SemaDeclCXX.cpp revision 4857947d18a7d0d0c250892fc5597ec0aecc9823
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = false;
1083  if (D.isFunctionDeclarator())
1084    isFunc = true;
1085  else if (D.getNumTypeObjects() == 0 &&
1086           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1087    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1088    isFunc = TDType->isFunctionType();
1089  }
1090
1091  // C++ 9.2p6: A member shall not be declared to have automatic storage
1092  // duration (auto, register) or with the extern storage-class-specifier.
1093  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1094  // data members and cannot be applied to names declared const or static,
1095  // and cannot be applied to reference members.
1096  switch (DS.getStorageClassSpec()) {
1097    case DeclSpec::SCS_unspecified:
1098    case DeclSpec::SCS_typedef:
1099    case DeclSpec::SCS_static:
1100      // FALL THROUGH.
1101      break;
1102    case DeclSpec::SCS_mutable:
1103      if (isFunc) {
1104        if (DS.getStorageClassSpecLoc().isValid())
1105          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1106        else
1107          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1108
1109        // FIXME: It would be nicer if the keyword was ignored only for this
1110        // declarator. Otherwise we could get follow-up errors.
1111        D.getMutableDeclSpec().ClearStorageClassSpecs();
1112      }
1113      break;
1114    default:
1115      if (DS.getStorageClassSpecLoc().isValid())
1116        Diag(DS.getStorageClassSpecLoc(),
1117             diag::err_storageclass_invalid_for_member);
1118      else
1119        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1120      D.getMutableDeclSpec().ClearStorageClassSpecs();
1121  }
1122
1123  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1124                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1125                      !isFunc);
1126
1127  Decl *Member;
1128  if (isInstField) {
1129    CXXScopeSpec &SS = D.getCXXScopeSpec();
1130
1131    if (SS.isSet() && !SS.isInvalid()) {
1132      // The user provided a superfluous scope specifier inside a class
1133      // definition:
1134      //
1135      // class X {
1136      //   int X::member;
1137      // };
1138      DeclContext *DC = 0;
1139      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1140        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1141        << Name << FixItHint::CreateRemoval(SS.getRange());
1142      else
1143        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1144          << Name << SS.getRange();
1145
1146      SS.clear();
1147    }
1148
1149    // FIXME: Check for template parameters!
1150    // FIXME: Check that the name is an identifier!
1151    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1152                         HasDeferredInit, AS);
1153    assert(Member && "HandleField never returns null");
1154  } else {
1155    assert(!HasDeferredInit);
1156
1157    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1158    if (!Member) {
1159      return 0;
1160    }
1161
1162    // Non-instance-fields can't have a bitfield.
1163    if (BitWidth) {
1164      if (Member->isInvalidDecl()) {
1165        // don't emit another diagnostic.
1166      } else if (isa<VarDecl>(Member)) {
1167        // C++ 9.6p3: A bit-field shall not be a static member.
1168        // "static member 'A' cannot be a bit-field"
1169        Diag(Loc, diag::err_static_not_bitfield)
1170          << Name << BitWidth->getSourceRange();
1171      } else if (isa<TypedefDecl>(Member)) {
1172        // "typedef member 'x' cannot be a bit-field"
1173        Diag(Loc, diag::err_typedef_not_bitfield)
1174          << Name << BitWidth->getSourceRange();
1175      } else {
1176        // A function typedef ("typedef int f(); f a;").
1177        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1178        Diag(Loc, diag::err_not_integral_type_bitfield)
1179          << Name << cast<ValueDecl>(Member)->getType()
1180          << BitWidth->getSourceRange();
1181      }
1182
1183      BitWidth = 0;
1184      Member->setInvalidDecl();
1185    }
1186
1187    Member->setAccess(AS);
1188
1189    // If we have declared a member function template, set the access of the
1190    // templated declaration as well.
1191    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1192      FunTmpl->getTemplatedDecl()->setAccess(AS);
1193  }
1194
1195  if (VS.isOverrideSpecified()) {
1196    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1197    if (!MD || !MD->isVirtual()) {
1198      Diag(Member->getLocStart(),
1199           diag::override_keyword_only_allowed_on_virtual_member_functions)
1200        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1201    } else
1202      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1203  }
1204  if (VS.isFinalSpecified()) {
1205    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1206    if (!MD || !MD->isVirtual()) {
1207      Diag(Member->getLocStart(),
1208           diag::override_keyword_only_allowed_on_virtual_member_functions)
1209      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1210    } else
1211      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1212  }
1213
1214  if (VS.getLastLocation().isValid()) {
1215    // Update the end location of a method that has a virt-specifiers.
1216    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1217      MD->setRangeEnd(VS.getLastLocation());
1218  }
1219
1220  CheckOverrideControl(Member);
1221
1222  assert((Name || isInstField) && "No identifier for non-field ?");
1223
1224  if (Init)
1225    AddInitializerToDecl(Member, Init, false,
1226                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1227  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1228           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1229    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1230    // data member if a brace-or-equal-initializer is provided.
1231    Diag(Loc, diag::err_auto_var_requires_init)
1232      << Name << cast<ValueDecl>(Member)->getType();
1233    Member->setInvalidDecl();
1234  }
1235
1236  FinalizeDeclaration(Member);
1237
1238  if (isInstField)
1239    FieldCollector->Add(cast<FieldDecl>(Member));
1240  return Member;
1241}
1242
1243/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1244/// in-class initializer for a non-static C++ class member. Such parsing
1245/// is deferred until the class is complete.
1246void
1247Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1248                                       Expr *InitExpr) {
1249  FieldDecl *FD = cast<FieldDecl>(D);
1250
1251  if (!InitExpr) {
1252    FD->setInvalidDecl();
1253    FD->removeInClassInitializer();
1254    return;
1255  }
1256
1257  ExprResult Init = InitExpr;
1258  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1259    // FIXME: if there is no EqualLoc, this is list-initialization.
1260    Init = PerformCopyInitialization(
1261      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1262    if (Init.isInvalid()) {
1263      FD->setInvalidDecl();
1264      return;
1265    }
1266
1267    CheckImplicitConversions(Init.get(), EqualLoc);
1268  }
1269
1270  // C++0x [class.base.init]p7:
1271  //   The initialization of each base and member constitutes a
1272  //   full-expression.
1273  Init = MaybeCreateExprWithCleanups(Init);
1274  if (Init.isInvalid()) {
1275    FD->setInvalidDecl();
1276    return;
1277  }
1278
1279  InitExpr = Init.release();
1280
1281  FD->setInClassInitializer(InitExpr);
1282}
1283
1284/// \brief Find the direct and/or virtual base specifiers that
1285/// correspond to the given base type, for use in base initialization
1286/// within a constructor.
1287static bool FindBaseInitializer(Sema &SemaRef,
1288                                CXXRecordDecl *ClassDecl,
1289                                QualType BaseType,
1290                                const CXXBaseSpecifier *&DirectBaseSpec,
1291                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1292  // First, check for a direct base class.
1293  DirectBaseSpec = 0;
1294  for (CXXRecordDecl::base_class_const_iterator Base
1295         = ClassDecl->bases_begin();
1296       Base != ClassDecl->bases_end(); ++Base) {
1297    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1298      // We found a direct base of this type. That's what we're
1299      // initializing.
1300      DirectBaseSpec = &*Base;
1301      break;
1302    }
1303  }
1304
1305  // Check for a virtual base class.
1306  // FIXME: We might be able to short-circuit this if we know in advance that
1307  // there are no virtual bases.
1308  VirtualBaseSpec = 0;
1309  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1310    // We haven't found a base yet; search the class hierarchy for a
1311    // virtual base class.
1312    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1313                       /*DetectVirtual=*/false);
1314    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1315                              BaseType, Paths)) {
1316      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1317           Path != Paths.end(); ++Path) {
1318        if (Path->back().Base->isVirtual()) {
1319          VirtualBaseSpec = Path->back().Base;
1320          break;
1321        }
1322      }
1323    }
1324  }
1325
1326  return DirectBaseSpec || VirtualBaseSpec;
1327}
1328
1329/// ActOnMemInitializer - Handle a C++ member initializer.
1330MemInitResult
1331Sema::ActOnMemInitializer(Decl *ConstructorD,
1332                          Scope *S,
1333                          CXXScopeSpec &SS,
1334                          IdentifierInfo *MemberOrBase,
1335                          ParsedType TemplateTypeTy,
1336                          SourceLocation IdLoc,
1337                          SourceLocation LParenLoc,
1338                          ExprTy **Args, unsigned NumArgs,
1339                          SourceLocation RParenLoc,
1340                          SourceLocation EllipsisLoc) {
1341  if (!ConstructorD)
1342    return true;
1343
1344  AdjustDeclIfTemplate(ConstructorD);
1345
1346  CXXConstructorDecl *Constructor
1347    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1348  if (!Constructor) {
1349    // The user wrote a constructor initializer on a function that is
1350    // not a C++ constructor. Ignore the error for now, because we may
1351    // have more member initializers coming; we'll diagnose it just
1352    // once in ActOnMemInitializers.
1353    return true;
1354  }
1355
1356  CXXRecordDecl *ClassDecl = Constructor->getParent();
1357
1358  // C++ [class.base.init]p2:
1359  //   Names in a mem-initializer-id are looked up in the scope of the
1360  //   constructor's class and, if not found in that scope, are looked
1361  //   up in the scope containing the constructor's definition.
1362  //   [Note: if the constructor's class contains a member with the
1363  //   same name as a direct or virtual base class of the class, a
1364  //   mem-initializer-id naming the member or base class and composed
1365  //   of a single identifier refers to the class member. A
1366  //   mem-initializer-id for the hidden base class may be specified
1367  //   using a qualified name. ]
1368  if (!SS.getScopeRep() && !TemplateTypeTy) {
1369    // Look for a member, first.
1370    FieldDecl *Member = 0;
1371    DeclContext::lookup_result Result
1372      = ClassDecl->lookup(MemberOrBase);
1373    if (Result.first != Result.second) {
1374      Member = dyn_cast<FieldDecl>(*Result.first);
1375
1376      if (Member) {
1377        if (EllipsisLoc.isValid())
1378          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1379            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1380
1381        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1382                                    LParenLoc, RParenLoc);
1383      }
1384
1385      // Handle anonymous union case.
1386      if (IndirectFieldDecl* IndirectField
1387            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1388        if (EllipsisLoc.isValid())
1389          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1390            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1391
1392         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1393                                       NumArgs, IdLoc,
1394                                       LParenLoc, RParenLoc);
1395      }
1396    }
1397  }
1398  // It didn't name a member, so see if it names a class.
1399  QualType BaseType;
1400  TypeSourceInfo *TInfo = 0;
1401
1402  if (TemplateTypeTy) {
1403    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1404  } else {
1405    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1406    LookupParsedName(R, S, &SS);
1407
1408    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1409    if (!TyD) {
1410      if (R.isAmbiguous()) return true;
1411
1412      // We don't want access-control diagnostics here.
1413      R.suppressDiagnostics();
1414
1415      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1416        bool NotUnknownSpecialization = false;
1417        DeclContext *DC = computeDeclContext(SS, false);
1418        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1419          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1420
1421        if (!NotUnknownSpecialization) {
1422          // When the scope specifier can refer to a member of an unknown
1423          // specialization, we take it as a type name.
1424          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1425                                       SS.getWithLocInContext(Context),
1426                                       *MemberOrBase, IdLoc);
1427          if (BaseType.isNull())
1428            return true;
1429
1430          R.clear();
1431          R.setLookupName(MemberOrBase);
1432        }
1433      }
1434
1435      // If no results were found, try to correct typos.
1436      if (R.empty() && BaseType.isNull() &&
1437          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1438          R.isSingleResult()) {
1439        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1440          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1441            // We have found a non-static data member with a similar
1442            // name to what was typed; complain and initialize that
1443            // member.
1444            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1445              << MemberOrBase << true << R.getLookupName()
1446              << FixItHint::CreateReplacement(R.getNameLoc(),
1447                                              R.getLookupName().getAsString());
1448            Diag(Member->getLocation(), diag::note_previous_decl)
1449              << Member->getDeclName();
1450
1451            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1452                                          LParenLoc, RParenLoc);
1453          }
1454        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1455          const CXXBaseSpecifier *DirectBaseSpec;
1456          const CXXBaseSpecifier *VirtualBaseSpec;
1457          if (FindBaseInitializer(*this, ClassDecl,
1458                                  Context.getTypeDeclType(Type),
1459                                  DirectBaseSpec, VirtualBaseSpec)) {
1460            // We have found a direct or virtual base class with a
1461            // similar name to what was typed; complain and initialize
1462            // that base class.
1463            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1464              << MemberOrBase << false << R.getLookupName()
1465              << FixItHint::CreateReplacement(R.getNameLoc(),
1466                                              R.getLookupName().getAsString());
1467
1468            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1469                                                             : VirtualBaseSpec;
1470            Diag(BaseSpec->getSourceRange().getBegin(),
1471                 diag::note_base_class_specified_here)
1472              << BaseSpec->getType()
1473              << BaseSpec->getSourceRange();
1474
1475            TyD = Type;
1476          }
1477        }
1478      }
1479
1480      if (!TyD && BaseType.isNull()) {
1481        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1482          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1483        return true;
1484      }
1485    }
1486
1487    if (BaseType.isNull()) {
1488      BaseType = Context.getTypeDeclType(TyD);
1489      if (SS.isSet()) {
1490        NestedNameSpecifier *Qualifier =
1491          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1492
1493        // FIXME: preserve source range information
1494        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1495      }
1496    }
1497  }
1498
1499  if (!TInfo)
1500    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1501
1502  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1503                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1504}
1505
1506/// Checks an initializer expression for use of uninitialized fields, such as
1507/// containing the field that is being initialized. Returns true if there is an
1508/// uninitialized field was used an updates the SourceLocation parameter; false
1509/// otherwise.
1510static bool InitExprContainsUninitializedFields(const Stmt *S,
1511                                                const ValueDecl *LhsField,
1512                                                SourceLocation *L) {
1513  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1514
1515  if (isa<CallExpr>(S)) {
1516    // Do not descend into function calls or constructors, as the use
1517    // of an uninitialized field may be valid. One would have to inspect
1518    // the contents of the function/ctor to determine if it is safe or not.
1519    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1520    // may be safe, depending on what the function/ctor does.
1521    return false;
1522  }
1523  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1524    const NamedDecl *RhsField = ME->getMemberDecl();
1525
1526    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1527      // The member expression points to a static data member.
1528      assert(VD->isStaticDataMember() &&
1529             "Member points to non-static data member!");
1530      (void)VD;
1531      return false;
1532    }
1533
1534    if (isa<EnumConstantDecl>(RhsField)) {
1535      // The member expression points to an enum.
1536      return false;
1537    }
1538
1539    if (RhsField == LhsField) {
1540      // Initializing a field with itself. Throw a warning.
1541      // But wait; there are exceptions!
1542      // Exception #1:  The field may not belong to this record.
1543      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1544      const Expr *base = ME->getBase();
1545      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1546        // Even though the field matches, it does not belong to this record.
1547        return false;
1548      }
1549      // None of the exceptions triggered; return true to indicate an
1550      // uninitialized field was used.
1551      *L = ME->getMemberLoc();
1552      return true;
1553    }
1554  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1555    // sizeof/alignof doesn't reference contents, do not warn.
1556    return false;
1557  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1558    // address-of doesn't reference contents (the pointer may be dereferenced
1559    // in the same expression but it would be rare; and weird).
1560    if (UOE->getOpcode() == UO_AddrOf)
1561      return false;
1562  }
1563  for (Stmt::const_child_range it = S->children(); it; ++it) {
1564    if (!*it) {
1565      // An expression such as 'member(arg ?: "")' may trigger this.
1566      continue;
1567    }
1568    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1569      return true;
1570  }
1571  return false;
1572}
1573
1574MemInitResult
1575Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1576                             unsigned NumArgs, SourceLocation IdLoc,
1577                             SourceLocation LParenLoc,
1578                             SourceLocation RParenLoc) {
1579  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1580  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1581  assert((DirectMember || IndirectMember) &&
1582         "Member must be a FieldDecl or IndirectFieldDecl");
1583
1584  if (Member->isInvalidDecl())
1585    return true;
1586
1587  // Diagnose value-uses of fields to initialize themselves, e.g.
1588  //   foo(foo)
1589  // where foo is not also a parameter to the constructor.
1590  // TODO: implement -Wuninitialized and fold this into that framework.
1591  for (unsigned i = 0; i < NumArgs; ++i) {
1592    SourceLocation L;
1593    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1594      // FIXME: Return true in the case when other fields are used before being
1595      // uninitialized. For example, let this field be the i'th field. When
1596      // initializing the i'th field, throw a warning if any of the >= i'th
1597      // fields are used, as they are not yet initialized.
1598      // Right now we are only handling the case where the i'th field uses
1599      // itself in its initializer.
1600      Diag(L, diag::warn_field_is_uninit);
1601    }
1602  }
1603
1604  bool HasDependentArg = false;
1605  for (unsigned i = 0; i < NumArgs; i++)
1606    HasDependentArg |= Args[i]->isTypeDependent();
1607
1608  Expr *Init;
1609  if (Member->getType()->isDependentType() || HasDependentArg) {
1610    // Can't check initialization for a member of dependent type or when
1611    // any of the arguments are type-dependent expressions.
1612    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1613                                       RParenLoc);
1614
1615    DiscardCleanupsInEvaluationContext();
1616  } else {
1617    // Initialize the member.
1618    InitializedEntity MemberEntity =
1619      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1620                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1621    InitializationKind Kind =
1622      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1623
1624    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1625
1626    ExprResult MemberInit =
1627      InitSeq.Perform(*this, MemberEntity, Kind,
1628                      MultiExprArg(*this, Args, NumArgs), 0);
1629    if (MemberInit.isInvalid())
1630      return true;
1631
1632    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1633
1634    // C++0x [class.base.init]p7:
1635    //   The initialization of each base and member constitutes a
1636    //   full-expression.
1637    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1638    if (MemberInit.isInvalid())
1639      return true;
1640
1641    // If we are in a dependent context, template instantiation will
1642    // perform this type-checking again. Just save the arguments that we
1643    // received in a ParenListExpr.
1644    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1645    // of the information that we have about the member
1646    // initializer. However, deconstructing the ASTs is a dicey process,
1647    // and this approach is far more likely to get the corner cases right.
1648    if (CurContext->isDependentContext())
1649      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1650                                               RParenLoc);
1651    else
1652      Init = MemberInit.get();
1653  }
1654
1655  if (DirectMember) {
1656    return new (Context) CXXCtorInitializer(Context, DirectMember,
1657                                                    IdLoc, LParenLoc, Init,
1658                                                    RParenLoc);
1659  } else {
1660    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1661                                                    IdLoc, LParenLoc, Init,
1662                                                    RParenLoc);
1663  }
1664}
1665
1666MemInitResult
1667Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1668                                 Expr **Args, unsigned NumArgs,
1669                                 SourceLocation NameLoc,
1670                                 SourceLocation LParenLoc,
1671                                 SourceLocation RParenLoc,
1672                                 CXXRecordDecl *ClassDecl) {
1673  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1674  if (!LangOpts.CPlusPlus0x)
1675    return Diag(Loc, diag::err_delegation_0x_only)
1676      << TInfo->getTypeLoc().getLocalSourceRange();
1677
1678  // Initialize the object.
1679  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1680                                     QualType(ClassDecl->getTypeForDecl(), 0));
1681  InitializationKind Kind =
1682    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1683
1684  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1685
1686  ExprResult DelegationInit =
1687    InitSeq.Perform(*this, DelegationEntity, Kind,
1688                    MultiExprArg(*this, Args, NumArgs), 0);
1689  if (DelegationInit.isInvalid())
1690    return true;
1691
1692  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1693  CXXConstructorDecl *Constructor
1694    = ConExpr->getConstructor();
1695  assert(Constructor && "Delegating constructor with no target?");
1696
1697  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1698
1699  // C++0x [class.base.init]p7:
1700  //   The initialization of each base and member constitutes a
1701  //   full-expression.
1702  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1703  if (DelegationInit.isInvalid())
1704    return true;
1705
1706  // If we are in a dependent context, template instantiation will
1707  // perform this type-checking again. Just save the arguments that we
1708  // received in a ParenListExpr.
1709  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1710  // of the information that we have about the base
1711  // initializer. However, deconstructing the ASTs is a dicey process,
1712  // and this approach is far more likely to get the corner cases right.
1713  if (CurContext->isDependentContext()) {
1714    ExprResult Init
1715      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1716                                          NumArgs, RParenLoc));
1717    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1718                                            Constructor, Init.takeAs<Expr>(),
1719                                            RParenLoc);
1720  }
1721
1722  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1723                                          DelegationInit.takeAs<Expr>(),
1724                                          RParenLoc);
1725}
1726
1727MemInitResult
1728Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1729                           Expr **Args, unsigned NumArgs,
1730                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1731                           CXXRecordDecl *ClassDecl,
1732                           SourceLocation EllipsisLoc) {
1733  bool HasDependentArg = false;
1734  for (unsigned i = 0; i < NumArgs; i++)
1735    HasDependentArg |= Args[i]->isTypeDependent();
1736
1737  SourceLocation BaseLoc
1738    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1739
1740  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1741    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1742             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1743
1744  // C++ [class.base.init]p2:
1745  //   [...] Unless the mem-initializer-id names a nonstatic data
1746  //   member of the constructor's class or a direct or virtual base
1747  //   of that class, the mem-initializer is ill-formed. A
1748  //   mem-initializer-list can initialize a base class using any
1749  //   name that denotes that base class type.
1750  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1751
1752  if (EllipsisLoc.isValid()) {
1753    // This is a pack expansion.
1754    if (!BaseType->containsUnexpandedParameterPack())  {
1755      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1756        << SourceRange(BaseLoc, RParenLoc);
1757
1758      EllipsisLoc = SourceLocation();
1759    }
1760  } else {
1761    // Check for any unexpanded parameter packs.
1762    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1763      return true;
1764
1765    for (unsigned I = 0; I != NumArgs; ++I)
1766      if (DiagnoseUnexpandedParameterPack(Args[I]))
1767        return true;
1768  }
1769
1770  // Check for direct and virtual base classes.
1771  const CXXBaseSpecifier *DirectBaseSpec = 0;
1772  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1773  if (!Dependent) {
1774    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1775                                       BaseType))
1776      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1777                                        LParenLoc, RParenLoc, ClassDecl);
1778
1779    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1780                        VirtualBaseSpec);
1781
1782    // C++ [base.class.init]p2:
1783    // Unless the mem-initializer-id names a nonstatic data member of the
1784    // constructor's class or a direct or virtual base of that class, the
1785    // mem-initializer is ill-formed.
1786    if (!DirectBaseSpec && !VirtualBaseSpec) {
1787      // If the class has any dependent bases, then it's possible that
1788      // one of those types will resolve to the same type as
1789      // BaseType. Therefore, just treat this as a dependent base
1790      // class initialization.  FIXME: Should we try to check the
1791      // initialization anyway? It seems odd.
1792      if (ClassDecl->hasAnyDependentBases())
1793        Dependent = true;
1794      else
1795        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1796          << BaseType << Context.getTypeDeclType(ClassDecl)
1797          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1798    }
1799  }
1800
1801  if (Dependent) {
1802    // Can't check initialization for a base of dependent type or when
1803    // any of the arguments are type-dependent expressions.
1804    ExprResult BaseInit
1805      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1806                                          RParenLoc));
1807
1808    DiscardCleanupsInEvaluationContext();
1809
1810    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1811                                                    /*IsVirtual=*/false,
1812                                                    LParenLoc,
1813                                                    BaseInit.takeAs<Expr>(),
1814                                                    RParenLoc,
1815                                                    EllipsisLoc);
1816  }
1817
1818  // C++ [base.class.init]p2:
1819  //   If a mem-initializer-id is ambiguous because it designates both
1820  //   a direct non-virtual base class and an inherited virtual base
1821  //   class, the mem-initializer is ill-formed.
1822  if (DirectBaseSpec && VirtualBaseSpec)
1823    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1824      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1825
1826  CXXBaseSpecifier *BaseSpec
1827    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1828  if (!BaseSpec)
1829    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1830
1831  // Initialize the base.
1832  InitializedEntity BaseEntity =
1833    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1834  InitializationKind Kind =
1835    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1836
1837  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1838
1839  ExprResult BaseInit =
1840    InitSeq.Perform(*this, BaseEntity, Kind,
1841                    MultiExprArg(*this, Args, NumArgs), 0);
1842  if (BaseInit.isInvalid())
1843    return true;
1844
1845  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1846
1847  // C++0x [class.base.init]p7:
1848  //   The initialization of each base and member constitutes a
1849  //   full-expression.
1850  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1851  if (BaseInit.isInvalid())
1852    return true;
1853
1854  // If we are in a dependent context, template instantiation will
1855  // perform this type-checking again. Just save the arguments that we
1856  // received in a ParenListExpr.
1857  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1858  // of the information that we have about the base
1859  // initializer. However, deconstructing the ASTs is a dicey process,
1860  // and this approach is far more likely to get the corner cases right.
1861  if (CurContext->isDependentContext()) {
1862    ExprResult Init
1863      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1864                                          RParenLoc));
1865    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1866                                                    BaseSpec->isVirtual(),
1867                                                    LParenLoc,
1868                                                    Init.takeAs<Expr>(),
1869                                                    RParenLoc,
1870                                                    EllipsisLoc);
1871  }
1872
1873  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1874                                                  BaseSpec->isVirtual(),
1875                                                  LParenLoc,
1876                                                  BaseInit.takeAs<Expr>(),
1877                                                  RParenLoc,
1878                                                  EllipsisLoc);
1879}
1880
1881/// ImplicitInitializerKind - How an implicit base or member initializer should
1882/// initialize its base or member.
1883enum ImplicitInitializerKind {
1884  IIK_Default,
1885  IIK_Copy,
1886  IIK_Move
1887};
1888
1889static bool
1890BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1891                             ImplicitInitializerKind ImplicitInitKind,
1892                             CXXBaseSpecifier *BaseSpec,
1893                             bool IsInheritedVirtualBase,
1894                             CXXCtorInitializer *&CXXBaseInit) {
1895  InitializedEntity InitEntity
1896    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1897                                        IsInheritedVirtualBase);
1898
1899  ExprResult BaseInit;
1900
1901  switch (ImplicitInitKind) {
1902  case IIK_Default: {
1903    InitializationKind InitKind
1904      = InitializationKind::CreateDefault(Constructor->getLocation());
1905    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1906    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1907                               MultiExprArg(SemaRef, 0, 0));
1908    break;
1909  }
1910
1911  case IIK_Copy: {
1912    ParmVarDecl *Param = Constructor->getParamDecl(0);
1913    QualType ParamType = Param->getType().getNonReferenceType();
1914
1915    Expr *CopyCtorArg =
1916      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1917                          Constructor->getLocation(), ParamType,
1918                          VK_LValue, 0);
1919
1920    // Cast to the base class to avoid ambiguities.
1921    QualType ArgTy =
1922      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1923                                       ParamType.getQualifiers());
1924
1925    CXXCastPath BasePath;
1926    BasePath.push_back(BaseSpec);
1927    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1928                                            CK_UncheckedDerivedToBase,
1929                                            VK_LValue, &BasePath).take();
1930
1931    InitializationKind InitKind
1932      = InitializationKind::CreateDirect(Constructor->getLocation(),
1933                                         SourceLocation(), SourceLocation());
1934    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1935                                   &CopyCtorArg, 1);
1936    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1937                               MultiExprArg(&CopyCtorArg, 1));
1938    break;
1939  }
1940
1941  case IIK_Move:
1942    assert(false && "Unhandled initializer kind!");
1943  }
1944
1945  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1946  if (BaseInit.isInvalid())
1947    return true;
1948
1949  CXXBaseInit =
1950    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1951               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1952                                                        SourceLocation()),
1953                                             BaseSpec->isVirtual(),
1954                                             SourceLocation(),
1955                                             BaseInit.takeAs<Expr>(),
1956                                             SourceLocation(),
1957                                             SourceLocation());
1958
1959  return false;
1960}
1961
1962static bool
1963BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1964                               ImplicitInitializerKind ImplicitInitKind,
1965                               FieldDecl *Field,
1966                               CXXCtorInitializer *&CXXMemberInit) {
1967  if (Field->isInvalidDecl())
1968    return true;
1969
1970  SourceLocation Loc = Constructor->getLocation();
1971
1972  if (ImplicitInitKind == IIK_Copy) {
1973    ParmVarDecl *Param = Constructor->getParamDecl(0);
1974    QualType ParamType = Param->getType().getNonReferenceType();
1975
1976    // Suppress copying zero-width bitfields.
1977    if (const Expr *Width = Field->getBitWidth())
1978      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1979        return false;
1980
1981    Expr *MemberExprBase =
1982      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1983                          Loc, ParamType, VK_LValue, 0);
1984
1985    // Build a reference to this field within the parameter.
1986    CXXScopeSpec SS;
1987    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1988                              Sema::LookupMemberName);
1989    MemberLookup.addDecl(Field, AS_public);
1990    MemberLookup.resolveKind();
1991    ExprResult CopyCtorArg
1992      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1993                                         ParamType, Loc,
1994                                         /*IsArrow=*/false,
1995                                         SS,
1996                                         /*FirstQualifierInScope=*/0,
1997                                         MemberLookup,
1998                                         /*TemplateArgs=*/0);
1999    if (CopyCtorArg.isInvalid())
2000      return true;
2001
2002    // When the field we are copying is an array, create index variables for
2003    // each dimension of the array. We use these index variables to subscript
2004    // the source array, and other clients (e.g., CodeGen) will perform the
2005    // necessary iteration with these index variables.
2006    llvm::SmallVector<VarDecl *, 4> IndexVariables;
2007    QualType BaseType = Field->getType();
2008    QualType SizeType = SemaRef.Context.getSizeType();
2009    while (const ConstantArrayType *Array
2010                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2011      // Create the iteration variable for this array index.
2012      IdentifierInfo *IterationVarName = 0;
2013      {
2014        llvm::SmallString<8> Str;
2015        llvm::raw_svector_ostream OS(Str);
2016        OS << "__i" << IndexVariables.size();
2017        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2018      }
2019      VarDecl *IterationVar
2020        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2021                          IterationVarName, SizeType,
2022                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2023                          SC_None, SC_None);
2024      IndexVariables.push_back(IterationVar);
2025
2026      // Create a reference to the iteration variable.
2027      ExprResult IterationVarRef
2028        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2029      assert(!IterationVarRef.isInvalid() &&
2030             "Reference to invented variable cannot fail!");
2031
2032      // Subscript the array with this iteration variable.
2033      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2034                                                            Loc,
2035                                                        IterationVarRef.take(),
2036                                                            Loc);
2037      if (CopyCtorArg.isInvalid())
2038        return true;
2039
2040      BaseType = Array->getElementType();
2041    }
2042
2043    // Construct the entity that we will be initializing. For an array, this
2044    // will be first element in the array, which may require several levels
2045    // of array-subscript entities.
2046    llvm::SmallVector<InitializedEntity, 4> Entities;
2047    Entities.reserve(1 + IndexVariables.size());
2048    Entities.push_back(InitializedEntity::InitializeMember(Field));
2049    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2050      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2051                                                              0,
2052                                                              Entities.back()));
2053
2054    // Direct-initialize to use the copy constructor.
2055    InitializationKind InitKind =
2056      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2057
2058    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2059    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2060                                   &CopyCtorArgE, 1);
2061
2062    ExprResult MemberInit
2063      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2064                        MultiExprArg(&CopyCtorArgE, 1));
2065    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2066    if (MemberInit.isInvalid())
2067      return true;
2068
2069    CXXMemberInit
2070      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2071                                           MemberInit.takeAs<Expr>(), Loc,
2072                                           IndexVariables.data(),
2073                                           IndexVariables.size());
2074    return false;
2075  }
2076
2077  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2078
2079  QualType FieldBaseElementType =
2080    SemaRef.Context.getBaseElementType(Field->getType());
2081
2082  if (FieldBaseElementType->isRecordType()) {
2083    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2084    InitializationKind InitKind =
2085      InitializationKind::CreateDefault(Loc);
2086
2087    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2088    ExprResult MemberInit =
2089      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2090
2091    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2092    if (MemberInit.isInvalid())
2093      return true;
2094
2095    CXXMemberInit =
2096      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2097                                                       Field, Loc, Loc,
2098                                                       MemberInit.get(),
2099                                                       Loc);
2100    return false;
2101  }
2102
2103  if (!Field->getParent()->isUnion()) {
2104    if (FieldBaseElementType->isReferenceType()) {
2105      SemaRef.Diag(Constructor->getLocation(),
2106                   diag::err_uninitialized_member_in_ctor)
2107      << (int)Constructor->isImplicit()
2108      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2109      << 0 << Field->getDeclName();
2110      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2111      return true;
2112    }
2113
2114    if (FieldBaseElementType.isConstQualified()) {
2115      SemaRef.Diag(Constructor->getLocation(),
2116                   diag::err_uninitialized_member_in_ctor)
2117      << (int)Constructor->isImplicit()
2118      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2119      << 1 << Field->getDeclName();
2120      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2121      return true;
2122    }
2123  }
2124
2125  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2126      FieldBaseElementType->isObjCRetainableType() &&
2127      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2128      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2129    // Instant objects:
2130    //   Default-initialize Objective-C pointers to NULL.
2131    CXXMemberInit
2132      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2133                                                 Loc, Loc,
2134                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2135                                                 Loc);
2136    return false;
2137  }
2138
2139  // Nothing to initialize.
2140  CXXMemberInit = 0;
2141  return false;
2142}
2143
2144namespace {
2145struct BaseAndFieldInfo {
2146  Sema &S;
2147  CXXConstructorDecl *Ctor;
2148  bool AnyErrorsInInits;
2149  ImplicitInitializerKind IIK;
2150  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2151  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2152
2153  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2154    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2155    // FIXME: Handle implicit move constructors.
2156    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2157      IIK = IIK_Copy;
2158    else
2159      IIK = IIK_Default;
2160  }
2161};
2162}
2163
2164static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2165                                    FieldDecl *Top, FieldDecl *Field) {
2166
2167  // Overwhelmingly common case: we have a direct initializer for this field.
2168  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2169    Info.AllToInit.push_back(Init);
2170    return false;
2171  }
2172
2173  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2174  // has a brace-or-equal-initializer, the entity is initialized as specified
2175  // in [dcl.init].
2176  if (Field->hasInClassInitializer()) {
2177    Info.AllToInit.push_back(
2178      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2179                                               SourceLocation(),
2180                                               SourceLocation(), 0,
2181                                               SourceLocation()));
2182    return false;
2183  }
2184
2185  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2186    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2187    assert(FieldClassType && "anonymous struct/union without record type");
2188    CXXRecordDecl *FieldClassDecl
2189      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2190
2191    // Even though union members never have non-trivial default
2192    // constructions in C++03, we still build member initializers for aggregate
2193    // record types which can be union members, and C++0x allows non-trivial
2194    // default constructors for union members, so we ensure that only one
2195    // member is initialized for these.
2196    if (FieldClassDecl->isUnion()) {
2197      // First check for an explicit initializer for one field.
2198      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2199           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2200        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2201          Info.AllToInit.push_back(Init);
2202
2203          // Once we've initialized a field of an anonymous union, the union
2204          // field in the class is also initialized, so exit immediately.
2205          return false;
2206        } else if ((*FA)->isAnonymousStructOrUnion()) {
2207          if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2208            return true;
2209        }
2210      }
2211
2212      // Fallthrough and construct a default initializer for the union as
2213      // a whole, which can call its default constructor if such a thing exists
2214      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2215      // behavior going forward with C++0x, when anonymous unions there are
2216      // finalized, we should revisit this.
2217    } else {
2218      // For structs, we simply descend through to initialize all members where
2219      // necessary.
2220      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2221           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2222        if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2223          return true;
2224      }
2225    }
2226  }
2227
2228  // Don't try to build an implicit initializer if there were semantic
2229  // errors in any of the initializers (and therefore we might be
2230  // missing some that the user actually wrote).
2231  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2232    return false;
2233
2234  CXXCtorInitializer *Init = 0;
2235  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2236    return true;
2237
2238  if (Init)
2239    Info.AllToInit.push_back(Init);
2240
2241  return false;
2242}
2243
2244bool
2245Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2246                               CXXCtorInitializer *Initializer) {
2247  assert(Initializer->isDelegatingInitializer());
2248  Constructor->setNumCtorInitializers(1);
2249  CXXCtorInitializer **initializer =
2250    new (Context) CXXCtorInitializer*[1];
2251  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2252  Constructor->setCtorInitializers(initializer);
2253
2254  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2255    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2256    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2257  }
2258
2259  DelegatingCtorDecls.push_back(Constructor);
2260
2261  return false;
2262}
2263
2264bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2265                               CXXCtorInitializer **Initializers,
2266                               unsigned NumInitializers,
2267                               bool AnyErrors) {
2268  if (Constructor->getDeclContext()->isDependentContext()) {
2269    // Just store the initializers as written, they will be checked during
2270    // instantiation.
2271    if (NumInitializers > 0) {
2272      Constructor->setNumCtorInitializers(NumInitializers);
2273      CXXCtorInitializer **baseOrMemberInitializers =
2274        new (Context) CXXCtorInitializer*[NumInitializers];
2275      memcpy(baseOrMemberInitializers, Initializers,
2276             NumInitializers * sizeof(CXXCtorInitializer*));
2277      Constructor->setCtorInitializers(baseOrMemberInitializers);
2278    }
2279
2280    return false;
2281  }
2282
2283  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2284
2285  // We need to build the initializer AST according to order of construction
2286  // and not what user specified in the Initializers list.
2287  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2288  if (!ClassDecl)
2289    return true;
2290
2291  bool HadError = false;
2292
2293  for (unsigned i = 0; i < NumInitializers; i++) {
2294    CXXCtorInitializer *Member = Initializers[i];
2295
2296    if (Member->isBaseInitializer())
2297      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2298    else
2299      Info.AllBaseFields[Member->getAnyMember()] = Member;
2300  }
2301
2302  // Keep track of the direct virtual bases.
2303  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2304  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2305       E = ClassDecl->bases_end(); I != E; ++I) {
2306    if (I->isVirtual())
2307      DirectVBases.insert(I);
2308  }
2309
2310  // Push virtual bases before others.
2311  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2312       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2313
2314    if (CXXCtorInitializer *Value
2315        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2316      Info.AllToInit.push_back(Value);
2317    } else if (!AnyErrors) {
2318      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2319      CXXCtorInitializer *CXXBaseInit;
2320      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2321                                       VBase, IsInheritedVirtualBase,
2322                                       CXXBaseInit)) {
2323        HadError = true;
2324        continue;
2325      }
2326
2327      Info.AllToInit.push_back(CXXBaseInit);
2328    }
2329  }
2330
2331  // Non-virtual bases.
2332  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2333       E = ClassDecl->bases_end(); Base != E; ++Base) {
2334    // Virtuals are in the virtual base list and already constructed.
2335    if (Base->isVirtual())
2336      continue;
2337
2338    if (CXXCtorInitializer *Value
2339          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2340      Info.AllToInit.push_back(Value);
2341    } else if (!AnyErrors) {
2342      CXXCtorInitializer *CXXBaseInit;
2343      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2344                                       Base, /*IsInheritedVirtualBase=*/false,
2345                                       CXXBaseInit)) {
2346        HadError = true;
2347        continue;
2348      }
2349
2350      Info.AllToInit.push_back(CXXBaseInit);
2351    }
2352  }
2353
2354  // Fields.
2355  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2356       E = ClassDecl->field_end(); Field != E; ++Field) {
2357    if ((*Field)->getType()->isIncompleteArrayType()) {
2358      assert(ClassDecl->hasFlexibleArrayMember() &&
2359             "Incomplete array type is not valid");
2360      continue;
2361    }
2362    if (CollectFieldInitializer(*this, Info, *Field, *Field))
2363      HadError = true;
2364  }
2365
2366  NumInitializers = Info.AllToInit.size();
2367  if (NumInitializers > 0) {
2368    Constructor->setNumCtorInitializers(NumInitializers);
2369    CXXCtorInitializer **baseOrMemberInitializers =
2370      new (Context) CXXCtorInitializer*[NumInitializers];
2371    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2372           NumInitializers * sizeof(CXXCtorInitializer*));
2373    Constructor->setCtorInitializers(baseOrMemberInitializers);
2374
2375    // Constructors implicitly reference the base and member
2376    // destructors.
2377    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2378                                           Constructor->getParent());
2379  }
2380
2381  return HadError;
2382}
2383
2384static void *GetKeyForTopLevelField(FieldDecl *Field) {
2385  // For anonymous unions, use the class declaration as the key.
2386  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2387    if (RT->getDecl()->isAnonymousStructOrUnion())
2388      return static_cast<void *>(RT->getDecl());
2389  }
2390  return static_cast<void *>(Field);
2391}
2392
2393static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2394  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2395}
2396
2397static void *GetKeyForMember(ASTContext &Context,
2398                             CXXCtorInitializer *Member) {
2399  if (!Member->isAnyMemberInitializer())
2400    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2401
2402  // For fields injected into the class via declaration of an anonymous union,
2403  // use its anonymous union class declaration as the unique key.
2404  FieldDecl *Field = Member->getAnyMember();
2405
2406  // If the field is a member of an anonymous struct or union, our key
2407  // is the anonymous record decl that's a direct child of the class.
2408  RecordDecl *RD = Field->getParent();
2409  if (RD->isAnonymousStructOrUnion()) {
2410    while (true) {
2411      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2412      if (Parent->isAnonymousStructOrUnion())
2413        RD = Parent;
2414      else
2415        break;
2416    }
2417
2418    return static_cast<void *>(RD);
2419  }
2420
2421  return static_cast<void *>(Field);
2422}
2423
2424static void
2425DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2426                                  const CXXConstructorDecl *Constructor,
2427                                  CXXCtorInitializer **Inits,
2428                                  unsigned NumInits) {
2429  if (Constructor->getDeclContext()->isDependentContext())
2430    return;
2431
2432  // Don't check initializers order unless the warning is enabled at the
2433  // location of at least one initializer.
2434  bool ShouldCheckOrder = false;
2435  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2436    CXXCtorInitializer *Init = Inits[InitIndex];
2437    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2438                                         Init->getSourceLocation())
2439          != Diagnostic::Ignored) {
2440      ShouldCheckOrder = true;
2441      break;
2442    }
2443  }
2444  if (!ShouldCheckOrder)
2445    return;
2446
2447  // Build the list of bases and members in the order that they'll
2448  // actually be initialized.  The explicit initializers should be in
2449  // this same order but may be missing things.
2450  llvm::SmallVector<const void*, 32> IdealInitKeys;
2451
2452  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2453
2454  // 1. Virtual bases.
2455  for (CXXRecordDecl::base_class_const_iterator VBase =
2456       ClassDecl->vbases_begin(),
2457       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2458    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2459
2460  // 2. Non-virtual bases.
2461  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2462       E = ClassDecl->bases_end(); Base != E; ++Base) {
2463    if (Base->isVirtual())
2464      continue;
2465    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2466  }
2467
2468  // 3. Direct fields.
2469  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2470       E = ClassDecl->field_end(); Field != E; ++Field)
2471    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2472
2473  unsigned NumIdealInits = IdealInitKeys.size();
2474  unsigned IdealIndex = 0;
2475
2476  CXXCtorInitializer *PrevInit = 0;
2477  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2478    CXXCtorInitializer *Init = Inits[InitIndex];
2479    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2480
2481    // Scan forward to try to find this initializer in the idealized
2482    // initializers list.
2483    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2484      if (InitKey == IdealInitKeys[IdealIndex])
2485        break;
2486
2487    // If we didn't find this initializer, it must be because we
2488    // scanned past it on a previous iteration.  That can only
2489    // happen if we're out of order;  emit a warning.
2490    if (IdealIndex == NumIdealInits && PrevInit) {
2491      Sema::SemaDiagnosticBuilder D =
2492        SemaRef.Diag(PrevInit->getSourceLocation(),
2493                     diag::warn_initializer_out_of_order);
2494
2495      if (PrevInit->isAnyMemberInitializer())
2496        D << 0 << PrevInit->getAnyMember()->getDeclName();
2497      else
2498        D << 1 << PrevInit->getBaseClassInfo()->getType();
2499
2500      if (Init->isAnyMemberInitializer())
2501        D << 0 << Init->getAnyMember()->getDeclName();
2502      else
2503        D << 1 << Init->getBaseClassInfo()->getType();
2504
2505      // Move back to the initializer's location in the ideal list.
2506      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2507        if (InitKey == IdealInitKeys[IdealIndex])
2508          break;
2509
2510      assert(IdealIndex != NumIdealInits &&
2511             "initializer not found in initializer list");
2512    }
2513
2514    PrevInit = Init;
2515  }
2516}
2517
2518namespace {
2519bool CheckRedundantInit(Sema &S,
2520                        CXXCtorInitializer *Init,
2521                        CXXCtorInitializer *&PrevInit) {
2522  if (!PrevInit) {
2523    PrevInit = Init;
2524    return false;
2525  }
2526
2527  if (FieldDecl *Field = Init->getMember())
2528    S.Diag(Init->getSourceLocation(),
2529           diag::err_multiple_mem_initialization)
2530      << Field->getDeclName()
2531      << Init->getSourceRange();
2532  else {
2533    const Type *BaseClass = Init->getBaseClass();
2534    assert(BaseClass && "neither field nor base");
2535    S.Diag(Init->getSourceLocation(),
2536           diag::err_multiple_base_initialization)
2537      << QualType(BaseClass, 0)
2538      << Init->getSourceRange();
2539  }
2540  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2541    << 0 << PrevInit->getSourceRange();
2542
2543  return true;
2544}
2545
2546typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2547typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2548
2549bool CheckRedundantUnionInit(Sema &S,
2550                             CXXCtorInitializer *Init,
2551                             RedundantUnionMap &Unions) {
2552  FieldDecl *Field = Init->getAnyMember();
2553  RecordDecl *Parent = Field->getParent();
2554  if (!Parent->isAnonymousStructOrUnion())
2555    return false;
2556
2557  NamedDecl *Child = Field;
2558  do {
2559    if (Parent->isUnion()) {
2560      UnionEntry &En = Unions[Parent];
2561      if (En.first && En.first != Child) {
2562        S.Diag(Init->getSourceLocation(),
2563               diag::err_multiple_mem_union_initialization)
2564          << Field->getDeclName()
2565          << Init->getSourceRange();
2566        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2567          << 0 << En.second->getSourceRange();
2568        return true;
2569      } else if (!En.first) {
2570        En.first = Child;
2571        En.second = Init;
2572      }
2573    }
2574
2575    Child = Parent;
2576    Parent = cast<RecordDecl>(Parent->getDeclContext());
2577  } while (Parent->isAnonymousStructOrUnion());
2578
2579  return false;
2580}
2581}
2582
2583/// ActOnMemInitializers - Handle the member initializers for a constructor.
2584void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2585                                SourceLocation ColonLoc,
2586                                MemInitTy **meminits, unsigned NumMemInits,
2587                                bool AnyErrors) {
2588  if (!ConstructorDecl)
2589    return;
2590
2591  AdjustDeclIfTemplate(ConstructorDecl);
2592
2593  CXXConstructorDecl *Constructor
2594    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2595
2596  if (!Constructor) {
2597    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2598    return;
2599  }
2600
2601  CXXCtorInitializer **MemInits =
2602    reinterpret_cast<CXXCtorInitializer **>(meminits);
2603
2604  // Mapping for the duplicate initializers check.
2605  // For member initializers, this is keyed with a FieldDecl*.
2606  // For base initializers, this is keyed with a Type*.
2607  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2608
2609  // Mapping for the inconsistent anonymous-union initializers check.
2610  RedundantUnionMap MemberUnions;
2611
2612  bool HadError = false;
2613  for (unsigned i = 0; i < NumMemInits; i++) {
2614    CXXCtorInitializer *Init = MemInits[i];
2615
2616    // Set the source order index.
2617    Init->setSourceOrder(i);
2618
2619    if (Init->isAnyMemberInitializer()) {
2620      FieldDecl *Field = Init->getAnyMember();
2621      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2622          CheckRedundantUnionInit(*this, Init, MemberUnions))
2623        HadError = true;
2624    } else if (Init->isBaseInitializer()) {
2625      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2626      if (CheckRedundantInit(*this, Init, Members[Key]))
2627        HadError = true;
2628    } else {
2629      assert(Init->isDelegatingInitializer());
2630      // This must be the only initializer
2631      if (i != 0 || NumMemInits > 1) {
2632        Diag(MemInits[0]->getSourceLocation(),
2633             diag::err_delegating_initializer_alone)
2634          << MemInits[0]->getSourceRange();
2635        HadError = true;
2636        // We will treat this as being the only initializer.
2637      }
2638      SetDelegatingInitializer(Constructor, MemInits[i]);
2639      // Return immediately as the initializer is set.
2640      return;
2641    }
2642  }
2643
2644  if (HadError)
2645    return;
2646
2647  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2648
2649  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2650}
2651
2652void
2653Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2654                                             CXXRecordDecl *ClassDecl) {
2655  // Ignore dependent contexts.
2656  if (ClassDecl->isDependentContext())
2657    return;
2658
2659  // FIXME: all the access-control diagnostics are positioned on the
2660  // field/base declaration.  That's probably good; that said, the
2661  // user might reasonably want to know why the destructor is being
2662  // emitted, and we currently don't say.
2663
2664  // Non-static data members.
2665  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2666       E = ClassDecl->field_end(); I != E; ++I) {
2667    FieldDecl *Field = *I;
2668    if (Field->isInvalidDecl())
2669      continue;
2670    QualType FieldType = Context.getBaseElementType(Field->getType());
2671
2672    const RecordType* RT = FieldType->getAs<RecordType>();
2673    if (!RT)
2674      continue;
2675
2676    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2677    if (FieldClassDecl->isInvalidDecl())
2678      continue;
2679    if (FieldClassDecl->hasTrivialDestructor())
2680      continue;
2681
2682    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2683    assert(Dtor && "No dtor found for FieldClassDecl!");
2684    CheckDestructorAccess(Field->getLocation(), Dtor,
2685                          PDiag(diag::err_access_dtor_field)
2686                            << Field->getDeclName()
2687                            << FieldType);
2688
2689    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2690  }
2691
2692  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2693
2694  // Bases.
2695  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2696       E = ClassDecl->bases_end(); Base != E; ++Base) {
2697    // Bases are always records in a well-formed non-dependent class.
2698    const RecordType *RT = Base->getType()->getAs<RecordType>();
2699
2700    // Remember direct virtual bases.
2701    if (Base->isVirtual())
2702      DirectVirtualBases.insert(RT);
2703
2704    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2705    // If our base class is invalid, we probably can't get its dtor anyway.
2706    if (BaseClassDecl->isInvalidDecl())
2707      continue;
2708    // Ignore trivial destructors.
2709    if (BaseClassDecl->hasTrivialDestructor())
2710      continue;
2711
2712    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2713    assert(Dtor && "No dtor found for BaseClassDecl!");
2714
2715    // FIXME: caret should be on the start of the class name
2716    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2717                          PDiag(diag::err_access_dtor_base)
2718                            << Base->getType()
2719                            << Base->getSourceRange());
2720
2721    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2722  }
2723
2724  // Virtual bases.
2725  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2726       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2727
2728    // Bases are always records in a well-formed non-dependent class.
2729    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2730
2731    // Ignore direct virtual bases.
2732    if (DirectVirtualBases.count(RT))
2733      continue;
2734
2735    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2736    // If our base class is invalid, we probably can't get its dtor anyway.
2737    if (BaseClassDecl->isInvalidDecl())
2738      continue;
2739    // Ignore trivial destructors.
2740    if (BaseClassDecl->hasTrivialDestructor())
2741      continue;
2742
2743    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2744    assert(Dtor && "No dtor found for BaseClassDecl!");
2745    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2746                          PDiag(diag::err_access_dtor_vbase)
2747                            << VBase->getType());
2748
2749    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2750  }
2751}
2752
2753void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2754  if (!CDtorDecl)
2755    return;
2756
2757  if (CXXConstructorDecl *Constructor
2758      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2759    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2760}
2761
2762bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2763                                  unsigned DiagID, AbstractDiagSelID SelID) {
2764  if (SelID == -1)
2765    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2766  else
2767    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2768}
2769
2770bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2771                                  const PartialDiagnostic &PD) {
2772  if (!getLangOptions().CPlusPlus)
2773    return false;
2774
2775  if (const ArrayType *AT = Context.getAsArrayType(T))
2776    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2777
2778  if (const PointerType *PT = T->getAs<PointerType>()) {
2779    // Find the innermost pointer type.
2780    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2781      PT = T;
2782
2783    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2784      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2785  }
2786
2787  const RecordType *RT = T->getAs<RecordType>();
2788  if (!RT)
2789    return false;
2790
2791  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2792
2793  // We can't answer whether something is abstract until it has a
2794  // definition.  If it's currently being defined, we'll walk back
2795  // over all the declarations when we have a full definition.
2796  const CXXRecordDecl *Def = RD->getDefinition();
2797  if (!Def || Def->isBeingDefined())
2798    return false;
2799
2800  if (!RD->isAbstract())
2801    return false;
2802
2803  Diag(Loc, PD) << RD->getDeclName();
2804  DiagnoseAbstractType(RD);
2805
2806  return true;
2807}
2808
2809void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2810  // Check if we've already emitted the list of pure virtual functions
2811  // for this class.
2812  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2813    return;
2814
2815  CXXFinalOverriderMap FinalOverriders;
2816  RD->getFinalOverriders(FinalOverriders);
2817
2818  // Keep a set of seen pure methods so we won't diagnose the same method
2819  // more than once.
2820  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2821
2822  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2823                                   MEnd = FinalOverriders.end();
2824       M != MEnd;
2825       ++M) {
2826    for (OverridingMethods::iterator SO = M->second.begin(),
2827                                  SOEnd = M->second.end();
2828         SO != SOEnd; ++SO) {
2829      // C++ [class.abstract]p4:
2830      //   A class is abstract if it contains or inherits at least one
2831      //   pure virtual function for which the final overrider is pure
2832      //   virtual.
2833
2834      //
2835      if (SO->second.size() != 1)
2836        continue;
2837
2838      if (!SO->second.front().Method->isPure())
2839        continue;
2840
2841      if (!SeenPureMethods.insert(SO->second.front().Method))
2842        continue;
2843
2844      Diag(SO->second.front().Method->getLocation(),
2845           diag::note_pure_virtual_function)
2846        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2847    }
2848  }
2849
2850  if (!PureVirtualClassDiagSet)
2851    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2852  PureVirtualClassDiagSet->insert(RD);
2853}
2854
2855namespace {
2856struct AbstractUsageInfo {
2857  Sema &S;
2858  CXXRecordDecl *Record;
2859  CanQualType AbstractType;
2860  bool Invalid;
2861
2862  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2863    : S(S), Record(Record),
2864      AbstractType(S.Context.getCanonicalType(
2865                   S.Context.getTypeDeclType(Record))),
2866      Invalid(false) {}
2867
2868  void DiagnoseAbstractType() {
2869    if (Invalid) return;
2870    S.DiagnoseAbstractType(Record);
2871    Invalid = true;
2872  }
2873
2874  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2875};
2876
2877struct CheckAbstractUsage {
2878  AbstractUsageInfo &Info;
2879  const NamedDecl *Ctx;
2880
2881  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2882    : Info(Info), Ctx(Ctx) {}
2883
2884  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2885    switch (TL.getTypeLocClass()) {
2886#define ABSTRACT_TYPELOC(CLASS, PARENT)
2887#define TYPELOC(CLASS, PARENT) \
2888    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2889#include "clang/AST/TypeLocNodes.def"
2890    }
2891  }
2892
2893  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2894    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2895    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2896      if (!TL.getArg(I))
2897        continue;
2898
2899      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2900      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2901    }
2902  }
2903
2904  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2905    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2906  }
2907
2908  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2909    // Visit the type parameters from a permissive context.
2910    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2911      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2912      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2913        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2914          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2915      // TODO: other template argument types?
2916    }
2917  }
2918
2919  // Visit pointee types from a permissive context.
2920#define CheckPolymorphic(Type) \
2921  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2922    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2923  }
2924  CheckPolymorphic(PointerTypeLoc)
2925  CheckPolymorphic(ReferenceTypeLoc)
2926  CheckPolymorphic(MemberPointerTypeLoc)
2927  CheckPolymorphic(BlockPointerTypeLoc)
2928
2929  /// Handle all the types we haven't given a more specific
2930  /// implementation for above.
2931  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2932    // Every other kind of type that we haven't called out already
2933    // that has an inner type is either (1) sugar or (2) contains that
2934    // inner type in some way as a subobject.
2935    if (TypeLoc Next = TL.getNextTypeLoc())
2936      return Visit(Next, Sel);
2937
2938    // If there's no inner type and we're in a permissive context,
2939    // don't diagnose.
2940    if (Sel == Sema::AbstractNone) return;
2941
2942    // Check whether the type matches the abstract type.
2943    QualType T = TL.getType();
2944    if (T->isArrayType()) {
2945      Sel = Sema::AbstractArrayType;
2946      T = Info.S.Context.getBaseElementType(T);
2947    }
2948    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2949    if (CT != Info.AbstractType) return;
2950
2951    // It matched; do some magic.
2952    if (Sel == Sema::AbstractArrayType) {
2953      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2954        << T << TL.getSourceRange();
2955    } else {
2956      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2957        << Sel << T << TL.getSourceRange();
2958    }
2959    Info.DiagnoseAbstractType();
2960  }
2961};
2962
2963void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2964                                  Sema::AbstractDiagSelID Sel) {
2965  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2966}
2967
2968}
2969
2970/// Check for invalid uses of an abstract type in a method declaration.
2971static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2972                                    CXXMethodDecl *MD) {
2973  // No need to do the check on definitions, which require that
2974  // the return/param types be complete.
2975  if (MD->doesThisDeclarationHaveABody())
2976    return;
2977
2978  // For safety's sake, just ignore it if we don't have type source
2979  // information.  This should never happen for non-implicit methods,
2980  // but...
2981  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2982    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2983}
2984
2985/// Check for invalid uses of an abstract type within a class definition.
2986static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2987                                    CXXRecordDecl *RD) {
2988  for (CXXRecordDecl::decl_iterator
2989         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2990    Decl *D = *I;
2991    if (D->isImplicit()) continue;
2992
2993    // Methods and method templates.
2994    if (isa<CXXMethodDecl>(D)) {
2995      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2996    } else if (isa<FunctionTemplateDecl>(D)) {
2997      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2998      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2999
3000    // Fields and static variables.
3001    } else if (isa<FieldDecl>(D)) {
3002      FieldDecl *FD = cast<FieldDecl>(D);
3003      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3004        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3005    } else if (isa<VarDecl>(D)) {
3006      VarDecl *VD = cast<VarDecl>(D);
3007      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3008        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3009
3010    // Nested classes and class templates.
3011    } else if (isa<CXXRecordDecl>(D)) {
3012      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3013    } else if (isa<ClassTemplateDecl>(D)) {
3014      CheckAbstractClassUsage(Info,
3015                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3016    }
3017  }
3018}
3019
3020/// \brief Perform semantic checks on a class definition that has been
3021/// completing, introducing implicitly-declared members, checking for
3022/// abstract types, etc.
3023void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3024  if (!Record)
3025    return;
3026
3027  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3028    AbstractUsageInfo Info(*this, Record);
3029    CheckAbstractClassUsage(Info, Record);
3030  }
3031
3032  // If this is not an aggregate type and has no user-declared constructor,
3033  // complain about any non-static data members of reference or const scalar
3034  // type, since they will never get initializers.
3035  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3036      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3037    bool Complained = false;
3038    for (RecordDecl::field_iterator F = Record->field_begin(),
3039                                 FEnd = Record->field_end();
3040         F != FEnd; ++F) {
3041      if (F->hasInClassInitializer())
3042        continue;
3043
3044      if (F->getType()->isReferenceType() ||
3045          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3046        if (!Complained) {
3047          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3048            << Record->getTagKind() << Record;
3049          Complained = true;
3050        }
3051
3052        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3053          << F->getType()->isReferenceType()
3054          << F->getDeclName();
3055      }
3056    }
3057  }
3058
3059  if (Record->isDynamicClass() && !Record->isDependentType())
3060    DynamicClasses.push_back(Record);
3061
3062  if (Record->getIdentifier()) {
3063    // C++ [class.mem]p13:
3064    //   If T is the name of a class, then each of the following shall have a
3065    //   name different from T:
3066    //     - every member of every anonymous union that is a member of class T.
3067    //
3068    // C++ [class.mem]p14:
3069    //   In addition, if class T has a user-declared constructor (12.1), every
3070    //   non-static data member of class T shall have a name different from T.
3071    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3072         R.first != R.second; ++R.first) {
3073      NamedDecl *D = *R.first;
3074      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3075          isa<IndirectFieldDecl>(D)) {
3076        Diag(D->getLocation(), diag::err_member_name_of_class)
3077          << D->getDeclName();
3078        break;
3079      }
3080    }
3081  }
3082
3083  // Warn if the class has virtual methods but non-virtual public destructor.
3084  if (Record->isPolymorphic() && !Record->isDependentType()) {
3085    CXXDestructorDecl *dtor = Record->getDestructor();
3086    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3087      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3088           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3089  }
3090
3091  // See if a method overloads virtual methods in a base
3092  /// class without overriding any.
3093  if (!Record->isDependentType()) {
3094    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3095                                     MEnd = Record->method_end();
3096         M != MEnd; ++M) {
3097      if (!(*M)->isStatic())
3098        DiagnoseHiddenVirtualMethods(Record, *M);
3099    }
3100  }
3101
3102  // Declare inherited constructors. We do this eagerly here because:
3103  // - The standard requires an eager diagnostic for conflicting inherited
3104  //   constructors from different classes.
3105  // - The lazy declaration of the other implicit constructors is so as to not
3106  //   waste space and performance on classes that are not meant to be
3107  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3108  //   have inherited constructors.
3109  DeclareInheritedConstructors(Record);
3110
3111  if (!Record->isDependentType())
3112    CheckExplicitlyDefaultedMethods(Record);
3113}
3114
3115void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3116  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3117                                      ME = Record->method_end();
3118       MI != ME; ++MI) {
3119    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3120      switch (getSpecialMember(*MI)) {
3121      case CXXDefaultConstructor:
3122        CheckExplicitlyDefaultedDefaultConstructor(
3123                                                  cast<CXXConstructorDecl>(*MI));
3124        break;
3125
3126      case CXXDestructor:
3127        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3128        break;
3129
3130      case CXXCopyConstructor:
3131        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3132        break;
3133
3134      case CXXCopyAssignment:
3135        CheckExplicitlyDefaultedCopyAssignment(*MI);
3136        break;
3137
3138      case CXXMoveConstructor:
3139      case CXXMoveAssignment:
3140        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3141        break;
3142
3143      default:
3144        // FIXME: Do moves once they exist
3145        llvm_unreachable("non-special member explicitly defaulted!");
3146      }
3147    }
3148  }
3149
3150}
3151
3152void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3153  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3154
3155  // Whether this was the first-declared instance of the constructor.
3156  // This affects whether we implicitly add an exception spec (and, eventually,
3157  // constexpr). It is also ill-formed to explicitly default a constructor such
3158  // that it would be deleted. (C++0x [decl.fct.def.default])
3159  bool First = CD == CD->getCanonicalDecl();
3160
3161  bool HadError = false;
3162  if (CD->getNumParams() != 0) {
3163    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3164      << CD->getSourceRange();
3165    HadError = true;
3166  }
3167
3168  ImplicitExceptionSpecification Spec
3169    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3170  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3171  if (EPI.ExceptionSpecType == EST_Delayed) {
3172    // Exception specification depends on some deferred part of the class. We'll
3173    // try again when the class's definition has been fully processed.
3174    return;
3175  }
3176  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3177                          *ExceptionType = Context.getFunctionType(
3178                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3179
3180  if (CtorType->hasExceptionSpec()) {
3181    if (CheckEquivalentExceptionSpec(
3182          PDiag(diag::err_incorrect_defaulted_exception_spec)
3183            << CXXDefaultConstructor,
3184          PDiag(),
3185          ExceptionType, SourceLocation(),
3186          CtorType, CD->getLocation())) {
3187      HadError = true;
3188    }
3189  } else if (First) {
3190    // We set the declaration to have the computed exception spec here.
3191    // We know there are no parameters.
3192    EPI.ExtInfo = CtorType->getExtInfo();
3193    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3194  }
3195
3196  if (HadError) {
3197    CD->setInvalidDecl();
3198    return;
3199  }
3200
3201  if (ShouldDeleteDefaultConstructor(CD)) {
3202    if (First) {
3203      CD->setDeletedAsWritten();
3204    } else {
3205      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3206        << CXXDefaultConstructor;
3207      CD->setInvalidDecl();
3208    }
3209  }
3210}
3211
3212void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3213  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3214
3215  // Whether this was the first-declared instance of the constructor.
3216  bool First = CD == CD->getCanonicalDecl();
3217
3218  bool HadError = false;
3219  if (CD->getNumParams() != 1) {
3220    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3221      << CD->getSourceRange();
3222    HadError = true;
3223  }
3224
3225  ImplicitExceptionSpecification Spec(Context);
3226  bool Const;
3227  llvm::tie(Spec, Const) =
3228    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3229
3230  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3231  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3232                          *ExceptionType = Context.getFunctionType(
3233                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3234
3235  // Check for parameter type matching.
3236  // This is a copy ctor so we know it's a cv-qualified reference to T.
3237  QualType ArgType = CtorType->getArgType(0);
3238  if (ArgType->getPointeeType().isVolatileQualified()) {
3239    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3240    HadError = true;
3241  }
3242  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3243    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3244    HadError = true;
3245  }
3246
3247  if (CtorType->hasExceptionSpec()) {
3248    if (CheckEquivalentExceptionSpec(
3249          PDiag(diag::err_incorrect_defaulted_exception_spec)
3250            << CXXCopyConstructor,
3251          PDiag(),
3252          ExceptionType, SourceLocation(),
3253          CtorType, CD->getLocation())) {
3254      HadError = true;
3255    }
3256  } else if (First) {
3257    // We set the declaration to have the computed exception spec here.
3258    // We duplicate the one parameter type.
3259    EPI.ExtInfo = CtorType->getExtInfo();
3260    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3261  }
3262
3263  if (HadError) {
3264    CD->setInvalidDecl();
3265    return;
3266  }
3267
3268  if (ShouldDeleteCopyConstructor(CD)) {
3269    if (First) {
3270      CD->setDeletedAsWritten();
3271    } else {
3272      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3273        << CXXCopyConstructor;
3274      CD->setInvalidDecl();
3275    }
3276  }
3277}
3278
3279void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3280  assert(MD->isExplicitlyDefaulted());
3281
3282  // Whether this was the first-declared instance of the operator
3283  bool First = MD == MD->getCanonicalDecl();
3284
3285  bool HadError = false;
3286  if (MD->getNumParams() != 1) {
3287    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3288      << MD->getSourceRange();
3289    HadError = true;
3290  }
3291
3292  QualType ReturnType =
3293    MD->getType()->getAs<FunctionType>()->getResultType();
3294  if (!ReturnType->isLValueReferenceType() ||
3295      !Context.hasSameType(
3296        Context.getCanonicalType(ReturnType->getPointeeType()),
3297        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3298    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3299    HadError = true;
3300  }
3301
3302  ImplicitExceptionSpecification Spec(Context);
3303  bool Const;
3304  llvm::tie(Spec, Const) =
3305    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3306
3307  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3308  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3309                          *ExceptionType = Context.getFunctionType(
3310                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3311
3312  QualType ArgType = OperType->getArgType(0);
3313  if (!ArgType->isReferenceType()) {
3314    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3315    HadError = true;
3316  } else {
3317    if (ArgType->getPointeeType().isVolatileQualified()) {
3318      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3319      HadError = true;
3320    }
3321    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3322      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3323      HadError = true;
3324    }
3325  }
3326
3327  if (OperType->getTypeQuals()) {
3328    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3329    HadError = true;
3330  }
3331
3332  if (OperType->hasExceptionSpec()) {
3333    if (CheckEquivalentExceptionSpec(
3334          PDiag(diag::err_incorrect_defaulted_exception_spec)
3335            << CXXCopyAssignment,
3336          PDiag(),
3337          ExceptionType, SourceLocation(),
3338          OperType, MD->getLocation())) {
3339      HadError = true;
3340    }
3341  } else if (First) {
3342    // We set the declaration to have the computed exception spec here.
3343    // We duplicate the one parameter type.
3344    EPI.RefQualifier = OperType->getRefQualifier();
3345    EPI.ExtInfo = OperType->getExtInfo();
3346    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3347  }
3348
3349  if (HadError) {
3350    MD->setInvalidDecl();
3351    return;
3352  }
3353
3354  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3355    if (First) {
3356      MD->setDeletedAsWritten();
3357    } else {
3358      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3359        << CXXCopyAssignment;
3360      MD->setInvalidDecl();
3361    }
3362  }
3363}
3364
3365void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3366  assert(DD->isExplicitlyDefaulted());
3367
3368  // Whether this was the first-declared instance of the destructor.
3369  bool First = DD == DD->getCanonicalDecl();
3370
3371  ImplicitExceptionSpecification Spec
3372    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3373  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3374  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3375                          *ExceptionType = Context.getFunctionType(
3376                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3377
3378  if (DtorType->hasExceptionSpec()) {
3379    if (CheckEquivalentExceptionSpec(
3380          PDiag(diag::err_incorrect_defaulted_exception_spec)
3381            << CXXDestructor,
3382          PDiag(),
3383          ExceptionType, SourceLocation(),
3384          DtorType, DD->getLocation())) {
3385      DD->setInvalidDecl();
3386      return;
3387    }
3388  } else if (First) {
3389    // We set the declaration to have the computed exception spec here.
3390    // There are no parameters.
3391    EPI.ExtInfo = DtorType->getExtInfo();
3392    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3393  }
3394
3395  if (ShouldDeleteDestructor(DD)) {
3396    if (First) {
3397      DD->setDeletedAsWritten();
3398    } else {
3399      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3400        << CXXDestructor;
3401      DD->setInvalidDecl();
3402    }
3403  }
3404}
3405
3406bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3407  CXXRecordDecl *RD = CD->getParent();
3408  assert(!RD->isDependentType() && "do deletion after instantiation");
3409  if (!LangOpts.CPlusPlus0x)
3410    return false;
3411
3412  SourceLocation Loc = CD->getLocation();
3413
3414  // Do access control from the constructor
3415  ContextRAII CtorContext(*this, CD);
3416
3417  bool Union = RD->isUnion();
3418  bool AllConst = true;
3419
3420  // We do this because we should never actually use an anonymous
3421  // union's constructor.
3422  if (Union && RD->isAnonymousStructOrUnion())
3423    return false;
3424
3425  // FIXME: We should put some diagnostic logic right into this function.
3426
3427  // C++0x [class.ctor]/5
3428  //    A defaulted default constructor for class X is defined as deleted if:
3429
3430  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3431                                          BE = RD->bases_end();
3432       BI != BE; ++BI) {
3433    // We'll handle this one later
3434    if (BI->isVirtual())
3435      continue;
3436
3437    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3438    assert(BaseDecl && "base isn't a CXXRecordDecl");
3439
3440    // -- any [direct base class] has a type with a destructor that is
3441    //    deleted or inaccessible from the defaulted default constructor
3442    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3443    if (BaseDtor->isDeleted())
3444      return true;
3445    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3446        AR_accessible)
3447      return true;
3448
3449    // -- any [direct base class either] has no default constructor or
3450    //    overload resolution as applied to [its] default constructor
3451    //    results in an ambiguity or in a function that is deleted or
3452    //    inaccessible from the defaulted default constructor
3453    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3454    if (!BaseDefault || BaseDefault->isDeleted())
3455      return true;
3456
3457    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3458                               PDiag()) != AR_accessible)
3459      return true;
3460  }
3461
3462  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3463                                          BE = RD->vbases_end();
3464       BI != BE; ++BI) {
3465    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3466    assert(BaseDecl && "base isn't a CXXRecordDecl");
3467
3468    // -- any [virtual base class] has a type with a destructor that is
3469    //    delete or inaccessible from the defaulted default constructor
3470    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3471    if (BaseDtor->isDeleted())
3472      return true;
3473    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3474        AR_accessible)
3475      return true;
3476
3477    // -- any [virtual base class either] has no default constructor or
3478    //    overload resolution as applied to [its] default constructor
3479    //    results in an ambiguity or in a function that is deleted or
3480    //    inaccessible from the defaulted default constructor
3481    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3482    if (!BaseDefault || BaseDefault->isDeleted())
3483      return true;
3484
3485    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3486                               PDiag()) != AR_accessible)
3487      return true;
3488  }
3489
3490  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3491                                     FE = RD->field_end();
3492       FI != FE; ++FI) {
3493    if (FI->isInvalidDecl())
3494      continue;
3495
3496    QualType FieldType = Context.getBaseElementType(FI->getType());
3497    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3498
3499    // -- any non-static data member with no brace-or-equal-initializer is of
3500    //    reference type
3501    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3502      return true;
3503
3504    // -- X is a union and all its variant members are of const-qualified type
3505    //    (or array thereof)
3506    if (Union && !FieldType.isConstQualified())
3507      AllConst = false;
3508
3509    if (FieldRecord) {
3510      // -- X is a union-like class that has a variant member with a non-trivial
3511      //    default constructor
3512      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3513        return true;
3514
3515      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3516      if (FieldDtor->isDeleted())
3517        return true;
3518      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3519          AR_accessible)
3520        return true;
3521
3522      // -- any non-variant non-static data member of const-qualified type (or
3523      //    array thereof) with no brace-or-equal-initializer does not have a
3524      //    user-provided default constructor
3525      if (FieldType.isConstQualified() &&
3526          !FI->hasInClassInitializer() &&
3527          !FieldRecord->hasUserProvidedDefaultConstructor())
3528        return true;
3529
3530      if (!Union && FieldRecord->isUnion() &&
3531          FieldRecord->isAnonymousStructOrUnion()) {
3532        // We're okay to reuse AllConst here since we only care about the
3533        // value otherwise if we're in a union.
3534        AllConst = true;
3535
3536        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3537                                           UE = FieldRecord->field_end();
3538             UI != UE; ++UI) {
3539          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3540          CXXRecordDecl *UnionFieldRecord =
3541            UnionFieldType->getAsCXXRecordDecl();
3542
3543          if (!UnionFieldType.isConstQualified())
3544            AllConst = false;
3545
3546          if (UnionFieldRecord &&
3547              !UnionFieldRecord->hasTrivialDefaultConstructor())
3548            return true;
3549        }
3550
3551        if (AllConst)
3552          return true;
3553
3554        // Don't try to initialize the anonymous union
3555        // This is technically non-conformant, but sanity demands it.
3556        continue;
3557      }
3558
3559      // -- any non-static data member with no brace-or-equal-initializer has
3560      //    class type M (or array thereof) and either M has no default
3561      //    constructor or overload resolution as applied to M's default
3562      //    constructor results in an ambiguity or in a function that is deleted
3563      //    or inaccessible from the defaulted default constructor.
3564      if (!FI->hasInClassInitializer()) {
3565        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3566        if (!FieldDefault || FieldDefault->isDeleted())
3567          return true;
3568        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3569                                   PDiag()) != AR_accessible)
3570          return true;
3571      }
3572    } else if (!Union && FieldType.isConstQualified() &&
3573               !FI->hasInClassInitializer()) {
3574      // -- any non-variant non-static data member of const-qualified type (or
3575      //    array thereof) with no brace-or-equal-initializer does not have a
3576      //    user-provided default constructor
3577      return true;
3578    }
3579  }
3580
3581  if (Union && AllConst)
3582    return true;
3583
3584  return false;
3585}
3586
3587bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3588  CXXRecordDecl *RD = CD->getParent();
3589  assert(!RD->isDependentType() && "do deletion after instantiation");
3590  if (!LangOpts.CPlusPlus0x)
3591    return false;
3592
3593  SourceLocation Loc = CD->getLocation();
3594
3595  // Do access control from the constructor
3596  ContextRAII CtorContext(*this, CD);
3597
3598  bool Union = RD->isUnion();
3599
3600  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3601         "copy assignment arg has no pointee type");
3602  unsigned ArgQuals =
3603    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3604      Qualifiers::Const : 0;
3605
3606  // We do this because we should never actually use an anonymous
3607  // union's constructor.
3608  if (Union && RD->isAnonymousStructOrUnion())
3609    return false;
3610
3611  // FIXME: We should put some diagnostic logic right into this function.
3612
3613  // C++0x [class.copy]/11
3614  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3615
3616  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3617                                          BE = RD->bases_end();
3618       BI != BE; ++BI) {
3619    // We'll handle this one later
3620    if (BI->isVirtual())
3621      continue;
3622
3623    QualType BaseType = BI->getType();
3624    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3625    assert(BaseDecl && "base isn't a CXXRecordDecl");
3626
3627    // -- any [direct base class] of a type with a destructor that is deleted or
3628    //    inaccessible from the defaulted constructor
3629    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3630    if (BaseDtor->isDeleted())
3631      return true;
3632    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3633        AR_accessible)
3634      return true;
3635
3636    // -- a [direct base class] B that cannot be [copied] because overload
3637    //    resolution, as applied to B's [copy] constructor, results in an
3638    //    ambiguity or a function that is deleted or inaccessible from the
3639    //    defaulted constructor
3640    CXXConstructorDecl *BaseCtor = LookupCopyConstructor(BaseDecl, ArgQuals);
3641    if (!BaseCtor || BaseCtor->isDeleted())
3642      return true;
3643    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3644        AR_accessible)
3645      return true;
3646  }
3647
3648  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3649                                          BE = RD->vbases_end();
3650       BI != BE; ++BI) {
3651    QualType BaseType = BI->getType();
3652    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3653    assert(BaseDecl && "base isn't a CXXRecordDecl");
3654
3655    // -- any [virtual base class] of a type with a destructor that is deleted or
3656    //    inaccessible from the defaulted constructor
3657    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3658    if (BaseDtor->isDeleted())
3659      return true;
3660    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3661        AR_accessible)
3662      return true;
3663
3664    // -- a [virtual base class] B that cannot be [copied] because overload
3665    //    resolution, as applied to B's [copy] constructor, results in an
3666    //    ambiguity or a function that is deleted or inaccessible from the
3667    //    defaulted constructor
3668    CXXConstructorDecl *BaseCtor = LookupCopyConstructor(BaseDecl, ArgQuals);
3669    if (!BaseCtor || BaseCtor->isDeleted())
3670      return true;
3671    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3672        AR_accessible)
3673      return true;
3674  }
3675
3676  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3677                                     FE = RD->field_end();
3678       FI != FE; ++FI) {
3679    QualType FieldType = Context.getBaseElementType(FI->getType());
3680
3681    // -- for a copy constructor, a non-static data member of rvalue reference
3682    //    type
3683    if (FieldType->isRValueReferenceType())
3684      return true;
3685
3686    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3687
3688    if (FieldRecord) {
3689      // This is an anonymous union
3690      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3691        // Anonymous unions inside unions do not variant members create
3692        if (!Union) {
3693          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3694                                             UE = FieldRecord->field_end();
3695               UI != UE; ++UI) {
3696            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3697            CXXRecordDecl *UnionFieldRecord =
3698              UnionFieldType->getAsCXXRecordDecl();
3699
3700            // -- a variant member with a non-trivial [copy] constructor and X
3701            //    is a union-like class
3702            if (UnionFieldRecord &&
3703                !UnionFieldRecord->hasTrivialCopyConstructor())
3704              return true;
3705          }
3706        }
3707
3708        // Don't try to initalize an anonymous union
3709        continue;
3710      } else {
3711         // -- a variant member with a non-trivial [copy] constructor and X is a
3712         //    union-like class
3713        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3714          return true;
3715
3716        // -- any [non-static data member] of a type with a destructor that is
3717        //    deleted or inaccessible from the defaulted constructor
3718        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3719        if (FieldDtor->isDeleted())
3720          return true;
3721        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3722            AR_accessible)
3723          return true;
3724      }
3725
3726    // -- a [non-static data member of class type (or array thereof)] B that
3727    //    cannot be [copied] because overload resolution, as applied to B's
3728    //    [copy] constructor, results in an ambiguity or a function that is
3729    //    deleted or inaccessible from the defaulted constructor
3730      CXXConstructorDecl *FieldCtor = LookupCopyConstructor(FieldRecord,
3731                                                            ArgQuals);
3732      if (!FieldCtor || FieldCtor->isDeleted())
3733        return true;
3734      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3735                                 PDiag()) != AR_accessible)
3736        return true;
3737    }
3738  }
3739
3740  return false;
3741}
3742
3743bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3744  CXXRecordDecl *RD = MD->getParent();
3745  assert(!RD->isDependentType() && "do deletion after instantiation");
3746  if (!LangOpts.CPlusPlus0x)
3747    return false;
3748
3749  SourceLocation Loc = MD->getLocation();
3750
3751  // Do access control from the constructor
3752  ContextRAII MethodContext(*this, MD);
3753
3754  bool Union = RD->isUnion();
3755
3756  bool ConstArg =
3757    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3758
3759  // We do this because we should never actually use an anonymous
3760  // union's constructor.
3761  if (Union && RD->isAnonymousStructOrUnion())
3762    return false;
3763
3764  DeclarationName OperatorName =
3765    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3766  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3767  R.suppressDiagnostics();
3768
3769  // FIXME: We should put some diagnostic logic right into this function.
3770
3771  // C++0x [class.copy]/11
3772  //    A defaulted [copy] assignment operator for class X is defined as deleted
3773  //    if X has:
3774
3775  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3776                                          BE = RD->bases_end();
3777       BI != BE; ++BI) {
3778    // We'll handle this one later
3779    if (BI->isVirtual())
3780      continue;
3781
3782    QualType BaseType = BI->getType();
3783    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3784    assert(BaseDecl && "base isn't a CXXRecordDecl");
3785
3786    // -- a [direct base class] B that cannot be [copied] because overload
3787    //    resolution, as applied to B's [copy] assignment operator, results in
3788    //    an ambiguity or a function that is deleted or inaccessible from the
3789    //    assignment operator
3790
3791    LookupQualifiedName(R, BaseDecl, false);
3792
3793    // Filter out any result that isn't a copy-assignment operator.
3794    LookupResult::Filter F = R.makeFilter();
3795    while (F.hasNext()) {
3796      NamedDecl *D = F.next();
3797      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3798        if (Method->isCopyAssignmentOperator())
3799          continue;
3800
3801      F.erase();
3802    }
3803    F.done();
3804
3805    // Build a fake argument expression
3806    QualType ArgType = BaseType;
3807    QualType ThisType = BaseType;
3808    if (ConstArg)
3809      ArgType.addConst();
3810    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3811                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3812                   };
3813
3814    OverloadCandidateSet OCS((Loc));
3815    OverloadCandidateSet::iterator Best;
3816
3817    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3818
3819    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3820        OR_Success)
3821      return true;
3822  }
3823
3824  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3825                                          BE = RD->vbases_end();
3826       BI != BE; ++BI) {
3827    QualType BaseType = BI->getType();
3828    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3829    assert(BaseDecl && "base isn't a CXXRecordDecl");
3830
3831    // -- a [virtual base class] B that cannot be [copied] because overload
3832    //    resolution, as applied to B's [copy] assignment operator, results in
3833    //    an ambiguity or a function that is deleted or inaccessible from the
3834    //    assignment operator
3835
3836    LookupQualifiedName(R, BaseDecl, false);
3837
3838    // Filter out any result that isn't a copy-assignment operator.
3839    LookupResult::Filter F = R.makeFilter();
3840    while (F.hasNext()) {
3841      NamedDecl *D = F.next();
3842      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3843        if (Method->isCopyAssignmentOperator())
3844          continue;
3845
3846      F.erase();
3847    }
3848    F.done();
3849
3850    // Build a fake argument expression
3851    QualType ArgType = BaseType;
3852    QualType ThisType = BaseType;
3853    if (ConstArg)
3854      ArgType.addConst();
3855    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3856                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3857                   };
3858
3859    OverloadCandidateSet OCS((Loc));
3860    OverloadCandidateSet::iterator Best;
3861
3862    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3863
3864    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3865        OR_Success)
3866      return true;
3867  }
3868
3869  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3870                                     FE = RD->field_end();
3871       FI != FE; ++FI) {
3872    QualType FieldType = Context.getBaseElementType(FI->getType());
3873
3874    // -- a non-static data member of reference type
3875    if (FieldType->isReferenceType())
3876      return true;
3877
3878    // -- a non-static data member of const non-class type (or array thereof)
3879    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3880      return true;
3881
3882    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3883
3884    if (FieldRecord) {
3885      // This is an anonymous union
3886      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3887        // Anonymous unions inside unions do not variant members create
3888        if (!Union) {
3889          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3890                                             UE = FieldRecord->field_end();
3891               UI != UE; ++UI) {
3892            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3893            CXXRecordDecl *UnionFieldRecord =
3894              UnionFieldType->getAsCXXRecordDecl();
3895
3896            // -- a variant member with a non-trivial [copy] assignment operator
3897            //    and X is a union-like class
3898            if (UnionFieldRecord &&
3899                !UnionFieldRecord->hasTrivialCopyAssignment())
3900              return true;
3901          }
3902        }
3903
3904        // Don't try to initalize an anonymous union
3905        continue;
3906      // -- a variant member with a non-trivial [copy] assignment operator
3907      //    and X is a union-like class
3908      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3909          return true;
3910      }
3911
3912      LookupQualifiedName(R, FieldRecord, false);
3913
3914      // Filter out any result that isn't a copy-assignment operator.
3915      LookupResult::Filter F = R.makeFilter();
3916      while (F.hasNext()) {
3917        NamedDecl *D = F.next();
3918        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3919          if (Method->isCopyAssignmentOperator())
3920            continue;
3921
3922        F.erase();
3923      }
3924      F.done();
3925
3926      // Build a fake argument expression
3927      QualType ArgType = FieldType;
3928      QualType ThisType = FieldType;
3929      if (ConstArg)
3930        ArgType.addConst();
3931      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3932                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3933                     };
3934
3935      OverloadCandidateSet OCS((Loc));
3936      OverloadCandidateSet::iterator Best;
3937
3938      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3939
3940      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3941          OR_Success)
3942        return true;
3943    }
3944  }
3945
3946  return false;
3947}
3948
3949bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3950  CXXRecordDecl *RD = DD->getParent();
3951  assert(!RD->isDependentType() && "do deletion after instantiation");
3952  if (!LangOpts.CPlusPlus0x)
3953    return false;
3954
3955  SourceLocation Loc = DD->getLocation();
3956
3957  // Do access control from the destructor
3958  ContextRAII CtorContext(*this, DD);
3959
3960  bool Union = RD->isUnion();
3961
3962  // We do this because we should never actually use an anonymous
3963  // union's destructor.
3964  if (Union && RD->isAnonymousStructOrUnion())
3965    return false;
3966
3967  // C++0x [class.dtor]p5
3968  //    A defaulted destructor for a class X is defined as deleted if:
3969  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3970                                          BE = RD->bases_end();
3971       BI != BE; ++BI) {
3972    // We'll handle this one later
3973    if (BI->isVirtual())
3974      continue;
3975
3976    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3977    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3978    assert(BaseDtor && "base has no destructor");
3979
3980    // -- any direct or virtual base class has a deleted destructor or
3981    //    a destructor that is inaccessible from the defaulted destructor
3982    if (BaseDtor->isDeleted())
3983      return true;
3984    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3985        AR_accessible)
3986      return true;
3987  }
3988
3989  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3990                                          BE = RD->vbases_end();
3991       BI != BE; ++BI) {
3992    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3993    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3994    assert(BaseDtor && "base has no destructor");
3995
3996    // -- any direct or virtual base class has a deleted destructor or
3997    //    a destructor that is inaccessible from the defaulted destructor
3998    if (BaseDtor->isDeleted())
3999      return true;
4000    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4001        AR_accessible)
4002      return true;
4003  }
4004
4005  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4006                                     FE = RD->field_end();
4007       FI != FE; ++FI) {
4008    QualType FieldType = Context.getBaseElementType(FI->getType());
4009    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4010    if (FieldRecord) {
4011      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4012         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4013                                            UE = FieldRecord->field_end();
4014              UI != UE; ++UI) {
4015           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4016           CXXRecordDecl *UnionFieldRecord =
4017             UnionFieldType->getAsCXXRecordDecl();
4018
4019           // -- X is a union-like class that has a variant member with a non-
4020           //    trivial destructor.
4021           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4022             return true;
4023         }
4024      // Technically we are supposed to do this next check unconditionally.
4025      // But that makes absolutely no sense.
4026      } else {
4027        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4028
4029        // -- any of the non-static data members has class type M (or array
4030        //    thereof) and M has a deleted destructor or a destructor that is
4031        //    inaccessible from the defaulted destructor
4032        if (FieldDtor->isDeleted())
4033          return true;
4034        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4035          AR_accessible)
4036        return true;
4037
4038        // -- X is a union-like class that has a variant member with a non-
4039        //    trivial destructor.
4040        if (Union && !FieldDtor->isTrivial())
4041          return true;
4042      }
4043    }
4044  }
4045
4046  if (DD->isVirtual()) {
4047    FunctionDecl *OperatorDelete = 0;
4048    DeclarationName Name =
4049      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4050    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4051          false))
4052      return true;
4053  }
4054
4055
4056  return false;
4057}
4058
4059/// \brief Data used with FindHiddenVirtualMethod
4060namespace {
4061  struct FindHiddenVirtualMethodData {
4062    Sema *S;
4063    CXXMethodDecl *Method;
4064    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4065    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4066  };
4067}
4068
4069/// \brief Member lookup function that determines whether a given C++
4070/// method overloads virtual methods in a base class without overriding any,
4071/// to be used with CXXRecordDecl::lookupInBases().
4072static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4073                                    CXXBasePath &Path,
4074                                    void *UserData) {
4075  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4076
4077  FindHiddenVirtualMethodData &Data
4078    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4079
4080  DeclarationName Name = Data.Method->getDeclName();
4081  assert(Name.getNameKind() == DeclarationName::Identifier);
4082
4083  bool foundSameNameMethod = false;
4084  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4085  for (Path.Decls = BaseRecord->lookup(Name);
4086       Path.Decls.first != Path.Decls.second;
4087       ++Path.Decls.first) {
4088    NamedDecl *D = *Path.Decls.first;
4089    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4090      MD = MD->getCanonicalDecl();
4091      foundSameNameMethod = true;
4092      // Interested only in hidden virtual methods.
4093      if (!MD->isVirtual())
4094        continue;
4095      // If the method we are checking overrides a method from its base
4096      // don't warn about the other overloaded methods.
4097      if (!Data.S->IsOverload(Data.Method, MD, false))
4098        return true;
4099      // Collect the overload only if its hidden.
4100      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4101        overloadedMethods.push_back(MD);
4102    }
4103  }
4104
4105  if (foundSameNameMethod)
4106    Data.OverloadedMethods.append(overloadedMethods.begin(),
4107                                   overloadedMethods.end());
4108  return foundSameNameMethod;
4109}
4110
4111/// \brief See if a method overloads virtual methods in a base class without
4112/// overriding any.
4113void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4114  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4115                               MD->getLocation()) == Diagnostic::Ignored)
4116    return;
4117  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4118    return;
4119
4120  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4121                     /*bool RecordPaths=*/false,
4122                     /*bool DetectVirtual=*/false);
4123  FindHiddenVirtualMethodData Data;
4124  Data.Method = MD;
4125  Data.S = this;
4126
4127  // Keep the base methods that were overriden or introduced in the subclass
4128  // by 'using' in a set. A base method not in this set is hidden.
4129  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4130       res.first != res.second; ++res.first) {
4131    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4132      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4133                                          E = MD->end_overridden_methods();
4134           I != E; ++I)
4135        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4136    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4137      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4138        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4139  }
4140
4141  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4142      !Data.OverloadedMethods.empty()) {
4143    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4144      << MD << (Data.OverloadedMethods.size() > 1);
4145
4146    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4147      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4148      Diag(overloadedMD->getLocation(),
4149           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4150    }
4151  }
4152}
4153
4154void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4155                                             Decl *TagDecl,
4156                                             SourceLocation LBrac,
4157                                             SourceLocation RBrac,
4158                                             AttributeList *AttrList) {
4159  if (!TagDecl)
4160    return;
4161
4162  AdjustDeclIfTemplate(TagDecl);
4163
4164  ActOnFields(S, RLoc, TagDecl,
4165              // strict aliasing violation!
4166              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4167              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4168
4169  CheckCompletedCXXClass(
4170                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4171}
4172
4173/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4174/// special functions, such as the default constructor, copy
4175/// constructor, or destructor, to the given C++ class (C++
4176/// [special]p1).  This routine can only be executed just before the
4177/// definition of the class is complete.
4178void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4179  if (!ClassDecl->hasUserDeclaredConstructor())
4180    ++ASTContext::NumImplicitDefaultConstructors;
4181
4182  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4183    ++ASTContext::NumImplicitCopyConstructors;
4184
4185  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4186    ++ASTContext::NumImplicitCopyAssignmentOperators;
4187
4188    // If we have a dynamic class, then the copy assignment operator may be
4189    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4190    // it shows up in the right place in the vtable and that we diagnose
4191    // problems with the implicit exception specification.
4192    if (ClassDecl->isDynamicClass())
4193      DeclareImplicitCopyAssignment(ClassDecl);
4194  }
4195
4196  if (!ClassDecl->hasUserDeclaredDestructor()) {
4197    ++ASTContext::NumImplicitDestructors;
4198
4199    // If we have a dynamic class, then the destructor may be virtual, so we
4200    // have to declare the destructor immediately. This ensures that, e.g., it
4201    // shows up in the right place in the vtable and that we diagnose problems
4202    // with the implicit exception specification.
4203    if (ClassDecl->isDynamicClass())
4204      DeclareImplicitDestructor(ClassDecl);
4205  }
4206}
4207
4208void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4209  if (!D)
4210    return;
4211
4212  int NumParamList = D->getNumTemplateParameterLists();
4213  for (int i = 0; i < NumParamList; i++) {
4214    TemplateParameterList* Params = D->getTemplateParameterList(i);
4215    for (TemplateParameterList::iterator Param = Params->begin(),
4216                                      ParamEnd = Params->end();
4217          Param != ParamEnd; ++Param) {
4218      NamedDecl *Named = cast<NamedDecl>(*Param);
4219      if (Named->getDeclName()) {
4220        S->AddDecl(Named);
4221        IdResolver.AddDecl(Named);
4222      }
4223    }
4224  }
4225}
4226
4227void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4228  if (!D)
4229    return;
4230
4231  TemplateParameterList *Params = 0;
4232  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4233    Params = Template->getTemplateParameters();
4234  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4235           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4236    Params = PartialSpec->getTemplateParameters();
4237  else
4238    return;
4239
4240  for (TemplateParameterList::iterator Param = Params->begin(),
4241                                    ParamEnd = Params->end();
4242       Param != ParamEnd; ++Param) {
4243    NamedDecl *Named = cast<NamedDecl>(*Param);
4244    if (Named->getDeclName()) {
4245      S->AddDecl(Named);
4246      IdResolver.AddDecl(Named);
4247    }
4248  }
4249}
4250
4251void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4252  if (!RecordD) return;
4253  AdjustDeclIfTemplate(RecordD);
4254  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4255  PushDeclContext(S, Record);
4256}
4257
4258void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4259  if (!RecordD) return;
4260  PopDeclContext();
4261}
4262
4263/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4264/// parsing a top-level (non-nested) C++ class, and we are now
4265/// parsing those parts of the given Method declaration that could
4266/// not be parsed earlier (C++ [class.mem]p2), such as default
4267/// arguments. This action should enter the scope of the given
4268/// Method declaration as if we had just parsed the qualified method
4269/// name. However, it should not bring the parameters into scope;
4270/// that will be performed by ActOnDelayedCXXMethodParameter.
4271void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4272}
4273
4274/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4275/// C++ method declaration. We're (re-)introducing the given
4276/// function parameter into scope for use in parsing later parts of
4277/// the method declaration. For example, we could see an
4278/// ActOnParamDefaultArgument event for this parameter.
4279void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4280  if (!ParamD)
4281    return;
4282
4283  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4284
4285  // If this parameter has an unparsed default argument, clear it out
4286  // to make way for the parsed default argument.
4287  if (Param->hasUnparsedDefaultArg())
4288    Param->setDefaultArg(0);
4289
4290  S->AddDecl(Param);
4291  if (Param->getDeclName())
4292    IdResolver.AddDecl(Param);
4293}
4294
4295/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4296/// processing the delayed method declaration for Method. The method
4297/// declaration is now considered finished. There may be a separate
4298/// ActOnStartOfFunctionDef action later (not necessarily
4299/// immediately!) for this method, if it was also defined inside the
4300/// class body.
4301void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4302  if (!MethodD)
4303    return;
4304
4305  AdjustDeclIfTemplate(MethodD);
4306
4307  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4308
4309  // Now that we have our default arguments, check the constructor
4310  // again. It could produce additional diagnostics or affect whether
4311  // the class has implicitly-declared destructors, among other
4312  // things.
4313  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4314    CheckConstructor(Constructor);
4315
4316  // Check the default arguments, which we may have added.
4317  if (!Method->isInvalidDecl())
4318    CheckCXXDefaultArguments(Method);
4319}
4320
4321/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4322/// the well-formedness of the constructor declarator @p D with type @p
4323/// R. If there are any errors in the declarator, this routine will
4324/// emit diagnostics and set the invalid bit to true.  In any case, the type
4325/// will be updated to reflect a well-formed type for the constructor and
4326/// returned.
4327QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4328                                          StorageClass &SC) {
4329  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4330
4331  // C++ [class.ctor]p3:
4332  //   A constructor shall not be virtual (10.3) or static (9.4). A
4333  //   constructor can be invoked for a const, volatile or const
4334  //   volatile object. A constructor shall not be declared const,
4335  //   volatile, or const volatile (9.3.2).
4336  if (isVirtual) {
4337    if (!D.isInvalidType())
4338      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4339        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4340        << SourceRange(D.getIdentifierLoc());
4341    D.setInvalidType();
4342  }
4343  if (SC == SC_Static) {
4344    if (!D.isInvalidType())
4345      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4346        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4347        << SourceRange(D.getIdentifierLoc());
4348    D.setInvalidType();
4349    SC = SC_None;
4350  }
4351
4352  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4353  if (FTI.TypeQuals != 0) {
4354    if (FTI.TypeQuals & Qualifiers::Const)
4355      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4356        << "const" << SourceRange(D.getIdentifierLoc());
4357    if (FTI.TypeQuals & Qualifiers::Volatile)
4358      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4359        << "volatile" << SourceRange(D.getIdentifierLoc());
4360    if (FTI.TypeQuals & Qualifiers::Restrict)
4361      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4362        << "restrict" << SourceRange(D.getIdentifierLoc());
4363    D.setInvalidType();
4364  }
4365
4366  // C++0x [class.ctor]p4:
4367  //   A constructor shall not be declared with a ref-qualifier.
4368  if (FTI.hasRefQualifier()) {
4369    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4370      << FTI.RefQualifierIsLValueRef
4371      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4372    D.setInvalidType();
4373  }
4374
4375  // Rebuild the function type "R" without any type qualifiers (in
4376  // case any of the errors above fired) and with "void" as the
4377  // return type, since constructors don't have return types.
4378  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4379  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4380    return R;
4381
4382  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4383  EPI.TypeQuals = 0;
4384  EPI.RefQualifier = RQ_None;
4385
4386  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4387                                 Proto->getNumArgs(), EPI);
4388}
4389
4390/// CheckConstructor - Checks a fully-formed constructor for
4391/// well-formedness, issuing any diagnostics required. Returns true if
4392/// the constructor declarator is invalid.
4393void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4394  CXXRecordDecl *ClassDecl
4395    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4396  if (!ClassDecl)
4397    return Constructor->setInvalidDecl();
4398
4399  // C++ [class.copy]p3:
4400  //   A declaration of a constructor for a class X is ill-formed if
4401  //   its first parameter is of type (optionally cv-qualified) X and
4402  //   either there are no other parameters or else all other
4403  //   parameters have default arguments.
4404  if (!Constructor->isInvalidDecl() &&
4405      ((Constructor->getNumParams() == 1) ||
4406       (Constructor->getNumParams() > 1 &&
4407        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4408      Constructor->getTemplateSpecializationKind()
4409                                              != TSK_ImplicitInstantiation) {
4410    QualType ParamType = Constructor->getParamDecl(0)->getType();
4411    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4412    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4413      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4414      const char *ConstRef
4415        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4416                                                        : " const &";
4417      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4418        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4419
4420      // FIXME: Rather that making the constructor invalid, we should endeavor
4421      // to fix the type.
4422      Constructor->setInvalidDecl();
4423    }
4424  }
4425}
4426
4427/// CheckDestructor - Checks a fully-formed destructor definition for
4428/// well-formedness, issuing any diagnostics required.  Returns true
4429/// on error.
4430bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4431  CXXRecordDecl *RD = Destructor->getParent();
4432
4433  if (Destructor->isVirtual()) {
4434    SourceLocation Loc;
4435
4436    if (!Destructor->isImplicit())
4437      Loc = Destructor->getLocation();
4438    else
4439      Loc = RD->getLocation();
4440
4441    // If we have a virtual destructor, look up the deallocation function
4442    FunctionDecl *OperatorDelete = 0;
4443    DeclarationName Name =
4444    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4445    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4446      return true;
4447
4448    MarkDeclarationReferenced(Loc, OperatorDelete);
4449
4450    Destructor->setOperatorDelete(OperatorDelete);
4451  }
4452
4453  return false;
4454}
4455
4456static inline bool
4457FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4458  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4459          FTI.ArgInfo[0].Param &&
4460          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4461}
4462
4463/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4464/// the well-formednes of the destructor declarator @p D with type @p
4465/// R. If there are any errors in the declarator, this routine will
4466/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4467/// will be updated to reflect a well-formed type for the destructor and
4468/// returned.
4469QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4470                                         StorageClass& SC) {
4471  // C++ [class.dtor]p1:
4472  //   [...] A typedef-name that names a class is a class-name
4473  //   (7.1.3); however, a typedef-name that names a class shall not
4474  //   be used as the identifier in the declarator for a destructor
4475  //   declaration.
4476  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4477  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4478    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4479      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4480  else if (const TemplateSpecializationType *TST =
4481             DeclaratorType->getAs<TemplateSpecializationType>())
4482    if (TST->isTypeAlias())
4483      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4484        << DeclaratorType << 1;
4485
4486  // C++ [class.dtor]p2:
4487  //   A destructor is used to destroy objects of its class type. A
4488  //   destructor takes no parameters, and no return type can be
4489  //   specified for it (not even void). The address of a destructor
4490  //   shall not be taken. A destructor shall not be static. A
4491  //   destructor can be invoked for a const, volatile or const
4492  //   volatile object. A destructor shall not be declared const,
4493  //   volatile or const volatile (9.3.2).
4494  if (SC == SC_Static) {
4495    if (!D.isInvalidType())
4496      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4497        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4498        << SourceRange(D.getIdentifierLoc())
4499        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4500
4501    SC = SC_None;
4502  }
4503  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4504    // Destructors don't have return types, but the parser will
4505    // happily parse something like:
4506    //
4507    //   class X {
4508    //     float ~X();
4509    //   };
4510    //
4511    // The return type will be eliminated later.
4512    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4513      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4514      << SourceRange(D.getIdentifierLoc());
4515  }
4516
4517  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4518  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4519    if (FTI.TypeQuals & Qualifiers::Const)
4520      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4521        << "const" << SourceRange(D.getIdentifierLoc());
4522    if (FTI.TypeQuals & Qualifiers::Volatile)
4523      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4524        << "volatile" << SourceRange(D.getIdentifierLoc());
4525    if (FTI.TypeQuals & Qualifiers::Restrict)
4526      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4527        << "restrict" << SourceRange(D.getIdentifierLoc());
4528    D.setInvalidType();
4529  }
4530
4531  // C++0x [class.dtor]p2:
4532  //   A destructor shall not be declared with a ref-qualifier.
4533  if (FTI.hasRefQualifier()) {
4534    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4535      << FTI.RefQualifierIsLValueRef
4536      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4537    D.setInvalidType();
4538  }
4539
4540  // Make sure we don't have any parameters.
4541  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4542    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4543
4544    // Delete the parameters.
4545    FTI.freeArgs();
4546    D.setInvalidType();
4547  }
4548
4549  // Make sure the destructor isn't variadic.
4550  if (FTI.isVariadic) {
4551    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4552    D.setInvalidType();
4553  }
4554
4555  // Rebuild the function type "R" without any type qualifiers or
4556  // parameters (in case any of the errors above fired) and with
4557  // "void" as the return type, since destructors don't have return
4558  // types.
4559  if (!D.isInvalidType())
4560    return R;
4561
4562  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4563  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4564  EPI.Variadic = false;
4565  EPI.TypeQuals = 0;
4566  EPI.RefQualifier = RQ_None;
4567  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4568}
4569
4570/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4571/// well-formednes of the conversion function declarator @p D with
4572/// type @p R. If there are any errors in the declarator, this routine
4573/// will emit diagnostics and return true. Otherwise, it will return
4574/// false. Either way, the type @p R will be updated to reflect a
4575/// well-formed type for the conversion operator.
4576void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4577                                     StorageClass& SC) {
4578  // C++ [class.conv.fct]p1:
4579  //   Neither parameter types nor return type can be specified. The
4580  //   type of a conversion function (8.3.5) is "function taking no
4581  //   parameter returning conversion-type-id."
4582  if (SC == SC_Static) {
4583    if (!D.isInvalidType())
4584      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4585        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4586        << SourceRange(D.getIdentifierLoc());
4587    D.setInvalidType();
4588    SC = SC_None;
4589  }
4590
4591  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4592
4593  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4594    // Conversion functions don't have return types, but the parser will
4595    // happily parse something like:
4596    //
4597    //   class X {
4598    //     float operator bool();
4599    //   };
4600    //
4601    // The return type will be changed later anyway.
4602    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4603      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4604      << SourceRange(D.getIdentifierLoc());
4605    D.setInvalidType();
4606  }
4607
4608  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4609
4610  // Make sure we don't have any parameters.
4611  if (Proto->getNumArgs() > 0) {
4612    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4613
4614    // Delete the parameters.
4615    D.getFunctionTypeInfo().freeArgs();
4616    D.setInvalidType();
4617  } else if (Proto->isVariadic()) {
4618    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4619    D.setInvalidType();
4620  }
4621
4622  // Diagnose "&operator bool()" and other such nonsense.  This
4623  // is actually a gcc extension which we don't support.
4624  if (Proto->getResultType() != ConvType) {
4625    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4626      << Proto->getResultType();
4627    D.setInvalidType();
4628    ConvType = Proto->getResultType();
4629  }
4630
4631  // C++ [class.conv.fct]p4:
4632  //   The conversion-type-id shall not represent a function type nor
4633  //   an array type.
4634  if (ConvType->isArrayType()) {
4635    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4636    ConvType = Context.getPointerType(ConvType);
4637    D.setInvalidType();
4638  } else if (ConvType->isFunctionType()) {
4639    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4640    ConvType = Context.getPointerType(ConvType);
4641    D.setInvalidType();
4642  }
4643
4644  // Rebuild the function type "R" without any parameters (in case any
4645  // of the errors above fired) and with the conversion type as the
4646  // return type.
4647  if (D.isInvalidType())
4648    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4649
4650  // C++0x explicit conversion operators.
4651  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4652    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4653         diag::warn_explicit_conversion_functions)
4654      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4655}
4656
4657/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4658/// the declaration of the given C++ conversion function. This routine
4659/// is responsible for recording the conversion function in the C++
4660/// class, if possible.
4661Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4662  assert(Conversion && "Expected to receive a conversion function declaration");
4663
4664  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4665
4666  // Make sure we aren't redeclaring the conversion function.
4667  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4668
4669  // C++ [class.conv.fct]p1:
4670  //   [...] A conversion function is never used to convert a
4671  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4672  //   same object type (or a reference to it), to a (possibly
4673  //   cv-qualified) base class of that type (or a reference to it),
4674  //   or to (possibly cv-qualified) void.
4675  // FIXME: Suppress this warning if the conversion function ends up being a
4676  // virtual function that overrides a virtual function in a base class.
4677  QualType ClassType
4678    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4679  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4680    ConvType = ConvTypeRef->getPointeeType();
4681  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4682      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4683    /* Suppress diagnostics for instantiations. */;
4684  else if (ConvType->isRecordType()) {
4685    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4686    if (ConvType == ClassType)
4687      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4688        << ClassType;
4689    else if (IsDerivedFrom(ClassType, ConvType))
4690      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4691        <<  ClassType << ConvType;
4692  } else if (ConvType->isVoidType()) {
4693    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4694      << ClassType << ConvType;
4695  }
4696
4697  if (FunctionTemplateDecl *ConversionTemplate
4698                                = Conversion->getDescribedFunctionTemplate())
4699    return ConversionTemplate;
4700
4701  return Conversion;
4702}
4703
4704//===----------------------------------------------------------------------===//
4705// Namespace Handling
4706//===----------------------------------------------------------------------===//
4707
4708
4709
4710/// ActOnStartNamespaceDef - This is called at the start of a namespace
4711/// definition.
4712Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4713                                   SourceLocation InlineLoc,
4714                                   SourceLocation NamespaceLoc,
4715                                   SourceLocation IdentLoc,
4716                                   IdentifierInfo *II,
4717                                   SourceLocation LBrace,
4718                                   AttributeList *AttrList) {
4719  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4720  // For anonymous namespace, take the location of the left brace.
4721  SourceLocation Loc = II ? IdentLoc : LBrace;
4722  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4723                                                 StartLoc, Loc, II);
4724  Namespc->setInline(InlineLoc.isValid());
4725
4726  Scope *DeclRegionScope = NamespcScope->getParent();
4727
4728  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4729
4730  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4731    PushNamespaceVisibilityAttr(Attr);
4732
4733  if (II) {
4734    // C++ [namespace.def]p2:
4735    //   The identifier in an original-namespace-definition shall not
4736    //   have been previously defined in the declarative region in
4737    //   which the original-namespace-definition appears. The
4738    //   identifier in an original-namespace-definition is the name of
4739    //   the namespace. Subsequently in that declarative region, it is
4740    //   treated as an original-namespace-name.
4741    //
4742    // Since namespace names are unique in their scope, and we don't
4743    // look through using directives, just look for any ordinary names.
4744
4745    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4746      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4747      Decl::IDNS_Namespace;
4748    NamedDecl *PrevDecl = 0;
4749    for (DeclContext::lookup_result R
4750            = CurContext->getRedeclContext()->lookup(II);
4751         R.first != R.second; ++R.first) {
4752      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4753        PrevDecl = *R.first;
4754        break;
4755      }
4756    }
4757
4758    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4759      // This is an extended namespace definition.
4760      if (Namespc->isInline() != OrigNS->isInline()) {
4761        // inline-ness must match
4762        if (OrigNS->isInline()) {
4763          // The user probably just forgot the 'inline', so suggest that it
4764          // be added back.
4765          Diag(Namespc->getLocation(),
4766               diag::warn_inline_namespace_reopened_noninline)
4767            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4768        } else {
4769          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4770            << Namespc->isInline();
4771        }
4772        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4773
4774        // Recover by ignoring the new namespace's inline status.
4775        Namespc->setInline(OrigNS->isInline());
4776      }
4777
4778      // Attach this namespace decl to the chain of extended namespace
4779      // definitions.
4780      OrigNS->setNextNamespace(Namespc);
4781      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4782
4783      // Remove the previous declaration from the scope.
4784      if (DeclRegionScope->isDeclScope(OrigNS)) {
4785        IdResolver.RemoveDecl(OrigNS);
4786        DeclRegionScope->RemoveDecl(OrigNS);
4787      }
4788    } else if (PrevDecl) {
4789      // This is an invalid name redefinition.
4790      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4791       << Namespc->getDeclName();
4792      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4793      Namespc->setInvalidDecl();
4794      // Continue on to push Namespc as current DeclContext and return it.
4795    } else if (II->isStr("std") &&
4796               CurContext->getRedeclContext()->isTranslationUnit()) {
4797      // This is the first "real" definition of the namespace "std", so update
4798      // our cache of the "std" namespace to point at this definition.
4799      if (NamespaceDecl *StdNS = getStdNamespace()) {
4800        // We had already defined a dummy namespace "std". Link this new
4801        // namespace definition to the dummy namespace "std".
4802        StdNS->setNextNamespace(Namespc);
4803        StdNS->setLocation(IdentLoc);
4804        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4805      }
4806
4807      // Make our StdNamespace cache point at the first real definition of the
4808      // "std" namespace.
4809      StdNamespace = Namespc;
4810    }
4811
4812    PushOnScopeChains(Namespc, DeclRegionScope);
4813  } else {
4814    // Anonymous namespaces.
4815    assert(Namespc->isAnonymousNamespace());
4816
4817    // Link the anonymous namespace into its parent.
4818    NamespaceDecl *PrevDecl;
4819    DeclContext *Parent = CurContext->getRedeclContext();
4820    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4821      PrevDecl = TU->getAnonymousNamespace();
4822      TU->setAnonymousNamespace(Namespc);
4823    } else {
4824      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4825      PrevDecl = ND->getAnonymousNamespace();
4826      ND->setAnonymousNamespace(Namespc);
4827    }
4828
4829    // Link the anonymous namespace with its previous declaration.
4830    if (PrevDecl) {
4831      assert(PrevDecl->isAnonymousNamespace());
4832      assert(!PrevDecl->getNextNamespace());
4833      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4834      PrevDecl->setNextNamespace(Namespc);
4835
4836      if (Namespc->isInline() != PrevDecl->isInline()) {
4837        // inline-ness must match
4838        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4839          << Namespc->isInline();
4840        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4841        Namespc->setInvalidDecl();
4842        // Recover by ignoring the new namespace's inline status.
4843        Namespc->setInline(PrevDecl->isInline());
4844      }
4845    }
4846
4847    CurContext->addDecl(Namespc);
4848
4849    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4850    //   behaves as if it were replaced by
4851    //     namespace unique { /* empty body */ }
4852    //     using namespace unique;
4853    //     namespace unique { namespace-body }
4854    //   where all occurrences of 'unique' in a translation unit are
4855    //   replaced by the same identifier and this identifier differs
4856    //   from all other identifiers in the entire program.
4857
4858    // We just create the namespace with an empty name and then add an
4859    // implicit using declaration, just like the standard suggests.
4860    //
4861    // CodeGen enforces the "universally unique" aspect by giving all
4862    // declarations semantically contained within an anonymous
4863    // namespace internal linkage.
4864
4865    if (!PrevDecl) {
4866      UsingDirectiveDecl* UD
4867        = UsingDirectiveDecl::Create(Context, CurContext,
4868                                     /* 'using' */ LBrace,
4869                                     /* 'namespace' */ SourceLocation(),
4870                                     /* qualifier */ NestedNameSpecifierLoc(),
4871                                     /* identifier */ SourceLocation(),
4872                                     Namespc,
4873                                     /* Ancestor */ CurContext);
4874      UD->setImplicit();
4875      CurContext->addDecl(UD);
4876    }
4877  }
4878
4879  // Although we could have an invalid decl (i.e. the namespace name is a
4880  // redefinition), push it as current DeclContext and try to continue parsing.
4881  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4882  // for the namespace has the declarations that showed up in that particular
4883  // namespace definition.
4884  PushDeclContext(NamespcScope, Namespc);
4885  return Namespc;
4886}
4887
4888/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4889/// is a namespace alias, returns the namespace it points to.
4890static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4891  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4892    return AD->getNamespace();
4893  return dyn_cast_or_null<NamespaceDecl>(D);
4894}
4895
4896/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4897/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4898void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4899  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4900  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4901  Namespc->setRBraceLoc(RBrace);
4902  PopDeclContext();
4903  if (Namespc->hasAttr<VisibilityAttr>())
4904    PopPragmaVisibility();
4905}
4906
4907CXXRecordDecl *Sema::getStdBadAlloc() const {
4908  return cast_or_null<CXXRecordDecl>(
4909                                  StdBadAlloc.get(Context.getExternalSource()));
4910}
4911
4912NamespaceDecl *Sema::getStdNamespace() const {
4913  return cast_or_null<NamespaceDecl>(
4914                                 StdNamespace.get(Context.getExternalSource()));
4915}
4916
4917/// \brief Retrieve the special "std" namespace, which may require us to
4918/// implicitly define the namespace.
4919NamespaceDecl *Sema::getOrCreateStdNamespace() {
4920  if (!StdNamespace) {
4921    // The "std" namespace has not yet been defined, so build one implicitly.
4922    StdNamespace = NamespaceDecl::Create(Context,
4923                                         Context.getTranslationUnitDecl(),
4924                                         SourceLocation(), SourceLocation(),
4925                                         &PP.getIdentifierTable().get("std"));
4926    getStdNamespace()->setImplicit(true);
4927  }
4928
4929  return getStdNamespace();
4930}
4931
4932/// \brief Determine whether a using statement is in a context where it will be
4933/// apply in all contexts.
4934static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4935  switch (CurContext->getDeclKind()) {
4936    case Decl::TranslationUnit:
4937      return true;
4938    case Decl::LinkageSpec:
4939      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4940    default:
4941      return false;
4942  }
4943}
4944
4945Decl *Sema::ActOnUsingDirective(Scope *S,
4946                                          SourceLocation UsingLoc,
4947                                          SourceLocation NamespcLoc,
4948                                          CXXScopeSpec &SS,
4949                                          SourceLocation IdentLoc,
4950                                          IdentifierInfo *NamespcName,
4951                                          AttributeList *AttrList) {
4952  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4953  assert(NamespcName && "Invalid NamespcName.");
4954  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4955
4956  // This can only happen along a recovery path.
4957  while (S->getFlags() & Scope::TemplateParamScope)
4958    S = S->getParent();
4959  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4960
4961  UsingDirectiveDecl *UDir = 0;
4962  NestedNameSpecifier *Qualifier = 0;
4963  if (SS.isSet())
4964    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4965
4966  // Lookup namespace name.
4967  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4968  LookupParsedName(R, S, &SS);
4969  if (R.isAmbiguous())
4970    return 0;
4971
4972  if (R.empty()) {
4973    // Allow "using namespace std;" or "using namespace ::std;" even if
4974    // "std" hasn't been defined yet, for GCC compatibility.
4975    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4976        NamespcName->isStr("std")) {
4977      Diag(IdentLoc, diag::ext_using_undefined_std);
4978      R.addDecl(getOrCreateStdNamespace());
4979      R.resolveKind();
4980    }
4981    // Otherwise, attempt typo correction.
4982    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4983                                                       CTC_NoKeywords, 0)) {
4984      if (R.getAsSingle<NamespaceDecl>() ||
4985          R.getAsSingle<NamespaceAliasDecl>()) {
4986        if (DeclContext *DC = computeDeclContext(SS, false))
4987          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4988            << NamespcName << DC << Corrected << SS.getRange()
4989            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4990        else
4991          Diag(IdentLoc, diag::err_using_directive_suggest)
4992            << NamespcName << Corrected
4993            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4994        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4995          << Corrected;
4996
4997        NamespcName = Corrected.getAsIdentifierInfo();
4998      } else {
4999        R.clear();
5000        R.setLookupName(NamespcName);
5001      }
5002    }
5003  }
5004
5005  if (!R.empty()) {
5006    NamedDecl *Named = R.getFoundDecl();
5007    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5008        && "expected namespace decl");
5009    // C++ [namespace.udir]p1:
5010    //   A using-directive specifies that the names in the nominated
5011    //   namespace can be used in the scope in which the
5012    //   using-directive appears after the using-directive. During
5013    //   unqualified name lookup (3.4.1), the names appear as if they
5014    //   were declared in the nearest enclosing namespace which
5015    //   contains both the using-directive and the nominated
5016    //   namespace. [Note: in this context, "contains" means "contains
5017    //   directly or indirectly". ]
5018
5019    // Find enclosing context containing both using-directive and
5020    // nominated namespace.
5021    NamespaceDecl *NS = getNamespaceDecl(Named);
5022    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5023    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5024      CommonAncestor = CommonAncestor->getParent();
5025
5026    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5027                                      SS.getWithLocInContext(Context),
5028                                      IdentLoc, Named, CommonAncestor);
5029
5030    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5031        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
5032      Diag(IdentLoc, diag::warn_using_directive_in_header);
5033    }
5034
5035    PushUsingDirective(S, UDir);
5036  } else {
5037    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5038  }
5039
5040  // FIXME: We ignore attributes for now.
5041  return UDir;
5042}
5043
5044void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5045  // If scope has associated entity, then using directive is at namespace
5046  // or translation unit scope. We add UsingDirectiveDecls, into
5047  // it's lookup structure.
5048  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5049    Ctx->addDecl(UDir);
5050  else
5051    // Otherwise it is block-sope. using-directives will affect lookup
5052    // only to the end of scope.
5053    S->PushUsingDirective(UDir);
5054}
5055
5056
5057Decl *Sema::ActOnUsingDeclaration(Scope *S,
5058                                  AccessSpecifier AS,
5059                                  bool HasUsingKeyword,
5060                                  SourceLocation UsingLoc,
5061                                  CXXScopeSpec &SS,
5062                                  UnqualifiedId &Name,
5063                                  AttributeList *AttrList,
5064                                  bool IsTypeName,
5065                                  SourceLocation TypenameLoc) {
5066  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5067
5068  switch (Name.getKind()) {
5069  case UnqualifiedId::IK_Identifier:
5070  case UnqualifiedId::IK_OperatorFunctionId:
5071  case UnqualifiedId::IK_LiteralOperatorId:
5072  case UnqualifiedId::IK_ConversionFunctionId:
5073    break;
5074
5075  case UnqualifiedId::IK_ConstructorName:
5076  case UnqualifiedId::IK_ConstructorTemplateId:
5077    // C++0x inherited constructors.
5078    if (getLangOptions().CPlusPlus0x) break;
5079
5080    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5081      << SS.getRange();
5082    return 0;
5083
5084  case UnqualifiedId::IK_DestructorName:
5085    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5086      << SS.getRange();
5087    return 0;
5088
5089  case UnqualifiedId::IK_TemplateId:
5090    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5091      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5092    return 0;
5093  }
5094
5095  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5096  DeclarationName TargetName = TargetNameInfo.getName();
5097  if (!TargetName)
5098    return 0;
5099
5100  // Warn about using declarations.
5101  // TODO: store that the declaration was written without 'using' and
5102  // talk about access decls instead of using decls in the
5103  // diagnostics.
5104  if (!HasUsingKeyword) {
5105    UsingLoc = Name.getSourceRange().getBegin();
5106
5107    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5108      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5109  }
5110
5111  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5112      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5113    return 0;
5114
5115  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5116                                        TargetNameInfo, AttrList,
5117                                        /* IsInstantiation */ false,
5118                                        IsTypeName, TypenameLoc);
5119  if (UD)
5120    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5121
5122  return UD;
5123}
5124
5125/// \brief Determine whether a using declaration considers the given
5126/// declarations as "equivalent", e.g., if they are redeclarations of
5127/// the same entity or are both typedefs of the same type.
5128static bool
5129IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5130                         bool &SuppressRedeclaration) {
5131  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5132    SuppressRedeclaration = false;
5133    return true;
5134  }
5135
5136  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5137    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5138      SuppressRedeclaration = true;
5139      return Context.hasSameType(TD1->getUnderlyingType(),
5140                                 TD2->getUnderlyingType());
5141    }
5142
5143  return false;
5144}
5145
5146
5147/// Determines whether to create a using shadow decl for a particular
5148/// decl, given the set of decls existing prior to this using lookup.
5149bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5150                                const LookupResult &Previous) {
5151  // Diagnose finding a decl which is not from a base class of the
5152  // current class.  We do this now because there are cases where this
5153  // function will silently decide not to build a shadow decl, which
5154  // will pre-empt further diagnostics.
5155  //
5156  // We don't need to do this in C++0x because we do the check once on
5157  // the qualifier.
5158  //
5159  // FIXME: diagnose the following if we care enough:
5160  //   struct A { int foo; };
5161  //   struct B : A { using A::foo; };
5162  //   template <class T> struct C : A {};
5163  //   template <class T> struct D : C<T> { using B::foo; } // <---
5164  // This is invalid (during instantiation) in C++03 because B::foo
5165  // resolves to the using decl in B, which is not a base class of D<T>.
5166  // We can't diagnose it immediately because C<T> is an unknown
5167  // specialization.  The UsingShadowDecl in D<T> then points directly
5168  // to A::foo, which will look well-formed when we instantiate.
5169  // The right solution is to not collapse the shadow-decl chain.
5170  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5171    DeclContext *OrigDC = Orig->getDeclContext();
5172
5173    // Handle enums and anonymous structs.
5174    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5175    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5176    while (OrigRec->isAnonymousStructOrUnion())
5177      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5178
5179    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5180      if (OrigDC == CurContext) {
5181        Diag(Using->getLocation(),
5182             diag::err_using_decl_nested_name_specifier_is_current_class)
5183          << Using->getQualifierLoc().getSourceRange();
5184        Diag(Orig->getLocation(), diag::note_using_decl_target);
5185        return true;
5186      }
5187
5188      Diag(Using->getQualifierLoc().getBeginLoc(),
5189           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5190        << Using->getQualifier()
5191        << cast<CXXRecordDecl>(CurContext)
5192        << Using->getQualifierLoc().getSourceRange();
5193      Diag(Orig->getLocation(), diag::note_using_decl_target);
5194      return true;
5195    }
5196  }
5197
5198  if (Previous.empty()) return false;
5199
5200  NamedDecl *Target = Orig;
5201  if (isa<UsingShadowDecl>(Target))
5202    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5203
5204  // If the target happens to be one of the previous declarations, we
5205  // don't have a conflict.
5206  //
5207  // FIXME: but we might be increasing its access, in which case we
5208  // should redeclare it.
5209  NamedDecl *NonTag = 0, *Tag = 0;
5210  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5211         I != E; ++I) {
5212    NamedDecl *D = (*I)->getUnderlyingDecl();
5213    bool Result;
5214    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5215      return Result;
5216
5217    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5218  }
5219
5220  if (Target->isFunctionOrFunctionTemplate()) {
5221    FunctionDecl *FD;
5222    if (isa<FunctionTemplateDecl>(Target))
5223      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5224    else
5225      FD = cast<FunctionDecl>(Target);
5226
5227    NamedDecl *OldDecl = 0;
5228    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5229    case Ovl_Overload:
5230      return false;
5231
5232    case Ovl_NonFunction:
5233      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5234      break;
5235
5236    // We found a decl with the exact signature.
5237    case Ovl_Match:
5238      // If we're in a record, we want to hide the target, so we
5239      // return true (without a diagnostic) to tell the caller not to
5240      // build a shadow decl.
5241      if (CurContext->isRecord())
5242        return true;
5243
5244      // If we're not in a record, this is an error.
5245      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5246      break;
5247    }
5248
5249    Diag(Target->getLocation(), diag::note_using_decl_target);
5250    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5251    return true;
5252  }
5253
5254  // Target is not a function.
5255
5256  if (isa<TagDecl>(Target)) {
5257    // No conflict between a tag and a non-tag.
5258    if (!Tag) return false;
5259
5260    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5261    Diag(Target->getLocation(), diag::note_using_decl_target);
5262    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5263    return true;
5264  }
5265
5266  // No conflict between a tag and a non-tag.
5267  if (!NonTag) return false;
5268
5269  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5270  Diag(Target->getLocation(), diag::note_using_decl_target);
5271  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5272  return true;
5273}
5274
5275/// Builds a shadow declaration corresponding to a 'using' declaration.
5276UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5277                                            UsingDecl *UD,
5278                                            NamedDecl *Orig) {
5279
5280  // If we resolved to another shadow declaration, just coalesce them.
5281  NamedDecl *Target = Orig;
5282  if (isa<UsingShadowDecl>(Target)) {
5283    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5284    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5285  }
5286
5287  UsingShadowDecl *Shadow
5288    = UsingShadowDecl::Create(Context, CurContext,
5289                              UD->getLocation(), UD, Target);
5290  UD->addShadowDecl(Shadow);
5291
5292  Shadow->setAccess(UD->getAccess());
5293  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5294    Shadow->setInvalidDecl();
5295
5296  if (S)
5297    PushOnScopeChains(Shadow, S);
5298  else
5299    CurContext->addDecl(Shadow);
5300
5301
5302  return Shadow;
5303}
5304
5305/// Hides a using shadow declaration.  This is required by the current
5306/// using-decl implementation when a resolvable using declaration in a
5307/// class is followed by a declaration which would hide or override
5308/// one or more of the using decl's targets; for example:
5309///
5310///   struct Base { void foo(int); };
5311///   struct Derived : Base {
5312///     using Base::foo;
5313///     void foo(int);
5314///   };
5315///
5316/// The governing language is C++03 [namespace.udecl]p12:
5317///
5318///   When a using-declaration brings names from a base class into a
5319///   derived class scope, member functions in the derived class
5320///   override and/or hide member functions with the same name and
5321///   parameter types in a base class (rather than conflicting).
5322///
5323/// There are two ways to implement this:
5324///   (1) optimistically create shadow decls when they're not hidden
5325///       by existing declarations, or
5326///   (2) don't create any shadow decls (or at least don't make them
5327///       visible) until we've fully parsed/instantiated the class.
5328/// The problem with (1) is that we might have to retroactively remove
5329/// a shadow decl, which requires several O(n) operations because the
5330/// decl structures are (very reasonably) not designed for removal.
5331/// (2) avoids this but is very fiddly and phase-dependent.
5332void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5333  if (Shadow->getDeclName().getNameKind() ==
5334        DeclarationName::CXXConversionFunctionName)
5335    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5336
5337  // Remove it from the DeclContext...
5338  Shadow->getDeclContext()->removeDecl(Shadow);
5339
5340  // ...and the scope, if applicable...
5341  if (S) {
5342    S->RemoveDecl(Shadow);
5343    IdResolver.RemoveDecl(Shadow);
5344  }
5345
5346  // ...and the using decl.
5347  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5348
5349  // TODO: complain somehow if Shadow was used.  It shouldn't
5350  // be possible for this to happen, because...?
5351}
5352
5353/// Builds a using declaration.
5354///
5355/// \param IsInstantiation - Whether this call arises from an
5356///   instantiation of an unresolved using declaration.  We treat
5357///   the lookup differently for these declarations.
5358NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5359                                       SourceLocation UsingLoc,
5360                                       CXXScopeSpec &SS,
5361                                       const DeclarationNameInfo &NameInfo,
5362                                       AttributeList *AttrList,
5363                                       bool IsInstantiation,
5364                                       bool IsTypeName,
5365                                       SourceLocation TypenameLoc) {
5366  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5367  SourceLocation IdentLoc = NameInfo.getLoc();
5368  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5369
5370  // FIXME: We ignore attributes for now.
5371
5372  if (SS.isEmpty()) {
5373    Diag(IdentLoc, diag::err_using_requires_qualname);
5374    return 0;
5375  }
5376
5377  // Do the redeclaration lookup in the current scope.
5378  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5379                        ForRedeclaration);
5380  Previous.setHideTags(false);
5381  if (S) {
5382    LookupName(Previous, S);
5383
5384    // It is really dumb that we have to do this.
5385    LookupResult::Filter F = Previous.makeFilter();
5386    while (F.hasNext()) {
5387      NamedDecl *D = F.next();
5388      if (!isDeclInScope(D, CurContext, S))
5389        F.erase();
5390    }
5391    F.done();
5392  } else {
5393    assert(IsInstantiation && "no scope in non-instantiation");
5394    assert(CurContext->isRecord() && "scope not record in instantiation");
5395    LookupQualifiedName(Previous, CurContext);
5396  }
5397
5398  // Check for invalid redeclarations.
5399  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5400    return 0;
5401
5402  // Check for bad qualifiers.
5403  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5404    return 0;
5405
5406  DeclContext *LookupContext = computeDeclContext(SS);
5407  NamedDecl *D;
5408  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5409  if (!LookupContext) {
5410    if (IsTypeName) {
5411      // FIXME: not all declaration name kinds are legal here
5412      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5413                                              UsingLoc, TypenameLoc,
5414                                              QualifierLoc,
5415                                              IdentLoc, NameInfo.getName());
5416    } else {
5417      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5418                                           QualifierLoc, NameInfo);
5419    }
5420  } else {
5421    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5422                          NameInfo, IsTypeName);
5423  }
5424  D->setAccess(AS);
5425  CurContext->addDecl(D);
5426
5427  if (!LookupContext) return D;
5428  UsingDecl *UD = cast<UsingDecl>(D);
5429
5430  if (RequireCompleteDeclContext(SS, LookupContext)) {
5431    UD->setInvalidDecl();
5432    return UD;
5433  }
5434
5435  // Constructor inheriting using decls get special treatment.
5436  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5437    if (CheckInheritedConstructorUsingDecl(UD))
5438      UD->setInvalidDecl();
5439    return UD;
5440  }
5441
5442  // Otherwise, look up the target name.
5443
5444  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5445  R.setUsingDeclaration(true);
5446
5447  // Unlike most lookups, we don't always want to hide tag
5448  // declarations: tag names are visible through the using declaration
5449  // even if hidden by ordinary names, *except* in a dependent context
5450  // where it's important for the sanity of two-phase lookup.
5451  if (!IsInstantiation)
5452    R.setHideTags(false);
5453
5454  LookupQualifiedName(R, LookupContext);
5455
5456  if (R.empty()) {
5457    Diag(IdentLoc, diag::err_no_member)
5458      << NameInfo.getName() << LookupContext << SS.getRange();
5459    UD->setInvalidDecl();
5460    return UD;
5461  }
5462
5463  if (R.isAmbiguous()) {
5464    UD->setInvalidDecl();
5465    return UD;
5466  }
5467
5468  if (IsTypeName) {
5469    // If we asked for a typename and got a non-type decl, error out.
5470    if (!R.getAsSingle<TypeDecl>()) {
5471      Diag(IdentLoc, diag::err_using_typename_non_type);
5472      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5473        Diag((*I)->getUnderlyingDecl()->getLocation(),
5474             diag::note_using_decl_target);
5475      UD->setInvalidDecl();
5476      return UD;
5477    }
5478  } else {
5479    // If we asked for a non-typename and we got a type, error out,
5480    // but only if this is an instantiation of an unresolved using
5481    // decl.  Otherwise just silently find the type name.
5482    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5483      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5484      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5485      UD->setInvalidDecl();
5486      return UD;
5487    }
5488  }
5489
5490  // C++0x N2914 [namespace.udecl]p6:
5491  // A using-declaration shall not name a namespace.
5492  if (R.getAsSingle<NamespaceDecl>()) {
5493    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5494      << SS.getRange();
5495    UD->setInvalidDecl();
5496    return UD;
5497  }
5498
5499  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5500    if (!CheckUsingShadowDecl(UD, *I, Previous))
5501      BuildUsingShadowDecl(S, UD, *I);
5502  }
5503
5504  return UD;
5505}
5506
5507/// Additional checks for a using declaration referring to a constructor name.
5508bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5509  if (UD->isTypeName()) {
5510    // FIXME: Cannot specify typename when specifying constructor
5511    return true;
5512  }
5513
5514  const Type *SourceType = UD->getQualifier()->getAsType();
5515  assert(SourceType &&
5516         "Using decl naming constructor doesn't have type in scope spec.");
5517  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5518
5519  // Check whether the named type is a direct base class.
5520  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5521  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5522  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5523       BaseIt != BaseE; ++BaseIt) {
5524    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5525    if (CanonicalSourceType == BaseType)
5526      break;
5527  }
5528
5529  if (BaseIt == BaseE) {
5530    // Did not find SourceType in the bases.
5531    Diag(UD->getUsingLocation(),
5532         diag::err_using_decl_constructor_not_in_direct_base)
5533      << UD->getNameInfo().getSourceRange()
5534      << QualType(SourceType, 0) << TargetClass;
5535    return true;
5536  }
5537
5538  BaseIt->setInheritConstructors();
5539
5540  return false;
5541}
5542
5543/// Checks that the given using declaration is not an invalid
5544/// redeclaration.  Note that this is checking only for the using decl
5545/// itself, not for any ill-formedness among the UsingShadowDecls.
5546bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5547                                       bool isTypeName,
5548                                       const CXXScopeSpec &SS,
5549                                       SourceLocation NameLoc,
5550                                       const LookupResult &Prev) {
5551  // C++03 [namespace.udecl]p8:
5552  // C++0x [namespace.udecl]p10:
5553  //   A using-declaration is a declaration and can therefore be used
5554  //   repeatedly where (and only where) multiple declarations are
5555  //   allowed.
5556  //
5557  // That's in non-member contexts.
5558  if (!CurContext->getRedeclContext()->isRecord())
5559    return false;
5560
5561  NestedNameSpecifier *Qual
5562    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5563
5564  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5565    NamedDecl *D = *I;
5566
5567    bool DTypename;
5568    NestedNameSpecifier *DQual;
5569    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5570      DTypename = UD->isTypeName();
5571      DQual = UD->getQualifier();
5572    } else if (UnresolvedUsingValueDecl *UD
5573                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5574      DTypename = false;
5575      DQual = UD->getQualifier();
5576    } else if (UnresolvedUsingTypenameDecl *UD
5577                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5578      DTypename = true;
5579      DQual = UD->getQualifier();
5580    } else continue;
5581
5582    // using decls differ if one says 'typename' and the other doesn't.
5583    // FIXME: non-dependent using decls?
5584    if (isTypeName != DTypename) continue;
5585
5586    // using decls differ if they name different scopes (but note that
5587    // template instantiation can cause this check to trigger when it
5588    // didn't before instantiation).
5589    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5590        Context.getCanonicalNestedNameSpecifier(DQual))
5591      continue;
5592
5593    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5594    Diag(D->getLocation(), diag::note_using_decl) << 1;
5595    return true;
5596  }
5597
5598  return false;
5599}
5600
5601
5602/// Checks that the given nested-name qualifier used in a using decl
5603/// in the current context is appropriately related to the current
5604/// scope.  If an error is found, diagnoses it and returns true.
5605bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5606                                   const CXXScopeSpec &SS,
5607                                   SourceLocation NameLoc) {
5608  DeclContext *NamedContext = computeDeclContext(SS);
5609
5610  if (!CurContext->isRecord()) {
5611    // C++03 [namespace.udecl]p3:
5612    // C++0x [namespace.udecl]p8:
5613    //   A using-declaration for a class member shall be a member-declaration.
5614
5615    // If we weren't able to compute a valid scope, it must be a
5616    // dependent class scope.
5617    if (!NamedContext || NamedContext->isRecord()) {
5618      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5619        << SS.getRange();
5620      return true;
5621    }
5622
5623    // Otherwise, everything is known to be fine.
5624    return false;
5625  }
5626
5627  // The current scope is a record.
5628
5629  // If the named context is dependent, we can't decide much.
5630  if (!NamedContext) {
5631    // FIXME: in C++0x, we can diagnose if we can prove that the
5632    // nested-name-specifier does not refer to a base class, which is
5633    // still possible in some cases.
5634
5635    // Otherwise we have to conservatively report that things might be
5636    // okay.
5637    return false;
5638  }
5639
5640  if (!NamedContext->isRecord()) {
5641    // Ideally this would point at the last name in the specifier,
5642    // but we don't have that level of source info.
5643    Diag(SS.getRange().getBegin(),
5644         diag::err_using_decl_nested_name_specifier_is_not_class)
5645      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5646    return true;
5647  }
5648
5649  if (!NamedContext->isDependentContext() &&
5650      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5651    return true;
5652
5653  if (getLangOptions().CPlusPlus0x) {
5654    // C++0x [namespace.udecl]p3:
5655    //   In a using-declaration used as a member-declaration, the
5656    //   nested-name-specifier shall name a base class of the class
5657    //   being defined.
5658
5659    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5660                                 cast<CXXRecordDecl>(NamedContext))) {
5661      if (CurContext == NamedContext) {
5662        Diag(NameLoc,
5663             diag::err_using_decl_nested_name_specifier_is_current_class)
5664          << SS.getRange();
5665        return true;
5666      }
5667
5668      Diag(SS.getRange().getBegin(),
5669           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5670        << (NestedNameSpecifier*) SS.getScopeRep()
5671        << cast<CXXRecordDecl>(CurContext)
5672        << SS.getRange();
5673      return true;
5674    }
5675
5676    return false;
5677  }
5678
5679  // C++03 [namespace.udecl]p4:
5680  //   A using-declaration used as a member-declaration shall refer
5681  //   to a member of a base class of the class being defined [etc.].
5682
5683  // Salient point: SS doesn't have to name a base class as long as
5684  // lookup only finds members from base classes.  Therefore we can
5685  // diagnose here only if we can prove that that can't happen,
5686  // i.e. if the class hierarchies provably don't intersect.
5687
5688  // TODO: it would be nice if "definitely valid" results were cached
5689  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5690  // need to be repeated.
5691
5692  struct UserData {
5693    llvm::DenseSet<const CXXRecordDecl*> Bases;
5694
5695    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5696      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5697      Data->Bases.insert(Base);
5698      return true;
5699    }
5700
5701    bool hasDependentBases(const CXXRecordDecl *Class) {
5702      return !Class->forallBases(collect, this);
5703    }
5704
5705    /// Returns true if the base is dependent or is one of the
5706    /// accumulated base classes.
5707    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5708      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5709      return !Data->Bases.count(Base);
5710    }
5711
5712    bool mightShareBases(const CXXRecordDecl *Class) {
5713      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5714    }
5715  };
5716
5717  UserData Data;
5718
5719  // Returns false if we find a dependent base.
5720  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5721    return false;
5722
5723  // Returns false if the class has a dependent base or if it or one
5724  // of its bases is present in the base set of the current context.
5725  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5726    return false;
5727
5728  Diag(SS.getRange().getBegin(),
5729       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5730    << (NestedNameSpecifier*) SS.getScopeRep()
5731    << cast<CXXRecordDecl>(CurContext)
5732    << SS.getRange();
5733
5734  return true;
5735}
5736
5737Decl *Sema::ActOnAliasDeclaration(Scope *S,
5738                                  AccessSpecifier AS,
5739                                  MultiTemplateParamsArg TemplateParamLists,
5740                                  SourceLocation UsingLoc,
5741                                  UnqualifiedId &Name,
5742                                  TypeResult Type) {
5743  // Skip up to the relevant declaration scope.
5744  while (S->getFlags() & Scope::TemplateParamScope)
5745    S = S->getParent();
5746  assert((S->getFlags() & Scope::DeclScope) &&
5747         "got alias-declaration outside of declaration scope");
5748
5749  if (Type.isInvalid())
5750    return 0;
5751
5752  bool Invalid = false;
5753  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5754  TypeSourceInfo *TInfo = 0;
5755  GetTypeFromParser(Type.get(), &TInfo);
5756
5757  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5758    return 0;
5759
5760  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5761                                      UPPC_DeclarationType)) {
5762    Invalid = true;
5763    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5764                                             TInfo->getTypeLoc().getBeginLoc());
5765  }
5766
5767  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5768  LookupName(Previous, S);
5769
5770  // Warn about shadowing the name of a template parameter.
5771  if (Previous.isSingleResult() &&
5772      Previous.getFoundDecl()->isTemplateParameter()) {
5773    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5774                                        Previous.getFoundDecl()))
5775      Invalid = true;
5776    Previous.clear();
5777  }
5778
5779  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5780         "name in alias declaration must be an identifier");
5781  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5782                                               Name.StartLocation,
5783                                               Name.Identifier, TInfo);
5784
5785  NewTD->setAccess(AS);
5786
5787  if (Invalid)
5788    NewTD->setInvalidDecl();
5789
5790  CheckTypedefForVariablyModifiedType(S, NewTD);
5791  Invalid |= NewTD->isInvalidDecl();
5792
5793  bool Redeclaration = false;
5794
5795  NamedDecl *NewND;
5796  if (TemplateParamLists.size()) {
5797    TypeAliasTemplateDecl *OldDecl = 0;
5798    TemplateParameterList *OldTemplateParams = 0;
5799
5800    if (TemplateParamLists.size() != 1) {
5801      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5802        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5803         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5804    }
5805    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5806
5807    // Only consider previous declarations in the same scope.
5808    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5809                         /*ExplicitInstantiationOrSpecialization*/false);
5810    if (!Previous.empty()) {
5811      Redeclaration = true;
5812
5813      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5814      if (!OldDecl && !Invalid) {
5815        Diag(UsingLoc, diag::err_redefinition_different_kind)
5816          << Name.Identifier;
5817
5818        NamedDecl *OldD = Previous.getRepresentativeDecl();
5819        if (OldD->getLocation().isValid())
5820          Diag(OldD->getLocation(), diag::note_previous_definition);
5821
5822        Invalid = true;
5823      }
5824
5825      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5826        if (TemplateParameterListsAreEqual(TemplateParams,
5827                                           OldDecl->getTemplateParameters(),
5828                                           /*Complain=*/true,
5829                                           TPL_TemplateMatch))
5830          OldTemplateParams = OldDecl->getTemplateParameters();
5831        else
5832          Invalid = true;
5833
5834        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5835        if (!Invalid &&
5836            !Context.hasSameType(OldTD->getUnderlyingType(),
5837                                 NewTD->getUnderlyingType())) {
5838          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5839          // but we can't reasonably accept it.
5840          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5841            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5842          if (OldTD->getLocation().isValid())
5843            Diag(OldTD->getLocation(), diag::note_previous_definition);
5844          Invalid = true;
5845        }
5846      }
5847    }
5848
5849    // Merge any previous default template arguments into our parameters,
5850    // and check the parameter list.
5851    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5852                                   TPC_TypeAliasTemplate))
5853      return 0;
5854
5855    TypeAliasTemplateDecl *NewDecl =
5856      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5857                                    Name.Identifier, TemplateParams,
5858                                    NewTD);
5859
5860    NewDecl->setAccess(AS);
5861
5862    if (Invalid)
5863      NewDecl->setInvalidDecl();
5864    else if (OldDecl)
5865      NewDecl->setPreviousDeclaration(OldDecl);
5866
5867    NewND = NewDecl;
5868  } else {
5869    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5870    NewND = NewTD;
5871  }
5872
5873  if (!Redeclaration)
5874    PushOnScopeChains(NewND, S);
5875
5876  return NewND;
5877}
5878
5879Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5880                                             SourceLocation NamespaceLoc,
5881                                             SourceLocation AliasLoc,
5882                                             IdentifierInfo *Alias,
5883                                             CXXScopeSpec &SS,
5884                                             SourceLocation IdentLoc,
5885                                             IdentifierInfo *Ident) {
5886
5887  // Lookup the namespace name.
5888  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5889  LookupParsedName(R, S, &SS);
5890
5891  // Check if we have a previous declaration with the same name.
5892  NamedDecl *PrevDecl
5893    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5894                       ForRedeclaration);
5895  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5896    PrevDecl = 0;
5897
5898  if (PrevDecl) {
5899    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5900      // We already have an alias with the same name that points to the same
5901      // namespace, so don't create a new one.
5902      // FIXME: At some point, we'll want to create the (redundant)
5903      // declaration to maintain better source information.
5904      if (!R.isAmbiguous() && !R.empty() &&
5905          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5906        return 0;
5907    }
5908
5909    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5910      diag::err_redefinition_different_kind;
5911    Diag(AliasLoc, DiagID) << Alias;
5912    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5913    return 0;
5914  }
5915
5916  if (R.isAmbiguous())
5917    return 0;
5918
5919  if (R.empty()) {
5920    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5921                                                CTC_NoKeywords, 0)) {
5922      if (R.getAsSingle<NamespaceDecl>() ||
5923          R.getAsSingle<NamespaceAliasDecl>()) {
5924        if (DeclContext *DC = computeDeclContext(SS, false))
5925          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5926            << Ident << DC << Corrected << SS.getRange()
5927            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5928        else
5929          Diag(IdentLoc, diag::err_using_directive_suggest)
5930            << Ident << Corrected
5931            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5932
5933        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5934          << Corrected;
5935
5936        Ident = Corrected.getAsIdentifierInfo();
5937      } else {
5938        R.clear();
5939        R.setLookupName(Ident);
5940      }
5941    }
5942
5943    if (R.empty()) {
5944      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5945      return 0;
5946    }
5947  }
5948
5949  NamespaceAliasDecl *AliasDecl =
5950    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5951                               Alias, SS.getWithLocInContext(Context),
5952                               IdentLoc, R.getFoundDecl());
5953
5954  PushOnScopeChains(AliasDecl, S);
5955  return AliasDecl;
5956}
5957
5958namespace {
5959  /// \brief Scoped object used to handle the state changes required in Sema
5960  /// to implicitly define the body of a C++ member function;
5961  class ImplicitlyDefinedFunctionScope {
5962    Sema &S;
5963    Sema::ContextRAII SavedContext;
5964
5965  public:
5966    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5967      : S(S), SavedContext(S, Method)
5968    {
5969      S.PushFunctionScope();
5970      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5971    }
5972
5973    ~ImplicitlyDefinedFunctionScope() {
5974      S.PopExpressionEvaluationContext();
5975      S.PopFunctionOrBlockScope();
5976    }
5977  };
5978}
5979
5980Sema::ImplicitExceptionSpecification
5981Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5982  // C++ [except.spec]p14:
5983  //   An implicitly declared special member function (Clause 12) shall have an
5984  //   exception-specification. [...]
5985  ImplicitExceptionSpecification ExceptSpec(Context);
5986
5987  // Direct base-class constructors.
5988  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5989                                       BEnd = ClassDecl->bases_end();
5990       B != BEnd; ++B) {
5991    if (B->isVirtual()) // Handled below.
5992      continue;
5993
5994    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5995      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5996      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5997      // If this is a deleted function, add it anyway. This might be conformant
5998      // with the standard. This might not. I'm not sure. It might not matter.
5999      if (Constructor)
6000        ExceptSpec.CalledDecl(Constructor);
6001    }
6002  }
6003
6004  // Virtual base-class constructors.
6005  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6006                                       BEnd = ClassDecl->vbases_end();
6007       B != BEnd; ++B) {
6008    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6009      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6010      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6011      // If this is a deleted function, add it anyway. This might be conformant
6012      // with the standard. This might not. I'm not sure. It might not matter.
6013      if (Constructor)
6014        ExceptSpec.CalledDecl(Constructor);
6015    }
6016  }
6017
6018  // Field constructors.
6019  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6020                               FEnd = ClassDecl->field_end();
6021       F != FEnd; ++F) {
6022    if (F->hasInClassInitializer()) {
6023      if (Expr *E = F->getInClassInitializer())
6024        ExceptSpec.CalledExpr(E);
6025      else if (!F->isInvalidDecl())
6026        ExceptSpec.SetDelayed();
6027    } else if (const RecordType *RecordTy
6028              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6029      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6030      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6031      // If this is a deleted function, add it anyway. This might be conformant
6032      // with the standard. This might not. I'm not sure. It might not matter.
6033      // In particular, the problem is that this function never gets called. It
6034      // might just be ill-formed because this function attempts to refer to
6035      // a deleted function here.
6036      if (Constructor)
6037        ExceptSpec.CalledDecl(Constructor);
6038    }
6039  }
6040
6041  return ExceptSpec;
6042}
6043
6044CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6045                                                     CXXRecordDecl *ClassDecl) {
6046  // C++ [class.ctor]p5:
6047  //   A default constructor for a class X is a constructor of class X
6048  //   that can be called without an argument. If there is no
6049  //   user-declared constructor for class X, a default constructor is
6050  //   implicitly declared. An implicitly-declared default constructor
6051  //   is an inline public member of its class.
6052  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6053         "Should not build implicit default constructor!");
6054
6055  ImplicitExceptionSpecification Spec =
6056    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6057  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6058
6059  // Create the actual constructor declaration.
6060  CanQualType ClassType
6061    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6062  SourceLocation ClassLoc = ClassDecl->getLocation();
6063  DeclarationName Name
6064    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6065  DeclarationNameInfo NameInfo(Name, ClassLoc);
6066  CXXConstructorDecl *DefaultCon
6067    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6068                                 Context.getFunctionType(Context.VoidTy,
6069                                                         0, 0, EPI),
6070                                 /*TInfo=*/0,
6071                                 /*isExplicit=*/false,
6072                                 /*isInline=*/true,
6073                                 /*isImplicitlyDeclared=*/true);
6074  DefaultCon->setAccess(AS_public);
6075  DefaultCon->setDefaulted();
6076  DefaultCon->setImplicit();
6077  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6078
6079  // Note that we have declared this constructor.
6080  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6081
6082  if (Scope *S = getScopeForContext(ClassDecl))
6083    PushOnScopeChains(DefaultCon, S, false);
6084  ClassDecl->addDecl(DefaultCon);
6085
6086  if (ShouldDeleteDefaultConstructor(DefaultCon))
6087    DefaultCon->setDeletedAsWritten();
6088
6089  return DefaultCon;
6090}
6091
6092void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6093                                            CXXConstructorDecl *Constructor) {
6094  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6095          !Constructor->doesThisDeclarationHaveABody() &&
6096          !Constructor->isDeleted()) &&
6097    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6098
6099  CXXRecordDecl *ClassDecl = Constructor->getParent();
6100  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6101
6102  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6103  DiagnosticErrorTrap Trap(Diags);
6104  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6105      Trap.hasErrorOccurred()) {
6106    Diag(CurrentLocation, diag::note_member_synthesized_at)
6107      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6108    Constructor->setInvalidDecl();
6109    return;
6110  }
6111
6112  SourceLocation Loc = Constructor->getLocation();
6113  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6114
6115  Constructor->setUsed();
6116  MarkVTableUsed(CurrentLocation, ClassDecl);
6117
6118  if (ASTMutationListener *L = getASTMutationListener()) {
6119    L->CompletedImplicitDefinition(Constructor);
6120  }
6121}
6122
6123/// Get any existing defaulted default constructor for the given class. Do not
6124/// implicitly define one if it does not exist.
6125static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6126                                                             CXXRecordDecl *D) {
6127  ASTContext &Context = Self.Context;
6128  QualType ClassType = Context.getTypeDeclType(D);
6129  DeclarationName ConstructorName
6130    = Context.DeclarationNames.getCXXConstructorName(
6131                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6132
6133  DeclContext::lookup_const_iterator Con, ConEnd;
6134  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6135       Con != ConEnd; ++Con) {
6136    // A function template cannot be defaulted.
6137    if (isa<FunctionTemplateDecl>(*Con))
6138      continue;
6139
6140    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6141    if (Constructor->isDefaultConstructor())
6142      return Constructor->isDefaulted() ? Constructor : 0;
6143  }
6144  return 0;
6145}
6146
6147void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6148  if (!D) return;
6149  AdjustDeclIfTemplate(D);
6150
6151  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6152  CXXConstructorDecl *CtorDecl
6153    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6154
6155  if (!CtorDecl) return;
6156
6157  // Compute the exception specification for the default constructor.
6158  const FunctionProtoType *CtorTy =
6159    CtorDecl->getType()->castAs<FunctionProtoType>();
6160  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6161    ImplicitExceptionSpecification Spec =
6162      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6163    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6164    assert(EPI.ExceptionSpecType != EST_Delayed);
6165
6166    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6167  }
6168
6169  // If the default constructor is explicitly defaulted, checking the exception
6170  // specification is deferred until now.
6171  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6172      !ClassDecl->isDependentType())
6173    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6174}
6175
6176void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6177  // We start with an initial pass over the base classes to collect those that
6178  // inherit constructors from. If there are none, we can forgo all further
6179  // processing.
6180  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6181  BasesVector BasesToInheritFrom;
6182  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6183                                          BaseE = ClassDecl->bases_end();
6184         BaseIt != BaseE; ++BaseIt) {
6185    if (BaseIt->getInheritConstructors()) {
6186      QualType Base = BaseIt->getType();
6187      if (Base->isDependentType()) {
6188        // If we inherit constructors from anything that is dependent, just
6189        // abort processing altogether. We'll get another chance for the
6190        // instantiations.
6191        return;
6192      }
6193      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6194    }
6195  }
6196  if (BasesToInheritFrom.empty())
6197    return;
6198
6199  // Now collect the constructors that we already have in the current class.
6200  // Those take precedence over inherited constructors.
6201  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6202  //   unless there is a user-declared constructor with the same signature in
6203  //   the class where the using-declaration appears.
6204  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6205  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6206                                    CtorE = ClassDecl->ctor_end();
6207       CtorIt != CtorE; ++CtorIt) {
6208    ExistingConstructors.insert(
6209        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6210  }
6211
6212  Scope *S = getScopeForContext(ClassDecl);
6213  DeclarationName CreatedCtorName =
6214      Context.DeclarationNames.getCXXConstructorName(
6215          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6216
6217  // Now comes the true work.
6218  // First, we keep a map from constructor types to the base that introduced
6219  // them. Needed for finding conflicting constructors. We also keep the
6220  // actually inserted declarations in there, for pretty diagnostics.
6221  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6222  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6223  ConstructorToSourceMap InheritedConstructors;
6224  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6225                             BaseE = BasesToInheritFrom.end();
6226       BaseIt != BaseE; ++BaseIt) {
6227    const RecordType *Base = *BaseIt;
6228    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6229    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6230    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6231                                      CtorE = BaseDecl->ctor_end();
6232         CtorIt != CtorE; ++CtorIt) {
6233      // Find the using declaration for inheriting this base's constructors.
6234      DeclarationName Name =
6235          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6236      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6237          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6238      SourceLocation UsingLoc = UD ? UD->getLocation() :
6239                                     ClassDecl->getLocation();
6240
6241      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6242      //   from the class X named in the using-declaration consists of actual
6243      //   constructors and notional constructors that result from the
6244      //   transformation of defaulted parameters as follows:
6245      //   - all non-template default constructors of X, and
6246      //   - for each non-template constructor of X that has at least one
6247      //     parameter with a default argument, the set of constructors that
6248      //     results from omitting any ellipsis parameter specification and
6249      //     successively omitting parameters with a default argument from the
6250      //     end of the parameter-type-list.
6251      CXXConstructorDecl *BaseCtor = *CtorIt;
6252      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6253      const FunctionProtoType *BaseCtorType =
6254          BaseCtor->getType()->getAs<FunctionProtoType>();
6255
6256      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6257                    maxParams = BaseCtor->getNumParams();
6258           params <= maxParams; ++params) {
6259        // Skip default constructors. They're never inherited.
6260        if (params == 0)
6261          continue;
6262        // Skip copy and move constructors for the same reason.
6263        if (CanBeCopyOrMove && params == 1)
6264          continue;
6265
6266        // Build up a function type for this particular constructor.
6267        // FIXME: The working paper does not consider that the exception spec
6268        // for the inheriting constructor might be larger than that of the
6269        // source. This code doesn't yet, either. When it does, this code will
6270        // need to be delayed until after exception specifications and in-class
6271        // member initializers are attached.
6272        const Type *NewCtorType;
6273        if (params == maxParams)
6274          NewCtorType = BaseCtorType;
6275        else {
6276          llvm::SmallVector<QualType, 16> Args;
6277          for (unsigned i = 0; i < params; ++i) {
6278            Args.push_back(BaseCtorType->getArgType(i));
6279          }
6280          FunctionProtoType::ExtProtoInfo ExtInfo =
6281              BaseCtorType->getExtProtoInfo();
6282          ExtInfo.Variadic = false;
6283          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6284                                                Args.data(), params, ExtInfo)
6285                       .getTypePtr();
6286        }
6287        const Type *CanonicalNewCtorType =
6288            Context.getCanonicalType(NewCtorType);
6289
6290        // Now that we have the type, first check if the class already has a
6291        // constructor with this signature.
6292        if (ExistingConstructors.count(CanonicalNewCtorType))
6293          continue;
6294
6295        // Then we check if we have already declared an inherited constructor
6296        // with this signature.
6297        std::pair<ConstructorToSourceMap::iterator, bool> result =
6298            InheritedConstructors.insert(std::make_pair(
6299                CanonicalNewCtorType,
6300                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6301        if (!result.second) {
6302          // Already in the map. If it came from a different class, that's an
6303          // error. Not if it's from the same.
6304          CanQualType PreviousBase = result.first->second.first;
6305          if (CanonicalBase != PreviousBase) {
6306            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6307            const CXXConstructorDecl *PrevBaseCtor =
6308                PrevCtor->getInheritedConstructor();
6309            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6310
6311            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6312            Diag(BaseCtor->getLocation(),
6313                 diag::note_using_decl_constructor_conflict_current_ctor);
6314            Diag(PrevBaseCtor->getLocation(),
6315                 diag::note_using_decl_constructor_conflict_previous_ctor);
6316            Diag(PrevCtor->getLocation(),
6317                 diag::note_using_decl_constructor_conflict_previous_using);
6318          }
6319          continue;
6320        }
6321
6322        // OK, we're there, now add the constructor.
6323        // C++0x [class.inhctor]p8: [...] that would be performed by a
6324        //   user-writtern inline constructor [...]
6325        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6326        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6327            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6328            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6329            /*ImplicitlyDeclared=*/true);
6330        NewCtor->setAccess(BaseCtor->getAccess());
6331
6332        // Build up the parameter decls and add them.
6333        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6334        for (unsigned i = 0; i < params; ++i) {
6335          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6336                                                   UsingLoc, UsingLoc,
6337                                                   /*IdentifierInfo=*/0,
6338                                                   BaseCtorType->getArgType(i),
6339                                                   /*TInfo=*/0, SC_None,
6340                                                   SC_None, /*DefaultArg=*/0));
6341        }
6342        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6343        NewCtor->setInheritedConstructor(BaseCtor);
6344
6345        PushOnScopeChains(NewCtor, S, false);
6346        ClassDecl->addDecl(NewCtor);
6347        result.first->second.second = NewCtor;
6348      }
6349    }
6350  }
6351}
6352
6353Sema::ImplicitExceptionSpecification
6354Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6355  // C++ [except.spec]p14:
6356  //   An implicitly declared special member function (Clause 12) shall have
6357  //   an exception-specification.
6358  ImplicitExceptionSpecification ExceptSpec(Context);
6359
6360  // Direct base-class destructors.
6361  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6362                                       BEnd = ClassDecl->bases_end();
6363       B != BEnd; ++B) {
6364    if (B->isVirtual()) // Handled below.
6365      continue;
6366
6367    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6368      ExceptSpec.CalledDecl(
6369                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6370  }
6371
6372  // Virtual base-class destructors.
6373  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6374                                       BEnd = ClassDecl->vbases_end();
6375       B != BEnd; ++B) {
6376    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6377      ExceptSpec.CalledDecl(
6378                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6379  }
6380
6381  // Field destructors.
6382  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6383                               FEnd = ClassDecl->field_end();
6384       F != FEnd; ++F) {
6385    if (const RecordType *RecordTy
6386        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6387      ExceptSpec.CalledDecl(
6388                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6389  }
6390
6391  return ExceptSpec;
6392}
6393
6394CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6395  // C++ [class.dtor]p2:
6396  //   If a class has no user-declared destructor, a destructor is
6397  //   declared implicitly. An implicitly-declared destructor is an
6398  //   inline public member of its class.
6399
6400  ImplicitExceptionSpecification Spec =
6401      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6402  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6403
6404  // Create the actual destructor declaration.
6405  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6406
6407  CanQualType ClassType
6408    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6409  SourceLocation ClassLoc = ClassDecl->getLocation();
6410  DeclarationName Name
6411    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6412  DeclarationNameInfo NameInfo(Name, ClassLoc);
6413  CXXDestructorDecl *Destructor
6414      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6415                                  /*isInline=*/true,
6416                                  /*isImplicitlyDeclared=*/true);
6417  Destructor->setAccess(AS_public);
6418  Destructor->setDefaulted();
6419  Destructor->setImplicit();
6420  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6421
6422  // Note that we have declared this destructor.
6423  ++ASTContext::NumImplicitDestructorsDeclared;
6424
6425  // Introduce this destructor into its scope.
6426  if (Scope *S = getScopeForContext(ClassDecl))
6427    PushOnScopeChains(Destructor, S, false);
6428  ClassDecl->addDecl(Destructor);
6429
6430  // This could be uniqued if it ever proves significant.
6431  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6432
6433  if (ShouldDeleteDestructor(Destructor))
6434    Destructor->setDeletedAsWritten();
6435
6436  AddOverriddenMethods(ClassDecl, Destructor);
6437
6438  return Destructor;
6439}
6440
6441void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6442                                    CXXDestructorDecl *Destructor) {
6443  assert((Destructor->isDefaulted() &&
6444          !Destructor->doesThisDeclarationHaveABody()) &&
6445         "DefineImplicitDestructor - call it for implicit default dtor");
6446  CXXRecordDecl *ClassDecl = Destructor->getParent();
6447  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6448
6449  if (Destructor->isInvalidDecl())
6450    return;
6451
6452  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6453
6454  DiagnosticErrorTrap Trap(Diags);
6455  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6456                                         Destructor->getParent());
6457
6458  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6459    Diag(CurrentLocation, diag::note_member_synthesized_at)
6460      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6461
6462    Destructor->setInvalidDecl();
6463    return;
6464  }
6465
6466  SourceLocation Loc = Destructor->getLocation();
6467  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6468
6469  Destructor->setUsed();
6470  MarkVTableUsed(CurrentLocation, ClassDecl);
6471
6472  if (ASTMutationListener *L = getASTMutationListener()) {
6473    L->CompletedImplicitDefinition(Destructor);
6474  }
6475}
6476
6477void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6478                                         CXXDestructorDecl *destructor) {
6479  // C++11 [class.dtor]p3:
6480  //   A declaration of a destructor that does not have an exception-
6481  //   specification is implicitly considered to have the same exception-
6482  //   specification as an implicit declaration.
6483  const FunctionProtoType *dtorType = destructor->getType()->
6484                                        getAs<FunctionProtoType>();
6485  if (dtorType->hasExceptionSpec())
6486    return;
6487
6488  ImplicitExceptionSpecification exceptSpec =
6489      ComputeDefaultedDtorExceptionSpec(classDecl);
6490
6491  // Replace the destructor's type.
6492  FunctionProtoType::ExtProtoInfo epi;
6493  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6494  epi.NumExceptions = exceptSpec.size();
6495  epi.Exceptions = exceptSpec.data();
6496  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6497
6498  destructor->setType(ty);
6499
6500  // FIXME: If the destructor has a body that could throw, and the newly created
6501  // spec doesn't allow exceptions, we should emit a warning, because this
6502  // change in behavior can break conforming C++03 programs at runtime.
6503  // However, we don't have a body yet, so it needs to be done somewhere else.
6504}
6505
6506/// \brief Builds a statement that copies the given entity from \p From to
6507/// \c To.
6508///
6509/// This routine is used to copy the members of a class with an
6510/// implicitly-declared copy assignment operator. When the entities being
6511/// copied are arrays, this routine builds for loops to copy them.
6512///
6513/// \param S The Sema object used for type-checking.
6514///
6515/// \param Loc The location where the implicit copy is being generated.
6516///
6517/// \param T The type of the expressions being copied. Both expressions must
6518/// have this type.
6519///
6520/// \param To The expression we are copying to.
6521///
6522/// \param From The expression we are copying from.
6523///
6524/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6525/// Otherwise, it's a non-static member subobject.
6526///
6527/// \param Depth Internal parameter recording the depth of the recursion.
6528///
6529/// \returns A statement or a loop that copies the expressions.
6530static StmtResult
6531BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6532                      Expr *To, Expr *From,
6533                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6534  // C++0x [class.copy]p30:
6535  //   Each subobject is assigned in the manner appropriate to its type:
6536  //
6537  //     - if the subobject is of class type, the copy assignment operator
6538  //       for the class is used (as if by explicit qualification; that is,
6539  //       ignoring any possible virtual overriding functions in more derived
6540  //       classes);
6541  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6542    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6543
6544    // Look for operator=.
6545    DeclarationName Name
6546      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6547    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6548    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6549
6550    // Filter out any result that isn't a copy-assignment operator.
6551    LookupResult::Filter F = OpLookup.makeFilter();
6552    while (F.hasNext()) {
6553      NamedDecl *D = F.next();
6554      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6555        if (Method->isCopyAssignmentOperator())
6556          continue;
6557
6558      F.erase();
6559    }
6560    F.done();
6561
6562    // Suppress the protected check (C++ [class.protected]) for each of the
6563    // assignment operators we found. This strange dance is required when
6564    // we're assigning via a base classes's copy-assignment operator. To
6565    // ensure that we're getting the right base class subobject (without
6566    // ambiguities), we need to cast "this" to that subobject type; to
6567    // ensure that we don't go through the virtual call mechanism, we need
6568    // to qualify the operator= name with the base class (see below). However,
6569    // this means that if the base class has a protected copy assignment
6570    // operator, the protected member access check will fail. So, we
6571    // rewrite "protected" access to "public" access in this case, since we
6572    // know by construction that we're calling from a derived class.
6573    if (CopyingBaseSubobject) {
6574      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6575           L != LEnd; ++L) {
6576        if (L.getAccess() == AS_protected)
6577          L.setAccess(AS_public);
6578      }
6579    }
6580
6581    // Create the nested-name-specifier that will be used to qualify the
6582    // reference to operator=; this is required to suppress the virtual
6583    // call mechanism.
6584    CXXScopeSpec SS;
6585    SS.MakeTrivial(S.Context,
6586                   NestedNameSpecifier::Create(S.Context, 0, false,
6587                                               T.getTypePtr()),
6588                   Loc);
6589
6590    // Create the reference to operator=.
6591    ExprResult OpEqualRef
6592      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6593                                   /*FirstQualifierInScope=*/0, OpLookup,
6594                                   /*TemplateArgs=*/0,
6595                                   /*SuppressQualifierCheck=*/true);
6596    if (OpEqualRef.isInvalid())
6597      return StmtError();
6598
6599    // Build the call to the assignment operator.
6600
6601    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6602                                                  OpEqualRef.takeAs<Expr>(),
6603                                                  Loc, &From, 1, Loc);
6604    if (Call.isInvalid())
6605      return StmtError();
6606
6607    return S.Owned(Call.takeAs<Stmt>());
6608  }
6609
6610  //     - if the subobject is of scalar type, the built-in assignment
6611  //       operator is used.
6612  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6613  if (!ArrayTy) {
6614    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6615    if (Assignment.isInvalid())
6616      return StmtError();
6617
6618    return S.Owned(Assignment.takeAs<Stmt>());
6619  }
6620
6621  //     - if the subobject is an array, each element is assigned, in the
6622  //       manner appropriate to the element type;
6623
6624  // Construct a loop over the array bounds, e.g.,
6625  //
6626  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6627  //
6628  // that will copy each of the array elements.
6629  QualType SizeType = S.Context.getSizeType();
6630
6631  // Create the iteration variable.
6632  IdentifierInfo *IterationVarName = 0;
6633  {
6634    llvm::SmallString<8> Str;
6635    llvm::raw_svector_ostream OS(Str);
6636    OS << "__i" << Depth;
6637    IterationVarName = &S.Context.Idents.get(OS.str());
6638  }
6639  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6640                                          IterationVarName, SizeType,
6641                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6642                                          SC_None, SC_None);
6643
6644  // Initialize the iteration variable to zero.
6645  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6646  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6647
6648  // Create a reference to the iteration variable; we'll use this several
6649  // times throughout.
6650  Expr *IterationVarRef
6651    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6652  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6653
6654  // Create the DeclStmt that holds the iteration variable.
6655  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6656
6657  // Create the comparison against the array bound.
6658  llvm::APInt Upper
6659    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6660  Expr *Comparison
6661    = new (S.Context) BinaryOperator(IterationVarRef,
6662                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6663                                     BO_NE, S.Context.BoolTy,
6664                                     VK_RValue, OK_Ordinary, Loc);
6665
6666  // Create the pre-increment of the iteration variable.
6667  Expr *Increment
6668    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6669                                    VK_LValue, OK_Ordinary, Loc);
6670
6671  // Subscript the "from" and "to" expressions with the iteration variable.
6672  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6673                                                         IterationVarRef, Loc));
6674  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6675                                                       IterationVarRef, Loc));
6676
6677  // Build the copy for an individual element of the array.
6678  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6679                                          To, From, CopyingBaseSubobject,
6680                                          Depth + 1);
6681  if (Copy.isInvalid())
6682    return StmtError();
6683
6684  // Construct the loop that copies all elements of this array.
6685  return S.ActOnForStmt(Loc, Loc, InitStmt,
6686                        S.MakeFullExpr(Comparison),
6687                        0, S.MakeFullExpr(Increment),
6688                        Loc, Copy.take());
6689}
6690
6691/// \brief Determine whether the given class has a copy assignment operator
6692/// that accepts a const-qualified argument.
6693static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6694  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6695
6696  if (!Class->hasDeclaredCopyAssignment())
6697    S.DeclareImplicitCopyAssignment(Class);
6698
6699  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6700  DeclarationName OpName
6701    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6702
6703  DeclContext::lookup_const_iterator Op, OpEnd;
6704  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6705    // C++ [class.copy]p9:
6706    //   A user-declared copy assignment operator is a non-static non-template
6707    //   member function of class X with exactly one parameter of type X, X&,
6708    //   const X&, volatile X& or const volatile X&.
6709    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6710    if (!Method)
6711      continue;
6712
6713    if (Method->isStatic())
6714      continue;
6715    if (Method->getPrimaryTemplate())
6716      continue;
6717    const FunctionProtoType *FnType =
6718    Method->getType()->getAs<FunctionProtoType>();
6719    assert(FnType && "Overloaded operator has no prototype.");
6720    // Don't assert on this; an invalid decl might have been left in the AST.
6721    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6722      continue;
6723    bool AcceptsConst = true;
6724    QualType ArgType = FnType->getArgType(0);
6725    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6726      ArgType = Ref->getPointeeType();
6727      // Is it a non-const lvalue reference?
6728      if (!ArgType.isConstQualified())
6729        AcceptsConst = false;
6730    }
6731    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6732      continue;
6733
6734    // We have a single argument of type cv X or cv X&, i.e. we've found the
6735    // copy assignment operator. Return whether it accepts const arguments.
6736    return AcceptsConst;
6737  }
6738  assert(Class->isInvalidDecl() &&
6739         "No copy assignment operator declared in valid code.");
6740  return false;
6741}
6742
6743std::pair<Sema::ImplicitExceptionSpecification, bool>
6744Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6745                                                   CXXRecordDecl *ClassDecl) {
6746  // C++ [class.copy]p10:
6747  //   If the class definition does not explicitly declare a copy
6748  //   assignment operator, one is declared implicitly.
6749  //   The implicitly-defined copy assignment operator for a class X
6750  //   will have the form
6751  //
6752  //       X& X::operator=(const X&)
6753  //
6754  //   if
6755  bool HasConstCopyAssignment = true;
6756
6757  //       -- each direct base class B of X has a copy assignment operator
6758  //          whose parameter is of type const B&, const volatile B& or B,
6759  //          and
6760  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6761                                       BaseEnd = ClassDecl->bases_end();
6762       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6763    assert(!Base->getType()->isDependentType() &&
6764           "Cannot generate implicit members for class with dependent bases.");
6765    const CXXRecordDecl *BaseClassDecl
6766      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6767    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6768  }
6769
6770  //       -- for all the nonstatic data members of X that are of a class
6771  //          type M (or array thereof), each such class type has a copy
6772  //          assignment operator whose parameter is of type const M&,
6773  //          const volatile M& or M.
6774  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6775                                  FieldEnd = ClassDecl->field_end();
6776       HasConstCopyAssignment && Field != FieldEnd;
6777       ++Field) {
6778    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6779    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6780      const CXXRecordDecl *FieldClassDecl
6781        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6782      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6783    }
6784  }
6785
6786  //   Otherwise, the implicitly declared copy assignment operator will
6787  //   have the form
6788  //
6789  //       X& X::operator=(X&)
6790
6791  // C++ [except.spec]p14:
6792  //   An implicitly declared special member function (Clause 12) shall have an
6793  //   exception-specification. [...]
6794  ImplicitExceptionSpecification ExceptSpec(Context);
6795  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6796                                       BaseEnd = ClassDecl->bases_end();
6797       Base != BaseEnd; ++Base) {
6798    CXXRecordDecl *BaseClassDecl
6799      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6800
6801    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6802      DeclareImplicitCopyAssignment(BaseClassDecl);
6803
6804    if (CXXMethodDecl *CopyAssign
6805           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6806      ExceptSpec.CalledDecl(CopyAssign);
6807  }
6808  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6809                                  FieldEnd = ClassDecl->field_end();
6810       Field != FieldEnd;
6811       ++Field) {
6812    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6813    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6814      CXXRecordDecl *FieldClassDecl
6815        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6816
6817      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6818        DeclareImplicitCopyAssignment(FieldClassDecl);
6819
6820      if (CXXMethodDecl *CopyAssign
6821            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6822        ExceptSpec.CalledDecl(CopyAssign);
6823    }
6824  }
6825
6826  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6827}
6828
6829CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6830  // Note: The following rules are largely analoguous to the copy
6831  // constructor rules. Note that virtual bases are not taken into account
6832  // for determining the argument type of the operator. Note also that
6833  // operators taking an object instead of a reference are allowed.
6834
6835  ImplicitExceptionSpecification Spec(Context);
6836  bool Const;
6837  llvm::tie(Spec, Const) =
6838    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6839
6840  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6841  QualType RetType = Context.getLValueReferenceType(ArgType);
6842  if (Const)
6843    ArgType = ArgType.withConst();
6844  ArgType = Context.getLValueReferenceType(ArgType);
6845
6846  //   An implicitly-declared copy assignment operator is an inline public
6847  //   member of its class.
6848  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6849  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6850  SourceLocation ClassLoc = ClassDecl->getLocation();
6851  DeclarationNameInfo NameInfo(Name, ClassLoc);
6852  CXXMethodDecl *CopyAssignment
6853    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6854                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6855                            /*TInfo=*/0, /*isStatic=*/false,
6856                            /*StorageClassAsWritten=*/SC_None,
6857                            /*isInline=*/true,
6858                            SourceLocation());
6859  CopyAssignment->setAccess(AS_public);
6860  CopyAssignment->setDefaulted();
6861  CopyAssignment->setImplicit();
6862  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6863
6864  // Add the parameter to the operator.
6865  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6866                                               ClassLoc, ClassLoc, /*Id=*/0,
6867                                               ArgType, /*TInfo=*/0,
6868                                               SC_None,
6869                                               SC_None, 0);
6870  CopyAssignment->setParams(&FromParam, 1);
6871
6872  // Note that we have added this copy-assignment operator.
6873  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6874
6875  if (Scope *S = getScopeForContext(ClassDecl))
6876    PushOnScopeChains(CopyAssignment, S, false);
6877  ClassDecl->addDecl(CopyAssignment);
6878
6879  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6880    CopyAssignment->setDeletedAsWritten();
6881
6882  AddOverriddenMethods(ClassDecl, CopyAssignment);
6883  return CopyAssignment;
6884}
6885
6886void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6887                                        CXXMethodDecl *CopyAssignOperator) {
6888  assert((CopyAssignOperator->isDefaulted() &&
6889          CopyAssignOperator->isOverloadedOperator() &&
6890          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6891          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6892         "DefineImplicitCopyAssignment called for wrong function");
6893
6894  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6895
6896  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6897    CopyAssignOperator->setInvalidDecl();
6898    return;
6899  }
6900
6901  CopyAssignOperator->setUsed();
6902
6903  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6904  DiagnosticErrorTrap Trap(Diags);
6905
6906  // C++0x [class.copy]p30:
6907  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6908  //   for a non-union class X performs memberwise copy assignment of its
6909  //   subobjects. The direct base classes of X are assigned first, in the
6910  //   order of their declaration in the base-specifier-list, and then the
6911  //   immediate non-static data members of X are assigned, in the order in
6912  //   which they were declared in the class definition.
6913
6914  // The statements that form the synthesized function body.
6915  ASTOwningVector<Stmt*> Statements(*this);
6916
6917  // The parameter for the "other" object, which we are copying from.
6918  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6919  Qualifiers OtherQuals = Other->getType().getQualifiers();
6920  QualType OtherRefType = Other->getType();
6921  if (const LValueReferenceType *OtherRef
6922                                = OtherRefType->getAs<LValueReferenceType>()) {
6923    OtherRefType = OtherRef->getPointeeType();
6924    OtherQuals = OtherRefType.getQualifiers();
6925  }
6926
6927  // Our location for everything implicitly-generated.
6928  SourceLocation Loc = CopyAssignOperator->getLocation();
6929
6930  // Construct a reference to the "other" object. We'll be using this
6931  // throughout the generated ASTs.
6932  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6933  assert(OtherRef && "Reference to parameter cannot fail!");
6934
6935  // Construct the "this" pointer. We'll be using this throughout the generated
6936  // ASTs.
6937  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6938  assert(This && "Reference to this cannot fail!");
6939
6940  // Assign base classes.
6941  bool Invalid = false;
6942  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6943       E = ClassDecl->bases_end(); Base != E; ++Base) {
6944    // Form the assignment:
6945    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6946    QualType BaseType = Base->getType().getUnqualifiedType();
6947    if (!BaseType->isRecordType()) {
6948      Invalid = true;
6949      continue;
6950    }
6951
6952    CXXCastPath BasePath;
6953    BasePath.push_back(Base);
6954
6955    // Construct the "from" expression, which is an implicit cast to the
6956    // appropriately-qualified base type.
6957    Expr *From = OtherRef;
6958    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6959                             CK_UncheckedDerivedToBase,
6960                             VK_LValue, &BasePath).take();
6961
6962    // Dereference "this".
6963    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6964
6965    // Implicitly cast "this" to the appropriately-qualified base type.
6966    To = ImpCastExprToType(To.take(),
6967                           Context.getCVRQualifiedType(BaseType,
6968                                     CopyAssignOperator->getTypeQualifiers()),
6969                           CK_UncheckedDerivedToBase,
6970                           VK_LValue, &BasePath);
6971
6972    // Build the copy.
6973    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6974                                            To.get(), From,
6975                                            /*CopyingBaseSubobject=*/true);
6976    if (Copy.isInvalid()) {
6977      Diag(CurrentLocation, diag::note_member_synthesized_at)
6978        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6979      CopyAssignOperator->setInvalidDecl();
6980      return;
6981    }
6982
6983    // Success! Record the copy.
6984    Statements.push_back(Copy.takeAs<Expr>());
6985  }
6986
6987  // \brief Reference to the __builtin_memcpy function.
6988  Expr *BuiltinMemCpyRef = 0;
6989  // \brief Reference to the __builtin_objc_memmove_collectable function.
6990  Expr *CollectableMemCpyRef = 0;
6991
6992  // Assign non-static members.
6993  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6994                                  FieldEnd = ClassDecl->field_end();
6995       Field != FieldEnd; ++Field) {
6996    // Check for members of reference type; we can't copy those.
6997    if (Field->getType()->isReferenceType()) {
6998      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6999        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7000      Diag(Field->getLocation(), diag::note_declared_at);
7001      Diag(CurrentLocation, diag::note_member_synthesized_at)
7002        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7003      Invalid = true;
7004      continue;
7005    }
7006
7007    // Check for members of const-qualified, non-class type.
7008    QualType BaseType = Context.getBaseElementType(Field->getType());
7009    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7010      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7011        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7012      Diag(Field->getLocation(), diag::note_declared_at);
7013      Diag(CurrentLocation, diag::note_member_synthesized_at)
7014        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7015      Invalid = true;
7016      continue;
7017    }
7018
7019    // Suppress assigning zero-width bitfields.
7020    if (const Expr *Width = Field->getBitWidth())
7021      if (Width->EvaluateAsInt(Context) == 0)
7022        continue;
7023
7024    QualType FieldType = Field->getType().getNonReferenceType();
7025    if (FieldType->isIncompleteArrayType()) {
7026      assert(ClassDecl->hasFlexibleArrayMember() &&
7027             "Incomplete array type is not valid");
7028      continue;
7029    }
7030
7031    // Build references to the field in the object we're copying from and to.
7032    CXXScopeSpec SS; // Intentionally empty
7033    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7034                              LookupMemberName);
7035    MemberLookup.addDecl(*Field);
7036    MemberLookup.resolveKind();
7037    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7038                                               Loc, /*IsArrow=*/false,
7039                                               SS, 0, MemberLookup, 0);
7040    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7041                                             Loc, /*IsArrow=*/true,
7042                                             SS, 0, MemberLookup, 0);
7043    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7044    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7045
7046    // If the field should be copied with __builtin_memcpy rather than via
7047    // explicit assignments, do so. This optimization only applies for arrays
7048    // of scalars and arrays of class type with trivial copy-assignment
7049    // operators.
7050    if (FieldType->isArrayType() &&
7051        BaseType.hasTrivialCopyAssignment(Context)) {
7052      // Compute the size of the memory buffer to be copied.
7053      QualType SizeType = Context.getSizeType();
7054      llvm::APInt Size(Context.getTypeSize(SizeType),
7055                       Context.getTypeSizeInChars(BaseType).getQuantity());
7056      for (const ConstantArrayType *Array
7057              = Context.getAsConstantArrayType(FieldType);
7058           Array;
7059           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7060        llvm::APInt ArraySize
7061          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7062        Size *= ArraySize;
7063      }
7064
7065      // Take the address of the field references for "from" and "to".
7066      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7067      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7068
7069      bool NeedsCollectableMemCpy =
7070          (BaseType->isRecordType() &&
7071           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7072
7073      if (NeedsCollectableMemCpy) {
7074        if (!CollectableMemCpyRef) {
7075          // Create a reference to the __builtin_objc_memmove_collectable function.
7076          LookupResult R(*this,
7077                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7078                         Loc, LookupOrdinaryName);
7079          LookupName(R, TUScope, true);
7080
7081          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7082          if (!CollectableMemCpy) {
7083            // Something went horribly wrong earlier, and we will have
7084            // complained about it.
7085            Invalid = true;
7086            continue;
7087          }
7088
7089          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7090                                                  CollectableMemCpy->getType(),
7091                                                  VK_LValue, Loc, 0).take();
7092          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7093        }
7094      }
7095      // Create a reference to the __builtin_memcpy builtin function.
7096      else if (!BuiltinMemCpyRef) {
7097        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7098                       LookupOrdinaryName);
7099        LookupName(R, TUScope, true);
7100
7101        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7102        if (!BuiltinMemCpy) {
7103          // Something went horribly wrong earlier, and we will have complained
7104          // about it.
7105          Invalid = true;
7106          continue;
7107        }
7108
7109        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7110                                            BuiltinMemCpy->getType(),
7111                                            VK_LValue, Loc, 0).take();
7112        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7113      }
7114
7115      ASTOwningVector<Expr*> CallArgs(*this);
7116      CallArgs.push_back(To.takeAs<Expr>());
7117      CallArgs.push_back(From.takeAs<Expr>());
7118      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7119      ExprResult Call = ExprError();
7120      if (NeedsCollectableMemCpy)
7121        Call = ActOnCallExpr(/*Scope=*/0,
7122                             CollectableMemCpyRef,
7123                             Loc, move_arg(CallArgs),
7124                             Loc);
7125      else
7126        Call = ActOnCallExpr(/*Scope=*/0,
7127                             BuiltinMemCpyRef,
7128                             Loc, move_arg(CallArgs),
7129                             Loc);
7130
7131      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7132      Statements.push_back(Call.takeAs<Expr>());
7133      continue;
7134    }
7135
7136    // Build the copy of this field.
7137    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7138                                                  To.get(), From.get(),
7139                                              /*CopyingBaseSubobject=*/false);
7140    if (Copy.isInvalid()) {
7141      Diag(CurrentLocation, diag::note_member_synthesized_at)
7142        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7143      CopyAssignOperator->setInvalidDecl();
7144      return;
7145    }
7146
7147    // Success! Record the copy.
7148    Statements.push_back(Copy.takeAs<Stmt>());
7149  }
7150
7151  if (!Invalid) {
7152    // Add a "return *this;"
7153    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7154
7155    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7156    if (Return.isInvalid())
7157      Invalid = true;
7158    else {
7159      Statements.push_back(Return.takeAs<Stmt>());
7160
7161      if (Trap.hasErrorOccurred()) {
7162        Diag(CurrentLocation, diag::note_member_synthesized_at)
7163          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7164        Invalid = true;
7165      }
7166    }
7167  }
7168
7169  if (Invalid) {
7170    CopyAssignOperator->setInvalidDecl();
7171    return;
7172  }
7173
7174  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7175                                            /*isStmtExpr=*/false);
7176  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7177  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7178
7179  if (ASTMutationListener *L = getASTMutationListener()) {
7180    L->CompletedImplicitDefinition(CopyAssignOperator);
7181  }
7182}
7183
7184std::pair<Sema::ImplicitExceptionSpecification, bool>
7185Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7186  // C++ [class.copy]p5:
7187  //   The implicitly-declared copy constructor for a class X will
7188  //   have the form
7189  //
7190  //       X::X(const X&)
7191  //
7192  //   if
7193  // FIXME: It ought to be possible to store this on the record.
7194  bool HasConstCopyConstructor = true;
7195
7196  //     -- each direct or virtual base class B of X has a copy
7197  //        constructor whose first parameter is of type const B& or
7198  //        const volatile B&, and
7199  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7200                                       BaseEnd = ClassDecl->bases_end();
7201       HasConstCopyConstructor && Base != BaseEnd;
7202       ++Base) {
7203    // Virtual bases are handled below.
7204    if (Base->isVirtual())
7205      continue;
7206
7207    CXXRecordDecl *BaseClassDecl
7208      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7209    LookupCopyConstructor(BaseClassDecl, Qualifiers::Const,
7210                          &HasConstCopyConstructor);
7211  }
7212
7213  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7214                                       BaseEnd = ClassDecl->vbases_end();
7215       HasConstCopyConstructor && Base != BaseEnd;
7216       ++Base) {
7217    CXXRecordDecl *BaseClassDecl
7218      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7219    LookupCopyConstructor(BaseClassDecl, Qualifiers::Const,
7220                          &HasConstCopyConstructor);
7221  }
7222
7223  //     -- for all the nonstatic data members of X that are of a
7224  //        class type M (or array thereof), each such class type
7225  //        has a copy constructor whose first parameter is of type
7226  //        const M& or const volatile M&.
7227  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7228                                  FieldEnd = ClassDecl->field_end();
7229       HasConstCopyConstructor && Field != FieldEnd;
7230       ++Field) {
7231    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7232    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7233      LookupCopyConstructor(FieldClassDecl, Qualifiers::Const,
7234                            &HasConstCopyConstructor);
7235    }
7236  }
7237  //   Otherwise, the implicitly declared copy constructor will have
7238  //   the form
7239  //
7240  //       X::X(X&)
7241
7242  // C++ [except.spec]p14:
7243  //   An implicitly declared special member function (Clause 12) shall have an
7244  //   exception-specification. [...]
7245  ImplicitExceptionSpecification ExceptSpec(Context);
7246  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7247  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7248                                       BaseEnd = ClassDecl->bases_end();
7249       Base != BaseEnd;
7250       ++Base) {
7251    // Virtual bases are handled below.
7252    if (Base->isVirtual())
7253      continue;
7254
7255    CXXRecordDecl *BaseClassDecl
7256      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7257    if (CXXConstructorDecl *CopyConstructor =
7258          LookupCopyConstructor(BaseClassDecl, Quals))
7259      ExceptSpec.CalledDecl(CopyConstructor);
7260  }
7261  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7262                                       BaseEnd = ClassDecl->vbases_end();
7263       Base != BaseEnd;
7264       ++Base) {
7265    CXXRecordDecl *BaseClassDecl
7266      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7267    if (CXXConstructorDecl *CopyConstructor =
7268          LookupCopyConstructor(BaseClassDecl, Quals))
7269      ExceptSpec.CalledDecl(CopyConstructor);
7270  }
7271  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7272                                  FieldEnd = ClassDecl->field_end();
7273       Field != FieldEnd;
7274       ++Field) {
7275    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7276    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7277      if (CXXConstructorDecl *CopyConstructor =
7278        LookupCopyConstructor(FieldClassDecl, Quals))
7279      ExceptSpec.CalledDecl(CopyConstructor);
7280    }
7281  }
7282
7283  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7284}
7285
7286CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7287                                                    CXXRecordDecl *ClassDecl) {
7288  // C++ [class.copy]p4:
7289  //   If the class definition does not explicitly declare a copy
7290  //   constructor, one is declared implicitly.
7291
7292  ImplicitExceptionSpecification Spec(Context);
7293  bool Const;
7294  llvm::tie(Spec, Const) =
7295    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7296
7297  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7298  QualType ArgType = ClassType;
7299  if (Const)
7300    ArgType = ArgType.withConst();
7301  ArgType = Context.getLValueReferenceType(ArgType);
7302
7303  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7304
7305  DeclarationName Name
7306    = Context.DeclarationNames.getCXXConstructorName(
7307                                           Context.getCanonicalType(ClassType));
7308  SourceLocation ClassLoc = ClassDecl->getLocation();
7309  DeclarationNameInfo NameInfo(Name, ClassLoc);
7310
7311  //   An implicitly-declared copy constructor is an inline public
7312  //   member of its class.
7313  CXXConstructorDecl *CopyConstructor
7314    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7315                                 Context.getFunctionType(Context.VoidTy,
7316                                                         &ArgType, 1, EPI),
7317                                 /*TInfo=*/0,
7318                                 /*isExplicit=*/false,
7319                                 /*isInline=*/true,
7320                                 /*isImplicitlyDeclared=*/true);
7321  CopyConstructor->setAccess(AS_public);
7322  CopyConstructor->setDefaulted();
7323  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7324
7325  // Note that we have declared this constructor.
7326  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7327
7328  // Add the parameter to the constructor.
7329  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7330                                               ClassLoc, ClassLoc,
7331                                               /*IdentifierInfo=*/0,
7332                                               ArgType, /*TInfo=*/0,
7333                                               SC_None,
7334                                               SC_None, 0);
7335  CopyConstructor->setParams(&FromParam, 1);
7336
7337  if (Scope *S = getScopeForContext(ClassDecl))
7338    PushOnScopeChains(CopyConstructor, S, false);
7339  ClassDecl->addDecl(CopyConstructor);
7340
7341  if (ShouldDeleteCopyConstructor(CopyConstructor))
7342    CopyConstructor->setDeletedAsWritten();
7343
7344  return CopyConstructor;
7345}
7346
7347void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7348                                   CXXConstructorDecl *CopyConstructor) {
7349  assert((CopyConstructor->isDefaulted() &&
7350          CopyConstructor->isCopyConstructor() &&
7351          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7352         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7353
7354  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7355  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7356
7357  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7358  DiagnosticErrorTrap Trap(Diags);
7359
7360  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7361      Trap.hasErrorOccurred()) {
7362    Diag(CurrentLocation, diag::note_member_synthesized_at)
7363      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7364    CopyConstructor->setInvalidDecl();
7365  }  else {
7366    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7367                                               CopyConstructor->getLocation(),
7368                                               MultiStmtArg(*this, 0, 0),
7369                                               /*isStmtExpr=*/false)
7370                                                              .takeAs<Stmt>());
7371  }
7372
7373  CopyConstructor->setUsed();
7374
7375  if (ASTMutationListener *L = getASTMutationListener()) {
7376    L->CompletedImplicitDefinition(CopyConstructor);
7377  }
7378}
7379
7380ExprResult
7381Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7382                            CXXConstructorDecl *Constructor,
7383                            MultiExprArg ExprArgs,
7384                            bool RequiresZeroInit,
7385                            unsigned ConstructKind,
7386                            SourceRange ParenRange) {
7387  bool Elidable = false;
7388
7389  // C++0x [class.copy]p34:
7390  //   When certain criteria are met, an implementation is allowed to
7391  //   omit the copy/move construction of a class object, even if the
7392  //   copy/move constructor and/or destructor for the object have
7393  //   side effects. [...]
7394  //     - when a temporary class object that has not been bound to a
7395  //       reference (12.2) would be copied/moved to a class object
7396  //       with the same cv-unqualified type, the copy/move operation
7397  //       can be omitted by constructing the temporary object
7398  //       directly into the target of the omitted copy/move
7399  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7400      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7401    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7402    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7403  }
7404
7405  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7406                               Elidable, move(ExprArgs), RequiresZeroInit,
7407                               ConstructKind, ParenRange);
7408}
7409
7410/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7411/// including handling of its default argument expressions.
7412ExprResult
7413Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7414                            CXXConstructorDecl *Constructor, bool Elidable,
7415                            MultiExprArg ExprArgs,
7416                            bool RequiresZeroInit,
7417                            unsigned ConstructKind,
7418                            SourceRange ParenRange) {
7419  unsigned NumExprs = ExprArgs.size();
7420  Expr **Exprs = (Expr **)ExprArgs.release();
7421
7422  for (specific_attr_iterator<NonNullAttr>
7423           i = Constructor->specific_attr_begin<NonNullAttr>(),
7424           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7425    const NonNullAttr *NonNull = *i;
7426    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7427  }
7428
7429  MarkDeclarationReferenced(ConstructLoc, Constructor);
7430  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7431                                        Constructor, Elidable, Exprs, NumExprs,
7432                                        RequiresZeroInit,
7433              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7434                                        ParenRange));
7435}
7436
7437bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7438                                        CXXConstructorDecl *Constructor,
7439                                        MultiExprArg Exprs) {
7440  // FIXME: Provide the correct paren SourceRange when available.
7441  ExprResult TempResult =
7442    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7443                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7444                          SourceRange());
7445  if (TempResult.isInvalid())
7446    return true;
7447
7448  Expr *Temp = TempResult.takeAs<Expr>();
7449  CheckImplicitConversions(Temp, VD->getLocation());
7450  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7451  Temp = MaybeCreateExprWithCleanups(Temp);
7452  VD->setInit(Temp);
7453
7454  return false;
7455}
7456
7457void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7458  if (VD->isInvalidDecl()) return;
7459
7460  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7461  if (ClassDecl->isInvalidDecl()) return;
7462  if (ClassDecl->hasTrivialDestructor()) return;
7463  if (ClassDecl->isDependentContext()) return;
7464
7465  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7466  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7467  CheckDestructorAccess(VD->getLocation(), Destructor,
7468                        PDiag(diag::err_access_dtor_var)
7469                        << VD->getDeclName()
7470                        << VD->getType());
7471
7472  if (!VD->hasGlobalStorage()) return;
7473
7474  // Emit warning for non-trivial dtor in global scope (a real global,
7475  // class-static, function-static).
7476  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7477
7478  // TODO: this should be re-enabled for static locals by !CXAAtExit
7479  if (!VD->isStaticLocal())
7480    Diag(VD->getLocation(), diag::warn_global_destructor);
7481}
7482
7483/// AddCXXDirectInitializerToDecl - This action is called immediately after
7484/// ActOnDeclarator, when a C++ direct initializer is present.
7485/// e.g: "int x(1);"
7486void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7487                                         SourceLocation LParenLoc,
7488                                         MultiExprArg Exprs,
7489                                         SourceLocation RParenLoc,
7490                                         bool TypeMayContainAuto) {
7491  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7492
7493  // If there is no declaration, there was an error parsing it.  Just ignore
7494  // the initializer.
7495  if (RealDecl == 0)
7496    return;
7497
7498  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7499  if (!VDecl) {
7500    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7501    RealDecl->setInvalidDecl();
7502    return;
7503  }
7504
7505  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7506  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7507    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7508    if (Exprs.size() > 1) {
7509      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7510           diag::err_auto_var_init_multiple_expressions)
7511        << VDecl->getDeclName() << VDecl->getType()
7512        << VDecl->getSourceRange();
7513      RealDecl->setInvalidDecl();
7514      return;
7515    }
7516
7517    Expr *Init = Exprs.get()[0];
7518    TypeSourceInfo *DeducedType = 0;
7519    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7520      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7521        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7522        << Init->getSourceRange();
7523    if (!DeducedType) {
7524      RealDecl->setInvalidDecl();
7525      return;
7526    }
7527    VDecl->setTypeSourceInfo(DeducedType);
7528    VDecl->setType(DeducedType->getType());
7529
7530    // In ARC, infer lifetime.
7531    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7532      VDecl->setInvalidDecl();
7533
7534    // If this is a redeclaration, check that the type we just deduced matches
7535    // the previously declared type.
7536    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7537      MergeVarDeclTypes(VDecl, Old);
7538  }
7539
7540  // We will represent direct-initialization similarly to copy-initialization:
7541  //    int x(1);  -as-> int x = 1;
7542  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7543  //
7544  // Clients that want to distinguish between the two forms, can check for
7545  // direct initializer using VarDecl::hasCXXDirectInitializer().
7546  // A major benefit is that clients that don't particularly care about which
7547  // exactly form was it (like the CodeGen) can handle both cases without
7548  // special case code.
7549
7550  // C++ 8.5p11:
7551  // The form of initialization (using parentheses or '=') is generally
7552  // insignificant, but does matter when the entity being initialized has a
7553  // class type.
7554
7555  if (!VDecl->getType()->isDependentType() &&
7556      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7557                          diag::err_typecheck_decl_incomplete_type)) {
7558    VDecl->setInvalidDecl();
7559    return;
7560  }
7561
7562  // The variable can not have an abstract class type.
7563  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7564                             diag::err_abstract_type_in_decl,
7565                             AbstractVariableType))
7566    VDecl->setInvalidDecl();
7567
7568  const VarDecl *Def;
7569  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7570    Diag(VDecl->getLocation(), diag::err_redefinition)
7571    << VDecl->getDeclName();
7572    Diag(Def->getLocation(), diag::note_previous_definition);
7573    VDecl->setInvalidDecl();
7574    return;
7575  }
7576
7577  // C++ [class.static.data]p4
7578  //   If a static data member is of const integral or const
7579  //   enumeration type, its declaration in the class definition can
7580  //   specify a constant-initializer which shall be an integral
7581  //   constant expression (5.19). In that case, the member can appear
7582  //   in integral constant expressions. The member shall still be
7583  //   defined in a namespace scope if it is used in the program and the
7584  //   namespace scope definition shall not contain an initializer.
7585  //
7586  // We already performed a redefinition check above, but for static
7587  // data members we also need to check whether there was an in-class
7588  // declaration with an initializer.
7589  const VarDecl* PrevInit = 0;
7590  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7591    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7592    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7593    return;
7594  }
7595
7596  bool IsDependent = false;
7597  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7598    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7599      VDecl->setInvalidDecl();
7600      return;
7601    }
7602
7603    if (Exprs.get()[I]->isTypeDependent())
7604      IsDependent = true;
7605  }
7606
7607  // If either the declaration has a dependent type or if any of the
7608  // expressions is type-dependent, we represent the initialization
7609  // via a ParenListExpr for later use during template instantiation.
7610  if (VDecl->getType()->isDependentType() || IsDependent) {
7611    // Let clients know that initialization was done with a direct initializer.
7612    VDecl->setCXXDirectInitializer(true);
7613
7614    // Store the initialization expressions as a ParenListExpr.
7615    unsigned NumExprs = Exprs.size();
7616    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7617                                               (Expr **)Exprs.release(),
7618                                               NumExprs, RParenLoc));
7619    return;
7620  }
7621
7622  // Capture the variable that is being initialized and the style of
7623  // initialization.
7624  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7625
7626  // FIXME: Poor source location information.
7627  InitializationKind Kind
7628    = InitializationKind::CreateDirect(VDecl->getLocation(),
7629                                       LParenLoc, RParenLoc);
7630
7631  InitializationSequence InitSeq(*this, Entity, Kind,
7632                                 Exprs.get(), Exprs.size());
7633  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7634  if (Result.isInvalid()) {
7635    VDecl->setInvalidDecl();
7636    return;
7637  }
7638
7639  CheckImplicitConversions(Result.get(), LParenLoc);
7640
7641  Result = MaybeCreateExprWithCleanups(Result);
7642  VDecl->setInit(Result.takeAs<Expr>());
7643  VDecl->setCXXDirectInitializer(true);
7644
7645  CheckCompleteVariableDeclaration(VDecl);
7646}
7647
7648/// \brief Given a constructor and the set of arguments provided for the
7649/// constructor, convert the arguments and add any required default arguments
7650/// to form a proper call to this constructor.
7651///
7652/// \returns true if an error occurred, false otherwise.
7653bool
7654Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7655                              MultiExprArg ArgsPtr,
7656                              SourceLocation Loc,
7657                              ASTOwningVector<Expr*> &ConvertedArgs) {
7658  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7659  unsigned NumArgs = ArgsPtr.size();
7660  Expr **Args = (Expr **)ArgsPtr.get();
7661
7662  const FunctionProtoType *Proto
7663    = Constructor->getType()->getAs<FunctionProtoType>();
7664  assert(Proto && "Constructor without a prototype?");
7665  unsigned NumArgsInProto = Proto->getNumArgs();
7666
7667  // If too few arguments are available, we'll fill in the rest with defaults.
7668  if (NumArgs < NumArgsInProto)
7669    ConvertedArgs.reserve(NumArgsInProto);
7670  else
7671    ConvertedArgs.reserve(NumArgs);
7672
7673  VariadicCallType CallType =
7674    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7675  llvm::SmallVector<Expr *, 8> AllArgs;
7676  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7677                                        Proto, 0, Args, NumArgs, AllArgs,
7678                                        CallType);
7679  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7680    ConvertedArgs.push_back(AllArgs[i]);
7681  return Invalid;
7682}
7683
7684static inline bool
7685CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7686                                       const FunctionDecl *FnDecl) {
7687  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7688  if (isa<NamespaceDecl>(DC)) {
7689    return SemaRef.Diag(FnDecl->getLocation(),
7690                        diag::err_operator_new_delete_declared_in_namespace)
7691      << FnDecl->getDeclName();
7692  }
7693
7694  if (isa<TranslationUnitDecl>(DC) &&
7695      FnDecl->getStorageClass() == SC_Static) {
7696    return SemaRef.Diag(FnDecl->getLocation(),
7697                        diag::err_operator_new_delete_declared_static)
7698      << FnDecl->getDeclName();
7699  }
7700
7701  return false;
7702}
7703
7704static inline bool
7705CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7706                            CanQualType ExpectedResultType,
7707                            CanQualType ExpectedFirstParamType,
7708                            unsigned DependentParamTypeDiag,
7709                            unsigned InvalidParamTypeDiag) {
7710  QualType ResultType =
7711    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7712
7713  // Check that the result type is not dependent.
7714  if (ResultType->isDependentType())
7715    return SemaRef.Diag(FnDecl->getLocation(),
7716                        diag::err_operator_new_delete_dependent_result_type)
7717    << FnDecl->getDeclName() << ExpectedResultType;
7718
7719  // Check that the result type is what we expect.
7720  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7721    return SemaRef.Diag(FnDecl->getLocation(),
7722                        diag::err_operator_new_delete_invalid_result_type)
7723    << FnDecl->getDeclName() << ExpectedResultType;
7724
7725  // A function template must have at least 2 parameters.
7726  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7727    return SemaRef.Diag(FnDecl->getLocation(),
7728                      diag::err_operator_new_delete_template_too_few_parameters)
7729        << FnDecl->getDeclName();
7730
7731  // The function decl must have at least 1 parameter.
7732  if (FnDecl->getNumParams() == 0)
7733    return SemaRef.Diag(FnDecl->getLocation(),
7734                        diag::err_operator_new_delete_too_few_parameters)
7735      << FnDecl->getDeclName();
7736
7737  // Check the the first parameter type is not dependent.
7738  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7739  if (FirstParamType->isDependentType())
7740    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7741      << FnDecl->getDeclName() << ExpectedFirstParamType;
7742
7743  // Check that the first parameter type is what we expect.
7744  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7745      ExpectedFirstParamType)
7746    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7747    << FnDecl->getDeclName() << ExpectedFirstParamType;
7748
7749  return false;
7750}
7751
7752static bool
7753CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7754  // C++ [basic.stc.dynamic.allocation]p1:
7755  //   A program is ill-formed if an allocation function is declared in a
7756  //   namespace scope other than global scope or declared static in global
7757  //   scope.
7758  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7759    return true;
7760
7761  CanQualType SizeTy =
7762    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7763
7764  // C++ [basic.stc.dynamic.allocation]p1:
7765  //  The return type shall be void*. The first parameter shall have type
7766  //  std::size_t.
7767  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7768                                  SizeTy,
7769                                  diag::err_operator_new_dependent_param_type,
7770                                  diag::err_operator_new_param_type))
7771    return true;
7772
7773  // C++ [basic.stc.dynamic.allocation]p1:
7774  //  The first parameter shall not have an associated default argument.
7775  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7776    return SemaRef.Diag(FnDecl->getLocation(),
7777                        diag::err_operator_new_default_arg)
7778      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7779
7780  return false;
7781}
7782
7783static bool
7784CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7785  // C++ [basic.stc.dynamic.deallocation]p1:
7786  //   A program is ill-formed if deallocation functions are declared in a
7787  //   namespace scope other than global scope or declared static in global
7788  //   scope.
7789  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7790    return true;
7791
7792  // C++ [basic.stc.dynamic.deallocation]p2:
7793  //   Each deallocation function shall return void and its first parameter
7794  //   shall be void*.
7795  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7796                                  SemaRef.Context.VoidPtrTy,
7797                                 diag::err_operator_delete_dependent_param_type,
7798                                 diag::err_operator_delete_param_type))
7799    return true;
7800
7801  return false;
7802}
7803
7804/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7805/// of this overloaded operator is well-formed. If so, returns false;
7806/// otherwise, emits appropriate diagnostics and returns true.
7807bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7808  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7809         "Expected an overloaded operator declaration");
7810
7811  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7812
7813  // C++ [over.oper]p5:
7814  //   The allocation and deallocation functions, operator new,
7815  //   operator new[], operator delete and operator delete[], are
7816  //   described completely in 3.7.3. The attributes and restrictions
7817  //   found in the rest of this subclause do not apply to them unless
7818  //   explicitly stated in 3.7.3.
7819  if (Op == OO_Delete || Op == OO_Array_Delete)
7820    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7821
7822  if (Op == OO_New || Op == OO_Array_New)
7823    return CheckOperatorNewDeclaration(*this, FnDecl);
7824
7825  // C++ [over.oper]p6:
7826  //   An operator function shall either be a non-static member
7827  //   function or be a non-member function and have at least one
7828  //   parameter whose type is a class, a reference to a class, an
7829  //   enumeration, or a reference to an enumeration.
7830  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7831    if (MethodDecl->isStatic())
7832      return Diag(FnDecl->getLocation(),
7833                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7834  } else {
7835    bool ClassOrEnumParam = false;
7836    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7837                                   ParamEnd = FnDecl->param_end();
7838         Param != ParamEnd; ++Param) {
7839      QualType ParamType = (*Param)->getType().getNonReferenceType();
7840      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7841          ParamType->isEnumeralType()) {
7842        ClassOrEnumParam = true;
7843        break;
7844      }
7845    }
7846
7847    if (!ClassOrEnumParam)
7848      return Diag(FnDecl->getLocation(),
7849                  diag::err_operator_overload_needs_class_or_enum)
7850        << FnDecl->getDeclName();
7851  }
7852
7853  // C++ [over.oper]p8:
7854  //   An operator function cannot have default arguments (8.3.6),
7855  //   except where explicitly stated below.
7856  //
7857  // Only the function-call operator allows default arguments
7858  // (C++ [over.call]p1).
7859  if (Op != OO_Call) {
7860    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7861         Param != FnDecl->param_end(); ++Param) {
7862      if ((*Param)->hasDefaultArg())
7863        return Diag((*Param)->getLocation(),
7864                    diag::err_operator_overload_default_arg)
7865          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7866    }
7867  }
7868
7869  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7870    { false, false, false }
7871#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7872    , { Unary, Binary, MemberOnly }
7873#include "clang/Basic/OperatorKinds.def"
7874  };
7875
7876  bool CanBeUnaryOperator = OperatorUses[Op][0];
7877  bool CanBeBinaryOperator = OperatorUses[Op][1];
7878  bool MustBeMemberOperator = OperatorUses[Op][2];
7879
7880  // C++ [over.oper]p8:
7881  //   [...] Operator functions cannot have more or fewer parameters
7882  //   than the number required for the corresponding operator, as
7883  //   described in the rest of this subclause.
7884  unsigned NumParams = FnDecl->getNumParams()
7885                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7886  if (Op != OO_Call &&
7887      ((NumParams == 1 && !CanBeUnaryOperator) ||
7888       (NumParams == 2 && !CanBeBinaryOperator) ||
7889       (NumParams < 1) || (NumParams > 2))) {
7890    // We have the wrong number of parameters.
7891    unsigned ErrorKind;
7892    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7893      ErrorKind = 2;  // 2 -> unary or binary.
7894    } else if (CanBeUnaryOperator) {
7895      ErrorKind = 0;  // 0 -> unary
7896    } else {
7897      assert(CanBeBinaryOperator &&
7898             "All non-call overloaded operators are unary or binary!");
7899      ErrorKind = 1;  // 1 -> binary
7900    }
7901
7902    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7903      << FnDecl->getDeclName() << NumParams << ErrorKind;
7904  }
7905
7906  // Overloaded operators other than operator() cannot be variadic.
7907  if (Op != OO_Call &&
7908      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7909    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7910      << FnDecl->getDeclName();
7911  }
7912
7913  // Some operators must be non-static member functions.
7914  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7915    return Diag(FnDecl->getLocation(),
7916                diag::err_operator_overload_must_be_member)
7917      << FnDecl->getDeclName();
7918  }
7919
7920  // C++ [over.inc]p1:
7921  //   The user-defined function called operator++ implements the
7922  //   prefix and postfix ++ operator. If this function is a member
7923  //   function with no parameters, or a non-member function with one
7924  //   parameter of class or enumeration type, it defines the prefix
7925  //   increment operator ++ for objects of that type. If the function
7926  //   is a member function with one parameter (which shall be of type
7927  //   int) or a non-member function with two parameters (the second
7928  //   of which shall be of type int), it defines the postfix
7929  //   increment operator ++ for objects of that type.
7930  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7931    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7932    bool ParamIsInt = false;
7933    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7934      ParamIsInt = BT->getKind() == BuiltinType::Int;
7935
7936    if (!ParamIsInt)
7937      return Diag(LastParam->getLocation(),
7938                  diag::err_operator_overload_post_incdec_must_be_int)
7939        << LastParam->getType() << (Op == OO_MinusMinus);
7940  }
7941
7942  return false;
7943}
7944
7945/// CheckLiteralOperatorDeclaration - Check whether the declaration
7946/// of this literal operator function is well-formed. If so, returns
7947/// false; otherwise, emits appropriate diagnostics and returns true.
7948bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7949  DeclContext *DC = FnDecl->getDeclContext();
7950  Decl::Kind Kind = DC->getDeclKind();
7951  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7952      Kind != Decl::LinkageSpec) {
7953    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7954      << FnDecl->getDeclName();
7955    return true;
7956  }
7957
7958  bool Valid = false;
7959
7960  // template <char...> type operator "" name() is the only valid template
7961  // signature, and the only valid signature with no parameters.
7962  if (FnDecl->param_size() == 0) {
7963    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7964      // Must have only one template parameter
7965      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7966      if (Params->size() == 1) {
7967        NonTypeTemplateParmDecl *PmDecl =
7968          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7969
7970        // The template parameter must be a char parameter pack.
7971        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7972            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7973          Valid = true;
7974      }
7975    }
7976  } else {
7977    // Check the first parameter
7978    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7979
7980    QualType T = (*Param)->getType();
7981
7982    // unsigned long long int, long double, and any character type are allowed
7983    // as the only parameters.
7984    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7985        Context.hasSameType(T, Context.LongDoubleTy) ||
7986        Context.hasSameType(T, Context.CharTy) ||
7987        Context.hasSameType(T, Context.WCharTy) ||
7988        Context.hasSameType(T, Context.Char16Ty) ||
7989        Context.hasSameType(T, Context.Char32Ty)) {
7990      if (++Param == FnDecl->param_end())
7991        Valid = true;
7992      goto FinishedParams;
7993    }
7994
7995    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7996    const PointerType *PT = T->getAs<PointerType>();
7997    if (!PT)
7998      goto FinishedParams;
7999    T = PT->getPointeeType();
8000    if (!T.isConstQualified())
8001      goto FinishedParams;
8002    T = T.getUnqualifiedType();
8003
8004    // Move on to the second parameter;
8005    ++Param;
8006
8007    // If there is no second parameter, the first must be a const char *
8008    if (Param == FnDecl->param_end()) {
8009      if (Context.hasSameType(T, Context.CharTy))
8010        Valid = true;
8011      goto FinishedParams;
8012    }
8013
8014    // const char *, const wchar_t*, const char16_t*, and const char32_t*
8015    // are allowed as the first parameter to a two-parameter function
8016    if (!(Context.hasSameType(T, Context.CharTy) ||
8017          Context.hasSameType(T, Context.WCharTy) ||
8018          Context.hasSameType(T, Context.Char16Ty) ||
8019          Context.hasSameType(T, Context.Char32Ty)))
8020      goto FinishedParams;
8021
8022    // The second and final parameter must be an std::size_t
8023    T = (*Param)->getType().getUnqualifiedType();
8024    if (Context.hasSameType(T, Context.getSizeType()) &&
8025        ++Param == FnDecl->param_end())
8026      Valid = true;
8027  }
8028
8029  // FIXME: This diagnostic is absolutely terrible.
8030FinishedParams:
8031  if (!Valid) {
8032    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
8033      << FnDecl->getDeclName();
8034    return true;
8035  }
8036
8037  return false;
8038}
8039
8040/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
8041/// linkage specification, including the language and (if present)
8042/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
8043/// the location of the language string literal, which is provided
8044/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
8045/// the '{' brace. Otherwise, this linkage specification does not
8046/// have any braces.
8047Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
8048                                           SourceLocation LangLoc,
8049                                           llvm::StringRef Lang,
8050                                           SourceLocation LBraceLoc) {
8051  LinkageSpecDecl::LanguageIDs Language;
8052  if (Lang == "\"C\"")
8053    Language = LinkageSpecDecl::lang_c;
8054  else if (Lang == "\"C++\"")
8055    Language = LinkageSpecDecl::lang_cxx;
8056  else {
8057    Diag(LangLoc, diag::err_bad_language);
8058    return 0;
8059  }
8060
8061  // FIXME: Add all the various semantics of linkage specifications
8062
8063  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
8064                                               ExternLoc, LangLoc, Language);
8065  CurContext->addDecl(D);
8066  PushDeclContext(S, D);
8067  return D;
8068}
8069
8070/// ActOnFinishLinkageSpecification - Complete the definition of
8071/// the C++ linkage specification LinkageSpec. If RBraceLoc is
8072/// valid, it's the position of the closing '}' brace in a linkage
8073/// specification that uses braces.
8074Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
8075                                            Decl *LinkageSpec,
8076                                            SourceLocation RBraceLoc) {
8077  if (LinkageSpec) {
8078    if (RBraceLoc.isValid()) {
8079      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
8080      LSDecl->setRBraceLoc(RBraceLoc);
8081    }
8082    PopDeclContext();
8083  }
8084  return LinkageSpec;
8085}
8086
8087/// \brief Perform semantic analysis for the variable declaration that
8088/// occurs within a C++ catch clause, returning the newly-created
8089/// variable.
8090VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
8091                                         TypeSourceInfo *TInfo,
8092                                         SourceLocation StartLoc,
8093                                         SourceLocation Loc,
8094                                         IdentifierInfo *Name) {
8095  bool Invalid = false;
8096  QualType ExDeclType = TInfo->getType();
8097
8098  // Arrays and functions decay.
8099  if (ExDeclType->isArrayType())
8100    ExDeclType = Context.getArrayDecayedType(ExDeclType);
8101  else if (ExDeclType->isFunctionType())
8102    ExDeclType = Context.getPointerType(ExDeclType);
8103
8104  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
8105  // The exception-declaration shall not denote a pointer or reference to an
8106  // incomplete type, other than [cv] void*.
8107  // N2844 forbids rvalue references.
8108  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8109    Diag(Loc, diag::err_catch_rvalue_ref);
8110    Invalid = true;
8111  }
8112
8113  // GCC allows catching pointers and references to incomplete types
8114  // as an extension; so do we, but we warn by default.
8115
8116  QualType BaseType = ExDeclType;
8117  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8118  unsigned DK = diag::err_catch_incomplete;
8119  bool IncompleteCatchIsInvalid = true;
8120  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8121    BaseType = Ptr->getPointeeType();
8122    Mode = 1;
8123    DK = diag::ext_catch_incomplete_ptr;
8124    IncompleteCatchIsInvalid = false;
8125  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8126    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8127    BaseType = Ref->getPointeeType();
8128    Mode = 2;
8129    DK = diag::ext_catch_incomplete_ref;
8130    IncompleteCatchIsInvalid = false;
8131  }
8132  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8133      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8134      IncompleteCatchIsInvalid)
8135    Invalid = true;
8136
8137  if (!Invalid && !ExDeclType->isDependentType() &&
8138      RequireNonAbstractType(Loc, ExDeclType,
8139                             diag::err_abstract_type_in_decl,
8140                             AbstractVariableType))
8141    Invalid = true;
8142
8143  // Only the non-fragile NeXT runtime currently supports C++ catches
8144  // of ObjC types, and no runtime supports catching ObjC types by value.
8145  if (!Invalid && getLangOptions().ObjC1) {
8146    QualType T = ExDeclType;
8147    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8148      T = RT->getPointeeType();
8149
8150    if (T->isObjCObjectType()) {
8151      Diag(Loc, diag::err_objc_object_catch);
8152      Invalid = true;
8153    } else if (T->isObjCObjectPointerType()) {
8154      if (!getLangOptions().ObjCNonFragileABI) {
8155        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8156        Invalid = true;
8157      }
8158    }
8159  }
8160
8161  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8162                                    ExDeclType, TInfo, SC_None, SC_None);
8163  ExDecl->setExceptionVariable(true);
8164
8165  if (!Invalid) {
8166    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8167      // C++ [except.handle]p16:
8168      //   The object declared in an exception-declaration or, if the
8169      //   exception-declaration does not specify a name, a temporary (12.2) is
8170      //   copy-initialized (8.5) from the exception object. [...]
8171      //   The object is destroyed when the handler exits, after the destruction
8172      //   of any automatic objects initialized within the handler.
8173      //
8174      // We just pretend to initialize the object with itself, then make sure
8175      // it can be destroyed later.
8176      QualType initType = ExDeclType;
8177
8178      InitializedEntity entity =
8179        InitializedEntity::InitializeVariable(ExDecl);
8180      InitializationKind initKind =
8181        InitializationKind::CreateCopy(Loc, SourceLocation());
8182
8183      Expr *opaqueValue =
8184        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8185      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8186      ExprResult result = sequence.Perform(*this, entity, initKind,
8187                                           MultiExprArg(&opaqueValue, 1));
8188      if (result.isInvalid())
8189        Invalid = true;
8190      else {
8191        // If the constructor used was non-trivial, set this as the
8192        // "initializer".
8193        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8194        if (!construct->getConstructor()->isTrivial()) {
8195          Expr *init = MaybeCreateExprWithCleanups(construct);
8196          ExDecl->setInit(init);
8197        }
8198
8199        // And make sure it's destructable.
8200        FinalizeVarWithDestructor(ExDecl, recordType);
8201      }
8202    }
8203  }
8204
8205  if (Invalid)
8206    ExDecl->setInvalidDecl();
8207
8208  return ExDecl;
8209}
8210
8211/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8212/// handler.
8213Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8214  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8215  bool Invalid = D.isInvalidType();
8216
8217  // Check for unexpanded parameter packs.
8218  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8219                                               UPPC_ExceptionType)) {
8220    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8221                                             D.getIdentifierLoc());
8222    Invalid = true;
8223  }
8224
8225  IdentifierInfo *II = D.getIdentifier();
8226  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8227                                             LookupOrdinaryName,
8228                                             ForRedeclaration)) {
8229    // The scope should be freshly made just for us. There is just no way
8230    // it contains any previous declaration.
8231    assert(!S->isDeclScope(PrevDecl));
8232    if (PrevDecl->isTemplateParameter()) {
8233      // Maybe we will complain about the shadowed template parameter.
8234      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8235    }
8236  }
8237
8238  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8239    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8240      << D.getCXXScopeSpec().getRange();
8241    Invalid = true;
8242  }
8243
8244  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8245                                              D.getSourceRange().getBegin(),
8246                                              D.getIdentifierLoc(),
8247                                              D.getIdentifier());
8248  if (Invalid)
8249    ExDecl->setInvalidDecl();
8250
8251  // Add the exception declaration into this scope.
8252  if (II)
8253    PushOnScopeChains(ExDecl, S);
8254  else
8255    CurContext->addDecl(ExDecl);
8256
8257  ProcessDeclAttributes(S, ExDecl, D);
8258  return ExDecl;
8259}
8260
8261Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8262                                         Expr *AssertExpr,
8263                                         Expr *AssertMessageExpr_,
8264                                         SourceLocation RParenLoc) {
8265  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8266
8267  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8268    llvm::APSInt Value(32);
8269    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8270      Diag(StaticAssertLoc,
8271           diag::err_static_assert_expression_is_not_constant) <<
8272        AssertExpr->getSourceRange();
8273      return 0;
8274    }
8275
8276    if (Value == 0) {
8277      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8278        << AssertMessage->getString() << AssertExpr->getSourceRange();
8279    }
8280  }
8281
8282  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8283    return 0;
8284
8285  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8286                                        AssertExpr, AssertMessage, RParenLoc);
8287
8288  CurContext->addDecl(Decl);
8289  return Decl;
8290}
8291
8292/// \brief Perform semantic analysis of the given friend type declaration.
8293///
8294/// \returns A friend declaration that.
8295FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8296                                      TypeSourceInfo *TSInfo) {
8297  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8298
8299  QualType T = TSInfo->getType();
8300  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8301
8302  if (!getLangOptions().CPlusPlus0x) {
8303    // C++03 [class.friend]p2:
8304    //   An elaborated-type-specifier shall be used in a friend declaration
8305    //   for a class.*
8306    //
8307    //   * The class-key of the elaborated-type-specifier is required.
8308    if (!ActiveTemplateInstantiations.empty()) {
8309      // Do not complain about the form of friend template types during
8310      // template instantiation; we will already have complained when the
8311      // template was declared.
8312    } else if (!T->isElaboratedTypeSpecifier()) {
8313      // If we evaluated the type to a record type, suggest putting
8314      // a tag in front.
8315      if (const RecordType *RT = T->getAs<RecordType>()) {
8316        RecordDecl *RD = RT->getDecl();
8317
8318        std::string InsertionText = std::string(" ") + RD->getKindName();
8319
8320        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8321          << (unsigned) RD->getTagKind()
8322          << T
8323          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8324                                        InsertionText);
8325      } else {
8326        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8327          << T
8328          << SourceRange(FriendLoc, TypeRange.getEnd());
8329      }
8330    } else if (T->getAs<EnumType>()) {
8331      Diag(FriendLoc, diag::ext_enum_friend)
8332        << T
8333        << SourceRange(FriendLoc, TypeRange.getEnd());
8334    }
8335  }
8336
8337  // C++0x [class.friend]p3:
8338  //   If the type specifier in a friend declaration designates a (possibly
8339  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8340  //   the friend declaration is ignored.
8341
8342  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8343  // in [class.friend]p3 that we do not implement.
8344
8345  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8346}
8347
8348/// Handle a friend tag declaration where the scope specifier was
8349/// templated.
8350Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8351                                    unsigned TagSpec, SourceLocation TagLoc,
8352                                    CXXScopeSpec &SS,
8353                                    IdentifierInfo *Name, SourceLocation NameLoc,
8354                                    AttributeList *Attr,
8355                                    MultiTemplateParamsArg TempParamLists) {
8356  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8357
8358  bool isExplicitSpecialization = false;
8359  bool Invalid = false;
8360
8361  if (TemplateParameterList *TemplateParams
8362        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8363                                                  TempParamLists.get(),
8364                                                  TempParamLists.size(),
8365                                                  /*friend*/ true,
8366                                                  isExplicitSpecialization,
8367                                                  Invalid)) {
8368    if (TemplateParams->size() > 0) {
8369      // This is a declaration of a class template.
8370      if (Invalid)
8371        return 0;
8372
8373      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8374                                SS, Name, NameLoc, Attr,
8375                                TemplateParams, AS_public,
8376                                TempParamLists.size() - 1,
8377                   (TemplateParameterList**) TempParamLists.release()).take();
8378    } else {
8379      // The "template<>" header is extraneous.
8380      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8381        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8382      isExplicitSpecialization = true;
8383    }
8384  }
8385
8386  if (Invalid) return 0;
8387
8388  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8389
8390  bool isAllExplicitSpecializations = true;
8391  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8392    if (TempParamLists.get()[I]->size()) {
8393      isAllExplicitSpecializations = false;
8394      break;
8395    }
8396  }
8397
8398  // FIXME: don't ignore attributes.
8399
8400  // If it's explicit specializations all the way down, just forget
8401  // about the template header and build an appropriate non-templated
8402  // friend.  TODO: for source fidelity, remember the headers.
8403  if (isAllExplicitSpecializations) {
8404    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8405    ElaboratedTypeKeyword Keyword
8406      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8407    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8408                                   *Name, NameLoc);
8409    if (T.isNull())
8410      return 0;
8411
8412    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8413    if (isa<DependentNameType>(T)) {
8414      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8415      TL.setKeywordLoc(TagLoc);
8416      TL.setQualifierLoc(QualifierLoc);
8417      TL.setNameLoc(NameLoc);
8418    } else {
8419      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8420      TL.setKeywordLoc(TagLoc);
8421      TL.setQualifierLoc(QualifierLoc);
8422      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8423    }
8424
8425    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8426                                            TSI, FriendLoc);
8427    Friend->setAccess(AS_public);
8428    CurContext->addDecl(Friend);
8429    return Friend;
8430  }
8431
8432  // Handle the case of a templated-scope friend class.  e.g.
8433  //   template <class T> class A<T>::B;
8434  // FIXME: we don't support these right now.
8435  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8436  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8437  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8438  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8439  TL.setKeywordLoc(TagLoc);
8440  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8441  TL.setNameLoc(NameLoc);
8442
8443  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8444                                          TSI, FriendLoc);
8445  Friend->setAccess(AS_public);
8446  Friend->setUnsupportedFriend(true);
8447  CurContext->addDecl(Friend);
8448  return Friend;
8449}
8450
8451
8452/// Handle a friend type declaration.  This works in tandem with
8453/// ActOnTag.
8454///
8455/// Notes on friend class templates:
8456///
8457/// We generally treat friend class declarations as if they were
8458/// declaring a class.  So, for example, the elaborated type specifier
8459/// in a friend declaration is required to obey the restrictions of a
8460/// class-head (i.e. no typedefs in the scope chain), template
8461/// parameters are required to match up with simple template-ids, &c.
8462/// However, unlike when declaring a template specialization, it's
8463/// okay to refer to a template specialization without an empty
8464/// template parameter declaration, e.g.
8465///   friend class A<T>::B<unsigned>;
8466/// We permit this as a special case; if there are any template
8467/// parameters present at all, require proper matching, i.e.
8468///   template <> template <class T> friend class A<int>::B;
8469Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8470                                MultiTemplateParamsArg TempParams) {
8471  SourceLocation Loc = DS.getSourceRange().getBegin();
8472
8473  assert(DS.isFriendSpecified());
8474  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8475
8476  // Try to convert the decl specifier to a type.  This works for
8477  // friend templates because ActOnTag never produces a ClassTemplateDecl
8478  // for a TUK_Friend.
8479  Declarator TheDeclarator(DS, Declarator::MemberContext);
8480  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8481  QualType T = TSI->getType();
8482  if (TheDeclarator.isInvalidType())
8483    return 0;
8484
8485  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8486    return 0;
8487
8488  // This is definitely an error in C++98.  It's probably meant to
8489  // be forbidden in C++0x, too, but the specification is just
8490  // poorly written.
8491  //
8492  // The problem is with declarations like the following:
8493  //   template <T> friend A<T>::foo;
8494  // where deciding whether a class C is a friend or not now hinges
8495  // on whether there exists an instantiation of A that causes
8496  // 'foo' to equal C.  There are restrictions on class-heads
8497  // (which we declare (by fiat) elaborated friend declarations to
8498  // be) that makes this tractable.
8499  //
8500  // FIXME: handle "template <> friend class A<T>;", which
8501  // is possibly well-formed?  Who even knows?
8502  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8503    Diag(Loc, diag::err_tagless_friend_type_template)
8504      << DS.getSourceRange();
8505    return 0;
8506  }
8507
8508  // C++98 [class.friend]p1: A friend of a class is a function
8509  //   or class that is not a member of the class . . .
8510  // This is fixed in DR77, which just barely didn't make the C++03
8511  // deadline.  It's also a very silly restriction that seriously
8512  // affects inner classes and which nobody else seems to implement;
8513  // thus we never diagnose it, not even in -pedantic.
8514  //
8515  // But note that we could warn about it: it's always useless to
8516  // friend one of your own members (it's not, however, worthless to
8517  // friend a member of an arbitrary specialization of your template).
8518
8519  Decl *D;
8520  if (unsigned NumTempParamLists = TempParams.size())
8521    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8522                                   NumTempParamLists,
8523                                   TempParams.release(),
8524                                   TSI,
8525                                   DS.getFriendSpecLoc());
8526  else
8527    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8528
8529  if (!D)
8530    return 0;
8531
8532  D->setAccess(AS_public);
8533  CurContext->addDecl(D);
8534
8535  return D;
8536}
8537
8538Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8539                                    MultiTemplateParamsArg TemplateParams) {
8540  const DeclSpec &DS = D.getDeclSpec();
8541
8542  assert(DS.isFriendSpecified());
8543  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8544
8545  SourceLocation Loc = D.getIdentifierLoc();
8546  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8547  QualType T = TInfo->getType();
8548
8549  // C++ [class.friend]p1
8550  //   A friend of a class is a function or class....
8551  // Note that this sees through typedefs, which is intended.
8552  // It *doesn't* see through dependent types, which is correct
8553  // according to [temp.arg.type]p3:
8554  //   If a declaration acquires a function type through a
8555  //   type dependent on a template-parameter and this causes
8556  //   a declaration that does not use the syntactic form of a
8557  //   function declarator to have a function type, the program
8558  //   is ill-formed.
8559  if (!T->isFunctionType()) {
8560    Diag(Loc, diag::err_unexpected_friend);
8561
8562    // It might be worthwhile to try to recover by creating an
8563    // appropriate declaration.
8564    return 0;
8565  }
8566
8567  // C++ [namespace.memdef]p3
8568  //  - If a friend declaration in a non-local class first declares a
8569  //    class or function, the friend class or function is a member
8570  //    of the innermost enclosing namespace.
8571  //  - The name of the friend is not found by simple name lookup
8572  //    until a matching declaration is provided in that namespace
8573  //    scope (either before or after the class declaration granting
8574  //    friendship).
8575  //  - If a friend function is called, its name may be found by the
8576  //    name lookup that considers functions from namespaces and
8577  //    classes associated with the types of the function arguments.
8578  //  - When looking for a prior declaration of a class or a function
8579  //    declared as a friend, scopes outside the innermost enclosing
8580  //    namespace scope are not considered.
8581
8582  CXXScopeSpec &SS = D.getCXXScopeSpec();
8583  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8584  DeclarationName Name = NameInfo.getName();
8585  assert(Name);
8586
8587  // Check for unexpanded parameter packs.
8588  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8589      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8590      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8591    return 0;
8592
8593  // The context we found the declaration in, or in which we should
8594  // create the declaration.
8595  DeclContext *DC;
8596  Scope *DCScope = S;
8597  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8598                        ForRedeclaration);
8599
8600  // FIXME: there are different rules in local classes
8601
8602  // There are four cases here.
8603  //   - There's no scope specifier, in which case we just go to the
8604  //     appropriate scope and look for a function or function template
8605  //     there as appropriate.
8606  // Recover from invalid scope qualifiers as if they just weren't there.
8607  if (SS.isInvalid() || !SS.isSet()) {
8608    // C++0x [namespace.memdef]p3:
8609    //   If the name in a friend declaration is neither qualified nor
8610    //   a template-id and the declaration is a function or an
8611    //   elaborated-type-specifier, the lookup to determine whether
8612    //   the entity has been previously declared shall not consider
8613    //   any scopes outside the innermost enclosing namespace.
8614    // C++0x [class.friend]p11:
8615    //   If a friend declaration appears in a local class and the name
8616    //   specified is an unqualified name, a prior declaration is
8617    //   looked up without considering scopes that are outside the
8618    //   innermost enclosing non-class scope. For a friend function
8619    //   declaration, if there is no prior declaration, the program is
8620    //   ill-formed.
8621    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8622    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8623
8624    // Find the appropriate context according to the above.
8625    DC = CurContext;
8626    while (true) {
8627      // Skip class contexts.  If someone can cite chapter and verse
8628      // for this behavior, that would be nice --- it's what GCC and
8629      // EDG do, and it seems like a reasonable intent, but the spec
8630      // really only says that checks for unqualified existing
8631      // declarations should stop at the nearest enclosing namespace,
8632      // not that they should only consider the nearest enclosing
8633      // namespace.
8634      while (DC->isRecord())
8635        DC = DC->getParent();
8636
8637      LookupQualifiedName(Previous, DC);
8638
8639      // TODO: decide what we think about using declarations.
8640      if (isLocal || !Previous.empty())
8641        break;
8642
8643      if (isTemplateId) {
8644        if (isa<TranslationUnitDecl>(DC)) break;
8645      } else {
8646        if (DC->isFileContext()) break;
8647      }
8648      DC = DC->getParent();
8649    }
8650
8651    // C++ [class.friend]p1: A friend of a class is a function or
8652    //   class that is not a member of the class . . .
8653    // C++0x changes this for both friend types and functions.
8654    // Most C++ 98 compilers do seem to give an error here, so
8655    // we do, too.
8656    if (!Previous.empty() && DC->Equals(CurContext)
8657        && !getLangOptions().CPlusPlus0x)
8658      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8659
8660    DCScope = getScopeForDeclContext(S, DC);
8661
8662  //   - There's a non-dependent scope specifier, in which case we
8663  //     compute it and do a previous lookup there for a function
8664  //     or function template.
8665  } else if (!SS.getScopeRep()->isDependent()) {
8666    DC = computeDeclContext(SS);
8667    if (!DC) return 0;
8668
8669    if (RequireCompleteDeclContext(SS, DC)) return 0;
8670
8671    LookupQualifiedName(Previous, DC);
8672
8673    // Ignore things found implicitly in the wrong scope.
8674    // TODO: better diagnostics for this case.  Suggesting the right
8675    // qualified scope would be nice...
8676    LookupResult::Filter F = Previous.makeFilter();
8677    while (F.hasNext()) {
8678      NamedDecl *D = F.next();
8679      if (!DC->InEnclosingNamespaceSetOf(
8680              D->getDeclContext()->getRedeclContext()))
8681        F.erase();
8682    }
8683    F.done();
8684
8685    if (Previous.empty()) {
8686      D.setInvalidType();
8687      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8688      return 0;
8689    }
8690
8691    // C++ [class.friend]p1: A friend of a class is a function or
8692    //   class that is not a member of the class . . .
8693    if (DC->Equals(CurContext))
8694      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8695
8696  //   - There's a scope specifier that does not match any template
8697  //     parameter lists, in which case we use some arbitrary context,
8698  //     create a method or method template, and wait for instantiation.
8699  //   - There's a scope specifier that does match some template
8700  //     parameter lists, which we don't handle right now.
8701  } else {
8702    DC = CurContext;
8703    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8704  }
8705
8706  if (!DC->isRecord()) {
8707    // This implies that it has to be an operator or function.
8708    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8709        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8710        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8711      Diag(Loc, diag::err_introducing_special_friend) <<
8712        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8713         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8714      return 0;
8715    }
8716  }
8717
8718  bool Redeclaration = false;
8719  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8720                                          move(TemplateParams),
8721                                          IsDefinition,
8722                                          Redeclaration);
8723  if (!ND) return 0;
8724
8725  assert(ND->getDeclContext() == DC);
8726  assert(ND->getLexicalDeclContext() == CurContext);
8727
8728  // Add the function declaration to the appropriate lookup tables,
8729  // adjusting the redeclarations list as necessary.  We don't
8730  // want to do this yet if the friending class is dependent.
8731  //
8732  // Also update the scope-based lookup if the target context's
8733  // lookup context is in lexical scope.
8734  if (!CurContext->isDependentContext()) {
8735    DC = DC->getRedeclContext();
8736    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8737    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8738      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8739  }
8740
8741  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8742                                       D.getIdentifierLoc(), ND,
8743                                       DS.getFriendSpecLoc());
8744  FrD->setAccess(AS_public);
8745  CurContext->addDecl(FrD);
8746
8747  if (ND->isInvalidDecl())
8748    FrD->setInvalidDecl();
8749  else {
8750    FunctionDecl *FD;
8751    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8752      FD = FTD->getTemplatedDecl();
8753    else
8754      FD = cast<FunctionDecl>(ND);
8755
8756    // Mark templated-scope function declarations as unsupported.
8757    if (FD->getNumTemplateParameterLists())
8758      FrD->setUnsupportedFriend(true);
8759  }
8760
8761  return ND;
8762}
8763
8764void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8765  AdjustDeclIfTemplate(Dcl);
8766
8767  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8768  if (!Fn) {
8769    Diag(DelLoc, diag::err_deleted_non_function);
8770    return;
8771  }
8772  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8773    Diag(DelLoc, diag::err_deleted_decl_not_first);
8774    Diag(Prev->getLocation(), diag::note_previous_declaration);
8775    // If the declaration wasn't the first, we delete the function anyway for
8776    // recovery.
8777  }
8778  Fn->setDeletedAsWritten();
8779}
8780
8781void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8782  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8783
8784  if (MD) {
8785    if (MD->getParent()->isDependentType()) {
8786      MD->setDefaulted();
8787      MD->setExplicitlyDefaulted();
8788      return;
8789    }
8790
8791    CXXSpecialMember Member = getSpecialMember(MD);
8792    if (Member == CXXInvalid) {
8793      Diag(DefaultLoc, diag::err_default_special_members);
8794      return;
8795    }
8796
8797    MD->setDefaulted();
8798    MD->setExplicitlyDefaulted();
8799
8800    // If this definition appears within the record, do the checking when
8801    // the record is complete.
8802    const FunctionDecl *Primary = MD;
8803    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8804      // Find the uninstantiated declaration that actually had the '= default'
8805      // on it.
8806      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8807
8808    if (Primary == Primary->getCanonicalDecl())
8809      return;
8810
8811    switch (Member) {
8812    case CXXDefaultConstructor: {
8813      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8814      CheckExplicitlyDefaultedDefaultConstructor(CD);
8815      if (!CD->isInvalidDecl())
8816        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8817      break;
8818    }
8819
8820    case CXXCopyConstructor: {
8821      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8822      CheckExplicitlyDefaultedCopyConstructor(CD);
8823      if (!CD->isInvalidDecl())
8824        DefineImplicitCopyConstructor(DefaultLoc, CD);
8825      break;
8826    }
8827
8828    case CXXCopyAssignment: {
8829      CheckExplicitlyDefaultedCopyAssignment(MD);
8830      if (!MD->isInvalidDecl())
8831        DefineImplicitCopyAssignment(DefaultLoc, MD);
8832      break;
8833    }
8834
8835    case CXXDestructor: {
8836      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8837      CheckExplicitlyDefaultedDestructor(DD);
8838      if (!DD->isInvalidDecl())
8839        DefineImplicitDestructor(DefaultLoc, DD);
8840      break;
8841    }
8842
8843    case CXXMoveConstructor:
8844    case CXXMoveAssignment:
8845      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8846      break;
8847
8848    default:
8849      // FIXME: Do the rest once we have move functions
8850      break;
8851    }
8852  } else {
8853    Diag(DefaultLoc, diag::err_default_special_members);
8854  }
8855}
8856
8857static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8858  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8859    Stmt *SubStmt = *CI;
8860    if (!SubStmt)
8861      continue;
8862    if (isa<ReturnStmt>(SubStmt))
8863      Self.Diag(SubStmt->getSourceRange().getBegin(),
8864           diag::err_return_in_constructor_handler);
8865    if (!isa<Expr>(SubStmt))
8866      SearchForReturnInStmt(Self, SubStmt);
8867  }
8868}
8869
8870void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8871  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8872    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8873    SearchForReturnInStmt(*this, Handler);
8874  }
8875}
8876
8877bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8878                                             const CXXMethodDecl *Old) {
8879  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8880  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8881
8882  if (Context.hasSameType(NewTy, OldTy) ||
8883      NewTy->isDependentType() || OldTy->isDependentType())
8884    return false;
8885
8886  // Check if the return types are covariant
8887  QualType NewClassTy, OldClassTy;
8888
8889  /// Both types must be pointers or references to classes.
8890  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8891    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8892      NewClassTy = NewPT->getPointeeType();
8893      OldClassTy = OldPT->getPointeeType();
8894    }
8895  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8896    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8897      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8898        NewClassTy = NewRT->getPointeeType();
8899        OldClassTy = OldRT->getPointeeType();
8900      }
8901    }
8902  }
8903
8904  // The return types aren't either both pointers or references to a class type.
8905  if (NewClassTy.isNull()) {
8906    Diag(New->getLocation(),
8907         diag::err_different_return_type_for_overriding_virtual_function)
8908      << New->getDeclName() << NewTy << OldTy;
8909    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8910
8911    return true;
8912  }
8913
8914  // C++ [class.virtual]p6:
8915  //   If the return type of D::f differs from the return type of B::f, the
8916  //   class type in the return type of D::f shall be complete at the point of
8917  //   declaration of D::f or shall be the class type D.
8918  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8919    if (!RT->isBeingDefined() &&
8920        RequireCompleteType(New->getLocation(), NewClassTy,
8921                            PDiag(diag::err_covariant_return_incomplete)
8922                              << New->getDeclName()))
8923    return true;
8924  }
8925
8926  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8927    // Check if the new class derives from the old class.
8928    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8929      Diag(New->getLocation(),
8930           diag::err_covariant_return_not_derived)
8931      << New->getDeclName() << NewTy << OldTy;
8932      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8933      return true;
8934    }
8935
8936    // Check if we the conversion from derived to base is valid.
8937    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8938                    diag::err_covariant_return_inaccessible_base,
8939                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8940                    // FIXME: Should this point to the return type?
8941                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8942      // FIXME: this note won't trigger for delayed access control
8943      // diagnostics, and it's impossible to get an undelayed error
8944      // here from access control during the original parse because
8945      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8946      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8947      return true;
8948    }
8949  }
8950
8951  // The qualifiers of the return types must be the same.
8952  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8953    Diag(New->getLocation(),
8954         diag::err_covariant_return_type_different_qualifications)
8955    << New->getDeclName() << NewTy << OldTy;
8956    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8957    return true;
8958  };
8959
8960
8961  // The new class type must have the same or less qualifiers as the old type.
8962  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8963    Diag(New->getLocation(),
8964         diag::err_covariant_return_type_class_type_more_qualified)
8965    << New->getDeclName() << NewTy << OldTy;
8966    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8967    return true;
8968  };
8969
8970  return false;
8971}
8972
8973/// \brief Mark the given method pure.
8974///
8975/// \param Method the method to be marked pure.
8976///
8977/// \param InitRange the source range that covers the "0" initializer.
8978bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8979  SourceLocation EndLoc = InitRange.getEnd();
8980  if (EndLoc.isValid())
8981    Method->setRangeEnd(EndLoc);
8982
8983  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8984    Method->setPure();
8985    return false;
8986  }
8987
8988  if (!Method->isInvalidDecl())
8989    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8990      << Method->getDeclName() << InitRange;
8991  return true;
8992}
8993
8994/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8995/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8996/// is a fresh scope pushed for just this purpose.
8997///
8998/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8999/// static data member of class X, names should be looked up in the scope of
9000/// class X.
9001void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
9002  // If there is no declaration, there was an error parsing it.
9003  if (D == 0 || D->isInvalidDecl()) return;
9004
9005  // We should only get called for declarations with scope specifiers, like:
9006  //   int foo::bar;
9007  assert(D->isOutOfLine());
9008  EnterDeclaratorContext(S, D->getDeclContext());
9009}
9010
9011/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
9012/// initializer for the out-of-line declaration 'D'.
9013void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
9014  // If there is no declaration, there was an error parsing it.
9015  if (D == 0 || D->isInvalidDecl()) return;
9016
9017  assert(D->isOutOfLine());
9018  ExitDeclaratorContext(S);
9019}
9020
9021/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
9022/// C++ if/switch/while/for statement.
9023/// e.g: "if (int x = f()) {...}"
9024DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
9025  // C++ 6.4p2:
9026  // The declarator shall not specify a function or an array.
9027  // The type-specifier-seq shall not contain typedef and shall not declare a
9028  // new class or enumeration.
9029  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
9030         "Parser allowed 'typedef' as storage class of condition decl.");
9031
9032  TagDecl *OwnedTag = 0;
9033  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
9034  QualType Ty = TInfo->getType();
9035
9036  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
9037                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
9038                              // would be created and CXXConditionDeclExpr wants a VarDecl.
9039    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
9040      << D.getSourceRange();
9041    return DeclResult();
9042  } else if (OwnedTag && OwnedTag->isDefinition()) {
9043    // The type-specifier-seq shall not declare a new class or enumeration.
9044    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
9045  }
9046
9047  Decl *Dcl = ActOnDeclarator(S, D);
9048  if (!Dcl)
9049    return DeclResult();
9050
9051  return Dcl;
9052}
9053
9054void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
9055                          bool DefinitionRequired) {
9056  // Ignore any vtable uses in unevaluated operands or for classes that do
9057  // not have a vtable.
9058  if (!Class->isDynamicClass() || Class->isDependentContext() ||
9059      CurContext->isDependentContext() ||
9060      ExprEvalContexts.back().Context == Unevaluated)
9061    return;
9062
9063  // Try to insert this class into the map.
9064  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9065  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
9066    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
9067  if (!Pos.second) {
9068    // If we already had an entry, check to see if we are promoting this vtable
9069    // to required a definition. If so, we need to reappend to the VTableUses
9070    // list, since we may have already processed the first entry.
9071    if (DefinitionRequired && !Pos.first->second) {
9072      Pos.first->second = true;
9073    } else {
9074      // Otherwise, we can early exit.
9075      return;
9076    }
9077  }
9078
9079  // Local classes need to have their virtual members marked
9080  // immediately. For all other classes, we mark their virtual members
9081  // at the end of the translation unit.
9082  if (Class->isLocalClass())
9083    MarkVirtualMembersReferenced(Loc, Class);
9084  else
9085    VTableUses.push_back(std::make_pair(Class, Loc));
9086}
9087
9088bool Sema::DefineUsedVTables() {
9089  if (VTableUses.empty())
9090    return false;
9091
9092  // Note: The VTableUses vector could grow as a result of marking
9093  // the members of a class as "used", so we check the size each
9094  // time through the loop and prefer indices (with are stable) to
9095  // iterators (which are not).
9096  bool DefinedAnything = false;
9097  for (unsigned I = 0; I != VTableUses.size(); ++I) {
9098    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
9099    if (!Class)
9100      continue;
9101
9102    SourceLocation Loc = VTableUses[I].second;
9103
9104    // If this class has a key function, but that key function is
9105    // defined in another translation unit, we don't need to emit the
9106    // vtable even though we're using it.
9107    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
9108    if (KeyFunction && !KeyFunction->hasBody()) {
9109      switch (KeyFunction->getTemplateSpecializationKind()) {
9110      case TSK_Undeclared:
9111      case TSK_ExplicitSpecialization:
9112      case TSK_ExplicitInstantiationDeclaration:
9113        // The key function is in another translation unit.
9114        continue;
9115
9116      case TSK_ExplicitInstantiationDefinition:
9117      case TSK_ImplicitInstantiation:
9118        // We will be instantiating the key function.
9119        break;
9120      }
9121    } else if (!KeyFunction) {
9122      // If we have a class with no key function that is the subject
9123      // of an explicit instantiation declaration, suppress the
9124      // vtable; it will live with the explicit instantiation
9125      // definition.
9126      bool IsExplicitInstantiationDeclaration
9127        = Class->getTemplateSpecializationKind()
9128                                      == TSK_ExplicitInstantiationDeclaration;
9129      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9130                                 REnd = Class->redecls_end();
9131           R != REnd; ++R) {
9132        TemplateSpecializationKind TSK
9133          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9134        if (TSK == TSK_ExplicitInstantiationDeclaration)
9135          IsExplicitInstantiationDeclaration = true;
9136        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9137          IsExplicitInstantiationDeclaration = false;
9138          break;
9139        }
9140      }
9141
9142      if (IsExplicitInstantiationDeclaration)
9143        continue;
9144    }
9145
9146    // Mark all of the virtual members of this class as referenced, so
9147    // that we can build a vtable. Then, tell the AST consumer that a
9148    // vtable for this class is required.
9149    DefinedAnything = true;
9150    MarkVirtualMembersReferenced(Loc, Class);
9151    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9152    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9153
9154    // Optionally warn if we're emitting a weak vtable.
9155    if (Class->getLinkage() == ExternalLinkage &&
9156        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9157      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9158        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9159    }
9160  }
9161  VTableUses.clear();
9162
9163  return DefinedAnything;
9164}
9165
9166void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9167                                        const CXXRecordDecl *RD) {
9168  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9169       e = RD->method_end(); i != e; ++i) {
9170    CXXMethodDecl *MD = *i;
9171
9172    // C++ [basic.def.odr]p2:
9173    //   [...] A virtual member function is used if it is not pure. [...]
9174    if (MD->isVirtual() && !MD->isPure())
9175      MarkDeclarationReferenced(Loc, MD);
9176  }
9177
9178  // Only classes that have virtual bases need a VTT.
9179  if (RD->getNumVBases() == 0)
9180    return;
9181
9182  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9183           e = RD->bases_end(); i != e; ++i) {
9184    const CXXRecordDecl *Base =
9185        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9186    if (Base->getNumVBases() == 0)
9187      continue;
9188    MarkVirtualMembersReferenced(Loc, Base);
9189  }
9190}
9191
9192/// SetIvarInitializers - This routine builds initialization ASTs for the
9193/// Objective-C implementation whose ivars need be initialized.
9194void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9195  if (!getLangOptions().CPlusPlus)
9196    return;
9197  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9198    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9199    CollectIvarsToConstructOrDestruct(OID, ivars);
9200    if (ivars.empty())
9201      return;
9202    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9203    for (unsigned i = 0; i < ivars.size(); i++) {
9204      FieldDecl *Field = ivars[i];
9205      if (Field->isInvalidDecl())
9206        continue;
9207
9208      CXXCtorInitializer *Member;
9209      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9210      InitializationKind InitKind =
9211        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9212
9213      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9214      ExprResult MemberInit =
9215        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9216      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9217      // Note, MemberInit could actually come back empty if no initialization
9218      // is required (e.g., because it would call a trivial default constructor)
9219      if (!MemberInit.get() || MemberInit.isInvalid())
9220        continue;
9221
9222      Member =
9223        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9224                                         SourceLocation(),
9225                                         MemberInit.takeAs<Expr>(),
9226                                         SourceLocation());
9227      AllToInit.push_back(Member);
9228
9229      // Be sure that the destructor is accessible and is marked as referenced.
9230      if (const RecordType *RecordTy
9231                  = Context.getBaseElementType(Field->getType())
9232                                                        ->getAs<RecordType>()) {
9233                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9234        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9235          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9236          CheckDestructorAccess(Field->getLocation(), Destructor,
9237                            PDiag(diag::err_access_dtor_ivar)
9238                              << Context.getBaseElementType(Field->getType()));
9239        }
9240      }
9241    }
9242    ObjCImplementation->setIvarInitializers(Context,
9243                                            AllToInit.data(), AllToInit.size());
9244  }
9245}
9246
9247static
9248void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9249                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9250                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9251                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9252                           Sema &S) {
9253  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9254                                                   CE = Current.end();
9255  if (Ctor->isInvalidDecl())
9256    return;
9257
9258  const FunctionDecl *FNTarget = 0;
9259  CXXConstructorDecl *Target;
9260
9261  // We ignore the result here since if we don't have a body, Target will be
9262  // null below.
9263  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9264  Target
9265= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9266
9267  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9268                     // Avoid dereferencing a null pointer here.
9269                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9270
9271  if (!Current.insert(Canonical))
9272    return;
9273
9274  // We know that beyond here, we aren't chaining into a cycle.
9275  if (!Target || !Target->isDelegatingConstructor() ||
9276      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9277    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9278      Valid.insert(*CI);
9279    Current.clear();
9280  // We've hit a cycle.
9281  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9282             Current.count(TCanonical)) {
9283    // If we haven't diagnosed this cycle yet, do so now.
9284    if (!Invalid.count(TCanonical)) {
9285      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9286             diag::warn_delegating_ctor_cycle)
9287        << Ctor;
9288
9289      // Don't add a note for a function delegating directo to itself.
9290      if (TCanonical != Canonical)
9291        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9292
9293      CXXConstructorDecl *C = Target;
9294      while (C->getCanonicalDecl() != Canonical) {
9295        (void)C->getTargetConstructor()->hasBody(FNTarget);
9296        assert(FNTarget && "Ctor cycle through bodiless function");
9297
9298        C
9299       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9300        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9301      }
9302    }
9303
9304    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9305      Invalid.insert(*CI);
9306    Current.clear();
9307  } else {
9308    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9309  }
9310}
9311
9312
9313void Sema::CheckDelegatingCtorCycles() {
9314  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9315
9316  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9317                                                   CE = Current.end();
9318
9319  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9320         I = DelegatingCtorDecls.begin(),
9321         E = DelegatingCtorDecls.end();
9322       I != E; ++I) {
9323   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9324  }
9325
9326  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9327    (*CI)->setInvalidDecl();
9328}
9329