0;
3306
3307  DeclContext *LookupContext = computeDeclContext(SS);
3308  NamedDecl *D;
3309  if (!LookupContext) {
3310    if (IsTypeName) {
3311      // FIXME: not all declaration name kinds are legal here
3312      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3313                                              UsingLoc, TypenameLoc,
3314                                              SS.getRange(), NNS,
3315                                              IdentLoc, Name);
3316    } else {
3317      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3318                                           UsingLoc, SS.getRange(), NNS,
3319                                           IdentLoc, Name);
3320    }
3321  } else {
3322    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3323                          SS.getRange(), UsingLoc, NNS, Name,
3324                          IsTypeName);
3325  }
3326  D->setAccess(AS);
3327  CurContext->addDecl(D);
3328
3329  if (!LookupContext) return D;
3330  UsingDecl *UD = cast<UsingDecl>(D);
3331
3332  if (RequireCompleteDeclContext(SS)) {
3333    UD->setInvalidDecl();
3334    return UD;
3335  }
3336
3337  // Look up the target name.
3338
3339  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3340
3341  // Unlike most lookups, we don't always want to hide tag
3342  // declarations: tag names are visible through the using declaration
3343  // even if hidden by ordinary names, *except* in a dependent context
3344  // where it's important for the sanity of two-phase lookup.
3345  if (!IsInstantiation)
3346    R.setHideTags(false);
3347
3348  LookupQualifiedName(R, LookupContext);
3349
3350  if (R.empty()) {
3351    Diag(IdentLoc, diag::err_no_member)
3352      << Name << LookupContext << SS.getRange();
3353    UD->setInvalidDecl();
3354    return UD;
3355  }
3356
3357  if (R.isAmbiguous()) {
3358    UD->setInvalidDecl();
3359    return UD;
3360  }
3361
3362  if (IsTypeName) {
3363    // If we asked for a typename and got a non-type decl, error out.
3364    if (!R.getAsSingle<TypeDecl>()) {
3365      Diag(IdentLoc, diag::err_using_typename_non_type);
3366      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3367        Diag((*I)->getUnderlyingDecl()->getLocation(),
3368             diag::note_using_decl_target);
3369      UD->setInvalidDecl();
3370      return UD;
3371    }
3372  } else {
3373    // If we asked for a non-typename and we got a type, error out,
3374    // but only if this is an instantiation of an unresolved using
3375    // decl.  Otherwise just silently find the type name.
3376    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3377      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3378      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3379      UD->setInvalidDecl();
3380      return UD;
3381    }
3382  }
3383
3384  // C++0x N2914 [namespace.udecl]p6:
3385  // A using-declaration shall not name a namespace.
3386  if (R.getAsSingle<NamespaceDecl>()) {
3387    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3388      << SS.getRange();
3389    UD->setInvalidDecl();
3390    return UD;
3391  }
3392
3393  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3394    if (!CheckUsingShadowDecl(UD, *I, Previous))
3395      BuildUsingShadowDecl(S, UD, *I);
3396  }
3397
3398  return UD;
3399}
3400
3401/// Checks that the given using declaration is not an invalid
3402/// redeclaration.  Note that this is checking only for the using decl
3403/// itself, not for any ill-formedness among the UsingShadowDecls.
3404bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3405                                       bool isTypeName,
3406                                       const CXXScopeSpec &SS,
3407                                       SourceLocation NameLoc,
3408                                       const LookupResult &Prev) {
3409  // C++03 [namespace.udecl]p8:
3410  // C++0x [namespace.udecl]p10:
3411  //   A using-declaration is a declaration and can therefore be used
3412  //   repeatedly where (and only where) multiple declarations are
3413  //   allowed.
3414  // That's only in file contexts.
3415  if (CurContext->getLookupContext()->isFileContext())
3416    return false;
3417
3418  NestedNameSpecifier *Qual
3419    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3420
3421  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3422    NamedDecl *D = *I;
3423
3424    bool DTypename;
3425    NestedNameSpecifier *DQual;
3426    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3427      DTypename = UD->isTypeName();
3428      DQual = UD->getTargetNestedNameDecl();
3429    } else if (UnresolvedUsingValueDecl *UD
3430                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3431      DTypename = false;
3432      DQual = UD->getTargetNestedNameSpecifier();
3433    } else if (UnresolvedUsingTypenameDecl *UD
3434                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3435      DTypename = true;
3436      DQual = UD->getTargetNestedNameSpecifier();
3437    } else continue;
3438
3439    // using decls differ if one says 'typename' and the other doesn't.
3440    // FIXME: non-dependent using decls?
3441    if (isTypeName != DTypename) continue;
3442
3443    // using decls differ if they name different scopes (but note that
3444    // template instantiation can cause this check to trigger when it
3445    // didn't before instantiation).
3446    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3447        Context.getCanonicalNestedNameSpecifier(DQual))
3448      continue;
3449
3450    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3451    Diag(D->getLocation(), diag::note_using_decl) << 1;
3452    return true;
3453  }
3454
3455  return false;
3456}
3457
3458
3459/// Checks that the given nested-name qualifier used in a using decl
3460/// in the current context is appropriately related to the current
3461/// scope.  If an error is found, diagnoses it and returns true.
3462bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3463                                   const CXXScopeSpec &SS,
3464                                   SourceLocation NameLoc) {
3465  DeclContext *NamedContext = computeDeclContext(SS);
3466
3467  if (!CurContext->isRecord()) {
3468    // C++03 [namespace.udecl]p3:
3469    // C++0x [namespace.udecl]p8:
3470    //   A using-declaration for a class member shall be a member-declaration.
3471
3472    // If we weren't able to compute a valid scope, it must be a
3473    // dependent class scope.
3474    if (!NamedContext || NamedContext->isRecord()) {
3475      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3476        << SS.getRange();
3477      return true;
3478    }
3479
3480    // Otherwise, everything is known to be fine.
3481    return false;
3482  }
3483
3484  // The current scope is a record.
3485
3486  // If the named context is dependent, we can't decide much.
3487  if (!NamedContext) {
3488    // FIXME: in C++0x, we can diagnose if we can prove that the
3489    // nested-name-specifier does not refer to a base class, which is
3490    // still possible in some cases.
3491
3492    // Otherwise we have to conservatively report that things might be
3493    // okay.
3494    return false;
3495  }
3496
3497  if (!NamedContext->isRecord()) {
3498    // Ideally this would point at the last name in the specifier,
3499    // but we don't have that level of source info.
3500    Diag(SS.getRange().getBegin(),
3501         diag::err_using_decl_nested_name_specifier_is_not_class)
3502      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3503    return true;
3504  }
3505
3506  if (getLangOptions().CPlusPlus0x) {
3507    // C++0x [namespace.udecl]p3:
3508    //   In a using-declaration used as a member-declaration, the
3509    //   nested-name-specifier shall name a base class of the class
3510    //   being defined.
3511
3512    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3513                                 cast<CXXRecordDecl>(NamedContext))) {
3514      if (CurContext == NamedContext) {
3515        Diag(NameLoc,
3516             diag::err_using_decl_nested_name_specifier_is_current_class)
3517          << SS.getRange();
3518        return true;
3519      }
3520
3521      Diag(SS.getRange().getBegin(),
3522           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3523        << (NestedNameSpecifier*) SS.getScopeRep()
3524        << cast<CXXRecordDecl>(CurContext)
3525        << SS.getRange();
3526      return true;
3527    }
3528
3529    return false;
3530  }
3531
3532  // C++03 [namespace.udecl]p4:
3533  //   A using-declaration used as a member-declaration shall refer
3534  //   to a member of a base class of the class being defined [etc.].
3535
3536  // Salient point: SS doesn't have to name a base class as long as
3537  // lookup only finds members from base classes.  Therefore we can
3538  // diagnose here only if we can prove that that can't happen,
3539  // i.e. if the class hierarchies provably don't intersect.
3540
3541  // TODO: it would be nice if "definitely valid" results were cached
3542  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3543  // need to be repeated.
3544
3545  struct UserData {
3546    llvm::DenseSet<const CXXRecordDecl*> Bases;
3547
3548    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3549      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3550      Data->Bases.insert(Base);
3551      return true;
3552    }
3553
3554    bool hasDependentBases(const CXXRecordDecl *Class) {
3555      return !Class->forallBases(collect, this);
3556    }
3557
3558    /// Returns true if the base is dependent or is one of the
3559    /// accumulated base classes.
3560    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3561      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3562      return !Data->Bases.count(Base);
3563    }
3564
3565    bool mightShareBases(const CXXRecordDecl *Class) {
3566      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3567    }
3568  };
3569
3570  UserData Data;
3571
3572  // Returns false if we find a dependent base.
3573  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3574    return false;
3575
3576  // Returns false if the class has a dependent base or if it or one
3577  // of its bases is present in the base set of the current context.
3578  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3579    return false;
3580
3581  Diag(SS.getRange().getBegin(),
3582       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3583    << (NestedNameSpecifier*) SS.getScopeRep()
3584    << cast<CXXRecordDecl>(CurContext)
3585    << SS.getRange();
3586
3587  return true;
3588}
3589
3590Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3591                                             SourceLocation NamespaceLoc,
3592                                             SourceLocation AliasLoc,
3593                                             IdentifierInfo *Alias,
3594                                             const CXXScopeSpec &SS,
3595                                             SourceLocation IdentLoc,
3596                                             IdentifierInfo *Ident) {
3597
3598  // Lookup the namespace name.
3599  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3600  LookupParsedName(R, S, &SS);
3601
3602  // Check if we have a previous declaration with the same name.
3603  if (NamedDecl *PrevDecl
3604        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3605    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3606      // We already have an alias with the same name that points to the same
3607      // namespace, so don't create a new one.
3608      if (!R.isAmbiguous() && !R.empty() &&
3609          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3610        return DeclPtrTy();
3611    }
3612
3613    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3614      diag::err_redefinition_different_kind;
3615    Diag(AliasLoc, DiagID) << Alias;
3616    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3617    return DeclPtrTy();
3618  }
3619
3620  if (R.isAmbiguous())
3621    return DeclPtrTy();
3622
3623  if (R.empty()) {
3624    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3625    return DeclPtrTy();
3626  }
3627
3628  NamespaceAliasDecl *AliasDecl =
3629    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3630                               Alias, SS.getRange(),
3631                               (NestedNameSpecifier *)SS.getScopeRep(),
3632                               IdentLoc, R.getFoundDecl());
3633
3634  CurContext->addDecl(AliasDecl);
3635  return DeclPtrTy::make(AliasDecl);
3636}
3637
3638void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3639                                            CXXConstructorDecl *Constructor) {
3640  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3641          !Constructor->isUsed()) &&
3642    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3643
3644  CXXRecordDecl *ClassDecl
3645    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3646  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3647
3648  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3649    Diag(CurrentLocation, diag::note_member_synthesized_at)
3650      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3651    Constructor->setInvalidDecl();
3652  } else {
3653    Constructor->setUsed();
3654  }
3655}
3656
3657void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3658                                    CXXDestructorDecl *Destructor) {
3659  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3660         "DefineImplicitDestructor - call it for implicit default dtor");
3661  CXXRecordDecl *ClassDecl = Destructor->getParent();
3662  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3663  // C++ [class.dtor] p5
3664  // Before the implicitly-declared default destructor for a class is
3665  // implicitly defined, all the implicitly-declared default destructors
3666  // for its base class and its non-static data members shall have been
3667  // implicitly defined.
3668  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3669       E = ClassDecl->bases_end(); Base != E; ++Base) {
3670    CXXRecordDecl *BaseClassDecl
3671      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3672    if (!BaseClassDecl->hasTrivialDestructor()) {
3673      if (CXXDestructorDecl *BaseDtor =
3674          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3675        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3676      else
3677        assert(false &&
3678               "DefineImplicitDestructor - missing dtor in a base class");
3679    }
3680  }
3681
3682  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3683       E = ClassDecl->field_end(); Field != E; ++Field) {
3684    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3685    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3686      FieldType = Array->getElementType();
3687    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3688      CXXRecordDecl *FieldClassDecl
3689        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3690      if (!FieldClassDecl->hasTrivialDestructor()) {
3691        if (CXXDestructorDecl *FieldDtor =
3692            const_cast<CXXDestructorDecl*>(
3693                                        FieldClassDecl->getDestructor(Context)))
3694          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3695        else
3696          assert(false &&
3697          "DefineImplicitDestructor - missing dtor in class of a data member");
3698      }
3699    }
3700  }
3701
3702  // FIXME: If CheckDestructor fails, we should emit a note about where the
3703  // implicit destructor was needed.
3704  if (CheckDestructor(Destructor)) {
3705    Diag(CurrentLocation, diag::note_member_synthesized_at)
3706      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3707
3708    Destructor->setInvalidDecl();
3709    return;
3710  }
3711
3712  Destructor->setUsed();
3713}
3714
3715void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3716                                          CXXMethodDecl *MethodDecl) {
3717  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3718          MethodDecl->getOverloadedOperator() == OO_Equal &&
3719          !MethodDecl->isUsed()) &&
3720         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3721
3722  CXXRecordDecl *ClassDecl
3723    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3724
3725  // C++[class.copy] p12
3726  // Before the implicitly-declared copy assignment operator for a class is
3727  // implicitly defined, all implicitly-declared copy assignment operators
3728  // for its direct base classes and its nonstatic data members shall have
3729  // been implicitly defined.
3730  bool err = false;
3731  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3732       E = ClassDecl->bases_end(); Base != E; ++Base) {
3733    CXXRecordDecl *BaseClassDecl
3734      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3735    if (CXXMethodDecl *BaseAssignOpMethod =
3736          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3737                                  BaseClassDecl))
3738      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3739  }
3740  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3741       E = ClassDecl->field_end(); Field != E; ++Field) {
3742    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3743    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3744      FieldType = Array->getElementType();
3745    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3746      CXXRecordDecl *FieldClassDecl
3747        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3748      if (CXXMethodDecl *FieldAssignOpMethod =
3749          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3750                                  FieldClassDecl))
3751        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3752    } else if (FieldType->isReferenceType()) {
3753      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3754      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3755      Diag(Field->getLocation(), diag::note_declared_at);
3756      Diag(CurrentLocation, diag::note_first_required_here);
3757      err = true;
3758    } else if (FieldType.isConstQualified()) {
3759      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3760      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3761      Diag(Field->getLocation(), diag::note_declared_at);
3762      Diag(CurrentLocation, diag::note_first_required_here);
3763      err = true;
3764    }
3765  }
3766  if (!err)
3767    MethodDecl->setUsed();
3768}
3769
3770CXXMethodDecl *
3771Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3772                              ParmVarDecl *ParmDecl,
3773                              CXXRecordDecl *ClassDecl) {
3774  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3775  QualType RHSType(LHSType);
3776  // If class's assignment operator argument is const/volatile qualified,
3777  // look for operator = (const/volatile B&). Otherwise, look for
3778  // operator = (B&).
3779  RHSType = Context.getCVRQualifiedType(RHSType,
3780                                     ParmDecl->getType().getCVRQualifiers());
3781  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3782                                                           LHSType,
3783                                                           SourceLocation()));
3784  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3785                                                           RHSType,
3786                                                           CurrentLocation));
3787  Expr *Args[2] = { &*LHS, &*RHS };
3788  OverloadCandidateSet CandidateSet;
3789  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3790                              CandidateSet);
3791  OverloadCandidateSet::iterator Best;
3792  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3793    return cast<CXXMethodDecl>(Best->Function);
3794  assert(false &&
3795         "getAssignOperatorMethod - copy assignment operator method not found");
3796  return 0;
3797}
3798
3799void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3800                                   CXXConstructorDecl *CopyConstructor,
3801                                   unsigned TypeQuals) {
3802  assert((CopyConstructor->isImplicit() &&
3803          CopyConstructor->isCopyConstructor(TypeQuals) &&
3804          !CopyConstructor->isUsed()) &&
3805         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3806
3807  CXXRecordDecl *ClassDecl
3808    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3809  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3810  // C++ [class.copy] p209
3811  // Before the implicitly-declared copy constructor for a class is
3812  // implicitly defined, all the implicitly-declared copy constructors
3813  // for its base class and its non-static data members shall have been
3814  // implicitly defined.
3815  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3816       Base != ClassDecl->bases_end(); ++Base) {
3817    CXXRecordDecl *BaseClassDecl
3818      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3819    if (CXXConstructorDecl *BaseCopyCtor =
3820        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3821      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3822  }
3823  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3824                                  FieldEnd = ClassDecl->field_end();
3825       Field != FieldEnd; ++Field) {
3826    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3827    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3828      FieldType = Array->getElementType();
3829    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3830      CXXRecordDecl *FieldClassDecl
3831        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3832      if (CXXConstructorDecl *FieldCopyCtor =
3833          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3834        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3835    }
3836  }
3837  CopyConstructor->setUsed();
3838}
3839
3840Sema::OwningExprResult
3841Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3842                            CXXConstructorDecl *Constructor,
3843                            MultiExprArg ExprArgs,
3844                            bool RequiresZeroInit) {
3845  bool Elidable = false;
3846
3847  // C++ [class.copy]p15:
3848  //   Whenever a temporary class object is copied using a copy constructor, and
3849  //   this object and the copy have the same cv-unqualified type, an
3850  //   implementation is permitted to treat the original and the copy as two
3851  //   different ways of referring to the same object and not perform a copy at
3852  //   all, even if the class copy constructor or destructor have side effects.
3853
3854  // FIXME: Is this enough?
3855  if (Constructor->isCopyConstructor()) {
3856    Expr *E = ((Expr **)ExprArgs.get())[0];
3857    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3858      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3859        E = ICE->getSubExpr();
3860    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3861      E = FCE->getSubExpr();
3862    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3863      E = BE->getSubExpr();
3864    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3865      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3866        E = ICE->getSubExpr();
3867
3868    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3869      Elidable = !CE->getCallReturnType()->isReferenceType();
3870    else if (isa<CXXTemporaryObjectExpr>(E))
3871      Elidable = true;
3872    else if (isa<CXXConstructExpr>(E))
3873      Elidable = true;
3874  }
3875
3876  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3877                               Elidable, move(ExprArgs), RequiresZeroInit);
3878}
3879
3880/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3881/// including handling of its default argument expressions.
3882Sema::OwningExprResult
3883Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3884                            CXXConstructorDecl *Constructor, bool Elidable,
3885                            MultiExprArg ExprArgs,
3886                            bool RequiresZeroInit) {
3887  unsigned NumExprs = ExprArgs.size();
3888  Expr **Exprs = (Expr **)ExprArgs.release();
3889
3890  MarkDeclarationReferenced(ConstructLoc, Constructor);
3891  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3892                                        Constructor, Elidable, Exprs, NumExprs,
3893                                        RequiresZeroInit));
3894}
3895
3896Sema::OwningExprResult
3897Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3898                                  QualType Ty,
3899                                  SourceLocation TyBeginLoc,
3900                                  MultiExprArg Args,
3901                                  SourceLocation RParenLoc) {
3902  unsigned NumExprs = Args.size();
3903  Expr **Exprs = (Expr **)Args.release();
3904
3905  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3906  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3907                                                    TyBeginLoc, Exprs,
3908                                                    NumExprs, RParenLoc));
3909}
3910
3911
3912bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3913                                        CXXConstructorDecl *Constructor,
3914                                        MultiExprArg Exprs) {
3915  OwningExprResult TempResult =
3916    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3917                          move(Exprs));
3918  if (TempResult.isInvalid())
3919    return true;
3920
3921  Expr *Temp = TempResult.takeAs<Expr>();
3922  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3923  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3924  VD->setInit(Context, Temp);
3925
3926  return false;
3927}
3928
3929void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3930  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3931                                  DeclInitType->getAs<RecordType>()->getDecl());
3932  if (!ClassDecl->hasTrivialDestructor())
3933    if (CXXDestructorDecl *Destructor =
3934        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3935      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3936}
3937
3938/// AddCXXDirectInitializerToDecl - This action is called immediately after
3939/// ActOnDeclarator, when a C++ direct initializer is present.
3940/// e.g: "int x(1);"
3941void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3942                                         SourceLocation LParenLoc,
3943                                         MultiExprArg Exprs,
3944                                         SourceLocation *CommaLocs,
3945                                         SourceLocation RParenLoc) {
3946  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
3947  Decl *RealDecl = Dcl.getAs<Decl>();
3948
3949  // If there is no declaration, there was an error parsing it.  Just ignore
3950  // the initializer.
3951  if (RealDecl == 0)
3952    return;
3953
3954  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3955  if (!VDecl) {
3956    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3957    RealDecl->setInvalidDecl();
3958    return;
3959  }
3960
3961  // We will represent direct-initialization similarly to copy-initialization:
3962  //    int x(1);  -as-> int x = 1;
3963  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3964  //
3965  // Clients that want to distinguish between the two forms, can check for
3966  // direct initializer using VarDecl::hasCXXDirectInitializer().
3967  // A major benefit is that clients that don't particularly care about which
3968  // exactly form was it (like the CodeGen) can handle both cases without
3969  // special case code.
3970
3971  // If either the declaration has a dependent type or if any of the expressions
3972  // is type-dependent, we represent the initialization via a ParenListExpr for
3973  // later use during template instantiation.
3974  if (VDecl->getType()->isDependentType() ||
3975      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3976    // Let clients know that initialization was done with a direct initializer.
3977    VDecl->setCXXDirectInitializer(true);
3978
3979    // Store the initialization expressions as a ParenListExpr.
3980    unsigned NumExprs = Exprs.size();
3981    VDecl->setInit(Context,
3982                   new (Context) ParenListExpr(Context, LParenLoc,
3983                                               (Expr **)Exprs.release(),
3984                                               NumExprs, RParenLoc));
3985    return;
3986  }
3987
3988
3989  // C++ 8.5p11:
3990  // The form of initialization (using parentheses or '=') is generally
3991  // insignificant, but does matter when the entity being initialized has a
3992  // class type.
3993  QualType DeclInitType = VDecl->getType();
3994  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3995    DeclInitType = Context.getBaseElementType(Array);
3996
3997  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3998                          diag::err_typecheck_decl_incomplete_type)) {
3999    VDecl->setInvalidDecl();
4000    return;
4001  }
4002
4003  // The variable can not have an abstract class type.
4004  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4005                             diag::err_abstract_type_in_decl,
4006                             AbstractVariableType))
4007    VDecl->setInvalidDecl();
4008
4009  const VarDecl *Def = 0;
4010  if (VDecl->getDefinition(Def)) {
4011    Diag(VDecl->getLocation(), diag::err_redefinition)
4012    << VDecl->getDeclName();
4013    Diag(Def->getLocation(), diag::note_previous_definition);
4014    VDecl->setInvalidDecl();
4015    return;
4016  }
4017
4018  // Capture the variable that is being initialized and the style of
4019  // initialization.
4020  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4021
4022  // FIXME: Poor source location information.
4023  InitializationKind Kind
4024    = InitializationKind::CreateDirect(VDecl->getLocation(),
4025                                       LParenLoc, RParenLoc);
4026
4027  InitializationSequence InitSeq(*this, Entity, Kind,
4028                                 (Expr**)Exprs.get(), Exprs.size());
4029  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4030  if (Result.isInvalid()) {
4031    VDecl->setInvalidDecl();
4032    return;
4033  }
4034
4035  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4036  VDecl->setInit(Context, Result.takeAs<Expr>());
4037  VDecl->setCXXDirectInitializer(true);
4038
4039  if (VDecl->getType()->getAs<RecordType>())
4040    FinalizeVarWithDestructor(VDecl, DeclInitType);
4041}
4042
4043/// \brief Add the applicable constructor candidates for an initialization
4044/// by constructor.
4045static void AddConstructorInitializationCandidates(Sema &SemaRef,
4046                                                   QualType ClassType,
4047                                                   Expr **Args,
4048                                                   unsigned NumArgs,
4049                                                   InitializationKind Kind,
4050                                           OverloadCandidateSet &CandidateSet) {
4051  // C++ [dcl.init]p14:
4052  //   If the initialization is direct-initialization, or if it is
4053  //   copy-initialization where the cv-unqualified version of the
4054  //   source type is the same class as, or a derived class of, the
4055  //   class of the destination, constructors are considered. The
4056  //   applicable constructors are enumerated (13.3.1.3), and the
4057  //   best one is chosen through overload resolution (13.3). The
4058  //   constructor so selected is called to initialize the object,
4059  //   with the initializer expression(s) as its argument(s). If no
4060  //   constructor applies, or the overload resolution is ambiguous,
4061  //   the initialization is ill-formed.
4062  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4063  assert(ClassRec && "Can only initialize a class type here");
4064
4065  // FIXME: When we decide not to synthesize the implicitly-declared
4066  // constructors, we'll need to make them appear here.
4067
4068  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4069  DeclarationName ConstructorName
4070    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4071              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4072  DeclContext::lookup_const_iterator Con, ConEnd;
4073  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4074       Con != ConEnd; ++Con) {
4075    // Find the constructor (which may be a template).
4076    CXXConstructorDecl *Constructor = 0;
4077    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4078    if (ConstructorTmpl)
4079      Constructor
4080      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4081    else
4082      Constructor = cast<CXXConstructorDecl>(*Con);
4083
4084    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4085        (Kind.getKind() == InitializationKind::IK_Value) ||
4086        (Kind.getKind() == InitializationKind::IK_Copy &&
4087         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4088        ((Kind.getKind() == InitializationKind::IK_Default) &&
4089         Constructor->isDefaultConstructor())) {
4090      if (ConstructorTmpl)
4091        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4092                                             /*ExplicitArgs*/ 0,
4093                                             Args, NumArgs, CandidateSet);
4094      else
4095        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
4096    }
4097  }
4098}
4099
4100/// \brief Attempt to perform initialization by constructor
4101/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4102/// copy-initialization.
4103///
4104/// This routine determines whether initialization by constructor is possible,
4105/// but it does not emit any diagnostics in the case where the initialization
4106/// is ill-formed.
4107///
4108/// \param ClassType the type of the object being initialized, which must have
4109/// class type.
4110///
4111/// \param Args the arguments provided to initialize the object
4112///
4113/// \param NumArgs the number of arguments provided to initialize the object
4114///
4115/// \param Kind the type of initialization being performed
4116///
4117/// \returns the constructor used to initialize the object, if successful.
4118/// Otherwise, emits a diagnostic and returns NULL.
4119CXXConstructorDecl *
4120Sema::TryInitializationByConstructor(QualType ClassType,
4121                                     Expr **Args, unsigned NumArgs,
4122                                     SourceLocation Loc,
4123                                     InitializationKind Kind) {
4124  // Build the overload candidate set
4125  OverloadCandidateSet CandidateSet;
4126  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4127                                         CandidateSet);
4128
4129  // Determine whether we found a constructor we can use.
4130  OverloadCandidateSet::iterator Best;
4131  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4132    case OR_Success:
4133    case OR_Deleted:
4134      // We found a constructor. Return it.
4135      return cast<CXXConstructorDecl>(Best->Function);
4136
4137    case OR_No_Viable_Function:
4138    case OR_Ambiguous:
4139      // Overload resolution failed. Return nothing.
4140      return 0;
4141  }
4142
4143  // Silence GCC warning
4144  return 0;
4145}
4146
4147/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4148/// may occur as part of direct-initialization or copy-initialization.
4149///
4150/// \param ClassType the type of the object being initialized, which must have
4151/// class type.
4152///
4153/// \param ArgsPtr the arguments provided to initialize the object
4154///
4155/// \param Loc the source location where the initialization occurs
4156///
4157/// \param Range the source range that covers the entire initialization
4158///
4159/// \param InitEntity the name of the entity being initialized, if known
4160///
4161/// \param Kind the type of initialization being performed
4162///
4163/// \param ConvertedArgs a vector that will be filled in with the
4164/// appropriately-converted arguments to the constructor (if initialization
4165/// succeeded).
4166///
4167/// \returns the constructor used to initialize the object, if successful.
4168/// Otherwise, emits a diagnostic and returns NULL.
4169CXXConstructorDecl *
4170Sema::PerformInitializationByConstructor(QualType ClassType,
4171                                         MultiExprArg ArgsPtr,
4172                                         SourceLocation Loc, SourceRange Range,
4173                                         DeclarationName InitEntity,
4174                                         InitializationKind Kind,
4175                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4176
4177  // Build the overload candidate set
4178  Expr **Args = (Expr **)ArgsPtr.get();
4179  unsigned NumArgs = ArgsPtr.size();
4180  OverloadCandidateSet CandidateSet;
4181  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4182                                         CandidateSet);
4183
4184  OverloadCandidateSet::iterator Best;
4185  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4186  case OR_Success:
4187    // We found a constructor. Break out so that we can convert the arguments
4188    // appropriately.
4189    break;
4190
4191  case OR_No_Viable_Function:
4192    if (InitEntity)
4193      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4194        << InitEntity << Range;
4195    else
4196      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4197        << ClassType << Range;
4198    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4199    return 0;
4200
4201  case OR_Ambiguous:
4202    if (InitEntity)
4203      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4204    else
4205      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4206    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4207    return 0;
4208
4209  case OR_Deleted:
4210    if (InitEntity)
4211      Diag(Loc, diag::err_ovl_deleted_init)
4212        << Best->Function->isDeleted()
4213        << InitEntity << Range;
4214    else {
4215      const CXXRecordDecl *RD =
4216          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4217      Diag(Loc, diag::err_ovl_deleted_init)
4218        << Best->Function->isDeleted()
4219        << RD->getDeclName() << Range;
4220    }
4221    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4222    return 0;
4223  }
4224
4225  // Convert the arguments, fill in default arguments, etc.
4226  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4227  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4228    return 0;
4229
4230  return Constructor;
4231}
4232
4233/// \brief Given a constructor and the set of arguments provided for the
4234/// constructor, convert the arguments and add any required default arguments
4235/// to form a proper call to this constructor.
4236///
4237/// \returns true if an error occurred, false otherwise.
4238bool
4239Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4240                              MultiExprArg ArgsPtr,
4241                              SourceLocation Loc,
4242                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4243  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4244  unsigned NumArgs = ArgsPtr.size();
4245  Expr **Args = (Expr **)ArgsPtr.get();
4246
4247  const FunctionProtoType *Proto
4248    = Constructor->getType()->getAs<FunctionProtoType>();
4249  assert(Proto && "Constructor without a prototype?");
4250  unsigned NumArgsInProto = Proto->getNumArgs();
4251
4252  // If too few arguments are available, we'll fill in the rest with defaults.
4253  if (NumArgs < NumArgsInProto)
4254    ConvertedArgs.reserve(NumArgsInProto);
4255  else
4256    ConvertedArgs.reserve(NumArgs);
4257
4258  VariadicCallType CallType =
4259    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4260  llvm::SmallVector<Expr *, 8> AllArgs;
4261  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4262                                        Proto, 0, Args, NumArgs, AllArgs,
4263                                        CallType);
4264  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4265    ConvertedArgs.push_back(AllArgs[i]);
4266  return Invalid;
4267}
4268
4269/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4270/// determine whether they are reference-related,
4271/// reference-compatible, reference-compatible with added
4272/// qualification, or incompatible, for use in C++ initialization by
4273/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4274/// type, and the first type (T1) is the pointee type of the reference
4275/// type being initialized.
4276Sema::ReferenceCompareResult
4277Sema::CompareReferenceRelationship(SourceLocation Loc,
4278                                   QualType OrigT1, QualType OrigT2,
4279                                   bool& DerivedToBase) {
4280  assert(!OrigT1->isReferenceType() &&
4281    "T1 must be the pointee type of the reference type");
4282  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4283
4284  QualType T1 = Context.getCanonicalType(OrigT1);
4285  QualType T2 = Context.getCanonicalType(OrigT2);
4286  Qualifiers T1Quals, T2Quals;
4287  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4288  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4289
4290  // C++ [dcl.init.ref]p4:
4291  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4292  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4293  //   T1 is a base class of T2.
4294  if (UnqualT1 == UnqualT2)
4295    DerivedToBase = false;
4296  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4297           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4298           IsDerivedFrom(UnqualT2, UnqualT1))
4299    DerivedToBase = true;
4300  else
4301    return Ref_Incompatible;
4302
4303  // At this point, we know that T1 and T2 are reference-related (at
4304  // least).
4305
4306  // If the type is an array type, promote the element qualifiers to the type
4307  // for comparison.
4308  if (isa<ArrayType>(T1) && T1Quals)
4309    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4310  if (isa<ArrayType>(T2) && T2Quals)
4311    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4312
4313  // C++ [dcl.init.ref]p4:
4314  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4315  //   reference-related to T2 and cv1 is the same cv-qualification
4316  //   as, or greater cv-qualification than, cv2. For purposes of
4317  //   overload resolution, cases for which cv1 is greater
4318  //   cv-qualification than cv2 are identified as
4319  //   reference-compatible with added qualification (see 13.3.3.2).
4320  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4321    return Ref_Compatible;
4322  else if (T1.isMoreQualifiedThan(T2))
4323    return Ref_Compatible_With_Added_Qualification;
4324  else
4325    return Ref_Related;
4326}
4327
4328/// CheckReferenceInit - Check the initialization of a reference
4329/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4330/// the initializer (either a simple initializer or an initializer
4331/// list), and DeclType is the type of the declaration. When ICS is
4332/// non-null, this routine will compute the implicit conversion
4333/// sequence according to C++ [over.ics.ref] and will not produce any
4334/// diagnostics; when ICS is null, it will emit diagnostics when any
4335/// errors are found. Either way, a return value of true indicates
4336/// that there was a failure, a return value of false indicates that
4337/// the reference initialization succeeded.
4338///
4339/// When @p SuppressUserConversions, user-defined conversions are
4340/// suppressed.
4341/// When @p AllowExplicit, we also permit explicit user-defined
4342/// conversion functions.
4343/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4344/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4345/// This is used when this is called from a C-style cast.
4346bool
4347Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4348                         SourceLocation DeclLoc,
4349                         bool SuppressUserConversions,
4350                         bool AllowExplicit, bool ForceRValue,
4351                         ImplicitConversionSequence *ICS,
4352                         bool IgnoreBaseAccess) {
4353  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4354
4355  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4356  QualType T2 = Init->getType();
4357
4358  // If the initializer is the address of an overloaded function, try
4359  // to resolve the overloaded function. If all goes well, T2 is the
4360  // type of the resulting function.
4361  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4362    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4363                                                          ICS != 0);
4364    if (Fn) {
4365      // Since we're performing this reference-initialization for
4366      // real, update the initializer with the resulting function.
4367      if (!ICS) {
4368        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4369          return true;
4370
4371        Init = FixOverloadedFunctionReference(Init, Fn);
4372      }
4373
4374      T2 = Fn->getType();
4375    }
4376  }
4377
4378  // Compute some basic properties of the types and the initializer.
4379  bool isRValRef = DeclType->isRValueReferenceType();
4380  bool DerivedToBase = false;
4381  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4382                                                  Init->isLvalue(Context);
4383  ReferenceCompareResult RefRelationship
4384    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4385
4386  // Most paths end in a failed conversion.
4387  if (ICS)
4388    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
4389
4390  // C++ [dcl.init.ref]p5:
4391  //   A reference to type "cv1 T1" is initialized by an expression
4392  //   of type "cv2 T2" as follows:
4393
4394  //     -- If the initializer expression
4395
4396  // Rvalue references cannot bind to lvalues (N2812).
4397  // There is absolutely no situation where they can. In particular, note that
4398  // this is ill-formed, even if B has a user-defined conversion to A&&:
4399  //   B b;
4400  //   A&& r = b;
4401  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4402    if (!ICS)
4403      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4404        << Init->getSourceRange();
4405    return true;
4406  }
4407
4408  bool BindsDirectly = false;
4409  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4410  //          reference-compatible with "cv2 T2," or
4411  //
4412  // Note that the bit-field check is skipped if we are just computing
4413  // the implicit conversion sequence (C++ [over.best.ics]p2).
4414  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4415      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4416    BindsDirectly = true;
4417
4418    if (ICS) {
4419      // C++ [over.ics.ref]p1:
4420      //   When a parameter of reference type binds directly (8.5.3)
4421      //   to an argument expression, the implicit conversion sequence
4422      //   is the identity conversion, unless the argument expression
4423      //   has a type that is a derived class of the parameter type,
4424      //   in which case the implicit conversion sequence is a
4425      //   derived-to-base Conversion (13.3.3.1).
4426      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4427      ICS->Standard.First = ICK_Identity;
4428      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4429      ICS->Standard.Third = ICK_Identity;
4430      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4431      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4432      ICS->Standard.ReferenceBinding = true;
4433      ICS->Standard.DirectBinding = true;
4434      ICS->Standard.RRefBinding = false;
4435      ICS->Standard.CopyConstructor = 0;
4436
4437      // Nothing more to do: the inaccessibility/ambiguity check for
4438      // derived-to-base conversions is suppressed when we're
4439      // computing the implicit conversion sequence (C++
4440      // [over.best.ics]p2).
4441      return false;
4442    } else {
4443      // Perform the conversion.
4444      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4445      if (DerivedToBase)
4446        CK = CastExpr::CK_DerivedToBase;
4447      else if(CheckExceptionSpecCompatibility(Init, T1))
4448        return true;
4449      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4450    }
4451  }
4452
4453  //       -- has a class type (i.e., T2 is a class type) and can be
4454  //          implicitly converted to an lvalue of type "cv3 T3,"
4455  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4456  //          92) (this conversion is selected by enumerating the
4457  //          applicable conversion functions (13.3.1.6) and choosing
4458  //          the best one through overload resolution (13.3)),
4459  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4460      !RequireCompleteType(DeclLoc, T2, 0)) {
4461    CXXRecordDecl *T2RecordDecl
4462      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4463
4464    OverloadCandidateSet CandidateSet;
4465    const UnresolvedSet *Conversions
4466      = T2RecordDecl->getVisibleConversionFunctions();
4467    for (UnresolvedSet::iterator I = Conversions->begin(),
4468           E = Conversions->end(); I != E; ++I) {
4469      NamedDecl *D = *I;
4470      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4471      if (isa<UsingShadowDecl>(D))
4472        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4473
4474      FunctionTemplateDecl *ConvTemplate
4475        = dyn_cast<FunctionTemplateDecl>(D);
4476      CXXConversionDecl *Conv;
4477      if (ConvTemplate)
4478        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4479      else
4480        Conv = cast<CXXConversionDecl>(D);
4481
4482      // If the conversion function doesn't return a reference type,
4483      // it can't be considered for this conversion.
4484      if (Conv->getConversionType()->isLValueReferenceType() &&
4485          (AllowExplicit || !Conv->isExplicit())) {
4486        if (ConvTemplate)
4487          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
4488                                         Init, DeclType, CandidateSet);
4489        else
4490          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
4491      }
4492    }
4493
4494    OverloadCandidateSet::iterator Best;
4495    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4496    case OR_Success:
4497      // This is a direct binding.
4498      BindsDirectly = true;
4499
4500      if (ICS) {
4501        // C++ [over.ics.ref]p1:
4502        //
4503        //   [...] If the parameter binds directly to the result of
4504        //   applying a conversion function to the argument
4505        //   expression, the implicit conversion sequence is a
4506        //   user-defined conversion sequence (13.3.3.1.2), with the
4507        //   second standard conversion sequence either an identity
4508        //   conversion or, if the conversion function returns an
4509        //   entity of a type that is a derived class of the parameter
4510        //   type, a derived-to-base Conversion.
4511        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
4512        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4513        ICS->UserDefined.After = Best->FinalConversion;
4514        ICS->UserDefined.ConversionFunction = Best->Function;
4515        ICS->UserDefined.EllipsisConversion = false;
4516        assert(ICS->UserDefined.After.ReferenceBinding &&
4517               ICS->UserDefined.After.DirectBinding &&
4518               "Expected a direct reference binding!");
4519        return false;
4520      } else {
4521        OwningExprResult InitConversion =
4522          BuildCXXCastArgument(DeclLoc, QualType(),
4523                               CastExpr::CK_UserDefinedConversion,
4524                               cast<CXXMethodDecl>(Best->Function),
4525                               Owned(Init));
4526        Init = InitConversion.takeAs<Expr>();
4527
4528        if (CheckExceptionSpecCompatibility(Init, T1))
4529          return true;
4530        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4531                          /*isLvalue=*/true);
4532      }
4533      break;
4534
4535    case OR_Ambiguous:
4536      if (ICS) {
4537        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4538             Cand != CandidateSet.end(); ++Cand)
4539          if (Cand->Viable)
4540            ICS->ConversionFunctionSet.push_back(Cand->Function);
4541        break;
4542      }
4543      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4544            << Init->getSourceRange();
4545      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4546      return true;
4547
4548    case OR_No_Viable_Function:
4549    case OR_Deleted:
4550      // There was no suitable conversion, or we found a deleted
4551      // conversion; continue with other checks.
4552      break;
4553    }
4554  }
4555
4556  if (BindsDirectly) {
4557    // C++ [dcl.init.ref]p4:
4558    //   [...] In all cases where the reference-related or
4559    //   reference-compatible relationship of two types is used to
4560    //   establish the validity of a reference binding, and T1 is a
4561    //   base class of T2, a program that necessitates such a binding
4562    //   is ill-formed if T1 is an inaccessible (clause 11) or
4563    //   ambiguous (10.2) base class of T2.
4564    //
4565    // Note that we only check this condition when we're allowed to
4566    // complain about errors, because we should not be checking for
4567    // ambiguity (or inaccessibility) unless the reference binding
4568    // actually happens.
4569    if (DerivedToBase)
4570      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4571                                          Init->getSourceRange(),
4572                                          IgnoreBaseAccess);
4573    else
4574      return false;
4575  }
4576
4577  //     -- Otherwise, the reference shall be to a non-volatile const
4578  //        type (i.e., cv1 shall be const), or the reference shall be an
4579  //        rvalue reference and the initializer expression shall be an rvalue.
4580  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4581    if (!ICS)
4582      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4583        << T1 << int(InitLvalue != Expr::LV_Valid)
4584        << T2 << Init->getSourceRange();
4585    return true;
4586  }
4587
4588  //       -- If the initializer expression is an rvalue, with T2 a
4589  //          class type, and "cv1 T1" is reference-compatible with
4590  //          "cv2 T2," the reference is bound in one of the
4591  //          following ways (the choice is implementation-defined):
4592  //
4593  //          -- The reference is bound to the object represented by
4594  //             the rvalue (see 3.10) or to a sub-object within that
4595  //             object.
4596  //
4597  //          -- A temporary of type "cv1 T2" [sic] is created, and
4598  //             a constructor is called to copy the entire rvalue
4599  //             object into the temporary. The reference is bound to
4600  //             the temporary or to a sub-object within the
4601  //             temporary.
4602  //
4603  //          The constructor that would be used to make the copy
4604  //          shall be callable whether or not the copy is actually
4605  //          done.
4606  //
4607  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4608  // freedom, so we will always take the first option and never build
4609  // a temporary in this case. FIXME: We will, however, have to check
4610  // for the presence of a copy constructor in C++98/03 mode.
4611  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4612      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4613    if (ICS) {
4614      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4615      ICS->Standard.First = ICK_Identity;
4616      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4617      ICS->Standard.Third = ICK_Identity;
4618      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4619      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4620      ICS->Standard.ReferenceBinding = true;
4621      ICS->Standard.DirectBinding = false;
4622      ICS->Standard.RRefBinding = isRValRef;
4623      ICS->Standard.CopyConstructor = 0;
4624    } else {
4625      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4626      if (DerivedToBase)
4627        CK = CastExpr::CK_DerivedToBase;
4628      else if(CheckExceptionSpecCompatibility(Init, T1))
4629        return true;
4630      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4631    }
4632    return false;
4633  }
4634
4635  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4636  //          initialized from the initializer expression using the
4637  //          rules for a non-reference copy initialization (8.5). The
4638  //          reference is then bound to the temporary. If T1 is
4639  //          reference-related to T2, cv1 must be the same
4640  //          cv-qualification as, or greater cv-qualification than,
4641  //          cv2; otherwise, the program is ill-formed.
4642  if (RefRelationship == Ref_Related) {
4643    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4644    // we would be reference-compatible or reference-compatible with
4645    // added qualification. But that wasn't the case, so the reference
4646    // initialization fails.
4647    if (!ICS)
4648      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4649        << T1 << int(InitLvalue != Expr::LV_Valid)
4650        << T2 << Init->getSourceRange();
4651    return true;
4652  }
4653
4654  // If at least one of the types is a class type, the types are not
4655  // related, and we aren't allowed any user conversions, the
4656  // reference binding fails. This case is important for breaking
4657  // recursion, since TryImplicitConversion below will attempt to
4658  // create a temporary through the use of a copy constructor.
4659  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4660      (T1->isRecordType() || T2->isRecordType())) {
4661    if (!ICS)
4662      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4663        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4664    return true;
4665  }
4666
4667  // Actually try to convert the initializer to T1.
4668  if (ICS) {
4669    // C++ [over.ics.ref]p2:
4670    //
4671    //   When a parameter of reference type is not bound directly to
4672    //   an argument expression, the conversion sequence is the one
4673    //   required to convert the argument expression to the
4674    //   underlying type of the reference according to
4675    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4676    //   to copy-initializing a temporary of the underlying type with
4677    //   the argument expression. Any difference in top-level
4678    //   cv-qualification is subsumed by the initialization itself
4679    //   and does not constitute a conversion.
4680    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4681                                 /*AllowExplicit=*/false,
4682                                 /*ForceRValue=*/false,
4683                                 /*InOverloadResolution=*/false);
4684
4685    // Of course, that's still a reference binding.
4686    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4687      ICS->Standard.ReferenceBinding = true;
4688      ICS->Standard.RRefBinding = isRValRef;
4689    } else if (ICS->ConversionKind ==
4690              ImplicitConversionSequence::UserDefinedConversion) {
4691      ICS->UserDefined.After.ReferenceBinding = true;
4692      ICS->UserDefined.After.RRefBinding = isRValRef;
4693    }
4694    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4695  } else {
4696    ImplicitConversionSequence Conversions;
4697    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4698                                                   false, false,
4699                                                   Conversions);
4700    if (badConversion) {
4701      if ((Conversions.ConversionKind  ==
4702            ImplicitConversionSequence::BadConversion)
4703          && !Conversions.ConversionFunctionSet.empty()) {
4704        Diag(DeclLoc,
4705             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4706        for (int j = Conversions.ConversionFunctionSet.size()-1;
4707             j >= 0; j--) {
4708          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4709          NoteOverloadCandidate(Func);
4710        }
4711      }
4712      else {
4713        if (isRValRef)
4714          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4715            << Init->getSourceRange();
4716        else
4717          Diag(DeclLoc, diag::err_invalid_initialization)
4718            << DeclType << Init->getType() << Init->getSourceRange();
4719      }
4720    }
4721    return badConversion;
4722  }
4723}
4724
4725static inline bool
4726CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4727                                       const FunctionDecl *FnDecl) {
4728  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4729  if (isa<NamespaceDecl>(DC)) {
4730    return SemaRef.Diag(FnDecl->getLocation(),
4731                        diag::err_operator_new_delete_declared_in_namespace)
4732      << FnDecl->getDeclName();
4733  }
4734
4735  if (isa<TranslationUnitDecl>(DC) &&
4736      FnDecl->getStorageClass() == FunctionDecl::Static) {
4737    return SemaRef.Diag(FnDecl->getLocation(),
4738                        diag::err_operator_new_delete_declared_static)
4739      << FnDecl->getDeclName();
4740  }
4741
4742  return false;
4743}
4744
4745static inline bool
4746CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4747                            CanQualType ExpectedResultType,
4748                            CanQualType ExpectedFirstParamType,
4749                            unsigned DependentParamTypeDiag,
4750                            unsigned InvalidParamTypeDiag) {
4751  QualType ResultType =
4752    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4753
4754  // Check that the result type is not dependent.
4755  if (ResultType->isDependentType())
4756    return SemaRef.Diag(FnDecl->getLocation(),
4757                        diag::err_operator_new_delete_dependent_result_type)
4758    << FnDecl->getDeclName() << ExpectedResultType;
4759
4760  // Check that the result type is what we expect.
4761  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4762    return SemaRef.Diag(FnDecl->getLocation(),
4763                        diag::err_operator_new_delete_invalid_result_type)
4764    << FnDecl->getDeclName() << ExpectedResultType;
4765
4766  // A function template must have at least 2 parameters.
4767  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4768    return SemaRef.Diag(FnDecl->getLocation(),
4769                      diag::err_operator_new_delete_template_too_few_parameters)
4770        << FnDecl->getDeclName();
4771
4772  // The function decl must have at least 1 parameter.
4773  if (FnDecl->getNumParams() == 0)
4774    return SemaRef.Diag(FnDecl->getLocation(),
4775                        diag::err_operator_new_delete_too_few_parameters)
4776      << FnDecl->getDeclName();
4777
4778  // Check the the first parameter type is not dependent.
4779  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4780  if (FirstParamType->isDependentType())
4781    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4782      << FnDecl->getDeclName() << ExpectedFirstParamType;
4783
4784  // Check that the first parameter type is what we expect.
4785  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4786      ExpectedFirstParamType)
4787    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4788    << FnDecl->getDeclName() << ExpectedFirstParamType;
4789
4790  return false;
4791}
4792
4793static bool
4794CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4795  // C++ [basic.stc.dynamic.allocation]p1:
4796  //   A program is ill-formed if an allocation function is declared in a
4797  //   namespace scope other than global scope or declared static in global
4798  //   scope.
4799  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4800    return true;
4801
4802  CanQualType SizeTy =
4803    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4804
4805  // C++ [basic.stc.dynamic.allocation]p1:
4806  //  The return type shall be void*. The first parameter shall have type
4807  //  std::size_t.
4808  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4809                                  SizeTy,
4810                                  diag::err_operator_new_dependent_param_type,
4811                                  diag::err_operator_new_param_type))
4812    return true;
4813
4814  // C++ [basic.stc.dynamic.allocation]p1:
4815  //  The first parameter shall not have an associated default argument.
4816  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4817    return SemaRef.Diag(FnDecl->getLocation(),
4818                        diag::err_operator_new_default_arg)
4819      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4820
4821  return false;
4822}
4823
4824static bool
4825CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4826  // C++ [basic.stc.dynamic.deallocation]p1:
4827  //   A program is ill-formed if deallocation functions are declared in a
4828  //   namespace scope other than global scope or declared static in global
4829  //   scope.
4830  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4831    return true;
4832
4833  // C++ [basic.stc.dynamic.deallocation]p2:
4834  //   Each deallocation function shall return void and its first parameter
4835  //   shall be void*.
4836  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4837                                  SemaRef.Context.VoidPtrTy,
4838                                 diag::err_operator_delete_dependent_param_type,
4839                                 diag::err_operator_delete_param_type))
4840    return true;
4841
4842  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4843  if (FirstParamType->isDependentType())
4844    return SemaRef.Diag(FnDecl->getLocation(),
4845                        diag::err_operator_delete_dependent_param_type)
4846    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4847
4848  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4849      SemaRef.Context.VoidPtrTy)
4850    return SemaRef.Diag(FnDecl->getLocation(),
4851                        diag::err_operator_delete_param_type)
4852      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4853
4854  return false;
4855}
4856
4857/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4858/// of this overloaded operator is well-formed. If so, returns false;
4859/// otherwise, emits appropriate diagnostics and returns true.
4860bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4861  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4862         "Expected an overloaded operator declaration");
4863
4864  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4865
4866  // C++ [over.oper]p5:
4867  //   The allocation and deallocation functions, operator new,
4868  //   operator new[], operator delete and operator delete[], are
4869  //   described completely in 3.7.3. The attributes and restrictions
4870  //   found in the rest of this subclause do not apply to them unless
4871  //   explicitly stated in 3.7.3.
4872  if (Op == OO_Delete || Op == OO_Array_Delete)
4873    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4874
4875  if (Op == OO_New || Op == OO_Array_New)
4876    return CheckOperatorNewDeclaration(*this, FnDecl);
4877
4878  // C++ [over.oper]p6:
4879  //   An operator function shall either be a non-static member
4880  //   function or be a non-member function and have at least one
4881  //   parameter whose type is a class, a reference to a class, an
4882  //   enumeration, or a reference to an enumeration.
4883  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4884    if (MethodDecl->isStatic())
4885      return Diag(FnDecl->getLocation(),
4886                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4887  } else {
4888    bool ClassOrEnumParam = false;
4889    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4890                                   ParamEnd = FnDecl->param_end();
4891         Param != ParamEnd; ++Param) {
4892      QualType ParamType = (*Param)->getType().getNonReferenceType();
4893      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4894          ParamType->isEnumeralType()) {
4895        ClassOrEnumParam = true;
4896        break;
4897      }
4898    }
4899
4900    if (!ClassOrEnumParam)
4901      return Diag(FnDecl->getLocation(),
4902                  diag::err_operator_overload_needs_class_or_enum)
4903        << FnDecl->getDeclName();
4904  }
4905
4906  // C++ [over.oper]p8:
4907  //   An operator function cannot have default arguments (8.3.6),
4908  //   except where explicitly stated below.
4909  //
4910  // Only the function-call operator allows default arguments
4911  // (C++ [over.call]p1).
4912  if (Op != OO_Call) {
4913    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4914         Param != FnDecl->param_end(); ++Param) {
4915      if ((*Param)->hasDefaultArg())
4916        return Diag((*Param)->getLocation(),
4917                    diag::err_operator_overload_default_arg)
4918          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4919    }
4920  }
4921
4922  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4923    { false, false, false }
4924#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4925    , { Unary, Binary, MemberOnly }
4926#include "clang/Basic/OperatorKinds.def"
4927  };
4928
4929  bool CanBeUnaryOperator = OperatorUses[Op][0];
4930  bool CanBeBinaryOperator = OperatorUses[Op][1];
4931  bool MustBeMemberOperator = OperatorUses[Op][2];
4932
4933  // C++ [over.oper]p8:
4934  //   [...] Operator functions cannot have more or fewer parameters
4935  //   than the number required for the corresponding operator, as
4936  //   described in the rest of this subclause.
4937  unsigned NumParams = FnDecl->getNumParams()
4938                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4939  if (Op != OO_Call &&
4940      ((NumParams == 1 && !CanBeUnaryOperator) ||
4941       (NumParams == 2 && !CanBeBinaryOperator) ||
4942       (NumParams < 1) || (NumParams > 2))) {
4943    // We have the wrong number of parameters.
4944    unsigned ErrorKind;
4945    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4946      ErrorKind = 2;  // 2 -> unary or binary.
4947    } else if (CanBeUnaryOperator) {
4948      ErrorKind = 0;  // 0 -> unary
4949    } else {
4950      assert(CanBeBinaryOperator &&
4951             "All non-call overloaded operators are unary or binary!");
4952      ErrorKind = 1;  // 1 -> binary
4953    }
4954
4955    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4956      << FnDecl->getDeclName() << NumParams << ErrorKind;
4957  }
4958
4959  // Overloaded operators other than operator() cannot be variadic.
4960  if (Op != OO_Call &&
4961      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4962    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4963      << FnDecl->getDeclName();
4964  }
4965
4966  // Some operators must be non-static member functions.
4967  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4968    return Diag(FnDecl->getLocation(),
4969                diag::err_operator_overload_must_be_member)
4970      << FnDecl->getDeclName();
4971  }
4972
4973  // C++ [over.inc]p1:
4974  //   The user-defined function called operator++ implements the
4975  //   prefix and postfix ++ operator. If this function is a member
4976  //   function with no parameters, or a non-member function with one
4977  //   parameter of class or enumeration type, it defines the prefix
4978  //   increment operator ++ for objects of that type. If the function
4979  //   is a member function with one parameter (which shall be of type
4980  //   int) or a non-member function with two parameters (the second
4981  //   of which shall be of type int), it defines the postfix
4982  //   increment operator ++ for objects of that type.
4983  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4984    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4985    bool ParamIsInt = false;
4986    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4987      ParamIsInt = BT->getKind() == BuiltinType::Int;
4988
4989    if (!ParamIsInt)
4990      return Diag(LastParam->getLocation(),
4991                  diag::err_operator_overload_post_incdec_must_be_int)
4992        << LastParam->getType() << (Op == OO_MinusMinus);
4993  }
4994
4995  // Notify the class if it got an assignment operator.
4996  if (Op == OO_Equal) {
4997    // Would have returned earlier otherwise.
4998    assert(isa<CXXMethodDecl>(FnDecl) &&
4999      "Overloaded = not member, but not filtered.");
5000    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5001    Method->getParent()->addedAssignmentOperator(Context, Method);
5002  }
5003
5004  return false;
5005}
5006
5007/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5008/// linkage specification, including the language and (if present)
5009/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5010/// the location of the language string literal, which is provided
5011/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5012/// the '{' brace. Otherwise, this linkage specification does not
5013/// have any braces.
5014Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5015                                                     SourceLocation ExternLoc,
5016                                                     SourceLocation LangLoc,
5017                                                     const char *Lang,
5018                                                     unsigned StrSize,
5019                                                     SourceLocation LBraceLoc) {
5020  LinkageSpecDecl::LanguageIDs Language;
5021  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5022    Language = LinkageSpecDecl::lang_c;
5023  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5024    Language = LinkageSpecDecl::lang_cxx;
5025  else {
5026    Diag(LangLoc, diag::err_bad_language);
5027    return DeclPtrTy();
5028  }
5029
5030  // FIXME: Add all the various semantics of linkage specifications
5031
5032  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5033                                               LangLoc, Language,
5034                                               LBraceLoc.isValid());
5035  CurContext->addDecl(D);
5036  PushDeclContext(S, D);
5037  return DeclPtrTy::make(D);
5038}
5039
5040/// ActOnFinishLinkageSpecification - Completely the definition of
5041/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5042/// valid, it's the position of the closing '}' brace in a linkage
5043/// specification that uses braces.
5044Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5045                                                      DeclPtrTy LinkageSpec,
5046                                                      SourceLocation RBraceLoc) {
5047  if (LinkageSpec)
5048    PopDeclContext();
5049  return LinkageSpec;
5050}
5051
5052/// \brief Perform semantic analysis for the variable declaration that
5053/// occurs within a C++ catch clause, returning the newly-created
5054/// variable.
5055VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5056                                         TypeSourceInfo *TInfo,
5057                                         IdentifierInfo *Name,
5058                                         SourceLocation Loc,
5059                                         SourceRange Range) {
5060  bool Invalid = false;
5061
5062  // Arrays and functions decay.
5063  if (ExDeclType->isArrayType())
5064    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5065  else if (ExDeclType->isFunctionType())
5066    ExDeclType = Context.getPointerType(ExDeclType);
5067
5068  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5069  // The exception-declaration shall not denote a pointer or reference to an
5070  // incomplete type, other than [cv] void*.
5071  // N2844 forbids rvalue references.
5072  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5073    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5074    Invalid = true;
5075  }
5076
5077  QualType BaseType = ExDeclType;
5078  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5079  unsigned DK = diag::err_catch_incomplete;
5080  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5081    BaseType = Ptr->getPointeeType();
5082    Mode = 1;
5083    DK = diag::err_catch_incomplete_ptr;
5084  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5085    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5086    BaseType = Ref->getPointeeType();
5087    Mode = 2;
5088    DK = diag::err_catch_incomplete_ref;
5089  }
5090  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5091      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5092    Invalid = true;
5093
5094  if (!Invalid && !ExDeclType->isDependentType() &&
5095      RequireNonAbstractType(Loc, ExDeclType,
5096                             diag::err_abstract_type_in_decl,
5097                             AbstractVariableType))
5098    Invalid = true;
5099
5100  // FIXME: Need to test for ability to copy-construct and destroy the
5101  // exception variable.
5102
5103  // FIXME: Need to check for abstract classes.
5104
5105  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5106                                    Name, ExDeclType, TInfo, VarDecl::None);
5107
5108  if (Invalid)
5109    ExDecl->setInvalidDecl();
5110
5111  return ExDecl;
5112}
5113
5114/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5115/// handler.
5116Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5117  TypeSourceInfo *TInfo = 0;
5118  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5119
5120  bool Invalid = D.isInvalidType();
5121  IdentifierInfo *II = D.getIdentifier();
5122  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5123    // The scope should be freshly made just for us. There is just no way
5124    // it contains any previous declaration.
5125    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5126    if (PrevDecl->isTemplateParameter()) {
5127      // Maybe we will complain about the shadowed template parameter.
5128      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5129    }
5130  }
5131
5132  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5133    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5134      << D.getCXXScopeSpec().getRange();
5135    Invalid = true;
5136  }
5137
5138  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5139                                              D.getIdentifier(),
5140                                              D.getIdentifierLoc(),
5141                                            D.getDeclSpec().getSourceRange());
5142
5143  if (Invalid)
5144    ExDecl->setInvalidDecl();
5145
5146  // Add the exception declaration into this scope.
5147  if (II)
5148    PushOnScopeChains(ExDecl, S);
5149  else
5150    CurContext->addDecl(ExDecl);
5151
5152  ProcessDeclAttributes(S, ExDecl, D);
5153  return DeclPtrTy::make(ExDecl);
5154}
5155
5156Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5157                                                   ExprArg assertexpr,
5158                                                   ExprArg assertmessageexpr) {
5159  Expr *AssertExpr = (Expr *)assertexpr.get();
5160  StringLiteral *AssertMessage =
5161    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5162
5163  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5164    llvm::APSInt Value(32);
5165    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5166      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5167        AssertExpr->getSourceRange();
5168      return DeclPtrTy();
5169    }
5170
5171    if (Value == 0) {
5172      Diag(AssertLoc, diag::err_static_assert_failed)
5173        << AssertMessage->getString() << AssertExpr->getSourceRange();
5174    }
5175  }
5176
5177  assertexpr.release();
5178  assertmessageexpr.release();
5179  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5180                                        AssertExpr, AssertMessage);
5181
5182  CurContext->addDecl(Decl);
5183  return DeclPtrTy::make(Decl);
5184}
5185
5186/// Handle a friend type declaration.  This works in tandem with
5187/// ActOnTag.
5188///
5189/// Notes on friend class templates:
5190///
5191/// We generally treat friend class declarations as if they were
5192/// declaring a class.  So, for example, the elaborated type specifier
5193/// in a friend declaration is required to obey the restrictions of a
5194/// class-head (i.e. no typedefs in the scope chain), template
5195/// parameters are required to match up with simple template-ids, &c.
5196/// However, unlike when declaring a template specialization, it's
5197/// okay to refer to a template specialization without an empty
5198/// template parameter declaration, e.g.
5199///   friend class A<T>::B<unsigned>;
5200/// We permit this as a special case; if there are any template
5201/// parameters present at all, require proper matching, i.e.
5202///   template <> template <class T> friend class A<int>::B;
5203Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5204                                          MultiTemplateParamsArg TempParams) {
5205  SourceLocation Loc = DS.getSourceRange().getBegin();
5206
5207  assert(DS.isFriendSpecified());
5208  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5209
5210  // Try to convert the decl specifier to a type.  This works for
5211  // friend templates because ActOnTag never produces a ClassTemplateDecl
5212  // for a TUK_Friend.
5213  Declarator TheDeclarator(DS, Declarator::MemberContext);
5214  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5215  if (TheDeclarator.isInvalidType())
5216    return DeclPtrTy();
5217
5218  // This is definitely an error in C++98.  It's probably meant to
5219  // be forbidden in C++0x, too, but the specification is just
5220  // poorly written.
5221  //
5222  // The problem is with declarations like the following:
5223  //   template <T> friend A<T>::foo;
5224  // where deciding whether a class C is a friend or not now hinges
5225  // on whether there exists an instantiation of A that causes
5226  // 'foo' to equal C.  There are restrictions on class-heads
5227  // (which we declare (by fiat) elaborated friend declarations to
5228  // be) that makes this tractable.
5229  //
5230  // FIXME: handle "template <> friend class A<T>;", which
5231  // is possibly well-formed?  Who even knows?
5232  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5233    Diag(Loc, diag::err_tagless_friend_type_template)
5234      << DS.getSourceRange();
5235    return DeclPtrTy();
5236  }
5237
5238  // C++ [class.friend]p2:
5239  //   An elaborated-type-specifier shall be used in a friend declaration
5240  //   for a class.*
5241  //   * The class-key of the elaborated-type-specifier is required.
5242  // This is one of the rare places in Clang where it's legitimate to
5243  // ask about the "spelling" of the type.
5244  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5245    // If we evaluated the type to a record type, suggest putting
5246    // a tag in front.
5247    if (const RecordType *RT = T->getAs<RecordType>()) {
5248      RecordDecl *RD = RT->getDecl();
5249
5250      std::string InsertionText = std::string(" ") + RD->getKindName();
5251
5252      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5253        << (unsigned) RD->getTagKind()
5254        << T
5255        << SourceRange(DS.getFriendSpecLoc())
5256        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5257                                                 InsertionText);
5258      return DeclPtrTy();
5259    }else {
5260      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5261          << DS.getSourceRange();
5262      return DeclPtrTy();
5263    }
5264  }
5265
5266  // Enum types cannot be friends.
5267  if (T->getAs<EnumType>()) {
5268    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5269      << SourceRange(DS.getFriendSpecLoc());
5270    return DeclPtrTy();
5271  }
5272
5273  // C++98 [class.friend]p1: A friend of a class is a function
5274  //   or class that is not a member of the class . . .
5275  // This is fixed in DR77, which just barely didn't make the C++03
5276  // deadline.  It's also a very silly restriction that seriously
5277  // affects inner classes and which nobody else seems to implement;
5278  // thus we never diagnose it, not even in -pedantic.
5279
5280  Decl *D;
5281  if (TempParams.size())
5282    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5283                                   TempParams.size(),
5284                                 (TemplateParameterList**) TempParams.release(),
5285                                   T.getTypePtr(),
5286                                   DS.getFriendSpecLoc());
5287  else
5288    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5289                           DS.getFriendSpecLoc());
5290  D->setAccess(AS_public);
5291  CurContext->addDecl(D);
5292
5293  return DeclPtrTy::make(D);
5294}
5295
5296Sema::DeclPtrTy
5297Sema::ActOnFriendFunctionDecl(Scope *S,
5298                              Declarator &D,
5299                              bool IsDefinition,
5300                              MultiTemplateParamsArg TemplateParams) {
5301  const DeclSpec &DS = D.getDeclSpec();
5302
5303  assert(DS.isFriendSpecified());
5304  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5305
5306  SourceLocation Loc = D.getIdentifierLoc();
5307  TypeSourceInfo *TInfo = 0;
5308  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5309
5310  // C++ [class.friend]p1
5311  //   A friend of a class is a function or class....
5312  // Note that this sees through typedefs, which is intended.
5313  // It *doesn't* see through dependent types, which is correct
5314  // according to [temp.arg.type]p3:
5315  //   If a declaration acquires a function type through a
5316  //   type dependent on a template-parameter and this causes
5317  //   a declaration that does not use the syntactic form of a
5318  //   function declarator to have a function type, the program
5319  //   is ill-formed.
5320  if (!T->isFunctionType()) {
5321    Diag(Loc, diag::err_unexpected_friend);
5322
5323    // It might be worthwhile to try to recover by creating an
5324    // appropriate declaration.
5325    return DeclPtrTy();
5326  }
5327
5328  // C++ [namespace.memdef]p3
5329  //  - If a friend declaration in a non-local class first declares a
5330  //    class or function, the friend class or function is a member
5331  //    of the innermost enclosing namespace.
5332  //  - The name of the friend is not found by simple name lookup
5333  //    until a matching declaration is provided in that namespace
5334  //    scope (either before or after the class declaration granting
5335  //    friendship).
5336  //  - If a friend function is called, its name may be found by the
5337  //    name lookup that considers functions from namespaces and
5338  //    classes associated with the types of the function arguments.
5339  //  - When looking for a prior declaration of a class or a function
5340  //    declared as a friend, scopes outside the innermost enclosing
5341  //    namespace scope are not considered.
5342
5343  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5344  DeclarationName Name = GetNameForDeclarator(D);
5345  assert(Name);
5346
5347  // The context we found the declaration in, or in which we should
5348  // create the declaration.
5349  DeclContext *DC;
5350
5351  // FIXME: handle local classes
5352
5353  // Recover from invalid scope qualifiers as if they just weren't there.
5354  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5355                        ForRedeclaration);
5356  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5357    // FIXME: RequireCompleteDeclContext
5358    DC = computeDeclContext(ScopeQual);
5359
5360    // FIXME: handle dependent contexts
5361    if (!DC) return DeclPtrTy();
5362
5363    LookupQualifiedName(Previous, DC);
5364
5365    // If searching in that context implicitly found a declaration in
5366    // a different context, treat it like it wasn't found at all.
5367    // TODO: better diagnostics for this case.  Suggesting the right
5368    // qualified scope would be nice...
5369    // FIXME: getRepresentativeDecl() is not right here at all
5370    if (Previous.empty() ||
5371        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5372      D.setInvalidType();
5373      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5374      return DeclPtrTy();
5375    }
5376
5377    // C++ [class.friend]p1: A friend of a class is a function or
5378    //   class that is not a member of the class . . .
5379    if (DC->Equals(CurContext))
5380      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5381
5382  // Otherwise walk out to the nearest namespace scope looking for matches.
5383  } else {
5384    // TODO: handle local class contexts.
5385
5386    DC = CurContext;
5387    while (true) {
5388      // Skip class contexts.  If someone can cite chapter and verse
5389      // for this behavior, that would be nice --- it's what GCC and
5390      // EDG do, and it seems like a reasonable intent, but the spec
5391      // really only says that checks for unqualified existing
5392      // declarations should stop at the nearest enclosing namespace,
5393      // not that they should only consider the nearest enclosing
5394      // namespace.
5395      while (DC->isRecord())
5396        DC = DC->getParent();
5397
5398      LookupQualifiedName(Previous, DC);
5399
5400      // TODO: decide what we think about using declarations.
5401      if (!Previous.empty())
5402        break;
5403
5404      if (DC->isFileContext()) break;
5405      DC = DC->getParent();
5406    }
5407
5408    // C++ [class.friend]p1: A friend of a class is a function or
5409    //   class that is not a member of the class . . .
5410    // C++0x changes this for both friend types and functions.
5411    // Most C++ 98 compilers do seem to give an error here, so
5412    // we do, too.
5413    if (!Previous.empty() && DC->Equals(CurContext)
5414        && !getLangOptions().CPlusPlus0x)
5415      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5416  }
5417
5418  if (DC->isFileContext()) {
5419    // This implies that it has to be an operator or function.
5420    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5421        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5422        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5423      Diag(Loc, diag::err_introducing_special_friend) <<
5424        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5425         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5426      return DeclPtrTy();
5427    }
5428  }
5429
5430  bool Redeclaration = false;
5431  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5432                                          move(TemplateParams),
5433                                          IsDefinition,
5434                                          Redeclaration);
5435  if (!ND) return DeclPtrTy();
5436
5437  assert(ND->getDeclContext() == DC);
5438  assert(ND->getLexicalDeclContext() == CurContext);
5439
5440  // Add the function declaration to the appropriate lookup tables,
5441  // adjusting the redeclarations list as necessary.  We don't
5442  // want to do this yet if the friending class is dependent.
5443  //
5444  // Also update the scope-based lookup if the target context's
5445  // lookup context is in lexical scope.
5446  if (!CurContext->isDependentContext()) {
5447    DC = DC->getLookupContext();
5448    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5449    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5450      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5451  }
5452
5453  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5454                                       D.getIdentifierLoc(), ND,
5455                                       DS.getFriendSpecLoc());
5456  FrD->setAccess(AS_public);
5457  CurContext->addDecl(FrD);
5458
5459  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5460    FrD->setSpecialization(true);
5461
5462  return DeclPtrTy::make(ND);
5463}
5464
5465void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5466  AdjustDeclIfTemplate(dcl);
5467
5468  Decl *Dcl = dcl.getAs<Decl>();
5469  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5470  if (!Fn) {
5471    Diag(DelLoc, diag::err_deleted_non_function);
5472    return;
5473  }
5474  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5475    Diag(DelLoc, diag::err_deleted_decl_not_first);
5476    Diag(Prev->getLocation(), diag::note_previous_declaration);
5477    // If the declaration wasn't the first, we delete the function anyway for
5478    // recovery.
5479  }
5480  Fn->setDeleted();
5481}
5482
5483static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5484  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5485       ++CI) {
5486    Stmt *SubStmt = *CI;
5487    if (!SubStmt)
5488      continue;
5489    if (isa<ReturnStmt>(SubStmt))
5490      Self.Diag(SubStmt->getSourceRange().getBegin(),
5491           diag::err_return_in_constructor_handler);
5492    if (!isa<Expr>(SubStmt))
5493      SearchForReturnInStmt(Self, SubStmt);
5494  }
5495}
5496
5497void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5498  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5499    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5500    SearchForReturnInStmt(*this, Handler);
5501  }
5502}
5503
5504bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5505                                             const CXXMethodDecl *Old) {
5506  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5507  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5508
5509  QualType CNewTy = Context.getCanonicalType(NewTy);
5510  QualType COldTy = Context.getCanonicalType(OldTy);
5511
5512  if (CNewTy == COldTy &&
5513      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
5514    return false;
5515
5516  // Check if the return types are covariant
5517  QualType NewClassTy, OldClassTy;
5518
5519  /// Both types must be pointers or references to classes.
5520  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
5521    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
5522      NewClassTy = NewPT->getPointeeType();
5523      OldClassTy = OldPT->getPointeeType();
5524    }
5525  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
5526    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
5527      NewClassTy = NewRT->getPointeeType();
5528      OldClassTy = OldRT->getPointeeType();
5529    }
5530  }
5531
5532  // The return types aren't either both pointers or references to a class type.
5533  if (NewClassTy.isNull()) {
5534    Diag(New->getLocation(),
5535         diag::err_different_return_type_for_overriding_virtual_function)
5536      << New->getDeclName() << NewTy << OldTy;
5537    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5538
5539    return true;
5540  }
5541
5542  // C++ [class.virtual]p6:
5543  //   If the return type of D::f differs from the return type of B::f, the
5544  //   class type in the return type of D::f shall be complete at the point of
5545  //   declaration of D::f or shall be the class type D.
5546  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5547    if (!RT->isBeingDefined() &&
5548        RequireCompleteType(New->getLocation(), NewClassTy,
5549                            PDiag(diag::err_covariant_return_incomplete)
5550                              << New->getDeclName()))
5551    return true;
5552  }
5553
5554  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5555    // Check if the new class derives from the old class.
5556    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5557      Diag(New->getLocation(),
5558           diag::err_covariant_return_not_derived)
5559      << New->getDeclName() << NewTy << OldTy;
5560      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5561      return true;
5562    }
5563
5564    // Check if we the conversion from derived to base is valid.
5565    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5566                      diag::err_covariant_return_inaccessible_base,
5567                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5568                      // FIXME: Should this point to the return type?
5569                      New->getLocation(), SourceRange(), New->getDeclName())) {
5570      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5571      return true;
5572    }
5573  }
5574
5575  // The qualifiers of the return types must be the same.
5576  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
5577    Diag(New->getLocation(),
5578         diag::err_covariant_return_type_different_qualifications)
5579    << New->getDeclName() << NewTy << OldTy;
5580    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5581    return true;
5582  };
5583
5584
5585  // The new class type must have the same or less qualifiers as the old type.
5586  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5587    Diag(New->getLocation(),
5588         diag::err_covariant_return_type_class_type_more_qualified)
5589    << New->getDeclName() << NewTy << OldTy;
5590    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5591    return true;
5592  };
5593
5594  return false;
5595}
5596
5597bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5598                                             const CXXMethodDecl *Old)
5599{
5600  if (Old->hasAttr<FinalAttr>()) {
5601    Diag(New->getLocation(), diag::err_final_function_overridden)
5602      << New->getDeclName();
5603    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5604    return true;
5605  }
5606
5607  return false;
5608}
5609
5610/// \brief Mark the given method pure.
5611///
5612/// \param Method the method to be marked pure.
5613///
5614/// \param InitRange the source range that covers the "0" initializer.
5615bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5616  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5617    Method->setPure();
5618
5619    // A class is abstract if at least one function is pure virtual.
5620    Method->getParent()->setAbstract(true);
5621    return false;
5622  }
5623
5624  if (!Method->isInvalidDecl())
5625    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5626      << Method->getDeclName() << InitRange;
5627  return true;
5628}
5629
5630/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5631/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5632/// is a fresh scope pushed for just this purpose.
5633///
5634/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5635/// static data member of class X, names should be looked up in the scope of
5636/// class X.
5637void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5638  // If there is no declaration, there was an error parsing it.
5639  Decl *D = Dcl.getAs<Decl>();
5640  if (D == 0) return;
5641
5642  // We should only get called for declarations with scope specifiers, like:
5643  //   int foo::bar;
5644  assert(D->isOutOfLine());
5645  EnterDeclaratorContext(S, D->getDeclContext());
5646}
5647
5648/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5649/// initializer for the out-of-line declaration 'Dcl'.
5650void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5651  // If there is no declaration, there was an error parsing it.
5652  Decl *D = Dcl.getAs<Decl>();
5653  if (D == 0) return;
5654
5655  assert(D->isOutOfLine());
5656  ExitDeclaratorContext(S);
5657}
5658
5659/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5660/// C++ if/switch/while/for statement.
5661/// e.g: "if (int x = f()) {...}"
5662Action::DeclResult
5663Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5664  // C++ 6.4p2:
5665  // The declarator shall not specify a function or an array.
5666  // The type-specifier-seq shall not contain typedef and shall not declare a
5667  // new class or enumeration.
5668  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5669         "Parser allowed 'typedef' as storage class of condition decl.");
5670
5671  TypeSourceInfo *TInfo = 0;
5672  TagDecl *OwnedTag = 0;
5673  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5674
5675  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5676                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5677                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5678    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5679      << D.getSourceRange();
5680    return DeclResult();
5681  } else if (OwnedTag && OwnedTag->isDefinition()) {
5682    // The type-specifier-seq shall not declare a new class or enumeration.
5683    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5684  }
5685
5686  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5687  if (!Dcl)
5688    return DeclResult();
5689
5690  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5691  VD->setDeclaredInCondition(true);
5692  return Dcl;
5693}
5694
5695void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5696                                             CXXMethodDecl *MD) {
5697  // Ignore dependent types.
5698  if (MD->isDependentContext())
5699    return;
5700
5701  CXXRecordDecl *RD = MD->getParent();
5702
5703  // Ignore classes without a vtable.
5704  if (!RD->isDynamicClass())
5705    return;
5706
5707  // Ignore declarations that are not definitions.
5708  if (!MD->isThisDeclarationADefinition())
5709    return;
5710
5711  if (isa<CXXConstructorDecl>(MD)) {
5712    switch (MD->getParent()->getTemplateSpecializationKind()) {
5713    case TSK_Undeclared:
5714    case TSK_ExplicitSpecialization:
5715      // Classes that aren't instantiations of templates don't need their
5716      // virtual methods marked until we see the definition of the key
5717      // function.
5718      return;
5719
5720    case TSK_ImplicitInstantiation:
5721    case TSK_ExplicitInstantiationDeclaration:
5722    case TSK_ExplicitInstantiationDefinition:
5723      // This is a constructor of a class template; mark all of the virtual
5724      // members as referenced to ensure that they get instantiatied.
5725      break;
5726    }
5727  } else if (!MD->isOutOfLine()) {
5728    // Consider only out-of-line definitions of member functions. When we see
5729    // an inline definition, it's too early to compute the key function.
5730    return;
5731  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5732    // If this is not the key function, we don't need to mark virtual members.
5733    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5734      return;
5735  } else {
5736    // The class has no key function, so we've already noted that we need to
5737    // mark the virtual members of this class.
5738    return;
5739  }
5740
5741  // We will need to mark all of the virtual members as referenced to build the
5742  // vtable.
5743  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5744}
5745
5746bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5747  if (ClassesWithUnmarkedVirtualMembers.empty())
5748    return false;
5749
5750  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5751    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5752    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5753    ClassesWithUnmarkedVirtualMembers.pop_back();
5754    MarkVirtualMembersReferenced(Loc, RD);
5755  }
5756
5757  return true;
5758}
5759
5760void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5761  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5762       e = RD->method_end(); i != e; ++i) {
5763    CXXMethodDecl *MD = *i;
5764
5765    // C++ [basic.def.odr]p2:
5766    //   [...] A virtual member function is used if it is not pure. [...]
5767    if (MD->isVirtual() && !MD->isPure())
5768      MarkDeclarationReferenced(Loc, MD);
5769  }
5770}
5771
5772