SemaDeclCXX.cpp revision 5b6a3ddda0669b6e3ea3de1f239eee40004423e5
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64  };
65
66  /// VisitExpr - Visit all of the children of this expression.
67  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
68    bool IsInvalid = false;
69    for (Stmt::child_range I = Node->children(); I; ++I)
70      IsInvalid |= Visit(*I);
71    return IsInvalid;
72  }
73
74  /// VisitDeclRefExpr - Visit a reference to a declaration, to
75  /// determine whether this declaration can be used in the default
76  /// argument expression.
77  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
78    NamedDecl *Decl = DRE->getDecl();
79    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p9
81      //   Default arguments are evaluated each time the function is
82      //   called. The order of evaluation of function arguments is
83      //   unspecified. Consequently, parameters of a function shall not
84      //   be used in default argument expressions, even if they are not
85      //   evaluated. Parameters of a function declared before a default
86      //   argument expression are in scope and can hide namespace and
87      //   class member names.
88      return S->Diag(DRE->getSourceRange().getBegin(),
89                     diag::err_param_default_argument_references_param)
90         << Param->getDeclName() << DefaultArg->getSourceRange();
91    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
92      // C++ [dcl.fct.default]p7
93      //   Local variables shall not be used in default argument
94      //   expressions.
95      if (VDecl->isLocalVarDecl())
96        return S->Diag(DRE->getSourceRange().getBegin(),
97                       diag::err_param_default_argument_references_local)
98          << VDecl->getDeclName() << DefaultArg->getSourceRange();
99    }
100
101    return false;
102  }
103
104  /// VisitCXXThisExpr - Visit a C++ "this" expression.
105  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
106    // C++ [dcl.fct.default]p8:
107    //   The keyword this shall not be used in a default argument of a
108    //   member function.
109    return S->Diag(ThisE->getSourceRange().getBegin(),
110                   diag::err_param_default_argument_references_this)
111               << ThisE->getSourceRange();
112  }
113}
114
115void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
116  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
117  // If we have an MSAny or unknown spec already, don't bother.
118  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
119    return;
120
121  const FunctionProtoType *Proto
122    = Method->getType()->getAs<FunctionProtoType>();
123
124  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
125
126  // If this function can throw any exceptions, make a note of that.
127  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
128    ClearExceptions();
129    ComputedEST = EST;
130    return;
131  }
132
133  // FIXME: If the call to this decl is using any of its default arguments, we
134  // need to search them for potentially-throwing calls.
135
136  // If this function has a basic noexcept, it doesn't affect the outcome.
137  if (EST == EST_BasicNoexcept)
138    return;
139
140  // If we have a throw-all spec at this point, ignore the function.
141  if (ComputedEST == EST_None)
142    return;
143
144  // If we're still at noexcept(true) and there's a nothrow() callee,
145  // change to that specification.
146  if (EST == EST_DynamicNone) {
147    if (ComputedEST == EST_BasicNoexcept)
148      ComputedEST = EST_DynamicNone;
149    return;
150  }
151
152  // Check out noexcept specs.
153  if (EST == EST_ComputedNoexcept) {
154    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
155    assert(NR != FunctionProtoType::NR_NoNoexcept &&
156           "Must have noexcept result for EST_ComputedNoexcept.");
157    assert(NR != FunctionProtoType::NR_Dependent &&
158           "Should not generate implicit declarations for dependent cases, "
159           "and don't know how to handle them anyway.");
160
161    // noexcept(false) -> no spec on the new function
162    if (NR == FunctionProtoType::NR_Throw) {
163      ClearExceptions();
164      ComputedEST = EST_None;
165    }
166    // noexcept(true) won't change anything either.
167    return;
168  }
169
170  assert(EST == EST_Dynamic && "EST case not considered earlier.");
171  assert(ComputedEST != EST_None &&
172         "Shouldn't collect exceptions when throw-all is guaranteed.");
173  ComputedEST = EST_Dynamic;
174  // Record the exceptions in this function's exception specification.
175  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
176                                          EEnd = Proto->exception_end();
177       E != EEnd; ++E)
178    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
179      Exceptions.push_back(*E);
180}
181
182void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
183  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
184    return;
185
186  // FIXME:
187  //
188  // C++0x [except.spec]p14:
189  //   [An] implicit exception-specification specifies the type-id T if and
190  // only if T is allowed by the exception-specification of a function directly
191  // invoked by f's implicit definition; f shall allow all exceptions if any
192  // function it directly invokes allows all exceptions, and f shall allow no
193  // exceptions if every function it directly invokes allows no exceptions.
194  //
195  // Note in particular that if an implicit exception-specification is generated
196  // for a function containing a throw-expression, that specification can still
197  // be noexcept(true).
198  //
199  // Note also that 'directly invoked' is not defined in the standard, and there
200  // is no indication that we should only consider potentially-evaluated calls.
201  //
202  // Ultimately we should implement the intent of the standard: the exception
203  // specification should be the set of exceptions which can be thrown by the
204  // implicit definition. For now, we assume that any non-nothrow expression can
205  // throw any exception.
206
207  if (E->CanThrow(*Context))
208    ComputedEST = EST_None;
209}
210
211bool
212Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
213                              SourceLocation EqualLoc) {
214  if (RequireCompleteType(Param->getLocation(), Param->getType(),
215                          diag::err_typecheck_decl_incomplete_type)) {
216    Param->setInvalidDecl();
217    return true;
218  }
219
220  // C++ [dcl.fct.default]p5
221  //   A default argument expression is implicitly converted (clause
222  //   4) to the parameter type. The default argument expression has
223  //   the same semantic constraints as the initializer expression in
224  //   a declaration of a variable of the parameter type, using the
225  //   copy-initialization semantics (8.5).
226  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
227                                                                    Param);
228  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
229                                                           EqualLoc);
230  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
231  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
232                                      MultiExprArg(*this, &Arg, 1));
233  if (Result.isInvalid())
234    return true;
235  Arg = Result.takeAs<Expr>();
236
237  CheckImplicitConversions(Arg, EqualLoc);
238  Arg = MaybeCreateExprWithCleanups(Arg);
239
240  // Okay: add the default argument to the parameter
241  Param->setDefaultArg(Arg);
242
243  // We have already instantiated this parameter; provide each of the
244  // instantiations with the uninstantiated default argument.
245  UnparsedDefaultArgInstantiationsMap::iterator InstPos
246    = UnparsedDefaultArgInstantiations.find(Param);
247  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
248    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
249      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
250
251    // We're done tracking this parameter's instantiations.
252    UnparsedDefaultArgInstantiations.erase(InstPos);
253  }
254
255  return false;
256}
257
258/// ActOnParamDefaultArgument - Check whether the default argument
259/// provided for a function parameter is well-formed. If so, attach it
260/// to the parameter declaration.
261void
262Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
263                                Expr *DefaultArg) {
264  if (!param || !DefaultArg)
265    return;
266
267  ParmVarDecl *Param = cast<ParmVarDecl>(param);
268  UnparsedDefaultArgLocs.erase(Param);
269
270  // Default arguments are only permitted in C++
271  if (!getLangOptions().CPlusPlus) {
272    Diag(EqualLoc, diag::err_param_default_argument)
273      << DefaultArg->getSourceRange();
274    Param->setInvalidDecl();
275    return;
276  }
277
278  // Check for unexpanded parameter packs.
279  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
280    Param->setInvalidDecl();
281    return;
282  }
283
284  // Check that the default argument is well-formed
285  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
286  if (DefaultArgChecker.Visit(DefaultArg)) {
287    Param->setInvalidDecl();
288    return;
289  }
290
291  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
292}
293
294/// ActOnParamUnparsedDefaultArgument - We've seen a default
295/// argument for a function parameter, but we can't parse it yet
296/// because we're inside a class definition. Note that this default
297/// argument will be parsed later.
298void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
299                                             SourceLocation EqualLoc,
300                                             SourceLocation ArgLoc) {
301  if (!param)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  if (Param)
306    Param->setUnparsedDefaultArg();
307
308  UnparsedDefaultArgLocs[Param] = ArgLoc;
309}
310
311/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
312/// the default argument for the parameter param failed.
313void Sema::ActOnParamDefaultArgumentError(Decl *param) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318
319  Param->setInvalidDecl();
320
321  UnparsedDefaultArgLocs.erase(Param);
322}
323
324/// CheckExtraCXXDefaultArguments - Check for any extra default
325/// arguments in the declarator, which is not a function declaration
326/// or definition and therefore is not permitted to have default
327/// arguments. This routine should be invoked for every declarator
328/// that is not a function declaration or definition.
329void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
330  // C++ [dcl.fct.default]p3
331  //   A default argument expression shall be specified only in the
332  //   parameter-declaration-clause of a function declaration or in a
333  //   template-parameter (14.1). It shall not be specified for a
334  //   parameter pack. If it is specified in a
335  //   parameter-declaration-clause, it shall not occur within a
336  //   declarator or abstract-declarator of a parameter-declaration.
337  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
338    DeclaratorChunk &chunk = D.getTypeObject(i);
339    if (chunk.Kind == DeclaratorChunk::Function) {
340      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
341        ParmVarDecl *Param =
342          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
343        if (Param->hasUnparsedDefaultArg()) {
344          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
345          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
346            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
347          delete Toks;
348          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
349        } else if (Param->getDefaultArg()) {
350          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
351            << Param->getDefaultArg()->getSourceRange();
352          Param->setDefaultArg(0);
353        }
354      }
355    }
356  }
357}
358
359// MergeCXXFunctionDecl - Merge two declarations of the same C++
360// function, once we already know that they have the same
361// type. Subroutine of MergeFunctionDecl. Returns true if there was an
362// error, false otherwise.
363bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
364  bool Invalid = false;
365
366  // C++ [dcl.fct.default]p4:
367  //   For non-template functions, default arguments can be added in
368  //   later declarations of a function in the same
369  //   scope. Declarations in different scopes have completely
370  //   distinct sets of default arguments. That is, declarations in
371  //   inner scopes do not acquire default arguments from
372  //   declarations in outer scopes, and vice versa. In a given
373  //   function declaration, all parameters subsequent to a
374  //   parameter with a default argument shall have default
375  //   arguments supplied in this or previous declarations. A
376  //   default argument shall not be redefined by a later
377  //   declaration (not even to the same value).
378  //
379  // C++ [dcl.fct.default]p6:
380  //   Except for member functions of class templates, the default arguments
381  //   in a member function definition that appears outside of the class
382  //   definition are added to the set of default arguments provided by the
383  //   member function declaration in the class definition.
384  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
385    ParmVarDecl *OldParam = Old->getParamDecl(p);
386    ParmVarDecl *NewParam = New->getParamDecl(p);
387
388    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
389
390      unsigned DiagDefaultParamID =
391        diag::err_param_default_argument_redefinition;
392
393      // MSVC accepts that default parameters be redefined for member functions
394      // of template class. The new default parameter's value is ignored.
395      Invalid = true;
396      if (getLangOptions().MicrosoftExt) {
397        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
398        if (MD && MD->getParent()->getDescribedClassTemplate()) {
399          // Merge the old default argument into the new parameter.
400          NewParam->setHasInheritedDefaultArg();
401          if (OldParam->hasUninstantiatedDefaultArg())
402            NewParam->setUninstantiatedDefaultArg(
403                                      OldParam->getUninstantiatedDefaultArg());
404          else
405            NewParam->setDefaultArg(OldParam->getInit());
406          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
407          Invalid = false;
408        }
409      }
410
411      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
412      // hint here. Alternatively, we could walk the type-source information
413      // for NewParam to find the last source location in the type... but it
414      // isn't worth the effort right now. This is the kind of test case that
415      // is hard to get right:
416      //   int f(int);
417      //   void g(int (*fp)(int) = f);
418      //   void g(int (*fp)(int) = &f);
419      Diag(NewParam->getLocation(), DiagDefaultParamID)
420        << NewParam->getDefaultArgRange();
421
422      // Look for the function declaration where the default argument was
423      // actually written, which may be a declaration prior to Old.
424      for (FunctionDecl *Older = Old->getPreviousDecl();
425           Older; Older = Older->getPreviousDecl()) {
426        if (!Older->getParamDecl(p)->hasDefaultArg())
427          break;
428
429        OldParam = Older->getParamDecl(p);
430      }
431
432      Diag(OldParam->getLocation(), diag::note_previous_definition)
433        << OldParam->getDefaultArgRange();
434    } else if (OldParam->hasDefaultArg()) {
435      // Merge the old default argument into the new parameter.
436      // It's important to use getInit() here;  getDefaultArg()
437      // strips off any top-level ExprWithCleanups.
438      NewParam->setHasInheritedDefaultArg();
439      if (OldParam->hasUninstantiatedDefaultArg())
440        NewParam->setUninstantiatedDefaultArg(
441                                      OldParam->getUninstantiatedDefaultArg());
442      else
443        NewParam->setDefaultArg(OldParam->getInit());
444    } else if (NewParam->hasDefaultArg()) {
445      if (New->getDescribedFunctionTemplate()) {
446        // Paragraph 4, quoted above, only applies to non-template functions.
447        Diag(NewParam->getLocation(),
448             diag::err_param_default_argument_template_redecl)
449          << NewParam->getDefaultArgRange();
450        Diag(Old->getLocation(), diag::note_template_prev_declaration)
451          << false;
452      } else if (New->getTemplateSpecializationKind()
453                   != TSK_ImplicitInstantiation &&
454                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
455        // C++ [temp.expr.spec]p21:
456        //   Default function arguments shall not be specified in a declaration
457        //   or a definition for one of the following explicit specializations:
458        //     - the explicit specialization of a function template;
459        //     - the explicit specialization of a member function template;
460        //     - the explicit specialization of a member function of a class
461        //       template where the class template specialization to which the
462        //       member function specialization belongs is implicitly
463        //       instantiated.
464        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
465          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
466          << New->getDeclName()
467          << NewParam->getDefaultArgRange();
468      } else if (New->getDeclContext()->isDependentContext()) {
469        // C++ [dcl.fct.default]p6 (DR217):
470        //   Default arguments for a member function of a class template shall
471        //   be specified on the initial declaration of the member function
472        //   within the class template.
473        //
474        // Reading the tea leaves a bit in DR217 and its reference to DR205
475        // leads me to the conclusion that one cannot add default function
476        // arguments for an out-of-line definition of a member function of a
477        // dependent type.
478        int WhichKind = 2;
479        if (CXXRecordDecl *Record
480              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
481          if (Record->getDescribedClassTemplate())
482            WhichKind = 0;
483          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
484            WhichKind = 1;
485          else
486            WhichKind = 2;
487        }
488
489        Diag(NewParam->getLocation(),
490             diag::err_param_default_argument_member_template_redecl)
491          << WhichKind
492          << NewParam->getDefaultArgRange();
493      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
494        CXXSpecialMember NewSM = getSpecialMember(Ctor),
495                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
496        if (NewSM != OldSM) {
497          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
498            << NewParam->getDefaultArgRange() << NewSM;
499          Diag(Old->getLocation(), diag::note_previous_declaration_special)
500            << OldSM;
501        }
502      }
503    }
504  }
505
506  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
507  // template has a constexpr specifier then all its declarations shall
508  // contain the constexpr specifier. [Note: An explicit specialization can
509  // differ from the template declaration with respect to the constexpr
510  // specifier. -- end note]
511  //
512  // FIXME: Don't reject changes in constexpr in explicit specializations.
513  if (New->isConstexpr() != Old->isConstexpr()) {
514    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
515      << New << New->isConstexpr();
516    Diag(Old->getLocation(), diag::note_previous_declaration);
517    Invalid = true;
518  }
519
520  if (CheckEquivalentExceptionSpec(Old, New))
521    Invalid = true;
522
523  return Invalid;
524}
525
526/// \brief Merge the exception specifications of two variable declarations.
527///
528/// This is called when there's a redeclaration of a VarDecl. The function
529/// checks if the redeclaration might have an exception specification and
530/// validates compatibility and merges the specs if necessary.
531void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
532  // Shortcut if exceptions are disabled.
533  if (!getLangOptions().CXXExceptions)
534    return;
535
536  assert(Context.hasSameType(New->getType(), Old->getType()) &&
537         "Should only be called if types are otherwise the same.");
538
539  QualType NewType = New->getType();
540  QualType OldType = Old->getType();
541
542  // We're only interested in pointers and references to functions, as well
543  // as pointers to member functions.
544  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
545    NewType = R->getPointeeType();
546    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
547  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
548    NewType = P->getPointeeType();
549    OldType = OldType->getAs<PointerType>()->getPointeeType();
550  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
551    NewType = M->getPointeeType();
552    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
553  }
554
555  if (!NewType->isFunctionProtoType())
556    return;
557
558  // There's lots of special cases for functions. For function pointers, system
559  // libraries are hopefully not as broken so that we don't need these
560  // workarounds.
561  if (CheckEquivalentExceptionSpec(
562        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
563        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
564    New->setInvalidDecl();
565  }
566}
567
568/// CheckCXXDefaultArguments - Verify that the default arguments for a
569/// function declaration are well-formed according to C++
570/// [dcl.fct.default].
571void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
572  unsigned NumParams = FD->getNumParams();
573  unsigned p;
574
575  // Find first parameter with a default argument
576  for (p = 0; p < NumParams; ++p) {
577    ParmVarDecl *Param = FD->getParamDecl(p);
578    if (Param->hasDefaultArg())
579      break;
580  }
581
582  // C++ [dcl.fct.default]p4:
583  //   In a given function declaration, all parameters
584  //   subsequent to a parameter with a default argument shall
585  //   have default arguments supplied in this or previous
586  //   declarations. A default argument shall not be redefined
587  //   by a later declaration (not even to the same value).
588  unsigned LastMissingDefaultArg = 0;
589  for (; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (!Param->hasDefaultArg()) {
592      if (Param->isInvalidDecl())
593        /* We already complained about this parameter. */;
594      else if (Param->getIdentifier())
595        Diag(Param->getLocation(),
596             diag::err_param_default_argument_missing_name)
597          << Param->getIdentifier();
598      else
599        Diag(Param->getLocation(),
600             diag::err_param_default_argument_missing);
601
602      LastMissingDefaultArg = p;
603    }
604  }
605
606  if (LastMissingDefaultArg > 0) {
607    // Some default arguments were missing. Clear out all of the
608    // default arguments up to (and including) the last missing
609    // default argument, so that we leave the function parameters
610    // in a semantically valid state.
611    for (p = 0; p <= LastMissingDefaultArg; ++p) {
612      ParmVarDecl *Param = FD->getParamDecl(p);
613      if (Param->hasDefaultArg()) {
614        Param->setDefaultArg(0);
615      }
616    }
617  }
618}
619
620// CheckConstexprParameterTypes - Check whether a function's parameter types
621// are all literal types. If so, return true. If not, produce a suitable
622// diagnostic depending on @p CCK and return false.
623static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
624                                         Sema::CheckConstexprKind CCK) {
625  unsigned ArgIndex = 0;
626  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
627  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
628       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
629    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
630    SourceLocation ParamLoc = PD->getLocation();
631    if (!(*i)->isDependentType() &&
632        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
633                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
634                                     << ArgIndex+1 << PD->getSourceRange()
635                                     << isa<CXXConstructorDecl>(FD) :
636                                   SemaRef.PDiag(),
637                                   /*AllowIncompleteType*/ true)) {
638      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
639        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
640          << ArgIndex+1 << PD->getSourceRange()
641          << isa<CXXConstructorDecl>(FD) << *i;
642      return false;
643    }
644  }
645  return true;
646}
647
648// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
649// the requirements of a constexpr function declaration or a constexpr
650// constructor declaration. Return true if it does, false if not.
651//
652// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
653//
654// \param CCK Specifies whether to produce diagnostics if the function does not
655// satisfy the requirements.
656bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
657                                      CheckConstexprKind CCK) {
658  assert((CCK != CCK_NoteNonConstexprInstantiation ||
659          (NewFD->getTemplateInstantiationPattern() &&
660           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
661         "only constexpr templates can be instantiated non-constexpr");
662
663  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
664  if (MD && MD->isInstance()) {
665    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
666    //  In addition, either its function-body shall be = delete or = default or
667    //  it shall satisfy the following constraints:
668    //  - the class shall not have any virtual base classes;
669    //
670    // We apply this to constexpr member functions too: the class cannot be a
671    // literal type, so the members are not permitted to be constexpr.
672    const CXXRecordDecl *RD = MD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
683          << RD->getNumVBases();
684        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
685               E = RD->vbases_end(); I != E; ++I)
686          Diag(I->getSourceRange().getBegin(),
687               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
688      }
689      return false;
690    }
691  }
692
693  if (!isa<CXXConstructorDecl>(NewFD)) {
694    // C++11 [dcl.constexpr]p3:
695    //  The definition of a constexpr function shall satisfy the following
696    //  constraints:
697    // - it shall not be virtual;
698    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
699    if (Method && Method->isVirtual()) {
700      if (CCK != CCK_Instantiation) {
701        Diag(NewFD->getLocation(),
702             CCK == CCK_Declaration ? diag::err_constexpr_virtual
703                                    : diag::note_constexpr_tmpl_virtual);
704
705        // If it's not obvious why this function is virtual, find an overridden
706        // function which uses the 'virtual' keyword.
707        const CXXMethodDecl *WrittenVirtual = Method;
708        while (!WrittenVirtual->isVirtualAsWritten())
709          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
710        if (WrittenVirtual != Method)
711          Diag(WrittenVirtual->getLocation(),
712               diag::note_overridden_virtual_function);
713      }
714      return false;
715    }
716
717    // - its return type shall be a literal type;
718    QualType RT = NewFD->getResultType();
719    if (!RT->isDependentType() &&
720        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
721                           PDiag(diag::err_constexpr_non_literal_return) :
722                           PDiag(),
723                           /*AllowIncompleteType*/ true)) {
724      if (CCK == CCK_NoteNonConstexprInstantiation)
725        Diag(NewFD->getLocation(),
726             diag::note_constexpr_tmpl_non_literal_return) << RT;
727      return false;
728    }
729  }
730
731  // - each of its parameter types shall be a literal type;
732  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
733    return false;
734
735  return true;
736}
737
738/// Check the given declaration statement is legal within a constexpr function
739/// body. C++0x [dcl.constexpr]p3,p4.
740///
741/// \return true if the body is OK, false if we have diagnosed a problem.
742static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
743                                   DeclStmt *DS) {
744  // C++0x [dcl.constexpr]p3 and p4:
745  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
746  //  contain only
747  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
748         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
749    switch ((*DclIt)->getKind()) {
750    case Decl::StaticAssert:
751    case Decl::Using:
752    case Decl::UsingShadow:
753    case Decl::UsingDirective:
754    case Decl::UnresolvedUsingTypename:
755      //   - static_assert-declarations
756      //   - using-declarations,
757      //   - using-directives,
758      continue;
759
760    case Decl::Typedef:
761    case Decl::TypeAlias: {
762      //   - typedef declarations and alias-declarations that do not define
763      //     classes or enumerations,
764      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
765      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
766        // Don't allow variably-modified types in constexpr functions.
767        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
768        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
769          << TL.getSourceRange() << TL.getType()
770          << isa<CXXConstructorDecl>(Dcl);
771        return false;
772      }
773      continue;
774    }
775
776    case Decl::Enum:
777    case Decl::CXXRecord:
778      // As an extension, we allow the declaration (but not the definition) of
779      // classes and enumerations in all declarations, not just in typedef and
780      // alias declarations.
781      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
782        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787
788    case Decl::Var:
789      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
790        << isa<CXXConstructorDecl>(Dcl);
791      return false;
792
793    default:
794      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
795        << isa<CXXConstructorDecl>(Dcl);
796      return false;
797    }
798  }
799
800  return true;
801}
802
803/// Check that the given field is initialized within a constexpr constructor.
804///
805/// \param Dcl The constexpr constructor being checked.
806/// \param Field The field being checked. This may be a member of an anonymous
807///        struct or union nested within the class being checked.
808/// \param Inits All declarations, including anonymous struct/union members and
809///        indirect members, for which any initialization was provided.
810/// \param Diagnosed Set to true if an error is produced.
811static void CheckConstexprCtorInitializer(Sema &SemaRef,
812                                          const FunctionDecl *Dcl,
813                                          FieldDecl *Field,
814                                          llvm::SmallSet<Decl*, 16> &Inits,
815                                          bool &Diagnosed) {
816  if (Field->isUnnamedBitfield())
817    return;
818
819  if (!Inits.count(Field)) {
820    if (!Diagnosed) {
821      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
822      Diagnosed = true;
823    }
824    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
825  } else if (Field->isAnonymousStructOrUnion()) {
826    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
827    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
828         I != E; ++I)
829      // If an anonymous union contains an anonymous struct of which any member
830      // is initialized, all members must be initialized.
831      if (!RD->isUnion() || Inits.count(*I))
832        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
833  }
834}
835
836/// Check the body for the given constexpr function declaration only contains
837/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
838///
839/// \return true if the body is OK, false if we have diagnosed a problem.
840bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
841                                      bool IsInstantiation) {
842  if (isa<CXXTryStmt>(Body)) {
843    // C++11 [dcl.constexpr]p3:
844    //  The definition of a constexpr function shall satisfy the following
845    //  constraints: [...]
846    // - its function-body shall be = delete, = default, or a
847    //   compound-statement
848    //
849    // C++11 [dcl.constexpr]p4:
850    //  In the definition of a constexpr constructor, [...]
851    // - its function-body shall not be a function-try-block;
852    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
853      << isa<CXXConstructorDecl>(Dcl);
854    return false;
855  }
856
857  // - its function-body shall be [...] a compound-statement that contains only
858  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
859
860  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
861  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
862         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
863    switch ((*BodyIt)->getStmtClass()) {
864    case Stmt::NullStmtClass:
865      //   - null statements,
866      continue;
867
868    case Stmt::DeclStmtClass:
869      //   - static_assert-declarations
870      //   - using-declarations,
871      //   - using-directives,
872      //   - typedef declarations and alias-declarations that do not define
873      //     classes or enumerations,
874      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
875        return false;
876      continue;
877
878    case Stmt::ReturnStmtClass:
879      //   - and exactly one return statement;
880      if (isa<CXXConstructorDecl>(Dcl))
881        break;
882
883      ReturnStmts.push_back((*BodyIt)->getLocStart());
884      // FIXME
885      // - every constructor call and implicit conversion used in initializing
886      //   the return value shall be one of those allowed in a constant
887      //   expression.
888      // Deal with this as part of a general check that the function can produce
889      // a constant expression (for [dcl.constexpr]p5).
890      continue;
891
892    default:
893      break;
894    }
895
896    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
897      << isa<CXXConstructorDecl>(Dcl);
898    return false;
899  }
900
901  if (const CXXConstructorDecl *Constructor
902        = dyn_cast<CXXConstructorDecl>(Dcl)) {
903    const CXXRecordDecl *RD = Constructor->getParent();
904    // - every non-static data member and base class sub-object shall be
905    //   initialized;
906    if (RD->isUnion()) {
907      // DR1359: Exactly one member of a union shall be initialized.
908      if (Constructor->getNumCtorInitializers() == 0) {
909        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
910        return false;
911      }
912    } else if (!Constructor->isDependentContext() &&
913               !Constructor->isDelegatingConstructor()) {
914      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
915
916      // Skip detailed checking if we have enough initializers, and we would
917      // allow at most one initializer per member.
918      bool AnyAnonStructUnionMembers = false;
919      unsigned Fields = 0;
920      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
921           E = RD->field_end(); I != E; ++I, ++Fields) {
922        if ((*I)->isAnonymousStructOrUnion()) {
923          AnyAnonStructUnionMembers = true;
924          break;
925        }
926      }
927      if (AnyAnonStructUnionMembers ||
928          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
929        // Check initialization of non-static data members. Base classes are
930        // always initialized so do not need to be checked. Dependent bases
931        // might not have initializers in the member initializer list.
932        llvm::SmallSet<Decl*, 16> Inits;
933        for (CXXConstructorDecl::init_const_iterator
934               I = Constructor->init_begin(), E = Constructor->init_end();
935             I != E; ++I) {
936          if (FieldDecl *FD = (*I)->getMember())
937            Inits.insert(FD);
938          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
939            Inits.insert(ID->chain_begin(), ID->chain_end());
940        }
941
942        bool Diagnosed = false;
943        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
944             E = RD->field_end(); I != E; ++I)
945          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
946        if (Diagnosed)
947          return false;
948      }
949    }
950
951    // FIXME
952    // - every constructor involved in initializing non-static data members
953    //   and base class sub-objects shall be a constexpr constructor;
954    // - every assignment-expression that is an initializer-clause appearing
955    //   directly or indirectly within a brace-or-equal-initializer for
956    //   a non-static data member that is not named by a mem-initializer-id
957    //   shall be a constant expression; and
958    // - every implicit conversion used in converting a constructor argument
959    //   to the corresponding parameter type and converting
960    //   a full-expression to the corresponding member type shall be one of
961    //   those allowed in a constant expression.
962    // Deal with these as part of a general check that the function can produce
963    // a constant expression (for [dcl.constexpr]p5).
964  } else {
965    if (ReturnStmts.empty()) {
966      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
967      return false;
968    }
969    if (ReturnStmts.size() > 1) {
970      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
971      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
972        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
973      return false;
974    }
975  }
976
977  // C++11 [dcl.constexpr]p5:
978  //   if no function argument values exist such that the function invocation
979  //   substitution would produce a constant expression, the program is
980  //   ill-formed; no diagnostic required.
981  // C++11 [dcl.constexpr]p3:
982  //   - every constructor call and implicit conversion used in initializing the
983  //     return value shall be one of those allowed in a constant expression.
984  // C++11 [dcl.constexpr]p4:
985  //   - every constructor involved in initializing non-static data members and
986  //     base class sub-objects shall be a constexpr constructor.
987  //
988  // FIXME: We currently disable this check inside system headers, to work
989  // around early STL implementations which contain constexpr functions which
990  // can't produce constant expressions.
991  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
992  if (!Context.getSourceManager().isInSystemHeader(Dcl->getLocation()) &&
993      !IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
994    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
995      << isa<CXXConstructorDecl>(Dcl);
996    for (size_t I = 0, N = Diags.size(); I != N; ++I)
997      Diag(Diags[I].first, Diags[I].second);
998    return false;
999  }
1000
1001  return true;
1002}
1003
1004/// isCurrentClassName - Determine whether the identifier II is the
1005/// name of the class type currently being defined. In the case of
1006/// nested classes, this will only return true if II is the name of
1007/// the innermost class.
1008bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1009                              const CXXScopeSpec *SS) {
1010  assert(getLangOptions().CPlusPlus && "No class names in C!");
1011
1012  CXXRecordDecl *CurDecl;
1013  if (SS && SS->isSet() && !SS->isInvalid()) {
1014    DeclContext *DC = computeDeclContext(*SS, true);
1015    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1016  } else
1017    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1018
1019  if (CurDecl && CurDecl->getIdentifier())
1020    return &II == CurDecl->getIdentifier();
1021  else
1022    return false;
1023}
1024
1025/// \brief Check the validity of a C++ base class specifier.
1026///
1027/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1028/// and returns NULL otherwise.
1029CXXBaseSpecifier *
1030Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1031                         SourceRange SpecifierRange,
1032                         bool Virtual, AccessSpecifier Access,
1033                         TypeSourceInfo *TInfo,
1034                         SourceLocation EllipsisLoc) {
1035  QualType BaseType = TInfo->getType();
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not have base classes.
1039  if (Class->isUnion()) {
1040    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1041      << SpecifierRange;
1042    return 0;
1043  }
1044
1045  if (EllipsisLoc.isValid() &&
1046      !TInfo->getType()->containsUnexpandedParameterPack()) {
1047    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1048      << TInfo->getTypeLoc().getSourceRange();
1049    EllipsisLoc = SourceLocation();
1050  }
1051
1052  if (BaseType->isDependentType())
1053    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1054                                          Class->getTagKind() == TTK_Class,
1055                                          Access, TInfo, EllipsisLoc);
1056
1057  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1058
1059  // Base specifiers must be record types.
1060  if (!BaseType->isRecordType()) {
1061    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1062    return 0;
1063  }
1064
1065  // C++ [class.union]p1:
1066  //   A union shall not be used as a base class.
1067  if (BaseType->isUnionType()) {
1068    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1069    return 0;
1070  }
1071
1072  // C++ [class.derived]p2:
1073  //   The class-name in a base-specifier shall not be an incompletely
1074  //   defined class.
1075  if (RequireCompleteType(BaseLoc, BaseType,
1076                          PDiag(diag::err_incomplete_base_class)
1077                            << SpecifierRange)) {
1078    Class->setInvalidDecl();
1079    return 0;
1080  }
1081
1082  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1083  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1084  assert(BaseDecl && "Record type has no declaration");
1085  BaseDecl = BaseDecl->getDefinition();
1086  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1087  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1088  assert(CXXBaseDecl && "Base type is not a C++ type");
1089
1090  // C++ [class]p3:
1091  //   If a class is marked final and it appears as a base-type-specifier in
1092  //   base-clause, the program is ill-formed.
1093  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1094    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1095      << CXXBaseDecl->getDeclName();
1096    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1097      << CXXBaseDecl->getDeclName();
1098    return 0;
1099  }
1100
1101  if (BaseDecl->isInvalidDecl())
1102    Class->setInvalidDecl();
1103
1104  // Create the base specifier.
1105  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1106                                        Class->getTagKind() == TTK_Class,
1107                                        Access, TInfo, EllipsisLoc);
1108}
1109
1110/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1111/// one entry in the base class list of a class specifier, for
1112/// example:
1113///    class foo : public bar, virtual private baz {
1114/// 'public bar' and 'virtual private baz' are each base-specifiers.
1115BaseResult
1116Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1117                         bool Virtual, AccessSpecifier Access,
1118                         ParsedType basetype, SourceLocation BaseLoc,
1119                         SourceLocation EllipsisLoc) {
1120  if (!classdecl)
1121    return true;
1122
1123  AdjustDeclIfTemplate(classdecl);
1124  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1125  if (!Class)
1126    return true;
1127
1128  TypeSourceInfo *TInfo = 0;
1129  GetTypeFromParser(basetype, &TInfo);
1130
1131  if (EllipsisLoc.isInvalid() &&
1132      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1133                                      UPPC_BaseType))
1134    return true;
1135
1136  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1137                                                      Virtual, Access, TInfo,
1138                                                      EllipsisLoc))
1139    return BaseSpec;
1140
1141  return true;
1142}
1143
1144/// \brief Performs the actual work of attaching the given base class
1145/// specifiers to a C++ class.
1146bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1147                                unsigned NumBases) {
1148 if (NumBases == 0)
1149    return false;
1150
1151  // Used to keep track of which base types we have already seen, so
1152  // that we can properly diagnose redundant direct base types. Note
1153  // that the key is always the unqualified canonical type of the base
1154  // class.
1155  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1156
1157  // Copy non-redundant base specifiers into permanent storage.
1158  unsigned NumGoodBases = 0;
1159  bool Invalid = false;
1160  for (unsigned idx = 0; idx < NumBases; ++idx) {
1161    QualType NewBaseType
1162      = Context.getCanonicalType(Bases[idx]->getType());
1163    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1164    if (KnownBaseTypes[NewBaseType]) {
1165      // C++ [class.mi]p3:
1166      //   A class shall not be specified as a direct base class of a
1167      //   derived class more than once.
1168      Diag(Bases[idx]->getSourceRange().getBegin(),
1169           diag::err_duplicate_base_class)
1170        << KnownBaseTypes[NewBaseType]->getType()
1171        << Bases[idx]->getSourceRange();
1172
1173      // Delete the duplicate base class specifier; we're going to
1174      // overwrite its pointer later.
1175      Context.Deallocate(Bases[idx]);
1176
1177      Invalid = true;
1178    } else {
1179      // Okay, add this new base class.
1180      KnownBaseTypes[NewBaseType] = Bases[idx];
1181      Bases[NumGoodBases++] = Bases[idx];
1182      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1183        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1184          if (RD->hasAttr<WeakAttr>())
1185            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1186    }
1187  }
1188
1189  // Attach the remaining base class specifiers to the derived class.
1190  Class->setBases(Bases, NumGoodBases);
1191
1192  // Delete the remaining (good) base class specifiers, since their
1193  // data has been copied into the CXXRecordDecl.
1194  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1195    Context.Deallocate(Bases[idx]);
1196
1197  return Invalid;
1198}
1199
1200/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1201/// class, after checking whether there are any duplicate base
1202/// classes.
1203void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1204                               unsigned NumBases) {
1205  if (!ClassDecl || !Bases || !NumBases)
1206    return;
1207
1208  AdjustDeclIfTemplate(ClassDecl);
1209  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1210                       (CXXBaseSpecifier**)(Bases), NumBases);
1211}
1212
1213static CXXRecordDecl *GetClassForType(QualType T) {
1214  if (const RecordType *RT = T->getAs<RecordType>())
1215    return cast<CXXRecordDecl>(RT->getDecl());
1216  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1217    return ICT->getDecl();
1218  else
1219    return 0;
1220}
1221
1222/// \brief Determine whether the type \p Derived is a C++ class that is
1223/// derived from the type \p Base.
1224bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1225  if (!getLangOptions().CPlusPlus)
1226    return false;
1227
1228  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1229  if (!DerivedRD)
1230    return false;
1231
1232  CXXRecordDecl *BaseRD = GetClassForType(Base);
1233  if (!BaseRD)
1234    return false;
1235
1236  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1237  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1238}
1239
1240/// \brief Determine whether the type \p Derived is a C++ class that is
1241/// derived from the type \p Base.
1242bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1243  if (!getLangOptions().CPlusPlus)
1244    return false;
1245
1246  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1247  if (!DerivedRD)
1248    return false;
1249
1250  CXXRecordDecl *BaseRD = GetClassForType(Base);
1251  if (!BaseRD)
1252    return false;
1253
1254  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1255}
1256
1257void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1258                              CXXCastPath &BasePathArray) {
1259  assert(BasePathArray.empty() && "Base path array must be empty!");
1260  assert(Paths.isRecordingPaths() && "Must record paths!");
1261
1262  const CXXBasePath &Path = Paths.front();
1263
1264  // We first go backward and check if we have a virtual base.
1265  // FIXME: It would be better if CXXBasePath had the base specifier for
1266  // the nearest virtual base.
1267  unsigned Start = 0;
1268  for (unsigned I = Path.size(); I != 0; --I) {
1269    if (Path[I - 1].Base->isVirtual()) {
1270      Start = I - 1;
1271      break;
1272    }
1273  }
1274
1275  // Now add all bases.
1276  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1277    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1278}
1279
1280/// \brief Determine whether the given base path includes a virtual
1281/// base class.
1282bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1283  for (CXXCastPath::const_iterator B = BasePath.begin(),
1284                                BEnd = BasePath.end();
1285       B != BEnd; ++B)
1286    if ((*B)->isVirtual())
1287      return true;
1288
1289  return false;
1290}
1291
1292/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1293/// conversion (where Derived and Base are class types) is
1294/// well-formed, meaning that the conversion is unambiguous (and
1295/// that all of the base classes are accessible). Returns true
1296/// and emits a diagnostic if the code is ill-formed, returns false
1297/// otherwise. Loc is the location where this routine should point to
1298/// if there is an error, and Range is the source range to highlight
1299/// if there is an error.
1300bool
1301Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1302                                   unsigned InaccessibleBaseID,
1303                                   unsigned AmbigiousBaseConvID,
1304                                   SourceLocation Loc, SourceRange Range,
1305                                   DeclarationName Name,
1306                                   CXXCastPath *BasePath) {
1307  // First, determine whether the path from Derived to Base is
1308  // ambiguous. This is slightly more expensive than checking whether
1309  // the Derived to Base conversion exists, because here we need to
1310  // explore multiple paths to determine if there is an ambiguity.
1311  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1312                     /*DetectVirtual=*/false);
1313  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1314  assert(DerivationOkay &&
1315         "Can only be used with a derived-to-base conversion");
1316  (void)DerivationOkay;
1317
1318  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1319    if (InaccessibleBaseID) {
1320      // Check that the base class can be accessed.
1321      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1322                                   InaccessibleBaseID)) {
1323        case AR_inaccessible:
1324          return true;
1325        case AR_accessible:
1326        case AR_dependent:
1327        case AR_delayed:
1328          break;
1329      }
1330    }
1331
1332    // Build a base path if necessary.
1333    if (BasePath)
1334      BuildBasePathArray(Paths, *BasePath);
1335    return false;
1336  }
1337
1338  // We know that the derived-to-base conversion is ambiguous, and
1339  // we're going to produce a diagnostic. Perform the derived-to-base
1340  // search just one more time to compute all of the possible paths so
1341  // that we can print them out. This is more expensive than any of
1342  // the previous derived-to-base checks we've done, but at this point
1343  // performance isn't as much of an issue.
1344  Paths.clear();
1345  Paths.setRecordingPaths(true);
1346  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1347  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1348  (void)StillOkay;
1349
1350  // Build up a textual representation of the ambiguous paths, e.g.,
1351  // D -> B -> A, that will be used to illustrate the ambiguous
1352  // conversions in the diagnostic. We only print one of the paths
1353  // to each base class subobject.
1354  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1355
1356  Diag(Loc, AmbigiousBaseConvID)
1357  << Derived << Base << PathDisplayStr << Range << Name;
1358  return true;
1359}
1360
1361bool
1362Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1363                                   SourceLocation Loc, SourceRange Range,
1364                                   CXXCastPath *BasePath,
1365                                   bool IgnoreAccess) {
1366  return CheckDerivedToBaseConversion(Derived, Base,
1367                                      IgnoreAccess ? 0
1368                                       : diag::err_upcast_to_inaccessible_base,
1369                                      diag::err_ambiguous_derived_to_base_conv,
1370                                      Loc, Range, DeclarationName(),
1371                                      BasePath);
1372}
1373
1374
1375/// @brief Builds a string representing ambiguous paths from a
1376/// specific derived class to different subobjects of the same base
1377/// class.
1378///
1379/// This function builds a string that can be used in error messages
1380/// to show the different paths that one can take through the
1381/// inheritance hierarchy to go from the derived class to different
1382/// subobjects of a base class. The result looks something like this:
1383/// @code
1384/// struct D -> struct B -> struct A
1385/// struct D -> struct C -> struct A
1386/// @endcode
1387std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1388  std::string PathDisplayStr;
1389  std::set<unsigned> DisplayedPaths;
1390  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1391       Path != Paths.end(); ++Path) {
1392    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1393      // We haven't displayed a path to this particular base
1394      // class subobject yet.
1395      PathDisplayStr += "\n    ";
1396      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1397      for (CXXBasePath::const_iterator Element = Path->begin();
1398           Element != Path->end(); ++Element)
1399        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1400    }
1401  }
1402
1403  return PathDisplayStr;
1404}
1405
1406//===----------------------------------------------------------------------===//
1407// C++ class member Handling
1408//===----------------------------------------------------------------------===//
1409
1410/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1411bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1412                                SourceLocation ASLoc,
1413                                SourceLocation ColonLoc,
1414                                AttributeList *Attrs) {
1415  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1416  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1417                                                  ASLoc, ColonLoc);
1418  CurContext->addHiddenDecl(ASDecl);
1419  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1420}
1421
1422/// CheckOverrideControl - Check C++0x override control semantics.
1423void Sema::CheckOverrideControl(const Decl *D) {
1424  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1425  if (!MD || !MD->isVirtual())
1426    return;
1427
1428  if (MD->isDependentContext())
1429    return;
1430
1431  // C++0x [class.virtual]p3:
1432  //   If a virtual function is marked with the virt-specifier override and does
1433  //   not override a member function of a base class,
1434  //   the program is ill-formed.
1435  bool HasOverriddenMethods =
1436    MD->begin_overridden_methods() != MD->end_overridden_methods();
1437  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1438    Diag(MD->getLocation(),
1439                 diag::err_function_marked_override_not_overriding)
1440      << MD->getDeclName();
1441    return;
1442  }
1443}
1444
1445/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1446/// function overrides a virtual member function marked 'final', according to
1447/// C++0x [class.virtual]p3.
1448bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1449                                                  const CXXMethodDecl *Old) {
1450  if (!Old->hasAttr<FinalAttr>())
1451    return false;
1452
1453  Diag(New->getLocation(), diag::err_final_function_overridden)
1454    << New->getDeclName();
1455  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1456  return true;
1457}
1458
1459/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1460/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1461/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1462/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1463/// present but parsing it has been deferred.
1464Decl *
1465Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1466                               MultiTemplateParamsArg TemplateParameterLists,
1467                               Expr *BW, const VirtSpecifiers &VS,
1468                               bool HasDeferredInit) {
1469  const DeclSpec &DS = D.getDeclSpec();
1470  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1471  DeclarationName Name = NameInfo.getName();
1472  SourceLocation Loc = NameInfo.getLoc();
1473
1474  // For anonymous bitfields, the location should point to the type.
1475  if (Loc.isInvalid())
1476    Loc = D.getSourceRange().getBegin();
1477
1478  Expr *BitWidth = static_cast<Expr*>(BW);
1479
1480  assert(isa<CXXRecordDecl>(CurContext));
1481  assert(!DS.isFriendSpecified());
1482
1483  bool isFunc = D.isDeclarationOfFunction();
1484
1485  // C++ 9.2p6: A member shall not be declared to have automatic storage
1486  // duration (auto, register) or with the extern storage-class-specifier.
1487  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1488  // data members and cannot be applied to names declared const or static,
1489  // and cannot be applied to reference members.
1490  switch (DS.getStorageClassSpec()) {
1491    case DeclSpec::SCS_unspecified:
1492    case DeclSpec::SCS_typedef:
1493    case DeclSpec::SCS_static:
1494      // FALL THROUGH.
1495      break;
1496    case DeclSpec::SCS_mutable:
1497      if (isFunc) {
1498        if (DS.getStorageClassSpecLoc().isValid())
1499          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1500        else
1501          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1502
1503        // FIXME: It would be nicer if the keyword was ignored only for this
1504        // declarator. Otherwise we could get follow-up errors.
1505        D.getMutableDeclSpec().ClearStorageClassSpecs();
1506      }
1507      break;
1508    default:
1509      if (DS.getStorageClassSpecLoc().isValid())
1510        Diag(DS.getStorageClassSpecLoc(),
1511             diag::err_storageclass_invalid_for_member);
1512      else
1513        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1514      D.getMutableDeclSpec().ClearStorageClassSpecs();
1515  }
1516
1517  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1518                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1519                      !isFunc);
1520
1521  Decl *Member;
1522  if (isInstField) {
1523    CXXScopeSpec &SS = D.getCXXScopeSpec();
1524
1525    // Data members must have identifiers for names.
1526    if (Name.getNameKind() != DeclarationName::Identifier) {
1527      Diag(Loc, diag::err_bad_variable_name)
1528        << Name;
1529      return 0;
1530    }
1531
1532    IdentifierInfo *II = Name.getAsIdentifierInfo();
1533
1534    // Member field could not be with "template" keyword.
1535    // So TemplateParameterLists should be empty in this case.
1536    if (TemplateParameterLists.size()) {
1537      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1538      if (TemplateParams->size()) {
1539        // There is no such thing as a member field template.
1540        Diag(D.getIdentifierLoc(), diag::err_template_member)
1541            << II
1542            << SourceRange(TemplateParams->getTemplateLoc(),
1543                TemplateParams->getRAngleLoc());
1544      } else {
1545        // There is an extraneous 'template<>' for this member.
1546        Diag(TemplateParams->getTemplateLoc(),
1547            diag::err_template_member_noparams)
1548            << II
1549            << SourceRange(TemplateParams->getTemplateLoc(),
1550                TemplateParams->getRAngleLoc());
1551      }
1552      return 0;
1553    }
1554
1555    if (SS.isSet() && !SS.isInvalid()) {
1556      // The user provided a superfluous scope specifier inside a class
1557      // definition:
1558      //
1559      // class X {
1560      //   int X::member;
1561      // };
1562      DeclContext *DC = 0;
1563      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1564        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1565          << Name << FixItHint::CreateRemoval(SS.getRange());
1566      else
1567        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1568          << Name << SS.getRange();
1569
1570      SS.clear();
1571    }
1572
1573    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1574                         HasDeferredInit, AS);
1575    assert(Member && "HandleField never returns null");
1576  } else {
1577    assert(!HasDeferredInit);
1578
1579    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1580    if (!Member) {
1581      return 0;
1582    }
1583
1584    // Non-instance-fields can't have a bitfield.
1585    if (BitWidth) {
1586      if (Member->isInvalidDecl()) {
1587        // don't emit another diagnostic.
1588      } else if (isa<VarDecl>(Member)) {
1589        // C++ 9.6p3: A bit-field shall not be a static member.
1590        // "static member 'A' cannot be a bit-field"
1591        Diag(Loc, diag::err_static_not_bitfield)
1592          << Name << BitWidth->getSourceRange();
1593      } else if (isa<TypedefDecl>(Member)) {
1594        // "typedef member 'x' cannot be a bit-field"
1595        Diag(Loc, diag::err_typedef_not_bitfield)
1596          << Name << BitWidth->getSourceRange();
1597      } else {
1598        // A function typedef ("typedef int f(); f a;").
1599        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1600        Diag(Loc, diag::err_not_integral_type_bitfield)
1601          << Name << cast<ValueDecl>(Member)->getType()
1602          << BitWidth->getSourceRange();
1603      }
1604
1605      BitWidth = 0;
1606      Member->setInvalidDecl();
1607    }
1608
1609    Member->setAccess(AS);
1610
1611    // If we have declared a member function template, set the access of the
1612    // templated declaration as well.
1613    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1614      FunTmpl->getTemplatedDecl()->setAccess(AS);
1615  }
1616
1617  if (VS.isOverrideSpecified()) {
1618    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1619    if (!MD || !MD->isVirtual()) {
1620      Diag(Member->getLocStart(),
1621           diag::override_keyword_only_allowed_on_virtual_member_functions)
1622        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1623    } else
1624      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1625  }
1626  if (VS.isFinalSpecified()) {
1627    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1628    if (!MD || !MD->isVirtual()) {
1629      Diag(Member->getLocStart(),
1630           diag::override_keyword_only_allowed_on_virtual_member_functions)
1631      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1632    } else
1633      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1634  }
1635
1636  if (VS.getLastLocation().isValid()) {
1637    // Update the end location of a method that has a virt-specifiers.
1638    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1639      MD->setRangeEnd(VS.getLastLocation());
1640  }
1641
1642  CheckOverrideControl(Member);
1643
1644  assert((Name || isInstField) && "No identifier for non-field ?");
1645
1646  if (isInstField)
1647    FieldCollector->Add(cast<FieldDecl>(Member));
1648  return Member;
1649}
1650
1651/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1652/// in-class initializer for a non-static C++ class member, and after
1653/// instantiating an in-class initializer in a class template. Such actions
1654/// are deferred until the class is complete.
1655void
1656Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1657                                       Expr *InitExpr) {
1658  FieldDecl *FD = cast<FieldDecl>(D);
1659
1660  if (!InitExpr) {
1661    FD->setInvalidDecl();
1662    FD->removeInClassInitializer();
1663    return;
1664  }
1665
1666  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1667    FD->setInvalidDecl();
1668    FD->removeInClassInitializer();
1669    return;
1670  }
1671
1672  ExprResult Init = InitExpr;
1673  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1674    // FIXME: if there is no EqualLoc, this is list-initialization.
1675    Init = PerformCopyInitialization(
1676      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1677    if (Init.isInvalid()) {
1678      FD->setInvalidDecl();
1679      return;
1680    }
1681
1682    CheckImplicitConversions(Init.get(), EqualLoc);
1683  }
1684
1685  // C++0x [class.base.init]p7:
1686  //   The initialization of each base and member constitutes a
1687  //   full-expression.
1688  Init = MaybeCreateExprWithCleanups(Init);
1689  if (Init.isInvalid()) {
1690    FD->setInvalidDecl();
1691    return;
1692  }
1693
1694  InitExpr = Init.release();
1695
1696  FD->setInClassInitializer(InitExpr);
1697}
1698
1699/// \brief Find the direct and/or virtual base specifiers that
1700/// correspond to the given base type, for use in base initialization
1701/// within a constructor.
1702static bool FindBaseInitializer(Sema &SemaRef,
1703                                CXXRecordDecl *ClassDecl,
1704                                QualType BaseType,
1705                                const CXXBaseSpecifier *&DirectBaseSpec,
1706                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1707  // First, check for a direct base class.
1708  DirectBaseSpec = 0;
1709  for (CXXRecordDecl::base_class_const_iterator Base
1710         = ClassDecl->bases_begin();
1711       Base != ClassDecl->bases_end(); ++Base) {
1712    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1713      // We found a direct base of this type. That's what we're
1714      // initializing.
1715      DirectBaseSpec = &*Base;
1716      break;
1717    }
1718  }
1719
1720  // Check for a virtual base class.
1721  // FIXME: We might be able to short-circuit this if we know in advance that
1722  // there are no virtual bases.
1723  VirtualBaseSpec = 0;
1724  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1725    // We haven't found a base yet; search the class hierarchy for a
1726    // virtual base class.
1727    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1728                       /*DetectVirtual=*/false);
1729    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1730                              BaseType, Paths)) {
1731      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1732           Path != Paths.end(); ++Path) {
1733        if (Path->back().Base->isVirtual()) {
1734          VirtualBaseSpec = Path->back().Base;
1735          break;
1736        }
1737      }
1738    }
1739  }
1740
1741  return DirectBaseSpec || VirtualBaseSpec;
1742}
1743
1744/// \brief Handle a C++ member initializer using braced-init-list syntax.
1745MemInitResult
1746Sema::ActOnMemInitializer(Decl *ConstructorD,
1747                          Scope *S,
1748                          CXXScopeSpec &SS,
1749                          IdentifierInfo *MemberOrBase,
1750                          ParsedType TemplateTypeTy,
1751                          const DeclSpec &DS,
1752                          SourceLocation IdLoc,
1753                          Expr *InitList,
1754                          SourceLocation EllipsisLoc) {
1755  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1756                             DS, IdLoc, MultiInitializer(InitList),
1757                             EllipsisLoc);
1758}
1759
1760/// \brief Handle a C++ member initializer using parentheses syntax.
1761MemInitResult
1762Sema::ActOnMemInitializer(Decl *ConstructorD,
1763                          Scope *S,
1764                          CXXScopeSpec &SS,
1765                          IdentifierInfo *MemberOrBase,
1766                          ParsedType TemplateTypeTy,
1767                          const DeclSpec &DS,
1768                          SourceLocation IdLoc,
1769                          SourceLocation LParenLoc,
1770                          Expr **Args, unsigned NumArgs,
1771                          SourceLocation RParenLoc,
1772                          SourceLocation EllipsisLoc) {
1773  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1774                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1775                                                         NumArgs, RParenLoc),
1776                             EllipsisLoc);
1777}
1778
1779namespace {
1780
1781// Callback to only accept typo corrections that can be a valid C++ member
1782// intializer: either a non-static field member or a base class.
1783class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1784 public:
1785  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1786      : ClassDecl(ClassDecl) {}
1787
1788  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1789    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1790      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1791        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1792      else
1793        return isa<TypeDecl>(ND);
1794    }
1795    return false;
1796  }
1797
1798 private:
1799  CXXRecordDecl *ClassDecl;
1800};
1801
1802}
1803
1804/// \brief Handle a C++ member initializer.
1805MemInitResult
1806Sema::BuildMemInitializer(Decl *ConstructorD,
1807                          Scope *S,
1808                          CXXScopeSpec &SS,
1809                          IdentifierInfo *MemberOrBase,
1810                          ParsedType TemplateTypeTy,
1811                          const DeclSpec &DS,
1812                          SourceLocation IdLoc,
1813                          const MultiInitializer &Args,
1814                          SourceLocation EllipsisLoc) {
1815  if (!ConstructorD)
1816    return true;
1817
1818  AdjustDeclIfTemplate(ConstructorD);
1819
1820  CXXConstructorDecl *Constructor
1821    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1822  if (!Constructor) {
1823    // The user wrote a constructor initializer on a function that is
1824    // not a C++ constructor. Ignore the error for now, because we may
1825    // have more member initializers coming; we'll diagnose it just
1826    // once in ActOnMemInitializers.
1827    return true;
1828  }
1829
1830  CXXRecordDecl *ClassDecl = Constructor->getParent();
1831
1832  // C++ [class.base.init]p2:
1833  //   Names in a mem-initializer-id are looked up in the scope of the
1834  //   constructor's class and, if not found in that scope, are looked
1835  //   up in the scope containing the constructor's definition.
1836  //   [Note: if the constructor's class contains a member with the
1837  //   same name as a direct or virtual base class of the class, a
1838  //   mem-initializer-id naming the member or base class and composed
1839  //   of a single identifier refers to the class member. A
1840  //   mem-initializer-id for the hidden base class may be specified
1841  //   using a qualified name. ]
1842  if (!SS.getScopeRep() && !TemplateTypeTy) {
1843    // Look for a member, first.
1844    DeclContext::lookup_result Result
1845      = ClassDecl->lookup(MemberOrBase);
1846    if (Result.first != Result.second) {
1847      ValueDecl *Member;
1848      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1849          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1850        if (EllipsisLoc.isValid())
1851          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1852            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1853
1854        return BuildMemberInitializer(Member, Args, IdLoc);
1855      }
1856    }
1857  }
1858  // It didn't name a member, so see if it names a class.
1859  QualType BaseType;
1860  TypeSourceInfo *TInfo = 0;
1861
1862  if (TemplateTypeTy) {
1863    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1864  } else if (DS.getTypeSpecType() == TST_decltype) {
1865    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1866  } else {
1867    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1868    LookupParsedName(R, S, &SS);
1869
1870    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1871    if (!TyD) {
1872      if (R.isAmbiguous()) return true;
1873
1874      // We don't want access-control diagnostics here.
1875      R.suppressDiagnostics();
1876
1877      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1878        bool NotUnknownSpecialization = false;
1879        DeclContext *DC = computeDeclContext(SS, false);
1880        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1881          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1882
1883        if (!NotUnknownSpecialization) {
1884          // When the scope specifier can refer to a member of an unknown
1885          // specialization, we take it as a type name.
1886          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1887                                       SS.getWithLocInContext(Context),
1888                                       *MemberOrBase, IdLoc);
1889          if (BaseType.isNull())
1890            return true;
1891
1892          R.clear();
1893          R.setLookupName(MemberOrBase);
1894        }
1895      }
1896
1897      // If no results were found, try to correct typos.
1898      TypoCorrection Corr;
1899      MemInitializerValidatorCCC Validator(ClassDecl);
1900      if (R.empty() && BaseType.isNull() &&
1901          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1902                              Validator, ClassDecl))) {
1903        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1904        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1905        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1906          // We have found a non-static data member with a similar
1907          // name to what was typed; complain and initialize that
1908          // member.
1909          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1910            << MemberOrBase << true << CorrectedQuotedStr
1911            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1912          Diag(Member->getLocation(), diag::note_previous_decl)
1913            << CorrectedQuotedStr;
1914
1915          return BuildMemberInitializer(Member, Args, IdLoc);
1916        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1917          const CXXBaseSpecifier *DirectBaseSpec;
1918          const CXXBaseSpecifier *VirtualBaseSpec;
1919          if (FindBaseInitializer(*this, ClassDecl,
1920                                  Context.getTypeDeclType(Type),
1921                                  DirectBaseSpec, VirtualBaseSpec)) {
1922            // We have found a direct or virtual base class with a
1923            // similar name to what was typed; complain and initialize
1924            // that base class.
1925            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1926              << MemberOrBase << false << CorrectedQuotedStr
1927              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1928
1929            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1930                                                             : VirtualBaseSpec;
1931            Diag(BaseSpec->getSourceRange().getBegin(),
1932                 diag::note_base_class_specified_here)
1933              << BaseSpec->getType()
1934              << BaseSpec->getSourceRange();
1935
1936            TyD = Type;
1937          }
1938        }
1939      }
1940
1941      if (!TyD && BaseType.isNull()) {
1942        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1943          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1944        return true;
1945      }
1946    }
1947
1948    if (BaseType.isNull()) {
1949      BaseType = Context.getTypeDeclType(TyD);
1950      if (SS.isSet()) {
1951        NestedNameSpecifier *Qualifier =
1952          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1953
1954        // FIXME: preserve source range information
1955        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1956      }
1957    }
1958  }
1959
1960  if (!TInfo)
1961    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1962
1963  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1964}
1965
1966/// Checks a member initializer expression for cases where reference (or
1967/// pointer) members are bound to by-value parameters (or their addresses).
1968static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1969                                               Expr *Init,
1970                                               SourceLocation IdLoc) {
1971  QualType MemberTy = Member->getType();
1972
1973  // We only handle pointers and references currently.
1974  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1975  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1976    return;
1977
1978  const bool IsPointer = MemberTy->isPointerType();
1979  if (IsPointer) {
1980    if (const UnaryOperator *Op
1981          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1982      // The only case we're worried about with pointers requires taking the
1983      // address.
1984      if (Op->getOpcode() != UO_AddrOf)
1985        return;
1986
1987      Init = Op->getSubExpr();
1988    } else {
1989      // We only handle address-of expression initializers for pointers.
1990      return;
1991    }
1992  }
1993
1994  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1995    // Taking the address of a temporary will be diagnosed as a hard error.
1996    if (IsPointer)
1997      return;
1998
1999    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2000      << Member << Init->getSourceRange();
2001  } else if (const DeclRefExpr *DRE
2002               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2003    // We only warn when referring to a non-reference parameter declaration.
2004    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2005    if (!Parameter || Parameter->getType()->isReferenceType())
2006      return;
2007
2008    S.Diag(Init->getExprLoc(),
2009           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2010                     : diag::warn_bind_ref_member_to_parameter)
2011      << Member << Parameter << Init->getSourceRange();
2012  } else {
2013    // Other initializers are fine.
2014    return;
2015  }
2016
2017  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2018    << (unsigned)IsPointer;
2019}
2020
2021/// Checks an initializer expression for use of uninitialized fields, such as
2022/// containing the field that is being initialized. Returns true if there is an
2023/// uninitialized field was used an updates the SourceLocation parameter; false
2024/// otherwise.
2025static bool InitExprContainsUninitializedFields(const Stmt *S,
2026                                                const ValueDecl *LhsField,
2027                                                SourceLocation *L) {
2028  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2029
2030  if (isa<CallExpr>(S)) {
2031    // Do not descend into function calls or constructors, as the use
2032    // of an uninitialized field may be valid. One would have to inspect
2033    // the contents of the function/ctor to determine if it is safe or not.
2034    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2035    // may be safe, depending on what the function/ctor does.
2036    return false;
2037  }
2038  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2039    const NamedDecl *RhsField = ME->getMemberDecl();
2040
2041    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2042      // The member expression points to a static data member.
2043      assert(VD->isStaticDataMember() &&
2044             "Member points to non-static data member!");
2045      (void)VD;
2046      return false;
2047    }
2048
2049    if (isa<EnumConstantDecl>(RhsField)) {
2050      // The member expression points to an enum.
2051      return false;
2052    }
2053
2054    if (RhsField == LhsField) {
2055      // Initializing a field with itself. Throw a warning.
2056      // But wait; there are exceptions!
2057      // Exception #1:  The field may not belong to this record.
2058      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2059      const Expr *base = ME->getBase();
2060      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2061        // Even though the field matches, it does not belong to this record.
2062        return false;
2063      }
2064      // None of the exceptions triggered; return true to indicate an
2065      // uninitialized field was used.
2066      *L = ME->getMemberLoc();
2067      return true;
2068    }
2069  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2070    // sizeof/alignof doesn't reference contents, do not warn.
2071    return false;
2072  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2073    // address-of doesn't reference contents (the pointer may be dereferenced
2074    // in the same expression but it would be rare; and weird).
2075    if (UOE->getOpcode() == UO_AddrOf)
2076      return false;
2077  }
2078  for (Stmt::const_child_range it = S->children(); it; ++it) {
2079    if (!*it) {
2080      // An expression such as 'member(arg ?: "")' may trigger this.
2081      continue;
2082    }
2083    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2084      return true;
2085  }
2086  return false;
2087}
2088
2089MemInitResult
2090Sema::BuildMemberInitializer(ValueDecl *Member,
2091                             const MultiInitializer &Args,
2092                             SourceLocation IdLoc) {
2093  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2094  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2095  assert((DirectMember || IndirectMember) &&
2096         "Member must be a FieldDecl or IndirectFieldDecl");
2097
2098  if (Args.DiagnoseUnexpandedParameterPack(*this))
2099    return true;
2100
2101  if (Member->isInvalidDecl())
2102    return true;
2103
2104  // Diagnose value-uses of fields to initialize themselves, e.g.
2105  //   foo(foo)
2106  // where foo is not also a parameter to the constructor.
2107  // TODO: implement -Wuninitialized and fold this into that framework.
2108  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2109       I != E; ++I) {
2110    SourceLocation L;
2111    Expr *Arg = *I;
2112    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2113      Arg = DIE->getInit();
2114    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2115      // FIXME: Return true in the case when other fields are used before being
2116      // uninitialized. For example, let this field be the i'th field. When
2117      // initializing the i'th field, throw a warning if any of the >= i'th
2118      // fields are used, as they are not yet initialized.
2119      // Right now we are only handling the case where the i'th field uses
2120      // itself in its initializer.
2121      Diag(L, diag::warn_field_is_uninit);
2122    }
2123  }
2124
2125  bool HasDependentArg = Args.isTypeDependent();
2126
2127  Expr *Init;
2128  if (Member->getType()->isDependentType() || HasDependentArg) {
2129    // Can't check initialization for a member of dependent type or when
2130    // any of the arguments are type-dependent expressions.
2131    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2132
2133    DiscardCleanupsInEvaluationContext();
2134  } else {
2135    // Initialize the member.
2136    InitializedEntity MemberEntity =
2137      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2138                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2139    InitializationKind Kind =
2140      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2141                                       Args.getEndLoc());
2142
2143    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2144    if (MemberInit.isInvalid())
2145      return true;
2146
2147    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2148
2149    // C++0x [class.base.init]p7:
2150    //   The initialization of each base and member constitutes a
2151    //   full-expression.
2152    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2153    if (MemberInit.isInvalid())
2154      return true;
2155
2156    // If we are in a dependent context, template instantiation will
2157    // perform this type-checking again. Just save the arguments that we
2158    // received in a ParenListExpr.
2159    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2160    // of the information that we have about the member
2161    // initializer. However, deconstructing the ASTs is a dicey process,
2162    // and this approach is far more likely to get the corner cases right.
2163    if (CurContext->isDependentContext()) {
2164      Init = Args.CreateInitExpr(Context,
2165                                 Member->getType().getNonReferenceType());
2166    } else {
2167      Init = MemberInit.get();
2168      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2169    }
2170  }
2171
2172  if (DirectMember) {
2173    return new (Context) CXXCtorInitializer(Context, DirectMember,
2174                                                    IdLoc, Args.getStartLoc(),
2175                                                    Init, Args.getEndLoc());
2176  } else {
2177    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2178                                                    IdLoc, Args.getStartLoc(),
2179                                                    Init, Args.getEndLoc());
2180  }
2181}
2182
2183MemInitResult
2184Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2185                                 const MultiInitializer &Args,
2186                                 CXXRecordDecl *ClassDecl) {
2187  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2188  if (!LangOpts.CPlusPlus0x)
2189    return Diag(NameLoc, diag::err_delegating_ctor)
2190      << TInfo->getTypeLoc().getLocalSourceRange();
2191  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2192
2193  // Initialize the object.
2194  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2195                                     QualType(ClassDecl->getTypeForDecl(), 0));
2196  InitializationKind Kind =
2197    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2198                                     Args.getEndLoc());
2199
2200  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2201  if (DelegationInit.isInvalid())
2202    return true;
2203
2204  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2205         "Delegating constructor with no target?");
2206
2207  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2208
2209  // C++0x [class.base.init]p7:
2210  //   The initialization of each base and member constitutes a
2211  //   full-expression.
2212  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2213  if (DelegationInit.isInvalid())
2214    return true;
2215
2216  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2217                                          DelegationInit.takeAs<Expr>(),
2218                                          Args.getEndLoc());
2219}
2220
2221MemInitResult
2222Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2223                           const MultiInitializer &Args,
2224                           CXXRecordDecl *ClassDecl,
2225                           SourceLocation EllipsisLoc) {
2226  bool HasDependentArg = Args.isTypeDependent();
2227
2228  SourceLocation BaseLoc
2229    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2230
2231  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2232    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2233             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2234
2235  // C++ [class.base.init]p2:
2236  //   [...] Unless the mem-initializer-id names a nonstatic data
2237  //   member of the constructor's class or a direct or virtual base
2238  //   of that class, the mem-initializer is ill-formed. A
2239  //   mem-initializer-list can initialize a base class using any
2240  //   name that denotes that base class type.
2241  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2242
2243  if (EllipsisLoc.isValid()) {
2244    // This is a pack expansion.
2245    if (!BaseType->containsUnexpandedParameterPack())  {
2246      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2247        << SourceRange(BaseLoc, Args.getEndLoc());
2248
2249      EllipsisLoc = SourceLocation();
2250    }
2251  } else {
2252    // Check for any unexpanded parameter packs.
2253    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2254      return true;
2255
2256    if (Args.DiagnoseUnexpandedParameterPack(*this))
2257      return true;
2258  }
2259
2260  // Check for direct and virtual base classes.
2261  const CXXBaseSpecifier *DirectBaseSpec = 0;
2262  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2263  if (!Dependent) {
2264    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2265                                       BaseType))
2266      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2267
2268    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2269                        VirtualBaseSpec);
2270
2271    // C++ [base.class.init]p2:
2272    // Unless the mem-initializer-id names a nonstatic data member of the
2273    // constructor's class or a direct or virtual base of that class, the
2274    // mem-initializer is ill-formed.
2275    if (!DirectBaseSpec && !VirtualBaseSpec) {
2276      // If the class has any dependent bases, then it's possible that
2277      // one of those types will resolve to the same type as
2278      // BaseType. Therefore, just treat this as a dependent base
2279      // class initialization.  FIXME: Should we try to check the
2280      // initialization anyway? It seems odd.
2281      if (ClassDecl->hasAnyDependentBases())
2282        Dependent = true;
2283      else
2284        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2285          << BaseType << Context.getTypeDeclType(ClassDecl)
2286          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2287    }
2288  }
2289
2290  if (Dependent) {
2291    // Can't check initialization for a base of dependent type or when
2292    // any of the arguments are type-dependent expressions.
2293    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2294
2295    DiscardCleanupsInEvaluationContext();
2296
2297    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2298                                            /*IsVirtual=*/false,
2299                                            Args.getStartLoc(), BaseInit,
2300                                            Args.getEndLoc(), EllipsisLoc);
2301  }
2302
2303  // C++ [base.class.init]p2:
2304  //   If a mem-initializer-id is ambiguous because it designates both
2305  //   a direct non-virtual base class and an inherited virtual base
2306  //   class, the mem-initializer is ill-formed.
2307  if (DirectBaseSpec && VirtualBaseSpec)
2308    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2309      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2310
2311  CXXBaseSpecifier *BaseSpec
2312    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2313  if (!BaseSpec)
2314    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2315
2316  // Initialize the base.
2317  InitializedEntity BaseEntity =
2318    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2319  InitializationKind Kind =
2320    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2321                                     Args.getEndLoc());
2322
2323  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2324  if (BaseInit.isInvalid())
2325    return true;
2326
2327  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2328
2329  // C++0x [class.base.init]p7:
2330  //   The initialization of each base and member constitutes a
2331  //   full-expression.
2332  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2333  if (BaseInit.isInvalid())
2334    return true;
2335
2336  // If we are in a dependent context, template instantiation will
2337  // perform this type-checking again. Just save the arguments that we
2338  // received in a ParenListExpr.
2339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2340  // of the information that we have about the base
2341  // initializer. However, deconstructing the ASTs is a dicey process,
2342  // and this approach is far more likely to get the corner cases right.
2343  if (CurContext->isDependentContext())
2344    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2345
2346  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2347                                          BaseSpec->isVirtual(),
2348                                          Args.getStartLoc(),
2349                                          BaseInit.takeAs<Expr>(),
2350                                          Args.getEndLoc(), EllipsisLoc);
2351}
2352
2353// Create a static_cast\<T&&>(expr).
2354static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2355  QualType ExprType = E->getType();
2356  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2357  SourceLocation ExprLoc = E->getLocStart();
2358  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2359      TargetType, ExprLoc);
2360
2361  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2362                                   SourceRange(ExprLoc, ExprLoc),
2363                                   E->getSourceRange()).take();
2364}
2365
2366/// ImplicitInitializerKind - How an implicit base or member initializer should
2367/// initialize its base or member.
2368enum ImplicitInitializerKind {
2369  IIK_Default,
2370  IIK_Copy,
2371  IIK_Move
2372};
2373
2374static bool
2375BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2376                             ImplicitInitializerKind ImplicitInitKind,
2377                             CXXBaseSpecifier *BaseSpec,
2378                             bool IsInheritedVirtualBase,
2379                             CXXCtorInitializer *&CXXBaseInit) {
2380  InitializedEntity InitEntity
2381    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2382                                        IsInheritedVirtualBase);
2383
2384  ExprResult BaseInit;
2385
2386  switch (ImplicitInitKind) {
2387  case IIK_Default: {
2388    InitializationKind InitKind
2389      = InitializationKind::CreateDefault(Constructor->getLocation());
2390    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2391    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2392                               MultiExprArg(SemaRef, 0, 0));
2393    break;
2394  }
2395
2396  case IIK_Move:
2397  case IIK_Copy: {
2398    bool Moving = ImplicitInitKind == IIK_Move;
2399    ParmVarDecl *Param = Constructor->getParamDecl(0);
2400    QualType ParamType = Param->getType().getNonReferenceType();
2401
2402    Expr *CopyCtorArg =
2403      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2404                          SourceLocation(), Param,
2405                          Constructor->getLocation(), ParamType,
2406                          VK_LValue, 0);
2407
2408    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2409
2410    // Cast to the base class to avoid ambiguities.
2411    QualType ArgTy =
2412      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2413                                       ParamType.getQualifiers());
2414
2415    if (Moving) {
2416      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2417    }
2418
2419    CXXCastPath BasePath;
2420    BasePath.push_back(BaseSpec);
2421    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2422                                            CK_UncheckedDerivedToBase,
2423                                            Moving ? VK_XValue : VK_LValue,
2424                                            &BasePath).take();
2425
2426    InitializationKind InitKind
2427      = InitializationKind::CreateDirect(Constructor->getLocation(),
2428                                         SourceLocation(), SourceLocation());
2429    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2430                                   &CopyCtorArg, 1);
2431    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2432                               MultiExprArg(&CopyCtorArg, 1));
2433    break;
2434  }
2435  }
2436
2437  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2438  if (BaseInit.isInvalid())
2439    return true;
2440
2441  CXXBaseInit =
2442    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2443               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2444                                                        SourceLocation()),
2445                                             BaseSpec->isVirtual(),
2446                                             SourceLocation(),
2447                                             BaseInit.takeAs<Expr>(),
2448                                             SourceLocation(),
2449                                             SourceLocation());
2450
2451  return false;
2452}
2453
2454static bool RefersToRValueRef(Expr *MemRef) {
2455  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2456  return Referenced->getType()->isRValueReferenceType();
2457}
2458
2459static bool
2460BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2461                               ImplicitInitializerKind ImplicitInitKind,
2462                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2463                               CXXCtorInitializer *&CXXMemberInit) {
2464  if (Field->isInvalidDecl())
2465    return true;
2466
2467  SourceLocation Loc = Constructor->getLocation();
2468
2469  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2470    bool Moving = ImplicitInitKind == IIK_Move;
2471    ParmVarDecl *Param = Constructor->getParamDecl(0);
2472    QualType ParamType = Param->getType().getNonReferenceType();
2473
2474    // Suppress copying zero-width bitfields.
2475    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2476      return false;
2477
2478    Expr *MemberExprBase =
2479      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2480                          SourceLocation(), Param,
2481                          Loc, ParamType, VK_LValue, 0);
2482
2483    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2484
2485    if (Moving) {
2486      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2487    }
2488
2489    // Build a reference to this field within the parameter.
2490    CXXScopeSpec SS;
2491    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2492                              Sema::LookupMemberName);
2493    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2494                                  : cast<ValueDecl>(Field), AS_public);
2495    MemberLookup.resolveKind();
2496    ExprResult CtorArg
2497      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2498                                         ParamType, Loc,
2499                                         /*IsArrow=*/false,
2500                                         SS,
2501                                         /*TemplateKWLoc=*/SourceLocation(),
2502                                         /*FirstQualifierInScope=*/0,
2503                                         MemberLookup,
2504                                         /*TemplateArgs=*/0);
2505    if (CtorArg.isInvalid())
2506      return true;
2507
2508    // C++11 [class.copy]p15:
2509    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2510    //     with static_cast<T&&>(x.m);
2511    if (RefersToRValueRef(CtorArg.get())) {
2512      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2513    }
2514
2515    // When the field we are copying is an array, create index variables for
2516    // each dimension of the array. We use these index variables to subscript
2517    // the source array, and other clients (e.g., CodeGen) will perform the
2518    // necessary iteration with these index variables.
2519    SmallVector<VarDecl *, 4> IndexVariables;
2520    QualType BaseType = Field->getType();
2521    QualType SizeType = SemaRef.Context.getSizeType();
2522    bool InitializingArray = false;
2523    while (const ConstantArrayType *Array
2524                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2525      InitializingArray = true;
2526      // Create the iteration variable for this array index.
2527      IdentifierInfo *IterationVarName = 0;
2528      {
2529        SmallString<8> Str;
2530        llvm::raw_svector_ostream OS(Str);
2531        OS << "__i" << IndexVariables.size();
2532        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2533      }
2534      VarDecl *IterationVar
2535        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2536                          IterationVarName, SizeType,
2537                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2538                          SC_None, SC_None);
2539      IndexVariables.push_back(IterationVar);
2540
2541      // Create a reference to the iteration variable.
2542      ExprResult IterationVarRef
2543        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2544      assert(!IterationVarRef.isInvalid() &&
2545             "Reference to invented variable cannot fail!");
2546      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2547      assert(!IterationVarRef.isInvalid() &&
2548             "Conversion of invented variable cannot fail!");
2549
2550      // Subscript the array with this iteration variable.
2551      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2552                                                        IterationVarRef.take(),
2553                                                        Loc);
2554      if (CtorArg.isInvalid())
2555        return true;
2556
2557      BaseType = Array->getElementType();
2558    }
2559
2560    // The array subscript expression is an lvalue, which is wrong for moving.
2561    if (Moving && InitializingArray)
2562      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2563
2564    // Construct the entity that we will be initializing. For an array, this
2565    // will be first element in the array, which may require several levels
2566    // of array-subscript entities.
2567    SmallVector<InitializedEntity, 4> Entities;
2568    Entities.reserve(1 + IndexVariables.size());
2569    if (Indirect)
2570      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2571    else
2572      Entities.push_back(InitializedEntity::InitializeMember(Field));
2573    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2574      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2575                                                              0,
2576                                                              Entities.back()));
2577
2578    // Direct-initialize to use the copy constructor.
2579    InitializationKind InitKind =
2580      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2581
2582    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2583    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2584                                   &CtorArgE, 1);
2585
2586    ExprResult MemberInit
2587      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2588                        MultiExprArg(&CtorArgE, 1));
2589    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2590    if (MemberInit.isInvalid())
2591      return true;
2592
2593    if (Indirect) {
2594      assert(IndexVariables.size() == 0 &&
2595             "Indirect field improperly initialized");
2596      CXXMemberInit
2597        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2598                                                   Loc, Loc,
2599                                                   MemberInit.takeAs<Expr>(),
2600                                                   Loc);
2601    } else
2602      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2603                                                 Loc, MemberInit.takeAs<Expr>(),
2604                                                 Loc,
2605                                                 IndexVariables.data(),
2606                                                 IndexVariables.size());
2607    return false;
2608  }
2609
2610  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2611
2612  QualType FieldBaseElementType =
2613    SemaRef.Context.getBaseElementType(Field->getType());
2614
2615  if (FieldBaseElementType->isRecordType()) {
2616    InitializedEntity InitEntity
2617      = Indirect? InitializedEntity::InitializeMember(Indirect)
2618                : InitializedEntity::InitializeMember(Field);
2619    InitializationKind InitKind =
2620      InitializationKind::CreateDefault(Loc);
2621
2622    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2623    ExprResult MemberInit =
2624      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2625
2626    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2627    if (MemberInit.isInvalid())
2628      return true;
2629
2630    if (Indirect)
2631      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2632                                                               Indirect, Loc,
2633                                                               Loc,
2634                                                               MemberInit.get(),
2635                                                               Loc);
2636    else
2637      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2638                                                               Field, Loc, Loc,
2639                                                               MemberInit.get(),
2640                                                               Loc);
2641    return false;
2642  }
2643
2644  if (!Field->getParent()->isUnion()) {
2645    if (FieldBaseElementType->isReferenceType()) {
2646      SemaRef.Diag(Constructor->getLocation(),
2647                   diag::err_uninitialized_member_in_ctor)
2648      << (int)Constructor->isImplicit()
2649      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2650      << 0 << Field->getDeclName();
2651      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2652      return true;
2653    }
2654
2655    if (FieldBaseElementType.isConstQualified()) {
2656      SemaRef.Diag(Constructor->getLocation(),
2657                   diag::err_uninitialized_member_in_ctor)
2658      << (int)Constructor->isImplicit()
2659      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2660      << 1 << Field->getDeclName();
2661      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2662      return true;
2663    }
2664  }
2665
2666  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2667      FieldBaseElementType->isObjCRetainableType() &&
2668      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2669      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2670    // Instant objects:
2671    //   Default-initialize Objective-C pointers to NULL.
2672    CXXMemberInit
2673      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2674                                                 Loc, Loc,
2675                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2676                                                 Loc);
2677    return false;
2678  }
2679
2680  // Nothing to initialize.
2681  CXXMemberInit = 0;
2682  return false;
2683}
2684
2685namespace {
2686struct BaseAndFieldInfo {
2687  Sema &S;
2688  CXXConstructorDecl *Ctor;
2689  bool AnyErrorsInInits;
2690  ImplicitInitializerKind IIK;
2691  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2692  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2693
2694  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2695    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2696    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2697    if (Generated && Ctor->isCopyConstructor())
2698      IIK = IIK_Copy;
2699    else if (Generated && Ctor->isMoveConstructor())
2700      IIK = IIK_Move;
2701    else
2702      IIK = IIK_Default;
2703  }
2704
2705  bool isImplicitCopyOrMove() const {
2706    switch (IIK) {
2707    case IIK_Copy:
2708    case IIK_Move:
2709      return true;
2710
2711    case IIK_Default:
2712      return false;
2713    }
2714
2715    llvm_unreachable("Invalid ImplicitInitializerKind!");
2716  }
2717};
2718}
2719
2720/// \brief Determine whether the given indirect field declaration is somewhere
2721/// within an anonymous union.
2722static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2723  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2724                                      CEnd = F->chain_end();
2725       C != CEnd; ++C)
2726    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2727      if (Record->isUnion())
2728        return true;
2729
2730  return false;
2731}
2732
2733/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2734/// array type.
2735static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2736  if (T->isIncompleteArrayType())
2737    return true;
2738
2739  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2740    if (!ArrayT->getSize())
2741      return true;
2742
2743    T = ArrayT->getElementType();
2744  }
2745
2746  return false;
2747}
2748
2749static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2750                                    FieldDecl *Field,
2751                                    IndirectFieldDecl *Indirect = 0) {
2752
2753  // Overwhelmingly common case: we have a direct initializer for this field.
2754  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2755    Info.AllToInit.push_back(Init);
2756    return false;
2757  }
2758
2759  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2760  // has a brace-or-equal-initializer, the entity is initialized as specified
2761  // in [dcl.init].
2762  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2763    CXXCtorInitializer *Init;
2764    if (Indirect)
2765      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2766                                                      SourceLocation(),
2767                                                      SourceLocation(), 0,
2768                                                      SourceLocation());
2769    else
2770      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2771                                                      SourceLocation(),
2772                                                      SourceLocation(), 0,
2773                                                      SourceLocation());
2774    Info.AllToInit.push_back(Init);
2775    return false;
2776  }
2777
2778  // Don't build an implicit initializer for union members if none was
2779  // explicitly specified.
2780  if (Field->getParent()->isUnion() ||
2781      (Indirect && isWithinAnonymousUnion(Indirect)))
2782    return false;
2783
2784  // Don't initialize incomplete or zero-length arrays.
2785  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2786    return false;
2787
2788  // Don't try to build an implicit initializer if there were semantic
2789  // errors in any of the initializers (and therefore we might be
2790  // missing some that the user actually wrote).
2791  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2792    return false;
2793
2794  CXXCtorInitializer *Init = 0;
2795  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2796                                     Indirect, Init))
2797    return true;
2798
2799  if (Init)
2800    Info.AllToInit.push_back(Init);
2801
2802  return false;
2803}
2804
2805bool
2806Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2807                               CXXCtorInitializer *Initializer) {
2808  assert(Initializer->isDelegatingInitializer());
2809  Constructor->setNumCtorInitializers(1);
2810  CXXCtorInitializer **initializer =
2811    new (Context) CXXCtorInitializer*[1];
2812  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2813  Constructor->setCtorInitializers(initializer);
2814
2815  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2816    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2817    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2818  }
2819
2820  DelegatingCtorDecls.push_back(Constructor);
2821
2822  return false;
2823}
2824
2825bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2826                               CXXCtorInitializer **Initializers,
2827                               unsigned NumInitializers,
2828                               bool AnyErrors) {
2829  if (Constructor->isDependentContext()) {
2830    // Just store the initializers as written, they will be checked during
2831    // instantiation.
2832    if (NumInitializers > 0) {
2833      Constructor->setNumCtorInitializers(NumInitializers);
2834      CXXCtorInitializer **baseOrMemberInitializers =
2835        new (Context) CXXCtorInitializer*[NumInitializers];
2836      memcpy(baseOrMemberInitializers, Initializers,
2837             NumInitializers * sizeof(CXXCtorInitializer*));
2838      Constructor->setCtorInitializers(baseOrMemberInitializers);
2839    }
2840
2841    return false;
2842  }
2843
2844  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2845
2846  // We need to build the initializer AST according to order of construction
2847  // and not what user specified in the Initializers list.
2848  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2849  if (!ClassDecl)
2850    return true;
2851
2852  bool HadError = false;
2853
2854  for (unsigned i = 0; i < NumInitializers; i++) {
2855    CXXCtorInitializer *Member = Initializers[i];
2856
2857    if (Member->isBaseInitializer())
2858      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2859    else
2860      Info.AllBaseFields[Member->getAnyMember()] = Member;
2861  }
2862
2863  // Keep track of the direct virtual bases.
2864  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2865  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2866       E = ClassDecl->bases_end(); I != E; ++I) {
2867    if (I->isVirtual())
2868      DirectVBases.insert(I);
2869  }
2870
2871  // Push virtual bases before others.
2872  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2873       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2874
2875    if (CXXCtorInitializer *Value
2876        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2877      Info.AllToInit.push_back(Value);
2878    } else if (!AnyErrors) {
2879      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2880      CXXCtorInitializer *CXXBaseInit;
2881      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2882                                       VBase, IsInheritedVirtualBase,
2883                                       CXXBaseInit)) {
2884        HadError = true;
2885        continue;
2886      }
2887
2888      Info.AllToInit.push_back(CXXBaseInit);
2889    }
2890  }
2891
2892  // Non-virtual bases.
2893  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2894       E = ClassDecl->bases_end(); Base != E; ++Base) {
2895    // Virtuals are in the virtual base list and already constructed.
2896    if (Base->isVirtual())
2897      continue;
2898
2899    if (CXXCtorInitializer *Value
2900          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2901      Info.AllToInit.push_back(Value);
2902    } else if (!AnyErrors) {
2903      CXXCtorInitializer *CXXBaseInit;
2904      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2905                                       Base, /*IsInheritedVirtualBase=*/false,
2906                                       CXXBaseInit)) {
2907        HadError = true;
2908        continue;
2909      }
2910
2911      Info.AllToInit.push_back(CXXBaseInit);
2912    }
2913  }
2914
2915  // Fields.
2916  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2917                               MemEnd = ClassDecl->decls_end();
2918       Mem != MemEnd; ++Mem) {
2919    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2920      // C++ [class.bit]p2:
2921      //   A declaration for a bit-field that omits the identifier declares an
2922      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2923      //   initialized.
2924      if (F->isUnnamedBitfield())
2925        continue;
2926
2927      // If we're not generating the implicit copy/move constructor, then we'll
2928      // handle anonymous struct/union fields based on their individual
2929      // indirect fields.
2930      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2931        continue;
2932
2933      if (CollectFieldInitializer(*this, Info, F))
2934        HadError = true;
2935      continue;
2936    }
2937
2938    // Beyond this point, we only consider default initialization.
2939    if (Info.IIK != IIK_Default)
2940      continue;
2941
2942    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2943      if (F->getType()->isIncompleteArrayType()) {
2944        assert(ClassDecl->hasFlexibleArrayMember() &&
2945               "Incomplete array type is not valid");
2946        continue;
2947      }
2948
2949      // Initialize each field of an anonymous struct individually.
2950      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2951        HadError = true;
2952
2953      continue;
2954    }
2955  }
2956
2957  NumInitializers = Info.AllToInit.size();
2958  if (NumInitializers > 0) {
2959    Constructor->setNumCtorInitializers(NumInitializers);
2960    CXXCtorInitializer **baseOrMemberInitializers =
2961      new (Context) CXXCtorInitializer*[NumInitializers];
2962    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2963           NumInitializers * sizeof(CXXCtorInitializer*));
2964    Constructor->setCtorInitializers(baseOrMemberInitializers);
2965
2966    // Constructors implicitly reference the base and member
2967    // destructors.
2968    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2969                                           Constructor->getParent());
2970  }
2971
2972  return HadError;
2973}
2974
2975static void *GetKeyForTopLevelField(FieldDecl *Field) {
2976  // For anonymous unions, use the class declaration as the key.
2977  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2978    if (RT->getDecl()->isAnonymousStructOrUnion())
2979      return static_cast<void *>(RT->getDecl());
2980  }
2981  return static_cast<void *>(Field);
2982}
2983
2984static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2985  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2986}
2987
2988static void *GetKeyForMember(ASTContext &Context,
2989                             CXXCtorInitializer *Member) {
2990  if (!Member->isAnyMemberInitializer())
2991    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2992
2993  // For fields injected into the class via declaration of an anonymous union,
2994  // use its anonymous union class declaration as the unique key.
2995  FieldDecl *Field = Member->getAnyMember();
2996
2997  // If the field is a member of an anonymous struct or union, our key
2998  // is the anonymous record decl that's a direct child of the class.
2999  RecordDecl *RD = Field->getParent();
3000  if (RD->isAnonymousStructOrUnion()) {
3001    while (true) {
3002      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3003      if (Parent->isAnonymousStructOrUnion())
3004        RD = Parent;
3005      else
3006        break;
3007    }
3008
3009    return static_cast<void *>(RD);
3010  }
3011
3012  return static_cast<void *>(Field);
3013}
3014
3015static void
3016DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3017                                  const CXXConstructorDecl *Constructor,
3018                                  CXXCtorInitializer **Inits,
3019                                  unsigned NumInits) {
3020  if (Constructor->getDeclContext()->isDependentContext())
3021    return;
3022
3023  // Don't check initializers order unless the warning is enabled at the
3024  // location of at least one initializer.
3025  bool ShouldCheckOrder = false;
3026  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3027    CXXCtorInitializer *Init = Inits[InitIndex];
3028    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3029                                         Init->getSourceLocation())
3030          != DiagnosticsEngine::Ignored) {
3031      ShouldCheckOrder = true;
3032      break;
3033    }
3034  }
3035  if (!ShouldCheckOrder)
3036    return;
3037
3038  // Build the list of bases and members in the order that they'll
3039  // actually be initialized.  The explicit initializers should be in
3040  // this same order but may be missing things.
3041  SmallVector<const void*, 32> IdealInitKeys;
3042
3043  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3044
3045  // 1. Virtual bases.
3046  for (CXXRecordDecl::base_class_const_iterator VBase =
3047       ClassDecl->vbases_begin(),
3048       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3049    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3050
3051  // 2. Non-virtual bases.
3052  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3053       E = ClassDecl->bases_end(); Base != E; ++Base) {
3054    if (Base->isVirtual())
3055      continue;
3056    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3057  }
3058
3059  // 3. Direct fields.
3060  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3061       E = ClassDecl->field_end(); Field != E; ++Field) {
3062    if (Field->isUnnamedBitfield())
3063      continue;
3064
3065    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3066  }
3067
3068  unsigned NumIdealInits = IdealInitKeys.size();
3069  unsigned IdealIndex = 0;
3070
3071  CXXCtorInitializer *PrevInit = 0;
3072  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3073    CXXCtorInitializer *Init = Inits[InitIndex];
3074    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3075
3076    // Scan forward to try to find this initializer in the idealized
3077    // initializers list.
3078    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3079      if (InitKey == IdealInitKeys[IdealIndex])
3080        break;
3081
3082    // If we didn't find this initializer, it must be because we
3083    // scanned past it on a previous iteration.  That can only
3084    // happen if we're out of order;  emit a warning.
3085    if (IdealIndex == NumIdealInits && PrevInit) {
3086      Sema::SemaDiagnosticBuilder D =
3087        SemaRef.Diag(PrevInit->getSourceLocation(),
3088                     diag::warn_initializer_out_of_order);
3089
3090      if (PrevInit->isAnyMemberInitializer())
3091        D << 0 << PrevInit->getAnyMember()->getDeclName();
3092      else
3093        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3094
3095      if (Init->isAnyMemberInitializer())
3096        D << 0 << Init->getAnyMember()->getDeclName();
3097      else
3098        D << 1 << Init->getTypeSourceInfo()->getType();
3099
3100      // Move back to the initializer's location in the ideal list.
3101      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3102        if (InitKey == IdealInitKeys[IdealIndex])
3103          break;
3104
3105      assert(IdealIndex != NumIdealInits &&
3106             "initializer not found in initializer list");
3107    }
3108
3109    PrevInit = Init;
3110  }
3111}
3112
3113namespace {
3114bool CheckRedundantInit(Sema &S,
3115                        CXXCtorInitializer *Init,
3116                        CXXCtorInitializer *&PrevInit) {
3117  if (!PrevInit) {
3118    PrevInit = Init;
3119    return false;
3120  }
3121
3122  if (FieldDecl *Field = Init->getMember())
3123    S.Diag(Init->getSourceLocation(),
3124           diag::err_multiple_mem_initialization)
3125      << Field->getDeclName()
3126      << Init->getSourceRange();
3127  else {
3128    const Type *BaseClass = Init->getBaseClass();
3129    assert(BaseClass && "neither field nor base");
3130    S.Diag(Init->getSourceLocation(),
3131           diag::err_multiple_base_initialization)
3132      << QualType(BaseClass, 0)
3133      << Init->getSourceRange();
3134  }
3135  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3136    << 0 << PrevInit->getSourceRange();
3137
3138  return true;
3139}
3140
3141typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3142typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3143
3144bool CheckRedundantUnionInit(Sema &S,
3145                             CXXCtorInitializer *Init,
3146                             RedundantUnionMap &Unions) {
3147  FieldDecl *Field = Init->getAnyMember();
3148  RecordDecl *Parent = Field->getParent();
3149  NamedDecl *Child = Field;
3150
3151  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3152    if (Parent->isUnion()) {
3153      UnionEntry &En = Unions[Parent];
3154      if (En.first && En.first != Child) {
3155        S.Diag(Init->getSourceLocation(),
3156               diag::err_multiple_mem_union_initialization)
3157          << Field->getDeclName()
3158          << Init->getSourceRange();
3159        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3160          << 0 << En.second->getSourceRange();
3161        return true;
3162      }
3163      if (!En.first) {
3164        En.first = Child;
3165        En.second = Init;
3166      }
3167      if (!Parent->isAnonymousStructOrUnion())
3168        return false;
3169    }
3170
3171    Child = Parent;
3172    Parent = cast<RecordDecl>(Parent->getDeclContext());
3173  }
3174
3175  return false;
3176}
3177}
3178
3179/// ActOnMemInitializers - Handle the member initializers for a constructor.
3180void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3181                                SourceLocation ColonLoc,
3182                                CXXCtorInitializer **meminits,
3183                                unsigned NumMemInits,
3184                                bool AnyErrors) {
3185  if (!ConstructorDecl)
3186    return;
3187
3188  AdjustDeclIfTemplate(ConstructorDecl);
3189
3190  CXXConstructorDecl *Constructor
3191    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3192
3193  if (!Constructor) {
3194    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3195    return;
3196  }
3197
3198  CXXCtorInitializer **MemInits =
3199    reinterpret_cast<CXXCtorInitializer **>(meminits);
3200
3201  // Mapping for the duplicate initializers check.
3202  // For member initializers, this is keyed with a FieldDecl*.
3203  // For base initializers, this is keyed with a Type*.
3204  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3205
3206  // Mapping for the inconsistent anonymous-union initializers check.
3207  RedundantUnionMap MemberUnions;
3208
3209  bool HadError = false;
3210  for (unsigned i = 0; i < NumMemInits; i++) {
3211    CXXCtorInitializer *Init = MemInits[i];
3212
3213    // Set the source order index.
3214    Init->setSourceOrder(i);
3215
3216    if (Init->isAnyMemberInitializer()) {
3217      FieldDecl *Field = Init->getAnyMember();
3218      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3219          CheckRedundantUnionInit(*this, Init, MemberUnions))
3220        HadError = true;
3221    } else if (Init->isBaseInitializer()) {
3222      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3223      if (CheckRedundantInit(*this, Init, Members[Key]))
3224        HadError = true;
3225    } else {
3226      assert(Init->isDelegatingInitializer());
3227      // This must be the only initializer
3228      if (i != 0 || NumMemInits > 1) {
3229        Diag(MemInits[0]->getSourceLocation(),
3230             diag::err_delegating_initializer_alone)
3231          << MemInits[0]->getSourceRange();
3232        HadError = true;
3233        // We will treat this as being the only initializer.
3234      }
3235      SetDelegatingInitializer(Constructor, MemInits[i]);
3236      // Return immediately as the initializer is set.
3237      return;
3238    }
3239  }
3240
3241  if (HadError)
3242    return;
3243
3244  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3245
3246  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3247}
3248
3249void
3250Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3251                                             CXXRecordDecl *ClassDecl) {
3252  // Ignore dependent contexts. Also ignore unions, since their members never
3253  // have destructors implicitly called.
3254  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3255    return;
3256
3257  // FIXME: all the access-control diagnostics are positioned on the
3258  // field/base declaration.  That's probably good; that said, the
3259  // user might reasonably want to know why the destructor is being
3260  // emitted, and we currently don't say.
3261
3262  // Non-static data members.
3263  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3264       E = ClassDecl->field_end(); I != E; ++I) {
3265    FieldDecl *Field = *I;
3266    if (Field->isInvalidDecl())
3267      continue;
3268
3269    // Don't destroy incomplete or zero-length arrays.
3270    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3271      continue;
3272
3273    QualType FieldType = Context.getBaseElementType(Field->getType());
3274
3275    const RecordType* RT = FieldType->getAs<RecordType>();
3276    if (!RT)
3277      continue;
3278
3279    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3280    if (FieldClassDecl->isInvalidDecl())
3281      continue;
3282    if (FieldClassDecl->hasTrivialDestructor())
3283      continue;
3284
3285    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3286    assert(Dtor && "No dtor found for FieldClassDecl!");
3287    CheckDestructorAccess(Field->getLocation(), Dtor,
3288                          PDiag(diag::err_access_dtor_field)
3289                            << Field->getDeclName()
3290                            << FieldType);
3291
3292    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3293  }
3294
3295  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3296
3297  // Bases.
3298  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3299       E = ClassDecl->bases_end(); Base != E; ++Base) {
3300    // Bases are always records in a well-formed non-dependent class.
3301    const RecordType *RT = Base->getType()->getAs<RecordType>();
3302
3303    // Remember direct virtual bases.
3304    if (Base->isVirtual())
3305      DirectVirtualBases.insert(RT);
3306
3307    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3308    // If our base class is invalid, we probably can't get its dtor anyway.
3309    if (BaseClassDecl->isInvalidDecl())
3310      continue;
3311    // Ignore trivial destructors.
3312    if (BaseClassDecl->hasTrivialDestructor())
3313      continue;
3314
3315    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3316    assert(Dtor && "No dtor found for BaseClassDecl!");
3317
3318    // FIXME: caret should be on the start of the class name
3319    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3320                          PDiag(diag::err_access_dtor_base)
3321                            << Base->getType()
3322                            << Base->getSourceRange());
3323
3324    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3325  }
3326
3327  // Virtual bases.
3328  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3329       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3330
3331    // Bases are always records in a well-formed non-dependent class.
3332    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3333
3334    // Ignore direct virtual bases.
3335    if (DirectVirtualBases.count(RT))
3336      continue;
3337
3338    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3339    // If our base class is invalid, we probably can't get its dtor anyway.
3340    if (BaseClassDecl->isInvalidDecl())
3341      continue;
3342    // Ignore trivial destructors.
3343    if (BaseClassDecl->hasTrivialDestructor())
3344      continue;
3345
3346    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3347    assert(Dtor && "No dtor found for BaseClassDecl!");
3348    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3349                          PDiag(diag::err_access_dtor_vbase)
3350                            << VBase->getType());
3351
3352    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3353  }
3354}
3355
3356void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3357  if (!CDtorDecl)
3358    return;
3359
3360  if (CXXConstructorDecl *Constructor
3361      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3362    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3363}
3364
3365bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3366                                  unsigned DiagID, AbstractDiagSelID SelID) {
3367  if (SelID == -1)
3368    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3369  else
3370    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3371}
3372
3373bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3374                                  const PartialDiagnostic &PD) {
3375  if (!getLangOptions().CPlusPlus)
3376    return false;
3377
3378  if (const ArrayType *AT = Context.getAsArrayType(T))
3379    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3380
3381  if (const PointerType *PT = T->getAs<PointerType>()) {
3382    // Find the innermost pointer type.
3383    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3384      PT = T;
3385
3386    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3387      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3388  }
3389
3390  const RecordType *RT = T->getAs<RecordType>();
3391  if (!RT)
3392    return false;
3393
3394  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3395
3396  // We can't answer whether something is abstract until it has a
3397  // definition.  If it's currently being defined, we'll walk back
3398  // over all the declarations when we have a full definition.
3399  const CXXRecordDecl *Def = RD->getDefinition();
3400  if (!Def || Def->isBeingDefined())
3401    return false;
3402
3403  if (!RD->isAbstract())
3404    return false;
3405
3406  Diag(Loc, PD) << RD->getDeclName();
3407  DiagnoseAbstractType(RD);
3408
3409  return true;
3410}
3411
3412void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3413  // Check if we've already emitted the list of pure virtual functions
3414  // for this class.
3415  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3416    return;
3417
3418  CXXFinalOverriderMap FinalOverriders;
3419  RD->getFinalOverriders(FinalOverriders);
3420
3421  // Keep a set of seen pure methods so we won't diagnose the same method
3422  // more than once.
3423  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3424
3425  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3426                                   MEnd = FinalOverriders.end();
3427       M != MEnd;
3428       ++M) {
3429    for (OverridingMethods::iterator SO = M->second.begin(),
3430                                  SOEnd = M->second.end();
3431         SO != SOEnd; ++SO) {
3432      // C++ [class.abstract]p4:
3433      //   A class is abstract if it contains or inherits at least one
3434      //   pure virtual function for which the final overrider is pure
3435      //   virtual.
3436
3437      //
3438      if (SO->second.size() != 1)
3439        continue;
3440
3441      if (!SO->second.front().Method->isPure())
3442        continue;
3443
3444      if (!SeenPureMethods.insert(SO->second.front().Method))
3445        continue;
3446
3447      Diag(SO->second.front().Method->getLocation(),
3448           diag::note_pure_virtual_function)
3449        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3450    }
3451  }
3452
3453  if (!PureVirtualClassDiagSet)
3454    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3455  PureVirtualClassDiagSet->insert(RD);
3456}
3457
3458namespace {
3459struct AbstractUsageInfo {
3460  Sema &S;
3461  CXXRecordDecl *Record;
3462  CanQualType AbstractType;
3463  bool Invalid;
3464
3465  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3466    : S(S), Record(Record),
3467      AbstractType(S.Context.getCanonicalType(
3468                   S.Context.getTypeDeclType(Record))),
3469      Invalid(false) {}
3470
3471  void DiagnoseAbstractType() {
3472    if (Invalid) return;
3473    S.DiagnoseAbstractType(Record);
3474    Invalid = true;
3475  }
3476
3477  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3478};
3479
3480struct CheckAbstractUsage {
3481  AbstractUsageInfo &Info;
3482  const NamedDecl *Ctx;
3483
3484  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3485    : Info(Info), Ctx(Ctx) {}
3486
3487  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3488    switch (TL.getTypeLocClass()) {
3489#define ABSTRACT_TYPELOC(CLASS, PARENT)
3490#define TYPELOC(CLASS, PARENT) \
3491    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3492#include "clang/AST/TypeLocNodes.def"
3493    }
3494  }
3495
3496  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3497    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3498    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3499      if (!TL.getArg(I))
3500        continue;
3501
3502      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3503      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3504    }
3505  }
3506
3507  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3508    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3509  }
3510
3511  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3512    // Visit the type parameters from a permissive context.
3513    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3514      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3515      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3516        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3517          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3518      // TODO: other template argument types?
3519    }
3520  }
3521
3522  // Visit pointee types from a permissive context.
3523#define CheckPolymorphic(Type) \
3524  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3525    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3526  }
3527  CheckPolymorphic(PointerTypeLoc)
3528  CheckPolymorphic(ReferenceTypeLoc)
3529  CheckPolymorphic(MemberPointerTypeLoc)
3530  CheckPolymorphic(BlockPointerTypeLoc)
3531  CheckPolymorphic(AtomicTypeLoc)
3532
3533  /// Handle all the types we haven't given a more specific
3534  /// implementation for above.
3535  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3536    // Every other kind of type that we haven't called out already
3537    // that has an inner type is either (1) sugar or (2) contains that
3538    // inner type in some way as a subobject.
3539    if (TypeLoc Next = TL.getNextTypeLoc())
3540      return Visit(Next, Sel);
3541
3542    // If there's no inner type and we're in a permissive context,
3543    // don't diagnose.
3544    if (Sel == Sema::AbstractNone) return;
3545
3546    // Check whether the type matches the abstract type.
3547    QualType T = TL.getType();
3548    if (T->isArrayType()) {
3549      Sel = Sema::AbstractArrayType;
3550      T = Info.S.Context.getBaseElementType(T);
3551    }
3552    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3553    if (CT != Info.AbstractType) return;
3554
3555    // It matched; do some magic.
3556    if (Sel == Sema::AbstractArrayType) {
3557      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3558        << T << TL.getSourceRange();
3559    } else {
3560      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3561        << Sel << T << TL.getSourceRange();
3562    }
3563    Info.DiagnoseAbstractType();
3564  }
3565};
3566
3567void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3568                                  Sema::AbstractDiagSelID Sel) {
3569  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3570}
3571
3572}
3573
3574/// Check for invalid uses of an abstract type in a method declaration.
3575static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3576                                    CXXMethodDecl *MD) {
3577  // No need to do the check on definitions, which require that
3578  // the return/param types be complete.
3579  if (MD->doesThisDeclarationHaveABody())
3580    return;
3581
3582  // For safety's sake, just ignore it if we don't have type source
3583  // information.  This should never happen for non-implicit methods,
3584  // but...
3585  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3586    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3587}
3588
3589/// Check for invalid uses of an abstract type within a class definition.
3590static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3591                                    CXXRecordDecl *RD) {
3592  for (CXXRecordDecl::decl_iterator
3593         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3594    Decl *D = *I;
3595    if (D->isImplicit()) continue;
3596
3597    // Methods and method templates.
3598    if (isa<CXXMethodDecl>(D)) {
3599      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3600    } else if (isa<FunctionTemplateDecl>(D)) {
3601      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3602      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3603
3604    // Fields and static variables.
3605    } else if (isa<FieldDecl>(D)) {
3606      FieldDecl *FD = cast<FieldDecl>(D);
3607      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3608        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3609    } else if (isa<VarDecl>(D)) {
3610      VarDecl *VD = cast<VarDecl>(D);
3611      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3612        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3613
3614    // Nested classes and class templates.
3615    } else if (isa<CXXRecordDecl>(D)) {
3616      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3617    } else if (isa<ClassTemplateDecl>(D)) {
3618      CheckAbstractClassUsage(Info,
3619                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3620    }
3621  }
3622}
3623
3624/// \brief Perform semantic checks on a class definition that has been
3625/// completing, introducing implicitly-declared members, checking for
3626/// abstract types, etc.
3627void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3628  if (!Record)
3629    return;
3630
3631  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3632    AbstractUsageInfo Info(*this, Record);
3633    CheckAbstractClassUsage(Info, Record);
3634  }
3635
3636  // If this is not an aggregate type and has no user-declared constructor,
3637  // complain about any non-static data members of reference or const scalar
3638  // type, since they will never get initializers.
3639  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3640      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3641    bool Complained = false;
3642    for (RecordDecl::field_iterator F = Record->field_begin(),
3643                                 FEnd = Record->field_end();
3644         F != FEnd; ++F) {
3645      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3646        continue;
3647
3648      if (F->getType()->isReferenceType() ||
3649          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3650        if (!Complained) {
3651          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3652            << Record->getTagKind() << Record;
3653          Complained = true;
3654        }
3655
3656        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3657          << F->getType()->isReferenceType()
3658          << F->getDeclName();
3659      }
3660    }
3661  }
3662
3663  if (Record->isDynamicClass() && !Record->isDependentType())
3664    DynamicClasses.push_back(Record);
3665
3666  if (Record->getIdentifier()) {
3667    // C++ [class.mem]p13:
3668    //   If T is the name of a class, then each of the following shall have a
3669    //   name different from T:
3670    //     - every member of every anonymous union that is a member of class T.
3671    //
3672    // C++ [class.mem]p14:
3673    //   In addition, if class T has a user-declared constructor (12.1), every
3674    //   non-static data member of class T shall have a name different from T.
3675    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3676         R.first != R.second; ++R.first) {
3677      NamedDecl *D = *R.first;
3678      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3679          isa<IndirectFieldDecl>(D)) {
3680        Diag(D->getLocation(), diag::err_member_name_of_class)
3681          << D->getDeclName();
3682        break;
3683      }
3684    }
3685  }
3686
3687  // Warn if the class has virtual methods but non-virtual public destructor.
3688  if (Record->isPolymorphic() && !Record->isDependentType()) {
3689    CXXDestructorDecl *dtor = Record->getDestructor();
3690    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3691      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3692           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3693  }
3694
3695  // See if a method overloads virtual methods in a base
3696  /// class without overriding any.
3697  if (!Record->isDependentType()) {
3698    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3699                                     MEnd = Record->method_end();
3700         M != MEnd; ++M) {
3701      if (!(*M)->isStatic())
3702        DiagnoseHiddenVirtualMethods(Record, *M);
3703    }
3704  }
3705
3706  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3707  // function that is not a constructor declares that member function to be
3708  // const. [...] The class of which that function is a member shall be
3709  // a literal type.
3710  //
3711  // It's fine to diagnose constructors here too: such constructors cannot
3712  // produce a constant expression, so are ill-formed (no diagnostic required).
3713  //
3714  // If the class has virtual bases, any constexpr members will already have
3715  // been diagnosed by the checks performed on the member declaration, so
3716  // suppress this (less useful) diagnostic.
3717  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3718      !Record->isLiteral() && !Record->getNumVBases()) {
3719    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3720                                     MEnd = Record->method_end();
3721         M != MEnd; ++M) {
3722      if (M->isConstexpr() && M->isInstance()) {
3723        switch (Record->getTemplateSpecializationKind()) {
3724        case TSK_ImplicitInstantiation:
3725        case TSK_ExplicitInstantiationDeclaration:
3726        case TSK_ExplicitInstantiationDefinition:
3727          // If a template instantiates to a non-literal type, but its members
3728          // instantiate to constexpr functions, the template is technically
3729          // ill-formed, but we allow it for sanity. Such members are treated as
3730          // non-constexpr.
3731          (*M)->setConstexpr(false);
3732          continue;
3733
3734        case TSK_Undeclared:
3735        case TSK_ExplicitSpecialization:
3736          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3737                             PDiag(diag::err_constexpr_method_non_literal));
3738          break;
3739        }
3740
3741        // Only produce one error per class.
3742        break;
3743      }
3744    }
3745  }
3746
3747  // Declare inherited constructors. We do this eagerly here because:
3748  // - The standard requires an eager diagnostic for conflicting inherited
3749  //   constructors from different classes.
3750  // - The lazy declaration of the other implicit constructors is so as to not
3751  //   waste space and performance on classes that are not meant to be
3752  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3753  //   have inherited constructors.
3754  DeclareInheritedConstructors(Record);
3755
3756  if (!Record->isDependentType())
3757    CheckExplicitlyDefaultedMethods(Record);
3758}
3759
3760void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3761  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3762                                      ME = Record->method_end();
3763       MI != ME; ++MI) {
3764    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3765      switch (getSpecialMember(*MI)) {
3766      case CXXDefaultConstructor:
3767        CheckExplicitlyDefaultedDefaultConstructor(
3768                                                  cast<CXXConstructorDecl>(*MI));
3769        break;
3770
3771      case CXXDestructor:
3772        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3773        break;
3774
3775      case CXXCopyConstructor:
3776        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3777        break;
3778
3779      case CXXCopyAssignment:
3780        CheckExplicitlyDefaultedCopyAssignment(*MI);
3781        break;
3782
3783      case CXXMoveConstructor:
3784        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3785        break;
3786
3787      case CXXMoveAssignment:
3788        CheckExplicitlyDefaultedMoveAssignment(*MI);
3789        break;
3790
3791      case CXXInvalid:
3792        llvm_unreachable("non-special member explicitly defaulted!");
3793      }
3794    }
3795  }
3796
3797}
3798
3799void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3800  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3801
3802  // Whether this was the first-declared instance of the constructor.
3803  // This affects whether we implicitly add an exception spec (and, eventually,
3804  // constexpr). It is also ill-formed to explicitly default a constructor such
3805  // that it would be deleted. (C++0x [decl.fct.def.default])
3806  bool First = CD == CD->getCanonicalDecl();
3807
3808  bool HadError = false;
3809  if (CD->getNumParams() != 0) {
3810    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3811      << CD->getSourceRange();
3812    HadError = true;
3813  }
3814
3815  ImplicitExceptionSpecification Spec
3816    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3817  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3818  if (EPI.ExceptionSpecType == EST_Delayed) {
3819    // Exception specification depends on some deferred part of the class. We'll
3820    // try again when the class's definition has been fully processed.
3821    return;
3822  }
3823  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3824                          *ExceptionType = Context.getFunctionType(
3825                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3826
3827  // C++11 [dcl.fct.def.default]p2:
3828  //   An explicitly-defaulted function may be declared constexpr only if it
3829  //   would have been implicitly declared as constexpr,
3830  if (CD->isConstexpr()) {
3831    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3832      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3833        << CXXDefaultConstructor;
3834      HadError = true;
3835    }
3836  }
3837  //   and may have an explicit exception-specification only if it is compatible
3838  //   with the exception-specification on the implicit declaration.
3839  if (CtorType->hasExceptionSpec()) {
3840    if (CheckEquivalentExceptionSpec(
3841          PDiag(diag::err_incorrect_defaulted_exception_spec)
3842            << CXXDefaultConstructor,
3843          PDiag(),
3844          ExceptionType, SourceLocation(),
3845          CtorType, CD->getLocation())) {
3846      HadError = true;
3847    }
3848  }
3849
3850  //   If a function is explicitly defaulted on its first declaration,
3851  if (First) {
3852    //  -- it is implicitly considered to be constexpr if the implicit
3853    //     definition would be,
3854    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3855
3856    //  -- it is implicitly considered to have the same
3857    //     exception-specification as if it had been implicitly declared
3858    //
3859    // FIXME: a compatible, but different, explicit exception specification
3860    // will be silently overridden. We should issue a warning if this happens.
3861    EPI.ExtInfo = CtorType->getExtInfo();
3862  }
3863
3864  if (HadError) {
3865    CD->setInvalidDecl();
3866    return;
3867  }
3868
3869  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3870    if (First) {
3871      CD->setDeletedAsWritten();
3872    } else {
3873      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3874        << CXXDefaultConstructor;
3875      CD->setInvalidDecl();
3876    }
3877  }
3878}
3879
3880void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3881  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3882
3883  // Whether this was the first-declared instance of the constructor.
3884  bool First = CD == CD->getCanonicalDecl();
3885
3886  bool HadError = false;
3887  if (CD->getNumParams() != 1) {
3888    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3889      << CD->getSourceRange();
3890    HadError = true;
3891  }
3892
3893  ImplicitExceptionSpecification Spec(Context);
3894  bool Const;
3895  llvm::tie(Spec, Const) =
3896    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3897
3898  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3899  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3900                          *ExceptionType = Context.getFunctionType(
3901                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3902
3903  // Check for parameter type matching.
3904  // This is a copy ctor so we know it's a cv-qualified reference to T.
3905  QualType ArgType = CtorType->getArgType(0);
3906  if (ArgType->getPointeeType().isVolatileQualified()) {
3907    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3908    HadError = true;
3909  }
3910  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3911    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3912    HadError = true;
3913  }
3914
3915  // C++11 [dcl.fct.def.default]p2:
3916  //   An explicitly-defaulted function may be declared constexpr only if it
3917  //   would have been implicitly declared as constexpr,
3918  if (CD->isConstexpr()) {
3919    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3920      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3921        << CXXCopyConstructor;
3922      HadError = true;
3923    }
3924  }
3925  //   and may have an explicit exception-specification only if it is compatible
3926  //   with the exception-specification on the implicit declaration.
3927  if (CtorType->hasExceptionSpec()) {
3928    if (CheckEquivalentExceptionSpec(
3929          PDiag(diag::err_incorrect_defaulted_exception_spec)
3930            << CXXCopyConstructor,
3931          PDiag(),
3932          ExceptionType, SourceLocation(),
3933          CtorType, CD->getLocation())) {
3934      HadError = true;
3935    }
3936  }
3937
3938  //   If a function is explicitly defaulted on its first declaration,
3939  if (First) {
3940    //  -- it is implicitly considered to be constexpr if the implicit
3941    //     definition would be,
3942    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3943
3944    //  -- it is implicitly considered to have the same
3945    //     exception-specification as if it had been implicitly declared, and
3946    //
3947    // FIXME: a compatible, but different, explicit exception specification
3948    // will be silently overridden. We should issue a warning if this happens.
3949    EPI.ExtInfo = CtorType->getExtInfo();
3950
3951    //  -- [...] it shall have the same parameter type as if it had been
3952    //     implicitly declared.
3953    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3954  }
3955
3956  if (HadError) {
3957    CD->setInvalidDecl();
3958    return;
3959  }
3960
3961  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3962    if (First) {
3963      CD->setDeletedAsWritten();
3964    } else {
3965      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3966        << CXXCopyConstructor;
3967      CD->setInvalidDecl();
3968    }
3969  }
3970}
3971
3972void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3973  assert(MD->isExplicitlyDefaulted());
3974
3975  // Whether this was the first-declared instance of the operator
3976  bool First = MD == MD->getCanonicalDecl();
3977
3978  bool HadError = false;
3979  if (MD->getNumParams() != 1) {
3980    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3981      << MD->getSourceRange();
3982    HadError = true;
3983  }
3984
3985  QualType ReturnType =
3986    MD->getType()->getAs<FunctionType>()->getResultType();
3987  if (!ReturnType->isLValueReferenceType() ||
3988      !Context.hasSameType(
3989        Context.getCanonicalType(ReturnType->getPointeeType()),
3990        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3991    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3992    HadError = true;
3993  }
3994
3995  ImplicitExceptionSpecification Spec(Context);
3996  bool Const;
3997  llvm::tie(Spec, Const) =
3998    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3999
4000  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4001  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4002                          *ExceptionType = Context.getFunctionType(
4003                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4004
4005  QualType ArgType = OperType->getArgType(0);
4006  if (!ArgType->isLValueReferenceType()) {
4007    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4008    HadError = true;
4009  } else {
4010    if (ArgType->getPointeeType().isVolatileQualified()) {
4011      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4012      HadError = true;
4013    }
4014    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4015      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4016      HadError = true;
4017    }
4018  }
4019
4020  if (OperType->getTypeQuals()) {
4021    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4022    HadError = true;
4023  }
4024
4025  if (OperType->hasExceptionSpec()) {
4026    if (CheckEquivalentExceptionSpec(
4027          PDiag(diag::err_incorrect_defaulted_exception_spec)
4028            << CXXCopyAssignment,
4029          PDiag(),
4030          ExceptionType, SourceLocation(),
4031          OperType, MD->getLocation())) {
4032      HadError = true;
4033    }
4034  }
4035  if (First) {
4036    // We set the declaration to have the computed exception spec here.
4037    // We duplicate the one parameter type.
4038    EPI.RefQualifier = OperType->getRefQualifier();
4039    EPI.ExtInfo = OperType->getExtInfo();
4040    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4041  }
4042
4043  if (HadError) {
4044    MD->setInvalidDecl();
4045    return;
4046  }
4047
4048  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4049    if (First) {
4050      MD->setDeletedAsWritten();
4051    } else {
4052      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4053        << CXXCopyAssignment;
4054      MD->setInvalidDecl();
4055    }
4056  }
4057}
4058
4059void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4060  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4061
4062  // Whether this was the first-declared instance of the constructor.
4063  bool First = CD == CD->getCanonicalDecl();
4064
4065  bool HadError = false;
4066  if (CD->getNumParams() != 1) {
4067    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4068      << CD->getSourceRange();
4069    HadError = true;
4070  }
4071
4072  ImplicitExceptionSpecification Spec(
4073      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4074
4075  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4076  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4077                          *ExceptionType = Context.getFunctionType(
4078                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4079
4080  // Check for parameter type matching.
4081  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4082  QualType ArgType = CtorType->getArgType(0);
4083  if (ArgType->getPointeeType().isVolatileQualified()) {
4084    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4085    HadError = true;
4086  }
4087  if (ArgType->getPointeeType().isConstQualified()) {
4088    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4089    HadError = true;
4090  }
4091
4092  // C++11 [dcl.fct.def.default]p2:
4093  //   An explicitly-defaulted function may be declared constexpr only if it
4094  //   would have been implicitly declared as constexpr,
4095  if (CD->isConstexpr()) {
4096    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4097      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4098        << CXXMoveConstructor;
4099      HadError = true;
4100    }
4101  }
4102  //   and may have an explicit exception-specification only if it is compatible
4103  //   with the exception-specification on the implicit declaration.
4104  if (CtorType->hasExceptionSpec()) {
4105    if (CheckEquivalentExceptionSpec(
4106          PDiag(diag::err_incorrect_defaulted_exception_spec)
4107            << CXXMoveConstructor,
4108          PDiag(),
4109          ExceptionType, SourceLocation(),
4110          CtorType, CD->getLocation())) {
4111      HadError = true;
4112    }
4113  }
4114
4115  //   If a function is explicitly defaulted on its first declaration,
4116  if (First) {
4117    //  -- it is implicitly considered to be constexpr if the implicit
4118    //     definition would be,
4119    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4120
4121    //  -- it is implicitly considered to have the same
4122    //     exception-specification as if it had been implicitly declared, and
4123    //
4124    // FIXME: a compatible, but different, explicit exception specification
4125    // will be silently overridden. We should issue a warning if this happens.
4126    EPI.ExtInfo = CtorType->getExtInfo();
4127
4128    //  -- [...] it shall have the same parameter type as if it had been
4129    //     implicitly declared.
4130    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4131  }
4132
4133  if (HadError) {
4134    CD->setInvalidDecl();
4135    return;
4136  }
4137
4138  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4139    if (First) {
4140      CD->setDeletedAsWritten();
4141    } else {
4142      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4143        << CXXMoveConstructor;
4144      CD->setInvalidDecl();
4145    }
4146  }
4147}
4148
4149void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4150  assert(MD->isExplicitlyDefaulted());
4151
4152  // Whether this was the first-declared instance of the operator
4153  bool First = MD == MD->getCanonicalDecl();
4154
4155  bool HadError = false;
4156  if (MD->getNumParams() != 1) {
4157    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4158      << MD->getSourceRange();
4159    HadError = true;
4160  }
4161
4162  QualType ReturnType =
4163    MD->getType()->getAs<FunctionType>()->getResultType();
4164  if (!ReturnType->isLValueReferenceType() ||
4165      !Context.hasSameType(
4166        Context.getCanonicalType(ReturnType->getPointeeType()),
4167        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4168    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4169    HadError = true;
4170  }
4171
4172  ImplicitExceptionSpecification Spec(
4173      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4174
4175  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4176  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4177                          *ExceptionType = Context.getFunctionType(
4178                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4179
4180  QualType ArgType = OperType->getArgType(0);
4181  if (!ArgType->isRValueReferenceType()) {
4182    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4183    HadError = true;
4184  } else {
4185    if (ArgType->getPointeeType().isVolatileQualified()) {
4186      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4187      HadError = true;
4188    }
4189    if (ArgType->getPointeeType().isConstQualified()) {
4190      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4191      HadError = true;
4192    }
4193  }
4194
4195  if (OperType->getTypeQuals()) {
4196    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4197    HadError = true;
4198  }
4199
4200  if (OperType->hasExceptionSpec()) {
4201    if (CheckEquivalentExceptionSpec(
4202          PDiag(diag::err_incorrect_defaulted_exception_spec)
4203            << CXXMoveAssignment,
4204          PDiag(),
4205          ExceptionType, SourceLocation(),
4206          OperType, MD->getLocation())) {
4207      HadError = true;
4208    }
4209  }
4210  if (First) {
4211    // We set the declaration to have the computed exception spec here.
4212    // We duplicate the one parameter type.
4213    EPI.RefQualifier = OperType->getRefQualifier();
4214    EPI.ExtInfo = OperType->getExtInfo();
4215    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4216  }
4217
4218  if (HadError) {
4219    MD->setInvalidDecl();
4220    return;
4221  }
4222
4223  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4224    if (First) {
4225      MD->setDeletedAsWritten();
4226    } else {
4227      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4228        << CXXMoveAssignment;
4229      MD->setInvalidDecl();
4230    }
4231  }
4232}
4233
4234void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4235  assert(DD->isExplicitlyDefaulted());
4236
4237  // Whether this was the first-declared instance of the destructor.
4238  bool First = DD == DD->getCanonicalDecl();
4239
4240  ImplicitExceptionSpecification Spec
4241    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4242  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4243  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4244                          *ExceptionType = Context.getFunctionType(
4245                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4246
4247  if (DtorType->hasExceptionSpec()) {
4248    if (CheckEquivalentExceptionSpec(
4249          PDiag(diag::err_incorrect_defaulted_exception_spec)
4250            << CXXDestructor,
4251          PDiag(),
4252          ExceptionType, SourceLocation(),
4253          DtorType, DD->getLocation())) {
4254      DD->setInvalidDecl();
4255      return;
4256    }
4257  }
4258  if (First) {
4259    // We set the declaration to have the computed exception spec here.
4260    // There are no parameters.
4261    EPI.ExtInfo = DtorType->getExtInfo();
4262    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4263  }
4264
4265  if (ShouldDeleteDestructor(DD)) {
4266    if (First) {
4267      DD->setDeletedAsWritten();
4268    } else {
4269      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4270        << CXXDestructor;
4271      DD->setInvalidDecl();
4272    }
4273  }
4274}
4275
4276/// This function implements the following C++0x paragraphs:
4277///  - [class.ctor]/5
4278///  - [class.copy]/11
4279bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4280  assert(!MD->isInvalidDecl());
4281  CXXRecordDecl *RD = MD->getParent();
4282  assert(!RD->isDependentType() && "do deletion after instantiation");
4283  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4284    return false;
4285
4286  bool IsUnion = RD->isUnion();
4287  bool IsConstructor = false;
4288  bool IsAssignment = false;
4289  bool IsMove = false;
4290
4291  bool ConstArg = false;
4292
4293  switch (CSM) {
4294  case CXXDefaultConstructor:
4295    IsConstructor = true;
4296    break;
4297  case CXXCopyConstructor:
4298    IsConstructor = true;
4299    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4300    break;
4301  case CXXMoveConstructor:
4302    IsConstructor = true;
4303    IsMove = true;
4304    break;
4305  default:
4306    llvm_unreachable("function only currently implemented for default ctors");
4307  }
4308
4309  SourceLocation Loc = MD->getLocation();
4310
4311  // Do access control from the special member function
4312  ContextRAII MethodContext(*this, MD);
4313
4314  bool AllConst = true;
4315
4316  // We do this because we should never actually use an anonymous
4317  // union's constructor.
4318  if (IsUnion && RD->isAnonymousStructOrUnion())
4319    return false;
4320
4321  // FIXME: We should put some diagnostic logic right into this function.
4322
4323  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4324                                          BE = RD->bases_end();
4325       BI != BE; ++BI) {
4326    // We'll handle this one later
4327    if (BI->isVirtual())
4328      continue;
4329
4330    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4331    assert(BaseDecl && "base isn't a CXXRecordDecl");
4332
4333    // Unless we have an assignment operator, the base's destructor must
4334    // be accessible and not deleted.
4335    if (!IsAssignment) {
4336      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4337      if (BaseDtor->isDeleted())
4338        return true;
4339      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4340          AR_accessible)
4341        return true;
4342    }
4343
4344    // Finding the corresponding member in the base should lead to a
4345    // unique, accessible, non-deleted function. If we are doing
4346    // a destructor, we have already checked this case.
4347    if (CSM != CXXDestructor) {
4348      SpecialMemberOverloadResult *SMOR =
4349        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4350                            false);
4351      if (!SMOR->hasSuccess())
4352        return true;
4353      CXXMethodDecl *BaseMember = SMOR->getMethod();
4354      if (IsConstructor) {
4355        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4356        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4357                                   PDiag()) != AR_accessible)
4358          return true;
4359
4360        // For a move operation, the corresponding operation must actually
4361        // be a move operation (and not a copy selected by overload
4362        // resolution) unless we are working on a trivially copyable class.
4363        if (IsMove && !BaseCtor->isMoveConstructor() &&
4364            !BaseDecl->isTriviallyCopyable())
4365          return true;
4366      }
4367    }
4368  }
4369
4370  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4371                                          BE = RD->vbases_end();
4372       BI != BE; ++BI) {
4373    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4374    assert(BaseDecl && "base isn't a CXXRecordDecl");
4375
4376    // Unless we have an assignment operator, the base's destructor must
4377    // be accessible and not deleted.
4378    if (!IsAssignment) {
4379      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4380      if (BaseDtor->isDeleted())
4381        return true;
4382      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4383          AR_accessible)
4384        return true;
4385    }
4386
4387    // Finding the corresponding member in the base should lead to a
4388    // unique, accessible, non-deleted function.
4389    if (CSM != CXXDestructor) {
4390      SpecialMemberOverloadResult *SMOR =
4391        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4392                            false);
4393      if (!SMOR->hasSuccess())
4394        return true;
4395      CXXMethodDecl *BaseMember = SMOR->getMethod();
4396      if (IsConstructor) {
4397        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4398        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4399                                   PDiag()) != AR_accessible)
4400          return true;
4401
4402        // For a move operation, the corresponding operation must actually
4403        // be a move operation (and not a copy selected by overload
4404        // resolution) unless we are working on a trivially copyable class.
4405        if (IsMove && !BaseCtor->isMoveConstructor() &&
4406            !BaseDecl->isTriviallyCopyable())
4407          return true;
4408      }
4409    }
4410  }
4411
4412  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4413                                     FE = RD->field_end();
4414       FI != FE; ++FI) {
4415    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4416      continue;
4417
4418    QualType FieldType = Context.getBaseElementType(FI->getType());
4419    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4420
4421    // For a default constructor, all references must be initialized in-class
4422    // and, if a union, it must have a non-const member.
4423    if (CSM == CXXDefaultConstructor) {
4424      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4425        return true;
4426
4427      if (IsUnion && !FieldType.isConstQualified())
4428        AllConst = false;
4429    // For a copy constructor, data members must not be of rvalue reference
4430    // type.
4431    } else if (CSM == CXXCopyConstructor) {
4432      if (FieldType->isRValueReferenceType())
4433        return true;
4434    }
4435
4436    if (FieldRecord) {
4437      // For a default constructor, a const member must have a user-provided
4438      // default constructor or else be explicitly initialized.
4439      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4440          !FI->hasInClassInitializer() &&
4441          !FieldRecord->hasUserProvidedDefaultConstructor())
4442        return true;
4443
4444      // Some additional restrictions exist on the variant members.
4445      if (!IsUnion && FieldRecord->isUnion() &&
4446          FieldRecord->isAnonymousStructOrUnion()) {
4447        // We're okay to reuse AllConst here since we only care about the
4448        // value otherwise if we're in a union.
4449        AllConst = true;
4450
4451        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4452                                           UE = FieldRecord->field_end();
4453             UI != UE; ++UI) {
4454          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4455          CXXRecordDecl *UnionFieldRecord =
4456            UnionFieldType->getAsCXXRecordDecl();
4457
4458          if (!UnionFieldType.isConstQualified())
4459            AllConst = false;
4460
4461          if (UnionFieldRecord) {
4462            // FIXME: Checking for accessibility and validity of this
4463            //        destructor is technically going beyond the
4464            //        standard, but this is believed to be a defect.
4465            if (!IsAssignment) {
4466              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4467              if (FieldDtor->isDeleted())
4468                return true;
4469              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4470                  AR_accessible)
4471                return true;
4472              if (!FieldDtor->isTrivial())
4473                return true;
4474            }
4475
4476            if (CSM != CXXDestructor) {
4477              SpecialMemberOverloadResult *SMOR =
4478                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4479                                    false, false, false);
4480              // FIXME: Checking for accessibility and validity of this
4481              //        corresponding member is technically going beyond the
4482              //        standard, but this is believed to be a defect.
4483              if (!SMOR->hasSuccess())
4484                return true;
4485
4486              CXXMethodDecl *FieldMember = SMOR->getMethod();
4487              // A member of a union must have a trivial corresponding
4488              // constructor.
4489              if (!FieldMember->isTrivial())
4490                return true;
4491
4492              if (IsConstructor) {
4493                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4494                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4495                                           PDiag()) != AR_accessible)
4496                return true;
4497              }
4498            }
4499          }
4500        }
4501
4502        // At least one member in each anonymous union must be non-const
4503        if (CSM == CXXDefaultConstructor && AllConst)
4504          return true;
4505
4506        // Don't try to initialize the anonymous union
4507        // This is technically non-conformant, but sanity demands it.
4508        continue;
4509      }
4510
4511      // Unless we're doing assignment, the field's destructor must be
4512      // accessible and not deleted.
4513      if (!IsAssignment) {
4514        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4515        if (FieldDtor->isDeleted())
4516          return true;
4517        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4518            AR_accessible)
4519          return true;
4520      }
4521
4522      // Check that the corresponding member of the field is accessible,
4523      // unique, and non-deleted. We don't do this if it has an explicit
4524      // initialization when default-constructing.
4525      if (CSM != CXXDestructor &&
4526          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4527        SpecialMemberOverloadResult *SMOR =
4528          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4529                              false);
4530        if (!SMOR->hasSuccess())
4531          return true;
4532
4533        CXXMethodDecl *FieldMember = SMOR->getMethod();
4534        if (IsConstructor) {
4535          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4536          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4537                                     PDiag()) != AR_accessible)
4538          return true;
4539
4540          // For a move operation, the corresponding operation must actually
4541          // be a move operation (and not a copy selected by overload
4542          // resolution) unless we are working on a trivially copyable class.
4543          if (IsMove && !FieldCtor->isMoveConstructor() &&
4544              !FieldRecord->isTriviallyCopyable())
4545            return true;
4546        }
4547
4548        // We need the corresponding member of a union to be trivial so that
4549        // we can safely copy them all simultaneously.
4550        // FIXME: Note that performing the check here (where we rely on the lack
4551        // of an in-class initializer) is technically ill-formed. However, this
4552        // seems most obviously to be a bug in the standard.
4553        if (IsUnion && !FieldMember->isTrivial())
4554          return true;
4555      }
4556    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4557               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4558      // We can't initialize a const member of non-class type to any value.
4559      return true;
4560    }
4561  }
4562
4563  // We can't have all const members in a union when default-constructing,
4564  // or else they're all nonsensical garbage values that can't be changed.
4565  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4566    return true;
4567
4568  return false;
4569}
4570
4571bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4572  CXXRecordDecl *RD = MD->getParent();
4573  assert(!RD->isDependentType() && "do deletion after instantiation");
4574  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4575    return false;
4576
4577  SourceLocation Loc = MD->getLocation();
4578
4579  // Do access control from the constructor
4580  ContextRAII MethodContext(*this, MD);
4581
4582  bool Union = RD->isUnion();
4583
4584  unsigned ArgQuals =
4585    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4586      Qualifiers::Const : 0;
4587
4588  // We do this because we should never actually use an anonymous
4589  // union's constructor.
4590  if (Union && RD->isAnonymousStructOrUnion())
4591    return false;
4592
4593  // FIXME: We should put some diagnostic logic right into this function.
4594
4595  // C++0x [class.copy]/20
4596  //    A defaulted [copy] assignment operator for class X is defined as deleted
4597  //    if X has:
4598
4599  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4600                                          BE = RD->bases_end();
4601       BI != BE; ++BI) {
4602    // We'll handle this one later
4603    if (BI->isVirtual())
4604      continue;
4605
4606    QualType BaseType = BI->getType();
4607    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4608    assert(BaseDecl && "base isn't a CXXRecordDecl");
4609
4610    // -- a [direct base class] B that cannot be [copied] because overload
4611    //    resolution, as applied to B's [copy] assignment operator, results in
4612    //    an ambiguity or a function that is deleted or inaccessible from the
4613    //    assignment operator
4614    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4615                                                      0);
4616    if (!CopyOper || CopyOper->isDeleted())
4617      return true;
4618    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4619      return true;
4620  }
4621
4622  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4623                                          BE = RD->vbases_end();
4624       BI != BE; ++BI) {
4625    QualType BaseType = BI->getType();
4626    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4627    assert(BaseDecl && "base isn't a CXXRecordDecl");
4628
4629    // -- a [virtual base class] B that cannot be [copied] because overload
4630    //    resolution, as applied to B's [copy] assignment operator, results in
4631    //    an ambiguity or a function that is deleted or inaccessible from the
4632    //    assignment operator
4633    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4634                                                      0);
4635    if (!CopyOper || CopyOper->isDeleted())
4636      return true;
4637    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4638      return true;
4639  }
4640
4641  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4642                                     FE = RD->field_end();
4643       FI != FE; ++FI) {
4644    if (FI->isUnnamedBitfield())
4645      continue;
4646
4647    QualType FieldType = Context.getBaseElementType(FI->getType());
4648
4649    // -- a non-static data member of reference type
4650    if (FieldType->isReferenceType())
4651      return true;
4652
4653    // -- a non-static data member of const non-class type (or array thereof)
4654    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4655      return true;
4656
4657    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4658
4659    if (FieldRecord) {
4660      // This is an anonymous union
4661      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4662        // Anonymous unions inside unions do not variant members create
4663        if (!Union) {
4664          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4665                                             UE = FieldRecord->field_end();
4666               UI != UE; ++UI) {
4667            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4668            CXXRecordDecl *UnionFieldRecord =
4669              UnionFieldType->getAsCXXRecordDecl();
4670
4671            // -- a variant member with a non-trivial [copy] assignment operator
4672            //    and X is a union-like class
4673            if (UnionFieldRecord &&
4674                !UnionFieldRecord->hasTrivialCopyAssignment())
4675              return true;
4676          }
4677        }
4678
4679        // Don't try to initalize an anonymous union
4680        continue;
4681      // -- a variant member with a non-trivial [copy] assignment operator
4682      //    and X is a union-like class
4683      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4684          return true;
4685      }
4686
4687      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4688                                                        false, 0);
4689      if (!CopyOper || CopyOper->isDeleted())
4690        return true;
4691      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4692        return true;
4693    }
4694  }
4695
4696  return false;
4697}
4698
4699bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4700  CXXRecordDecl *RD = MD->getParent();
4701  assert(!RD->isDependentType() && "do deletion after instantiation");
4702  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4703    return false;
4704
4705  SourceLocation Loc = MD->getLocation();
4706
4707  // Do access control from the constructor
4708  ContextRAII MethodContext(*this, MD);
4709
4710  bool Union = RD->isUnion();
4711
4712  // We do this because we should never actually use an anonymous
4713  // union's constructor.
4714  if (Union && RD->isAnonymousStructOrUnion())
4715    return false;
4716
4717  // C++0x [class.copy]/20
4718  //    A defaulted [move] assignment operator for class X is defined as deleted
4719  //    if X has:
4720
4721  //    -- for the move constructor, [...] any direct or indirect virtual base
4722  //       class.
4723  if (RD->getNumVBases() != 0)
4724    return true;
4725
4726  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4727                                          BE = RD->bases_end();
4728       BI != BE; ++BI) {
4729
4730    QualType BaseType = BI->getType();
4731    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4732    assert(BaseDecl && "base isn't a CXXRecordDecl");
4733
4734    // -- a [direct base class] B that cannot be [moved] because overload
4735    //    resolution, as applied to B's [move] assignment operator, results in
4736    //    an ambiguity or a function that is deleted or inaccessible from the
4737    //    assignment operator
4738    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4739    if (!MoveOper || MoveOper->isDeleted())
4740      return true;
4741    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4742      return true;
4743
4744    // -- for the move assignment operator, a [direct base class] with a type
4745    //    that does not have a move assignment operator and is not trivially
4746    //    copyable.
4747    if (!MoveOper->isMoveAssignmentOperator() &&
4748        !BaseDecl->isTriviallyCopyable())
4749      return true;
4750  }
4751
4752  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4753                                     FE = RD->field_end();
4754       FI != FE; ++FI) {
4755    if (FI->isUnnamedBitfield())
4756      continue;
4757
4758    QualType FieldType = Context.getBaseElementType(FI->getType());
4759
4760    // -- a non-static data member of reference type
4761    if (FieldType->isReferenceType())
4762      return true;
4763
4764    // -- a non-static data member of const non-class type (or array thereof)
4765    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4766      return true;
4767
4768    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4769
4770    if (FieldRecord) {
4771      // This is an anonymous union
4772      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4773        // Anonymous unions inside unions do not variant members create
4774        if (!Union) {
4775          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4776                                             UE = FieldRecord->field_end();
4777               UI != UE; ++UI) {
4778            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4779            CXXRecordDecl *UnionFieldRecord =
4780              UnionFieldType->getAsCXXRecordDecl();
4781
4782            // -- a variant member with a non-trivial [move] assignment operator
4783            //    and X is a union-like class
4784            if (UnionFieldRecord &&
4785                !UnionFieldRecord->hasTrivialMoveAssignment())
4786              return true;
4787          }
4788        }
4789
4790        // Don't try to initalize an anonymous union
4791        continue;
4792      // -- a variant member with a non-trivial [move] assignment operator
4793      //    and X is a union-like class
4794      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4795          return true;
4796      }
4797
4798      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4799      if (!MoveOper || MoveOper->isDeleted())
4800        return true;
4801      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4802        return true;
4803
4804      // -- for the move assignment operator, a [non-static data member] with a
4805      //    type that does not have a move assignment operator and is not
4806      //    trivially copyable.
4807      if (!MoveOper->isMoveAssignmentOperator() &&
4808          !FieldRecord->isTriviallyCopyable())
4809        return true;
4810    }
4811  }
4812
4813  return false;
4814}
4815
4816bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4817  CXXRecordDecl *RD = DD->getParent();
4818  assert(!RD->isDependentType() && "do deletion after instantiation");
4819  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4820    return false;
4821
4822  SourceLocation Loc = DD->getLocation();
4823
4824  // Do access control from the destructor
4825  ContextRAII CtorContext(*this, DD);
4826
4827  bool Union = RD->isUnion();
4828
4829  // We do this because we should never actually use an anonymous
4830  // union's destructor.
4831  if (Union && RD->isAnonymousStructOrUnion())
4832    return false;
4833
4834  // C++0x [class.dtor]p5
4835  //    A defaulted destructor for a class X is defined as deleted if:
4836  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4837                                          BE = RD->bases_end();
4838       BI != BE; ++BI) {
4839    // We'll handle this one later
4840    if (BI->isVirtual())
4841      continue;
4842
4843    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4844    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4845    assert(BaseDtor && "base has no destructor");
4846
4847    // -- any direct or virtual base class has a deleted destructor or
4848    //    a destructor that is inaccessible from the defaulted destructor
4849    if (BaseDtor->isDeleted())
4850      return true;
4851    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4852        AR_accessible)
4853      return true;
4854  }
4855
4856  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4857                                          BE = RD->vbases_end();
4858       BI != BE; ++BI) {
4859    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4860    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4861    assert(BaseDtor && "base has no destructor");
4862
4863    // -- any direct or virtual base class has a deleted destructor or
4864    //    a destructor that is inaccessible from the defaulted destructor
4865    if (BaseDtor->isDeleted())
4866      return true;
4867    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4868        AR_accessible)
4869      return true;
4870  }
4871
4872  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4873                                     FE = RD->field_end();
4874       FI != FE; ++FI) {
4875    QualType FieldType = Context.getBaseElementType(FI->getType());
4876    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4877    if (FieldRecord) {
4878      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4879         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4880                                            UE = FieldRecord->field_end();
4881              UI != UE; ++UI) {
4882           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4883           CXXRecordDecl *UnionFieldRecord =
4884             UnionFieldType->getAsCXXRecordDecl();
4885
4886           // -- X is a union-like class that has a variant member with a non-
4887           //    trivial destructor.
4888           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4889             return true;
4890         }
4891      // Technically we are supposed to do this next check unconditionally.
4892      // But that makes absolutely no sense.
4893      } else {
4894        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4895
4896        // -- any of the non-static data members has class type M (or array
4897        //    thereof) and M has a deleted destructor or a destructor that is
4898        //    inaccessible from the defaulted destructor
4899        if (FieldDtor->isDeleted())
4900          return true;
4901        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4902          AR_accessible)
4903        return true;
4904
4905        // -- X is a union-like class that has a variant member with a non-
4906        //    trivial destructor.
4907        if (Union && !FieldDtor->isTrivial())
4908          return true;
4909      }
4910    }
4911  }
4912
4913  if (DD->isVirtual()) {
4914    FunctionDecl *OperatorDelete = 0;
4915    DeclarationName Name =
4916      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4917    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4918          false))
4919      return true;
4920  }
4921
4922
4923  return false;
4924}
4925
4926/// \brief Data used with FindHiddenVirtualMethod
4927namespace {
4928  struct FindHiddenVirtualMethodData {
4929    Sema *S;
4930    CXXMethodDecl *Method;
4931    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4932    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4933  };
4934}
4935
4936/// \brief Member lookup function that determines whether a given C++
4937/// method overloads virtual methods in a base class without overriding any,
4938/// to be used with CXXRecordDecl::lookupInBases().
4939static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4940                                    CXXBasePath &Path,
4941                                    void *UserData) {
4942  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4943
4944  FindHiddenVirtualMethodData &Data
4945    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4946
4947  DeclarationName Name = Data.Method->getDeclName();
4948  assert(Name.getNameKind() == DeclarationName::Identifier);
4949
4950  bool foundSameNameMethod = false;
4951  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4952  for (Path.Decls = BaseRecord->lookup(Name);
4953       Path.Decls.first != Path.Decls.second;
4954       ++Path.Decls.first) {
4955    NamedDecl *D = *Path.Decls.first;
4956    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4957      MD = MD->getCanonicalDecl();
4958      foundSameNameMethod = true;
4959      // Interested only in hidden virtual methods.
4960      if (!MD->isVirtual())
4961        continue;
4962      // If the method we are checking overrides a method from its base
4963      // don't warn about the other overloaded methods.
4964      if (!Data.S->IsOverload(Data.Method, MD, false))
4965        return true;
4966      // Collect the overload only if its hidden.
4967      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4968        overloadedMethods.push_back(MD);
4969    }
4970  }
4971
4972  if (foundSameNameMethod)
4973    Data.OverloadedMethods.append(overloadedMethods.begin(),
4974                                   overloadedMethods.end());
4975  return foundSameNameMethod;
4976}
4977
4978/// \brief See if a method overloads virtual methods in a base class without
4979/// overriding any.
4980void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4981  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4982                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4983    return;
4984  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4985    return;
4986
4987  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4988                     /*bool RecordPaths=*/false,
4989                     /*bool DetectVirtual=*/false);
4990  FindHiddenVirtualMethodData Data;
4991  Data.Method = MD;
4992  Data.S = this;
4993
4994  // Keep the base methods that were overriden or introduced in the subclass
4995  // by 'using' in a set. A base method not in this set is hidden.
4996  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4997       res.first != res.second; ++res.first) {
4998    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4999      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5000                                          E = MD->end_overridden_methods();
5001           I != E; ++I)
5002        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5003    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5004      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5005        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5006  }
5007
5008  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5009      !Data.OverloadedMethods.empty()) {
5010    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5011      << MD << (Data.OverloadedMethods.size() > 1);
5012
5013    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5014      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5015      Diag(overloadedMD->getLocation(),
5016           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5017    }
5018  }
5019}
5020
5021void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5022                                             Decl *TagDecl,
5023                                             SourceLocation LBrac,
5024                                             SourceLocation RBrac,
5025                                             AttributeList *AttrList) {
5026  if (!TagDecl)
5027    return;
5028
5029  AdjustDeclIfTemplate(TagDecl);
5030
5031  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5032              // strict aliasing violation!
5033              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5034              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5035
5036  CheckCompletedCXXClass(
5037                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5038}
5039
5040/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5041/// special functions, such as the default constructor, copy
5042/// constructor, or destructor, to the given C++ class (C++
5043/// [special]p1).  This routine can only be executed just before the
5044/// definition of the class is complete.
5045void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5046  if (!ClassDecl->hasUserDeclaredConstructor())
5047    ++ASTContext::NumImplicitDefaultConstructors;
5048
5049  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5050    ++ASTContext::NumImplicitCopyConstructors;
5051
5052  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5053    ++ASTContext::NumImplicitMoveConstructors;
5054
5055  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5056    ++ASTContext::NumImplicitCopyAssignmentOperators;
5057
5058    // If we have a dynamic class, then the copy assignment operator may be
5059    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5060    // it shows up in the right place in the vtable and that we diagnose
5061    // problems with the implicit exception specification.
5062    if (ClassDecl->isDynamicClass())
5063      DeclareImplicitCopyAssignment(ClassDecl);
5064  }
5065
5066  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5067    ++ASTContext::NumImplicitMoveAssignmentOperators;
5068
5069    // Likewise for the move assignment operator.
5070    if (ClassDecl->isDynamicClass())
5071      DeclareImplicitMoveAssignment(ClassDecl);
5072  }
5073
5074  if (!ClassDecl->hasUserDeclaredDestructor()) {
5075    ++ASTContext::NumImplicitDestructors;
5076
5077    // If we have a dynamic class, then the destructor may be virtual, so we
5078    // have to declare the destructor immediately. This ensures that, e.g., it
5079    // shows up in the right place in the vtable and that we diagnose problems
5080    // with the implicit exception specification.
5081    if (ClassDecl->isDynamicClass())
5082      DeclareImplicitDestructor(ClassDecl);
5083  }
5084}
5085
5086void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5087  if (!D)
5088    return;
5089
5090  int NumParamList = D->getNumTemplateParameterLists();
5091  for (int i = 0; i < NumParamList; i++) {
5092    TemplateParameterList* Params = D->getTemplateParameterList(i);
5093    for (TemplateParameterList::iterator Param = Params->begin(),
5094                                      ParamEnd = Params->end();
5095          Param != ParamEnd; ++Param) {
5096      NamedDecl *Named = cast<NamedDecl>(*Param);
5097      if (Named->getDeclName()) {
5098        S->AddDecl(Named);
5099        IdResolver.AddDecl(Named);
5100      }
5101    }
5102  }
5103}
5104
5105void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5106  if (!D)
5107    return;
5108
5109  TemplateParameterList *Params = 0;
5110  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5111    Params = Template->getTemplateParameters();
5112  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5113           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5114    Params = PartialSpec->getTemplateParameters();
5115  else
5116    return;
5117
5118  for (TemplateParameterList::iterator Param = Params->begin(),
5119                                    ParamEnd = Params->end();
5120       Param != ParamEnd; ++Param) {
5121    NamedDecl *Named = cast<NamedDecl>(*Param);
5122    if (Named->getDeclName()) {
5123      S->AddDecl(Named);
5124      IdResolver.AddDecl(Named);
5125    }
5126  }
5127}
5128
5129void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5130  if (!RecordD) return;
5131  AdjustDeclIfTemplate(RecordD);
5132  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5133  PushDeclContext(S, Record);
5134}
5135
5136void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5137  if (!RecordD) return;
5138  PopDeclContext();
5139}
5140
5141/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5142/// parsing a top-level (non-nested) C++ class, and we are now
5143/// parsing those parts of the given Method declaration that could
5144/// not be parsed earlier (C++ [class.mem]p2), such as default
5145/// arguments. This action should enter the scope of the given
5146/// Method declaration as if we had just parsed the qualified method
5147/// name. However, it should not bring the parameters into scope;
5148/// that will be performed by ActOnDelayedCXXMethodParameter.
5149void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5150}
5151
5152/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5153/// C++ method declaration. We're (re-)introducing the given
5154/// function parameter into scope for use in parsing later parts of
5155/// the method declaration. For example, we could see an
5156/// ActOnParamDefaultArgument event for this parameter.
5157void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5158  if (!ParamD)
5159    return;
5160
5161  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5162
5163  // If this parameter has an unparsed default argument, clear it out
5164  // to make way for the parsed default argument.
5165  if (Param->hasUnparsedDefaultArg())
5166    Param->setDefaultArg(0);
5167
5168  S->AddDecl(Param);
5169  if (Param->getDeclName())
5170    IdResolver.AddDecl(Param);
5171}
5172
5173/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5174/// processing the delayed method declaration for Method. The method
5175/// declaration is now considered finished. There may be a separate
5176/// ActOnStartOfFunctionDef action later (not necessarily
5177/// immediately!) for this method, if it was also defined inside the
5178/// class body.
5179void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5180  if (!MethodD)
5181    return;
5182
5183  AdjustDeclIfTemplate(MethodD);
5184
5185  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5186
5187  // Now that we have our default arguments, check the constructor
5188  // again. It could produce additional diagnostics or affect whether
5189  // the class has implicitly-declared destructors, among other
5190  // things.
5191  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5192    CheckConstructor(Constructor);
5193
5194  // Check the default arguments, which we may have added.
5195  if (!Method->isInvalidDecl())
5196    CheckCXXDefaultArguments(Method);
5197}
5198
5199/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5200/// the well-formedness of the constructor declarator @p D with type @p
5201/// R. If there are any errors in the declarator, this routine will
5202/// emit diagnostics and set the invalid bit to true.  In any case, the type
5203/// will be updated to reflect a well-formed type for the constructor and
5204/// returned.
5205QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5206                                          StorageClass &SC) {
5207  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5208
5209  // C++ [class.ctor]p3:
5210  //   A constructor shall not be virtual (10.3) or static (9.4). A
5211  //   constructor can be invoked for a const, volatile or const
5212  //   volatile object. A constructor shall not be declared const,
5213  //   volatile, or const volatile (9.3.2).
5214  if (isVirtual) {
5215    if (!D.isInvalidType())
5216      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5217        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5218        << SourceRange(D.getIdentifierLoc());
5219    D.setInvalidType();
5220  }
5221  if (SC == SC_Static) {
5222    if (!D.isInvalidType())
5223      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5224        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5225        << SourceRange(D.getIdentifierLoc());
5226    D.setInvalidType();
5227    SC = SC_None;
5228  }
5229
5230  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5231  if (FTI.TypeQuals != 0) {
5232    if (FTI.TypeQuals & Qualifiers::Const)
5233      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5234        << "const" << SourceRange(D.getIdentifierLoc());
5235    if (FTI.TypeQuals & Qualifiers::Volatile)
5236      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5237        << "volatile" << SourceRange(D.getIdentifierLoc());
5238    if (FTI.TypeQuals & Qualifiers::Restrict)
5239      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5240        << "restrict" << SourceRange(D.getIdentifierLoc());
5241    D.setInvalidType();
5242  }
5243
5244  // C++0x [class.ctor]p4:
5245  //   A constructor shall not be declared with a ref-qualifier.
5246  if (FTI.hasRefQualifier()) {
5247    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5248      << FTI.RefQualifierIsLValueRef
5249      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5250    D.setInvalidType();
5251  }
5252
5253  // Rebuild the function type "R" without any type qualifiers (in
5254  // case any of the errors above fired) and with "void" as the
5255  // return type, since constructors don't have return types.
5256  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5257  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5258    return R;
5259
5260  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5261  EPI.TypeQuals = 0;
5262  EPI.RefQualifier = RQ_None;
5263
5264  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5265                                 Proto->getNumArgs(), EPI);
5266}
5267
5268/// CheckConstructor - Checks a fully-formed constructor for
5269/// well-formedness, issuing any diagnostics required. Returns true if
5270/// the constructor declarator is invalid.
5271void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5272  CXXRecordDecl *ClassDecl
5273    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5274  if (!ClassDecl)
5275    return Constructor->setInvalidDecl();
5276
5277  // C++ [class.copy]p3:
5278  //   A declaration of a constructor for a class X is ill-formed if
5279  //   its first parameter is of type (optionally cv-qualified) X and
5280  //   either there are no other parameters or else all other
5281  //   parameters have default arguments.
5282  if (!Constructor->isInvalidDecl() &&
5283      ((Constructor->getNumParams() == 1) ||
5284       (Constructor->getNumParams() > 1 &&
5285        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5286      Constructor->getTemplateSpecializationKind()
5287                                              != TSK_ImplicitInstantiation) {
5288    QualType ParamType = Constructor->getParamDecl(0)->getType();
5289    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5290    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5291      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5292      const char *ConstRef
5293        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5294                                                        : " const &";
5295      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5296        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5297
5298      // FIXME: Rather that making the constructor invalid, we should endeavor
5299      // to fix the type.
5300      Constructor->setInvalidDecl();
5301    }
5302  }
5303}
5304
5305/// CheckDestructor - Checks a fully-formed destructor definition for
5306/// well-formedness, issuing any diagnostics required.  Returns true
5307/// on error.
5308bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5309  CXXRecordDecl *RD = Destructor->getParent();
5310
5311  if (Destructor->isVirtual()) {
5312    SourceLocation Loc;
5313
5314    if (!Destructor->isImplicit())
5315      Loc = Destructor->getLocation();
5316    else
5317      Loc = RD->getLocation();
5318
5319    // If we have a virtual destructor, look up the deallocation function
5320    FunctionDecl *OperatorDelete = 0;
5321    DeclarationName Name =
5322    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5323    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5324      return true;
5325
5326    MarkFunctionReferenced(Loc, OperatorDelete);
5327
5328    Destructor->setOperatorDelete(OperatorDelete);
5329  }
5330
5331  return false;
5332}
5333
5334static inline bool
5335FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5336  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5337          FTI.ArgInfo[0].Param &&
5338          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5339}
5340
5341/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5342/// the well-formednes of the destructor declarator @p D with type @p
5343/// R. If there are any errors in the declarator, this routine will
5344/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5345/// will be updated to reflect a well-formed type for the destructor and
5346/// returned.
5347QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5348                                         StorageClass& SC) {
5349  // C++ [class.dtor]p1:
5350  //   [...] A typedef-name that names a class is a class-name
5351  //   (7.1.3); however, a typedef-name that names a class shall not
5352  //   be used as the identifier in the declarator for a destructor
5353  //   declaration.
5354  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5355  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5356    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5357      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5358  else if (const TemplateSpecializationType *TST =
5359             DeclaratorType->getAs<TemplateSpecializationType>())
5360    if (TST->isTypeAlias())
5361      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5362        << DeclaratorType << 1;
5363
5364  // C++ [class.dtor]p2:
5365  //   A destructor is used to destroy objects of its class type. A
5366  //   destructor takes no parameters, and no return type can be
5367  //   specified for it (not even void). The address of a destructor
5368  //   shall not be taken. A destructor shall not be static. A
5369  //   destructor can be invoked for a const, volatile or const
5370  //   volatile object. A destructor shall not be declared const,
5371  //   volatile or const volatile (9.3.2).
5372  if (SC == SC_Static) {
5373    if (!D.isInvalidType())
5374      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5375        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5376        << SourceRange(D.getIdentifierLoc())
5377        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5378
5379    SC = SC_None;
5380  }
5381  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5382    // Destructors don't have return types, but the parser will
5383    // happily parse something like:
5384    //
5385    //   class X {
5386    //     float ~X();
5387    //   };
5388    //
5389    // The return type will be eliminated later.
5390    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5391      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5392      << SourceRange(D.getIdentifierLoc());
5393  }
5394
5395  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5396  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5397    if (FTI.TypeQuals & Qualifiers::Const)
5398      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5399        << "const" << SourceRange(D.getIdentifierLoc());
5400    if (FTI.TypeQuals & Qualifiers::Volatile)
5401      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5402        << "volatile" << SourceRange(D.getIdentifierLoc());
5403    if (FTI.TypeQuals & Qualifiers::Restrict)
5404      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5405        << "restrict" << SourceRange(D.getIdentifierLoc());
5406    D.setInvalidType();
5407  }
5408
5409  // C++0x [class.dtor]p2:
5410  //   A destructor shall not be declared with a ref-qualifier.
5411  if (FTI.hasRefQualifier()) {
5412    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5413      << FTI.RefQualifierIsLValueRef
5414      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5415    D.setInvalidType();
5416  }
5417
5418  // Make sure we don't have any parameters.
5419  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5420    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5421
5422    // Delete the parameters.
5423    FTI.freeArgs();
5424    D.setInvalidType();
5425  }
5426
5427  // Make sure the destructor isn't variadic.
5428  if (FTI.isVariadic) {
5429    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5430    D.setInvalidType();
5431  }
5432
5433  // Rebuild the function type "R" without any type qualifiers or
5434  // parameters (in case any of the errors above fired) and with
5435  // "void" as the return type, since destructors don't have return
5436  // types.
5437  if (!D.isInvalidType())
5438    return R;
5439
5440  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5441  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5442  EPI.Variadic = false;
5443  EPI.TypeQuals = 0;
5444  EPI.RefQualifier = RQ_None;
5445  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5446}
5447
5448/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5449/// well-formednes of the conversion function declarator @p D with
5450/// type @p R. If there are any errors in the declarator, this routine
5451/// will emit diagnostics and return true. Otherwise, it will return
5452/// false. Either way, the type @p R will be updated to reflect a
5453/// well-formed type for the conversion operator.
5454void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5455                                     StorageClass& SC) {
5456  // C++ [class.conv.fct]p1:
5457  //   Neither parameter types nor return type can be specified. The
5458  //   type of a conversion function (8.3.5) is "function taking no
5459  //   parameter returning conversion-type-id."
5460  if (SC == SC_Static) {
5461    if (!D.isInvalidType())
5462      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5463        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5464        << SourceRange(D.getIdentifierLoc());
5465    D.setInvalidType();
5466    SC = SC_None;
5467  }
5468
5469  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5470
5471  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5472    // Conversion functions don't have return types, but the parser will
5473    // happily parse something like:
5474    //
5475    //   class X {
5476    //     float operator bool();
5477    //   };
5478    //
5479    // The return type will be changed later anyway.
5480    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5481      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5482      << SourceRange(D.getIdentifierLoc());
5483    D.setInvalidType();
5484  }
5485
5486  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5487
5488  // Make sure we don't have any parameters.
5489  if (Proto->getNumArgs() > 0) {
5490    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5491
5492    // Delete the parameters.
5493    D.getFunctionTypeInfo().freeArgs();
5494    D.setInvalidType();
5495  } else if (Proto->isVariadic()) {
5496    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5497    D.setInvalidType();
5498  }
5499
5500  // Diagnose "&operator bool()" and other such nonsense.  This
5501  // is actually a gcc extension which we don't support.
5502  if (Proto->getResultType() != ConvType) {
5503    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5504      << Proto->getResultType();
5505    D.setInvalidType();
5506    ConvType = Proto->getResultType();
5507  }
5508
5509  // C++ [class.conv.fct]p4:
5510  //   The conversion-type-id shall not represent a function type nor
5511  //   an array type.
5512  if (ConvType->isArrayType()) {
5513    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5514    ConvType = Context.getPointerType(ConvType);
5515    D.setInvalidType();
5516  } else if (ConvType->isFunctionType()) {
5517    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5518    ConvType = Context.getPointerType(ConvType);
5519    D.setInvalidType();
5520  }
5521
5522  // Rebuild the function type "R" without any parameters (in case any
5523  // of the errors above fired) and with the conversion type as the
5524  // return type.
5525  if (D.isInvalidType())
5526    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5527
5528  // C++0x explicit conversion operators.
5529  if (D.getDeclSpec().isExplicitSpecified())
5530    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5531         getLangOptions().CPlusPlus0x ?
5532           diag::warn_cxx98_compat_explicit_conversion_functions :
5533           diag::ext_explicit_conversion_functions)
5534      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5535}
5536
5537/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5538/// the declaration of the given C++ conversion function. This routine
5539/// is responsible for recording the conversion function in the C++
5540/// class, if possible.
5541Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5542  assert(Conversion && "Expected to receive a conversion function declaration");
5543
5544  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5545
5546  // Make sure we aren't redeclaring the conversion function.
5547  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5548
5549  // C++ [class.conv.fct]p1:
5550  //   [...] A conversion function is never used to convert a
5551  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5552  //   same object type (or a reference to it), to a (possibly
5553  //   cv-qualified) base class of that type (or a reference to it),
5554  //   or to (possibly cv-qualified) void.
5555  // FIXME: Suppress this warning if the conversion function ends up being a
5556  // virtual function that overrides a virtual function in a base class.
5557  QualType ClassType
5558    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5559  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5560    ConvType = ConvTypeRef->getPointeeType();
5561  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5562      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5563    /* Suppress diagnostics for instantiations. */;
5564  else if (ConvType->isRecordType()) {
5565    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5566    if (ConvType == ClassType)
5567      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5568        << ClassType;
5569    else if (IsDerivedFrom(ClassType, ConvType))
5570      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5571        <<  ClassType << ConvType;
5572  } else if (ConvType->isVoidType()) {
5573    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5574      << ClassType << ConvType;
5575  }
5576
5577  if (FunctionTemplateDecl *ConversionTemplate
5578                                = Conversion->getDescribedFunctionTemplate())
5579    return ConversionTemplate;
5580
5581  return Conversion;
5582}
5583
5584//===----------------------------------------------------------------------===//
5585// Namespace Handling
5586//===----------------------------------------------------------------------===//
5587
5588
5589
5590/// ActOnStartNamespaceDef - This is called at the start of a namespace
5591/// definition.
5592Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5593                                   SourceLocation InlineLoc,
5594                                   SourceLocation NamespaceLoc,
5595                                   SourceLocation IdentLoc,
5596                                   IdentifierInfo *II,
5597                                   SourceLocation LBrace,
5598                                   AttributeList *AttrList) {
5599  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5600  // For anonymous namespace, take the location of the left brace.
5601  SourceLocation Loc = II ? IdentLoc : LBrace;
5602  bool IsInline = InlineLoc.isValid();
5603  bool IsInvalid = false;
5604  bool IsStd = false;
5605  bool AddToKnown = false;
5606  Scope *DeclRegionScope = NamespcScope->getParent();
5607
5608  NamespaceDecl *PrevNS = 0;
5609  if (II) {
5610    // C++ [namespace.def]p2:
5611    //   The identifier in an original-namespace-definition shall not
5612    //   have been previously defined in the declarative region in
5613    //   which the original-namespace-definition appears. The
5614    //   identifier in an original-namespace-definition is the name of
5615    //   the namespace. Subsequently in that declarative region, it is
5616    //   treated as an original-namespace-name.
5617    //
5618    // Since namespace names are unique in their scope, and we don't
5619    // look through using directives, just look for any ordinary names.
5620
5621    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5622    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5623    Decl::IDNS_Namespace;
5624    NamedDecl *PrevDecl = 0;
5625    for (DeclContext::lookup_result R
5626         = CurContext->getRedeclContext()->lookup(II);
5627         R.first != R.second; ++R.first) {
5628      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5629        PrevDecl = *R.first;
5630        break;
5631      }
5632    }
5633
5634    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5635
5636    if (PrevNS) {
5637      // This is an extended namespace definition.
5638      if (IsInline != PrevNS->isInline()) {
5639        // inline-ness must match
5640        if (PrevNS->isInline()) {
5641          // The user probably just forgot the 'inline', so suggest that it
5642          // be added back.
5643          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5644            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5645        } else {
5646          Diag(Loc, diag::err_inline_namespace_mismatch)
5647            << IsInline;
5648        }
5649        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5650
5651        IsInline = PrevNS->isInline();
5652      }
5653    } else if (PrevDecl) {
5654      // This is an invalid name redefinition.
5655      Diag(Loc, diag::err_redefinition_different_kind)
5656        << II;
5657      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5658      IsInvalid = true;
5659      // Continue on to push Namespc as current DeclContext and return it.
5660    } else if (II->isStr("std") &&
5661               CurContext->getRedeclContext()->isTranslationUnit()) {
5662      // This is the first "real" definition of the namespace "std", so update
5663      // our cache of the "std" namespace to point at this definition.
5664      PrevNS = getStdNamespace();
5665      IsStd = true;
5666      AddToKnown = !IsInline;
5667    } else {
5668      // We've seen this namespace for the first time.
5669      AddToKnown = !IsInline;
5670    }
5671  } else {
5672    // Anonymous namespaces.
5673
5674    // Determine whether the parent already has an anonymous namespace.
5675    DeclContext *Parent = CurContext->getRedeclContext();
5676    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5677      PrevNS = TU->getAnonymousNamespace();
5678    } else {
5679      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5680      PrevNS = ND->getAnonymousNamespace();
5681    }
5682
5683    if (PrevNS && IsInline != PrevNS->isInline()) {
5684      // inline-ness must match
5685      Diag(Loc, diag::err_inline_namespace_mismatch)
5686        << IsInline;
5687      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5688
5689      // Recover by ignoring the new namespace's inline status.
5690      IsInline = PrevNS->isInline();
5691    }
5692  }
5693
5694  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5695                                                 StartLoc, Loc, II, PrevNS);
5696  if (IsInvalid)
5697    Namespc->setInvalidDecl();
5698
5699  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5700
5701  // FIXME: Should we be merging attributes?
5702  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5703    PushNamespaceVisibilityAttr(Attr, Loc);
5704
5705  if (IsStd)
5706    StdNamespace = Namespc;
5707  if (AddToKnown)
5708    KnownNamespaces[Namespc] = false;
5709
5710  if (II) {
5711    PushOnScopeChains(Namespc, DeclRegionScope);
5712  } else {
5713    // Link the anonymous namespace into its parent.
5714    DeclContext *Parent = CurContext->getRedeclContext();
5715    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5716      TU->setAnonymousNamespace(Namespc);
5717    } else {
5718      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5719    }
5720
5721    CurContext->addDecl(Namespc);
5722
5723    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5724    //   behaves as if it were replaced by
5725    //     namespace unique { /* empty body */ }
5726    //     using namespace unique;
5727    //     namespace unique { namespace-body }
5728    //   where all occurrences of 'unique' in a translation unit are
5729    //   replaced by the same identifier and this identifier differs
5730    //   from all other identifiers in the entire program.
5731
5732    // We just create the namespace with an empty name and then add an
5733    // implicit using declaration, just like the standard suggests.
5734    //
5735    // CodeGen enforces the "universally unique" aspect by giving all
5736    // declarations semantically contained within an anonymous
5737    // namespace internal linkage.
5738
5739    if (!PrevNS) {
5740      UsingDirectiveDecl* UD
5741        = UsingDirectiveDecl::Create(Context, CurContext,
5742                                     /* 'using' */ LBrace,
5743                                     /* 'namespace' */ SourceLocation(),
5744                                     /* qualifier */ NestedNameSpecifierLoc(),
5745                                     /* identifier */ SourceLocation(),
5746                                     Namespc,
5747                                     /* Ancestor */ CurContext);
5748      UD->setImplicit();
5749      CurContext->addDecl(UD);
5750    }
5751  }
5752
5753  // Although we could have an invalid decl (i.e. the namespace name is a
5754  // redefinition), push it as current DeclContext and try to continue parsing.
5755  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5756  // for the namespace has the declarations that showed up in that particular
5757  // namespace definition.
5758  PushDeclContext(NamespcScope, Namespc);
5759  return Namespc;
5760}
5761
5762/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5763/// is a namespace alias, returns the namespace it points to.
5764static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5765  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5766    return AD->getNamespace();
5767  return dyn_cast_or_null<NamespaceDecl>(D);
5768}
5769
5770/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5771/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5772void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5773  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5774  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5775  Namespc->setRBraceLoc(RBrace);
5776  PopDeclContext();
5777  if (Namespc->hasAttr<VisibilityAttr>())
5778    PopPragmaVisibility(true, RBrace);
5779}
5780
5781CXXRecordDecl *Sema::getStdBadAlloc() const {
5782  return cast_or_null<CXXRecordDecl>(
5783                                  StdBadAlloc.get(Context.getExternalSource()));
5784}
5785
5786NamespaceDecl *Sema::getStdNamespace() const {
5787  return cast_or_null<NamespaceDecl>(
5788                                 StdNamespace.get(Context.getExternalSource()));
5789}
5790
5791/// \brief Retrieve the special "std" namespace, which may require us to
5792/// implicitly define the namespace.
5793NamespaceDecl *Sema::getOrCreateStdNamespace() {
5794  if (!StdNamespace) {
5795    // The "std" namespace has not yet been defined, so build one implicitly.
5796    StdNamespace = NamespaceDecl::Create(Context,
5797                                         Context.getTranslationUnitDecl(),
5798                                         /*Inline=*/false,
5799                                         SourceLocation(), SourceLocation(),
5800                                         &PP.getIdentifierTable().get("std"),
5801                                         /*PrevDecl=*/0);
5802    getStdNamespace()->setImplicit(true);
5803  }
5804
5805  return getStdNamespace();
5806}
5807
5808bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5809  assert(getLangOptions().CPlusPlus &&
5810         "Looking for std::initializer_list outside of C++.");
5811
5812  // We're looking for implicit instantiations of
5813  // template <typename E> class std::initializer_list.
5814
5815  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5816    return false;
5817
5818  ClassTemplateDecl *Template = 0;
5819  const TemplateArgument *Arguments = 0;
5820
5821  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5822
5823    ClassTemplateSpecializationDecl *Specialization =
5824        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5825    if (!Specialization)
5826      return false;
5827
5828    Template = Specialization->getSpecializedTemplate();
5829    Arguments = Specialization->getTemplateArgs().data();
5830  } else if (const TemplateSpecializationType *TST =
5831                 Ty->getAs<TemplateSpecializationType>()) {
5832    Template = dyn_cast_or_null<ClassTemplateDecl>(
5833        TST->getTemplateName().getAsTemplateDecl());
5834    Arguments = TST->getArgs();
5835  }
5836  if (!Template)
5837    return false;
5838
5839  if (!StdInitializerList) {
5840    // Haven't recognized std::initializer_list yet, maybe this is it.
5841    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5842    if (TemplateClass->getIdentifier() !=
5843            &PP.getIdentifierTable().get("initializer_list") ||
5844        !getStdNamespace()->InEnclosingNamespaceSetOf(
5845            TemplateClass->getDeclContext()))
5846      return false;
5847    // This is a template called std::initializer_list, but is it the right
5848    // template?
5849    TemplateParameterList *Params = Template->getTemplateParameters();
5850    if (Params->getMinRequiredArguments() != 1)
5851      return false;
5852    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5853      return false;
5854
5855    // It's the right template.
5856    StdInitializerList = Template;
5857  }
5858
5859  if (Template != StdInitializerList)
5860    return false;
5861
5862  // This is an instance of std::initializer_list. Find the argument type.
5863  if (Element)
5864    *Element = Arguments[0].getAsType();
5865  return true;
5866}
5867
5868static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5869  NamespaceDecl *Std = S.getStdNamespace();
5870  if (!Std) {
5871    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5872    return 0;
5873  }
5874
5875  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5876                      Loc, Sema::LookupOrdinaryName);
5877  if (!S.LookupQualifiedName(Result, Std)) {
5878    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5879    return 0;
5880  }
5881  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5882  if (!Template) {
5883    Result.suppressDiagnostics();
5884    // We found something weird. Complain about the first thing we found.
5885    NamedDecl *Found = *Result.begin();
5886    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5887    return 0;
5888  }
5889
5890  // We found some template called std::initializer_list. Now verify that it's
5891  // correct.
5892  TemplateParameterList *Params = Template->getTemplateParameters();
5893  if (Params->getMinRequiredArguments() != 1 ||
5894      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5895    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5896    return 0;
5897  }
5898
5899  return Template;
5900}
5901
5902QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5903  if (!StdInitializerList) {
5904    StdInitializerList = LookupStdInitializerList(*this, Loc);
5905    if (!StdInitializerList)
5906      return QualType();
5907  }
5908
5909  TemplateArgumentListInfo Args(Loc, Loc);
5910  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5911                                       Context.getTrivialTypeSourceInfo(Element,
5912                                                                        Loc)));
5913  return Context.getCanonicalType(
5914      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5915}
5916
5917bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5918  // C++ [dcl.init.list]p2:
5919  //   A constructor is an initializer-list constructor if its first parameter
5920  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5921  //   std::initializer_list<E> for some type E, and either there are no other
5922  //   parameters or else all other parameters have default arguments.
5923  if (Ctor->getNumParams() < 1 ||
5924      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5925    return false;
5926
5927  QualType ArgType = Ctor->getParamDecl(0)->getType();
5928  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5929    ArgType = RT->getPointeeType().getUnqualifiedType();
5930
5931  return isStdInitializerList(ArgType, 0);
5932}
5933
5934/// \brief Determine whether a using statement is in a context where it will be
5935/// apply in all contexts.
5936static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5937  switch (CurContext->getDeclKind()) {
5938    case Decl::TranslationUnit:
5939      return true;
5940    case Decl::LinkageSpec:
5941      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5942    default:
5943      return false;
5944  }
5945}
5946
5947namespace {
5948
5949// Callback to only accept typo corrections that are namespaces.
5950class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5951 public:
5952  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5953    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5954      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5955    }
5956    return false;
5957  }
5958};
5959
5960}
5961
5962static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5963                                       CXXScopeSpec &SS,
5964                                       SourceLocation IdentLoc,
5965                                       IdentifierInfo *Ident) {
5966  NamespaceValidatorCCC Validator;
5967  R.clear();
5968  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5969                                               R.getLookupKind(), Sc, &SS,
5970                                               Validator)) {
5971    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5972    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5973    if (DeclContext *DC = S.computeDeclContext(SS, false))
5974      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5975        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5976        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5977    else
5978      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5979        << Ident << CorrectedQuotedStr
5980        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5981
5982    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5983         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5984
5985    Ident = Corrected.getCorrectionAsIdentifierInfo();
5986    R.addDecl(Corrected.getCorrectionDecl());
5987    return true;
5988  }
5989  return false;
5990}
5991
5992Decl *Sema::ActOnUsingDirective(Scope *S,
5993                                          SourceLocation UsingLoc,
5994                                          SourceLocation NamespcLoc,
5995                                          CXXScopeSpec &SS,
5996                                          SourceLocation IdentLoc,
5997                                          IdentifierInfo *NamespcName,
5998                                          AttributeList *AttrList) {
5999  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6000  assert(NamespcName && "Invalid NamespcName.");
6001  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6002
6003  // This can only happen along a recovery path.
6004  while (S->getFlags() & Scope::TemplateParamScope)
6005    S = S->getParent();
6006  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6007
6008  UsingDirectiveDecl *UDir = 0;
6009  NestedNameSpecifier *Qualifier = 0;
6010  if (SS.isSet())
6011    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6012
6013  // Lookup namespace name.
6014  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6015  LookupParsedName(R, S, &SS);
6016  if (R.isAmbiguous())
6017    return 0;
6018
6019  if (R.empty()) {
6020    R.clear();
6021    // Allow "using namespace std;" or "using namespace ::std;" even if
6022    // "std" hasn't been defined yet, for GCC compatibility.
6023    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6024        NamespcName->isStr("std")) {
6025      Diag(IdentLoc, diag::ext_using_undefined_std);
6026      R.addDecl(getOrCreateStdNamespace());
6027      R.resolveKind();
6028    }
6029    // Otherwise, attempt typo correction.
6030    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6031  }
6032
6033  if (!R.empty()) {
6034    NamedDecl *Named = R.getFoundDecl();
6035    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6036        && "expected namespace decl");
6037    // C++ [namespace.udir]p1:
6038    //   A using-directive specifies that the names in the nominated
6039    //   namespace can be used in the scope in which the
6040    //   using-directive appears after the using-directive. During
6041    //   unqualified name lookup (3.4.1), the names appear as if they
6042    //   were declared in the nearest enclosing namespace which
6043    //   contains both the using-directive and the nominated
6044    //   namespace. [Note: in this context, "contains" means "contains
6045    //   directly or indirectly". ]
6046
6047    // Find enclosing context containing both using-directive and
6048    // nominated namespace.
6049    NamespaceDecl *NS = getNamespaceDecl(Named);
6050    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6051    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6052      CommonAncestor = CommonAncestor->getParent();
6053
6054    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6055                                      SS.getWithLocInContext(Context),
6056                                      IdentLoc, Named, CommonAncestor);
6057
6058    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6059        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6060      Diag(IdentLoc, diag::warn_using_directive_in_header);
6061    }
6062
6063    PushUsingDirective(S, UDir);
6064  } else {
6065    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6066  }
6067
6068  // FIXME: We ignore attributes for now.
6069  return UDir;
6070}
6071
6072void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6073  // If scope has associated entity, then using directive is at namespace
6074  // or translation unit scope. We add UsingDirectiveDecls, into
6075  // it's lookup structure.
6076  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6077    Ctx->addDecl(UDir);
6078  else
6079    // Otherwise it is block-sope. using-directives will affect lookup
6080    // only to the end of scope.
6081    S->PushUsingDirective(UDir);
6082}
6083
6084
6085Decl *Sema::ActOnUsingDeclaration(Scope *S,
6086                                  AccessSpecifier AS,
6087                                  bool HasUsingKeyword,
6088                                  SourceLocation UsingLoc,
6089                                  CXXScopeSpec &SS,
6090                                  UnqualifiedId &Name,
6091                                  AttributeList *AttrList,
6092                                  bool IsTypeName,
6093                                  SourceLocation TypenameLoc) {
6094  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6095
6096  switch (Name.getKind()) {
6097  case UnqualifiedId::IK_ImplicitSelfParam:
6098  case UnqualifiedId::IK_Identifier:
6099  case UnqualifiedId::IK_OperatorFunctionId:
6100  case UnqualifiedId::IK_LiteralOperatorId:
6101  case UnqualifiedId::IK_ConversionFunctionId:
6102    break;
6103
6104  case UnqualifiedId::IK_ConstructorName:
6105  case UnqualifiedId::IK_ConstructorTemplateId:
6106    // C++0x inherited constructors.
6107    Diag(Name.getSourceRange().getBegin(),
6108         getLangOptions().CPlusPlus0x ?
6109           diag::warn_cxx98_compat_using_decl_constructor :
6110           diag::err_using_decl_constructor)
6111      << SS.getRange();
6112
6113    if (getLangOptions().CPlusPlus0x) break;
6114
6115    return 0;
6116
6117  case UnqualifiedId::IK_DestructorName:
6118    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6119      << SS.getRange();
6120    return 0;
6121
6122  case UnqualifiedId::IK_TemplateId:
6123    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6124      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6125    return 0;
6126  }
6127
6128  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6129  DeclarationName TargetName = TargetNameInfo.getName();
6130  if (!TargetName)
6131    return 0;
6132
6133  // Warn about using declarations.
6134  // TODO: store that the declaration was written without 'using' and
6135  // talk about access decls instead of using decls in the
6136  // diagnostics.
6137  if (!HasUsingKeyword) {
6138    UsingLoc = Name.getSourceRange().getBegin();
6139
6140    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6141      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6142  }
6143
6144  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6145      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6146    return 0;
6147
6148  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6149                                        TargetNameInfo, AttrList,
6150                                        /* IsInstantiation */ false,
6151                                        IsTypeName, TypenameLoc);
6152  if (UD)
6153    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6154
6155  return UD;
6156}
6157
6158/// \brief Determine whether a using declaration considers the given
6159/// declarations as "equivalent", e.g., if they are redeclarations of
6160/// the same entity or are both typedefs of the same type.
6161static bool
6162IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6163                         bool &SuppressRedeclaration) {
6164  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6165    SuppressRedeclaration = false;
6166    return true;
6167  }
6168
6169  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6170    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6171      SuppressRedeclaration = true;
6172      return Context.hasSameType(TD1->getUnderlyingType(),
6173                                 TD2->getUnderlyingType());
6174    }
6175
6176  return false;
6177}
6178
6179
6180/// Determines whether to create a using shadow decl for a particular
6181/// decl, given the set of decls existing prior to this using lookup.
6182bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6183                                const LookupResult &Previous) {
6184  // Diagnose finding a decl which is not from a base class of the
6185  // current class.  We do this now because there are cases where this
6186  // function will silently decide not to build a shadow decl, which
6187  // will pre-empt further diagnostics.
6188  //
6189  // We don't need to do this in C++0x because we do the check once on
6190  // the qualifier.
6191  //
6192  // FIXME: diagnose the following if we care enough:
6193  //   struct A { int foo; };
6194  //   struct B : A { using A::foo; };
6195  //   template <class T> struct C : A {};
6196  //   template <class T> struct D : C<T> { using B::foo; } // <---
6197  // This is invalid (during instantiation) in C++03 because B::foo
6198  // resolves to the using decl in B, which is not a base class of D<T>.
6199  // We can't diagnose it immediately because C<T> is an unknown
6200  // specialization.  The UsingShadowDecl in D<T> then points directly
6201  // to A::foo, which will look well-formed when we instantiate.
6202  // The right solution is to not collapse the shadow-decl chain.
6203  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6204    DeclContext *OrigDC = Orig->getDeclContext();
6205
6206    // Handle enums and anonymous structs.
6207    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6208    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6209    while (OrigRec->isAnonymousStructOrUnion())
6210      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6211
6212    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6213      if (OrigDC == CurContext) {
6214        Diag(Using->getLocation(),
6215             diag::err_using_decl_nested_name_specifier_is_current_class)
6216          << Using->getQualifierLoc().getSourceRange();
6217        Diag(Orig->getLocation(), diag::note_using_decl_target);
6218        return true;
6219      }
6220
6221      Diag(Using->getQualifierLoc().getBeginLoc(),
6222           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6223        << Using->getQualifier()
6224        << cast<CXXRecordDecl>(CurContext)
6225        << Using->getQualifierLoc().getSourceRange();
6226      Diag(Orig->getLocation(), diag::note_using_decl_target);
6227      return true;
6228    }
6229  }
6230
6231  if (Previous.empty()) return false;
6232
6233  NamedDecl *Target = Orig;
6234  if (isa<UsingShadowDecl>(Target))
6235    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6236
6237  // If the target happens to be one of the previous declarations, we
6238  // don't have a conflict.
6239  //
6240  // FIXME: but we might be increasing its access, in which case we
6241  // should redeclare it.
6242  NamedDecl *NonTag = 0, *Tag = 0;
6243  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6244         I != E; ++I) {
6245    NamedDecl *D = (*I)->getUnderlyingDecl();
6246    bool Result;
6247    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6248      return Result;
6249
6250    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6251  }
6252
6253  if (Target->isFunctionOrFunctionTemplate()) {
6254    FunctionDecl *FD;
6255    if (isa<FunctionTemplateDecl>(Target))
6256      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6257    else
6258      FD = cast<FunctionDecl>(Target);
6259
6260    NamedDecl *OldDecl = 0;
6261    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6262    case Ovl_Overload:
6263      return false;
6264
6265    case Ovl_NonFunction:
6266      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6267      break;
6268
6269    // We found a decl with the exact signature.
6270    case Ovl_Match:
6271      // If we're in a record, we want to hide the target, so we
6272      // return true (without a diagnostic) to tell the caller not to
6273      // build a shadow decl.
6274      if (CurContext->isRecord())
6275        return true;
6276
6277      // If we're not in a record, this is an error.
6278      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6279      break;
6280    }
6281
6282    Diag(Target->getLocation(), diag::note_using_decl_target);
6283    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6284    return true;
6285  }
6286
6287  // Target is not a function.
6288
6289  if (isa<TagDecl>(Target)) {
6290    // No conflict between a tag and a non-tag.
6291    if (!Tag) return false;
6292
6293    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6294    Diag(Target->getLocation(), diag::note_using_decl_target);
6295    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6296    return true;
6297  }
6298
6299  // No conflict between a tag and a non-tag.
6300  if (!NonTag) return false;
6301
6302  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6303  Diag(Target->getLocation(), diag::note_using_decl_target);
6304  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6305  return true;
6306}
6307
6308/// Builds a shadow declaration corresponding to a 'using' declaration.
6309UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6310                                            UsingDecl *UD,
6311                                            NamedDecl *Orig) {
6312
6313  // If we resolved to another shadow declaration, just coalesce them.
6314  NamedDecl *Target = Orig;
6315  if (isa<UsingShadowDecl>(Target)) {
6316    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6317    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6318  }
6319
6320  UsingShadowDecl *Shadow
6321    = UsingShadowDecl::Create(Context, CurContext,
6322                              UD->getLocation(), UD, Target);
6323  UD->addShadowDecl(Shadow);
6324
6325  Shadow->setAccess(UD->getAccess());
6326  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6327    Shadow->setInvalidDecl();
6328
6329  if (S)
6330    PushOnScopeChains(Shadow, S);
6331  else
6332    CurContext->addDecl(Shadow);
6333
6334
6335  return Shadow;
6336}
6337
6338/// Hides a using shadow declaration.  This is required by the current
6339/// using-decl implementation when a resolvable using declaration in a
6340/// class is followed by a declaration which would hide or override
6341/// one or more of the using decl's targets; for example:
6342///
6343///   struct Base { void foo(int); };
6344///   struct Derived : Base {
6345///     using Base::foo;
6346///     void foo(int);
6347///   };
6348///
6349/// The governing language is C++03 [namespace.udecl]p12:
6350///
6351///   When a using-declaration brings names from a base class into a
6352///   derived class scope, member functions in the derived class
6353///   override and/or hide member functions with the same name and
6354///   parameter types in a base class (rather than conflicting).
6355///
6356/// There are two ways to implement this:
6357///   (1) optimistically create shadow decls when they're not hidden
6358///       by existing declarations, or
6359///   (2) don't create any shadow decls (or at least don't make them
6360///       visible) until we've fully parsed/instantiated the class.
6361/// The problem with (1) is that we might have to retroactively remove
6362/// a shadow decl, which requires several O(n) operations because the
6363/// decl structures are (very reasonably) not designed for removal.
6364/// (2) avoids this but is very fiddly and phase-dependent.
6365void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6366  if (Shadow->getDeclName().getNameKind() ==
6367        DeclarationName::CXXConversionFunctionName)
6368    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6369
6370  // Remove it from the DeclContext...
6371  Shadow->getDeclContext()->removeDecl(Shadow);
6372
6373  // ...and the scope, if applicable...
6374  if (S) {
6375    S->RemoveDecl(Shadow);
6376    IdResolver.RemoveDecl(Shadow);
6377  }
6378
6379  // ...and the using decl.
6380  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6381
6382  // TODO: complain somehow if Shadow was used.  It shouldn't
6383  // be possible for this to happen, because...?
6384}
6385
6386/// Builds a using declaration.
6387///
6388/// \param IsInstantiation - Whether this call arises from an
6389///   instantiation of an unresolved using declaration.  We treat
6390///   the lookup differently for these declarations.
6391NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6392                                       SourceLocation UsingLoc,
6393                                       CXXScopeSpec &SS,
6394                                       const DeclarationNameInfo &NameInfo,
6395                                       AttributeList *AttrList,
6396                                       bool IsInstantiation,
6397                                       bool IsTypeName,
6398                                       SourceLocation TypenameLoc) {
6399  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6400  SourceLocation IdentLoc = NameInfo.getLoc();
6401  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6402
6403  // FIXME: We ignore attributes for now.
6404
6405  if (SS.isEmpty()) {
6406    Diag(IdentLoc, diag::err_using_requires_qualname);
6407    return 0;
6408  }
6409
6410  // Do the redeclaration lookup in the current scope.
6411  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6412                        ForRedeclaration);
6413  Previous.setHideTags(false);
6414  if (S) {
6415    LookupName(Previous, S);
6416
6417    // It is really dumb that we have to do this.
6418    LookupResult::Filter F = Previous.makeFilter();
6419    while (F.hasNext()) {
6420      NamedDecl *D = F.next();
6421      if (!isDeclInScope(D, CurContext, S))
6422        F.erase();
6423    }
6424    F.done();
6425  } else {
6426    assert(IsInstantiation && "no scope in non-instantiation");
6427    assert(CurContext->isRecord() && "scope not record in instantiation");
6428    LookupQualifiedName(Previous, CurContext);
6429  }
6430
6431  // Check for invalid redeclarations.
6432  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6433    return 0;
6434
6435  // Check for bad qualifiers.
6436  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6437    return 0;
6438
6439  DeclContext *LookupContext = computeDeclContext(SS);
6440  NamedDecl *D;
6441  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6442  if (!LookupContext) {
6443    if (IsTypeName) {
6444      // FIXME: not all declaration name kinds are legal here
6445      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6446                                              UsingLoc, TypenameLoc,
6447                                              QualifierLoc,
6448                                              IdentLoc, NameInfo.getName());
6449    } else {
6450      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6451                                           QualifierLoc, NameInfo);
6452    }
6453  } else {
6454    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6455                          NameInfo, IsTypeName);
6456  }
6457  D->setAccess(AS);
6458  CurContext->addDecl(D);
6459
6460  if (!LookupContext) return D;
6461  UsingDecl *UD = cast<UsingDecl>(D);
6462
6463  if (RequireCompleteDeclContext(SS, LookupContext)) {
6464    UD->setInvalidDecl();
6465    return UD;
6466  }
6467
6468  // Constructor inheriting using decls get special treatment.
6469  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6470    if (CheckInheritedConstructorUsingDecl(UD))
6471      UD->setInvalidDecl();
6472    return UD;
6473  }
6474
6475  // Otherwise, look up the target name.
6476
6477  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6478
6479  // Unlike most lookups, we don't always want to hide tag
6480  // declarations: tag names are visible through the using declaration
6481  // even if hidden by ordinary names, *except* in a dependent context
6482  // where it's important for the sanity of two-phase lookup.
6483  if (!IsInstantiation)
6484    R.setHideTags(false);
6485
6486  LookupQualifiedName(R, LookupContext);
6487
6488  if (R.empty()) {
6489    Diag(IdentLoc, diag::err_no_member)
6490      << NameInfo.getName() << LookupContext << SS.getRange();
6491    UD->setInvalidDecl();
6492    return UD;
6493  }
6494
6495  if (R.isAmbiguous()) {
6496    UD->setInvalidDecl();
6497    return UD;
6498  }
6499
6500  if (IsTypeName) {
6501    // If we asked for a typename and got a non-type decl, error out.
6502    if (!R.getAsSingle<TypeDecl>()) {
6503      Diag(IdentLoc, diag::err_using_typename_non_type);
6504      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6505        Diag((*I)->getUnderlyingDecl()->getLocation(),
6506             diag::note_using_decl_target);
6507      UD->setInvalidDecl();
6508      return UD;
6509    }
6510  } else {
6511    // If we asked for a non-typename and we got a type, error out,
6512    // but only if this is an instantiation of an unresolved using
6513    // decl.  Otherwise just silently find the type name.
6514    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6515      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6516      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6517      UD->setInvalidDecl();
6518      return UD;
6519    }
6520  }
6521
6522  // C++0x N2914 [namespace.udecl]p6:
6523  // A using-declaration shall not name a namespace.
6524  if (R.getAsSingle<NamespaceDecl>()) {
6525    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6526      << SS.getRange();
6527    UD->setInvalidDecl();
6528    return UD;
6529  }
6530
6531  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6532    if (!CheckUsingShadowDecl(UD, *I, Previous))
6533      BuildUsingShadowDecl(S, UD, *I);
6534  }
6535
6536  return UD;
6537}
6538
6539/// Additional checks for a using declaration referring to a constructor name.
6540bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6541  if (UD->isTypeName()) {
6542    // FIXME: Cannot specify typename when specifying constructor
6543    return true;
6544  }
6545
6546  const Type *SourceType = UD->getQualifier()->getAsType();
6547  assert(SourceType &&
6548         "Using decl naming constructor doesn't have type in scope spec.");
6549  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6550
6551  // Check whether the named type is a direct base class.
6552  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6553  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6554  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6555       BaseIt != BaseE; ++BaseIt) {
6556    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6557    if (CanonicalSourceType == BaseType)
6558      break;
6559  }
6560
6561  if (BaseIt == BaseE) {
6562    // Did not find SourceType in the bases.
6563    Diag(UD->getUsingLocation(),
6564         diag::err_using_decl_constructor_not_in_direct_base)
6565      << UD->getNameInfo().getSourceRange()
6566      << QualType(SourceType, 0) << TargetClass;
6567    return true;
6568  }
6569
6570  BaseIt->setInheritConstructors();
6571
6572  return false;
6573}
6574
6575/// Checks that the given using declaration is not an invalid
6576/// redeclaration.  Note that this is checking only for the using decl
6577/// itself, not for any ill-formedness among the UsingShadowDecls.
6578bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6579                                       bool isTypeName,
6580                                       const CXXScopeSpec &SS,
6581                                       SourceLocation NameLoc,
6582                                       const LookupResult &Prev) {
6583  // C++03 [namespace.udecl]p8:
6584  // C++0x [namespace.udecl]p10:
6585  //   A using-declaration is a declaration and can therefore be used
6586  //   repeatedly where (and only where) multiple declarations are
6587  //   allowed.
6588  //
6589  // That's in non-member contexts.
6590  if (!CurContext->getRedeclContext()->isRecord())
6591    return false;
6592
6593  NestedNameSpecifier *Qual
6594    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6595
6596  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6597    NamedDecl *D = *I;
6598
6599    bool DTypename;
6600    NestedNameSpecifier *DQual;
6601    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6602      DTypename = UD->isTypeName();
6603      DQual = UD->getQualifier();
6604    } else if (UnresolvedUsingValueDecl *UD
6605                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6606      DTypename = false;
6607      DQual = UD->getQualifier();
6608    } else if (UnresolvedUsingTypenameDecl *UD
6609                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6610      DTypename = true;
6611      DQual = UD->getQualifier();
6612    } else continue;
6613
6614    // using decls differ if one says 'typename' and the other doesn't.
6615    // FIXME: non-dependent using decls?
6616    if (isTypeName != DTypename) continue;
6617
6618    // using decls differ if they name different scopes (but note that
6619    // template instantiation can cause this check to trigger when it
6620    // didn't before instantiation).
6621    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6622        Context.getCanonicalNestedNameSpecifier(DQual))
6623      continue;
6624
6625    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6626    Diag(D->getLocation(), diag::note_using_decl) << 1;
6627    return true;
6628  }
6629
6630  return false;
6631}
6632
6633
6634/// Checks that the given nested-name qualifier used in a using decl
6635/// in the current context is appropriately related to the current
6636/// scope.  If an error is found, diagnoses it and returns true.
6637bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6638                                   const CXXScopeSpec &SS,
6639                                   SourceLocation NameLoc) {
6640  DeclContext *NamedContext = computeDeclContext(SS);
6641
6642  if (!CurContext->isRecord()) {
6643    // C++03 [namespace.udecl]p3:
6644    // C++0x [namespace.udecl]p8:
6645    //   A using-declaration for a class member shall be a member-declaration.
6646
6647    // If we weren't able to compute a valid scope, it must be a
6648    // dependent class scope.
6649    if (!NamedContext || NamedContext->isRecord()) {
6650      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6651        << SS.getRange();
6652      return true;
6653    }
6654
6655    // Otherwise, everything is known to be fine.
6656    return false;
6657  }
6658
6659  // The current scope is a record.
6660
6661  // If the named context is dependent, we can't decide much.
6662  if (!NamedContext) {
6663    // FIXME: in C++0x, we can diagnose if we can prove that the
6664    // nested-name-specifier does not refer to a base class, which is
6665    // still possible in some cases.
6666
6667    // Otherwise we have to conservatively report that things might be
6668    // okay.
6669    return false;
6670  }
6671
6672  if (!NamedContext->isRecord()) {
6673    // Ideally this would point at the last name in the specifier,
6674    // but we don't have that level of source info.
6675    Diag(SS.getRange().getBegin(),
6676         diag::err_using_decl_nested_name_specifier_is_not_class)
6677      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6678    return true;
6679  }
6680
6681  if (!NamedContext->isDependentContext() &&
6682      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6683    return true;
6684
6685  if (getLangOptions().CPlusPlus0x) {
6686    // C++0x [namespace.udecl]p3:
6687    //   In a using-declaration used as a member-declaration, the
6688    //   nested-name-specifier shall name a base class of the class
6689    //   being defined.
6690
6691    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6692                                 cast<CXXRecordDecl>(NamedContext))) {
6693      if (CurContext == NamedContext) {
6694        Diag(NameLoc,
6695             diag::err_using_decl_nested_name_specifier_is_current_class)
6696          << SS.getRange();
6697        return true;
6698      }
6699
6700      Diag(SS.getRange().getBegin(),
6701           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6702        << (NestedNameSpecifier*) SS.getScopeRep()
6703        << cast<CXXRecordDecl>(CurContext)
6704        << SS.getRange();
6705      return true;
6706    }
6707
6708    return false;
6709  }
6710
6711  // C++03 [namespace.udecl]p4:
6712  //   A using-declaration used as a member-declaration shall refer
6713  //   to a member of a base class of the class being defined [etc.].
6714
6715  // Salient point: SS doesn't have to name a base class as long as
6716  // lookup only finds members from base classes.  Therefore we can
6717  // diagnose here only if we can prove that that can't happen,
6718  // i.e. if the class hierarchies provably don't intersect.
6719
6720  // TODO: it would be nice if "definitely valid" results were cached
6721  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6722  // need to be repeated.
6723
6724  struct UserData {
6725    llvm::DenseSet<const CXXRecordDecl*> Bases;
6726
6727    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6728      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6729      Data->Bases.insert(Base);
6730      return true;
6731    }
6732
6733    bool hasDependentBases(const CXXRecordDecl *Class) {
6734      return !Class->forallBases(collect, this);
6735    }
6736
6737    /// Returns true if the base is dependent or is one of the
6738    /// accumulated base classes.
6739    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6740      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6741      return !Data->Bases.count(Base);
6742    }
6743
6744    bool mightShareBases(const CXXRecordDecl *Class) {
6745      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6746    }
6747  };
6748
6749  UserData Data;
6750
6751  // Returns false if we find a dependent base.
6752  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6753    return false;
6754
6755  // Returns false if the class has a dependent base or if it or one
6756  // of its bases is present in the base set of the current context.
6757  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6758    return false;
6759
6760  Diag(SS.getRange().getBegin(),
6761       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6762    << (NestedNameSpecifier*) SS.getScopeRep()
6763    << cast<CXXRecordDecl>(CurContext)
6764    << SS.getRange();
6765
6766  return true;
6767}
6768
6769Decl *Sema::ActOnAliasDeclaration(Scope *S,
6770                                  AccessSpecifier AS,
6771                                  MultiTemplateParamsArg TemplateParamLists,
6772                                  SourceLocation UsingLoc,
6773                                  UnqualifiedId &Name,
6774                                  TypeResult Type) {
6775  // Skip up to the relevant declaration scope.
6776  while (S->getFlags() & Scope::TemplateParamScope)
6777    S = S->getParent();
6778  assert((S->getFlags() & Scope::DeclScope) &&
6779         "got alias-declaration outside of declaration scope");
6780
6781  if (Type.isInvalid())
6782    return 0;
6783
6784  bool Invalid = false;
6785  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6786  TypeSourceInfo *TInfo = 0;
6787  GetTypeFromParser(Type.get(), &TInfo);
6788
6789  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6790    return 0;
6791
6792  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6793                                      UPPC_DeclarationType)) {
6794    Invalid = true;
6795    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6796                                             TInfo->getTypeLoc().getBeginLoc());
6797  }
6798
6799  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6800  LookupName(Previous, S);
6801
6802  // Warn about shadowing the name of a template parameter.
6803  if (Previous.isSingleResult() &&
6804      Previous.getFoundDecl()->isTemplateParameter()) {
6805    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6806    Previous.clear();
6807  }
6808
6809  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6810         "name in alias declaration must be an identifier");
6811  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6812                                               Name.StartLocation,
6813                                               Name.Identifier, TInfo);
6814
6815  NewTD->setAccess(AS);
6816
6817  if (Invalid)
6818    NewTD->setInvalidDecl();
6819
6820  CheckTypedefForVariablyModifiedType(S, NewTD);
6821  Invalid |= NewTD->isInvalidDecl();
6822
6823  bool Redeclaration = false;
6824
6825  NamedDecl *NewND;
6826  if (TemplateParamLists.size()) {
6827    TypeAliasTemplateDecl *OldDecl = 0;
6828    TemplateParameterList *OldTemplateParams = 0;
6829
6830    if (TemplateParamLists.size() != 1) {
6831      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6832        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6833         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6834    }
6835    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6836
6837    // Only consider previous declarations in the same scope.
6838    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6839                         /*ExplicitInstantiationOrSpecialization*/false);
6840    if (!Previous.empty()) {
6841      Redeclaration = true;
6842
6843      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6844      if (!OldDecl && !Invalid) {
6845        Diag(UsingLoc, diag::err_redefinition_different_kind)
6846          << Name.Identifier;
6847
6848        NamedDecl *OldD = Previous.getRepresentativeDecl();
6849        if (OldD->getLocation().isValid())
6850          Diag(OldD->getLocation(), diag::note_previous_definition);
6851
6852        Invalid = true;
6853      }
6854
6855      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6856        if (TemplateParameterListsAreEqual(TemplateParams,
6857                                           OldDecl->getTemplateParameters(),
6858                                           /*Complain=*/true,
6859                                           TPL_TemplateMatch))
6860          OldTemplateParams = OldDecl->getTemplateParameters();
6861        else
6862          Invalid = true;
6863
6864        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6865        if (!Invalid &&
6866            !Context.hasSameType(OldTD->getUnderlyingType(),
6867                                 NewTD->getUnderlyingType())) {
6868          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6869          // but we can't reasonably accept it.
6870          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6871            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6872          if (OldTD->getLocation().isValid())
6873            Diag(OldTD->getLocation(), diag::note_previous_definition);
6874          Invalid = true;
6875        }
6876      }
6877    }
6878
6879    // Merge any previous default template arguments into our parameters,
6880    // and check the parameter list.
6881    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6882                                   TPC_TypeAliasTemplate))
6883      return 0;
6884
6885    TypeAliasTemplateDecl *NewDecl =
6886      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6887                                    Name.Identifier, TemplateParams,
6888                                    NewTD);
6889
6890    NewDecl->setAccess(AS);
6891
6892    if (Invalid)
6893      NewDecl->setInvalidDecl();
6894    else if (OldDecl)
6895      NewDecl->setPreviousDeclaration(OldDecl);
6896
6897    NewND = NewDecl;
6898  } else {
6899    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6900    NewND = NewTD;
6901  }
6902
6903  if (!Redeclaration)
6904    PushOnScopeChains(NewND, S);
6905
6906  return NewND;
6907}
6908
6909Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6910                                             SourceLocation NamespaceLoc,
6911                                             SourceLocation AliasLoc,
6912                                             IdentifierInfo *Alias,
6913                                             CXXScopeSpec &SS,
6914                                             SourceLocation IdentLoc,
6915                                             IdentifierInfo *Ident) {
6916
6917  // Lookup the namespace name.
6918  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6919  LookupParsedName(R, S, &SS);
6920
6921  // Check if we have a previous declaration with the same name.
6922  NamedDecl *PrevDecl
6923    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6924                       ForRedeclaration);
6925  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6926    PrevDecl = 0;
6927
6928  if (PrevDecl) {
6929    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6930      // We already have an alias with the same name that points to the same
6931      // namespace, so don't create a new one.
6932      // FIXME: At some point, we'll want to create the (redundant)
6933      // declaration to maintain better source information.
6934      if (!R.isAmbiguous() && !R.empty() &&
6935          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6936        return 0;
6937    }
6938
6939    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6940      diag::err_redefinition_different_kind;
6941    Diag(AliasLoc, DiagID) << Alias;
6942    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6943    return 0;
6944  }
6945
6946  if (R.isAmbiguous())
6947    return 0;
6948
6949  if (R.empty()) {
6950    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6951      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6952      return 0;
6953    }
6954  }
6955
6956  NamespaceAliasDecl *AliasDecl =
6957    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6958                               Alias, SS.getWithLocInContext(Context),
6959                               IdentLoc, R.getFoundDecl());
6960
6961  PushOnScopeChains(AliasDecl, S);
6962  return AliasDecl;
6963}
6964
6965namespace {
6966  /// \brief Scoped object used to handle the state changes required in Sema
6967  /// to implicitly define the body of a C++ member function;
6968  class ImplicitlyDefinedFunctionScope {
6969    Sema &S;
6970    Sema::ContextRAII SavedContext;
6971
6972  public:
6973    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6974      : S(S), SavedContext(S, Method)
6975    {
6976      S.PushFunctionScope();
6977      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6978    }
6979
6980    ~ImplicitlyDefinedFunctionScope() {
6981      S.PopExpressionEvaluationContext();
6982      S.PopFunctionScopeInfo();
6983    }
6984  };
6985}
6986
6987Sema::ImplicitExceptionSpecification
6988Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6989  // C++ [except.spec]p14:
6990  //   An implicitly declared special member function (Clause 12) shall have an
6991  //   exception-specification. [...]
6992  ImplicitExceptionSpecification ExceptSpec(Context);
6993  if (ClassDecl->isInvalidDecl())
6994    return ExceptSpec;
6995
6996  // Direct base-class constructors.
6997  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6998                                       BEnd = ClassDecl->bases_end();
6999       B != BEnd; ++B) {
7000    if (B->isVirtual()) // Handled below.
7001      continue;
7002
7003    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7004      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7005      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7006      // If this is a deleted function, add it anyway. This might be conformant
7007      // with the standard. This might not. I'm not sure. It might not matter.
7008      if (Constructor)
7009        ExceptSpec.CalledDecl(Constructor);
7010    }
7011  }
7012
7013  // Virtual base-class constructors.
7014  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7015                                       BEnd = ClassDecl->vbases_end();
7016       B != BEnd; ++B) {
7017    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7018      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7019      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7020      // If this is a deleted function, add it anyway. This might be conformant
7021      // with the standard. This might not. I'm not sure. It might not matter.
7022      if (Constructor)
7023        ExceptSpec.CalledDecl(Constructor);
7024    }
7025  }
7026
7027  // Field constructors.
7028  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7029                               FEnd = ClassDecl->field_end();
7030       F != FEnd; ++F) {
7031    if (F->hasInClassInitializer()) {
7032      if (Expr *E = F->getInClassInitializer())
7033        ExceptSpec.CalledExpr(E);
7034      else if (!F->isInvalidDecl())
7035        ExceptSpec.SetDelayed();
7036    } else if (const RecordType *RecordTy
7037              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7038      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7039      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7040      // If this is a deleted function, add it anyway. This might be conformant
7041      // with the standard. This might not. I'm not sure. It might not matter.
7042      // In particular, the problem is that this function never gets called. It
7043      // might just be ill-formed because this function attempts to refer to
7044      // a deleted function here.
7045      if (Constructor)
7046        ExceptSpec.CalledDecl(Constructor);
7047    }
7048  }
7049
7050  return ExceptSpec;
7051}
7052
7053CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7054                                                     CXXRecordDecl *ClassDecl) {
7055  // C++ [class.ctor]p5:
7056  //   A default constructor for a class X is a constructor of class X
7057  //   that can be called without an argument. If there is no
7058  //   user-declared constructor for class X, a default constructor is
7059  //   implicitly declared. An implicitly-declared default constructor
7060  //   is an inline public member of its class.
7061  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7062         "Should not build implicit default constructor!");
7063
7064  ImplicitExceptionSpecification Spec =
7065    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7066  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7067
7068  // Create the actual constructor declaration.
7069  CanQualType ClassType
7070    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7071  SourceLocation ClassLoc = ClassDecl->getLocation();
7072  DeclarationName Name
7073    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7074  DeclarationNameInfo NameInfo(Name, ClassLoc);
7075  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7076      Context, ClassDecl, ClassLoc, NameInfo,
7077      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7078      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7079      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7080        getLangOptions().CPlusPlus0x);
7081  DefaultCon->setAccess(AS_public);
7082  DefaultCon->setDefaulted();
7083  DefaultCon->setImplicit();
7084  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7085
7086  // Note that we have declared this constructor.
7087  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7088
7089  if (Scope *S = getScopeForContext(ClassDecl))
7090    PushOnScopeChains(DefaultCon, S, false);
7091  ClassDecl->addDecl(DefaultCon);
7092
7093  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7094    DefaultCon->setDeletedAsWritten();
7095
7096  return DefaultCon;
7097}
7098
7099void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7100                                            CXXConstructorDecl *Constructor) {
7101  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7102          !Constructor->doesThisDeclarationHaveABody() &&
7103          !Constructor->isDeleted()) &&
7104    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7105
7106  CXXRecordDecl *ClassDecl = Constructor->getParent();
7107  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7108
7109  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7110  DiagnosticErrorTrap Trap(Diags);
7111  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7112      Trap.hasErrorOccurred()) {
7113    Diag(CurrentLocation, diag::note_member_synthesized_at)
7114      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7115    Constructor->setInvalidDecl();
7116    return;
7117  }
7118
7119  SourceLocation Loc = Constructor->getLocation();
7120  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7121
7122  Constructor->setUsed();
7123  MarkVTableUsed(CurrentLocation, ClassDecl);
7124
7125  if (ASTMutationListener *L = getASTMutationListener()) {
7126    L->CompletedImplicitDefinition(Constructor);
7127  }
7128}
7129
7130/// Get any existing defaulted default constructor for the given class. Do not
7131/// implicitly define one if it does not exist.
7132static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7133                                                             CXXRecordDecl *D) {
7134  ASTContext &Context = Self.Context;
7135  QualType ClassType = Context.getTypeDeclType(D);
7136  DeclarationName ConstructorName
7137    = Context.DeclarationNames.getCXXConstructorName(
7138                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7139
7140  DeclContext::lookup_const_iterator Con, ConEnd;
7141  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7142       Con != ConEnd; ++Con) {
7143    // A function template cannot be defaulted.
7144    if (isa<FunctionTemplateDecl>(*Con))
7145      continue;
7146
7147    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7148    if (Constructor->isDefaultConstructor())
7149      return Constructor->isDefaulted() ? Constructor : 0;
7150  }
7151  return 0;
7152}
7153
7154void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7155  if (!D) return;
7156  AdjustDeclIfTemplate(D);
7157
7158  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7159  CXXConstructorDecl *CtorDecl
7160    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7161
7162  if (!CtorDecl) return;
7163
7164  // Compute the exception specification for the default constructor.
7165  const FunctionProtoType *CtorTy =
7166    CtorDecl->getType()->castAs<FunctionProtoType>();
7167  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7168    ImplicitExceptionSpecification Spec =
7169      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7170    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7171    assert(EPI.ExceptionSpecType != EST_Delayed);
7172
7173    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7174  }
7175
7176  // If the default constructor is explicitly defaulted, checking the exception
7177  // specification is deferred until now.
7178  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7179      !ClassDecl->isDependentType())
7180    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7181}
7182
7183void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7184  // We start with an initial pass over the base classes to collect those that
7185  // inherit constructors from. If there are none, we can forgo all further
7186  // processing.
7187  typedef SmallVector<const RecordType *, 4> BasesVector;
7188  BasesVector BasesToInheritFrom;
7189  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7190                                          BaseE = ClassDecl->bases_end();
7191         BaseIt != BaseE; ++BaseIt) {
7192    if (BaseIt->getInheritConstructors()) {
7193      QualType Base = BaseIt->getType();
7194      if (Base->isDependentType()) {
7195        // If we inherit constructors from anything that is dependent, just
7196        // abort processing altogether. We'll get another chance for the
7197        // instantiations.
7198        return;
7199      }
7200      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7201    }
7202  }
7203  if (BasesToInheritFrom.empty())
7204    return;
7205
7206  // Now collect the constructors that we already have in the current class.
7207  // Those take precedence over inherited constructors.
7208  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7209  //   unless there is a user-declared constructor with the same signature in
7210  //   the class where the using-declaration appears.
7211  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7212  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7213                                    CtorE = ClassDecl->ctor_end();
7214       CtorIt != CtorE; ++CtorIt) {
7215    ExistingConstructors.insert(
7216        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7217  }
7218
7219  Scope *S = getScopeForContext(ClassDecl);
7220  DeclarationName CreatedCtorName =
7221      Context.DeclarationNames.getCXXConstructorName(
7222          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7223
7224  // Now comes the true work.
7225  // First, we keep a map from constructor types to the base that introduced
7226  // them. Needed for finding conflicting constructors. We also keep the
7227  // actually inserted declarations in there, for pretty diagnostics.
7228  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7229  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7230  ConstructorToSourceMap InheritedConstructors;
7231  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7232                             BaseE = BasesToInheritFrom.end();
7233       BaseIt != BaseE; ++BaseIt) {
7234    const RecordType *Base = *BaseIt;
7235    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7236    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7237    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7238                                      CtorE = BaseDecl->ctor_end();
7239         CtorIt != CtorE; ++CtorIt) {
7240      // Find the using declaration for inheriting this base's constructors.
7241      DeclarationName Name =
7242          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7243      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7244          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7245      SourceLocation UsingLoc = UD ? UD->getLocation() :
7246                                     ClassDecl->getLocation();
7247
7248      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7249      //   from the class X named in the using-declaration consists of actual
7250      //   constructors and notional constructors that result from the
7251      //   transformation of defaulted parameters as follows:
7252      //   - all non-template default constructors of X, and
7253      //   - for each non-template constructor of X that has at least one
7254      //     parameter with a default argument, the set of constructors that
7255      //     results from omitting any ellipsis parameter specification and
7256      //     successively omitting parameters with a default argument from the
7257      //     end of the parameter-type-list.
7258      CXXConstructorDecl *BaseCtor = *CtorIt;
7259      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7260      const FunctionProtoType *BaseCtorType =
7261          BaseCtor->getType()->getAs<FunctionProtoType>();
7262
7263      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7264                    maxParams = BaseCtor->getNumParams();
7265           params <= maxParams; ++params) {
7266        // Skip default constructors. They're never inherited.
7267        if (params == 0)
7268          continue;
7269        // Skip copy and move constructors for the same reason.
7270        if (CanBeCopyOrMove && params == 1)
7271          continue;
7272
7273        // Build up a function type for this particular constructor.
7274        // FIXME: The working paper does not consider that the exception spec
7275        // for the inheriting constructor might be larger than that of the
7276        // source. This code doesn't yet, either. When it does, this code will
7277        // need to be delayed until after exception specifications and in-class
7278        // member initializers are attached.
7279        const Type *NewCtorType;
7280        if (params == maxParams)
7281          NewCtorType = BaseCtorType;
7282        else {
7283          SmallVector<QualType, 16> Args;
7284          for (unsigned i = 0; i < params; ++i) {
7285            Args.push_back(BaseCtorType->getArgType(i));
7286          }
7287          FunctionProtoType::ExtProtoInfo ExtInfo =
7288              BaseCtorType->getExtProtoInfo();
7289          ExtInfo.Variadic = false;
7290          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7291                                                Args.data(), params, ExtInfo)
7292                       .getTypePtr();
7293        }
7294        const Type *CanonicalNewCtorType =
7295            Context.getCanonicalType(NewCtorType);
7296
7297        // Now that we have the type, first check if the class already has a
7298        // constructor with this signature.
7299        if (ExistingConstructors.count(CanonicalNewCtorType))
7300          continue;
7301
7302        // Then we check if we have already declared an inherited constructor
7303        // with this signature.
7304        std::pair<ConstructorToSourceMap::iterator, bool> result =
7305            InheritedConstructors.insert(std::make_pair(
7306                CanonicalNewCtorType,
7307                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7308        if (!result.second) {
7309          // Already in the map. If it came from a different class, that's an
7310          // error. Not if it's from the same.
7311          CanQualType PreviousBase = result.first->second.first;
7312          if (CanonicalBase != PreviousBase) {
7313            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7314            const CXXConstructorDecl *PrevBaseCtor =
7315                PrevCtor->getInheritedConstructor();
7316            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7317
7318            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7319            Diag(BaseCtor->getLocation(),
7320                 diag::note_using_decl_constructor_conflict_current_ctor);
7321            Diag(PrevBaseCtor->getLocation(),
7322                 diag::note_using_decl_constructor_conflict_previous_ctor);
7323            Diag(PrevCtor->getLocation(),
7324                 diag::note_using_decl_constructor_conflict_previous_using);
7325          }
7326          continue;
7327        }
7328
7329        // OK, we're there, now add the constructor.
7330        // C++0x [class.inhctor]p8: [...] that would be performed by a
7331        //   user-written inline constructor [...]
7332        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7333        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7334            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7335            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7336            /*ImplicitlyDeclared=*/true,
7337            // FIXME: Due to a defect in the standard, we treat inherited
7338            // constructors as constexpr even if that makes them ill-formed.
7339            /*Constexpr=*/BaseCtor->isConstexpr());
7340        NewCtor->setAccess(BaseCtor->getAccess());
7341
7342        // Build up the parameter decls and add them.
7343        SmallVector<ParmVarDecl *, 16> ParamDecls;
7344        for (unsigned i = 0; i < params; ++i) {
7345          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7346                                                   UsingLoc, UsingLoc,
7347                                                   /*IdentifierInfo=*/0,
7348                                                   BaseCtorType->getArgType(i),
7349                                                   /*TInfo=*/0, SC_None,
7350                                                   SC_None, /*DefaultArg=*/0));
7351        }
7352        NewCtor->setParams(ParamDecls);
7353        NewCtor->setInheritedConstructor(BaseCtor);
7354
7355        PushOnScopeChains(NewCtor, S, false);
7356        ClassDecl->addDecl(NewCtor);
7357        result.first->second.second = NewCtor;
7358      }
7359    }
7360  }
7361}
7362
7363Sema::ImplicitExceptionSpecification
7364Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7365  // C++ [except.spec]p14:
7366  //   An implicitly declared special member function (Clause 12) shall have
7367  //   an exception-specification.
7368  ImplicitExceptionSpecification ExceptSpec(Context);
7369  if (ClassDecl->isInvalidDecl())
7370    return ExceptSpec;
7371
7372  // Direct base-class destructors.
7373  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7374                                       BEnd = ClassDecl->bases_end();
7375       B != BEnd; ++B) {
7376    if (B->isVirtual()) // Handled below.
7377      continue;
7378
7379    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7380      ExceptSpec.CalledDecl(
7381                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7382  }
7383
7384  // Virtual base-class destructors.
7385  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7386                                       BEnd = ClassDecl->vbases_end();
7387       B != BEnd; ++B) {
7388    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7389      ExceptSpec.CalledDecl(
7390                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7391  }
7392
7393  // Field destructors.
7394  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7395                               FEnd = ClassDecl->field_end();
7396       F != FEnd; ++F) {
7397    if (const RecordType *RecordTy
7398        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7399      ExceptSpec.CalledDecl(
7400                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7401  }
7402
7403  return ExceptSpec;
7404}
7405
7406CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7407  // C++ [class.dtor]p2:
7408  //   If a class has no user-declared destructor, a destructor is
7409  //   declared implicitly. An implicitly-declared destructor is an
7410  //   inline public member of its class.
7411
7412  ImplicitExceptionSpecification Spec =
7413      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7414  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7415
7416  // Create the actual destructor declaration.
7417  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7418
7419  CanQualType ClassType
7420    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7421  SourceLocation ClassLoc = ClassDecl->getLocation();
7422  DeclarationName Name
7423    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7424  DeclarationNameInfo NameInfo(Name, ClassLoc);
7425  CXXDestructorDecl *Destructor
7426      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7427                                  /*isInline=*/true,
7428                                  /*isImplicitlyDeclared=*/true);
7429  Destructor->setAccess(AS_public);
7430  Destructor->setDefaulted();
7431  Destructor->setImplicit();
7432  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7433
7434  // Note that we have declared this destructor.
7435  ++ASTContext::NumImplicitDestructorsDeclared;
7436
7437  // Introduce this destructor into its scope.
7438  if (Scope *S = getScopeForContext(ClassDecl))
7439    PushOnScopeChains(Destructor, S, false);
7440  ClassDecl->addDecl(Destructor);
7441
7442  // This could be uniqued if it ever proves significant.
7443  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7444
7445  if (ShouldDeleteDestructor(Destructor))
7446    Destructor->setDeletedAsWritten();
7447
7448  AddOverriddenMethods(ClassDecl, Destructor);
7449
7450  return Destructor;
7451}
7452
7453void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7454                                    CXXDestructorDecl *Destructor) {
7455  assert((Destructor->isDefaulted() &&
7456          !Destructor->doesThisDeclarationHaveABody()) &&
7457         "DefineImplicitDestructor - call it for implicit default dtor");
7458  CXXRecordDecl *ClassDecl = Destructor->getParent();
7459  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7460
7461  if (Destructor->isInvalidDecl())
7462    return;
7463
7464  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7465
7466  DiagnosticErrorTrap Trap(Diags);
7467  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7468                                         Destructor->getParent());
7469
7470  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7471    Diag(CurrentLocation, diag::note_member_synthesized_at)
7472      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7473
7474    Destructor->setInvalidDecl();
7475    return;
7476  }
7477
7478  SourceLocation Loc = Destructor->getLocation();
7479  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7480  Destructor->setImplicitlyDefined(true);
7481  Destructor->setUsed();
7482  MarkVTableUsed(CurrentLocation, ClassDecl);
7483
7484  if (ASTMutationListener *L = getASTMutationListener()) {
7485    L->CompletedImplicitDefinition(Destructor);
7486  }
7487}
7488
7489void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7490                                         CXXDestructorDecl *destructor) {
7491  // C++11 [class.dtor]p3:
7492  //   A declaration of a destructor that does not have an exception-
7493  //   specification is implicitly considered to have the same exception-
7494  //   specification as an implicit declaration.
7495  const FunctionProtoType *dtorType = destructor->getType()->
7496                                        getAs<FunctionProtoType>();
7497  if (dtorType->hasExceptionSpec())
7498    return;
7499
7500  ImplicitExceptionSpecification exceptSpec =
7501      ComputeDefaultedDtorExceptionSpec(classDecl);
7502
7503  // Replace the destructor's type, building off the existing one. Fortunately,
7504  // the only thing of interest in the destructor type is its extended info.
7505  // The return and arguments are fixed.
7506  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7507  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7508  epi.NumExceptions = exceptSpec.size();
7509  epi.Exceptions = exceptSpec.data();
7510  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7511
7512  destructor->setType(ty);
7513
7514  // FIXME: If the destructor has a body that could throw, and the newly created
7515  // spec doesn't allow exceptions, we should emit a warning, because this
7516  // change in behavior can break conforming C++03 programs at runtime.
7517  // However, we don't have a body yet, so it needs to be done somewhere else.
7518}
7519
7520/// \brief Builds a statement that copies/moves the given entity from \p From to
7521/// \c To.
7522///
7523/// This routine is used to copy/move the members of a class with an
7524/// implicitly-declared copy/move assignment operator. When the entities being
7525/// copied are arrays, this routine builds for loops to copy them.
7526///
7527/// \param S The Sema object used for type-checking.
7528///
7529/// \param Loc The location where the implicit copy/move is being generated.
7530///
7531/// \param T The type of the expressions being copied/moved. Both expressions
7532/// must have this type.
7533///
7534/// \param To The expression we are copying/moving to.
7535///
7536/// \param From The expression we are copying/moving from.
7537///
7538/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7539/// Otherwise, it's a non-static member subobject.
7540///
7541/// \param Copying Whether we're copying or moving.
7542///
7543/// \param Depth Internal parameter recording the depth of the recursion.
7544///
7545/// \returns A statement or a loop that copies the expressions.
7546static StmtResult
7547BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7548                      Expr *To, Expr *From,
7549                      bool CopyingBaseSubobject, bool Copying,
7550                      unsigned Depth = 0) {
7551  // C++0x [class.copy]p28:
7552  //   Each subobject is assigned in the manner appropriate to its type:
7553  //
7554  //     - if the subobject is of class type, as if by a call to operator= with
7555  //       the subobject as the object expression and the corresponding
7556  //       subobject of x as a single function argument (as if by explicit
7557  //       qualification; that is, ignoring any possible virtual overriding
7558  //       functions in more derived classes);
7559  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7560    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7561
7562    // Look for operator=.
7563    DeclarationName Name
7564      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7565    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7566    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7567
7568    // Filter out any result that isn't a copy/move-assignment operator.
7569    LookupResult::Filter F = OpLookup.makeFilter();
7570    while (F.hasNext()) {
7571      NamedDecl *D = F.next();
7572      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7573        if (Copying ? Method->isCopyAssignmentOperator() :
7574                      Method->isMoveAssignmentOperator())
7575          continue;
7576
7577      F.erase();
7578    }
7579    F.done();
7580
7581    // Suppress the protected check (C++ [class.protected]) for each of the
7582    // assignment operators we found. This strange dance is required when
7583    // we're assigning via a base classes's copy-assignment operator. To
7584    // ensure that we're getting the right base class subobject (without
7585    // ambiguities), we need to cast "this" to that subobject type; to
7586    // ensure that we don't go through the virtual call mechanism, we need
7587    // to qualify the operator= name with the base class (see below). However,
7588    // this means that if the base class has a protected copy assignment
7589    // operator, the protected member access check will fail. So, we
7590    // rewrite "protected" access to "public" access in this case, since we
7591    // know by construction that we're calling from a derived class.
7592    if (CopyingBaseSubobject) {
7593      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7594           L != LEnd; ++L) {
7595        if (L.getAccess() == AS_protected)
7596          L.setAccess(AS_public);
7597      }
7598    }
7599
7600    // Create the nested-name-specifier that will be used to qualify the
7601    // reference to operator=; this is required to suppress the virtual
7602    // call mechanism.
7603    CXXScopeSpec SS;
7604    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7605    SS.MakeTrivial(S.Context,
7606                   NestedNameSpecifier::Create(S.Context, 0, false,
7607                                               CanonicalT),
7608                   Loc);
7609
7610    // Create the reference to operator=.
7611    ExprResult OpEqualRef
7612      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7613                                   /*TemplateKWLoc=*/SourceLocation(),
7614                                   /*FirstQualifierInScope=*/0,
7615                                   OpLookup,
7616                                   /*TemplateArgs=*/0,
7617                                   /*SuppressQualifierCheck=*/true);
7618    if (OpEqualRef.isInvalid())
7619      return StmtError();
7620
7621    // Build the call to the assignment operator.
7622
7623    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7624                                                  OpEqualRef.takeAs<Expr>(),
7625                                                  Loc, &From, 1, Loc);
7626    if (Call.isInvalid())
7627      return StmtError();
7628
7629    return S.Owned(Call.takeAs<Stmt>());
7630  }
7631
7632  //     - if the subobject is of scalar type, the built-in assignment
7633  //       operator is used.
7634  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7635  if (!ArrayTy) {
7636    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7637    if (Assignment.isInvalid())
7638      return StmtError();
7639
7640    return S.Owned(Assignment.takeAs<Stmt>());
7641  }
7642
7643  //     - if the subobject is an array, each element is assigned, in the
7644  //       manner appropriate to the element type;
7645
7646  // Construct a loop over the array bounds, e.g.,
7647  //
7648  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7649  //
7650  // that will copy each of the array elements.
7651  QualType SizeType = S.Context.getSizeType();
7652
7653  // Create the iteration variable.
7654  IdentifierInfo *IterationVarName = 0;
7655  {
7656    SmallString<8> Str;
7657    llvm::raw_svector_ostream OS(Str);
7658    OS << "__i" << Depth;
7659    IterationVarName = &S.Context.Idents.get(OS.str());
7660  }
7661  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7662                                          IterationVarName, SizeType,
7663                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7664                                          SC_None, SC_None);
7665
7666  // Initialize the iteration variable to zero.
7667  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7668  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7669
7670  // Create a reference to the iteration variable; we'll use this several
7671  // times throughout.
7672  Expr *IterationVarRef
7673    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7674  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7675  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7676  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7677
7678  // Create the DeclStmt that holds the iteration variable.
7679  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7680
7681  // Create the comparison against the array bound.
7682  llvm::APInt Upper
7683    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7684  Expr *Comparison
7685    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7686                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7687                                     BO_NE, S.Context.BoolTy,
7688                                     VK_RValue, OK_Ordinary, Loc);
7689
7690  // Create the pre-increment of the iteration variable.
7691  Expr *Increment
7692    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7693                                    VK_LValue, OK_Ordinary, Loc);
7694
7695  // Subscript the "from" and "to" expressions with the iteration variable.
7696  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7697                                                         IterationVarRefRVal,
7698                                                         Loc));
7699  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7700                                                       IterationVarRefRVal,
7701                                                       Loc));
7702  if (!Copying) // Cast to rvalue
7703    From = CastForMoving(S, From);
7704
7705  // Build the copy/move for an individual element of the array.
7706  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7707                                          To, From, CopyingBaseSubobject,
7708                                          Copying, Depth + 1);
7709  if (Copy.isInvalid())
7710    return StmtError();
7711
7712  // Construct the loop that copies all elements of this array.
7713  return S.ActOnForStmt(Loc, Loc, InitStmt,
7714                        S.MakeFullExpr(Comparison),
7715                        0, S.MakeFullExpr(Increment),
7716                        Loc, Copy.take());
7717}
7718
7719std::pair<Sema::ImplicitExceptionSpecification, bool>
7720Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7721                                                   CXXRecordDecl *ClassDecl) {
7722  if (ClassDecl->isInvalidDecl())
7723    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7724
7725  // C++ [class.copy]p10:
7726  //   If the class definition does not explicitly declare a copy
7727  //   assignment operator, one is declared implicitly.
7728  //   The implicitly-defined copy assignment operator for a class X
7729  //   will have the form
7730  //
7731  //       X& X::operator=(const X&)
7732  //
7733  //   if
7734  bool HasConstCopyAssignment = true;
7735
7736  //       -- each direct base class B of X has a copy assignment operator
7737  //          whose parameter is of type const B&, const volatile B& or B,
7738  //          and
7739  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7740                                       BaseEnd = ClassDecl->bases_end();
7741       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7742    // We'll handle this below
7743    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7744      continue;
7745
7746    assert(!Base->getType()->isDependentType() &&
7747           "Cannot generate implicit members for class with dependent bases.");
7748    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7749    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7750                            &HasConstCopyAssignment);
7751  }
7752
7753  // In C++11, the above citation has "or virtual" added
7754  if (LangOpts.CPlusPlus0x) {
7755    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7756                                         BaseEnd = ClassDecl->vbases_end();
7757         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7758      assert(!Base->getType()->isDependentType() &&
7759             "Cannot generate implicit members for class with dependent bases.");
7760      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7761      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7762                              &HasConstCopyAssignment);
7763    }
7764  }
7765
7766  //       -- for all the nonstatic data members of X that are of a class
7767  //          type M (or array thereof), each such class type has a copy
7768  //          assignment operator whose parameter is of type const M&,
7769  //          const volatile M& or M.
7770  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7771                                  FieldEnd = ClassDecl->field_end();
7772       HasConstCopyAssignment && Field != FieldEnd;
7773       ++Field) {
7774    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7775    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7776      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7777                              &HasConstCopyAssignment);
7778    }
7779  }
7780
7781  //   Otherwise, the implicitly declared copy assignment operator will
7782  //   have the form
7783  //
7784  //       X& X::operator=(X&)
7785
7786  // C++ [except.spec]p14:
7787  //   An implicitly declared special member function (Clause 12) shall have an
7788  //   exception-specification. [...]
7789
7790  // It is unspecified whether or not an implicit copy assignment operator
7791  // attempts to deduplicate calls to assignment operators of virtual bases are
7792  // made. As such, this exception specification is effectively unspecified.
7793  // Based on a similar decision made for constness in C++0x, we're erring on
7794  // the side of assuming such calls to be made regardless of whether they
7795  // actually happen.
7796  ImplicitExceptionSpecification ExceptSpec(Context);
7797  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7798  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7799                                       BaseEnd = ClassDecl->bases_end();
7800       Base != BaseEnd; ++Base) {
7801    if (Base->isVirtual())
7802      continue;
7803
7804    CXXRecordDecl *BaseClassDecl
7805      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7806    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7807                                                            ArgQuals, false, 0))
7808      ExceptSpec.CalledDecl(CopyAssign);
7809  }
7810
7811  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7812                                       BaseEnd = ClassDecl->vbases_end();
7813       Base != BaseEnd; ++Base) {
7814    CXXRecordDecl *BaseClassDecl
7815      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7816    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7817                                                            ArgQuals, false, 0))
7818      ExceptSpec.CalledDecl(CopyAssign);
7819  }
7820
7821  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7822                                  FieldEnd = ClassDecl->field_end();
7823       Field != FieldEnd;
7824       ++Field) {
7825    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7826    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7827      if (CXXMethodDecl *CopyAssign =
7828          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7829        ExceptSpec.CalledDecl(CopyAssign);
7830    }
7831  }
7832
7833  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7834}
7835
7836CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7837  // Note: The following rules are largely analoguous to the copy
7838  // constructor rules. Note that virtual bases are not taken into account
7839  // for determining the argument type of the operator. Note also that
7840  // operators taking an object instead of a reference are allowed.
7841
7842  ImplicitExceptionSpecification Spec(Context);
7843  bool Const;
7844  llvm::tie(Spec, Const) =
7845    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7846
7847  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7848  QualType RetType = Context.getLValueReferenceType(ArgType);
7849  if (Const)
7850    ArgType = ArgType.withConst();
7851  ArgType = Context.getLValueReferenceType(ArgType);
7852
7853  //   An implicitly-declared copy assignment operator is an inline public
7854  //   member of its class.
7855  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7856  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7857  SourceLocation ClassLoc = ClassDecl->getLocation();
7858  DeclarationNameInfo NameInfo(Name, ClassLoc);
7859  CXXMethodDecl *CopyAssignment
7860    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7861                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7862                            /*TInfo=*/0, /*isStatic=*/false,
7863                            /*StorageClassAsWritten=*/SC_None,
7864                            /*isInline=*/true, /*isConstexpr=*/false,
7865                            SourceLocation());
7866  CopyAssignment->setAccess(AS_public);
7867  CopyAssignment->setDefaulted();
7868  CopyAssignment->setImplicit();
7869  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7870
7871  // Add the parameter to the operator.
7872  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7873                                               ClassLoc, ClassLoc, /*Id=*/0,
7874                                               ArgType, /*TInfo=*/0,
7875                                               SC_None,
7876                                               SC_None, 0);
7877  CopyAssignment->setParams(FromParam);
7878
7879  // Note that we have added this copy-assignment operator.
7880  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7881
7882  if (Scope *S = getScopeForContext(ClassDecl))
7883    PushOnScopeChains(CopyAssignment, S, false);
7884  ClassDecl->addDecl(CopyAssignment);
7885
7886  // C++0x [class.copy]p19:
7887  //   ....  If the class definition does not explicitly declare a copy
7888  //   assignment operator, there is no user-declared move constructor, and
7889  //   there is no user-declared move assignment operator, a copy assignment
7890  //   operator is implicitly declared as defaulted.
7891  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7892          !getLangOptions().MicrosoftMode) ||
7893      ClassDecl->hasUserDeclaredMoveAssignment() ||
7894      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7895    CopyAssignment->setDeletedAsWritten();
7896
7897  AddOverriddenMethods(ClassDecl, CopyAssignment);
7898  return CopyAssignment;
7899}
7900
7901void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7902                                        CXXMethodDecl *CopyAssignOperator) {
7903  assert((CopyAssignOperator->isDefaulted() &&
7904          CopyAssignOperator->isOverloadedOperator() &&
7905          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7906          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7907         "DefineImplicitCopyAssignment called for wrong function");
7908
7909  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7910
7911  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7912    CopyAssignOperator->setInvalidDecl();
7913    return;
7914  }
7915
7916  CopyAssignOperator->setUsed();
7917
7918  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7919  DiagnosticErrorTrap Trap(Diags);
7920
7921  // C++0x [class.copy]p30:
7922  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7923  //   for a non-union class X performs memberwise copy assignment of its
7924  //   subobjects. The direct base classes of X are assigned first, in the
7925  //   order of their declaration in the base-specifier-list, and then the
7926  //   immediate non-static data members of X are assigned, in the order in
7927  //   which they were declared in the class definition.
7928
7929  // The statements that form the synthesized function body.
7930  ASTOwningVector<Stmt*> Statements(*this);
7931
7932  // The parameter for the "other" object, which we are copying from.
7933  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7934  Qualifiers OtherQuals = Other->getType().getQualifiers();
7935  QualType OtherRefType = Other->getType();
7936  if (const LValueReferenceType *OtherRef
7937                                = OtherRefType->getAs<LValueReferenceType>()) {
7938    OtherRefType = OtherRef->getPointeeType();
7939    OtherQuals = OtherRefType.getQualifiers();
7940  }
7941
7942  // Our location for everything implicitly-generated.
7943  SourceLocation Loc = CopyAssignOperator->getLocation();
7944
7945  // Construct a reference to the "other" object. We'll be using this
7946  // throughout the generated ASTs.
7947  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7948  assert(OtherRef && "Reference to parameter cannot fail!");
7949
7950  // Construct the "this" pointer. We'll be using this throughout the generated
7951  // ASTs.
7952  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7953  assert(This && "Reference to this cannot fail!");
7954
7955  // Assign base classes.
7956  bool Invalid = false;
7957  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7958       E = ClassDecl->bases_end(); Base != E; ++Base) {
7959    // Form the assignment:
7960    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7961    QualType BaseType = Base->getType().getUnqualifiedType();
7962    if (!BaseType->isRecordType()) {
7963      Invalid = true;
7964      continue;
7965    }
7966
7967    CXXCastPath BasePath;
7968    BasePath.push_back(Base);
7969
7970    // Construct the "from" expression, which is an implicit cast to the
7971    // appropriately-qualified base type.
7972    Expr *From = OtherRef;
7973    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7974                             CK_UncheckedDerivedToBase,
7975                             VK_LValue, &BasePath).take();
7976
7977    // Dereference "this".
7978    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7979
7980    // Implicitly cast "this" to the appropriately-qualified base type.
7981    To = ImpCastExprToType(To.take(),
7982                           Context.getCVRQualifiedType(BaseType,
7983                                     CopyAssignOperator->getTypeQualifiers()),
7984                           CK_UncheckedDerivedToBase,
7985                           VK_LValue, &BasePath);
7986
7987    // Build the copy.
7988    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7989                                            To.get(), From,
7990                                            /*CopyingBaseSubobject=*/true,
7991                                            /*Copying=*/true);
7992    if (Copy.isInvalid()) {
7993      Diag(CurrentLocation, diag::note_member_synthesized_at)
7994        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7995      CopyAssignOperator->setInvalidDecl();
7996      return;
7997    }
7998
7999    // Success! Record the copy.
8000    Statements.push_back(Copy.takeAs<Expr>());
8001  }
8002
8003  // \brief Reference to the __builtin_memcpy function.
8004  Expr *BuiltinMemCpyRef = 0;
8005  // \brief Reference to the __builtin_objc_memmove_collectable function.
8006  Expr *CollectableMemCpyRef = 0;
8007
8008  // Assign non-static members.
8009  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8010                                  FieldEnd = ClassDecl->field_end();
8011       Field != FieldEnd; ++Field) {
8012    if (Field->isUnnamedBitfield())
8013      continue;
8014
8015    // Check for members of reference type; we can't copy those.
8016    if (Field->getType()->isReferenceType()) {
8017      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8018        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8019      Diag(Field->getLocation(), diag::note_declared_at);
8020      Diag(CurrentLocation, diag::note_member_synthesized_at)
8021        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8022      Invalid = true;
8023      continue;
8024    }
8025
8026    // Check for members of const-qualified, non-class type.
8027    QualType BaseType = Context.getBaseElementType(Field->getType());
8028    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8029      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8030        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8031      Diag(Field->getLocation(), diag::note_declared_at);
8032      Diag(CurrentLocation, diag::note_member_synthesized_at)
8033        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8034      Invalid = true;
8035      continue;
8036    }
8037
8038    // Suppress assigning zero-width bitfields.
8039    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8040      continue;
8041
8042    QualType FieldType = Field->getType().getNonReferenceType();
8043    if (FieldType->isIncompleteArrayType()) {
8044      assert(ClassDecl->hasFlexibleArrayMember() &&
8045             "Incomplete array type is not valid");
8046      continue;
8047    }
8048
8049    // Build references to the field in the object we're copying from and to.
8050    CXXScopeSpec SS; // Intentionally empty
8051    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8052                              LookupMemberName);
8053    MemberLookup.addDecl(*Field);
8054    MemberLookup.resolveKind();
8055    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8056                                               Loc, /*IsArrow=*/false,
8057                                               SS, SourceLocation(), 0,
8058                                               MemberLookup, 0);
8059    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8060                                             Loc, /*IsArrow=*/true,
8061                                             SS, SourceLocation(), 0,
8062                                             MemberLookup, 0);
8063    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8064    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8065
8066    // If the field should be copied with __builtin_memcpy rather than via
8067    // explicit assignments, do so. This optimization only applies for arrays
8068    // of scalars and arrays of class type with trivial copy-assignment
8069    // operators.
8070    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8071        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8072      // Compute the size of the memory buffer to be copied.
8073      QualType SizeType = Context.getSizeType();
8074      llvm::APInt Size(Context.getTypeSize(SizeType),
8075                       Context.getTypeSizeInChars(BaseType).getQuantity());
8076      for (const ConstantArrayType *Array
8077              = Context.getAsConstantArrayType(FieldType);
8078           Array;
8079           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8080        llvm::APInt ArraySize
8081          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8082        Size *= ArraySize;
8083      }
8084
8085      // Take the address of the field references for "from" and "to".
8086      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8087      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8088
8089      bool NeedsCollectableMemCpy =
8090          (BaseType->isRecordType() &&
8091           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8092
8093      if (NeedsCollectableMemCpy) {
8094        if (!CollectableMemCpyRef) {
8095          // Create a reference to the __builtin_objc_memmove_collectable function.
8096          LookupResult R(*this,
8097                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8098                         Loc, LookupOrdinaryName);
8099          LookupName(R, TUScope, true);
8100
8101          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8102          if (!CollectableMemCpy) {
8103            // Something went horribly wrong earlier, and we will have
8104            // complained about it.
8105            Invalid = true;
8106            continue;
8107          }
8108
8109          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8110                                                  CollectableMemCpy->getType(),
8111                                                  VK_LValue, Loc, 0).take();
8112          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8113        }
8114      }
8115      // Create a reference to the __builtin_memcpy builtin function.
8116      else if (!BuiltinMemCpyRef) {
8117        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8118                       LookupOrdinaryName);
8119        LookupName(R, TUScope, true);
8120
8121        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8122        if (!BuiltinMemCpy) {
8123          // Something went horribly wrong earlier, and we will have complained
8124          // about it.
8125          Invalid = true;
8126          continue;
8127        }
8128
8129        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8130                                            BuiltinMemCpy->getType(),
8131                                            VK_LValue, Loc, 0).take();
8132        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8133      }
8134
8135      ASTOwningVector<Expr*> CallArgs(*this);
8136      CallArgs.push_back(To.takeAs<Expr>());
8137      CallArgs.push_back(From.takeAs<Expr>());
8138      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8139      ExprResult Call = ExprError();
8140      if (NeedsCollectableMemCpy)
8141        Call = ActOnCallExpr(/*Scope=*/0,
8142                             CollectableMemCpyRef,
8143                             Loc, move_arg(CallArgs),
8144                             Loc);
8145      else
8146        Call = ActOnCallExpr(/*Scope=*/0,
8147                             BuiltinMemCpyRef,
8148                             Loc, move_arg(CallArgs),
8149                             Loc);
8150
8151      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8152      Statements.push_back(Call.takeAs<Expr>());
8153      continue;
8154    }
8155
8156    // Build the copy of this field.
8157    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8158                                            To.get(), From.get(),
8159                                            /*CopyingBaseSubobject=*/false,
8160                                            /*Copying=*/true);
8161    if (Copy.isInvalid()) {
8162      Diag(CurrentLocation, diag::note_member_synthesized_at)
8163        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8164      CopyAssignOperator->setInvalidDecl();
8165      return;
8166    }
8167
8168    // Success! Record the copy.
8169    Statements.push_back(Copy.takeAs<Stmt>());
8170  }
8171
8172  if (!Invalid) {
8173    // Add a "return *this;"
8174    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8175
8176    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8177    if (Return.isInvalid())
8178      Invalid = true;
8179    else {
8180      Statements.push_back(Return.takeAs<Stmt>());
8181
8182      if (Trap.hasErrorOccurred()) {
8183        Diag(CurrentLocation, diag::note_member_synthesized_at)
8184          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8185        Invalid = true;
8186      }
8187    }
8188  }
8189
8190  if (Invalid) {
8191    CopyAssignOperator->setInvalidDecl();
8192    return;
8193  }
8194
8195  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8196                                            /*isStmtExpr=*/false);
8197  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8198  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8199
8200  if (ASTMutationListener *L = getASTMutationListener()) {
8201    L->CompletedImplicitDefinition(CopyAssignOperator);
8202  }
8203}
8204
8205Sema::ImplicitExceptionSpecification
8206Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8207  ImplicitExceptionSpecification ExceptSpec(Context);
8208
8209  if (ClassDecl->isInvalidDecl())
8210    return ExceptSpec;
8211
8212  // C++0x [except.spec]p14:
8213  //   An implicitly declared special member function (Clause 12) shall have an
8214  //   exception-specification. [...]
8215
8216  // It is unspecified whether or not an implicit move assignment operator
8217  // attempts to deduplicate calls to assignment operators of virtual bases are
8218  // made. As such, this exception specification is effectively unspecified.
8219  // Based on a similar decision made for constness in C++0x, we're erring on
8220  // the side of assuming such calls to be made regardless of whether they
8221  // actually happen.
8222  // Note that a move constructor is not implicitly declared when there are
8223  // virtual bases, but it can still be user-declared and explicitly defaulted.
8224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8225                                       BaseEnd = ClassDecl->bases_end();
8226       Base != BaseEnd; ++Base) {
8227    if (Base->isVirtual())
8228      continue;
8229
8230    CXXRecordDecl *BaseClassDecl
8231      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8232    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8233                                                           false, 0))
8234      ExceptSpec.CalledDecl(MoveAssign);
8235  }
8236
8237  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8238                                       BaseEnd = ClassDecl->vbases_end();
8239       Base != BaseEnd; ++Base) {
8240    CXXRecordDecl *BaseClassDecl
8241      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8242    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8243                                                           false, 0))
8244      ExceptSpec.CalledDecl(MoveAssign);
8245  }
8246
8247  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8248                                  FieldEnd = ClassDecl->field_end();
8249       Field != FieldEnd;
8250       ++Field) {
8251    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8252    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8253      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8254                                                             false, 0))
8255        ExceptSpec.CalledDecl(MoveAssign);
8256    }
8257  }
8258
8259  return ExceptSpec;
8260}
8261
8262CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8263  // Note: The following rules are largely analoguous to the move
8264  // constructor rules.
8265
8266  ImplicitExceptionSpecification Spec(
8267      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8268
8269  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8270  QualType RetType = Context.getLValueReferenceType(ArgType);
8271  ArgType = Context.getRValueReferenceType(ArgType);
8272
8273  //   An implicitly-declared move assignment operator is an inline public
8274  //   member of its class.
8275  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8276  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8277  SourceLocation ClassLoc = ClassDecl->getLocation();
8278  DeclarationNameInfo NameInfo(Name, ClassLoc);
8279  CXXMethodDecl *MoveAssignment
8280    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8281                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8282                            /*TInfo=*/0, /*isStatic=*/false,
8283                            /*StorageClassAsWritten=*/SC_None,
8284                            /*isInline=*/true,
8285                            /*isConstexpr=*/false,
8286                            SourceLocation());
8287  MoveAssignment->setAccess(AS_public);
8288  MoveAssignment->setDefaulted();
8289  MoveAssignment->setImplicit();
8290  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8291
8292  // Add the parameter to the operator.
8293  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8294                                               ClassLoc, ClassLoc, /*Id=*/0,
8295                                               ArgType, /*TInfo=*/0,
8296                                               SC_None,
8297                                               SC_None, 0);
8298  MoveAssignment->setParams(FromParam);
8299
8300  // Note that we have added this copy-assignment operator.
8301  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8302
8303  // C++0x [class.copy]p9:
8304  //   If the definition of a class X does not explicitly declare a move
8305  //   assignment operator, one will be implicitly declared as defaulted if and
8306  //   only if:
8307  //   [...]
8308  //   - the move assignment operator would not be implicitly defined as
8309  //     deleted.
8310  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8311    // Cache this result so that we don't try to generate this over and over
8312    // on every lookup, leaking memory and wasting time.
8313    ClassDecl->setFailedImplicitMoveAssignment();
8314    return 0;
8315  }
8316
8317  if (Scope *S = getScopeForContext(ClassDecl))
8318    PushOnScopeChains(MoveAssignment, S, false);
8319  ClassDecl->addDecl(MoveAssignment);
8320
8321  AddOverriddenMethods(ClassDecl, MoveAssignment);
8322  return MoveAssignment;
8323}
8324
8325void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8326                                        CXXMethodDecl *MoveAssignOperator) {
8327  assert((MoveAssignOperator->isDefaulted() &&
8328          MoveAssignOperator->isOverloadedOperator() &&
8329          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8330          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8331         "DefineImplicitMoveAssignment called for wrong function");
8332
8333  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8334
8335  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8336    MoveAssignOperator->setInvalidDecl();
8337    return;
8338  }
8339
8340  MoveAssignOperator->setUsed();
8341
8342  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8343  DiagnosticErrorTrap Trap(Diags);
8344
8345  // C++0x [class.copy]p28:
8346  //   The implicitly-defined or move assignment operator for a non-union class
8347  //   X performs memberwise move assignment of its subobjects. The direct base
8348  //   classes of X are assigned first, in the order of their declaration in the
8349  //   base-specifier-list, and then the immediate non-static data members of X
8350  //   are assigned, in the order in which they were declared in the class
8351  //   definition.
8352
8353  // The statements that form the synthesized function body.
8354  ASTOwningVector<Stmt*> Statements(*this);
8355
8356  // The parameter for the "other" object, which we are move from.
8357  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8358  QualType OtherRefType = Other->getType()->
8359      getAs<RValueReferenceType>()->getPointeeType();
8360  assert(OtherRefType.getQualifiers() == 0 &&
8361         "Bad argument type of defaulted move assignment");
8362
8363  // Our location for everything implicitly-generated.
8364  SourceLocation Loc = MoveAssignOperator->getLocation();
8365
8366  // Construct a reference to the "other" object. We'll be using this
8367  // throughout the generated ASTs.
8368  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8369  assert(OtherRef && "Reference to parameter cannot fail!");
8370  // Cast to rvalue.
8371  OtherRef = CastForMoving(*this, OtherRef);
8372
8373  // Construct the "this" pointer. We'll be using this throughout the generated
8374  // ASTs.
8375  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8376  assert(This && "Reference to this cannot fail!");
8377
8378  // Assign base classes.
8379  bool Invalid = false;
8380  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8381       E = ClassDecl->bases_end(); Base != E; ++Base) {
8382    // Form the assignment:
8383    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8384    QualType BaseType = Base->getType().getUnqualifiedType();
8385    if (!BaseType->isRecordType()) {
8386      Invalid = true;
8387      continue;
8388    }
8389
8390    CXXCastPath BasePath;
8391    BasePath.push_back(Base);
8392
8393    // Construct the "from" expression, which is an implicit cast to the
8394    // appropriately-qualified base type.
8395    Expr *From = OtherRef;
8396    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8397                             VK_XValue, &BasePath).take();
8398
8399    // Dereference "this".
8400    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8401
8402    // Implicitly cast "this" to the appropriately-qualified base type.
8403    To = ImpCastExprToType(To.take(),
8404                           Context.getCVRQualifiedType(BaseType,
8405                                     MoveAssignOperator->getTypeQualifiers()),
8406                           CK_UncheckedDerivedToBase,
8407                           VK_LValue, &BasePath);
8408
8409    // Build the move.
8410    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8411                                            To.get(), From,
8412                                            /*CopyingBaseSubobject=*/true,
8413                                            /*Copying=*/false);
8414    if (Move.isInvalid()) {
8415      Diag(CurrentLocation, diag::note_member_synthesized_at)
8416        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8417      MoveAssignOperator->setInvalidDecl();
8418      return;
8419    }
8420
8421    // Success! Record the move.
8422    Statements.push_back(Move.takeAs<Expr>());
8423  }
8424
8425  // \brief Reference to the __builtin_memcpy function.
8426  Expr *BuiltinMemCpyRef = 0;
8427  // \brief Reference to the __builtin_objc_memmove_collectable function.
8428  Expr *CollectableMemCpyRef = 0;
8429
8430  // Assign non-static members.
8431  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8432                                  FieldEnd = ClassDecl->field_end();
8433       Field != FieldEnd; ++Field) {
8434    if (Field->isUnnamedBitfield())
8435      continue;
8436
8437    // Check for members of reference type; we can't move those.
8438    if (Field->getType()->isReferenceType()) {
8439      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8440        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8441      Diag(Field->getLocation(), diag::note_declared_at);
8442      Diag(CurrentLocation, diag::note_member_synthesized_at)
8443        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8444      Invalid = true;
8445      continue;
8446    }
8447
8448    // Check for members of const-qualified, non-class type.
8449    QualType BaseType = Context.getBaseElementType(Field->getType());
8450    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8451      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8452        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8453      Diag(Field->getLocation(), diag::note_declared_at);
8454      Diag(CurrentLocation, diag::note_member_synthesized_at)
8455        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8456      Invalid = true;
8457      continue;
8458    }
8459
8460    // Suppress assigning zero-width bitfields.
8461    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8462      continue;
8463
8464    QualType FieldType = Field->getType().getNonReferenceType();
8465    if (FieldType->isIncompleteArrayType()) {
8466      assert(ClassDecl->hasFlexibleArrayMember() &&
8467             "Incomplete array type is not valid");
8468      continue;
8469    }
8470
8471    // Build references to the field in the object we're copying from and to.
8472    CXXScopeSpec SS; // Intentionally empty
8473    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8474                              LookupMemberName);
8475    MemberLookup.addDecl(*Field);
8476    MemberLookup.resolveKind();
8477    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8478                                               Loc, /*IsArrow=*/false,
8479                                               SS, SourceLocation(), 0,
8480                                               MemberLookup, 0);
8481    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8482                                             Loc, /*IsArrow=*/true,
8483                                             SS, SourceLocation(), 0,
8484                                             MemberLookup, 0);
8485    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8486    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8487
8488    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8489        "Member reference with rvalue base must be rvalue except for reference "
8490        "members, which aren't allowed for move assignment.");
8491
8492    // If the field should be copied with __builtin_memcpy rather than via
8493    // explicit assignments, do so. This optimization only applies for arrays
8494    // of scalars and arrays of class type with trivial move-assignment
8495    // operators.
8496    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8497        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8498      // Compute the size of the memory buffer to be copied.
8499      QualType SizeType = Context.getSizeType();
8500      llvm::APInt Size(Context.getTypeSize(SizeType),
8501                       Context.getTypeSizeInChars(BaseType).getQuantity());
8502      for (const ConstantArrayType *Array
8503              = Context.getAsConstantArrayType(FieldType);
8504           Array;
8505           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8506        llvm::APInt ArraySize
8507          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8508        Size *= ArraySize;
8509      }
8510
8511      // Take the address of the field references for "from" and "to". We
8512      // directly construct UnaryOperators here because semantic analysis
8513      // does not permit us to take the address of an xvalue.
8514      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8515                             Context.getPointerType(From.get()->getType()),
8516                             VK_RValue, OK_Ordinary, Loc);
8517      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8518                           Context.getPointerType(To.get()->getType()),
8519                           VK_RValue, OK_Ordinary, Loc);
8520
8521      bool NeedsCollectableMemCpy =
8522          (BaseType->isRecordType() &&
8523           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8524
8525      if (NeedsCollectableMemCpy) {
8526        if (!CollectableMemCpyRef) {
8527          // Create a reference to the __builtin_objc_memmove_collectable function.
8528          LookupResult R(*this,
8529                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8530                         Loc, LookupOrdinaryName);
8531          LookupName(R, TUScope, true);
8532
8533          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8534          if (!CollectableMemCpy) {
8535            // Something went horribly wrong earlier, and we will have
8536            // complained about it.
8537            Invalid = true;
8538            continue;
8539          }
8540
8541          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8542                                                  CollectableMemCpy->getType(),
8543                                                  VK_LValue, Loc, 0).take();
8544          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8545        }
8546      }
8547      // Create a reference to the __builtin_memcpy builtin function.
8548      else if (!BuiltinMemCpyRef) {
8549        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8550                       LookupOrdinaryName);
8551        LookupName(R, TUScope, true);
8552
8553        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8554        if (!BuiltinMemCpy) {
8555          // Something went horribly wrong earlier, and we will have complained
8556          // about it.
8557          Invalid = true;
8558          continue;
8559        }
8560
8561        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8562                                            BuiltinMemCpy->getType(),
8563                                            VK_LValue, Loc, 0).take();
8564        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8565      }
8566
8567      ASTOwningVector<Expr*> CallArgs(*this);
8568      CallArgs.push_back(To.takeAs<Expr>());
8569      CallArgs.push_back(From.takeAs<Expr>());
8570      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8571      ExprResult Call = ExprError();
8572      if (NeedsCollectableMemCpy)
8573        Call = ActOnCallExpr(/*Scope=*/0,
8574                             CollectableMemCpyRef,
8575                             Loc, move_arg(CallArgs),
8576                             Loc);
8577      else
8578        Call = ActOnCallExpr(/*Scope=*/0,
8579                             BuiltinMemCpyRef,
8580                             Loc, move_arg(CallArgs),
8581                             Loc);
8582
8583      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8584      Statements.push_back(Call.takeAs<Expr>());
8585      continue;
8586    }
8587
8588    // Build the move of this field.
8589    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8590                                            To.get(), From.get(),
8591                                            /*CopyingBaseSubobject=*/false,
8592                                            /*Copying=*/false);
8593    if (Move.isInvalid()) {
8594      Diag(CurrentLocation, diag::note_member_synthesized_at)
8595        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8596      MoveAssignOperator->setInvalidDecl();
8597      return;
8598    }
8599
8600    // Success! Record the copy.
8601    Statements.push_back(Move.takeAs<Stmt>());
8602  }
8603
8604  if (!Invalid) {
8605    // Add a "return *this;"
8606    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8607
8608    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8609    if (Return.isInvalid())
8610      Invalid = true;
8611    else {
8612      Statements.push_back(Return.takeAs<Stmt>());
8613
8614      if (Trap.hasErrorOccurred()) {
8615        Diag(CurrentLocation, diag::note_member_synthesized_at)
8616          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8617        Invalid = true;
8618      }
8619    }
8620  }
8621
8622  if (Invalid) {
8623    MoveAssignOperator->setInvalidDecl();
8624    return;
8625  }
8626
8627  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8628                                            /*isStmtExpr=*/false);
8629  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8630  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8631
8632  if (ASTMutationListener *L = getASTMutationListener()) {
8633    L->CompletedImplicitDefinition(MoveAssignOperator);
8634  }
8635}
8636
8637std::pair<Sema::ImplicitExceptionSpecification, bool>
8638Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8639  if (ClassDecl->isInvalidDecl())
8640    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8641
8642  // C++ [class.copy]p5:
8643  //   The implicitly-declared copy constructor for a class X will
8644  //   have the form
8645  //
8646  //       X::X(const X&)
8647  //
8648  //   if
8649  // FIXME: It ought to be possible to store this on the record.
8650  bool HasConstCopyConstructor = true;
8651
8652  //     -- each direct or virtual base class B of X has a copy
8653  //        constructor whose first parameter is of type const B& or
8654  //        const volatile B&, and
8655  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8656                                       BaseEnd = ClassDecl->bases_end();
8657       HasConstCopyConstructor && Base != BaseEnd;
8658       ++Base) {
8659    // Virtual bases are handled below.
8660    if (Base->isVirtual())
8661      continue;
8662
8663    CXXRecordDecl *BaseClassDecl
8664      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8665    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8666                             &HasConstCopyConstructor);
8667  }
8668
8669  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8670                                       BaseEnd = ClassDecl->vbases_end();
8671       HasConstCopyConstructor && Base != BaseEnd;
8672       ++Base) {
8673    CXXRecordDecl *BaseClassDecl
8674      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8675    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8676                             &HasConstCopyConstructor);
8677  }
8678
8679  //     -- for all the nonstatic data members of X that are of a
8680  //        class type M (or array thereof), each such class type
8681  //        has a copy constructor whose first parameter is of type
8682  //        const M& or const volatile M&.
8683  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8684                                  FieldEnd = ClassDecl->field_end();
8685       HasConstCopyConstructor && Field != FieldEnd;
8686       ++Field) {
8687    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8688    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8689      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8690                               &HasConstCopyConstructor);
8691    }
8692  }
8693  //   Otherwise, the implicitly declared copy constructor will have
8694  //   the form
8695  //
8696  //       X::X(X&)
8697
8698  // C++ [except.spec]p14:
8699  //   An implicitly declared special member function (Clause 12) shall have an
8700  //   exception-specification. [...]
8701  ImplicitExceptionSpecification ExceptSpec(Context);
8702  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8703  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8704                                       BaseEnd = ClassDecl->bases_end();
8705       Base != BaseEnd;
8706       ++Base) {
8707    // Virtual bases are handled below.
8708    if (Base->isVirtual())
8709      continue;
8710
8711    CXXRecordDecl *BaseClassDecl
8712      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8713    if (CXXConstructorDecl *CopyConstructor =
8714          LookupCopyingConstructor(BaseClassDecl, Quals))
8715      ExceptSpec.CalledDecl(CopyConstructor);
8716  }
8717  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8718                                       BaseEnd = ClassDecl->vbases_end();
8719       Base != BaseEnd;
8720       ++Base) {
8721    CXXRecordDecl *BaseClassDecl
8722      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8723    if (CXXConstructorDecl *CopyConstructor =
8724          LookupCopyingConstructor(BaseClassDecl, Quals))
8725      ExceptSpec.CalledDecl(CopyConstructor);
8726  }
8727  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8728                                  FieldEnd = ClassDecl->field_end();
8729       Field != FieldEnd;
8730       ++Field) {
8731    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8732    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8733      if (CXXConstructorDecl *CopyConstructor =
8734        LookupCopyingConstructor(FieldClassDecl, Quals))
8735      ExceptSpec.CalledDecl(CopyConstructor);
8736    }
8737  }
8738
8739  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8740}
8741
8742CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8743                                                    CXXRecordDecl *ClassDecl) {
8744  // C++ [class.copy]p4:
8745  //   If the class definition does not explicitly declare a copy
8746  //   constructor, one is declared implicitly.
8747
8748  ImplicitExceptionSpecification Spec(Context);
8749  bool Const;
8750  llvm::tie(Spec, Const) =
8751    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8752
8753  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8754  QualType ArgType = ClassType;
8755  if (Const)
8756    ArgType = ArgType.withConst();
8757  ArgType = Context.getLValueReferenceType(ArgType);
8758
8759  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8760
8761  DeclarationName Name
8762    = Context.DeclarationNames.getCXXConstructorName(
8763                                           Context.getCanonicalType(ClassType));
8764  SourceLocation ClassLoc = ClassDecl->getLocation();
8765  DeclarationNameInfo NameInfo(Name, ClassLoc);
8766
8767  //   An implicitly-declared copy constructor is an inline public
8768  //   member of its class.
8769  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8770      Context, ClassDecl, ClassLoc, NameInfo,
8771      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8772      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8773      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8774        getLangOptions().CPlusPlus0x);
8775  CopyConstructor->setAccess(AS_public);
8776  CopyConstructor->setDefaulted();
8777  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8778
8779  // Note that we have declared this constructor.
8780  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8781
8782  // Add the parameter to the constructor.
8783  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8784                                               ClassLoc, ClassLoc,
8785                                               /*IdentifierInfo=*/0,
8786                                               ArgType, /*TInfo=*/0,
8787                                               SC_None,
8788                                               SC_None, 0);
8789  CopyConstructor->setParams(FromParam);
8790
8791  if (Scope *S = getScopeForContext(ClassDecl))
8792    PushOnScopeChains(CopyConstructor, S, false);
8793  ClassDecl->addDecl(CopyConstructor);
8794
8795  // C++11 [class.copy]p8:
8796  //   ... If the class definition does not explicitly declare a copy
8797  //   constructor, there is no user-declared move constructor, and there is no
8798  //   user-declared move assignment operator, a copy constructor is implicitly
8799  //   declared as defaulted.
8800  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8801      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8802          !getLangOptions().MicrosoftMode) ||
8803      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8804    CopyConstructor->setDeletedAsWritten();
8805
8806  return CopyConstructor;
8807}
8808
8809void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8810                                   CXXConstructorDecl *CopyConstructor) {
8811  assert((CopyConstructor->isDefaulted() &&
8812          CopyConstructor->isCopyConstructor() &&
8813          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8814         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8815
8816  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8817  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8818
8819  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8820  DiagnosticErrorTrap Trap(Diags);
8821
8822  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8823      Trap.hasErrorOccurred()) {
8824    Diag(CurrentLocation, diag::note_member_synthesized_at)
8825      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8826    CopyConstructor->setInvalidDecl();
8827  }  else {
8828    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8829                                               CopyConstructor->getLocation(),
8830                                               MultiStmtArg(*this, 0, 0),
8831                                               /*isStmtExpr=*/false)
8832                                                              .takeAs<Stmt>());
8833    CopyConstructor->setImplicitlyDefined(true);
8834  }
8835
8836  CopyConstructor->setUsed();
8837  if (ASTMutationListener *L = getASTMutationListener()) {
8838    L->CompletedImplicitDefinition(CopyConstructor);
8839  }
8840}
8841
8842Sema::ImplicitExceptionSpecification
8843Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8844  // C++ [except.spec]p14:
8845  //   An implicitly declared special member function (Clause 12) shall have an
8846  //   exception-specification. [...]
8847  ImplicitExceptionSpecification ExceptSpec(Context);
8848  if (ClassDecl->isInvalidDecl())
8849    return ExceptSpec;
8850
8851  // Direct base-class constructors.
8852  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8853                                       BEnd = ClassDecl->bases_end();
8854       B != BEnd; ++B) {
8855    if (B->isVirtual()) // Handled below.
8856      continue;
8857
8858    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8859      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8860      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8861      // If this is a deleted function, add it anyway. This might be conformant
8862      // with the standard. This might not. I'm not sure. It might not matter.
8863      if (Constructor)
8864        ExceptSpec.CalledDecl(Constructor);
8865    }
8866  }
8867
8868  // Virtual base-class constructors.
8869  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8870                                       BEnd = ClassDecl->vbases_end();
8871       B != BEnd; ++B) {
8872    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8873      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8874      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8875      // If this is a deleted function, add it anyway. This might be conformant
8876      // with the standard. This might not. I'm not sure. It might not matter.
8877      if (Constructor)
8878        ExceptSpec.CalledDecl(Constructor);
8879    }
8880  }
8881
8882  // Field constructors.
8883  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8884                               FEnd = ClassDecl->field_end();
8885       F != FEnd; ++F) {
8886    if (const RecordType *RecordTy
8887              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8888      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8889      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8890      // If this is a deleted function, add it anyway. This might be conformant
8891      // with the standard. This might not. I'm not sure. It might not matter.
8892      // In particular, the problem is that this function never gets called. It
8893      // might just be ill-formed because this function attempts to refer to
8894      // a deleted function here.
8895      if (Constructor)
8896        ExceptSpec.CalledDecl(Constructor);
8897    }
8898  }
8899
8900  return ExceptSpec;
8901}
8902
8903CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8904                                                    CXXRecordDecl *ClassDecl) {
8905  ImplicitExceptionSpecification Spec(
8906      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8907
8908  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8909  QualType ArgType = Context.getRValueReferenceType(ClassType);
8910
8911  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8912
8913  DeclarationName Name
8914    = Context.DeclarationNames.getCXXConstructorName(
8915                                           Context.getCanonicalType(ClassType));
8916  SourceLocation ClassLoc = ClassDecl->getLocation();
8917  DeclarationNameInfo NameInfo(Name, ClassLoc);
8918
8919  // C++0x [class.copy]p11:
8920  //   An implicitly-declared copy/move constructor is an inline public
8921  //   member of its class.
8922  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8923      Context, ClassDecl, ClassLoc, NameInfo,
8924      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8925      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8926      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8927        getLangOptions().CPlusPlus0x);
8928  MoveConstructor->setAccess(AS_public);
8929  MoveConstructor->setDefaulted();
8930  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8931
8932  // Add the parameter to the constructor.
8933  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8934                                               ClassLoc, ClassLoc,
8935                                               /*IdentifierInfo=*/0,
8936                                               ArgType, /*TInfo=*/0,
8937                                               SC_None,
8938                                               SC_None, 0);
8939  MoveConstructor->setParams(FromParam);
8940
8941  // C++0x [class.copy]p9:
8942  //   If the definition of a class X does not explicitly declare a move
8943  //   constructor, one will be implicitly declared as defaulted if and only if:
8944  //   [...]
8945  //   - the move constructor would not be implicitly defined as deleted.
8946  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8947    // Cache this result so that we don't try to generate this over and over
8948    // on every lookup, leaking memory and wasting time.
8949    ClassDecl->setFailedImplicitMoveConstructor();
8950    return 0;
8951  }
8952
8953  // Note that we have declared this constructor.
8954  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8955
8956  if (Scope *S = getScopeForContext(ClassDecl))
8957    PushOnScopeChains(MoveConstructor, S, false);
8958  ClassDecl->addDecl(MoveConstructor);
8959
8960  return MoveConstructor;
8961}
8962
8963void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8964                                   CXXConstructorDecl *MoveConstructor) {
8965  assert((MoveConstructor->isDefaulted() &&
8966          MoveConstructor->isMoveConstructor() &&
8967          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8968         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8969
8970  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8971  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8972
8973  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8974  DiagnosticErrorTrap Trap(Diags);
8975
8976  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8977      Trap.hasErrorOccurred()) {
8978    Diag(CurrentLocation, diag::note_member_synthesized_at)
8979      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8980    MoveConstructor->setInvalidDecl();
8981  }  else {
8982    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8983                                               MoveConstructor->getLocation(),
8984                                               MultiStmtArg(*this, 0, 0),
8985                                               /*isStmtExpr=*/false)
8986                                                              .takeAs<Stmt>());
8987    MoveConstructor->setImplicitlyDefined(true);
8988  }
8989
8990  MoveConstructor->setUsed();
8991
8992  if (ASTMutationListener *L = getASTMutationListener()) {
8993    L->CompletedImplicitDefinition(MoveConstructor);
8994  }
8995}
8996
8997ExprResult
8998Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8999                            CXXConstructorDecl *Constructor,
9000                            MultiExprArg ExprArgs,
9001                            bool HadMultipleCandidates,
9002                            bool RequiresZeroInit,
9003                            unsigned ConstructKind,
9004                            SourceRange ParenRange) {
9005  bool Elidable = false;
9006
9007  // C++0x [class.copy]p34:
9008  //   When certain criteria are met, an implementation is allowed to
9009  //   omit the copy/move construction of a class object, even if the
9010  //   copy/move constructor and/or destructor for the object have
9011  //   side effects. [...]
9012  //     - when a temporary class object that has not been bound to a
9013  //       reference (12.2) would be copied/moved to a class object
9014  //       with the same cv-unqualified type, the copy/move operation
9015  //       can be omitted by constructing the temporary object
9016  //       directly into the target of the omitted copy/move
9017  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9018      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9019    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9020    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9021  }
9022
9023  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9024                               Elidable, move(ExprArgs), HadMultipleCandidates,
9025                               RequiresZeroInit, ConstructKind, ParenRange);
9026}
9027
9028/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9029/// including handling of its default argument expressions.
9030ExprResult
9031Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9032                            CXXConstructorDecl *Constructor, bool Elidable,
9033                            MultiExprArg ExprArgs,
9034                            bool HadMultipleCandidates,
9035                            bool RequiresZeroInit,
9036                            unsigned ConstructKind,
9037                            SourceRange ParenRange) {
9038  unsigned NumExprs = ExprArgs.size();
9039  Expr **Exprs = (Expr **)ExprArgs.release();
9040
9041  for (specific_attr_iterator<NonNullAttr>
9042           i = Constructor->specific_attr_begin<NonNullAttr>(),
9043           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9044    const NonNullAttr *NonNull = *i;
9045    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9046  }
9047
9048  MarkFunctionReferenced(ConstructLoc, Constructor);
9049  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9050                                        Constructor, Elidable, Exprs, NumExprs,
9051                                        HadMultipleCandidates, RequiresZeroInit,
9052              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9053                                        ParenRange));
9054}
9055
9056bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9057                                        CXXConstructorDecl *Constructor,
9058                                        MultiExprArg Exprs,
9059                                        bool HadMultipleCandidates) {
9060  // FIXME: Provide the correct paren SourceRange when available.
9061  ExprResult TempResult =
9062    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9063                          move(Exprs), HadMultipleCandidates, false,
9064                          CXXConstructExpr::CK_Complete, SourceRange());
9065  if (TempResult.isInvalid())
9066    return true;
9067
9068  Expr *Temp = TempResult.takeAs<Expr>();
9069  CheckImplicitConversions(Temp, VD->getLocation());
9070  MarkFunctionReferenced(VD->getLocation(), Constructor);
9071  Temp = MaybeCreateExprWithCleanups(Temp);
9072  VD->setInit(Temp);
9073
9074  return false;
9075}
9076
9077void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9078  if (VD->isInvalidDecl()) return;
9079
9080  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9081  if (ClassDecl->isInvalidDecl()) return;
9082  if (ClassDecl->hasTrivialDestructor()) return;
9083  if (ClassDecl->isDependentContext()) return;
9084
9085  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9086  MarkFunctionReferenced(VD->getLocation(), Destructor);
9087  CheckDestructorAccess(VD->getLocation(), Destructor,
9088                        PDiag(diag::err_access_dtor_var)
9089                        << VD->getDeclName()
9090                        << VD->getType());
9091
9092  if (!VD->hasGlobalStorage()) return;
9093
9094  // Emit warning for non-trivial dtor in global scope (a real global,
9095  // class-static, function-static).
9096  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9097
9098  // TODO: this should be re-enabled for static locals by !CXAAtExit
9099  if (!VD->isStaticLocal())
9100    Diag(VD->getLocation(), diag::warn_global_destructor);
9101}
9102
9103/// AddCXXDirectInitializerToDecl - This action is called immediately after
9104/// ActOnDeclarator, when a C++ direct initializer is present.
9105/// e.g: "int x(1);"
9106void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9107                                         SourceLocation LParenLoc,
9108                                         MultiExprArg Exprs,
9109                                         SourceLocation RParenLoc,
9110                                         bool TypeMayContainAuto) {
9111  // If there is no declaration, there was an error parsing it.  Just ignore
9112  // the initializer.
9113  if (RealDecl == 0)
9114    return;
9115
9116  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9117  if (!VDecl) {
9118    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9119    RealDecl->setInvalidDecl();
9120    return;
9121  }
9122
9123  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9124  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9125    if (Exprs.size() == 0) {
9126      // It isn't possible to write this directly, but it is possible to
9127      // end up in this situation with "auto x(some_pack...);"
9128      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9129        << VDecl->getDeclName() << VDecl->getType()
9130        << VDecl->getSourceRange();
9131      RealDecl->setInvalidDecl();
9132      return;
9133    }
9134
9135    if (Exprs.size() > 1) {
9136      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9137           diag::err_auto_var_init_multiple_expressions)
9138        << VDecl->getDeclName() << VDecl->getType()
9139        << VDecl->getSourceRange();
9140      RealDecl->setInvalidDecl();
9141      return;
9142    }
9143
9144    Expr *Init = Exprs.get()[0];
9145    TypeSourceInfo *DeducedType = 0;
9146    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9147            DAR_Failed)
9148      DiagnoseAutoDeductionFailure(VDecl, Init);
9149    if (!DeducedType) {
9150      RealDecl->setInvalidDecl();
9151      return;
9152    }
9153    VDecl->setTypeSourceInfo(DeducedType);
9154    VDecl->setType(DeducedType->getType());
9155
9156    // In ARC, infer lifetime.
9157    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9158      VDecl->setInvalidDecl();
9159
9160    // If this is a redeclaration, check that the type we just deduced matches
9161    // the previously declared type.
9162    if (VarDecl *Old = VDecl->getPreviousDecl())
9163      MergeVarDeclTypes(VDecl, Old);
9164  }
9165
9166  // We will represent direct-initialization similarly to copy-initialization:
9167  //    int x(1);  -as-> int x = 1;
9168  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9169  //
9170  // Clients that want to distinguish between the two forms, can check for
9171  // direct initializer using VarDecl::hasCXXDirectInitializer().
9172  // A major benefit is that clients that don't particularly care about which
9173  // exactly form was it (like the CodeGen) can handle both cases without
9174  // special case code.
9175
9176  // C++ 8.5p11:
9177  // The form of initialization (using parentheses or '=') is generally
9178  // insignificant, but does matter when the entity being initialized has a
9179  // class type.
9180
9181  if (!VDecl->getType()->isDependentType() &&
9182      !VDecl->getType()->isIncompleteArrayType() &&
9183      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9184                          diag::err_typecheck_decl_incomplete_type)) {
9185    VDecl->setInvalidDecl();
9186    return;
9187  }
9188
9189  // The variable can not have an abstract class type.
9190  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9191                             diag::err_abstract_type_in_decl,
9192                             AbstractVariableType))
9193    VDecl->setInvalidDecl();
9194
9195  const VarDecl *Def;
9196  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9197    Diag(VDecl->getLocation(), diag::err_redefinition)
9198    << VDecl->getDeclName();
9199    Diag(Def->getLocation(), diag::note_previous_definition);
9200    VDecl->setInvalidDecl();
9201    return;
9202  }
9203
9204  // C++ [class.static.data]p4
9205  //   If a static data member is of const integral or const
9206  //   enumeration type, its declaration in the class definition can
9207  //   specify a constant-initializer which shall be an integral
9208  //   constant expression (5.19). In that case, the member can appear
9209  //   in integral constant expressions. The member shall still be
9210  //   defined in a namespace scope if it is used in the program and the
9211  //   namespace scope definition shall not contain an initializer.
9212  //
9213  // We already performed a redefinition check above, but for static
9214  // data members we also need to check whether there was an in-class
9215  // declaration with an initializer.
9216  const VarDecl* PrevInit = 0;
9217  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9218    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9219    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9220    return;
9221  }
9222
9223  bool IsDependent = false;
9224  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9225    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9226      VDecl->setInvalidDecl();
9227      return;
9228    }
9229
9230    if (Exprs.get()[I]->isTypeDependent())
9231      IsDependent = true;
9232  }
9233
9234  // If either the declaration has a dependent type or if any of the
9235  // expressions is type-dependent, we represent the initialization
9236  // via a ParenListExpr for later use during template instantiation.
9237  if (VDecl->getType()->isDependentType() || IsDependent) {
9238    // Let clients know that initialization was done with a direct initializer.
9239    VDecl->setCXXDirectInitializer(true);
9240
9241    // Store the initialization expressions as a ParenListExpr.
9242    unsigned NumExprs = Exprs.size();
9243    VDecl->setInit(new (Context) ParenListExpr(
9244        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9245        VDecl->getType().getNonReferenceType()));
9246    return;
9247  }
9248
9249  // Capture the variable that is being initialized and the style of
9250  // initialization.
9251  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9252
9253  // FIXME: Poor source location information.
9254  InitializationKind Kind
9255    = InitializationKind::CreateDirect(VDecl->getLocation(),
9256                                       LParenLoc, RParenLoc);
9257
9258  QualType T = VDecl->getType();
9259  InitializationSequence InitSeq(*this, Entity, Kind,
9260                                 Exprs.get(), Exprs.size());
9261  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9262  if (Result.isInvalid()) {
9263    VDecl->setInvalidDecl();
9264    return;
9265  } else if (T != VDecl->getType()) {
9266    VDecl->setType(T);
9267    Result.get()->setType(T);
9268  }
9269
9270
9271  Expr *Init = Result.get();
9272  CheckImplicitConversions(Init, LParenLoc);
9273
9274  Init = MaybeCreateExprWithCleanups(Init);
9275  VDecl->setInit(Init);
9276  VDecl->setCXXDirectInitializer(true);
9277
9278  CheckCompleteVariableDeclaration(VDecl);
9279}
9280
9281/// \brief Given a constructor and the set of arguments provided for the
9282/// constructor, convert the arguments and add any required default arguments
9283/// to form a proper call to this constructor.
9284///
9285/// \returns true if an error occurred, false otherwise.
9286bool
9287Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9288                              MultiExprArg ArgsPtr,
9289                              SourceLocation Loc,
9290                              ASTOwningVector<Expr*> &ConvertedArgs) {
9291  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9292  unsigned NumArgs = ArgsPtr.size();
9293  Expr **Args = (Expr **)ArgsPtr.get();
9294
9295  const FunctionProtoType *Proto
9296    = Constructor->getType()->getAs<FunctionProtoType>();
9297  assert(Proto && "Constructor without a prototype?");
9298  unsigned NumArgsInProto = Proto->getNumArgs();
9299
9300  // If too few arguments are available, we'll fill in the rest with defaults.
9301  if (NumArgs < NumArgsInProto)
9302    ConvertedArgs.reserve(NumArgsInProto);
9303  else
9304    ConvertedArgs.reserve(NumArgs);
9305
9306  VariadicCallType CallType =
9307    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9308  SmallVector<Expr *, 8> AllArgs;
9309  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9310                                        Proto, 0, Args, NumArgs, AllArgs,
9311                                        CallType);
9312  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9313    ConvertedArgs.push_back(AllArgs[i]);
9314  return Invalid;
9315}
9316
9317static inline bool
9318CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9319                                       const FunctionDecl *FnDecl) {
9320  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9321  if (isa<NamespaceDecl>(DC)) {
9322    return SemaRef.Diag(FnDecl->getLocation(),
9323                        diag::err_operator_new_delete_declared_in_namespace)
9324      << FnDecl->getDeclName();
9325  }
9326
9327  if (isa<TranslationUnitDecl>(DC) &&
9328      FnDecl->getStorageClass() == SC_Static) {
9329    return SemaRef.Diag(FnDecl->getLocation(),
9330                        diag::err_operator_new_delete_declared_static)
9331      << FnDecl->getDeclName();
9332  }
9333
9334  return false;
9335}
9336
9337static inline bool
9338CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9339                            CanQualType ExpectedResultType,
9340                            CanQualType ExpectedFirstParamType,
9341                            unsigned DependentParamTypeDiag,
9342                            unsigned InvalidParamTypeDiag) {
9343  QualType ResultType =
9344    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9345
9346  // Check that the result type is not dependent.
9347  if (ResultType->isDependentType())
9348    return SemaRef.Diag(FnDecl->getLocation(),
9349                        diag::err_operator_new_delete_dependent_result_type)
9350    << FnDecl->getDeclName() << ExpectedResultType;
9351
9352  // Check that the result type is what we expect.
9353  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9354    return SemaRef.Diag(FnDecl->getLocation(),
9355                        diag::err_operator_new_delete_invalid_result_type)
9356    << FnDecl->getDeclName() << ExpectedResultType;
9357
9358  // A function template must have at least 2 parameters.
9359  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9360    return SemaRef.Diag(FnDecl->getLocation(),
9361                      diag::err_operator_new_delete_template_too_few_parameters)
9362        << FnDecl->getDeclName();
9363
9364  // The function decl must have at least 1 parameter.
9365  if (FnDecl->getNumParams() == 0)
9366    return SemaRef.Diag(FnDecl->getLocation(),
9367                        diag::err_operator_new_delete_too_few_parameters)
9368      << FnDecl->getDeclName();
9369
9370  // Check the the first parameter type is not dependent.
9371  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9372  if (FirstParamType->isDependentType())
9373    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9374      << FnDecl->getDeclName() << ExpectedFirstParamType;
9375
9376  // Check that the first parameter type is what we expect.
9377  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9378      ExpectedFirstParamType)
9379    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9380    << FnDecl->getDeclName() << ExpectedFirstParamType;
9381
9382  return false;
9383}
9384
9385static bool
9386CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9387  // C++ [basic.stc.dynamic.allocation]p1:
9388  //   A program is ill-formed if an allocation function is declared in a
9389  //   namespace scope other than global scope or declared static in global
9390  //   scope.
9391  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9392    return true;
9393
9394  CanQualType SizeTy =
9395    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9396
9397  // C++ [basic.stc.dynamic.allocation]p1:
9398  //  The return type shall be void*. The first parameter shall have type
9399  //  std::size_t.
9400  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9401                                  SizeTy,
9402                                  diag::err_operator_new_dependent_param_type,
9403                                  diag::err_operator_new_param_type))
9404    return true;
9405
9406  // C++ [basic.stc.dynamic.allocation]p1:
9407  //  The first parameter shall not have an associated default argument.
9408  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9409    return SemaRef.Diag(FnDecl->getLocation(),
9410                        diag::err_operator_new_default_arg)
9411      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9412
9413  return false;
9414}
9415
9416static bool
9417CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9418  // C++ [basic.stc.dynamic.deallocation]p1:
9419  //   A program is ill-formed if deallocation functions are declared in a
9420  //   namespace scope other than global scope or declared static in global
9421  //   scope.
9422  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9423    return true;
9424
9425  // C++ [basic.stc.dynamic.deallocation]p2:
9426  //   Each deallocation function shall return void and its first parameter
9427  //   shall be void*.
9428  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9429                                  SemaRef.Context.VoidPtrTy,
9430                                 diag::err_operator_delete_dependent_param_type,
9431                                 diag::err_operator_delete_param_type))
9432    return true;
9433
9434  return false;
9435}
9436
9437/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9438/// of this overloaded operator is well-formed. If so, returns false;
9439/// otherwise, emits appropriate diagnostics and returns true.
9440bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9441  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9442         "Expected an overloaded operator declaration");
9443
9444  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9445
9446  // C++ [over.oper]p5:
9447  //   The allocation and deallocation functions, operator new,
9448  //   operator new[], operator delete and operator delete[], are
9449  //   described completely in 3.7.3. The attributes and restrictions
9450  //   found in the rest of this subclause do not apply to them unless
9451  //   explicitly stated in 3.7.3.
9452  if (Op == OO_Delete || Op == OO_Array_Delete)
9453    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9454
9455  if (Op == OO_New || Op == OO_Array_New)
9456    return CheckOperatorNewDeclaration(*this, FnDecl);
9457
9458  // C++ [over.oper]p6:
9459  //   An operator function shall either be a non-static member
9460  //   function or be a non-member function and have at least one
9461  //   parameter whose type is a class, a reference to a class, an
9462  //   enumeration, or a reference to an enumeration.
9463  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9464    if (MethodDecl->isStatic())
9465      return Diag(FnDecl->getLocation(),
9466                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9467  } else {
9468    bool ClassOrEnumParam = false;
9469    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9470                                   ParamEnd = FnDecl->param_end();
9471         Param != ParamEnd; ++Param) {
9472      QualType ParamType = (*Param)->getType().getNonReferenceType();
9473      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9474          ParamType->isEnumeralType()) {
9475        ClassOrEnumParam = true;
9476        break;
9477      }
9478    }
9479
9480    if (!ClassOrEnumParam)
9481      return Diag(FnDecl->getLocation(),
9482                  diag::err_operator_overload_needs_class_or_enum)
9483        << FnDecl->getDeclName();
9484  }
9485
9486  // C++ [over.oper]p8:
9487  //   An operator function cannot have default arguments (8.3.6),
9488  //   except where explicitly stated below.
9489  //
9490  // Only the function-call operator allows default arguments
9491  // (C++ [over.call]p1).
9492  if (Op != OO_Call) {
9493    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9494         Param != FnDecl->param_end(); ++Param) {
9495      if ((*Param)->hasDefaultArg())
9496        return Diag((*Param)->getLocation(),
9497                    diag::err_operator_overload_default_arg)
9498          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9499    }
9500  }
9501
9502  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9503    { false, false, false }
9504#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9505    , { Unary, Binary, MemberOnly }
9506#include "clang/Basic/OperatorKinds.def"
9507  };
9508
9509  bool CanBeUnaryOperator = OperatorUses[Op][0];
9510  bool CanBeBinaryOperator = OperatorUses[Op][1];
9511  bool MustBeMemberOperator = OperatorUses[Op][2];
9512
9513  // C++ [over.oper]p8:
9514  //   [...] Operator functions cannot have more or fewer parameters
9515  //   than the number required for the corresponding operator, as
9516  //   described in the rest of this subclause.
9517  unsigned NumParams = FnDecl->getNumParams()
9518                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9519  if (Op != OO_Call &&
9520      ((NumParams == 1 && !CanBeUnaryOperator) ||
9521       (NumParams == 2 && !CanBeBinaryOperator) ||
9522       (NumParams < 1) || (NumParams > 2))) {
9523    // We have the wrong number of parameters.
9524    unsigned ErrorKind;
9525    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9526      ErrorKind = 2;  // 2 -> unary or binary.
9527    } else if (CanBeUnaryOperator) {
9528      ErrorKind = 0;  // 0 -> unary
9529    } else {
9530      assert(CanBeBinaryOperator &&
9531             "All non-call overloaded operators are unary or binary!");
9532      ErrorKind = 1;  // 1 -> binary
9533    }
9534
9535    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9536      << FnDecl->getDeclName() << NumParams << ErrorKind;
9537  }
9538
9539  // Overloaded operators other than operator() cannot be variadic.
9540  if (Op != OO_Call &&
9541      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9542    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9543      << FnDecl->getDeclName();
9544  }
9545
9546  // Some operators must be non-static member functions.
9547  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9548    return Diag(FnDecl->getLocation(),
9549                diag::err_operator_overload_must_be_member)
9550      << FnDecl->getDeclName();
9551  }
9552
9553  // C++ [over.inc]p1:
9554  //   The user-defined function called operator++ implements the
9555  //   prefix and postfix ++ operator. If this function is a member
9556  //   function with no parameters, or a non-member function with one
9557  //   parameter of class or enumeration type, it defines the prefix
9558  //   increment operator ++ for objects of that type. If the function
9559  //   is a member function with one parameter (which shall be of type
9560  //   int) or a non-member function with two parameters (the second
9561  //   of which shall be of type int), it defines the postfix
9562  //   increment operator ++ for objects of that type.
9563  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9564    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9565    bool ParamIsInt = false;
9566    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9567      ParamIsInt = BT->getKind() == BuiltinType::Int;
9568
9569    if (!ParamIsInt)
9570      return Diag(LastParam->getLocation(),
9571                  diag::err_operator_overload_post_incdec_must_be_int)
9572        << LastParam->getType() << (Op == OO_MinusMinus);
9573  }
9574
9575  return false;
9576}
9577
9578/// CheckLiteralOperatorDeclaration - Check whether the declaration
9579/// of this literal operator function is well-formed. If so, returns
9580/// false; otherwise, emits appropriate diagnostics and returns true.
9581bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9582  DeclContext *DC = FnDecl->getDeclContext();
9583  Decl::Kind Kind = DC->getDeclKind();
9584  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9585      Kind != Decl::LinkageSpec) {
9586    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9587      << FnDecl->getDeclName();
9588    return true;
9589  }
9590
9591  bool Valid = false;
9592
9593  // template <char...> type operator "" name() is the only valid template
9594  // signature, and the only valid signature with no parameters.
9595  if (FnDecl->param_size() == 0) {
9596    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9597      // Must have only one template parameter
9598      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9599      if (Params->size() == 1) {
9600        NonTypeTemplateParmDecl *PmDecl =
9601          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9602
9603        // The template parameter must be a char parameter pack.
9604        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9605            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9606          Valid = true;
9607      }
9608    }
9609  } else {
9610    // Check the first parameter
9611    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9612
9613    QualType T = (*Param)->getType();
9614
9615    // unsigned long long int, long double, and any character type are allowed
9616    // as the only parameters.
9617    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9618        Context.hasSameType(T, Context.LongDoubleTy) ||
9619        Context.hasSameType(T, Context.CharTy) ||
9620        Context.hasSameType(T, Context.WCharTy) ||
9621        Context.hasSameType(T, Context.Char16Ty) ||
9622        Context.hasSameType(T, Context.Char32Ty)) {
9623      if (++Param == FnDecl->param_end())
9624        Valid = true;
9625      goto FinishedParams;
9626    }
9627
9628    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9629    const PointerType *PT = T->getAs<PointerType>();
9630    if (!PT)
9631      goto FinishedParams;
9632    T = PT->getPointeeType();
9633    if (!T.isConstQualified())
9634      goto FinishedParams;
9635    T = T.getUnqualifiedType();
9636
9637    // Move on to the second parameter;
9638    ++Param;
9639
9640    // If there is no second parameter, the first must be a const char *
9641    if (Param == FnDecl->param_end()) {
9642      if (Context.hasSameType(T, Context.CharTy))
9643        Valid = true;
9644      goto FinishedParams;
9645    }
9646
9647    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9648    // are allowed as the first parameter to a two-parameter function
9649    if (!(Context.hasSameType(T, Context.CharTy) ||
9650          Context.hasSameType(T, Context.WCharTy) ||
9651          Context.hasSameType(T, Context.Char16Ty) ||
9652          Context.hasSameType(T, Context.Char32Ty)))
9653      goto FinishedParams;
9654
9655    // The second and final parameter must be an std::size_t
9656    T = (*Param)->getType().getUnqualifiedType();
9657    if (Context.hasSameType(T, Context.getSizeType()) &&
9658        ++Param == FnDecl->param_end())
9659      Valid = true;
9660  }
9661
9662  // FIXME: This diagnostic is absolutely terrible.
9663FinishedParams:
9664  if (!Valid) {
9665    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9666      << FnDecl->getDeclName();
9667    return true;
9668  }
9669
9670  StringRef LiteralName
9671    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9672  if (LiteralName[0] != '_') {
9673    // C++0x [usrlit.suffix]p1:
9674    //   Literal suffix identifiers that do not start with an underscore are
9675    //   reserved for future standardization.
9676    bool IsHexFloat = true;
9677    if (LiteralName.size() > 1 &&
9678        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9679      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9680        if (!isdigit(LiteralName[I])) {
9681          IsHexFloat = false;
9682          break;
9683        }
9684      }
9685    }
9686
9687    if (IsHexFloat)
9688      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9689        << LiteralName;
9690    else
9691      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9692  }
9693
9694  return false;
9695}
9696
9697/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9698/// linkage specification, including the language and (if present)
9699/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9700/// the location of the language string literal, which is provided
9701/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9702/// the '{' brace. Otherwise, this linkage specification does not
9703/// have any braces.
9704Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9705                                           SourceLocation LangLoc,
9706                                           StringRef Lang,
9707                                           SourceLocation LBraceLoc) {
9708  LinkageSpecDecl::LanguageIDs Language;
9709  if (Lang == "\"C\"")
9710    Language = LinkageSpecDecl::lang_c;
9711  else if (Lang == "\"C++\"")
9712    Language = LinkageSpecDecl::lang_cxx;
9713  else {
9714    Diag(LangLoc, diag::err_bad_language);
9715    return 0;
9716  }
9717
9718  // FIXME: Add all the various semantics of linkage specifications
9719
9720  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9721                                               ExternLoc, LangLoc, Language);
9722  CurContext->addDecl(D);
9723  PushDeclContext(S, D);
9724  return D;
9725}
9726
9727/// ActOnFinishLinkageSpecification - Complete the definition of
9728/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9729/// valid, it's the position of the closing '}' brace in a linkage
9730/// specification that uses braces.
9731Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9732                                            Decl *LinkageSpec,
9733                                            SourceLocation RBraceLoc) {
9734  if (LinkageSpec) {
9735    if (RBraceLoc.isValid()) {
9736      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9737      LSDecl->setRBraceLoc(RBraceLoc);
9738    }
9739    PopDeclContext();
9740  }
9741  return LinkageSpec;
9742}
9743
9744/// \brief Perform semantic analysis for the variable declaration that
9745/// occurs within a C++ catch clause, returning the newly-created
9746/// variable.
9747VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9748                                         TypeSourceInfo *TInfo,
9749                                         SourceLocation StartLoc,
9750                                         SourceLocation Loc,
9751                                         IdentifierInfo *Name) {
9752  bool Invalid = false;
9753  QualType ExDeclType = TInfo->getType();
9754
9755  // Arrays and functions decay.
9756  if (ExDeclType->isArrayType())
9757    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9758  else if (ExDeclType->isFunctionType())
9759    ExDeclType = Context.getPointerType(ExDeclType);
9760
9761  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9762  // The exception-declaration shall not denote a pointer or reference to an
9763  // incomplete type, other than [cv] void*.
9764  // N2844 forbids rvalue references.
9765  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9766    Diag(Loc, diag::err_catch_rvalue_ref);
9767    Invalid = true;
9768  }
9769
9770  QualType BaseType = ExDeclType;
9771  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9772  unsigned DK = diag::err_catch_incomplete;
9773  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9774    BaseType = Ptr->getPointeeType();
9775    Mode = 1;
9776    DK = diag::err_catch_incomplete_ptr;
9777  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9778    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9779    BaseType = Ref->getPointeeType();
9780    Mode = 2;
9781    DK = diag::err_catch_incomplete_ref;
9782  }
9783  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9784      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9785    Invalid = true;
9786
9787  if (!Invalid && !ExDeclType->isDependentType() &&
9788      RequireNonAbstractType(Loc, ExDeclType,
9789                             diag::err_abstract_type_in_decl,
9790                             AbstractVariableType))
9791    Invalid = true;
9792
9793  // Only the non-fragile NeXT runtime currently supports C++ catches
9794  // of ObjC types, and no runtime supports catching ObjC types by value.
9795  if (!Invalid && getLangOptions().ObjC1) {
9796    QualType T = ExDeclType;
9797    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9798      T = RT->getPointeeType();
9799
9800    if (T->isObjCObjectType()) {
9801      Diag(Loc, diag::err_objc_object_catch);
9802      Invalid = true;
9803    } else if (T->isObjCObjectPointerType()) {
9804      if (!getLangOptions().ObjCNonFragileABI)
9805        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9806    }
9807  }
9808
9809  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9810                                    ExDeclType, TInfo, SC_None, SC_None);
9811  ExDecl->setExceptionVariable(true);
9812
9813  // In ARC, infer 'retaining' for variables of retainable type.
9814  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9815    Invalid = true;
9816
9817  if (!Invalid && !ExDeclType->isDependentType()) {
9818    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9819      // C++ [except.handle]p16:
9820      //   The object declared in an exception-declaration or, if the
9821      //   exception-declaration does not specify a name, a temporary (12.2) is
9822      //   copy-initialized (8.5) from the exception object. [...]
9823      //   The object is destroyed when the handler exits, after the destruction
9824      //   of any automatic objects initialized within the handler.
9825      //
9826      // We just pretend to initialize the object with itself, then make sure
9827      // it can be destroyed later.
9828      QualType initType = ExDeclType;
9829
9830      InitializedEntity entity =
9831        InitializedEntity::InitializeVariable(ExDecl);
9832      InitializationKind initKind =
9833        InitializationKind::CreateCopy(Loc, SourceLocation());
9834
9835      Expr *opaqueValue =
9836        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9837      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9838      ExprResult result = sequence.Perform(*this, entity, initKind,
9839                                           MultiExprArg(&opaqueValue, 1));
9840      if (result.isInvalid())
9841        Invalid = true;
9842      else {
9843        // If the constructor used was non-trivial, set this as the
9844        // "initializer".
9845        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9846        if (!construct->getConstructor()->isTrivial()) {
9847          Expr *init = MaybeCreateExprWithCleanups(construct);
9848          ExDecl->setInit(init);
9849        }
9850
9851        // And make sure it's destructable.
9852        FinalizeVarWithDestructor(ExDecl, recordType);
9853      }
9854    }
9855  }
9856
9857  if (Invalid)
9858    ExDecl->setInvalidDecl();
9859
9860  return ExDecl;
9861}
9862
9863/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9864/// handler.
9865Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9866  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9867  bool Invalid = D.isInvalidType();
9868
9869  // Check for unexpanded parameter packs.
9870  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9871                                               UPPC_ExceptionType)) {
9872    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9873                                             D.getIdentifierLoc());
9874    Invalid = true;
9875  }
9876
9877  IdentifierInfo *II = D.getIdentifier();
9878  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9879                                             LookupOrdinaryName,
9880                                             ForRedeclaration)) {
9881    // The scope should be freshly made just for us. There is just no way
9882    // it contains any previous declaration.
9883    assert(!S->isDeclScope(PrevDecl));
9884    if (PrevDecl->isTemplateParameter()) {
9885      // Maybe we will complain about the shadowed template parameter.
9886      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9887      PrevDecl = 0;
9888    }
9889  }
9890
9891  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9892    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9893      << D.getCXXScopeSpec().getRange();
9894    Invalid = true;
9895  }
9896
9897  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9898                                              D.getSourceRange().getBegin(),
9899                                              D.getIdentifierLoc(),
9900                                              D.getIdentifier());
9901  if (Invalid)
9902    ExDecl->setInvalidDecl();
9903
9904  // Add the exception declaration into this scope.
9905  if (II)
9906    PushOnScopeChains(ExDecl, S);
9907  else
9908    CurContext->addDecl(ExDecl);
9909
9910  ProcessDeclAttributes(S, ExDecl, D);
9911  return ExDecl;
9912}
9913
9914Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9915                                         Expr *AssertExpr,
9916                                         Expr *AssertMessageExpr_,
9917                                         SourceLocation RParenLoc) {
9918  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9919
9920  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9921    // In a static_assert-declaration, the constant-expression shall be a
9922    // constant expression that can be contextually converted to bool.
9923    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9924    if (Converted.isInvalid())
9925      return 0;
9926
9927    llvm::APSInt Cond;
9928    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9929          PDiag(diag::err_static_assert_expression_is_not_constant),
9930          /*AllowFold=*/false).isInvalid())
9931      return 0;
9932
9933    if (!Cond)
9934      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9935        << AssertMessage->getString() << AssertExpr->getSourceRange();
9936  }
9937
9938  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9939    return 0;
9940
9941  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9942                                        AssertExpr, AssertMessage, RParenLoc);
9943
9944  CurContext->addDecl(Decl);
9945  return Decl;
9946}
9947
9948/// \brief Perform semantic analysis of the given friend type declaration.
9949///
9950/// \returns A friend declaration that.
9951FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9952                                      SourceLocation FriendLoc,
9953                                      TypeSourceInfo *TSInfo) {
9954  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9955
9956  QualType T = TSInfo->getType();
9957  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9958
9959  // C++03 [class.friend]p2:
9960  //   An elaborated-type-specifier shall be used in a friend declaration
9961  //   for a class.*
9962  //
9963  //   * The class-key of the elaborated-type-specifier is required.
9964  if (!ActiveTemplateInstantiations.empty()) {
9965    // Do not complain about the form of friend template types during
9966    // template instantiation; we will already have complained when the
9967    // template was declared.
9968  } else if (!T->isElaboratedTypeSpecifier()) {
9969    // If we evaluated the type to a record type, suggest putting
9970    // a tag in front.
9971    if (const RecordType *RT = T->getAs<RecordType>()) {
9972      RecordDecl *RD = RT->getDecl();
9973
9974      std::string InsertionText = std::string(" ") + RD->getKindName();
9975
9976      Diag(TypeRange.getBegin(),
9977           getLangOptions().CPlusPlus0x ?
9978             diag::warn_cxx98_compat_unelaborated_friend_type :
9979             diag::ext_unelaborated_friend_type)
9980        << (unsigned) RD->getTagKind()
9981        << T
9982        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9983                                      InsertionText);
9984    } else {
9985      Diag(FriendLoc,
9986           getLangOptions().CPlusPlus0x ?
9987             diag::warn_cxx98_compat_nonclass_type_friend :
9988             diag::ext_nonclass_type_friend)
9989        << T
9990        << SourceRange(FriendLoc, TypeRange.getEnd());
9991    }
9992  } else if (T->getAs<EnumType>()) {
9993    Diag(FriendLoc,
9994         getLangOptions().CPlusPlus0x ?
9995           diag::warn_cxx98_compat_enum_friend :
9996           diag::ext_enum_friend)
9997      << T
9998      << SourceRange(FriendLoc, TypeRange.getEnd());
9999  }
10000
10001  // C++0x [class.friend]p3:
10002  //   If the type specifier in a friend declaration designates a (possibly
10003  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10004  //   the friend declaration is ignored.
10005
10006  // FIXME: C++0x has some syntactic restrictions on friend type declarations
10007  // in [class.friend]p3 that we do not implement.
10008
10009  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
10010}
10011
10012/// Handle a friend tag declaration where the scope specifier was
10013/// templated.
10014Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10015                                    unsigned TagSpec, SourceLocation TagLoc,
10016                                    CXXScopeSpec &SS,
10017                                    IdentifierInfo *Name, SourceLocation NameLoc,
10018                                    AttributeList *Attr,
10019                                    MultiTemplateParamsArg TempParamLists) {
10020  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10021
10022  bool isExplicitSpecialization = false;
10023  bool Invalid = false;
10024
10025  if (TemplateParameterList *TemplateParams
10026        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10027                                                  TempParamLists.get(),
10028                                                  TempParamLists.size(),
10029                                                  /*friend*/ true,
10030                                                  isExplicitSpecialization,
10031                                                  Invalid)) {
10032    if (TemplateParams->size() > 0) {
10033      // This is a declaration of a class template.
10034      if (Invalid)
10035        return 0;
10036
10037      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10038                                SS, Name, NameLoc, Attr,
10039                                TemplateParams, AS_public,
10040                                /*ModulePrivateLoc=*/SourceLocation(),
10041                                TempParamLists.size() - 1,
10042                   (TemplateParameterList**) TempParamLists.release()).take();
10043    } else {
10044      // The "template<>" header is extraneous.
10045      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10046        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10047      isExplicitSpecialization = true;
10048    }
10049  }
10050
10051  if (Invalid) return 0;
10052
10053  bool isAllExplicitSpecializations = true;
10054  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10055    if (TempParamLists.get()[I]->size()) {
10056      isAllExplicitSpecializations = false;
10057      break;
10058    }
10059  }
10060
10061  // FIXME: don't ignore attributes.
10062
10063  // If it's explicit specializations all the way down, just forget
10064  // about the template header and build an appropriate non-templated
10065  // friend.  TODO: for source fidelity, remember the headers.
10066  if (isAllExplicitSpecializations) {
10067    if (SS.isEmpty()) {
10068      bool Owned = false;
10069      bool IsDependent = false;
10070      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10071                      Attr, AS_public,
10072                      /*ModulePrivateLoc=*/SourceLocation(),
10073                      MultiTemplateParamsArg(), Owned, IsDependent,
10074                      /*ScopedEnumKWLoc=*/SourceLocation(),
10075                      /*ScopedEnumUsesClassTag=*/false,
10076                      /*UnderlyingType=*/TypeResult());
10077    }
10078
10079    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10080    ElaboratedTypeKeyword Keyword
10081      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10082    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10083                                   *Name, NameLoc);
10084    if (T.isNull())
10085      return 0;
10086
10087    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10088    if (isa<DependentNameType>(T)) {
10089      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10090      TL.setElaboratedKeywordLoc(TagLoc);
10091      TL.setQualifierLoc(QualifierLoc);
10092      TL.setNameLoc(NameLoc);
10093    } else {
10094      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10095      TL.setElaboratedKeywordLoc(TagLoc);
10096      TL.setQualifierLoc(QualifierLoc);
10097      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10098    }
10099
10100    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10101                                            TSI, FriendLoc);
10102    Friend->setAccess(AS_public);
10103    CurContext->addDecl(Friend);
10104    return Friend;
10105  }
10106
10107  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10108
10109
10110
10111  // Handle the case of a templated-scope friend class.  e.g.
10112  //   template <class T> class A<T>::B;
10113  // FIXME: we don't support these right now.
10114  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10115  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10116  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10117  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10118  TL.setElaboratedKeywordLoc(TagLoc);
10119  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10120  TL.setNameLoc(NameLoc);
10121
10122  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10123                                          TSI, FriendLoc);
10124  Friend->setAccess(AS_public);
10125  Friend->setUnsupportedFriend(true);
10126  CurContext->addDecl(Friend);
10127  return Friend;
10128}
10129
10130
10131/// Handle a friend type declaration.  This works in tandem with
10132/// ActOnTag.
10133///
10134/// Notes on friend class templates:
10135///
10136/// We generally treat friend class declarations as if they were
10137/// declaring a class.  So, for example, the elaborated type specifier
10138/// in a friend declaration is required to obey the restrictions of a
10139/// class-head (i.e. no typedefs in the scope chain), template
10140/// parameters are required to match up with simple template-ids, &c.
10141/// However, unlike when declaring a template specialization, it's
10142/// okay to refer to a template specialization without an empty
10143/// template parameter declaration, e.g.
10144///   friend class A<T>::B<unsigned>;
10145/// We permit this as a special case; if there are any template
10146/// parameters present at all, require proper matching, i.e.
10147///   template <> template <class T> friend class A<int>::B;
10148Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10149                                MultiTemplateParamsArg TempParams) {
10150  SourceLocation Loc = DS.getSourceRange().getBegin();
10151
10152  assert(DS.isFriendSpecified());
10153  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10154
10155  // Try to convert the decl specifier to a type.  This works for
10156  // friend templates because ActOnTag never produces a ClassTemplateDecl
10157  // for a TUK_Friend.
10158  Declarator TheDeclarator(DS, Declarator::MemberContext);
10159  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10160  QualType T = TSI->getType();
10161  if (TheDeclarator.isInvalidType())
10162    return 0;
10163
10164  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10165    return 0;
10166
10167  // This is definitely an error in C++98.  It's probably meant to
10168  // be forbidden in C++0x, too, but the specification is just
10169  // poorly written.
10170  //
10171  // The problem is with declarations like the following:
10172  //   template <T> friend A<T>::foo;
10173  // where deciding whether a class C is a friend or not now hinges
10174  // on whether there exists an instantiation of A that causes
10175  // 'foo' to equal C.  There are restrictions on class-heads
10176  // (which we declare (by fiat) elaborated friend declarations to
10177  // be) that makes this tractable.
10178  //
10179  // FIXME: handle "template <> friend class A<T>;", which
10180  // is possibly well-formed?  Who even knows?
10181  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10182    Diag(Loc, diag::err_tagless_friend_type_template)
10183      << DS.getSourceRange();
10184    return 0;
10185  }
10186
10187  // C++98 [class.friend]p1: A friend of a class is a function
10188  //   or class that is not a member of the class . . .
10189  // This is fixed in DR77, which just barely didn't make the C++03
10190  // deadline.  It's also a very silly restriction that seriously
10191  // affects inner classes and which nobody else seems to implement;
10192  // thus we never diagnose it, not even in -pedantic.
10193  //
10194  // But note that we could warn about it: it's always useless to
10195  // friend one of your own members (it's not, however, worthless to
10196  // friend a member of an arbitrary specialization of your template).
10197
10198  Decl *D;
10199  if (unsigned NumTempParamLists = TempParams.size())
10200    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10201                                   NumTempParamLists,
10202                                   TempParams.release(),
10203                                   TSI,
10204                                   DS.getFriendSpecLoc());
10205  else
10206    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10207
10208  if (!D)
10209    return 0;
10210
10211  D->setAccess(AS_public);
10212  CurContext->addDecl(D);
10213
10214  return D;
10215}
10216
10217Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10218                                    MultiTemplateParamsArg TemplateParams) {
10219  const DeclSpec &DS = D.getDeclSpec();
10220
10221  assert(DS.isFriendSpecified());
10222  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10223
10224  SourceLocation Loc = D.getIdentifierLoc();
10225  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10226
10227  // C++ [class.friend]p1
10228  //   A friend of a class is a function or class....
10229  // Note that this sees through typedefs, which is intended.
10230  // It *doesn't* see through dependent types, which is correct
10231  // according to [temp.arg.type]p3:
10232  //   If a declaration acquires a function type through a
10233  //   type dependent on a template-parameter and this causes
10234  //   a declaration that does not use the syntactic form of a
10235  //   function declarator to have a function type, the program
10236  //   is ill-formed.
10237  if (!TInfo->getType()->isFunctionType()) {
10238    Diag(Loc, diag::err_unexpected_friend);
10239
10240    // It might be worthwhile to try to recover by creating an
10241    // appropriate declaration.
10242    return 0;
10243  }
10244
10245  // C++ [namespace.memdef]p3
10246  //  - If a friend declaration in a non-local class first declares a
10247  //    class or function, the friend class or function is a member
10248  //    of the innermost enclosing namespace.
10249  //  - The name of the friend is not found by simple name lookup
10250  //    until a matching declaration is provided in that namespace
10251  //    scope (either before or after the class declaration granting
10252  //    friendship).
10253  //  - If a friend function is called, its name may be found by the
10254  //    name lookup that considers functions from namespaces and
10255  //    classes associated with the types of the function arguments.
10256  //  - When looking for a prior declaration of a class or a function
10257  //    declared as a friend, scopes outside the innermost enclosing
10258  //    namespace scope are not considered.
10259
10260  CXXScopeSpec &SS = D.getCXXScopeSpec();
10261  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10262  DeclarationName Name = NameInfo.getName();
10263  assert(Name);
10264
10265  // Check for unexpanded parameter packs.
10266  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10267      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10268      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10269    return 0;
10270
10271  // The context we found the declaration in, or in which we should
10272  // create the declaration.
10273  DeclContext *DC;
10274  Scope *DCScope = S;
10275  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10276                        ForRedeclaration);
10277
10278  // FIXME: there are different rules in local classes
10279
10280  // There are four cases here.
10281  //   - There's no scope specifier, in which case we just go to the
10282  //     appropriate scope and look for a function or function template
10283  //     there as appropriate.
10284  // Recover from invalid scope qualifiers as if they just weren't there.
10285  if (SS.isInvalid() || !SS.isSet()) {
10286    // C++0x [namespace.memdef]p3:
10287    //   If the name in a friend declaration is neither qualified nor
10288    //   a template-id and the declaration is a function or an
10289    //   elaborated-type-specifier, the lookup to determine whether
10290    //   the entity has been previously declared shall not consider
10291    //   any scopes outside the innermost enclosing namespace.
10292    // C++0x [class.friend]p11:
10293    //   If a friend declaration appears in a local class and the name
10294    //   specified is an unqualified name, a prior declaration is
10295    //   looked up without considering scopes that are outside the
10296    //   innermost enclosing non-class scope. For a friend function
10297    //   declaration, if there is no prior declaration, the program is
10298    //   ill-formed.
10299    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10300    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10301
10302    // Find the appropriate context according to the above.
10303    DC = CurContext;
10304    while (true) {
10305      // Skip class contexts.  If someone can cite chapter and verse
10306      // for this behavior, that would be nice --- it's what GCC and
10307      // EDG do, and it seems like a reasonable intent, but the spec
10308      // really only says that checks for unqualified existing
10309      // declarations should stop at the nearest enclosing namespace,
10310      // not that they should only consider the nearest enclosing
10311      // namespace.
10312      while (DC->isRecord())
10313        DC = DC->getParent();
10314
10315      LookupQualifiedName(Previous, DC);
10316
10317      // TODO: decide what we think about using declarations.
10318      if (isLocal || !Previous.empty())
10319        break;
10320
10321      if (isTemplateId) {
10322        if (isa<TranslationUnitDecl>(DC)) break;
10323      } else {
10324        if (DC->isFileContext()) break;
10325      }
10326      DC = DC->getParent();
10327    }
10328
10329    // C++ [class.friend]p1: A friend of a class is a function or
10330    //   class that is not a member of the class . . .
10331    // C++11 changes this for both friend types and functions.
10332    // Most C++ 98 compilers do seem to give an error here, so
10333    // we do, too.
10334    if (!Previous.empty() && DC->Equals(CurContext))
10335      Diag(DS.getFriendSpecLoc(),
10336           getLangOptions().CPlusPlus0x ?
10337             diag::warn_cxx98_compat_friend_is_member :
10338             diag::err_friend_is_member);
10339
10340    DCScope = getScopeForDeclContext(S, DC);
10341
10342    // C++ [class.friend]p6:
10343    //   A function can be defined in a friend declaration of a class if and
10344    //   only if the class is a non-local class (9.8), the function name is
10345    //   unqualified, and the function has namespace scope.
10346    if (isLocal && D.isFunctionDefinition()) {
10347      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10348    }
10349
10350  //   - There's a non-dependent scope specifier, in which case we
10351  //     compute it and do a previous lookup there for a function
10352  //     or function template.
10353  } else if (!SS.getScopeRep()->isDependent()) {
10354    DC = computeDeclContext(SS);
10355    if (!DC) return 0;
10356
10357    if (RequireCompleteDeclContext(SS, DC)) return 0;
10358
10359    LookupQualifiedName(Previous, DC);
10360
10361    // Ignore things found implicitly in the wrong scope.
10362    // TODO: better diagnostics for this case.  Suggesting the right
10363    // qualified scope would be nice...
10364    LookupResult::Filter F = Previous.makeFilter();
10365    while (F.hasNext()) {
10366      NamedDecl *D = F.next();
10367      if (!DC->InEnclosingNamespaceSetOf(
10368              D->getDeclContext()->getRedeclContext()))
10369        F.erase();
10370    }
10371    F.done();
10372
10373    if (Previous.empty()) {
10374      D.setInvalidType();
10375      Diag(Loc, diag::err_qualified_friend_not_found)
10376          << Name << TInfo->getType();
10377      return 0;
10378    }
10379
10380    // C++ [class.friend]p1: A friend of a class is a function or
10381    //   class that is not a member of the class . . .
10382    if (DC->Equals(CurContext))
10383      Diag(DS.getFriendSpecLoc(),
10384           getLangOptions().CPlusPlus0x ?
10385             diag::warn_cxx98_compat_friend_is_member :
10386             diag::err_friend_is_member);
10387
10388    if (D.isFunctionDefinition()) {
10389      // C++ [class.friend]p6:
10390      //   A function can be defined in a friend declaration of a class if and
10391      //   only if the class is a non-local class (9.8), the function name is
10392      //   unqualified, and the function has namespace scope.
10393      SemaDiagnosticBuilder DB
10394        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10395
10396      DB << SS.getScopeRep();
10397      if (DC->isFileContext())
10398        DB << FixItHint::CreateRemoval(SS.getRange());
10399      SS.clear();
10400    }
10401
10402  //   - There's a scope specifier that does not match any template
10403  //     parameter lists, in which case we use some arbitrary context,
10404  //     create a method or method template, and wait for instantiation.
10405  //   - There's a scope specifier that does match some template
10406  //     parameter lists, which we don't handle right now.
10407  } else {
10408    if (D.isFunctionDefinition()) {
10409      // C++ [class.friend]p6:
10410      //   A function can be defined in a friend declaration of a class if and
10411      //   only if the class is a non-local class (9.8), the function name is
10412      //   unqualified, and the function has namespace scope.
10413      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10414        << SS.getScopeRep();
10415    }
10416
10417    DC = CurContext;
10418    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10419  }
10420
10421  if (!DC->isRecord()) {
10422    // This implies that it has to be an operator or function.
10423    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10424        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10425        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10426      Diag(Loc, diag::err_introducing_special_friend) <<
10427        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10428         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10429      return 0;
10430    }
10431  }
10432
10433  // FIXME: This is an egregious hack to cope with cases where the scope stack
10434  // does not contain the declaration context, i.e., in an out-of-line
10435  // definition of a class.
10436  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10437  if (!DCScope) {
10438    FakeDCScope.setEntity(DC);
10439    DCScope = &FakeDCScope;
10440  }
10441
10442  bool AddToScope = true;
10443  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10444                                          move(TemplateParams), AddToScope);
10445  if (!ND) return 0;
10446
10447  assert(ND->getDeclContext() == DC);
10448  assert(ND->getLexicalDeclContext() == CurContext);
10449
10450  // Add the function declaration to the appropriate lookup tables,
10451  // adjusting the redeclarations list as necessary.  We don't
10452  // want to do this yet if the friending class is dependent.
10453  //
10454  // Also update the scope-based lookup if the target context's
10455  // lookup context is in lexical scope.
10456  if (!CurContext->isDependentContext()) {
10457    DC = DC->getRedeclContext();
10458    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10459    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10460      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10461  }
10462
10463  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10464                                       D.getIdentifierLoc(), ND,
10465                                       DS.getFriendSpecLoc());
10466  FrD->setAccess(AS_public);
10467  CurContext->addDecl(FrD);
10468
10469  if (ND->isInvalidDecl())
10470    FrD->setInvalidDecl();
10471  else {
10472    FunctionDecl *FD;
10473    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10474      FD = FTD->getTemplatedDecl();
10475    else
10476      FD = cast<FunctionDecl>(ND);
10477
10478    // Mark templated-scope function declarations as unsupported.
10479    if (FD->getNumTemplateParameterLists())
10480      FrD->setUnsupportedFriend(true);
10481  }
10482
10483  return ND;
10484}
10485
10486void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10487  AdjustDeclIfTemplate(Dcl);
10488
10489  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10490  if (!Fn) {
10491    Diag(DelLoc, diag::err_deleted_non_function);
10492    return;
10493  }
10494  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10495    Diag(DelLoc, diag::err_deleted_decl_not_first);
10496    Diag(Prev->getLocation(), diag::note_previous_declaration);
10497    // If the declaration wasn't the first, we delete the function anyway for
10498    // recovery.
10499  }
10500  Fn->setDeletedAsWritten();
10501}
10502
10503void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10504  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10505
10506  if (MD) {
10507    if (MD->getParent()->isDependentType()) {
10508      MD->setDefaulted();
10509      MD->setExplicitlyDefaulted();
10510      return;
10511    }
10512
10513    CXXSpecialMember Member = getSpecialMember(MD);
10514    if (Member == CXXInvalid) {
10515      Diag(DefaultLoc, diag::err_default_special_members);
10516      return;
10517    }
10518
10519    MD->setDefaulted();
10520    MD->setExplicitlyDefaulted();
10521
10522    // If this definition appears within the record, do the checking when
10523    // the record is complete.
10524    const FunctionDecl *Primary = MD;
10525    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10526      // Find the uninstantiated declaration that actually had the '= default'
10527      // on it.
10528      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10529
10530    if (Primary == Primary->getCanonicalDecl())
10531      return;
10532
10533    switch (Member) {
10534    case CXXDefaultConstructor: {
10535      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10536      CheckExplicitlyDefaultedDefaultConstructor(CD);
10537      if (!CD->isInvalidDecl())
10538        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10539      break;
10540    }
10541
10542    case CXXCopyConstructor: {
10543      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10544      CheckExplicitlyDefaultedCopyConstructor(CD);
10545      if (!CD->isInvalidDecl())
10546        DefineImplicitCopyConstructor(DefaultLoc, CD);
10547      break;
10548    }
10549
10550    case CXXCopyAssignment: {
10551      CheckExplicitlyDefaultedCopyAssignment(MD);
10552      if (!MD->isInvalidDecl())
10553        DefineImplicitCopyAssignment(DefaultLoc, MD);
10554      break;
10555    }
10556
10557    case CXXDestructor: {
10558      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10559      CheckExplicitlyDefaultedDestructor(DD);
10560      if (!DD->isInvalidDecl())
10561        DefineImplicitDestructor(DefaultLoc, DD);
10562      break;
10563    }
10564
10565    case CXXMoveConstructor: {
10566      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10567      CheckExplicitlyDefaultedMoveConstructor(CD);
10568      if (!CD->isInvalidDecl())
10569        DefineImplicitMoveConstructor(DefaultLoc, CD);
10570      break;
10571    }
10572
10573    case CXXMoveAssignment: {
10574      CheckExplicitlyDefaultedMoveAssignment(MD);
10575      if (!MD->isInvalidDecl())
10576        DefineImplicitMoveAssignment(DefaultLoc, MD);
10577      break;
10578    }
10579
10580    case CXXInvalid:
10581      llvm_unreachable("Invalid special member.");
10582    }
10583  } else {
10584    Diag(DefaultLoc, diag::err_default_special_members);
10585  }
10586}
10587
10588static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10589  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10590    Stmt *SubStmt = *CI;
10591    if (!SubStmt)
10592      continue;
10593    if (isa<ReturnStmt>(SubStmt))
10594      Self.Diag(SubStmt->getSourceRange().getBegin(),
10595           diag::err_return_in_constructor_handler);
10596    if (!isa<Expr>(SubStmt))
10597      SearchForReturnInStmt(Self, SubStmt);
10598  }
10599}
10600
10601void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10602  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10603    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10604    SearchForReturnInStmt(*this, Handler);
10605  }
10606}
10607
10608bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10609                                             const CXXMethodDecl *Old) {
10610  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10611  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10612
10613  if (Context.hasSameType(NewTy, OldTy) ||
10614      NewTy->isDependentType() || OldTy->isDependentType())
10615    return false;
10616
10617  // Check if the return types are covariant
10618  QualType NewClassTy, OldClassTy;
10619
10620  /// Both types must be pointers or references to classes.
10621  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10622    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10623      NewClassTy = NewPT->getPointeeType();
10624      OldClassTy = OldPT->getPointeeType();
10625    }
10626  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10627    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10628      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10629        NewClassTy = NewRT->getPointeeType();
10630        OldClassTy = OldRT->getPointeeType();
10631      }
10632    }
10633  }
10634
10635  // The return types aren't either both pointers or references to a class type.
10636  if (NewClassTy.isNull()) {
10637    Diag(New->getLocation(),
10638         diag::err_different_return_type_for_overriding_virtual_function)
10639      << New->getDeclName() << NewTy << OldTy;
10640    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10641
10642    return true;
10643  }
10644
10645  // C++ [class.virtual]p6:
10646  //   If the return type of D::f differs from the return type of B::f, the
10647  //   class type in the return type of D::f shall be complete at the point of
10648  //   declaration of D::f or shall be the class type D.
10649  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10650    if (!RT->isBeingDefined() &&
10651        RequireCompleteType(New->getLocation(), NewClassTy,
10652                            PDiag(diag::err_covariant_return_incomplete)
10653                              << New->getDeclName()))
10654    return true;
10655  }
10656
10657  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10658    // Check if the new class derives from the old class.
10659    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10660      Diag(New->getLocation(),
10661           diag::err_covariant_return_not_derived)
10662      << New->getDeclName() << NewTy << OldTy;
10663      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10664      return true;
10665    }
10666
10667    // Check if we the conversion from derived to base is valid.
10668    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10669                    diag::err_covariant_return_inaccessible_base,
10670                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10671                    // FIXME: Should this point to the return type?
10672                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10673      // FIXME: this note won't trigger for delayed access control
10674      // diagnostics, and it's impossible to get an undelayed error
10675      // here from access control during the original parse because
10676      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10677      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10678      return true;
10679    }
10680  }
10681
10682  // The qualifiers of the return types must be the same.
10683  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10684    Diag(New->getLocation(),
10685         diag::err_covariant_return_type_different_qualifications)
10686    << New->getDeclName() << NewTy << OldTy;
10687    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10688    return true;
10689  };
10690
10691
10692  // The new class type must have the same or less qualifiers as the old type.
10693  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10694    Diag(New->getLocation(),
10695         diag::err_covariant_return_type_class_type_more_qualified)
10696    << New->getDeclName() << NewTy << OldTy;
10697    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10698    return true;
10699  };
10700
10701  return false;
10702}
10703
10704/// \brief Mark the given method pure.
10705///
10706/// \param Method the method to be marked pure.
10707///
10708/// \param InitRange the source range that covers the "0" initializer.
10709bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10710  SourceLocation EndLoc = InitRange.getEnd();
10711  if (EndLoc.isValid())
10712    Method->setRangeEnd(EndLoc);
10713
10714  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10715    Method->setPure();
10716    return false;
10717  }
10718
10719  if (!Method->isInvalidDecl())
10720    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10721      << Method->getDeclName() << InitRange;
10722  return true;
10723}
10724
10725/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10726/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10727/// is a fresh scope pushed for just this purpose.
10728///
10729/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10730/// static data member of class X, names should be looked up in the scope of
10731/// class X.
10732void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10733  // If there is no declaration, there was an error parsing it.
10734  if (D == 0 || D->isInvalidDecl()) return;
10735
10736  // We should only get called for declarations with scope specifiers, like:
10737  //   int foo::bar;
10738  assert(D->isOutOfLine());
10739  EnterDeclaratorContext(S, D->getDeclContext());
10740}
10741
10742/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10743/// initializer for the out-of-line declaration 'D'.
10744void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10745  // If there is no declaration, there was an error parsing it.
10746  if (D == 0 || D->isInvalidDecl()) return;
10747
10748  assert(D->isOutOfLine());
10749  ExitDeclaratorContext(S);
10750}
10751
10752/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10753/// C++ if/switch/while/for statement.
10754/// e.g: "if (int x = f()) {...}"
10755DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10756  // C++ 6.4p2:
10757  // The declarator shall not specify a function or an array.
10758  // The type-specifier-seq shall not contain typedef and shall not declare a
10759  // new class or enumeration.
10760  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10761         "Parser allowed 'typedef' as storage class of condition decl.");
10762
10763  Decl *Dcl = ActOnDeclarator(S, D);
10764  if (!Dcl)
10765    return true;
10766
10767  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10768    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10769      << D.getSourceRange();
10770    return true;
10771  }
10772
10773  return Dcl;
10774}
10775
10776void Sema::LoadExternalVTableUses() {
10777  if (!ExternalSource)
10778    return;
10779
10780  SmallVector<ExternalVTableUse, 4> VTables;
10781  ExternalSource->ReadUsedVTables(VTables);
10782  SmallVector<VTableUse, 4> NewUses;
10783  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10784    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10785      = VTablesUsed.find(VTables[I].Record);
10786    // Even if a definition wasn't required before, it may be required now.
10787    if (Pos != VTablesUsed.end()) {
10788      if (!Pos->second && VTables[I].DefinitionRequired)
10789        Pos->second = true;
10790      continue;
10791    }
10792
10793    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10794    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10795  }
10796
10797  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10798}
10799
10800void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10801                          bool DefinitionRequired) {
10802  // Ignore any vtable uses in unevaluated operands or for classes that do
10803  // not have a vtable.
10804  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10805      CurContext->isDependentContext() ||
10806      ExprEvalContexts.back().Context == Unevaluated)
10807    return;
10808
10809  // Try to insert this class into the map.
10810  LoadExternalVTableUses();
10811  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10812  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10813    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10814  if (!Pos.second) {
10815    // If we already had an entry, check to see if we are promoting this vtable
10816    // to required a definition. If so, we need to reappend to the VTableUses
10817    // list, since we may have already processed the first entry.
10818    if (DefinitionRequired && !Pos.first->second) {
10819      Pos.first->second = true;
10820    } else {
10821      // Otherwise, we can early exit.
10822      return;
10823    }
10824  }
10825
10826  // Local classes need to have their virtual members marked
10827  // immediately. For all other classes, we mark their virtual members
10828  // at the end of the translation unit.
10829  if (Class->isLocalClass())
10830    MarkVirtualMembersReferenced(Loc, Class);
10831  else
10832    VTableUses.push_back(std::make_pair(Class, Loc));
10833}
10834
10835bool Sema::DefineUsedVTables() {
10836  LoadExternalVTableUses();
10837  if (VTableUses.empty())
10838    return false;
10839
10840  // Note: The VTableUses vector could grow as a result of marking
10841  // the members of a class as "used", so we check the size each
10842  // time through the loop and prefer indices (with are stable) to
10843  // iterators (which are not).
10844  bool DefinedAnything = false;
10845  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10846    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10847    if (!Class)
10848      continue;
10849
10850    SourceLocation Loc = VTableUses[I].second;
10851
10852    // If this class has a key function, but that key function is
10853    // defined in another translation unit, we don't need to emit the
10854    // vtable even though we're using it.
10855    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10856    if (KeyFunction && !KeyFunction->hasBody()) {
10857      switch (KeyFunction->getTemplateSpecializationKind()) {
10858      case TSK_Undeclared:
10859      case TSK_ExplicitSpecialization:
10860      case TSK_ExplicitInstantiationDeclaration:
10861        // The key function is in another translation unit.
10862        continue;
10863
10864      case TSK_ExplicitInstantiationDefinition:
10865      case TSK_ImplicitInstantiation:
10866        // We will be instantiating the key function.
10867        break;
10868      }
10869    } else if (!KeyFunction) {
10870      // If we have a class with no key function that is the subject
10871      // of an explicit instantiation declaration, suppress the
10872      // vtable; it will live with the explicit instantiation
10873      // definition.
10874      bool IsExplicitInstantiationDeclaration
10875        = Class->getTemplateSpecializationKind()
10876                                      == TSK_ExplicitInstantiationDeclaration;
10877      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10878                                 REnd = Class->redecls_end();
10879           R != REnd; ++R) {
10880        TemplateSpecializationKind TSK
10881          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10882        if (TSK == TSK_ExplicitInstantiationDeclaration)
10883          IsExplicitInstantiationDeclaration = true;
10884        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10885          IsExplicitInstantiationDeclaration = false;
10886          break;
10887        }
10888      }
10889
10890      if (IsExplicitInstantiationDeclaration)
10891        continue;
10892    }
10893
10894    // Mark all of the virtual members of this class as referenced, so
10895    // that we can build a vtable. Then, tell the AST consumer that a
10896    // vtable for this class is required.
10897    DefinedAnything = true;
10898    MarkVirtualMembersReferenced(Loc, Class);
10899    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10900    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10901
10902    // Optionally warn if we're emitting a weak vtable.
10903    if (Class->getLinkage() == ExternalLinkage &&
10904        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10905      const FunctionDecl *KeyFunctionDef = 0;
10906      if (!KeyFunction ||
10907          (KeyFunction->hasBody(KeyFunctionDef) &&
10908           KeyFunctionDef->isInlined()))
10909        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10910             TSK_ExplicitInstantiationDefinition
10911             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10912          << Class;
10913    }
10914  }
10915  VTableUses.clear();
10916
10917  return DefinedAnything;
10918}
10919
10920void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10921                                        const CXXRecordDecl *RD) {
10922  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10923       e = RD->method_end(); i != e; ++i) {
10924    CXXMethodDecl *MD = *i;
10925
10926    // C++ [basic.def.odr]p2:
10927    //   [...] A virtual member function is used if it is not pure. [...]
10928    if (MD->isVirtual() && !MD->isPure())
10929      MarkFunctionReferenced(Loc, MD);
10930  }
10931
10932  // Only classes that have virtual bases need a VTT.
10933  if (RD->getNumVBases() == 0)
10934    return;
10935
10936  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10937           e = RD->bases_end(); i != e; ++i) {
10938    const CXXRecordDecl *Base =
10939        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10940    if (Base->getNumVBases() == 0)
10941      continue;
10942    MarkVirtualMembersReferenced(Loc, Base);
10943  }
10944}
10945
10946/// SetIvarInitializers - This routine builds initialization ASTs for the
10947/// Objective-C implementation whose ivars need be initialized.
10948void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10949  if (!getLangOptions().CPlusPlus)
10950    return;
10951  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10952    SmallVector<ObjCIvarDecl*, 8> ivars;
10953    CollectIvarsToConstructOrDestruct(OID, ivars);
10954    if (ivars.empty())
10955      return;
10956    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10957    for (unsigned i = 0; i < ivars.size(); i++) {
10958      FieldDecl *Field = ivars[i];
10959      if (Field->isInvalidDecl())
10960        continue;
10961
10962      CXXCtorInitializer *Member;
10963      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10964      InitializationKind InitKind =
10965        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10966
10967      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10968      ExprResult MemberInit =
10969        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10970      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10971      // Note, MemberInit could actually come back empty if no initialization
10972      // is required (e.g., because it would call a trivial default constructor)
10973      if (!MemberInit.get() || MemberInit.isInvalid())
10974        continue;
10975
10976      Member =
10977        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10978                                         SourceLocation(),
10979                                         MemberInit.takeAs<Expr>(),
10980                                         SourceLocation());
10981      AllToInit.push_back(Member);
10982
10983      // Be sure that the destructor is accessible and is marked as referenced.
10984      if (const RecordType *RecordTy
10985                  = Context.getBaseElementType(Field->getType())
10986                                                        ->getAs<RecordType>()) {
10987                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10988        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10989          MarkFunctionReferenced(Field->getLocation(), Destructor);
10990          CheckDestructorAccess(Field->getLocation(), Destructor,
10991                            PDiag(diag::err_access_dtor_ivar)
10992                              << Context.getBaseElementType(Field->getType()));
10993        }
10994      }
10995    }
10996    ObjCImplementation->setIvarInitializers(Context,
10997                                            AllToInit.data(), AllToInit.size());
10998  }
10999}
11000
11001static
11002void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11003                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11004                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11005                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11006                           Sema &S) {
11007  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11008                                                   CE = Current.end();
11009  if (Ctor->isInvalidDecl())
11010    return;
11011
11012  const FunctionDecl *FNTarget = 0;
11013  CXXConstructorDecl *Target;
11014
11015  // We ignore the result here since if we don't have a body, Target will be
11016  // null below.
11017  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11018  Target
11019= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11020
11021  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11022                     // Avoid dereferencing a null pointer here.
11023                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11024
11025  if (!Current.insert(Canonical))
11026    return;
11027
11028  // We know that beyond here, we aren't chaining into a cycle.
11029  if (!Target || !Target->isDelegatingConstructor() ||
11030      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11031    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11032      Valid.insert(*CI);
11033    Current.clear();
11034  // We've hit a cycle.
11035  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11036             Current.count(TCanonical)) {
11037    // If we haven't diagnosed this cycle yet, do so now.
11038    if (!Invalid.count(TCanonical)) {
11039      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11040             diag::warn_delegating_ctor_cycle)
11041        << Ctor;
11042
11043      // Don't add a note for a function delegating directo to itself.
11044      if (TCanonical != Canonical)
11045        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11046
11047      CXXConstructorDecl *C = Target;
11048      while (C->getCanonicalDecl() != Canonical) {
11049        (void)C->getTargetConstructor()->hasBody(FNTarget);
11050        assert(FNTarget && "Ctor cycle through bodiless function");
11051
11052        C
11053       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11054        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11055      }
11056    }
11057
11058    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11059      Invalid.insert(*CI);
11060    Current.clear();
11061  } else {
11062    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11063  }
11064}
11065
11066
11067void Sema::CheckDelegatingCtorCycles() {
11068  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11069
11070  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11071                                                   CE = Current.end();
11072
11073  for (DelegatingCtorDeclsType::iterator
11074         I = DelegatingCtorDecls.begin(ExternalSource),
11075         E = DelegatingCtorDecls.end();
11076       I != E; ++I) {
11077   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11078  }
11079
11080  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11081    (*CI)->setInvalidDecl();
11082}
11083
11084/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11085Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11086  // Implicitly declared functions (e.g. copy constructors) are
11087  // __host__ __device__
11088  if (D->isImplicit())
11089    return CFT_HostDevice;
11090
11091  if (D->hasAttr<CUDAGlobalAttr>())
11092    return CFT_Global;
11093
11094  if (D->hasAttr<CUDADeviceAttr>()) {
11095    if (D->hasAttr<CUDAHostAttr>())
11096      return CFT_HostDevice;
11097    else
11098      return CFT_Device;
11099  }
11100
11101  return CFT_Host;
11102}
11103
11104bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11105                           CUDAFunctionTarget CalleeTarget) {
11106  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11107  // Callable from the device only."
11108  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11109    return true;
11110
11111  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11112  // Callable from the host only."
11113  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11114  // Callable from the host only."
11115  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11116      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11117    return true;
11118
11119  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11120    return true;
11121
11122  return false;
11123}
11124