SemaDeclCXX.cpp revision 59b7f1538d9d4c4f7c3932e3e3f95d2cb0fca7e4
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
714                              CXXBaseSpecifierArray &BasePathArray) {
715  assert(BasePathArray.empty() && "Base path array must be empty!");
716  assert(Paths.isRecordingPaths() && "Must record paths!");
717
718  const CXXBasePath &Path = Paths.front();
719
720  // We first go backward and check if we have a virtual base.
721  // FIXME: It would be better if CXXBasePath had the base specifier for
722  // the nearest virtual base.
723  unsigned Start = 0;
724  for (unsigned I = Path.size(); I != 0; --I) {
725    if (Path[I - 1].Base->isVirtual()) {
726      Start = I - 1;
727      break;
728    }
729  }
730
731  // Now add all bases.
732  for (unsigned I = Start, E = Path.size(); I != E; ++I)
733    BasePathArray.push_back(Path[I].Base);
734}
735
736/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
737/// conversion (where Derived and Base are class types) is
738/// well-formed, meaning that the conversion is unambiguous (and
739/// that all of the base classes are accessible). Returns true
740/// and emits a diagnostic if the code is ill-formed, returns false
741/// otherwise. Loc is the location where this routine should point to
742/// if there is an error, and Range is the source range to highlight
743/// if there is an error.
744bool
745Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
746                                   unsigned InaccessibleBaseID,
747                                   unsigned AmbigiousBaseConvID,
748                                   SourceLocation Loc, SourceRange Range,
749                                   DeclarationName Name,
750                                   CXXBaseSpecifierArray *BasePath) {
751  // First, determine whether the path from Derived to Base is
752  // ambiguous. This is slightly more expensive than checking whether
753  // the Derived to Base conversion exists, because here we need to
754  // explore multiple paths to determine if there is an ambiguity.
755  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
756                     /*DetectVirtual=*/false);
757  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
758  assert(DerivationOkay &&
759         "Can only be used with a derived-to-base conversion");
760  (void)DerivationOkay;
761
762  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
763    if (InaccessibleBaseID) {
764      // Check that the base class can be accessed.
765      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
766                                   InaccessibleBaseID)) {
767        case AR_inaccessible:
768          return true;
769        case AR_accessible:
770        case AR_dependent:
771        case AR_delayed:
772          break;
773      }
774    }
775
776    // Build a base path if necessary.
777    if (BasePath)
778      BuildBasePathArray(Paths, *BasePath);
779    return false;
780  }
781
782  // We know that the derived-to-base conversion is ambiguous, and
783  // we're going to produce a diagnostic. Perform the derived-to-base
784  // search just one more time to compute all of the possible paths so
785  // that we can print them out. This is more expensive than any of
786  // the previous derived-to-base checks we've done, but at this point
787  // performance isn't as much of an issue.
788  Paths.clear();
789  Paths.setRecordingPaths(true);
790  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
791  assert(StillOkay && "Can only be used with a derived-to-base conversion");
792  (void)StillOkay;
793
794  // Build up a textual representation of the ambiguous paths, e.g.,
795  // D -> B -> A, that will be used to illustrate the ambiguous
796  // conversions in the diagnostic. We only print one of the paths
797  // to each base class subobject.
798  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
799
800  Diag(Loc, AmbigiousBaseConvID)
801  << Derived << Base << PathDisplayStr << Range << Name;
802  return true;
803}
804
805bool
806Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
807                                   SourceLocation Loc, SourceRange Range,
808                                   CXXBaseSpecifierArray *BasePath,
809                                   bool IgnoreAccess) {
810  return CheckDerivedToBaseConversion(Derived, Base,
811                                      IgnoreAccess ? 0
812                                       : diag::err_upcast_to_inaccessible_base,
813                                      diag::err_ambiguous_derived_to_base_conv,
814                                      Loc, Range, DeclarationName(),
815                                      BasePath);
816}
817
818
819/// @brief Builds a string representing ambiguous paths from a
820/// specific derived class to different subobjects of the same base
821/// class.
822///
823/// This function builds a string that can be used in error messages
824/// to show the different paths that one can take through the
825/// inheritance hierarchy to go from the derived class to different
826/// subobjects of a base class. The result looks something like this:
827/// @code
828/// struct D -> struct B -> struct A
829/// struct D -> struct C -> struct A
830/// @endcode
831std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
832  std::string PathDisplayStr;
833  std::set<unsigned> DisplayedPaths;
834  for (CXXBasePaths::paths_iterator Path = Paths.begin();
835       Path != Paths.end(); ++Path) {
836    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
837      // We haven't displayed a path to this particular base
838      // class subobject yet.
839      PathDisplayStr += "\n    ";
840      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
841      for (CXXBasePath::const_iterator Element = Path->begin();
842           Element != Path->end(); ++Element)
843        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
844    }
845  }
846
847  return PathDisplayStr;
848}
849
850//===----------------------------------------------------------------------===//
851// C++ class member Handling
852//===----------------------------------------------------------------------===//
853
854/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
855/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
856/// bitfield width if there is one and 'InitExpr' specifies the initializer if
857/// any.
858Sema::DeclPtrTy
859Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
860                               MultiTemplateParamsArg TemplateParameterLists,
861                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
862                               bool Deleted) {
863  const DeclSpec &DS = D.getDeclSpec();
864  DeclarationName Name = GetNameForDeclarator(D);
865  Expr *BitWidth = static_cast<Expr*>(BW);
866  Expr *Init = static_cast<Expr*>(InitExpr);
867  SourceLocation Loc = D.getIdentifierLoc();
868
869  bool isFunc = D.isFunctionDeclarator();
870
871  assert(!DS.isFriendSpecified());
872
873  // C++ 9.2p6: A member shall not be declared to have automatic storage
874  // duration (auto, register) or with the extern storage-class-specifier.
875  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
876  // data members and cannot be applied to names declared const or static,
877  // and cannot be applied to reference members.
878  switch (DS.getStorageClassSpec()) {
879    case DeclSpec::SCS_unspecified:
880    case DeclSpec::SCS_typedef:
881    case DeclSpec::SCS_static:
882      // FALL THROUGH.
883      break;
884    case DeclSpec::SCS_mutable:
885      if (isFunc) {
886        if (DS.getStorageClassSpecLoc().isValid())
887          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
888        else
889          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
890
891        // FIXME: It would be nicer if the keyword was ignored only for this
892        // declarator. Otherwise we could get follow-up errors.
893        D.getMutableDeclSpec().ClearStorageClassSpecs();
894      } else {
895        QualType T = GetTypeForDeclarator(D, S);
896        diag::kind err = static_cast<diag::kind>(0);
897        if (T->isReferenceType())
898          err = diag::err_mutable_reference;
899        else if (T.isConstQualified())
900          err = diag::err_mutable_const;
901        if (err != 0) {
902          if (DS.getStorageClassSpecLoc().isValid())
903            Diag(DS.getStorageClassSpecLoc(), err);
904          else
905            Diag(DS.getThreadSpecLoc(), err);
906          // FIXME: It would be nicer if the keyword was ignored only for this
907          // declarator. Otherwise we could get follow-up errors.
908          D.getMutableDeclSpec().ClearStorageClassSpecs();
909        }
910      }
911      break;
912    default:
913      if (DS.getStorageClassSpecLoc().isValid())
914        Diag(DS.getStorageClassSpecLoc(),
915             diag::err_storageclass_invalid_for_member);
916      else
917        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
918      D.getMutableDeclSpec().ClearStorageClassSpecs();
919  }
920
921  if (!isFunc &&
922      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
923      D.getNumTypeObjects() == 0) {
924    // Check also for this case:
925    //
926    // typedef int f();
927    // f a;
928    //
929    QualType TDType = GetTypeFromParser(DS.getTypeRep());
930    isFunc = TDType->isFunctionType();
931  }
932
933  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
934                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
935                      !isFunc);
936
937  Decl *Member;
938  if (isInstField) {
939    // FIXME: Check for template parameters!
940    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
941                         AS);
942    assert(Member && "HandleField never returns null");
943  } else {
944    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
945               .getAs<Decl>();
946    if (!Member) {
947      if (BitWidth) DeleteExpr(BitWidth);
948      return DeclPtrTy();
949    }
950
951    // Non-instance-fields can't have a bitfield.
952    if (BitWidth) {
953      if (Member->isInvalidDecl()) {
954        // don't emit another diagnostic.
955      } else if (isa<VarDecl>(Member)) {
956        // C++ 9.6p3: A bit-field shall not be a static member.
957        // "static member 'A' cannot be a bit-field"
958        Diag(Loc, diag::err_static_not_bitfield)
959          << Name << BitWidth->getSourceRange();
960      } else if (isa<TypedefDecl>(Member)) {
961        // "typedef member 'x' cannot be a bit-field"
962        Diag(Loc, diag::err_typedef_not_bitfield)
963          << Name << BitWidth->getSourceRange();
964      } else {
965        // A function typedef ("typedef int f(); f a;").
966        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
967        Diag(Loc, diag::err_not_integral_type_bitfield)
968          << Name << cast<ValueDecl>(Member)->getType()
969          << BitWidth->getSourceRange();
970      }
971
972      DeleteExpr(BitWidth);
973      BitWidth = 0;
974      Member->setInvalidDecl();
975    }
976
977    Member->setAccess(AS);
978
979    // If we have declared a member function template, set the access of the
980    // templated declaration as well.
981    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
982      FunTmpl->getTemplatedDecl()->setAccess(AS);
983  }
984
985  assert((Name || isInstField) && "No identifier for non-field ?");
986
987  if (Init)
988    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
989  if (Deleted) // FIXME: Source location is not very good.
990    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
991
992  if (isInstField) {
993    FieldCollector->Add(cast<FieldDecl>(Member));
994    return DeclPtrTy();
995  }
996  return DeclPtrTy::make(Member);
997}
998
999/// \brief Find the direct and/or virtual base specifiers that
1000/// correspond to the given base type, for use in base initialization
1001/// within a constructor.
1002static bool FindBaseInitializer(Sema &SemaRef,
1003                                CXXRecordDecl *ClassDecl,
1004                                QualType BaseType,
1005                                const CXXBaseSpecifier *&DirectBaseSpec,
1006                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1007  // First, check for a direct base class.
1008  DirectBaseSpec = 0;
1009  for (CXXRecordDecl::base_class_const_iterator Base
1010         = ClassDecl->bases_begin();
1011       Base != ClassDecl->bases_end(); ++Base) {
1012    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1013      // We found a direct base of this type. That's what we're
1014      // initializing.
1015      DirectBaseSpec = &*Base;
1016      break;
1017    }
1018  }
1019
1020  // Check for a virtual base class.
1021  // FIXME: We might be able to short-circuit this if we know in advance that
1022  // there are no virtual bases.
1023  VirtualBaseSpec = 0;
1024  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1025    // We haven't found a base yet; search the class hierarchy for a
1026    // virtual base class.
1027    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1028                       /*DetectVirtual=*/false);
1029    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1030                              BaseType, Paths)) {
1031      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1032           Path != Paths.end(); ++Path) {
1033        if (Path->back().Base->isVirtual()) {
1034          VirtualBaseSpec = Path->back().Base;
1035          break;
1036        }
1037      }
1038    }
1039  }
1040
1041  return DirectBaseSpec || VirtualBaseSpec;
1042}
1043
1044/// ActOnMemInitializer - Handle a C++ member initializer.
1045Sema::MemInitResult
1046Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1047                          Scope *S,
1048                          CXXScopeSpec &SS,
1049                          IdentifierInfo *MemberOrBase,
1050                          TypeTy *TemplateTypeTy,
1051                          SourceLocation IdLoc,
1052                          SourceLocation LParenLoc,
1053                          ExprTy **Args, unsigned NumArgs,
1054                          SourceLocation *CommaLocs,
1055                          SourceLocation RParenLoc) {
1056  if (!ConstructorD)
1057    return true;
1058
1059  AdjustDeclIfTemplate(ConstructorD);
1060
1061  CXXConstructorDecl *Constructor
1062    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1063  if (!Constructor) {
1064    // The user wrote a constructor initializer on a function that is
1065    // not a C++ constructor. Ignore the error for now, because we may
1066    // have more member initializers coming; we'll diagnose it just
1067    // once in ActOnMemInitializers.
1068    return true;
1069  }
1070
1071  CXXRecordDecl *ClassDecl = Constructor->getParent();
1072
1073  // C++ [class.base.init]p2:
1074  //   Names in a mem-initializer-id are looked up in the scope of the
1075  //   constructor’s class and, if not found in that scope, are looked
1076  //   up in the scope containing the constructor’s
1077  //   definition. [Note: if the constructor’s class contains a member
1078  //   with the same name as a direct or virtual base class of the
1079  //   class, a mem-initializer-id naming the member or base class and
1080  //   composed of a single identifier refers to the class member. A
1081  //   mem-initializer-id for the hidden base class may be specified
1082  //   using a qualified name. ]
1083  if (!SS.getScopeRep() && !TemplateTypeTy) {
1084    // Look for a member, first.
1085    FieldDecl *Member = 0;
1086    DeclContext::lookup_result Result
1087      = ClassDecl->lookup(MemberOrBase);
1088    if (Result.first != Result.second)
1089      Member = dyn_cast<FieldDecl>(*Result.first);
1090
1091    // FIXME: Handle members of an anonymous union.
1092
1093    if (Member)
1094      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1095                                    LParenLoc, RParenLoc);
1096  }
1097  // It didn't name a member, so see if it names a class.
1098  QualType BaseType;
1099  TypeSourceInfo *TInfo = 0;
1100
1101  if (TemplateTypeTy) {
1102    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1103  } else {
1104    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1105    LookupParsedName(R, S, &SS);
1106
1107    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1108    if (!TyD) {
1109      if (R.isAmbiguous()) return true;
1110
1111      // We don't want access-control diagnostics here.
1112      R.suppressDiagnostics();
1113
1114      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1115        bool NotUnknownSpecialization = false;
1116        DeclContext *DC = computeDeclContext(SS, false);
1117        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1118          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1119
1120        if (!NotUnknownSpecialization) {
1121          // When the scope specifier can refer to a member of an unknown
1122          // specialization, we take it as a type name.
1123          BaseType = CheckTypenameType(ETK_None,
1124                                       (NestedNameSpecifier *)SS.getScopeRep(),
1125                                       *MemberOrBase, SS.getRange());
1126          if (BaseType.isNull())
1127            return true;
1128
1129          R.clear();
1130        }
1131      }
1132
1133      // If no results were found, try to correct typos.
1134      if (R.empty() && BaseType.isNull() &&
1135          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1136          R.isSingleResult()) {
1137        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1138          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1139            // We have found a non-static data member with a similar
1140            // name to what was typed; complain and initialize that
1141            // member.
1142            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1143              << MemberOrBase << true << R.getLookupName()
1144              << FixItHint::CreateReplacement(R.getNameLoc(),
1145                                              R.getLookupName().getAsString());
1146            Diag(Member->getLocation(), diag::note_previous_decl)
1147              << Member->getDeclName();
1148
1149            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1150                                          LParenLoc, RParenLoc);
1151          }
1152        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1153          const CXXBaseSpecifier *DirectBaseSpec;
1154          const CXXBaseSpecifier *VirtualBaseSpec;
1155          if (FindBaseInitializer(*this, ClassDecl,
1156                                  Context.getTypeDeclType(Type),
1157                                  DirectBaseSpec, VirtualBaseSpec)) {
1158            // We have found a direct or virtual base class with a
1159            // similar name to what was typed; complain and initialize
1160            // that base class.
1161            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1162              << MemberOrBase << false << R.getLookupName()
1163              << FixItHint::CreateReplacement(R.getNameLoc(),
1164                                              R.getLookupName().getAsString());
1165
1166            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1167                                                             : VirtualBaseSpec;
1168            Diag(BaseSpec->getSourceRange().getBegin(),
1169                 diag::note_base_class_specified_here)
1170              << BaseSpec->getType()
1171              << BaseSpec->getSourceRange();
1172
1173            TyD = Type;
1174          }
1175        }
1176      }
1177
1178      if (!TyD && BaseType.isNull()) {
1179        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1180          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1181        return true;
1182      }
1183    }
1184
1185    if (BaseType.isNull()) {
1186      BaseType = Context.getTypeDeclType(TyD);
1187      if (SS.isSet()) {
1188        NestedNameSpecifier *Qualifier =
1189          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1190
1191        // FIXME: preserve source range information
1192        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1193      }
1194    }
1195  }
1196
1197  if (!TInfo)
1198    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1199
1200  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1201                              LParenLoc, RParenLoc, ClassDecl);
1202}
1203
1204/// Checks an initializer expression for use of uninitialized fields, such as
1205/// containing the field that is being initialized. Returns true if there is an
1206/// uninitialized field was used an updates the SourceLocation parameter; false
1207/// otherwise.
1208static bool InitExprContainsUninitializedFields(const Stmt* S,
1209                                                const FieldDecl* LhsField,
1210                                                SourceLocation* L) {
1211  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1212  if (ME) {
1213    const NamedDecl* RhsField = ME->getMemberDecl();
1214    if (RhsField == LhsField) {
1215      // Initializing a field with itself. Throw a warning.
1216      // But wait; there are exceptions!
1217      // Exception #1:  The field may not belong to this record.
1218      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1219      const Expr* base = ME->getBase();
1220      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1221        // Even though the field matches, it does not belong to this record.
1222        return false;
1223      }
1224      // None of the exceptions triggered; return true to indicate an
1225      // uninitialized field was used.
1226      *L = ME->getMemberLoc();
1227      return true;
1228    }
1229  }
1230  bool found = false;
1231  for (Stmt::const_child_iterator it = S->child_begin();
1232       it != S->child_end() && found == false;
1233       ++it) {
1234    if (isa<CallExpr>(S)) {
1235      // Do not descend into function calls or constructors, as the use
1236      // of an uninitialized field may be valid. One would have to inspect
1237      // the contents of the function/ctor to determine if it is safe or not.
1238      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1239      // may be safe, depending on what the function/ctor does.
1240      continue;
1241    }
1242    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1243  }
1244  return found;
1245}
1246
1247Sema::MemInitResult
1248Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1249                             unsigned NumArgs, SourceLocation IdLoc,
1250                             SourceLocation LParenLoc,
1251                             SourceLocation RParenLoc) {
1252  // Diagnose value-uses of fields to initialize themselves, e.g.
1253  //   foo(foo)
1254  // where foo is not also a parameter to the constructor.
1255  // TODO: implement -Wuninitialized and fold this into that framework.
1256  for (unsigned i = 0; i < NumArgs; ++i) {
1257    SourceLocation L;
1258    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1259      // FIXME: Return true in the case when other fields are used before being
1260      // uninitialized. For example, let this field be the i'th field. When
1261      // initializing the i'th field, throw a warning if any of the >= i'th
1262      // fields are used, as they are not yet initialized.
1263      // Right now we are only handling the case where the i'th field uses
1264      // itself in its initializer.
1265      Diag(L, diag::warn_field_is_uninit);
1266    }
1267  }
1268
1269  bool HasDependentArg = false;
1270  for (unsigned i = 0; i < NumArgs; i++)
1271    HasDependentArg |= Args[i]->isTypeDependent();
1272
1273  QualType FieldType = Member->getType();
1274  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1275    FieldType = Array->getElementType();
1276  if (FieldType->isDependentType() || HasDependentArg) {
1277    // Can't check initialization for a member of dependent type or when
1278    // any of the arguments are type-dependent expressions.
1279    OwningExprResult Init
1280      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1281                                          RParenLoc));
1282
1283    // Erase any temporaries within this evaluation context; we're not
1284    // going to track them in the AST, since we'll be rebuilding the
1285    // ASTs during template instantiation.
1286    ExprTemporaries.erase(
1287              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1288                          ExprTemporaries.end());
1289
1290    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1291                                                    LParenLoc,
1292                                                    Init.takeAs<Expr>(),
1293                                                    RParenLoc);
1294
1295  }
1296
1297  if (Member->isInvalidDecl())
1298    return true;
1299
1300  // Initialize the member.
1301  InitializedEntity MemberEntity =
1302    InitializedEntity::InitializeMember(Member, 0);
1303  InitializationKind Kind =
1304    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1305
1306  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1307
1308  OwningExprResult MemberInit =
1309    InitSeq.Perform(*this, MemberEntity, Kind,
1310                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1311  if (MemberInit.isInvalid())
1312    return true;
1313
1314  // C++0x [class.base.init]p7:
1315  //   The initialization of each base and member constitutes a
1316  //   full-expression.
1317  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1318  if (MemberInit.isInvalid())
1319    return true;
1320
1321  // If we are in a dependent context, template instantiation will
1322  // perform this type-checking again. Just save the arguments that we
1323  // received in a ParenListExpr.
1324  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1325  // of the information that we have about the member
1326  // initializer. However, deconstructing the ASTs is a dicey process,
1327  // and this approach is far more likely to get the corner cases right.
1328  if (CurContext->isDependentContext()) {
1329    // Bump the reference count of all of the arguments.
1330    for (unsigned I = 0; I != NumArgs; ++I)
1331      Args[I]->Retain();
1332
1333    OwningExprResult Init
1334      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1335                                          RParenLoc));
1336    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1337                                                    LParenLoc,
1338                                                    Init.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1343                                                  LParenLoc,
1344                                                  MemberInit.takeAs<Expr>(),
1345                                                  RParenLoc);
1346}
1347
1348Sema::MemInitResult
1349Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1350                           Expr **Args, unsigned NumArgs,
1351                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1352                           CXXRecordDecl *ClassDecl) {
1353  bool HasDependentArg = false;
1354  for (unsigned i = 0; i < NumArgs; i++)
1355    HasDependentArg |= Args[i]->isTypeDependent();
1356
1357  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1358  if (BaseType->isDependentType() || HasDependentArg) {
1359    // Can't check initialization for a base of dependent type or when
1360    // any of the arguments are type-dependent expressions.
1361    OwningExprResult BaseInit
1362      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1363                                          RParenLoc));
1364
1365    // Erase any temporaries within this evaluation context; we're not
1366    // going to track them in the AST, since we'll be rebuilding the
1367    // ASTs during template instantiation.
1368    ExprTemporaries.erase(
1369              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1370                          ExprTemporaries.end());
1371
1372    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1373                                                    /*IsVirtual=*/false,
1374                                                    LParenLoc,
1375                                                    BaseInit.takeAs<Expr>(),
1376                                                    RParenLoc);
1377  }
1378
1379  if (!BaseType->isRecordType())
1380    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1381             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1382
1383  // C++ [class.base.init]p2:
1384  //   [...] Unless the mem-initializer-id names a nonstatic data
1385  //   member of the constructor’s class or a direct or virtual base
1386  //   of that class, the mem-initializer is ill-formed. A
1387  //   mem-initializer-list can initialize a base class using any
1388  //   name that denotes that base class type.
1389
1390  // Check for direct and virtual base classes.
1391  const CXXBaseSpecifier *DirectBaseSpec = 0;
1392  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1393  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1394                      VirtualBaseSpec);
1395
1396  // C++ [base.class.init]p2:
1397  //   If a mem-initializer-id is ambiguous because it designates both
1398  //   a direct non-virtual base class and an inherited virtual base
1399  //   class, the mem-initializer is ill-formed.
1400  if (DirectBaseSpec && VirtualBaseSpec)
1401    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1402      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1403  // C++ [base.class.init]p2:
1404  // Unless the mem-initializer-id names a nonstatic data membeer of the
1405  // constructor's class ot a direst or virtual base of that class, the
1406  // mem-initializer is ill-formed.
1407  if (!DirectBaseSpec && !VirtualBaseSpec)
1408    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1409      << BaseType << Context.getTypeDeclType(ClassDecl)
1410      << BaseTInfo->getTypeLoc().getSourceRange();
1411
1412  CXXBaseSpecifier *BaseSpec
1413    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1414  if (!BaseSpec)
1415    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1416
1417  // Initialize the base.
1418  InitializedEntity BaseEntity =
1419    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1420  InitializationKind Kind =
1421    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1422
1423  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1424
1425  OwningExprResult BaseInit =
1426    InitSeq.Perform(*this, BaseEntity, Kind,
1427                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1428  if (BaseInit.isInvalid())
1429    return true;
1430
1431  // C++0x [class.base.init]p7:
1432  //   The initialization of each base and member constitutes a
1433  //   full-expression.
1434  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1435  if (BaseInit.isInvalid())
1436    return true;
1437
1438  // If we are in a dependent context, template instantiation will
1439  // perform this type-checking again. Just save the arguments that we
1440  // received in a ParenListExpr.
1441  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1442  // of the information that we have about the base
1443  // initializer. However, deconstructing the ASTs is a dicey process,
1444  // and this approach is far more likely to get the corner cases right.
1445  if (CurContext->isDependentContext()) {
1446    // Bump the reference count of all of the arguments.
1447    for (unsigned I = 0; I != NumArgs; ++I)
1448      Args[I]->Retain();
1449
1450    OwningExprResult Init
1451      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1452                                          RParenLoc));
1453    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1454                                                    BaseSpec->isVirtual(),
1455                                                    LParenLoc,
1456                                                    Init.takeAs<Expr>(),
1457                                                    RParenLoc);
1458  }
1459
1460  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1461                                                  BaseSpec->isVirtual(),
1462                                                  LParenLoc,
1463                                                  BaseInit.takeAs<Expr>(),
1464                                                  RParenLoc);
1465}
1466
1467/// ImplicitInitializerKind - How an implicit base or member initializer should
1468/// initialize its base or member.
1469enum ImplicitInitializerKind {
1470  IIK_Default,
1471  IIK_Copy,
1472  IIK_Move
1473};
1474
1475static bool
1476BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1477                             ImplicitInitializerKind ImplicitInitKind,
1478                             CXXBaseSpecifier *BaseSpec,
1479                             bool IsInheritedVirtualBase,
1480                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1481  InitializedEntity InitEntity
1482    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1483                                        IsInheritedVirtualBase);
1484
1485  Sema::OwningExprResult BaseInit(SemaRef);
1486
1487  switch (ImplicitInitKind) {
1488  case IIK_Default: {
1489    InitializationKind InitKind
1490      = InitializationKind::CreateDefault(Constructor->getLocation());
1491    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1492    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1493                               Sema::MultiExprArg(SemaRef, 0, 0));
1494    break;
1495  }
1496
1497  case IIK_Copy: {
1498    ParmVarDecl *Param = Constructor->getParamDecl(0);
1499    QualType ParamType = Param->getType().getNonReferenceType();
1500
1501    Expr *CopyCtorArg =
1502      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1503                          SourceLocation(), ParamType, 0);
1504
1505    // Cast to the base class to avoid ambiguities.
1506    QualType ArgTy =
1507      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1508                                       ParamType.getQualifiers());
1509    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1510                              CastExpr::CK_UncheckedDerivedToBase,
1511                              /*isLvalue=*/true,
1512                              CXXBaseSpecifierArray(BaseSpec));
1513
1514    InitializationKind InitKind
1515      = InitializationKind::CreateDirect(Constructor->getLocation(),
1516                                         SourceLocation(), SourceLocation());
1517    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1518                                   &CopyCtorArg, 1);
1519    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1520                               Sema::MultiExprArg(SemaRef,
1521                                                  (void**)&CopyCtorArg, 1));
1522    break;
1523  }
1524
1525  case IIK_Move:
1526    assert(false && "Unhandled initializer kind!");
1527  }
1528
1529  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1530  if (BaseInit.isInvalid())
1531    return true;
1532
1533  CXXBaseInit =
1534    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1535               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1536                                                        SourceLocation()),
1537                                             BaseSpec->isVirtual(),
1538                                             SourceLocation(),
1539                                             BaseInit.takeAs<Expr>(),
1540                                             SourceLocation());
1541
1542  return false;
1543}
1544
1545static bool
1546BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1547                               ImplicitInitializerKind ImplicitInitKind,
1548                               FieldDecl *Field,
1549                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1550  if (ImplicitInitKind == IIK_Copy) {
1551    // FIXME: We should not return early here, but will do so until
1552    // we know how to handle copy initialization of arrays.
1553    CXXMemberInit = 0;
1554    return false;
1555
1556    ParmVarDecl *Param = Constructor->getParamDecl(0);
1557    QualType ParamType = Param->getType().getNonReferenceType();
1558
1559    Expr *MemberExprBase =
1560      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1561                          SourceLocation(), ParamType, 0);
1562
1563
1564    Expr *CopyCtorArg =
1565      MemberExpr::Create(SemaRef.Context, MemberExprBase, /*IsArrow=*/false,
1566                         0, SourceRange(), Field,
1567                         DeclAccessPair::make(Field, Field->getAccess()),
1568                         SourceLocation(), 0,
1569                         Field->getType().getNonReferenceType());
1570
1571    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1572    InitializationKind InitKind =
1573      InitializationKind::CreateDirect(Constructor->getLocation(),
1574                                       SourceLocation(), SourceLocation());
1575
1576    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1577                                   &CopyCtorArg, 1);
1578
1579    Sema::OwningExprResult MemberInit =
1580      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1581                      Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArg, 1), 0);
1582    if (MemberInit.isInvalid())
1583      return true;
1584
1585    CXXMemberInit = 0;
1586    return false;
1587  }
1588
1589  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1590
1591  QualType FieldBaseElementType =
1592    SemaRef.Context.getBaseElementType(Field->getType());
1593
1594  if (FieldBaseElementType->isRecordType()) {
1595    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1596    InitializationKind InitKind =
1597      InitializationKind::CreateDefault(Constructor->getLocation());
1598
1599    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1600    Sema::OwningExprResult MemberInit =
1601      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1602                      Sema::MultiExprArg(SemaRef, 0, 0));
1603    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1604    if (MemberInit.isInvalid())
1605      return true;
1606
1607    CXXMemberInit =
1608      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1609                                                       Field, SourceLocation(),
1610                                                       SourceLocation(),
1611                                                      MemberInit.takeAs<Expr>(),
1612                                                       SourceLocation());
1613    return false;
1614  }
1615
1616  if (FieldBaseElementType->isReferenceType()) {
1617    SemaRef.Diag(Constructor->getLocation(),
1618                 diag::err_uninitialized_member_in_ctor)
1619    << (int)Constructor->isImplicit()
1620    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1621    << 0 << Field->getDeclName();
1622    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1623    return true;
1624  }
1625
1626  if (FieldBaseElementType.isConstQualified()) {
1627    SemaRef.Diag(Constructor->getLocation(),
1628                 diag::err_uninitialized_member_in_ctor)
1629    << (int)Constructor->isImplicit()
1630    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1631    << 1 << Field->getDeclName();
1632    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1633    return true;
1634  }
1635
1636  // Nothing to initialize.
1637  CXXMemberInit = 0;
1638  return false;
1639}
1640
1641bool
1642Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1643                                  CXXBaseOrMemberInitializer **Initializers,
1644                                  unsigned NumInitializers,
1645                                  bool AnyErrors) {
1646  if (Constructor->getDeclContext()->isDependentContext()) {
1647    // Just store the initializers as written, they will be checked during
1648    // instantiation.
1649    if (NumInitializers > 0) {
1650      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1651      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1652        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1653      memcpy(baseOrMemberInitializers, Initializers,
1654             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1655      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1656    }
1657
1658    return false;
1659  }
1660
1661  ImplicitInitializerKind ImplicitInitKind = IIK_Default;
1662
1663  // FIXME: Handle implicit move constructors.
1664  if (Constructor->isImplicit() && Constructor->isCopyConstructor())
1665    ImplicitInitKind = IIK_Copy;
1666
1667  // We need to build the initializer AST according to order of construction
1668  // and not what user specified in the Initializers list.
1669  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1670  if (!ClassDecl)
1671    return true;
1672
1673  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1674  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1675  bool HadError = false;
1676
1677  for (unsigned i = 0; i < NumInitializers; i++) {
1678    CXXBaseOrMemberInitializer *Member = Initializers[i];
1679
1680    if (Member->isBaseInitializer())
1681      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1682    else
1683      AllBaseFields[Member->getMember()] = Member;
1684  }
1685
1686  // Keep track of the direct virtual bases.
1687  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1688  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1689       E = ClassDecl->bases_end(); I != E; ++I) {
1690    if (I->isVirtual())
1691      DirectVBases.insert(I);
1692  }
1693
1694  // Push virtual bases before others.
1695  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1696       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1697
1698    if (CXXBaseOrMemberInitializer *Value
1699        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1700      AllToInit.push_back(Value);
1701    } else if (!AnyErrors) {
1702      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1703      CXXBaseOrMemberInitializer *CXXBaseInit;
1704      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1705                                       VBase, IsInheritedVirtualBase,
1706                                       CXXBaseInit)) {
1707        HadError = true;
1708        continue;
1709      }
1710
1711      AllToInit.push_back(CXXBaseInit);
1712    }
1713  }
1714
1715  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1716       E = ClassDecl->bases_end(); Base != E; ++Base) {
1717    // Virtuals are in the virtual base list and already constructed.
1718    if (Base->isVirtual())
1719      continue;
1720
1721    if (CXXBaseOrMemberInitializer *Value
1722          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1723      AllToInit.push_back(Value);
1724    } else if (!AnyErrors) {
1725      CXXBaseOrMemberInitializer *CXXBaseInit;
1726      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1727                                       Base, /*IsInheritedVirtualBase=*/false,
1728                                       CXXBaseInit)) {
1729        HadError = true;
1730        continue;
1731      }
1732
1733      AllToInit.push_back(CXXBaseInit);
1734    }
1735  }
1736
1737  // non-static data members.
1738  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1739       E = ClassDecl->field_end(); Field != E; ++Field) {
1740    if ((*Field)->isAnonymousStructOrUnion()) {
1741      if (const RecordType *FieldClassType =
1742          Field->getType()->getAs<RecordType>()) {
1743        CXXRecordDecl *FieldClassDecl
1744          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1745        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1746            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1747          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1748            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1749            // set to the anonymous union data member used in the initializer
1750            // list.
1751            Value->setMember(*Field);
1752            Value->setAnonUnionMember(*FA);
1753            AllToInit.push_back(Value);
1754            break;
1755          }
1756        }
1757      }
1758      continue;
1759    }
1760    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1761      AllToInit.push_back(Value);
1762      continue;
1763    }
1764
1765    if (AnyErrors)
1766      continue;
1767
1768    CXXBaseOrMemberInitializer *Member;
1769    if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
1770                                       *Field, Member)) {
1771      HadError = true;
1772      continue;
1773    }
1774
1775    // If the member doesn't need to be initialized, it will be null.
1776    if (Member)
1777      AllToInit.push_back(Member);
1778  }
1779
1780  NumInitializers = AllToInit.size();
1781  if (NumInitializers > 0) {
1782    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1783    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1784      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1785    memcpy(baseOrMemberInitializers, AllToInit.data(),
1786           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1787    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1788
1789    // Constructors implicitly reference the base and member
1790    // destructors.
1791    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1792                                           Constructor->getParent());
1793  }
1794
1795  return HadError;
1796}
1797
1798static void *GetKeyForTopLevelField(FieldDecl *Field) {
1799  // For anonymous unions, use the class declaration as the key.
1800  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1801    if (RT->getDecl()->isAnonymousStructOrUnion())
1802      return static_cast<void *>(RT->getDecl());
1803  }
1804  return static_cast<void *>(Field);
1805}
1806
1807static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1808  return Context.getCanonicalType(BaseType).getTypePtr();
1809}
1810
1811static void *GetKeyForMember(ASTContext &Context,
1812                             CXXBaseOrMemberInitializer *Member,
1813                             bool MemberMaybeAnon = false) {
1814  if (!Member->isMemberInitializer())
1815    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1816
1817  // For fields injected into the class via declaration of an anonymous union,
1818  // use its anonymous union class declaration as the unique key.
1819  FieldDecl *Field = Member->getMember();
1820
1821  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1822  // data member of the class. Data member used in the initializer list is
1823  // in AnonUnionMember field.
1824  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1825    Field = Member->getAnonUnionMember();
1826
1827  // If the field is a member of an anonymous struct or union, our key
1828  // is the anonymous record decl that's a direct child of the class.
1829  RecordDecl *RD = Field->getParent();
1830  if (RD->isAnonymousStructOrUnion()) {
1831    while (true) {
1832      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1833      if (Parent->isAnonymousStructOrUnion())
1834        RD = Parent;
1835      else
1836        break;
1837    }
1838
1839    return static_cast<void *>(RD);
1840  }
1841
1842  return static_cast<void *>(Field);
1843}
1844
1845static void
1846DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1847                                  const CXXConstructorDecl *Constructor,
1848                                  CXXBaseOrMemberInitializer **Inits,
1849                                  unsigned NumInits) {
1850  if (Constructor->getDeclContext()->isDependentContext())
1851    return;
1852
1853  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1854        == Diagnostic::Ignored)
1855    return;
1856
1857  // Build the list of bases and members in the order that they'll
1858  // actually be initialized.  The explicit initializers should be in
1859  // this same order but may be missing things.
1860  llvm::SmallVector<const void*, 32> IdealInitKeys;
1861
1862  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1863
1864  // 1. Virtual bases.
1865  for (CXXRecordDecl::base_class_const_iterator VBase =
1866       ClassDecl->vbases_begin(),
1867       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1868    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1869
1870  // 2. Non-virtual bases.
1871  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1872       E = ClassDecl->bases_end(); Base != E; ++Base) {
1873    if (Base->isVirtual())
1874      continue;
1875    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1876  }
1877
1878  // 3. Direct fields.
1879  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1880       E = ClassDecl->field_end(); Field != E; ++Field)
1881    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1882
1883  unsigned NumIdealInits = IdealInitKeys.size();
1884  unsigned IdealIndex = 0;
1885
1886  CXXBaseOrMemberInitializer *PrevInit = 0;
1887  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1888    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1889    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1890
1891    // Scan forward to try to find this initializer in the idealized
1892    // initializers list.
1893    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1894      if (InitKey == IdealInitKeys[IdealIndex])
1895        break;
1896
1897    // If we didn't find this initializer, it must be because we
1898    // scanned past it on a previous iteration.  That can only
1899    // happen if we're out of order;  emit a warning.
1900    if (IdealIndex == NumIdealInits) {
1901      assert(PrevInit && "initializer not found in initializer list");
1902
1903      Sema::SemaDiagnosticBuilder D =
1904        SemaRef.Diag(PrevInit->getSourceLocation(),
1905                     diag::warn_initializer_out_of_order);
1906
1907      if (PrevInit->isMemberInitializer())
1908        D << 0 << PrevInit->getMember()->getDeclName();
1909      else
1910        D << 1 << PrevInit->getBaseClassInfo()->getType();
1911
1912      if (Init->isMemberInitializer())
1913        D << 0 << Init->getMember()->getDeclName();
1914      else
1915        D << 1 << Init->getBaseClassInfo()->getType();
1916
1917      // Move back to the initializer's location in the ideal list.
1918      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1919        if (InitKey == IdealInitKeys[IdealIndex])
1920          break;
1921
1922      assert(IdealIndex != NumIdealInits &&
1923             "initializer not found in initializer list");
1924    }
1925
1926    PrevInit = Init;
1927  }
1928}
1929
1930namespace {
1931bool CheckRedundantInit(Sema &S,
1932                        CXXBaseOrMemberInitializer *Init,
1933                        CXXBaseOrMemberInitializer *&PrevInit) {
1934  if (!PrevInit) {
1935    PrevInit = Init;
1936    return false;
1937  }
1938
1939  if (FieldDecl *Field = Init->getMember())
1940    S.Diag(Init->getSourceLocation(),
1941           diag::err_multiple_mem_initialization)
1942      << Field->getDeclName()
1943      << Init->getSourceRange();
1944  else {
1945    Type *BaseClass = Init->getBaseClass();
1946    assert(BaseClass && "neither field nor base");
1947    S.Diag(Init->getSourceLocation(),
1948           diag::err_multiple_base_initialization)
1949      << QualType(BaseClass, 0)
1950      << Init->getSourceRange();
1951  }
1952  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1953    << 0 << PrevInit->getSourceRange();
1954
1955  return true;
1956}
1957
1958typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1959typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1960
1961bool CheckRedundantUnionInit(Sema &S,
1962                             CXXBaseOrMemberInitializer *Init,
1963                             RedundantUnionMap &Unions) {
1964  FieldDecl *Field = Init->getMember();
1965  RecordDecl *Parent = Field->getParent();
1966  if (!Parent->isAnonymousStructOrUnion())
1967    return false;
1968
1969  NamedDecl *Child = Field;
1970  do {
1971    if (Parent->isUnion()) {
1972      UnionEntry &En = Unions[Parent];
1973      if (En.first && En.first != Child) {
1974        S.Diag(Init->getSourceLocation(),
1975               diag::err_multiple_mem_union_initialization)
1976          << Field->getDeclName()
1977          << Init->getSourceRange();
1978        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1979          << 0 << En.second->getSourceRange();
1980        return true;
1981      } else if (!En.first) {
1982        En.first = Child;
1983        En.second = Init;
1984      }
1985    }
1986
1987    Child = Parent;
1988    Parent = cast<RecordDecl>(Parent->getDeclContext());
1989  } while (Parent->isAnonymousStructOrUnion());
1990
1991  return false;
1992}
1993}
1994
1995/// ActOnMemInitializers - Handle the member initializers for a constructor.
1996void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1997                                SourceLocation ColonLoc,
1998                                MemInitTy **meminits, unsigned NumMemInits,
1999                                bool AnyErrors) {
2000  if (!ConstructorDecl)
2001    return;
2002
2003  AdjustDeclIfTemplate(ConstructorDecl);
2004
2005  CXXConstructorDecl *Constructor
2006    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2007
2008  if (!Constructor) {
2009    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2010    return;
2011  }
2012
2013  CXXBaseOrMemberInitializer **MemInits =
2014    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2015
2016  // Mapping for the duplicate initializers check.
2017  // For member initializers, this is keyed with a FieldDecl*.
2018  // For base initializers, this is keyed with a Type*.
2019  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2020
2021  // Mapping for the inconsistent anonymous-union initializers check.
2022  RedundantUnionMap MemberUnions;
2023
2024  bool HadError = false;
2025  for (unsigned i = 0; i < NumMemInits; i++) {
2026    CXXBaseOrMemberInitializer *Init = MemInits[i];
2027
2028    if (Init->isMemberInitializer()) {
2029      FieldDecl *Field = Init->getMember();
2030      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2031          CheckRedundantUnionInit(*this, Init, MemberUnions))
2032        HadError = true;
2033    } else {
2034      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2035      if (CheckRedundantInit(*this, Init, Members[Key]))
2036        HadError = true;
2037    }
2038  }
2039
2040  if (HadError)
2041    return;
2042
2043  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2044
2045  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2046}
2047
2048void
2049Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2050                                             CXXRecordDecl *ClassDecl) {
2051  // Ignore dependent contexts.
2052  if (ClassDecl->isDependentContext())
2053    return;
2054
2055  // FIXME: all the access-control diagnostics are positioned on the
2056  // field/base declaration.  That's probably good; that said, the
2057  // user might reasonably want to know why the destructor is being
2058  // emitted, and we currently don't say.
2059
2060  // Non-static data members.
2061  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2062       E = ClassDecl->field_end(); I != E; ++I) {
2063    FieldDecl *Field = *I;
2064
2065    QualType FieldType = Context.getBaseElementType(Field->getType());
2066
2067    const RecordType* RT = FieldType->getAs<RecordType>();
2068    if (!RT)
2069      continue;
2070
2071    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2072    if (FieldClassDecl->hasTrivialDestructor())
2073      continue;
2074
2075    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2076    CheckDestructorAccess(Field->getLocation(), Dtor,
2077                          PDiag(diag::err_access_dtor_field)
2078                            << Field->getDeclName()
2079                            << FieldType);
2080
2081    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2082  }
2083
2084  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2085
2086  // Bases.
2087  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2088       E = ClassDecl->bases_end(); Base != E; ++Base) {
2089    // Bases are always records in a well-formed non-dependent class.
2090    const RecordType *RT = Base->getType()->getAs<RecordType>();
2091
2092    // Remember direct virtual bases.
2093    if (Base->isVirtual())
2094      DirectVirtualBases.insert(RT);
2095
2096    // Ignore trivial destructors.
2097    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2098    if (BaseClassDecl->hasTrivialDestructor())
2099      continue;
2100
2101    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2102
2103    // FIXME: caret should be on the start of the class name
2104    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2105                          PDiag(diag::err_access_dtor_base)
2106                            << Base->getType()
2107                            << Base->getSourceRange());
2108
2109    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2110  }
2111
2112  // Virtual bases.
2113  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2114       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2115
2116    // Bases are always records in a well-formed non-dependent class.
2117    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2118
2119    // Ignore direct virtual bases.
2120    if (DirectVirtualBases.count(RT))
2121      continue;
2122
2123    // Ignore trivial destructors.
2124    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2125    if (BaseClassDecl->hasTrivialDestructor())
2126      continue;
2127
2128    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2129    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2130                          PDiag(diag::err_access_dtor_vbase)
2131                            << VBase->getType());
2132
2133    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2134  }
2135}
2136
2137void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2138  if (!CDtorDecl)
2139    return;
2140
2141  if (CXXConstructorDecl *Constructor
2142      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2143    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2144}
2145
2146bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2147                                  unsigned DiagID, AbstractDiagSelID SelID,
2148                                  const CXXRecordDecl *CurrentRD) {
2149  if (SelID == -1)
2150    return RequireNonAbstractType(Loc, T,
2151                                  PDiag(DiagID), CurrentRD);
2152  else
2153    return RequireNonAbstractType(Loc, T,
2154                                  PDiag(DiagID) << SelID, CurrentRD);
2155}
2156
2157bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2158                                  const PartialDiagnostic &PD,
2159                                  const CXXRecordDecl *CurrentRD) {
2160  if (!getLangOptions().CPlusPlus)
2161    return false;
2162
2163  if (const ArrayType *AT = Context.getAsArrayType(T))
2164    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2165                                  CurrentRD);
2166
2167  if (const PointerType *PT = T->getAs<PointerType>()) {
2168    // Find the innermost pointer type.
2169    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2170      PT = T;
2171
2172    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2173      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2174  }
2175
2176  const RecordType *RT = T->getAs<RecordType>();
2177  if (!RT)
2178    return false;
2179
2180  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2181
2182  if (CurrentRD && CurrentRD != RD)
2183    return false;
2184
2185  // FIXME: is this reasonable?  It matches current behavior, but....
2186  if (!RD->getDefinition())
2187    return false;
2188
2189  if (!RD->isAbstract())
2190    return false;
2191
2192  Diag(Loc, PD) << RD->getDeclName();
2193
2194  // Check if we've already emitted the list of pure virtual functions for this
2195  // class.
2196  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2197    return true;
2198
2199  CXXFinalOverriderMap FinalOverriders;
2200  RD->getFinalOverriders(FinalOverriders);
2201
2202  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2203                                   MEnd = FinalOverriders.end();
2204       M != MEnd;
2205       ++M) {
2206    for (OverridingMethods::iterator SO = M->second.begin(),
2207                                  SOEnd = M->second.end();
2208         SO != SOEnd; ++SO) {
2209      // C++ [class.abstract]p4:
2210      //   A class is abstract if it contains or inherits at least one
2211      //   pure virtual function for which the final overrider is pure
2212      //   virtual.
2213
2214      //
2215      if (SO->second.size() != 1)
2216        continue;
2217
2218      if (!SO->second.front().Method->isPure())
2219        continue;
2220
2221      Diag(SO->second.front().Method->getLocation(),
2222           diag::note_pure_virtual_function)
2223        << SO->second.front().Method->getDeclName();
2224    }
2225  }
2226
2227  if (!PureVirtualClassDiagSet)
2228    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2229  PureVirtualClassDiagSet->insert(RD);
2230
2231  return true;
2232}
2233
2234namespace {
2235  class AbstractClassUsageDiagnoser
2236    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2237    Sema &SemaRef;
2238    CXXRecordDecl *AbstractClass;
2239
2240    bool VisitDeclContext(const DeclContext *DC) {
2241      bool Invalid = false;
2242
2243      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2244           E = DC->decls_end(); I != E; ++I)
2245        Invalid |= Visit(*I);
2246
2247      return Invalid;
2248    }
2249
2250  public:
2251    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2252      : SemaRef(SemaRef), AbstractClass(ac) {
2253        Visit(SemaRef.Context.getTranslationUnitDecl());
2254    }
2255
2256    bool VisitFunctionDecl(const FunctionDecl *FD) {
2257      if (FD->isThisDeclarationADefinition()) {
2258        // No need to do the check if we're in a definition, because it requires
2259        // that the return/param types are complete.
2260        // because that requires
2261        return VisitDeclContext(FD);
2262      }
2263
2264      // Check the return type.
2265      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2266      bool Invalid =
2267        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2268                                       diag::err_abstract_type_in_decl,
2269                                       Sema::AbstractReturnType,
2270                                       AbstractClass);
2271
2272      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2273           E = FD->param_end(); I != E; ++I) {
2274        const ParmVarDecl *VD = *I;
2275        Invalid |=
2276          SemaRef.RequireNonAbstractType(VD->getLocation(),
2277                                         VD->getOriginalType(),
2278                                         diag::err_abstract_type_in_decl,
2279                                         Sema::AbstractParamType,
2280                                         AbstractClass);
2281      }
2282
2283      return Invalid;
2284    }
2285
2286    bool VisitDecl(const Decl* D) {
2287      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2288        return VisitDeclContext(DC);
2289
2290      return false;
2291    }
2292  };
2293}
2294
2295/// \brief Perform semantic checks on a class definition that has been
2296/// completing, introducing implicitly-declared members, checking for
2297/// abstract types, etc.
2298void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2299  if (!Record || Record->isInvalidDecl())
2300    return;
2301
2302  if (!Record->isDependentType())
2303    AddImplicitlyDeclaredMembersToClass(S, Record);
2304
2305  if (Record->isInvalidDecl())
2306    return;
2307
2308  // Set access bits correctly on the directly-declared conversions.
2309  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2310  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2311    Convs->setAccess(I, (*I)->getAccess());
2312
2313  // Determine whether we need to check for final overriders. We do
2314  // this either when there are virtual base classes (in which case we
2315  // may end up finding multiple final overriders for a given virtual
2316  // function) or any of the base classes is abstract (in which case
2317  // we might detect that this class is abstract).
2318  bool CheckFinalOverriders = false;
2319  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2320      !Record->isDependentType()) {
2321    if (Record->getNumVBases())
2322      CheckFinalOverriders = true;
2323    else if (!Record->isAbstract()) {
2324      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2325                                                 BEnd = Record->bases_end();
2326           B != BEnd; ++B) {
2327        CXXRecordDecl *BaseDecl
2328          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2329        if (BaseDecl->isAbstract()) {
2330          CheckFinalOverriders = true;
2331          break;
2332        }
2333      }
2334    }
2335  }
2336
2337  if (CheckFinalOverriders) {
2338    CXXFinalOverriderMap FinalOverriders;
2339    Record->getFinalOverriders(FinalOverriders);
2340
2341    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2342                                     MEnd = FinalOverriders.end();
2343         M != MEnd; ++M) {
2344      for (OverridingMethods::iterator SO = M->second.begin(),
2345                                    SOEnd = M->second.end();
2346           SO != SOEnd; ++SO) {
2347        assert(SO->second.size() > 0 &&
2348               "All virtual functions have overridding virtual functions");
2349        if (SO->second.size() == 1) {
2350          // C++ [class.abstract]p4:
2351          //   A class is abstract if it contains or inherits at least one
2352          //   pure virtual function for which the final overrider is pure
2353          //   virtual.
2354          if (SO->second.front().Method->isPure())
2355            Record->setAbstract(true);
2356          continue;
2357        }
2358
2359        // C++ [class.virtual]p2:
2360        //   In a derived class, if a virtual member function of a base
2361        //   class subobject has more than one final overrider the
2362        //   program is ill-formed.
2363        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2364          << (NamedDecl *)M->first << Record;
2365        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2366        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2367                                                 OMEnd = SO->second.end();
2368             OM != OMEnd; ++OM)
2369          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2370            << (NamedDecl *)M->first << OM->Method->getParent();
2371
2372        Record->setInvalidDecl();
2373      }
2374    }
2375  }
2376
2377  if (Record->isAbstract() && !Record->isInvalidDecl())
2378    (void)AbstractClassUsageDiagnoser(*this, Record);
2379
2380  // If this is not an aggregate type and has no user-declared constructor,
2381  // complain about any non-static data members of reference or const scalar
2382  // type, since they will never get initializers.
2383  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2384      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2385    bool Complained = false;
2386    for (RecordDecl::field_iterator F = Record->field_begin(),
2387                                 FEnd = Record->field_end();
2388         F != FEnd; ++F) {
2389      if (F->getType()->isReferenceType() ||
2390          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2391        if (!Complained) {
2392          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2393            << Record->getTagKind() << Record;
2394          Complained = true;
2395        }
2396
2397        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2398          << F->getType()->isReferenceType()
2399          << F->getDeclName();
2400      }
2401    }
2402  }
2403}
2404
2405void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2406                                             DeclPtrTy TagDecl,
2407                                             SourceLocation LBrac,
2408                                             SourceLocation RBrac,
2409                                             AttributeList *AttrList) {
2410  if (!TagDecl)
2411    return;
2412
2413  AdjustDeclIfTemplate(TagDecl);
2414
2415  ActOnFields(S, RLoc, TagDecl,
2416              (DeclPtrTy*)FieldCollector->getCurFields(),
2417              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2418
2419  CheckCompletedCXXClass(S,
2420                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2421}
2422
2423/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2424/// special functions, such as the default constructor, copy
2425/// constructor, or destructor, to the given C++ class (C++
2426/// [special]p1).  This routine can only be executed just before the
2427/// definition of the class is complete.
2428///
2429/// The scope, if provided, is the class scope.
2430void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2431                                               CXXRecordDecl *ClassDecl) {
2432  CanQualType ClassType
2433    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2434
2435  // FIXME: Implicit declarations have exception specifications, which are
2436  // the union of the specifications of the implicitly called functions.
2437
2438  if (!ClassDecl->hasUserDeclaredConstructor()) {
2439    // C++ [class.ctor]p5:
2440    //   A default constructor for a class X is a constructor of class X
2441    //   that can be called without an argument. If there is no
2442    //   user-declared constructor for class X, a default constructor is
2443    //   implicitly declared. An implicitly-declared default constructor
2444    //   is an inline public member of its class.
2445    DeclarationName Name
2446      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2447    CXXConstructorDecl *DefaultCon =
2448      CXXConstructorDecl::Create(Context, ClassDecl,
2449                                 ClassDecl->getLocation(), Name,
2450                                 Context.getFunctionType(Context.VoidTy,
2451                                                         0, 0, false, 0,
2452                                                         /*FIXME*/false, false,
2453                                                         0, 0,
2454                                                       FunctionType::ExtInfo()),
2455                                 /*TInfo=*/0,
2456                                 /*isExplicit=*/false,
2457                                 /*isInline=*/true,
2458                                 /*isImplicitlyDeclared=*/true);
2459    DefaultCon->setAccess(AS_public);
2460    DefaultCon->setImplicit();
2461    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2462    if (S)
2463      PushOnScopeChains(DefaultCon, S, true);
2464    else
2465      ClassDecl->addDecl(DefaultCon);
2466  }
2467
2468  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2469    // C++ [class.copy]p4:
2470    //   If the class definition does not explicitly declare a copy
2471    //   constructor, one is declared implicitly.
2472
2473    // C++ [class.copy]p5:
2474    //   The implicitly-declared copy constructor for a class X will
2475    //   have the form
2476    //
2477    //       X::X(const X&)
2478    //
2479    //   if
2480    bool HasConstCopyConstructor = true;
2481
2482    //     -- each direct or virtual base class B of X has a copy
2483    //        constructor whose first parameter is of type const B& or
2484    //        const volatile B&, and
2485    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2486         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2487      const CXXRecordDecl *BaseClassDecl
2488        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2489      HasConstCopyConstructor
2490        = BaseClassDecl->hasConstCopyConstructor(Context);
2491    }
2492
2493    //     -- for all the nonstatic data members of X that are of a
2494    //        class type M (or array thereof), each such class type
2495    //        has a copy constructor whose first parameter is of type
2496    //        const M& or const volatile M&.
2497    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2498         HasConstCopyConstructor && Field != ClassDecl->field_end();
2499         ++Field) {
2500      QualType FieldType = (*Field)->getType();
2501      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2502        FieldType = Array->getElementType();
2503      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2504        const CXXRecordDecl *FieldClassDecl
2505          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2506        HasConstCopyConstructor
2507          = FieldClassDecl->hasConstCopyConstructor(Context);
2508      }
2509    }
2510
2511    //   Otherwise, the implicitly declared copy constructor will have
2512    //   the form
2513    //
2514    //       X::X(X&)
2515    QualType ArgType = ClassType;
2516    if (HasConstCopyConstructor)
2517      ArgType = ArgType.withConst();
2518    ArgType = Context.getLValueReferenceType(ArgType);
2519
2520    //   An implicitly-declared copy constructor is an inline public
2521    //   member of its class.
2522    DeclarationName Name
2523      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2524    CXXConstructorDecl *CopyConstructor
2525      = CXXConstructorDecl::Create(Context, ClassDecl,
2526                                   ClassDecl->getLocation(), Name,
2527                                   Context.getFunctionType(Context.VoidTy,
2528                                                           &ArgType, 1,
2529                                                           false, 0,
2530                                                           /*FIXME:*/false,
2531                                                           false, 0, 0,
2532                                                       FunctionType::ExtInfo()),
2533                                   /*TInfo=*/0,
2534                                   /*isExplicit=*/false,
2535                                   /*isInline=*/true,
2536                                   /*isImplicitlyDeclared=*/true);
2537    CopyConstructor->setAccess(AS_public);
2538    CopyConstructor->setImplicit();
2539    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2540
2541    // Add the parameter to the constructor.
2542    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2543                                                 ClassDecl->getLocation(),
2544                                                 /*IdentifierInfo=*/0,
2545                                                 ArgType, /*TInfo=*/0,
2546                                                 VarDecl::None,
2547                                                 VarDecl::None, 0);
2548    CopyConstructor->setParams(&FromParam, 1);
2549    if (S)
2550      PushOnScopeChains(CopyConstructor, S, true);
2551    else
2552      ClassDecl->addDecl(CopyConstructor);
2553  }
2554
2555  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2556    // Note: The following rules are largely analoguous to the copy
2557    // constructor rules. Note that virtual bases are not taken into account
2558    // for determining the argument type of the operator. Note also that
2559    // operators taking an object instead of a reference are allowed.
2560    //
2561    // C++ [class.copy]p10:
2562    //   If the class definition does not explicitly declare a copy
2563    //   assignment operator, one is declared implicitly.
2564    //   The implicitly-defined copy assignment operator for a class X
2565    //   will have the form
2566    //
2567    //       X& X::operator=(const X&)
2568    //
2569    //   if
2570    bool HasConstCopyAssignment = true;
2571
2572    //       -- each direct base class B of X has a copy assignment operator
2573    //          whose parameter is of type const B&, const volatile B& or B,
2574    //          and
2575    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2576         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2577      assert(!Base->getType()->isDependentType() &&
2578            "Cannot generate implicit members for class with dependent bases.");
2579      const CXXRecordDecl *BaseClassDecl
2580        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2581      const CXXMethodDecl *MD = 0;
2582      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2583                                                                     MD);
2584    }
2585
2586    //       -- for all the nonstatic data members of X that are of a class
2587    //          type M (or array thereof), each such class type has a copy
2588    //          assignment operator whose parameter is of type const M&,
2589    //          const volatile M& or M.
2590    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2591         HasConstCopyAssignment && Field != ClassDecl->field_end();
2592         ++Field) {
2593      QualType FieldType = (*Field)->getType();
2594      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2595        FieldType = Array->getElementType();
2596      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2597        const CXXRecordDecl *FieldClassDecl
2598          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2599        const CXXMethodDecl *MD = 0;
2600        HasConstCopyAssignment
2601          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2602      }
2603    }
2604
2605    //   Otherwise, the implicitly declared copy assignment operator will
2606    //   have the form
2607    //
2608    //       X& X::operator=(X&)
2609    QualType ArgType = ClassType;
2610    QualType RetType = Context.getLValueReferenceType(ArgType);
2611    if (HasConstCopyAssignment)
2612      ArgType = ArgType.withConst();
2613    ArgType = Context.getLValueReferenceType(ArgType);
2614
2615    //   An implicitly-declared copy assignment operator is an inline public
2616    //   member of its class.
2617    DeclarationName Name =
2618      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2619    CXXMethodDecl *CopyAssignment =
2620      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2621                            Context.getFunctionType(RetType, &ArgType, 1,
2622                                                    false, 0,
2623                                                    /*FIXME:*/false,
2624                                                    false, 0, 0,
2625                                                    FunctionType::ExtInfo()),
2626                            /*TInfo=*/0, /*isStatic=*/false,
2627                            /*StorageClassAsWritten=*/FunctionDecl::None,
2628                            /*isInline=*/true);
2629    CopyAssignment->setAccess(AS_public);
2630    CopyAssignment->setImplicit();
2631    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2632    CopyAssignment->setCopyAssignment(true);
2633
2634    // Add the parameter to the operator.
2635    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2636                                                 ClassDecl->getLocation(),
2637                                                 /*IdentifierInfo=*/0,
2638                                                 ArgType, /*TInfo=*/0,
2639                                                 VarDecl::None,
2640                                                 VarDecl::None, 0);
2641    CopyAssignment->setParams(&FromParam, 1);
2642
2643    // Don't call addedAssignmentOperator. There is no way to distinguish an
2644    // implicit from an explicit assignment operator.
2645    if (S)
2646      PushOnScopeChains(CopyAssignment, S, true);
2647    else
2648      ClassDecl->addDecl(CopyAssignment);
2649    AddOverriddenMethods(ClassDecl, CopyAssignment);
2650  }
2651
2652  if (!ClassDecl->hasUserDeclaredDestructor()) {
2653    // C++ [class.dtor]p2:
2654    //   If a class has no user-declared destructor, a destructor is
2655    //   declared implicitly. An implicitly-declared destructor is an
2656    //   inline public member of its class.
2657    QualType Ty = Context.getFunctionType(Context.VoidTy,
2658                                          0, 0, false, 0,
2659                                          /*FIXME:*/false,
2660                                          false, 0, 0, FunctionType::ExtInfo());
2661
2662    DeclarationName Name
2663      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2664    CXXDestructorDecl *Destructor
2665      = CXXDestructorDecl::Create(Context, ClassDecl,
2666                                  ClassDecl->getLocation(), Name, Ty,
2667                                  /*isInline=*/true,
2668                                  /*isImplicitlyDeclared=*/true);
2669    Destructor->setAccess(AS_public);
2670    Destructor->setImplicit();
2671    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2672    if (S)
2673      PushOnScopeChains(Destructor, S, true);
2674    else
2675      ClassDecl->addDecl(Destructor);
2676
2677    // This could be uniqued if it ever proves significant.
2678    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2679
2680    AddOverriddenMethods(ClassDecl, Destructor);
2681  }
2682}
2683
2684void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2685  Decl *D = TemplateD.getAs<Decl>();
2686  if (!D)
2687    return;
2688
2689  TemplateParameterList *Params = 0;
2690  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2691    Params = Template->getTemplateParameters();
2692  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2693           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2694    Params = PartialSpec->getTemplateParameters();
2695  else
2696    return;
2697
2698  for (TemplateParameterList::iterator Param = Params->begin(),
2699                                    ParamEnd = Params->end();
2700       Param != ParamEnd; ++Param) {
2701    NamedDecl *Named = cast<NamedDecl>(*Param);
2702    if (Named->getDeclName()) {
2703      S->AddDecl(DeclPtrTy::make(Named));
2704      IdResolver.AddDecl(Named);
2705    }
2706  }
2707}
2708
2709void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2710  if (!RecordD) return;
2711  AdjustDeclIfTemplate(RecordD);
2712  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2713  PushDeclContext(S, Record);
2714}
2715
2716void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2717  if (!RecordD) return;
2718  PopDeclContext();
2719}
2720
2721/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2722/// parsing a top-level (non-nested) C++ class, and we are now
2723/// parsing those parts of the given Method declaration that could
2724/// not be parsed earlier (C++ [class.mem]p2), such as default
2725/// arguments. This action should enter the scope of the given
2726/// Method declaration as if we had just parsed the qualified method
2727/// name. However, it should not bring the parameters into scope;
2728/// that will be performed by ActOnDelayedCXXMethodParameter.
2729void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2730}
2731
2732/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2733/// C++ method declaration. We're (re-)introducing the given
2734/// function parameter into scope for use in parsing later parts of
2735/// the method declaration. For example, we could see an
2736/// ActOnParamDefaultArgument event for this parameter.
2737void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2738  if (!ParamD)
2739    return;
2740
2741  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2742
2743  // If this parameter has an unparsed default argument, clear it out
2744  // to make way for the parsed default argument.
2745  if (Param->hasUnparsedDefaultArg())
2746    Param->setDefaultArg(0);
2747
2748  S->AddDecl(DeclPtrTy::make(Param));
2749  if (Param->getDeclName())
2750    IdResolver.AddDecl(Param);
2751}
2752
2753/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2754/// processing the delayed method declaration for Method. The method
2755/// declaration is now considered finished. There may be a separate
2756/// ActOnStartOfFunctionDef action later (not necessarily
2757/// immediately!) for this method, if it was also defined inside the
2758/// class body.
2759void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2760  if (!MethodD)
2761    return;
2762
2763  AdjustDeclIfTemplate(MethodD);
2764
2765  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2766
2767  // Now that we have our default arguments, check the constructor
2768  // again. It could produce additional diagnostics or affect whether
2769  // the class has implicitly-declared destructors, among other
2770  // things.
2771  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2772    CheckConstructor(Constructor);
2773
2774  // Check the default arguments, which we may have added.
2775  if (!Method->isInvalidDecl())
2776    CheckCXXDefaultArguments(Method);
2777}
2778
2779/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2780/// the well-formedness of the constructor declarator @p D with type @p
2781/// R. If there are any errors in the declarator, this routine will
2782/// emit diagnostics and set the invalid bit to true.  In any case, the type
2783/// will be updated to reflect a well-formed type for the constructor and
2784/// returned.
2785QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2786                                          FunctionDecl::StorageClass &SC) {
2787  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2788
2789  // C++ [class.ctor]p3:
2790  //   A constructor shall not be virtual (10.3) or static (9.4). A
2791  //   constructor can be invoked for a const, volatile or const
2792  //   volatile object. A constructor shall not be declared const,
2793  //   volatile, or const volatile (9.3.2).
2794  if (isVirtual) {
2795    if (!D.isInvalidType())
2796      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2797        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2798        << SourceRange(D.getIdentifierLoc());
2799    D.setInvalidType();
2800  }
2801  if (SC == FunctionDecl::Static) {
2802    if (!D.isInvalidType())
2803      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2804        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2805        << SourceRange(D.getIdentifierLoc());
2806    D.setInvalidType();
2807    SC = FunctionDecl::None;
2808  }
2809
2810  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2811  if (FTI.TypeQuals != 0) {
2812    if (FTI.TypeQuals & Qualifiers::Const)
2813      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2814        << "const" << SourceRange(D.getIdentifierLoc());
2815    if (FTI.TypeQuals & Qualifiers::Volatile)
2816      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2817        << "volatile" << SourceRange(D.getIdentifierLoc());
2818    if (FTI.TypeQuals & Qualifiers::Restrict)
2819      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2820        << "restrict" << SourceRange(D.getIdentifierLoc());
2821  }
2822
2823  // Rebuild the function type "R" without any type qualifiers (in
2824  // case any of the errors above fired) and with "void" as the
2825  // return type, since constructors don't have return types. We
2826  // *always* have to do this, because GetTypeForDeclarator will
2827  // put in a result type of "int" when none was specified.
2828  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2829  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2830                                 Proto->getNumArgs(),
2831                                 Proto->isVariadic(), 0,
2832                                 Proto->hasExceptionSpec(),
2833                                 Proto->hasAnyExceptionSpec(),
2834                                 Proto->getNumExceptions(),
2835                                 Proto->exception_begin(),
2836                                 Proto->getExtInfo());
2837}
2838
2839/// CheckConstructor - Checks a fully-formed constructor for
2840/// well-formedness, issuing any diagnostics required. Returns true if
2841/// the constructor declarator is invalid.
2842void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2843  CXXRecordDecl *ClassDecl
2844    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2845  if (!ClassDecl)
2846    return Constructor->setInvalidDecl();
2847
2848  // C++ [class.copy]p3:
2849  //   A declaration of a constructor for a class X is ill-formed if
2850  //   its first parameter is of type (optionally cv-qualified) X and
2851  //   either there are no other parameters or else all other
2852  //   parameters have default arguments.
2853  if (!Constructor->isInvalidDecl() &&
2854      ((Constructor->getNumParams() == 1) ||
2855       (Constructor->getNumParams() > 1 &&
2856        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2857      Constructor->getTemplateSpecializationKind()
2858                                              != TSK_ImplicitInstantiation) {
2859    QualType ParamType = Constructor->getParamDecl(0)->getType();
2860    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2861    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2862      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2863      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2864        << FixItHint::CreateInsertion(ParamLoc, " const &");
2865
2866      // FIXME: Rather that making the constructor invalid, we should endeavor
2867      // to fix the type.
2868      Constructor->setInvalidDecl();
2869    }
2870  }
2871
2872  // Notify the class that we've added a constructor.  In principle we
2873  // don't need to do this for out-of-line declarations; in practice
2874  // we only instantiate the most recent declaration of a method, so
2875  // we have to call this for everything but friends.
2876  if (!Constructor->getFriendObjectKind())
2877    ClassDecl->addedConstructor(Context, Constructor);
2878}
2879
2880/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2881/// issuing any diagnostics required. Returns true on error.
2882bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2883  CXXRecordDecl *RD = Destructor->getParent();
2884
2885  if (Destructor->isVirtual()) {
2886    SourceLocation Loc;
2887
2888    if (!Destructor->isImplicit())
2889      Loc = Destructor->getLocation();
2890    else
2891      Loc = RD->getLocation();
2892
2893    // If we have a virtual destructor, look up the deallocation function
2894    FunctionDecl *OperatorDelete = 0;
2895    DeclarationName Name =
2896    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2897    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2898      return true;
2899
2900    Destructor->setOperatorDelete(OperatorDelete);
2901  }
2902
2903  return false;
2904}
2905
2906static inline bool
2907FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2908  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2909          FTI.ArgInfo[0].Param &&
2910          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2911}
2912
2913/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2914/// the well-formednes of the destructor declarator @p D with type @p
2915/// R. If there are any errors in the declarator, this routine will
2916/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2917/// will be updated to reflect a well-formed type for the destructor and
2918/// returned.
2919QualType Sema::CheckDestructorDeclarator(Declarator &D,
2920                                         FunctionDecl::StorageClass& SC) {
2921  // C++ [class.dtor]p1:
2922  //   [...] A typedef-name that names a class is a class-name
2923  //   (7.1.3); however, a typedef-name that names a class shall not
2924  //   be used as the identifier in the declarator for a destructor
2925  //   declaration.
2926  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2927  if (isa<TypedefType>(DeclaratorType)) {
2928    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2929      << DeclaratorType;
2930    D.setInvalidType();
2931  }
2932
2933  // C++ [class.dtor]p2:
2934  //   A destructor is used to destroy objects of its class type. A
2935  //   destructor takes no parameters, and no return type can be
2936  //   specified for it (not even void). The address of a destructor
2937  //   shall not be taken. A destructor shall not be static. A
2938  //   destructor can be invoked for a const, volatile or const
2939  //   volatile object. A destructor shall not be declared const,
2940  //   volatile or const volatile (9.3.2).
2941  if (SC == FunctionDecl::Static) {
2942    if (!D.isInvalidType())
2943      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2944        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2945        << SourceRange(D.getIdentifierLoc());
2946    SC = FunctionDecl::None;
2947    D.setInvalidType();
2948  }
2949  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2950    // Destructors don't have return types, but the parser will
2951    // happily parse something like:
2952    //
2953    //   class X {
2954    //     float ~X();
2955    //   };
2956    //
2957    // The return type will be eliminated later.
2958    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2959      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2960      << SourceRange(D.getIdentifierLoc());
2961  }
2962
2963  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2964  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2965    if (FTI.TypeQuals & Qualifiers::Const)
2966      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2967        << "const" << SourceRange(D.getIdentifierLoc());
2968    if (FTI.TypeQuals & Qualifiers::Volatile)
2969      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2970        << "volatile" << SourceRange(D.getIdentifierLoc());
2971    if (FTI.TypeQuals & Qualifiers::Restrict)
2972      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2973        << "restrict" << SourceRange(D.getIdentifierLoc());
2974    D.setInvalidType();
2975  }
2976
2977  // Make sure we don't have any parameters.
2978  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2979    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2980
2981    // Delete the parameters.
2982    FTI.freeArgs();
2983    D.setInvalidType();
2984  }
2985
2986  // Make sure the destructor isn't variadic.
2987  if (FTI.isVariadic) {
2988    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2989    D.setInvalidType();
2990  }
2991
2992  // Rebuild the function type "R" without any type qualifiers or
2993  // parameters (in case any of the errors above fired) and with
2994  // "void" as the return type, since destructors don't have return
2995  // types. We *always* have to do this, because GetTypeForDeclarator
2996  // will put in a result type of "int" when none was specified.
2997  // FIXME: Exceptions!
2998  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2999                                 false, false, 0, 0, FunctionType::ExtInfo());
3000}
3001
3002/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3003/// well-formednes of the conversion function declarator @p D with
3004/// type @p R. If there are any errors in the declarator, this routine
3005/// will emit diagnostics and return true. Otherwise, it will return
3006/// false. Either way, the type @p R will be updated to reflect a
3007/// well-formed type for the conversion operator.
3008void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3009                                     FunctionDecl::StorageClass& SC) {
3010  // C++ [class.conv.fct]p1:
3011  //   Neither parameter types nor return type can be specified. The
3012  //   type of a conversion function (8.3.5) is "function taking no
3013  //   parameter returning conversion-type-id."
3014  if (SC == FunctionDecl::Static) {
3015    if (!D.isInvalidType())
3016      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3017        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3018        << SourceRange(D.getIdentifierLoc());
3019    D.setInvalidType();
3020    SC = FunctionDecl::None;
3021  }
3022
3023  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3024
3025  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3026    // Conversion functions don't have return types, but the parser will
3027    // happily parse something like:
3028    //
3029    //   class X {
3030    //     float operator bool();
3031    //   };
3032    //
3033    // The return type will be changed later anyway.
3034    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3035      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3036      << SourceRange(D.getIdentifierLoc());
3037    D.setInvalidType();
3038  }
3039
3040  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3041
3042  // Make sure we don't have any parameters.
3043  if (Proto->getNumArgs() > 0) {
3044    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3045
3046    // Delete the parameters.
3047    D.getTypeObject(0).Fun.freeArgs();
3048    D.setInvalidType();
3049  } else if (Proto->isVariadic()) {
3050    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3051    D.setInvalidType();
3052  }
3053
3054  // Diagnose "&operator bool()" and other such nonsense.  This
3055  // is actually a gcc extension which we don't support.
3056  if (Proto->getResultType() != ConvType) {
3057    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3058      << Proto->getResultType();
3059    D.setInvalidType();
3060    ConvType = Proto->getResultType();
3061  }
3062
3063  // C++ [class.conv.fct]p4:
3064  //   The conversion-type-id shall not represent a function type nor
3065  //   an array type.
3066  if (ConvType->isArrayType()) {
3067    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3068    ConvType = Context.getPointerType(ConvType);
3069    D.setInvalidType();
3070  } else if (ConvType->isFunctionType()) {
3071    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3072    ConvType = Context.getPointerType(ConvType);
3073    D.setInvalidType();
3074  }
3075
3076  // Rebuild the function type "R" without any parameters (in case any
3077  // of the errors above fired) and with the conversion type as the
3078  // return type.
3079  if (D.isInvalidType()) {
3080    R = Context.getFunctionType(ConvType, 0, 0, false,
3081                                Proto->getTypeQuals(),
3082                                Proto->hasExceptionSpec(),
3083                                Proto->hasAnyExceptionSpec(),
3084                                Proto->getNumExceptions(),
3085                                Proto->exception_begin(),
3086                                Proto->getExtInfo());
3087  }
3088
3089  // C++0x explicit conversion operators.
3090  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3091    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3092         diag::warn_explicit_conversion_functions)
3093      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3094}
3095
3096/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3097/// the declaration of the given C++ conversion function. This routine
3098/// is responsible for recording the conversion function in the C++
3099/// class, if possible.
3100Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3101  assert(Conversion && "Expected to receive a conversion function declaration");
3102
3103  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3104
3105  // Make sure we aren't redeclaring the conversion function.
3106  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3107
3108  // C++ [class.conv.fct]p1:
3109  //   [...] A conversion function is never used to convert a
3110  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3111  //   same object type (or a reference to it), to a (possibly
3112  //   cv-qualified) base class of that type (or a reference to it),
3113  //   or to (possibly cv-qualified) void.
3114  // FIXME: Suppress this warning if the conversion function ends up being a
3115  // virtual function that overrides a virtual function in a base class.
3116  QualType ClassType
3117    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3118  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3119    ConvType = ConvTypeRef->getPointeeType();
3120  if (ConvType->isRecordType()) {
3121    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3122    if (ConvType == ClassType)
3123      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3124        << ClassType;
3125    else if (IsDerivedFrom(ClassType, ConvType))
3126      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3127        <<  ClassType << ConvType;
3128  } else if (ConvType->isVoidType()) {
3129    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3130      << ClassType << ConvType;
3131  }
3132
3133  if (Conversion->getPrimaryTemplate()) {
3134    // ignore specializations
3135  } else if (Conversion->getPreviousDeclaration()) {
3136    if (FunctionTemplateDecl *ConversionTemplate
3137                                  = Conversion->getDescribedFunctionTemplate()) {
3138      if (ClassDecl->replaceConversion(
3139                                   ConversionTemplate->getPreviousDeclaration(),
3140                                       ConversionTemplate))
3141        return DeclPtrTy::make(ConversionTemplate);
3142    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3143                                            Conversion))
3144      return DeclPtrTy::make(Conversion);
3145    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3146  } else if (FunctionTemplateDecl *ConversionTemplate
3147               = Conversion->getDescribedFunctionTemplate())
3148    ClassDecl->addConversionFunction(ConversionTemplate);
3149  else
3150    ClassDecl->addConversionFunction(Conversion);
3151
3152  return DeclPtrTy::make(Conversion);
3153}
3154
3155//===----------------------------------------------------------------------===//
3156// Namespace Handling
3157//===----------------------------------------------------------------------===//
3158
3159/// ActOnStartNamespaceDef - This is called at the start of a namespace
3160/// definition.
3161Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3162                                             SourceLocation IdentLoc,
3163                                             IdentifierInfo *II,
3164                                             SourceLocation LBrace,
3165                                             AttributeList *AttrList) {
3166  NamespaceDecl *Namespc =
3167      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3168  Namespc->setLBracLoc(LBrace);
3169
3170  Scope *DeclRegionScope = NamespcScope->getParent();
3171
3172  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3173
3174  if (II) {
3175    // C++ [namespace.def]p2:
3176    // The identifier in an original-namespace-definition shall not have been
3177    // previously defined in the declarative region in which the
3178    // original-namespace-definition appears. The identifier in an
3179    // original-namespace-definition is the name of the namespace. Subsequently
3180    // in that declarative region, it is treated as an original-namespace-name.
3181
3182    NamedDecl *PrevDecl
3183      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3184                         ForRedeclaration);
3185
3186    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3187      // This is an extended namespace definition.
3188      // Attach this namespace decl to the chain of extended namespace
3189      // definitions.
3190      OrigNS->setNextNamespace(Namespc);
3191      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3192
3193      // Remove the previous declaration from the scope.
3194      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3195        IdResolver.RemoveDecl(OrigNS);
3196        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3197      }
3198    } else if (PrevDecl) {
3199      // This is an invalid name redefinition.
3200      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3201       << Namespc->getDeclName();
3202      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3203      Namespc->setInvalidDecl();
3204      // Continue on to push Namespc as current DeclContext and return it.
3205    } else if (II->isStr("std") &&
3206               CurContext->getLookupContext()->isTranslationUnit()) {
3207      // This is the first "real" definition of the namespace "std", so update
3208      // our cache of the "std" namespace to point at this definition.
3209      if (StdNamespace) {
3210        // We had already defined a dummy namespace "std". Link this new
3211        // namespace definition to the dummy namespace "std".
3212        StdNamespace->setNextNamespace(Namespc);
3213        StdNamespace->setLocation(IdentLoc);
3214        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3215      }
3216
3217      // Make our StdNamespace cache point at the first real definition of the
3218      // "std" namespace.
3219      StdNamespace = Namespc;
3220    }
3221
3222    PushOnScopeChains(Namespc, DeclRegionScope);
3223  } else {
3224    // Anonymous namespaces.
3225    assert(Namespc->isAnonymousNamespace());
3226
3227    // Link the anonymous namespace into its parent.
3228    NamespaceDecl *PrevDecl;
3229    DeclContext *Parent = CurContext->getLookupContext();
3230    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3231      PrevDecl = TU->getAnonymousNamespace();
3232      TU->setAnonymousNamespace(Namespc);
3233    } else {
3234      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3235      PrevDecl = ND->getAnonymousNamespace();
3236      ND->setAnonymousNamespace(Namespc);
3237    }
3238
3239    // Link the anonymous namespace with its previous declaration.
3240    if (PrevDecl) {
3241      assert(PrevDecl->isAnonymousNamespace());
3242      assert(!PrevDecl->getNextNamespace());
3243      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3244      PrevDecl->setNextNamespace(Namespc);
3245    }
3246
3247    CurContext->addDecl(Namespc);
3248
3249    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3250    //   behaves as if it were replaced by
3251    //     namespace unique { /* empty body */ }
3252    //     using namespace unique;
3253    //     namespace unique { namespace-body }
3254    //   where all occurrences of 'unique' in a translation unit are
3255    //   replaced by the same identifier and this identifier differs
3256    //   from all other identifiers in the entire program.
3257
3258    // We just create the namespace with an empty name and then add an
3259    // implicit using declaration, just like the standard suggests.
3260    //
3261    // CodeGen enforces the "universally unique" aspect by giving all
3262    // declarations semantically contained within an anonymous
3263    // namespace internal linkage.
3264
3265    if (!PrevDecl) {
3266      UsingDirectiveDecl* UD
3267        = UsingDirectiveDecl::Create(Context, CurContext,
3268                                     /* 'using' */ LBrace,
3269                                     /* 'namespace' */ SourceLocation(),
3270                                     /* qualifier */ SourceRange(),
3271                                     /* NNS */ NULL,
3272                                     /* identifier */ SourceLocation(),
3273                                     Namespc,
3274                                     /* Ancestor */ CurContext);
3275      UD->setImplicit();
3276      CurContext->addDecl(UD);
3277    }
3278  }
3279
3280  // Although we could have an invalid decl (i.e. the namespace name is a
3281  // redefinition), push it as current DeclContext and try to continue parsing.
3282  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3283  // for the namespace has the declarations that showed up in that particular
3284  // namespace definition.
3285  PushDeclContext(NamespcScope, Namespc);
3286  return DeclPtrTy::make(Namespc);
3287}
3288
3289/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3290/// is a namespace alias, returns the namespace it points to.
3291static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3292  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3293    return AD->getNamespace();
3294  return dyn_cast_or_null<NamespaceDecl>(D);
3295}
3296
3297/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3298/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3299void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3300  Decl *Dcl = D.getAs<Decl>();
3301  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3302  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3303  Namespc->setRBracLoc(RBrace);
3304  PopDeclContext();
3305}
3306
3307Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3308                                          SourceLocation UsingLoc,
3309                                          SourceLocation NamespcLoc,
3310                                          CXXScopeSpec &SS,
3311                                          SourceLocation IdentLoc,
3312                                          IdentifierInfo *NamespcName,
3313                                          AttributeList *AttrList) {
3314  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3315  assert(NamespcName && "Invalid NamespcName.");
3316  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3317  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3318
3319  UsingDirectiveDecl *UDir = 0;
3320
3321  // Lookup namespace name.
3322  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3323  LookupParsedName(R, S, &SS);
3324  if (R.isAmbiguous())
3325    return DeclPtrTy();
3326
3327  if (!R.empty()) {
3328    NamedDecl *Named = R.getFoundDecl();
3329    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3330        && "expected namespace decl");
3331    // C++ [namespace.udir]p1:
3332    //   A using-directive specifies that the names in the nominated
3333    //   namespace can be used in the scope in which the
3334    //   using-directive appears after the using-directive. During
3335    //   unqualified name lookup (3.4.1), the names appear as if they
3336    //   were declared in the nearest enclosing namespace which
3337    //   contains both the using-directive and the nominated
3338    //   namespace. [Note: in this context, "contains" means "contains
3339    //   directly or indirectly". ]
3340
3341    // Find enclosing context containing both using-directive and
3342    // nominated namespace.
3343    NamespaceDecl *NS = getNamespaceDecl(Named);
3344    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3345    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3346      CommonAncestor = CommonAncestor->getParent();
3347
3348    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3349                                      SS.getRange(),
3350                                      (NestedNameSpecifier *)SS.getScopeRep(),
3351                                      IdentLoc, Named, CommonAncestor);
3352    PushUsingDirective(S, UDir);
3353  } else {
3354    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3355  }
3356
3357  // FIXME: We ignore attributes for now.
3358  delete AttrList;
3359  return DeclPtrTy::make(UDir);
3360}
3361
3362void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3363  // If scope has associated entity, then using directive is at namespace
3364  // or translation unit scope. We add UsingDirectiveDecls, into
3365  // it's lookup structure.
3366  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3367    Ctx->addDecl(UDir);
3368  else
3369    // Otherwise it is block-sope. using-directives will affect lookup
3370    // only to the end of scope.
3371    S->PushUsingDirective(DeclPtrTy::make(UDir));
3372}
3373
3374
3375Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3376                                            AccessSpecifier AS,
3377                                            bool HasUsingKeyword,
3378                                            SourceLocation UsingLoc,
3379                                            CXXScopeSpec &SS,
3380                                            UnqualifiedId &Name,
3381                                            AttributeList *AttrList,
3382                                            bool IsTypeName,
3383                                            SourceLocation TypenameLoc) {
3384  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3385
3386  switch (Name.getKind()) {
3387  case UnqualifiedId::IK_Identifier:
3388  case UnqualifiedId::IK_OperatorFunctionId:
3389  case UnqualifiedId::IK_LiteralOperatorId:
3390  case UnqualifiedId::IK_ConversionFunctionId:
3391    break;
3392
3393  case UnqualifiedId::IK_ConstructorName:
3394  case UnqualifiedId::IK_ConstructorTemplateId:
3395    // C++0x inherited constructors.
3396    if (getLangOptions().CPlusPlus0x) break;
3397
3398    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3399      << SS.getRange();
3400    return DeclPtrTy();
3401
3402  case UnqualifiedId::IK_DestructorName:
3403    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3404      << SS.getRange();
3405    return DeclPtrTy();
3406
3407  case UnqualifiedId::IK_TemplateId:
3408    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3409      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3410    return DeclPtrTy();
3411  }
3412
3413  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3414  if (!TargetName)
3415    return DeclPtrTy();
3416
3417  // Warn about using declarations.
3418  // TODO: store that the declaration was written without 'using' and
3419  // talk about access decls instead of using decls in the
3420  // diagnostics.
3421  if (!HasUsingKeyword) {
3422    UsingLoc = Name.getSourceRange().getBegin();
3423
3424    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3425      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3426  }
3427
3428  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3429                                        Name.getSourceRange().getBegin(),
3430                                        TargetName, AttrList,
3431                                        /* IsInstantiation */ false,
3432                                        IsTypeName, TypenameLoc);
3433  if (UD)
3434    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3435
3436  return DeclPtrTy::make(UD);
3437}
3438
3439/// Determines whether to create a using shadow decl for a particular
3440/// decl, given the set of decls existing prior to this using lookup.
3441bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3442                                const LookupResult &Previous) {
3443  // Diagnose finding a decl which is not from a base class of the
3444  // current class.  We do this now because there are cases where this
3445  // function will silently decide not to build a shadow decl, which
3446  // will pre-empt further diagnostics.
3447  //
3448  // We don't need to do this in C++0x because we do the check once on
3449  // the qualifier.
3450  //
3451  // FIXME: diagnose the following if we care enough:
3452  //   struct A { int foo; };
3453  //   struct B : A { using A::foo; };
3454  //   template <class T> struct C : A {};
3455  //   template <class T> struct D : C<T> { using B::foo; } // <---
3456  // This is invalid (during instantiation) in C++03 because B::foo
3457  // resolves to the using decl in B, which is not a base class of D<T>.
3458  // We can't diagnose it immediately because C<T> is an unknown
3459  // specialization.  The UsingShadowDecl in D<T> then points directly
3460  // to A::foo, which will look well-formed when we instantiate.
3461  // The right solution is to not collapse the shadow-decl chain.
3462  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3463    DeclContext *OrigDC = Orig->getDeclContext();
3464
3465    // Handle enums and anonymous structs.
3466    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3467    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3468    while (OrigRec->isAnonymousStructOrUnion())
3469      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3470
3471    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3472      if (OrigDC == CurContext) {
3473        Diag(Using->getLocation(),
3474             diag::err_using_decl_nested_name_specifier_is_current_class)
3475          << Using->getNestedNameRange();
3476        Diag(Orig->getLocation(), diag::note_using_decl_target);
3477        return true;
3478      }
3479
3480      Diag(Using->getNestedNameRange().getBegin(),
3481           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3482        << Using->getTargetNestedNameDecl()
3483        << cast<CXXRecordDecl>(CurContext)
3484        << Using->getNestedNameRange();
3485      Diag(Orig->getLocation(), diag::note_using_decl_target);
3486      return true;
3487    }
3488  }
3489
3490  if (Previous.empty()) return false;
3491
3492  NamedDecl *Target = Orig;
3493  if (isa<UsingShadowDecl>(Target))
3494    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3495
3496  // If the target happens to be one of the previous declarations, we
3497  // don't have a conflict.
3498  //
3499  // FIXME: but we might be increasing its access, in which case we
3500  // should redeclare it.
3501  NamedDecl *NonTag = 0, *Tag = 0;
3502  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3503         I != E; ++I) {
3504    NamedDecl *D = (*I)->getUnderlyingDecl();
3505    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3506      return false;
3507
3508    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3509  }
3510
3511  if (Target->isFunctionOrFunctionTemplate()) {
3512    FunctionDecl *FD;
3513    if (isa<FunctionTemplateDecl>(Target))
3514      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3515    else
3516      FD = cast<FunctionDecl>(Target);
3517
3518    NamedDecl *OldDecl = 0;
3519    switch (CheckOverload(FD, Previous, OldDecl)) {
3520    case Ovl_Overload:
3521      return false;
3522
3523    case Ovl_NonFunction:
3524      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3525      break;
3526
3527    // We found a decl with the exact signature.
3528    case Ovl_Match:
3529      if (isa<UsingShadowDecl>(OldDecl)) {
3530        // Silently ignore the possible conflict.
3531        return false;
3532      }
3533
3534      // If we're in a record, we want to hide the target, so we
3535      // return true (without a diagnostic) to tell the caller not to
3536      // build a shadow decl.
3537      if (CurContext->isRecord())
3538        return true;
3539
3540      // If we're not in a record, this is an error.
3541      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3542      break;
3543    }
3544
3545    Diag(Target->getLocation(), diag::note_using_decl_target);
3546    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3547    return true;
3548  }
3549
3550  // Target is not a function.
3551
3552  if (isa<TagDecl>(Target)) {
3553    // No conflict between a tag and a non-tag.
3554    if (!Tag) return false;
3555
3556    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3557    Diag(Target->getLocation(), diag::note_using_decl_target);
3558    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3559    return true;
3560  }
3561
3562  // No conflict between a tag and a non-tag.
3563  if (!NonTag) return false;
3564
3565  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3566  Diag(Target->getLocation(), diag::note_using_decl_target);
3567  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3568  return true;
3569}
3570
3571/// Builds a shadow declaration corresponding to a 'using' declaration.
3572UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3573                                            UsingDecl *UD,
3574                                            NamedDecl *Orig) {
3575
3576  // If we resolved to another shadow declaration, just coalesce them.
3577  NamedDecl *Target = Orig;
3578  if (isa<UsingShadowDecl>(Target)) {
3579    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3580    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3581  }
3582
3583  UsingShadowDecl *Shadow
3584    = UsingShadowDecl::Create(Context, CurContext,
3585                              UD->getLocation(), UD, Target);
3586  UD->addShadowDecl(Shadow);
3587
3588  if (S)
3589    PushOnScopeChains(Shadow, S);
3590  else
3591    CurContext->addDecl(Shadow);
3592  Shadow->setAccess(UD->getAccess());
3593
3594  // Register it as a conversion if appropriate.
3595  if (Shadow->getDeclName().getNameKind()
3596        == DeclarationName::CXXConversionFunctionName)
3597    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3598
3599  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3600    Shadow->setInvalidDecl();
3601
3602  return Shadow;
3603}
3604
3605/// Hides a using shadow declaration.  This is required by the current
3606/// using-decl implementation when a resolvable using declaration in a
3607/// class is followed by a declaration which would hide or override
3608/// one or more of the using decl's targets; for example:
3609///
3610///   struct Base { void foo(int); };
3611///   struct Derived : Base {
3612///     using Base::foo;
3613///     void foo(int);
3614///   };
3615///
3616/// The governing language is C++03 [namespace.udecl]p12:
3617///
3618///   When a using-declaration brings names from a base class into a
3619///   derived class scope, member functions in the derived class
3620///   override and/or hide member functions with the same name and
3621///   parameter types in a base class (rather than conflicting).
3622///
3623/// There are two ways to implement this:
3624///   (1) optimistically create shadow decls when they're not hidden
3625///       by existing declarations, or
3626///   (2) don't create any shadow decls (or at least don't make them
3627///       visible) until we've fully parsed/instantiated the class.
3628/// The problem with (1) is that we might have to retroactively remove
3629/// a shadow decl, which requires several O(n) operations because the
3630/// decl structures are (very reasonably) not designed for removal.
3631/// (2) avoids this but is very fiddly and phase-dependent.
3632void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3633  if (Shadow->getDeclName().getNameKind() ==
3634        DeclarationName::CXXConversionFunctionName)
3635    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3636
3637  // Remove it from the DeclContext...
3638  Shadow->getDeclContext()->removeDecl(Shadow);
3639
3640  // ...and the scope, if applicable...
3641  if (S) {
3642    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3643    IdResolver.RemoveDecl(Shadow);
3644  }
3645
3646  // ...and the using decl.
3647  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3648
3649  // TODO: complain somehow if Shadow was used.  It shouldn't
3650  // be possible for this to happen, because...?
3651}
3652
3653/// Builds a using declaration.
3654///
3655/// \param IsInstantiation - Whether this call arises from an
3656///   instantiation of an unresolved using declaration.  We treat
3657///   the lookup differently for these declarations.
3658NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3659                                       SourceLocation UsingLoc,
3660                                       CXXScopeSpec &SS,
3661                                       SourceLocation IdentLoc,
3662                                       DeclarationName Name,
3663                                       AttributeList *AttrList,
3664                                       bool IsInstantiation,
3665                                       bool IsTypeName,
3666                                       SourceLocation TypenameLoc) {
3667  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3668  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3669
3670  // FIXME: We ignore attributes for now.
3671  delete AttrList;
3672
3673  if (SS.isEmpty()) {
3674    Diag(IdentLoc, diag::err_using_requires_qualname);
3675    return 0;
3676  }
3677
3678  // Do the redeclaration lookup in the current scope.
3679  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3680                        ForRedeclaration);
3681  Previous.setHideTags(false);
3682  if (S) {
3683    LookupName(Previous, S);
3684
3685    // It is really dumb that we have to do this.
3686    LookupResult::Filter F = Previous.makeFilter();
3687    while (F.hasNext()) {
3688      NamedDecl *D = F.next();
3689      if (!isDeclInScope(D, CurContext, S))
3690        F.erase();
3691    }
3692    F.done();
3693  } else {
3694    assert(IsInstantiation && "no scope in non-instantiation");
3695    assert(CurContext->isRecord() && "scope not record in instantiation");
3696    LookupQualifiedName(Previous, CurContext);
3697  }
3698
3699  NestedNameSpecifier *NNS =
3700    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3701
3702  // Check for invalid redeclarations.
3703  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3704    return 0;
3705
3706  // Check for bad qualifiers.
3707  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3708    return 0;
3709
3710  DeclContext *LookupContext = computeDeclContext(SS);
3711  NamedDecl *D;
3712  if (!LookupContext) {
3713    if (IsTypeName) {
3714      // FIXME: not all declaration name kinds are legal here
3715      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3716                                              UsingLoc, TypenameLoc,
3717                                              SS.getRange(), NNS,
3718                                              IdentLoc, Name);
3719    } else {
3720      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3721                                           UsingLoc, SS.getRange(), NNS,
3722                                           IdentLoc, Name);
3723    }
3724  } else {
3725    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3726                          SS.getRange(), UsingLoc, NNS, Name,
3727                          IsTypeName);
3728  }
3729  D->setAccess(AS);
3730  CurContext->addDecl(D);
3731
3732  if (!LookupContext) return D;
3733  UsingDecl *UD = cast<UsingDecl>(D);
3734
3735  if (RequireCompleteDeclContext(SS, LookupContext)) {
3736    UD->setInvalidDecl();
3737    return UD;
3738  }
3739
3740  // Look up the target name.
3741
3742  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3743
3744  // Unlike most lookups, we don't always want to hide tag
3745  // declarations: tag names are visible through the using declaration
3746  // even if hidden by ordinary names, *except* in a dependent context
3747  // where it's important for the sanity of two-phase lookup.
3748  if (!IsInstantiation)
3749    R.setHideTags(false);
3750
3751  LookupQualifiedName(R, LookupContext);
3752
3753  if (R.empty()) {
3754    Diag(IdentLoc, diag::err_no_member)
3755      << Name << LookupContext << SS.getRange();
3756    UD->setInvalidDecl();
3757    return UD;
3758  }
3759
3760  if (R.isAmbiguous()) {
3761    UD->setInvalidDecl();
3762    return UD;
3763  }
3764
3765  if (IsTypeName) {
3766    // If we asked for a typename and got a non-type decl, error out.
3767    if (!R.getAsSingle<TypeDecl>()) {
3768      Diag(IdentLoc, diag::err_using_typename_non_type);
3769      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3770        Diag((*I)->getUnderlyingDecl()->getLocation(),
3771             diag::note_using_decl_target);
3772      UD->setInvalidDecl();
3773      return UD;
3774    }
3775  } else {
3776    // If we asked for a non-typename and we got a type, error out,
3777    // but only if this is an instantiation of an unresolved using
3778    // decl.  Otherwise just silently find the type name.
3779    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3780      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3781      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3782      UD->setInvalidDecl();
3783      return UD;
3784    }
3785  }
3786
3787  // C++0x N2914 [namespace.udecl]p6:
3788  // A using-declaration shall not name a namespace.
3789  if (R.getAsSingle<NamespaceDecl>()) {
3790    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3791      << SS.getRange();
3792    UD->setInvalidDecl();
3793    return UD;
3794  }
3795
3796  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3797    if (!CheckUsingShadowDecl(UD, *I, Previous))
3798      BuildUsingShadowDecl(S, UD, *I);
3799  }
3800
3801  return UD;
3802}
3803
3804/// Checks that the given using declaration is not an invalid
3805/// redeclaration.  Note that this is checking only for the using decl
3806/// itself, not for any ill-formedness among the UsingShadowDecls.
3807bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3808                                       bool isTypeName,
3809                                       const CXXScopeSpec &SS,
3810                                       SourceLocation NameLoc,
3811                                       const LookupResult &Prev) {
3812  // C++03 [namespace.udecl]p8:
3813  // C++0x [namespace.udecl]p10:
3814  //   A using-declaration is a declaration and can therefore be used
3815  //   repeatedly where (and only where) multiple declarations are
3816  //   allowed.
3817  // That's only in file contexts.
3818  if (CurContext->getLookupContext()->isFileContext())
3819    return false;
3820
3821  NestedNameSpecifier *Qual
3822    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3823
3824  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3825    NamedDecl *D = *I;
3826
3827    bool DTypename;
3828    NestedNameSpecifier *DQual;
3829    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3830      DTypename = UD->isTypeName();
3831      DQual = UD->getTargetNestedNameDecl();
3832    } else if (UnresolvedUsingValueDecl *UD
3833                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3834      DTypename = false;
3835      DQual = UD->getTargetNestedNameSpecifier();
3836    } else if (UnresolvedUsingTypenameDecl *UD
3837                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3838      DTypename = true;
3839      DQual = UD->getTargetNestedNameSpecifier();
3840    } else continue;
3841
3842    // using decls differ if one says 'typename' and the other doesn't.
3843    // FIXME: non-dependent using decls?
3844    if (isTypeName != DTypename) continue;
3845
3846    // using decls differ if they name different scopes (but note that
3847    // template instantiation can cause this check to trigger when it
3848    // didn't before instantiation).
3849    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3850        Context.getCanonicalNestedNameSpecifier(DQual))
3851      continue;
3852
3853    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3854    Diag(D->getLocation(), diag::note_using_decl) << 1;
3855    return true;
3856  }
3857
3858  return false;
3859}
3860
3861
3862/// Checks that the given nested-name qualifier used in a using decl
3863/// in the current context is appropriately related to the current
3864/// scope.  If an error is found, diagnoses it and returns true.
3865bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3866                                   const CXXScopeSpec &SS,
3867                                   SourceLocation NameLoc) {
3868  DeclContext *NamedContext = computeDeclContext(SS);
3869
3870  if (!CurContext->isRecord()) {
3871    // C++03 [namespace.udecl]p3:
3872    // C++0x [namespace.udecl]p8:
3873    //   A using-declaration for a class member shall be a member-declaration.
3874
3875    // If we weren't able to compute a valid scope, it must be a
3876    // dependent class scope.
3877    if (!NamedContext || NamedContext->isRecord()) {
3878      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3879        << SS.getRange();
3880      return true;
3881    }
3882
3883    // Otherwise, everything is known to be fine.
3884    return false;
3885  }
3886
3887  // The current scope is a record.
3888
3889  // If the named context is dependent, we can't decide much.
3890  if (!NamedContext) {
3891    // FIXME: in C++0x, we can diagnose if we can prove that the
3892    // nested-name-specifier does not refer to a base class, which is
3893    // still possible in some cases.
3894
3895    // Otherwise we have to conservatively report that things might be
3896    // okay.
3897    return false;
3898  }
3899
3900  if (!NamedContext->isRecord()) {
3901    // Ideally this would point at the last name in the specifier,
3902    // but we don't have that level of source info.
3903    Diag(SS.getRange().getBegin(),
3904         diag::err_using_decl_nested_name_specifier_is_not_class)
3905      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3906    return true;
3907  }
3908
3909  if (getLangOptions().CPlusPlus0x) {
3910    // C++0x [namespace.udecl]p3:
3911    //   In a using-declaration used as a member-declaration, the
3912    //   nested-name-specifier shall name a base class of the class
3913    //   being defined.
3914
3915    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3916                                 cast<CXXRecordDecl>(NamedContext))) {
3917      if (CurContext == NamedContext) {
3918        Diag(NameLoc,
3919             diag::err_using_decl_nested_name_specifier_is_current_class)
3920          << SS.getRange();
3921        return true;
3922      }
3923
3924      Diag(SS.getRange().getBegin(),
3925           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3926        << (NestedNameSpecifier*) SS.getScopeRep()
3927        << cast<CXXRecordDecl>(CurContext)
3928        << SS.getRange();
3929      return true;
3930    }
3931
3932    return false;
3933  }
3934
3935  // C++03 [namespace.udecl]p4:
3936  //   A using-declaration used as a member-declaration shall refer
3937  //   to a member of a base class of the class being defined [etc.].
3938
3939  // Salient point: SS doesn't have to name a base class as long as
3940  // lookup only finds members from base classes.  Therefore we can
3941  // diagnose here only if we can prove that that can't happen,
3942  // i.e. if the class hierarchies provably don't intersect.
3943
3944  // TODO: it would be nice if "definitely valid" results were cached
3945  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3946  // need to be repeated.
3947
3948  struct UserData {
3949    llvm::DenseSet<const CXXRecordDecl*> Bases;
3950
3951    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3952      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3953      Data->Bases.insert(Base);
3954      return true;
3955    }
3956
3957    bool hasDependentBases(const CXXRecordDecl *Class) {
3958      return !Class->forallBases(collect, this);
3959    }
3960
3961    /// Returns true if the base is dependent or is one of the
3962    /// accumulated base classes.
3963    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3964      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3965      return !Data->Bases.count(Base);
3966    }
3967
3968    bool mightShareBases(const CXXRecordDecl *Class) {
3969      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3970    }
3971  };
3972
3973  UserData Data;
3974
3975  // Returns false if we find a dependent base.
3976  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3977    return false;
3978
3979  // Returns false if the class has a dependent base or if it or one
3980  // of its bases is present in the base set of the current context.
3981  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3982    return false;
3983
3984  Diag(SS.getRange().getBegin(),
3985       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3986    << (NestedNameSpecifier*) SS.getScopeRep()
3987    << cast<CXXRecordDecl>(CurContext)
3988    << SS.getRange();
3989
3990  return true;
3991}
3992
3993Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3994                                             SourceLocation NamespaceLoc,
3995                                             SourceLocation AliasLoc,
3996                                             IdentifierInfo *Alias,
3997                                             CXXScopeSpec &SS,
3998                                             SourceLocation IdentLoc,
3999                                             IdentifierInfo *Ident) {
4000
4001  // Lookup the namespace name.
4002  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4003  LookupParsedName(R, S, &SS);
4004
4005  // Check if we have a previous declaration with the same name.
4006  if (NamedDecl *PrevDecl
4007        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4008                           ForRedeclaration)) {
4009    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4010      // We already have an alias with the same name that points to the same
4011      // namespace, so don't create a new one.
4012      // FIXME: At some point, we'll want to create the (redundant)
4013      // declaration to maintain better source information.
4014      if (!R.isAmbiguous() && !R.empty() &&
4015          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4016        return DeclPtrTy();
4017    }
4018
4019    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4020      diag::err_redefinition_different_kind;
4021    Diag(AliasLoc, DiagID) << Alias;
4022    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4023    return DeclPtrTy();
4024  }
4025
4026  if (R.isAmbiguous())
4027    return DeclPtrTy();
4028
4029  if (R.empty()) {
4030    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4031    return DeclPtrTy();
4032  }
4033
4034  NamespaceAliasDecl *AliasDecl =
4035    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4036                               Alias, SS.getRange(),
4037                               (NestedNameSpecifier *)SS.getScopeRep(),
4038                               IdentLoc, R.getFoundDecl());
4039
4040  PushOnScopeChains(AliasDecl, S);
4041  return DeclPtrTy::make(AliasDecl);
4042}
4043
4044namespace {
4045  /// \brief Scoped object used to handle the state changes required in Sema
4046  /// to implicitly define the body of a C++ member function;
4047  class ImplicitlyDefinedFunctionScope {
4048    Sema &S;
4049    DeclContext *PreviousContext;
4050
4051  public:
4052    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4053      : S(S), PreviousContext(S.CurContext)
4054    {
4055      S.CurContext = Method;
4056      S.PushFunctionScope();
4057      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4058    }
4059
4060    ~ImplicitlyDefinedFunctionScope() {
4061      S.PopExpressionEvaluationContext();
4062      S.PopFunctionOrBlockScope();
4063      S.CurContext = PreviousContext;
4064    }
4065  };
4066}
4067
4068void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4069                                            CXXConstructorDecl *Constructor) {
4070  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4071          !Constructor->isUsed()) &&
4072    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4073
4074  CXXRecordDecl *ClassDecl = Constructor->getParent();
4075  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4076
4077  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4078  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
4079    Diag(CurrentLocation, diag::note_member_synthesized_at)
4080      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4081    Constructor->setInvalidDecl();
4082  } else {
4083    Constructor->setUsed();
4084  }
4085}
4086
4087void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4088                                    CXXDestructorDecl *Destructor) {
4089  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4090         "DefineImplicitDestructor - call it for implicit default dtor");
4091  CXXRecordDecl *ClassDecl = Destructor->getParent();
4092  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4093
4094  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4095
4096  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4097                                         Destructor->getParent());
4098
4099  // FIXME: If CheckDestructor fails, we should emit a note about where the
4100  // implicit destructor was needed.
4101  if (CheckDestructor(Destructor)) {
4102    Diag(CurrentLocation, diag::note_member_synthesized_at)
4103      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4104
4105    Destructor->setInvalidDecl();
4106    return;
4107  }
4108
4109  Destructor->setUsed();
4110}
4111
4112void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4113                                        CXXMethodDecl *MethodDecl) {
4114  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
4115          MethodDecl->getOverloadedOperator() == OO_Equal &&
4116          !MethodDecl->isUsed()) &&
4117         "DefineImplicitCopyAssignment called for wrong function");
4118
4119  CXXRecordDecl *ClassDecl
4120    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
4121
4122  ImplicitlyDefinedFunctionScope Scope(*this, MethodDecl);
4123
4124  // C++[class.copy] p12
4125  // Before the implicitly-declared copy assignment operator for a class is
4126  // implicitly defined, all implicitly-declared copy assignment operators
4127  // for its direct base classes and its nonstatic data members shall have
4128  // been implicitly defined.
4129  bool err = false;
4130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4131       E = ClassDecl->bases_end(); Base != E; ++Base) {
4132    CXXRecordDecl *BaseClassDecl
4133      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4134    if (CXXMethodDecl *BaseAssignOpMethod =
4135          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4136                                  BaseClassDecl)) {
4137      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4138                              BaseAssignOpMethod,
4139                              PDiag(diag::err_access_assign_base)
4140                                << Base->getType());
4141
4142      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
4143    }
4144  }
4145  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4146       E = ClassDecl->field_end(); Field != E; ++Field) {
4147    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4148    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4149      FieldType = Array->getElementType();
4150    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4151      CXXRecordDecl *FieldClassDecl
4152        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4153      if (CXXMethodDecl *FieldAssignOpMethod =
4154          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4155                                  FieldClassDecl)) {
4156        CheckDirectMemberAccess(Field->getLocation(),
4157                                FieldAssignOpMethod,
4158                                PDiag(diag::err_access_assign_field)
4159                                  << Field->getDeclName() << Field->getType());
4160
4161        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
4162      }
4163    } else if (FieldType->isReferenceType()) {
4164      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4165      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4166      Diag(Field->getLocation(), diag::note_declared_at);
4167      Diag(CurrentLocation, diag::note_first_required_here);
4168      err = true;
4169    } else if (FieldType.isConstQualified()) {
4170      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4171      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4172      Diag(Field->getLocation(), diag::note_declared_at);
4173      Diag(CurrentLocation, diag::note_first_required_here);
4174      err = true;
4175    }
4176  }
4177  if (!err)
4178    MethodDecl->setUsed();
4179}
4180
4181CXXMethodDecl *
4182Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4183                              ParmVarDecl *ParmDecl,
4184                              CXXRecordDecl *ClassDecl) {
4185  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4186  QualType RHSType(LHSType);
4187  // If class's assignment operator argument is const/volatile qualified,
4188  // look for operator = (const/volatile B&). Otherwise, look for
4189  // operator = (B&).
4190  RHSType = Context.getCVRQualifiedType(RHSType,
4191                                     ParmDecl->getType().getCVRQualifiers());
4192  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4193                                                           LHSType,
4194                                                           SourceLocation()));
4195  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4196                                                           RHSType,
4197                                                           CurrentLocation));
4198  Expr *Args[2] = { &*LHS, &*RHS };
4199  OverloadCandidateSet CandidateSet(CurrentLocation);
4200  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4201                              CandidateSet);
4202  OverloadCandidateSet::iterator Best;
4203  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4204    return cast<CXXMethodDecl>(Best->Function);
4205  assert(false &&
4206         "getAssignOperatorMethod - copy assignment operator method not found");
4207  return 0;
4208}
4209
4210void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4211                                   CXXConstructorDecl *CopyConstructor,
4212                                   unsigned TypeQuals) {
4213  assert((CopyConstructor->isImplicit() &&
4214          CopyConstructor->isCopyConstructor(TypeQuals) &&
4215          !CopyConstructor->isUsed()) &&
4216         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4217
4218  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4219  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4220
4221  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4222
4223  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false)) {
4224    Diag(CurrentLocation, diag::note_member_synthesized_at)
4225    << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4226    CopyConstructor->setInvalidDecl();
4227  } else {
4228    CopyConstructor->setUsed();
4229  }
4230
4231  // FIXME: Once SetBaseOrMemberInitializers can handle copy initialization of
4232  // fields, this code below should be removed.
4233  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4234                                  FieldEnd = ClassDecl->field_end();
4235       Field != FieldEnd; ++Field) {
4236    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4237    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4238      FieldType = Array->getElementType();
4239    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4240      CXXRecordDecl *FieldClassDecl
4241        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4242      if (CXXConstructorDecl *FieldCopyCtor =
4243          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4244        CheckDirectMemberAccess(Field->getLocation(),
4245                                FieldCopyCtor,
4246                                PDiag(diag::err_access_copy_field)
4247                                  << Field->getDeclName() << Field->getType());
4248
4249        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4250      }
4251    }
4252  }
4253}
4254
4255Sema::OwningExprResult
4256Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4257                            CXXConstructorDecl *Constructor,
4258                            MultiExprArg ExprArgs,
4259                            bool RequiresZeroInit,
4260                            bool BaseInitialization) {
4261  bool Elidable = false;
4262
4263  // C++0x [class.copy]p34:
4264  //   When certain criteria are met, an implementation is allowed to
4265  //   omit the copy/move construction of a class object, even if the
4266  //   copy/move constructor and/or destructor for the object have
4267  //   side effects. [...]
4268  //     - when a temporary class object that has not been bound to a
4269  //       reference (12.2) would be copied/moved to a class object
4270  //       with the same cv-unqualified type, the copy/move operation
4271  //       can be omitted by constructing the temporary object
4272  //       directly into the target of the omitted copy/move
4273  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4274    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4275    Elidable = SubExpr->isTemporaryObject() &&
4276      Context.hasSameUnqualifiedType(SubExpr->getType(),
4277                           Context.getTypeDeclType(Constructor->getParent()));
4278  }
4279
4280  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4281                               Elidable, move(ExprArgs), RequiresZeroInit,
4282                               BaseInitialization);
4283}
4284
4285/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4286/// including handling of its default argument expressions.
4287Sema::OwningExprResult
4288Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4289                            CXXConstructorDecl *Constructor, bool Elidable,
4290                            MultiExprArg ExprArgs,
4291                            bool RequiresZeroInit,
4292                            bool BaseInitialization) {
4293  unsigned NumExprs = ExprArgs.size();
4294  Expr **Exprs = (Expr **)ExprArgs.release();
4295
4296  MarkDeclarationReferenced(ConstructLoc, Constructor);
4297  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4298                                        Constructor, Elidable, Exprs, NumExprs,
4299                                        RequiresZeroInit, BaseInitialization));
4300}
4301
4302bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4303                                        CXXConstructorDecl *Constructor,
4304                                        MultiExprArg Exprs) {
4305  OwningExprResult TempResult =
4306    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4307                          move(Exprs));
4308  if (TempResult.isInvalid())
4309    return true;
4310
4311  Expr *Temp = TempResult.takeAs<Expr>();
4312  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4313  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4314  VD->setInit(Temp);
4315
4316  return false;
4317}
4318
4319void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4320  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4321  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4322      !ClassDecl->hasTrivialDestructor()) {
4323    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4324    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4325    CheckDestructorAccess(VD->getLocation(), Destructor,
4326                          PDiag(diag::err_access_dtor_var)
4327                            << VD->getDeclName()
4328                            << VD->getType());
4329  }
4330}
4331
4332/// AddCXXDirectInitializerToDecl - This action is called immediately after
4333/// ActOnDeclarator, when a C++ direct initializer is present.
4334/// e.g: "int x(1);"
4335void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4336                                         SourceLocation LParenLoc,
4337                                         MultiExprArg Exprs,
4338                                         SourceLocation *CommaLocs,
4339                                         SourceLocation RParenLoc) {
4340  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4341  Decl *RealDecl = Dcl.getAs<Decl>();
4342
4343  // If there is no declaration, there was an error parsing it.  Just ignore
4344  // the initializer.
4345  if (RealDecl == 0)
4346    return;
4347
4348  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4349  if (!VDecl) {
4350    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4351    RealDecl->setInvalidDecl();
4352    return;
4353  }
4354
4355  // We will represent direct-initialization similarly to copy-initialization:
4356  //    int x(1);  -as-> int x = 1;
4357  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4358  //
4359  // Clients that want to distinguish between the two forms, can check for
4360  // direct initializer using VarDecl::hasCXXDirectInitializer().
4361  // A major benefit is that clients that don't particularly care about which
4362  // exactly form was it (like the CodeGen) can handle both cases without
4363  // special case code.
4364
4365  // C++ 8.5p11:
4366  // The form of initialization (using parentheses or '=') is generally
4367  // insignificant, but does matter when the entity being initialized has a
4368  // class type.
4369  QualType DeclInitType = VDecl->getType();
4370  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4371    DeclInitType = Context.getBaseElementType(Array);
4372
4373  if (!VDecl->getType()->isDependentType() &&
4374      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4375                          diag::err_typecheck_decl_incomplete_type)) {
4376    VDecl->setInvalidDecl();
4377    return;
4378  }
4379
4380  // The variable can not have an abstract class type.
4381  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4382                             diag::err_abstract_type_in_decl,
4383                             AbstractVariableType))
4384    VDecl->setInvalidDecl();
4385
4386  const VarDecl *Def;
4387  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4388    Diag(VDecl->getLocation(), diag::err_redefinition)
4389    << VDecl->getDeclName();
4390    Diag(Def->getLocation(), diag::note_previous_definition);
4391    VDecl->setInvalidDecl();
4392    return;
4393  }
4394
4395  // If either the declaration has a dependent type or if any of the
4396  // expressions is type-dependent, we represent the initialization
4397  // via a ParenListExpr for later use during template instantiation.
4398  if (VDecl->getType()->isDependentType() ||
4399      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4400    // Let clients know that initialization was done with a direct initializer.
4401    VDecl->setCXXDirectInitializer(true);
4402
4403    // Store the initialization expressions as a ParenListExpr.
4404    unsigned NumExprs = Exprs.size();
4405    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4406                                               (Expr **)Exprs.release(),
4407                                               NumExprs, RParenLoc));
4408    return;
4409  }
4410
4411  // Capture the variable that is being initialized and the style of
4412  // initialization.
4413  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4414
4415  // FIXME: Poor source location information.
4416  InitializationKind Kind
4417    = InitializationKind::CreateDirect(VDecl->getLocation(),
4418                                       LParenLoc, RParenLoc);
4419
4420  InitializationSequence InitSeq(*this, Entity, Kind,
4421                                 (Expr**)Exprs.get(), Exprs.size());
4422  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4423  if (Result.isInvalid()) {
4424    VDecl->setInvalidDecl();
4425    return;
4426  }
4427
4428  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4429  VDecl->setInit(Result.takeAs<Expr>());
4430  VDecl->setCXXDirectInitializer(true);
4431
4432  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4433    FinalizeVarWithDestructor(VDecl, Record);
4434}
4435
4436/// \brief Given a constructor and the set of arguments provided for the
4437/// constructor, convert the arguments and add any required default arguments
4438/// to form a proper call to this constructor.
4439///
4440/// \returns true if an error occurred, false otherwise.
4441bool
4442Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4443                              MultiExprArg ArgsPtr,
4444                              SourceLocation Loc,
4445                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4446  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4447  unsigned NumArgs = ArgsPtr.size();
4448  Expr **Args = (Expr **)ArgsPtr.get();
4449
4450  const FunctionProtoType *Proto
4451    = Constructor->getType()->getAs<FunctionProtoType>();
4452  assert(Proto && "Constructor without a prototype?");
4453  unsigned NumArgsInProto = Proto->getNumArgs();
4454
4455  // If too few arguments are available, we'll fill in the rest with defaults.
4456  if (NumArgs < NumArgsInProto)
4457    ConvertedArgs.reserve(NumArgsInProto);
4458  else
4459    ConvertedArgs.reserve(NumArgs);
4460
4461  VariadicCallType CallType =
4462    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4463  llvm::SmallVector<Expr *, 8> AllArgs;
4464  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4465                                        Proto, 0, Args, NumArgs, AllArgs,
4466                                        CallType);
4467  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4468    ConvertedArgs.push_back(AllArgs[i]);
4469  return Invalid;
4470}
4471
4472static inline bool
4473CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4474                                       const FunctionDecl *FnDecl) {
4475  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4476  if (isa<NamespaceDecl>(DC)) {
4477    return SemaRef.Diag(FnDecl->getLocation(),
4478                        diag::err_operator_new_delete_declared_in_namespace)
4479      << FnDecl->getDeclName();
4480  }
4481
4482  if (isa<TranslationUnitDecl>(DC) &&
4483      FnDecl->getStorageClass() == FunctionDecl::Static) {
4484    return SemaRef.Diag(FnDecl->getLocation(),
4485                        diag::err_operator_new_delete_declared_static)
4486      << FnDecl->getDeclName();
4487  }
4488
4489  return false;
4490}
4491
4492static inline bool
4493CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4494                            CanQualType ExpectedResultType,
4495                            CanQualType ExpectedFirstParamType,
4496                            unsigned DependentParamTypeDiag,
4497                            unsigned InvalidParamTypeDiag) {
4498  QualType ResultType =
4499    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4500
4501  // Check that the result type is not dependent.
4502  if (ResultType->isDependentType())
4503    return SemaRef.Diag(FnDecl->getLocation(),
4504                        diag::err_operator_new_delete_dependent_result_type)
4505    << FnDecl->getDeclName() << ExpectedResultType;
4506
4507  // Check that the result type is what we expect.
4508  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4509    return SemaRef.Diag(FnDecl->getLocation(),
4510                        diag::err_operator_new_delete_invalid_result_type)
4511    << FnDecl->getDeclName() << ExpectedResultType;
4512
4513  // A function template must have at least 2 parameters.
4514  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4515    return SemaRef.Diag(FnDecl->getLocation(),
4516                      diag::err_operator_new_delete_template_too_few_parameters)
4517        << FnDecl->getDeclName();
4518
4519  // The function decl must have at least 1 parameter.
4520  if (FnDecl->getNumParams() == 0)
4521    return SemaRef.Diag(FnDecl->getLocation(),
4522                        diag::err_operator_new_delete_too_few_parameters)
4523      << FnDecl->getDeclName();
4524
4525  // Check the the first parameter type is not dependent.
4526  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4527  if (FirstParamType->isDependentType())
4528    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4529      << FnDecl->getDeclName() << ExpectedFirstParamType;
4530
4531  // Check that the first parameter type is what we expect.
4532  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4533      ExpectedFirstParamType)
4534    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4535    << FnDecl->getDeclName() << ExpectedFirstParamType;
4536
4537  return false;
4538}
4539
4540static bool
4541CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4542  // C++ [basic.stc.dynamic.allocation]p1:
4543  //   A program is ill-formed if an allocation function is declared in a
4544  //   namespace scope other than global scope or declared static in global
4545  //   scope.
4546  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4547    return true;
4548
4549  CanQualType SizeTy =
4550    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4551
4552  // C++ [basic.stc.dynamic.allocation]p1:
4553  //  The return type shall be void*. The first parameter shall have type
4554  //  std::size_t.
4555  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4556                                  SizeTy,
4557                                  diag::err_operator_new_dependent_param_type,
4558                                  diag::err_operator_new_param_type))
4559    return true;
4560
4561  // C++ [basic.stc.dynamic.allocation]p1:
4562  //  The first parameter shall not have an associated default argument.
4563  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4564    return SemaRef.Diag(FnDecl->getLocation(),
4565                        diag::err_operator_new_default_arg)
4566      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4567
4568  return false;
4569}
4570
4571static bool
4572CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4573  // C++ [basic.stc.dynamic.deallocation]p1:
4574  //   A program is ill-formed if deallocation functions are declared in a
4575  //   namespace scope other than global scope or declared static in global
4576  //   scope.
4577  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4578    return true;
4579
4580  // C++ [basic.stc.dynamic.deallocation]p2:
4581  //   Each deallocation function shall return void and its first parameter
4582  //   shall be void*.
4583  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4584                                  SemaRef.Context.VoidPtrTy,
4585                                 diag::err_operator_delete_dependent_param_type,
4586                                 diag::err_operator_delete_param_type))
4587    return true;
4588
4589  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4590  if (FirstParamType->isDependentType())
4591    return SemaRef.Diag(FnDecl->getLocation(),
4592                        diag::err_operator_delete_dependent_param_type)
4593    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4594
4595  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4596      SemaRef.Context.VoidPtrTy)
4597    return SemaRef.Diag(FnDecl->getLocation(),
4598                        diag::err_operator_delete_param_type)
4599      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4600
4601  return false;
4602}
4603
4604/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4605/// of this overloaded operator is well-formed. If so, returns false;
4606/// otherwise, emits appropriate diagnostics and returns true.
4607bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4608  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4609         "Expected an overloaded operator declaration");
4610
4611  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4612
4613  // C++ [over.oper]p5:
4614  //   The allocation and deallocation functions, operator new,
4615  //   operator new[], operator delete and operator delete[], are
4616  //   described completely in 3.7.3. The attributes and restrictions
4617  //   found in the rest of this subclause do not apply to them unless
4618  //   explicitly stated in 3.7.3.
4619  if (Op == OO_Delete || Op == OO_Array_Delete)
4620    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4621
4622  if (Op == OO_New || Op == OO_Array_New)
4623    return CheckOperatorNewDeclaration(*this, FnDecl);
4624
4625  // C++ [over.oper]p6:
4626  //   An operator function shall either be a non-static member
4627  //   function or be a non-member function and have at least one
4628  //   parameter whose type is a class, a reference to a class, an
4629  //   enumeration, or a reference to an enumeration.
4630  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4631    if (MethodDecl->isStatic())
4632      return Diag(FnDecl->getLocation(),
4633                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4634  } else {
4635    bool ClassOrEnumParam = false;
4636    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4637                                   ParamEnd = FnDecl->param_end();
4638         Param != ParamEnd; ++Param) {
4639      QualType ParamType = (*Param)->getType().getNonReferenceType();
4640      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4641          ParamType->isEnumeralType()) {
4642        ClassOrEnumParam = true;
4643        break;
4644      }
4645    }
4646
4647    if (!ClassOrEnumParam)
4648      return Diag(FnDecl->getLocation(),
4649                  diag::err_operator_overload_needs_class_or_enum)
4650        << FnDecl->getDeclName();
4651  }
4652
4653  // C++ [over.oper]p8:
4654  //   An operator function cannot have default arguments (8.3.6),
4655  //   except where explicitly stated below.
4656  //
4657  // Only the function-call operator allows default arguments
4658  // (C++ [over.call]p1).
4659  if (Op != OO_Call) {
4660    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4661         Param != FnDecl->param_end(); ++Param) {
4662      if ((*Param)->hasDefaultArg())
4663        return Diag((*Param)->getLocation(),
4664                    diag::err_operator_overload_default_arg)
4665          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4666    }
4667  }
4668
4669  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4670    { false, false, false }
4671#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4672    , { Unary, Binary, MemberOnly }
4673#include "clang/Basic/OperatorKinds.def"
4674  };
4675
4676  bool CanBeUnaryOperator = OperatorUses[Op][0];
4677  bool CanBeBinaryOperator = OperatorUses[Op][1];
4678  bool MustBeMemberOperator = OperatorUses[Op][2];
4679
4680  // C++ [over.oper]p8:
4681  //   [...] Operator functions cannot have more or fewer parameters
4682  //   than the number required for the corresponding operator, as
4683  //   described in the rest of this subclause.
4684  unsigned NumParams = FnDecl->getNumParams()
4685                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4686  if (Op != OO_Call &&
4687      ((NumParams == 1 && !CanBeUnaryOperator) ||
4688       (NumParams == 2 && !CanBeBinaryOperator) ||
4689       (NumParams < 1) || (NumParams > 2))) {
4690    // We have the wrong number of parameters.
4691    unsigned ErrorKind;
4692    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4693      ErrorKind = 2;  // 2 -> unary or binary.
4694    } else if (CanBeUnaryOperator) {
4695      ErrorKind = 0;  // 0 -> unary
4696    } else {
4697      assert(CanBeBinaryOperator &&
4698             "All non-call overloaded operators are unary or binary!");
4699      ErrorKind = 1;  // 1 -> binary
4700    }
4701
4702    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4703      << FnDecl->getDeclName() << NumParams << ErrorKind;
4704  }
4705
4706  // Overloaded operators other than operator() cannot be variadic.
4707  if (Op != OO_Call &&
4708      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4709    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4710      << FnDecl->getDeclName();
4711  }
4712
4713  // Some operators must be non-static member functions.
4714  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4715    return Diag(FnDecl->getLocation(),
4716                diag::err_operator_overload_must_be_member)
4717      << FnDecl->getDeclName();
4718  }
4719
4720  // C++ [over.inc]p1:
4721  //   The user-defined function called operator++ implements the
4722  //   prefix and postfix ++ operator. If this function is a member
4723  //   function with no parameters, or a non-member function with one
4724  //   parameter of class or enumeration type, it defines the prefix
4725  //   increment operator ++ for objects of that type. If the function
4726  //   is a member function with one parameter (which shall be of type
4727  //   int) or a non-member function with two parameters (the second
4728  //   of which shall be of type int), it defines the postfix
4729  //   increment operator ++ for objects of that type.
4730  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4731    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4732    bool ParamIsInt = false;
4733    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4734      ParamIsInt = BT->getKind() == BuiltinType::Int;
4735
4736    if (!ParamIsInt)
4737      return Diag(LastParam->getLocation(),
4738                  diag::err_operator_overload_post_incdec_must_be_int)
4739        << LastParam->getType() << (Op == OO_MinusMinus);
4740  }
4741
4742  // Notify the class if it got an assignment operator.
4743  if (Op == OO_Equal) {
4744    // Would have returned earlier otherwise.
4745    assert(isa<CXXMethodDecl>(FnDecl) &&
4746      "Overloaded = not member, but not filtered.");
4747    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4748    Method->getParent()->addedAssignmentOperator(Context, Method);
4749  }
4750
4751  return false;
4752}
4753
4754/// CheckLiteralOperatorDeclaration - Check whether the declaration
4755/// of this literal operator function is well-formed. If so, returns
4756/// false; otherwise, emits appropriate diagnostics and returns true.
4757bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4758  DeclContext *DC = FnDecl->getDeclContext();
4759  Decl::Kind Kind = DC->getDeclKind();
4760  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4761      Kind != Decl::LinkageSpec) {
4762    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4763      << FnDecl->getDeclName();
4764    return true;
4765  }
4766
4767  bool Valid = false;
4768
4769  // template <char...> type operator "" name() is the only valid template
4770  // signature, and the only valid signature with no parameters.
4771  if (FnDecl->param_size() == 0) {
4772    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4773      // Must have only one template parameter
4774      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4775      if (Params->size() == 1) {
4776        NonTypeTemplateParmDecl *PmDecl =
4777          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4778
4779        // The template parameter must be a char parameter pack.
4780        // FIXME: This test will always fail because non-type parameter packs
4781        //   have not been implemented.
4782        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4783            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4784          Valid = true;
4785      }
4786    }
4787  } else {
4788    // Check the first parameter
4789    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4790
4791    QualType T = (*Param)->getType();
4792
4793    // unsigned long long int, long double, and any character type are allowed
4794    // as the only parameters.
4795    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4796        Context.hasSameType(T, Context.LongDoubleTy) ||
4797        Context.hasSameType(T, Context.CharTy) ||
4798        Context.hasSameType(T, Context.WCharTy) ||
4799        Context.hasSameType(T, Context.Char16Ty) ||
4800        Context.hasSameType(T, Context.Char32Ty)) {
4801      if (++Param == FnDecl->param_end())
4802        Valid = true;
4803      goto FinishedParams;
4804    }
4805
4806    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4807    const PointerType *PT = T->getAs<PointerType>();
4808    if (!PT)
4809      goto FinishedParams;
4810    T = PT->getPointeeType();
4811    if (!T.isConstQualified())
4812      goto FinishedParams;
4813    T = T.getUnqualifiedType();
4814
4815    // Move on to the second parameter;
4816    ++Param;
4817
4818    // If there is no second parameter, the first must be a const char *
4819    if (Param == FnDecl->param_end()) {
4820      if (Context.hasSameType(T, Context.CharTy))
4821        Valid = true;
4822      goto FinishedParams;
4823    }
4824
4825    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4826    // are allowed as the first parameter to a two-parameter function
4827    if (!(Context.hasSameType(T, Context.CharTy) ||
4828          Context.hasSameType(T, Context.WCharTy) ||
4829          Context.hasSameType(T, Context.Char16Ty) ||
4830          Context.hasSameType(T, Context.Char32Ty)))
4831      goto FinishedParams;
4832
4833    // The second and final parameter must be an std::size_t
4834    T = (*Param)->getType().getUnqualifiedType();
4835    if (Context.hasSameType(T, Context.getSizeType()) &&
4836        ++Param == FnDecl->param_end())
4837      Valid = true;
4838  }
4839
4840  // FIXME: This diagnostic is absolutely terrible.
4841FinishedParams:
4842  if (!Valid) {
4843    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4844      << FnDecl->getDeclName();
4845    return true;
4846  }
4847
4848  return false;
4849}
4850
4851/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4852/// linkage specification, including the language and (if present)
4853/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4854/// the location of the language string literal, which is provided
4855/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4856/// the '{' brace. Otherwise, this linkage specification does not
4857/// have any braces.
4858Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4859                                                     SourceLocation ExternLoc,
4860                                                     SourceLocation LangLoc,
4861                                                     const char *Lang,
4862                                                     unsigned StrSize,
4863                                                     SourceLocation LBraceLoc) {
4864  LinkageSpecDecl::LanguageIDs Language;
4865  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4866    Language = LinkageSpecDecl::lang_c;
4867  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4868    Language = LinkageSpecDecl::lang_cxx;
4869  else {
4870    Diag(LangLoc, diag::err_bad_language);
4871    return DeclPtrTy();
4872  }
4873
4874  // FIXME: Add all the various semantics of linkage specifications
4875
4876  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4877                                               LangLoc, Language,
4878                                               LBraceLoc.isValid());
4879  CurContext->addDecl(D);
4880  PushDeclContext(S, D);
4881  return DeclPtrTy::make(D);
4882}
4883
4884/// ActOnFinishLinkageSpecification - Completely the definition of
4885/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4886/// valid, it's the position of the closing '}' brace in a linkage
4887/// specification that uses braces.
4888Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4889                                                      DeclPtrTy LinkageSpec,
4890                                                      SourceLocation RBraceLoc) {
4891  if (LinkageSpec)
4892    PopDeclContext();
4893  return LinkageSpec;
4894}
4895
4896/// \brief Perform semantic analysis for the variable declaration that
4897/// occurs within a C++ catch clause, returning the newly-created
4898/// variable.
4899VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4900                                         TypeSourceInfo *TInfo,
4901                                         IdentifierInfo *Name,
4902                                         SourceLocation Loc,
4903                                         SourceRange Range) {
4904  bool Invalid = false;
4905
4906  // Arrays and functions decay.
4907  if (ExDeclType->isArrayType())
4908    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4909  else if (ExDeclType->isFunctionType())
4910    ExDeclType = Context.getPointerType(ExDeclType);
4911
4912  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4913  // The exception-declaration shall not denote a pointer or reference to an
4914  // incomplete type, other than [cv] void*.
4915  // N2844 forbids rvalue references.
4916  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4917    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4918    Invalid = true;
4919  }
4920
4921  // GCC allows catching pointers and references to incomplete types
4922  // as an extension; so do we, but we warn by default.
4923
4924  QualType BaseType = ExDeclType;
4925  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4926  unsigned DK = diag::err_catch_incomplete;
4927  bool IncompleteCatchIsInvalid = true;
4928  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4929    BaseType = Ptr->getPointeeType();
4930    Mode = 1;
4931    DK = diag::ext_catch_incomplete_ptr;
4932    IncompleteCatchIsInvalid = false;
4933  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4934    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4935    BaseType = Ref->getPointeeType();
4936    Mode = 2;
4937    DK = diag::ext_catch_incomplete_ref;
4938    IncompleteCatchIsInvalid = false;
4939  }
4940  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4941      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4942      IncompleteCatchIsInvalid)
4943    Invalid = true;
4944
4945  if (!Invalid && !ExDeclType->isDependentType() &&
4946      RequireNonAbstractType(Loc, ExDeclType,
4947                             diag::err_abstract_type_in_decl,
4948                             AbstractVariableType))
4949    Invalid = true;
4950
4951  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4952                                    Name, ExDeclType, TInfo, VarDecl::None,
4953                                    VarDecl::None);
4954
4955  if (!Invalid) {
4956    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4957      // C++ [except.handle]p16:
4958      //   The object declared in an exception-declaration or, if the
4959      //   exception-declaration does not specify a name, a temporary (12.2) is
4960      //   copy-initialized (8.5) from the exception object. [...]
4961      //   The object is destroyed when the handler exits, after the destruction
4962      //   of any automatic objects initialized within the handler.
4963      //
4964      // We just pretend to initialize the object with itself, then make sure
4965      // it can be destroyed later.
4966      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4967      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4968                                            Loc, ExDeclType, 0);
4969      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4970                                                               SourceLocation());
4971      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4972      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4973                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4974      if (Result.isInvalid())
4975        Invalid = true;
4976      else
4977        FinalizeVarWithDestructor(ExDecl, RecordTy);
4978    }
4979  }
4980
4981  if (Invalid)
4982    ExDecl->setInvalidDecl();
4983
4984  return ExDecl;
4985}
4986
4987/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4988/// handler.
4989Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4990  TypeSourceInfo *TInfo = 0;
4991  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4992
4993  bool Invalid = D.isInvalidType();
4994  IdentifierInfo *II = D.getIdentifier();
4995  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4996                                             LookupOrdinaryName,
4997                                             ForRedeclaration)) {
4998    // The scope should be freshly made just for us. There is just no way
4999    // it contains any previous declaration.
5000    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5001    if (PrevDecl->isTemplateParameter()) {
5002      // Maybe we will complain about the shadowed template parameter.
5003      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5004    }
5005  }
5006
5007  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5008    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5009      << D.getCXXScopeSpec().getRange();
5010    Invalid = true;
5011  }
5012
5013  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5014                                              D.getIdentifier(),
5015                                              D.getIdentifierLoc(),
5016                                            D.getDeclSpec().getSourceRange());
5017
5018  if (Invalid)
5019    ExDecl->setInvalidDecl();
5020
5021  // Add the exception declaration into this scope.
5022  if (II)
5023    PushOnScopeChains(ExDecl, S);
5024  else
5025    CurContext->addDecl(ExDecl);
5026
5027  ProcessDeclAttributes(S, ExDecl, D);
5028  return DeclPtrTy::make(ExDecl);
5029}
5030
5031Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5032                                                   ExprArg assertexpr,
5033                                                   ExprArg assertmessageexpr) {
5034  Expr *AssertExpr = (Expr *)assertexpr.get();
5035  StringLiteral *AssertMessage =
5036    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5037
5038  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5039    llvm::APSInt Value(32);
5040    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5041      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5042        AssertExpr->getSourceRange();
5043      return DeclPtrTy();
5044    }
5045
5046    if (Value == 0) {
5047      Diag(AssertLoc, diag::err_static_assert_failed)
5048        << AssertMessage->getString() << AssertExpr->getSourceRange();
5049    }
5050  }
5051
5052  assertexpr.release();
5053  assertmessageexpr.release();
5054  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5055                                        AssertExpr, AssertMessage);
5056
5057  CurContext->addDecl(Decl);
5058  return DeclPtrTy::make(Decl);
5059}
5060
5061/// \brief Perform semantic analysis of the given friend type declaration.
5062///
5063/// \returns A friend declaration that.
5064FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5065                                      TypeSourceInfo *TSInfo) {
5066  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5067
5068  QualType T = TSInfo->getType();
5069  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5070
5071  if (!getLangOptions().CPlusPlus0x) {
5072    // C++03 [class.friend]p2:
5073    //   An elaborated-type-specifier shall be used in a friend declaration
5074    //   for a class.*
5075    //
5076    //   * The class-key of the elaborated-type-specifier is required.
5077    if (!ActiveTemplateInstantiations.empty()) {
5078      // Do not complain about the form of friend template types during
5079      // template instantiation; we will already have complained when the
5080      // template was declared.
5081    } else if (!T->isElaboratedTypeSpecifier()) {
5082      // If we evaluated the type to a record type, suggest putting
5083      // a tag in front.
5084      if (const RecordType *RT = T->getAs<RecordType>()) {
5085        RecordDecl *RD = RT->getDecl();
5086
5087        std::string InsertionText = std::string(" ") + RD->getKindName();
5088
5089        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5090          << (unsigned) RD->getTagKind()
5091          << T
5092          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5093                                        InsertionText);
5094      } else {
5095        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5096          << T
5097          << SourceRange(FriendLoc, TypeRange.getEnd());
5098      }
5099    } else if (T->getAs<EnumType>()) {
5100      Diag(FriendLoc, diag::ext_enum_friend)
5101        << T
5102        << SourceRange(FriendLoc, TypeRange.getEnd());
5103    }
5104  }
5105
5106  // C++0x [class.friend]p3:
5107  //   If the type specifier in a friend declaration designates a (possibly
5108  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5109  //   the friend declaration is ignored.
5110
5111  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5112  // in [class.friend]p3 that we do not implement.
5113
5114  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5115}
5116
5117/// Handle a friend type declaration.  This works in tandem with
5118/// ActOnTag.
5119///
5120/// Notes on friend class templates:
5121///
5122/// We generally treat friend class declarations as if they were
5123/// declaring a class.  So, for example, the elaborated type specifier
5124/// in a friend declaration is required to obey the restrictions of a
5125/// class-head (i.e. no typedefs in the scope chain), template
5126/// parameters are required to match up with simple template-ids, &c.
5127/// However, unlike when declaring a template specialization, it's
5128/// okay to refer to a template specialization without an empty
5129/// template parameter declaration, e.g.
5130///   friend class A<T>::B<unsigned>;
5131/// We permit this as a special case; if there are any template
5132/// parameters present at all, require proper matching, i.e.
5133///   template <> template <class T> friend class A<int>::B;
5134Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5135                                          MultiTemplateParamsArg TempParams) {
5136  SourceLocation Loc = DS.getSourceRange().getBegin();
5137
5138  assert(DS.isFriendSpecified());
5139  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5140
5141  // Try to convert the decl specifier to a type.  This works for
5142  // friend templates because ActOnTag never produces a ClassTemplateDecl
5143  // for a TUK_Friend.
5144  Declarator TheDeclarator(DS, Declarator::MemberContext);
5145  TypeSourceInfo *TSI;
5146  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5147  if (TheDeclarator.isInvalidType())
5148    return DeclPtrTy();
5149
5150  if (!TSI)
5151    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5152
5153  // This is definitely an error in C++98.  It's probably meant to
5154  // be forbidden in C++0x, too, but the specification is just
5155  // poorly written.
5156  //
5157  // The problem is with declarations like the following:
5158  //   template <T> friend A<T>::foo;
5159  // where deciding whether a class C is a friend or not now hinges
5160  // on whether there exists an instantiation of A that causes
5161  // 'foo' to equal C.  There are restrictions on class-heads
5162  // (which we declare (by fiat) elaborated friend declarations to
5163  // be) that makes this tractable.
5164  //
5165  // FIXME: handle "template <> friend class A<T>;", which
5166  // is possibly well-formed?  Who even knows?
5167  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5168    Diag(Loc, diag::err_tagless_friend_type_template)
5169      << DS.getSourceRange();
5170    return DeclPtrTy();
5171  }
5172
5173  // C++98 [class.friend]p1: A friend of a class is a function
5174  //   or class that is not a member of the class . . .
5175  // This is fixed in DR77, which just barely didn't make the C++03
5176  // deadline.  It's also a very silly restriction that seriously
5177  // affects inner classes and which nobody else seems to implement;
5178  // thus we never diagnose it, not even in -pedantic.
5179  //
5180  // But note that we could warn about it: it's always useless to
5181  // friend one of your own members (it's not, however, worthless to
5182  // friend a member of an arbitrary specialization of your template).
5183
5184  Decl *D;
5185  if (unsigned NumTempParamLists = TempParams.size())
5186    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5187                                   NumTempParamLists,
5188                                 (TemplateParameterList**) TempParams.release(),
5189                                   TSI,
5190                                   DS.getFriendSpecLoc());
5191  else
5192    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5193
5194  if (!D)
5195    return DeclPtrTy();
5196
5197  D->setAccess(AS_public);
5198  CurContext->addDecl(D);
5199
5200  return DeclPtrTy::make(D);
5201}
5202
5203Sema::DeclPtrTy
5204Sema::ActOnFriendFunctionDecl(Scope *S,
5205                              Declarator &D,
5206                              bool IsDefinition,
5207                              MultiTemplateParamsArg TemplateParams) {
5208  const DeclSpec &DS = D.getDeclSpec();
5209
5210  assert(DS.isFriendSpecified());
5211  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5212
5213  SourceLocation Loc = D.getIdentifierLoc();
5214  TypeSourceInfo *TInfo = 0;
5215  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5216
5217  // C++ [class.friend]p1
5218  //   A friend of a class is a function or class....
5219  // Note that this sees through typedefs, which is intended.
5220  // It *doesn't* see through dependent types, which is correct
5221  // according to [temp.arg.type]p3:
5222  //   If a declaration acquires a function type through a
5223  //   type dependent on a template-parameter and this causes
5224  //   a declaration that does not use the syntactic form of a
5225  //   function declarator to have a function type, the program
5226  //   is ill-formed.
5227  if (!T->isFunctionType()) {
5228    Diag(Loc, diag::err_unexpected_friend);
5229
5230    // It might be worthwhile to try to recover by creating an
5231    // appropriate declaration.
5232    return DeclPtrTy();
5233  }
5234
5235  // C++ [namespace.memdef]p3
5236  //  - If a friend declaration in a non-local class first declares a
5237  //    class or function, the friend class or function is a member
5238  //    of the innermost enclosing namespace.
5239  //  - The name of the friend is not found by simple name lookup
5240  //    until a matching declaration is provided in that namespace
5241  //    scope (either before or after the class declaration granting
5242  //    friendship).
5243  //  - If a friend function is called, its name may be found by the
5244  //    name lookup that considers functions from namespaces and
5245  //    classes associated with the types of the function arguments.
5246  //  - When looking for a prior declaration of a class or a function
5247  //    declared as a friend, scopes outside the innermost enclosing
5248  //    namespace scope are not considered.
5249
5250  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5251  DeclarationName Name = GetNameForDeclarator(D);
5252  assert(Name);
5253
5254  // The context we found the declaration in, or in which we should
5255  // create the declaration.
5256  DeclContext *DC;
5257
5258  // FIXME: handle local classes
5259
5260  // Recover from invalid scope qualifiers as if they just weren't there.
5261  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5262                        ForRedeclaration);
5263  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5264    DC = computeDeclContext(ScopeQual);
5265
5266    // FIXME: handle dependent contexts
5267    if (!DC) return DeclPtrTy();
5268    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5269
5270    LookupQualifiedName(Previous, DC);
5271
5272    // If searching in that context implicitly found a declaration in
5273    // a different context, treat it like it wasn't found at all.
5274    // TODO: better diagnostics for this case.  Suggesting the right
5275    // qualified scope would be nice...
5276    // FIXME: getRepresentativeDecl() is not right here at all
5277    if (Previous.empty() ||
5278        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5279      D.setInvalidType();
5280      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5281      return DeclPtrTy();
5282    }
5283
5284    // C++ [class.friend]p1: A friend of a class is a function or
5285    //   class that is not a member of the class . . .
5286    if (DC->Equals(CurContext))
5287      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5288
5289  // Otherwise walk out to the nearest namespace scope looking for matches.
5290  } else {
5291    // TODO: handle local class contexts.
5292
5293    DC = CurContext;
5294    while (true) {
5295      // Skip class contexts.  If someone can cite chapter and verse
5296      // for this behavior, that would be nice --- it's what GCC and
5297      // EDG do, and it seems like a reasonable intent, but the spec
5298      // really only says that checks for unqualified existing
5299      // declarations should stop at the nearest enclosing namespace,
5300      // not that they should only consider the nearest enclosing
5301      // namespace.
5302      while (DC->isRecord())
5303        DC = DC->getParent();
5304
5305      LookupQualifiedName(Previous, DC);
5306
5307      // TODO: decide what we think about using declarations.
5308      if (!Previous.empty())
5309        break;
5310
5311      if (DC->isFileContext()) break;
5312      DC = DC->getParent();
5313    }
5314
5315    // C++ [class.friend]p1: A friend of a class is a function or
5316    //   class that is not a member of the class . . .
5317    // C++0x changes this for both friend types and functions.
5318    // Most C++ 98 compilers do seem to give an error here, so
5319    // we do, too.
5320    if (!Previous.empty() && DC->Equals(CurContext)
5321        && !getLangOptions().CPlusPlus0x)
5322      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5323  }
5324
5325  if (DC->isFileContext()) {
5326    // This implies that it has to be an operator or function.
5327    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5328        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5329        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5330      Diag(Loc, diag::err_introducing_special_friend) <<
5331        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5332         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5333      return DeclPtrTy();
5334    }
5335  }
5336
5337  bool Redeclaration = false;
5338  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5339                                          move(TemplateParams),
5340                                          IsDefinition,
5341                                          Redeclaration);
5342  if (!ND) return DeclPtrTy();
5343
5344  assert(ND->getDeclContext() == DC);
5345  assert(ND->getLexicalDeclContext() == CurContext);
5346
5347  // Add the function declaration to the appropriate lookup tables,
5348  // adjusting the redeclarations list as necessary.  We don't
5349  // want to do this yet if the friending class is dependent.
5350  //
5351  // Also update the scope-based lookup if the target context's
5352  // lookup context is in lexical scope.
5353  if (!CurContext->isDependentContext()) {
5354    DC = DC->getLookupContext();
5355    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5356    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5357      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5358  }
5359
5360  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5361                                       D.getIdentifierLoc(), ND,
5362                                       DS.getFriendSpecLoc());
5363  FrD->setAccess(AS_public);
5364  CurContext->addDecl(FrD);
5365
5366  return DeclPtrTy::make(ND);
5367}
5368
5369void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5370  AdjustDeclIfTemplate(dcl);
5371
5372  Decl *Dcl = dcl.getAs<Decl>();
5373  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5374  if (!Fn) {
5375    Diag(DelLoc, diag::err_deleted_non_function);
5376    return;
5377  }
5378  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5379    Diag(DelLoc, diag::err_deleted_decl_not_first);
5380    Diag(Prev->getLocation(), diag::note_previous_declaration);
5381    // If the declaration wasn't the first, we delete the function anyway for
5382    // recovery.
5383  }
5384  Fn->setDeleted();
5385}
5386
5387static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5388  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5389       ++CI) {
5390    Stmt *SubStmt = *CI;
5391    if (!SubStmt)
5392      continue;
5393    if (isa<ReturnStmt>(SubStmt))
5394      Self.Diag(SubStmt->getSourceRange().getBegin(),
5395           diag::err_return_in_constructor_handler);
5396    if (!isa<Expr>(SubStmt))
5397      SearchForReturnInStmt(Self, SubStmt);
5398  }
5399}
5400
5401void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5402  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5403    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5404    SearchForReturnInStmt(*this, Handler);
5405  }
5406}
5407
5408bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5409                                             const CXXMethodDecl *Old) {
5410  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5411  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5412
5413  if (Context.hasSameType(NewTy, OldTy) ||
5414      NewTy->isDependentType() || OldTy->isDependentType())
5415    return false;
5416
5417  // Check if the return types are covariant
5418  QualType NewClassTy, OldClassTy;
5419
5420  /// Both types must be pointers or references to classes.
5421  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5422    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5423      NewClassTy = NewPT->getPointeeType();
5424      OldClassTy = OldPT->getPointeeType();
5425    }
5426  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5427    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5428      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5429        NewClassTy = NewRT->getPointeeType();
5430        OldClassTy = OldRT->getPointeeType();
5431      }
5432    }
5433  }
5434
5435  // The return types aren't either both pointers or references to a class type.
5436  if (NewClassTy.isNull()) {
5437    Diag(New->getLocation(),
5438         diag::err_different_return_type_for_overriding_virtual_function)
5439      << New->getDeclName() << NewTy << OldTy;
5440    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5441
5442    return true;
5443  }
5444
5445  // C++ [class.virtual]p6:
5446  //   If the return type of D::f differs from the return type of B::f, the
5447  //   class type in the return type of D::f shall be complete at the point of
5448  //   declaration of D::f or shall be the class type D.
5449  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5450    if (!RT->isBeingDefined() &&
5451        RequireCompleteType(New->getLocation(), NewClassTy,
5452                            PDiag(diag::err_covariant_return_incomplete)
5453                              << New->getDeclName()))
5454    return true;
5455  }
5456
5457  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5458    // Check if the new class derives from the old class.
5459    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5460      Diag(New->getLocation(),
5461           diag::err_covariant_return_not_derived)
5462      << New->getDeclName() << NewTy << OldTy;
5463      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5464      return true;
5465    }
5466
5467    // Check if we the conversion from derived to base is valid.
5468    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5469                    diag::err_covariant_return_inaccessible_base,
5470                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5471                    // FIXME: Should this point to the return type?
5472                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5473      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5474      return true;
5475    }
5476  }
5477
5478  // The qualifiers of the return types must be the same.
5479  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5480    Diag(New->getLocation(),
5481         diag::err_covariant_return_type_different_qualifications)
5482    << New->getDeclName() << NewTy << OldTy;
5483    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5484    return true;
5485  };
5486
5487
5488  // The new class type must have the same or less qualifiers as the old type.
5489  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5490    Diag(New->getLocation(),
5491         diag::err_covariant_return_type_class_type_more_qualified)
5492    << New->getDeclName() << NewTy << OldTy;
5493    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5494    return true;
5495  };
5496
5497  return false;
5498}
5499
5500bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5501                                             const CXXMethodDecl *Old)
5502{
5503  if (Old->hasAttr<FinalAttr>()) {
5504    Diag(New->getLocation(), diag::err_final_function_overridden)
5505      << New->getDeclName();
5506    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5507    return true;
5508  }
5509
5510  return false;
5511}
5512
5513/// \brief Mark the given method pure.
5514///
5515/// \param Method the method to be marked pure.
5516///
5517/// \param InitRange the source range that covers the "0" initializer.
5518bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5519  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5520    Method->setPure();
5521
5522    // A class is abstract if at least one function is pure virtual.
5523    Method->getParent()->setAbstract(true);
5524    return false;
5525  }
5526
5527  if (!Method->isInvalidDecl())
5528    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5529      << Method->getDeclName() << InitRange;
5530  return true;
5531}
5532
5533/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5534/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5535/// is a fresh scope pushed for just this purpose.
5536///
5537/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5538/// static data member of class X, names should be looked up in the scope of
5539/// class X.
5540void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5541  // If there is no declaration, there was an error parsing it.
5542  Decl *D = Dcl.getAs<Decl>();
5543  if (D == 0) return;
5544
5545  // We should only get called for declarations with scope specifiers, like:
5546  //   int foo::bar;
5547  assert(D->isOutOfLine());
5548  EnterDeclaratorContext(S, D->getDeclContext());
5549}
5550
5551/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5552/// initializer for the out-of-line declaration 'Dcl'.
5553void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5554  // If there is no declaration, there was an error parsing it.
5555  Decl *D = Dcl.getAs<Decl>();
5556  if (D == 0) return;
5557
5558  assert(D->isOutOfLine());
5559  ExitDeclaratorContext(S);
5560}
5561
5562/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5563/// C++ if/switch/while/for statement.
5564/// e.g: "if (int x = f()) {...}"
5565Action::DeclResult
5566Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5567  // C++ 6.4p2:
5568  // The declarator shall not specify a function or an array.
5569  // The type-specifier-seq shall not contain typedef and shall not declare a
5570  // new class or enumeration.
5571  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5572         "Parser allowed 'typedef' as storage class of condition decl.");
5573
5574  TypeSourceInfo *TInfo = 0;
5575  TagDecl *OwnedTag = 0;
5576  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5577
5578  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5579                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5580                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5581    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5582      << D.getSourceRange();
5583    return DeclResult();
5584  } else if (OwnedTag && OwnedTag->isDefinition()) {
5585    // The type-specifier-seq shall not declare a new class or enumeration.
5586    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5587  }
5588
5589  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5590  if (!Dcl)
5591    return DeclResult();
5592
5593  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5594  VD->setDeclaredInCondition(true);
5595  return Dcl;
5596}
5597
5598static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
5599  // Ignore dependent types.
5600  if (MD->isDependentContext())
5601    return false;
5602
5603  // Ignore declarations that are not definitions.
5604  if (!MD->isThisDeclarationADefinition())
5605    return false;
5606
5607  CXXRecordDecl *RD = MD->getParent();
5608
5609  // Ignore classes without a vtable.
5610  if (!RD->isDynamicClass())
5611    return false;
5612
5613  switch (MD->getParent()->getTemplateSpecializationKind()) {
5614  case TSK_Undeclared:
5615  case TSK_ExplicitSpecialization:
5616    // Classes that aren't instantiations of templates don't need their
5617    // virtual methods marked until we see the definition of the key
5618    // function.
5619    break;
5620
5621  case TSK_ImplicitInstantiation:
5622    // This is a constructor of a class template; mark all of the virtual
5623    // members as referenced to ensure that they get instantiatied.
5624    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5625      return true;
5626    break;
5627
5628  case TSK_ExplicitInstantiationDeclaration:
5629    return false;
5630
5631  case TSK_ExplicitInstantiationDefinition:
5632    // This is method of a explicit instantiation; mark all of the virtual
5633    // members as referenced to ensure that they get instantiatied.
5634    return true;
5635  }
5636
5637  // Consider only out-of-line definitions of member functions. When we see
5638  // an inline definition, it's too early to compute the key function.
5639  if (!MD->isOutOfLine())
5640    return false;
5641
5642  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5643
5644  // If there is no key function, we will need a copy of the vtable.
5645  if (!KeyFunction)
5646    return true;
5647
5648  // If this is the key function, we need to mark virtual members.
5649  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5650    return true;
5651
5652  return false;
5653}
5654
5655void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5656                                             CXXMethodDecl *MD) {
5657  CXXRecordDecl *RD = MD->getParent();
5658
5659  // We will need to mark all of the virtual members as referenced to build the
5660  // vtable.
5661  if (!needsVTable(MD, Context))
5662    return;
5663
5664  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5665  if (kind == TSK_ImplicitInstantiation)
5666    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5667  else
5668    MarkVirtualMembersReferenced(Loc, RD);
5669}
5670
5671bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5672  if (ClassesWithUnmarkedVirtualMembers.empty())
5673    return false;
5674
5675  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5676    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5677    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5678    ClassesWithUnmarkedVirtualMembers.pop_back();
5679    MarkVirtualMembersReferenced(Loc, RD);
5680  }
5681
5682  return true;
5683}
5684
5685void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5686                                        const CXXRecordDecl *RD) {
5687  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5688       e = RD->method_end(); i != e; ++i) {
5689    CXXMethodDecl *MD = *i;
5690
5691    // C++ [basic.def.odr]p2:
5692    //   [...] A virtual member function is used if it is not pure. [...]
5693    if (MD->isVirtual() && !MD->isPure())
5694      MarkDeclarationReferenced(Loc, MD);
5695  }
5696
5697  // Only classes that have virtual bases need a VTT.
5698  if (RD->getNumVBases() == 0)
5699    return;
5700
5701  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5702           e = RD->bases_end(); i != e; ++i) {
5703    const CXXRecordDecl *Base =
5704        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5705    if (i->isVirtual())
5706      continue;
5707    if (Base->getNumVBases() == 0)
5708      continue;
5709    MarkVirtualMembersReferenced(Loc, Base);
5710  }
5711}
5712
5713/// SetIvarInitializers - This routine builds initialization ASTs for the
5714/// Objective-C implementation whose ivars need be initialized.
5715void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5716  if (!getLangOptions().CPlusPlus)
5717    return;
5718  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5719    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
5720    CollectIvarsToConstructOrDestruct(OID, ivars);
5721    if (ivars.empty())
5722      return;
5723    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
5724    for (unsigned i = 0; i < ivars.size(); i++) {
5725      FieldDecl *Field = ivars[i];
5726      CXXBaseOrMemberInitializer *Member;
5727      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
5728      InitializationKind InitKind =
5729        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5730
5731      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
5732      Sema::OwningExprResult MemberInit =
5733        InitSeq.Perform(*this, InitEntity, InitKind,
5734                        Sema::MultiExprArg(*this, 0, 0));
5735      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
5736      // Note, MemberInit could actually come back empty if no initialization
5737      // is required (e.g., because it would call a trivial default constructor)
5738      if (!MemberInit.get() || MemberInit.isInvalid())
5739        continue;
5740
5741      Member =
5742        new (Context) CXXBaseOrMemberInitializer(Context,
5743                                                 Field, SourceLocation(),
5744                                                 SourceLocation(),
5745                                                 MemberInit.takeAs<Expr>(),
5746                                                 SourceLocation());
5747      AllToInit.push_back(Member);
5748    }
5749    ObjCImplementation->setIvarInitializers(Context,
5750                                            AllToInit.data(), AllToInit.size());
5751  }
5752}
5753