SemaDeclCXX.cpp revision 5ec02ae147760c32ad5b6fb0fec30ab3b3696778
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Parse/Template.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Lex/Preprocessor.h"
27#include "llvm/ADT/STLExtras.h"
28#include <map>
29#include <set>
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// CheckDefaultArgumentVisitor
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
39  /// the default argument of a parameter to determine whether it
40  /// contains any ill-formed subexpressions. For example, this will
41  /// diagnose the use of local variables or parameters within the
42  /// default argument expression.
43  class CheckDefaultArgumentVisitor
44    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
45    Expr *DefaultArg;
46    Sema *S;
47
48  public:
49    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
50      : DefaultArg(defarg), S(s) {}
51
52    bool VisitExpr(Expr *Node);
53    bool VisitDeclRefExpr(DeclRefExpr *DRE);
54    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
55  };
56
57  /// VisitExpr - Visit all of the children of this expression.
58  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
59    bool IsInvalid = false;
60    for (Stmt::child_iterator I = Node->child_begin(),
61         E = Node->child_end(); I != E; ++I)
62      IsInvalid |= Visit(*I);
63    return IsInvalid;
64  }
65
66  /// VisitDeclRefExpr - Visit a reference to a declaration, to
67  /// determine whether this declaration can be used in the default
68  /// argument expression.
69  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
70    NamedDecl *Decl = DRE->getDecl();
71    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
72      // C++ [dcl.fct.default]p9
73      //   Default arguments are evaluated each time the function is
74      //   called. The order of evaluation of function arguments is
75      //   unspecified. Consequently, parameters of a function shall not
76      //   be used in default argument expressions, even if they are not
77      //   evaluated. Parameters of a function declared before a default
78      //   argument expression are in scope and can hide namespace and
79      //   class member names.
80      return S->Diag(DRE->getSourceRange().getBegin(),
81                     diag::err_param_default_argument_references_param)
82         << Param->getDeclName() << DefaultArg->getSourceRange();
83    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p7
85      //   Local variables shall not be used in default argument
86      //   expressions.
87      if (VDecl->isBlockVarDecl())
88        return S->Diag(DRE->getSourceRange().getBegin(),
89                       diag::err_param_default_argument_references_local)
90          << VDecl->getDeclName() << DefaultArg->getSourceRange();
91    }
92
93    return false;
94  }
95
96  /// VisitCXXThisExpr - Visit a C++ "this" expression.
97  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
98    // C++ [dcl.fct.default]p8:
99    //   The keyword this shall not be used in a default argument of a
100    //   member function.
101    return S->Diag(ThisE->getSourceRange().getBegin(),
102                   diag::err_param_default_argument_references_this)
103               << ThisE->getSourceRange();
104  }
105}
106
107bool
108Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
109                              SourceLocation EqualLoc) {
110  QualType ParamType = Param->getType();
111
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
127                            Param->getDeclName(), /*DirectInit=*/false))
128    return true;
129
130  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
131
132  // Okay: add the default argument to the parameter
133  Param->setDefaultArg(Arg);
134
135  DefaultArg.release();
136
137  return false;
138}
139
140/// ActOnParamDefaultArgument - Check whether the default argument
141/// provided for a function parameter is well-formed. If so, attach it
142/// to the parameter declaration.
143void
144Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
145                                ExprArg defarg) {
146  if (!param || !defarg.get())
147    return;
148
149  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
150  UnparsedDefaultArgLocs.erase(Param);
151
152  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
153  QualType ParamType = Param->getType();
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
165  if (DefaultArgChecker.Visit(DefaultArg.get())) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If the parameter doesn't have an identifier then the location
269      // points to the '=' which means that the fixit hint won't remove any
270      // extra spaces between the type and the '='.
271      SourceLocation Begin = NewParam->getLocation();
272      if (NewParam->getIdentifier())
273        Begin = PP.getLocForEndOfToken(Begin);
274
275      Diag(NewParam->getLocation(),
276           diag::err_param_default_argument_redefinition)
277        << NewParam->getDefaultArgRange()
278        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
279                                                        NewParam->getLocEnd()));
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter
296      if (OldParam->hasUninstantiatedDefaultArg())
297        NewParam->setUninstantiatedDefaultArg(
298                                      OldParam->getUninstantiatedDefaultArg());
299      else
300        NewParam->setDefaultArg(OldParam->getDefaultArg());
301    } else if (NewParam->hasDefaultArg()) {
302      if (New->getDescribedFunctionTemplate()) {
303        // Paragraph 4, quoted above, only applies to non-template functions.
304        Diag(NewParam->getLocation(),
305             diag::err_param_default_argument_template_redecl)
306          << NewParam->getDefaultArgRange();
307        Diag(Old->getLocation(), diag::note_template_prev_declaration)
308          << false;
309      } else if (New->getTemplateSpecializationKind()
310                   != TSK_ImplicitInstantiation &&
311                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
312        // C++ [temp.expr.spec]p21:
313        //   Default function arguments shall not be specified in a declaration
314        //   or a definition for one of the following explicit specializations:
315        //     - the explicit specialization of a function template;
316        //     - the explicit specialization of a member function template;
317        //     - the explicit specialization of a member function of a class
318        //       template where the class template specialization to which the
319        //       member function specialization belongs is implicitly
320        //       instantiated.
321        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
322          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
323          << New->getDeclName()
324          << NewParam->getDefaultArgRange();
325      } else if (New->getDeclContext()->isDependentContext()) {
326        // C++ [dcl.fct.default]p6 (DR217):
327        //   Default arguments for a member function of a class template shall
328        //   be specified on the initial declaration of the member function
329        //   within the class template.
330        //
331        // Reading the tea leaves a bit in DR217 and its reference to DR205
332        // leads me to the conclusion that one cannot add default function
333        // arguments for an out-of-line definition of a member function of a
334        // dependent type.
335        int WhichKind = 2;
336        if (CXXRecordDecl *Record
337              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
338          if (Record->getDescribedClassTemplate())
339            WhichKind = 0;
340          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
341            WhichKind = 1;
342          else
343            WhichKind = 2;
344        }
345
346        Diag(NewParam->getLocation(),
347             diag::err_param_default_argument_member_template_redecl)
348          << WhichKind
349          << NewParam->getDefaultArgRange();
350      }
351    }
352  }
353
354  if (CheckEquivalentExceptionSpec(
355          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
356          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
357    Invalid = true;
358
359  return Invalid;
360}
361
362/// CheckCXXDefaultArguments - Verify that the default arguments for a
363/// function declaration are well-formed according to C++
364/// [dcl.fct.default].
365void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
366  unsigned NumParams = FD->getNumParams();
367  unsigned p;
368
369  // Find first parameter with a default argument
370  for (p = 0; p < NumParams; ++p) {
371    ParmVarDecl *Param = FD->getParamDecl(p);
372    if (Param->hasDefaultArg())
373      break;
374  }
375
376  // C++ [dcl.fct.default]p4:
377  //   In a given function declaration, all parameters
378  //   subsequent to a parameter with a default argument shall
379  //   have default arguments supplied in this or previous
380  //   declarations. A default argument shall not be redefined
381  //   by a later declaration (not even to the same value).
382  unsigned LastMissingDefaultArg = 0;
383  for (; p < NumParams; ++p) {
384    ParmVarDecl *Param = FD->getParamDecl(p);
385    if (!Param->hasDefaultArg()) {
386      if (Param->isInvalidDecl())
387        /* We already complained about this parameter. */;
388      else if (Param->getIdentifier())
389        Diag(Param->getLocation(),
390             diag::err_param_default_argument_missing_name)
391          << Param->getIdentifier();
392      else
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing);
395
396      LastMissingDefaultArg = p;
397    }
398  }
399
400  if (LastMissingDefaultArg > 0) {
401    // Some default arguments were missing. Clear out all of the
402    // default arguments up to (and including) the last missing
403    // default argument, so that we leave the function parameters
404    // in a semantically valid state.
405    for (p = 0; p <= LastMissingDefaultArg; ++p) {
406      ParmVarDecl *Param = FD->getParamDecl(p);
407      if (Param->hasDefaultArg()) {
408        if (!Param->hasUnparsedDefaultArg())
409          Param->getDefaultArg()->Destroy(Context);
410        Param->setDefaultArg(0);
411      }
412    }
413  }
414}
415
416/// isCurrentClassName - Determine whether the identifier II is the
417/// name of the class type currently being defined. In the case of
418/// nested classes, this will only return true if II is the name of
419/// the innermost class.
420bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
421                              const CXXScopeSpec *SS) {
422  CXXRecordDecl *CurDecl;
423  if (SS && SS->isSet() && !SS->isInvalid()) {
424    DeclContext *DC = computeDeclContext(*SS, true);
425    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
426  } else
427    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
428
429  if (CurDecl)
430    return &II == CurDecl->getIdentifier();
431  else
432    return false;
433}
434
435/// \brief Check the validity of a C++ base class specifier.
436///
437/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
438/// and returns NULL otherwise.
439CXXBaseSpecifier *
440Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
441                         SourceRange SpecifierRange,
442                         bool Virtual, AccessSpecifier Access,
443                         QualType BaseType,
444                         SourceLocation BaseLoc) {
445  // C++ [class.union]p1:
446  //   A union shall not have base classes.
447  if (Class->isUnion()) {
448    Diag(Class->getLocation(), diag::err_base_clause_on_union)
449      << SpecifierRange;
450    return 0;
451  }
452
453  if (BaseType->isDependentType())
454    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
455                                Class->getTagKind() == RecordDecl::TK_class,
456                                Access, BaseType);
457
458  // Base specifiers must be record types.
459  if (!BaseType->isRecordType()) {
460    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
461    return 0;
462  }
463
464  // C++ [class.union]p1:
465  //   A union shall not be used as a base class.
466  if (BaseType->isUnionType()) {
467    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.derived]p2:
472  //   The class-name in a base-specifier shall not be an incompletely
473  //   defined class.
474  if (RequireCompleteType(BaseLoc, BaseType,
475                          PDiag(diag::err_incomplete_base_class)
476                            << SpecifierRange))
477    return 0;
478
479  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
480  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
481  assert(BaseDecl && "Record type has no declaration");
482  BaseDecl = BaseDecl->getDefinition(Context);
483  assert(BaseDecl && "Base type is not incomplete, but has no definition");
484  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
485  assert(CXXBaseDecl && "Base type is not a C++ type");
486  if (!CXXBaseDecl->isEmpty())
487    Class->setEmpty(false);
488  if (CXXBaseDecl->isPolymorphic())
489    Class->setPolymorphic(true);
490  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
491  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
492    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
493    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
494      << BaseType;
495    return 0;
496  }
497
498  // C++ [dcl.init.aggr]p1:
499  //   An aggregate is [...] a class with [...] no base classes [...].
500  Class->setAggregate(false);
501  Class->setPOD(false);
502
503  if (Virtual) {
504    // C++ [class.ctor]p5:
505    //   A constructor is trivial if its class has no virtual base classes.
506    Class->setHasTrivialConstructor(false);
507
508    // C++ [class.copy]p6:
509    //   A copy constructor is trivial if its class has no virtual base classes.
510    Class->setHasTrivialCopyConstructor(false);
511
512    // C++ [class.copy]p11:
513    //   A copy assignment operator is trivial if its class has no virtual
514    //   base classes.
515    Class->setHasTrivialCopyAssignment(false);
516
517    // C++0x [meta.unary.prop] is_empty:
518    //    T is a class type, but not a union type, with ... no virtual base
519    //    classes
520    Class->setEmpty(false);
521  } else {
522    // C++ [class.ctor]p5:
523    //   A constructor is trivial if all the direct base classes of its
524    //   class have trivial constructors.
525    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
526      Class->setHasTrivialConstructor(false);
527
528    // C++ [class.copy]p6:
529    //   A copy constructor is trivial if all the direct base classes of its
530    //   class have trivial copy constructors.
531    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
532      Class->setHasTrivialCopyConstructor(false);
533
534    // C++ [class.copy]p11:
535    //   A copy assignment operator is trivial if all the direct base classes
536    //   of its class have trivial copy assignment operators.
537    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
538      Class->setHasTrivialCopyAssignment(false);
539  }
540
541  // C++ [class.ctor]p3:
542  //   A destructor is trivial if all the direct base classes of its class
543  //   have trivial destructors.
544  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
545    Class->setHasTrivialDestructor(false);
546
547  // Create the base specifier.
548  // FIXME: Allocate via ASTContext?
549  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
550                              Class->getTagKind() == RecordDecl::TK_class,
551                              Access, BaseType);
552}
553
554/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
555/// one entry in the base class list of a class specifier, for
556/// example:
557///    class foo : public bar, virtual private baz {
558/// 'public bar' and 'virtual private baz' are each base-specifiers.
559Sema::BaseResult
560Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
561                         bool Virtual, AccessSpecifier Access,
562                         TypeTy *basetype, SourceLocation BaseLoc) {
563  if (!classdecl)
564    return true;
565
566  AdjustDeclIfTemplate(classdecl);
567  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
568  QualType BaseType = GetTypeFromParser(basetype);
569  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
570                                                      Virtual, Access,
571                                                      BaseType, BaseLoc))
572    return BaseSpec;
573
574  return true;
575}
576
577/// \brief Performs the actual work of attaching the given base class
578/// specifiers to a C++ class.
579bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
580                                unsigned NumBases) {
581 if (NumBases == 0)
582    return false;
583
584  // Used to keep track of which base types we have already seen, so
585  // that we can properly diagnose redundant direct base types. Note
586  // that the key is always the unqualified canonical type of the base
587  // class.
588  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
589
590  // Copy non-redundant base specifiers into permanent storage.
591  unsigned NumGoodBases = 0;
592  bool Invalid = false;
593  for (unsigned idx = 0; idx < NumBases; ++idx) {
594    QualType NewBaseType
595      = Context.getCanonicalType(Bases[idx]->getType());
596    NewBaseType = NewBaseType.getLocalUnqualifiedType();
597
598    if (KnownBaseTypes[NewBaseType]) {
599      // C++ [class.mi]p3:
600      //   A class shall not be specified as a direct base class of a
601      //   derived class more than once.
602      Diag(Bases[idx]->getSourceRange().getBegin(),
603           diag::err_duplicate_base_class)
604        << KnownBaseTypes[NewBaseType]->getType()
605        << Bases[idx]->getSourceRange();
606
607      // Delete the duplicate base class specifier; we're going to
608      // overwrite its pointer later.
609      Context.Deallocate(Bases[idx]);
610
611      Invalid = true;
612    } else {
613      // Okay, add this new base class.
614      KnownBaseTypes[NewBaseType] = Bases[idx];
615      Bases[NumGoodBases++] = Bases[idx];
616    }
617  }
618
619  // Attach the remaining base class specifiers to the derived class.
620  Class->setBases(Context, Bases, NumGoodBases);
621
622  // Delete the remaining (good) base class specifiers, since their
623  // data has been copied into the CXXRecordDecl.
624  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
625    Context.Deallocate(Bases[idx]);
626
627  return Invalid;
628}
629
630/// ActOnBaseSpecifiers - Attach the given base specifiers to the
631/// class, after checking whether there are any duplicate base
632/// classes.
633void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
634                               unsigned NumBases) {
635  if (!ClassDecl || !Bases || !NumBases)
636    return;
637
638  AdjustDeclIfTemplate(ClassDecl);
639  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
640                       (CXXBaseSpecifier**)(Bases), NumBases);
641}
642
643/// \brief Determine whether the type \p Derived is a C++ class that is
644/// derived from the type \p Base.
645bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
646  if (!getLangOptions().CPlusPlus)
647    return false;
648
649  const RecordType *DerivedRT = Derived->getAs<RecordType>();
650  if (!DerivedRT)
651    return false;
652
653  const RecordType *BaseRT = Base->getAs<RecordType>();
654  if (!BaseRT)
655    return false;
656
657  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
658  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
659  return DerivedRD->isDerivedFrom(BaseRD);
660}
661
662/// \brief Determine whether the type \p Derived is a C++ class that is
663/// derived from the type \p Base.
664bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
665  if (!getLangOptions().CPlusPlus)
666    return false;
667
668  const RecordType *DerivedRT = Derived->getAs<RecordType>();
669  if (!DerivedRT)
670    return false;
671
672  const RecordType *BaseRT = Base->getAs<RecordType>();
673  if (!BaseRT)
674    return false;
675
676  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
677  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
678  return DerivedRD->isDerivedFrom(BaseRD, Paths);
679}
680
681/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
682/// conversion (where Derived and Base are class types) is
683/// well-formed, meaning that the conversion is unambiguous (and
684/// that all of the base classes are accessible). Returns true
685/// and emits a diagnostic if the code is ill-formed, returns false
686/// otherwise. Loc is the location where this routine should point to
687/// if there is an error, and Range is the source range to highlight
688/// if there is an error.
689bool
690Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
691                                   unsigned InaccessibleBaseID,
692                                   unsigned AmbigiousBaseConvID,
693                                   SourceLocation Loc, SourceRange Range,
694                                   DeclarationName Name) {
695  // First, determine whether the path from Derived to Base is
696  // ambiguous. This is slightly more expensive than checking whether
697  // the Derived to Base conversion exists, because here we need to
698  // explore multiple paths to determine if there is an ambiguity.
699  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
700                     /*DetectVirtual=*/false);
701  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
702  assert(DerivationOkay &&
703         "Can only be used with a derived-to-base conversion");
704  (void)DerivationOkay;
705
706  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
707    if (InaccessibleBaseID == 0)
708      return false;
709    // Check that the base class can be accessed.
710    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
711                                Name);
712  }
713
714  // We know that the derived-to-base conversion is ambiguous, and
715  // we're going to produce a diagnostic. Perform the derived-to-base
716  // search just one more time to compute all of the possible paths so
717  // that we can print them out. This is more expensive than any of
718  // the previous derived-to-base checks we've done, but at this point
719  // performance isn't as much of an issue.
720  Paths.clear();
721  Paths.setRecordingPaths(true);
722  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
723  assert(StillOkay && "Can only be used with a derived-to-base conversion");
724  (void)StillOkay;
725
726  // Build up a textual representation of the ambiguous paths, e.g.,
727  // D -> B -> A, that will be used to illustrate the ambiguous
728  // conversions in the diagnostic. We only print one of the paths
729  // to each base class subobject.
730  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
731
732  Diag(Loc, AmbigiousBaseConvID)
733  << Derived << Base << PathDisplayStr << Range << Name;
734  return true;
735}
736
737bool
738Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
739                                   SourceLocation Loc, SourceRange Range,
740                                   bool IgnoreAccess) {
741  return CheckDerivedToBaseConversion(Derived, Base,
742                                      IgnoreAccess ? 0 :
743                                        diag::err_conv_to_inaccessible_base,
744                                      diag::err_ambiguous_derived_to_base_conv,
745                                      Loc, Range, DeclarationName());
746}
747
748
749/// @brief Builds a string representing ambiguous paths from a
750/// specific derived class to different subobjects of the same base
751/// class.
752///
753/// This function builds a string that can be used in error messages
754/// to show the different paths that one can take through the
755/// inheritance hierarchy to go from the derived class to different
756/// subobjects of a base class. The result looks something like this:
757/// @code
758/// struct D -> struct B -> struct A
759/// struct D -> struct C -> struct A
760/// @endcode
761std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
762  std::string PathDisplayStr;
763  std::set<unsigned> DisplayedPaths;
764  for (CXXBasePaths::paths_iterator Path = Paths.begin();
765       Path != Paths.end(); ++Path) {
766    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
767      // We haven't displayed a path to this particular base
768      // class subobject yet.
769      PathDisplayStr += "\n    ";
770      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
771      for (CXXBasePath::const_iterator Element = Path->begin();
772           Element != Path->end(); ++Element)
773        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
774    }
775  }
776
777  return PathDisplayStr;
778}
779
780//===----------------------------------------------------------------------===//
781// C++ class member Handling
782//===----------------------------------------------------------------------===//
783
784/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
785/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
786/// bitfield width if there is one and 'InitExpr' specifies the initializer if
787/// any.
788Sema::DeclPtrTy
789Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
790                               MultiTemplateParamsArg TemplateParameterLists,
791                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
792                               bool Deleted) {
793  const DeclSpec &DS = D.getDeclSpec();
794  DeclarationName Name = GetNameForDeclarator(D);
795  Expr *BitWidth = static_cast<Expr*>(BW);
796  Expr *Init = static_cast<Expr*>(InitExpr);
797  SourceLocation Loc = D.getIdentifierLoc();
798
799  bool isFunc = D.isFunctionDeclarator();
800
801  assert(!DS.isFriendSpecified());
802
803  // C++ 9.2p6: A member shall not be declared to have automatic storage
804  // duration (auto, register) or with the extern storage-class-specifier.
805  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
806  // data members and cannot be applied to names declared const or static,
807  // and cannot be applied to reference members.
808  switch (DS.getStorageClassSpec()) {
809    case DeclSpec::SCS_unspecified:
810    case DeclSpec::SCS_typedef:
811    case DeclSpec::SCS_static:
812      // FALL THROUGH.
813      break;
814    case DeclSpec::SCS_mutable:
815      if (isFunc) {
816        if (DS.getStorageClassSpecLoc().isValid())
817          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
818        else
819          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
820
821        // FIXME: It would be nicer if the keyword was ignored only for this
822        // declarator. Otherwise we could get follow-up errors.
823        D.getMutableDeclSpec().ClearStorageClassSpecs();
824      } else {
825        QualType T = GetTypeForDeclarator(D, S);
826        diag::kind err = static_cast<diag::kind>(0);
827        if (T->isReferenceType())
828          err = diag::err_mutable_reference;
829        else if (T.isConstQualified())
830          err = diag::err_mutable_const;
831        if (err != 0) {
832          if (DS.getStorageClassSpecLoc().isValid())
833            Diag(DS.getStorageClassSpecLoc(), err);
834          else
835            Diag(DS.getThreadSpecLoc(), err);
836          // FIXME: It would be nicer if the keyword was ignored only for this
837          // declarator. Otherwise we could get follow-up errors.
838          D.getMutableDeclSpec().ClearStorageClassSpecs();
839        }
840      }
841      break;
842    default:
843      if (DS.getStorageClassSpecLoc().isValid())
844        Diag(DS.getStorageClassSpecLoc(),
845             diag::err_storageclass_invalid_for_member);
846      else
847        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
848      D.getMutableDeclSpec().ClearStorageClassSpecs();
849  }
850
851  if (!isFunc &&
852      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
853      D.getNumTypeObjects() == 0) {
854    // Check also for this case:
855    //
856    // typedef int f();
857    // f a;
858    //
859    QualType TDType = GetTypeFromParser(DS.getTypeRep());
860    isFunc = TDType->isFunctionType();
861  }
862
863  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
864                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
865                      !isFunc);
866
867  Decl *Member;
868  if (isInstField) {
869    // FIXME: Check for template parameters!
870    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
871                         AS);
872    assert(Member && "HandleField never returns null");
873  } else {
874    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
875               .getAs<Decl>();
876    if (!Member) {
877      if (BitWidth) DeleteExpr(BitWidth);
878      return DeclPtrTy();
879    }
880
881    // Non-instance-fields can't have a bitfield.
882    if (BitWidth) {
883      if (Member->isInvalidDecl()) {
884        // don't emit another diagnostic.
885      } else if (isa<VarDecl>(Member)) {
886        // C++ 9.6p3: A bit-field shall not be a static member.
887        // "static member 'A' cannot be a bit-field"
888        Diag(Loc, diag::err_static_not_bitfield)
889          << Name << BitWidth->getSourceRange();
890      } else if (isa<TypedefDecl>(Member)) {
891        // "typedef member 'x' cannot be a bit-field"
892        Diag(Loc, diag::err_typedef_not_bitfield)
893          << Name << BitWidth->getSourceRange();
894      } else {
895        // A function typedef ("typedef int f(); f a;").
896        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
897        Diag(Loc, diag::err_not_integral_type_bitfield)
898          << Name << cast<ValueDecl>(Member)->getType()
899          << BitWidth->getSourceRange();
900      }
901
902      DeleteExpr(BitWidth);
903      BitWidth = 0;
904      Member->setInvalidDecl();
905    }
906
907    Member->setAccess(AS);
908
909    // If we have declared a member function template, set the access of the
910    // templated declaration as well.
911    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
912      FunTmpl->getTemplatedDecl()->setAccess(AS);
913  }
914
915  assert((Name || isInstField) && "No identifier for non-field ?");
916
917  if (Init)
918    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
919  if (Deleted) // FIXME: Source location is not very good.
920    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
921
922  if (isInstField) {
923    FieldCollector->Add(cast<FieldDecl>(Member));
924    return DeclPtrTy();
925  }
926  return DeclPtrTy::make(Member);
927}
928
929/// ActOnMemInitializer - Handle a C++ member initializer.
930Sema::MemInitResult
931Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
932                          Scope *S,
933                          const CXXScopeSpec &SS,
934                          IdentifierInfo *MemberOrBase,
935                          TypeTy *TemplateTypeTy,
936                          SourceLocation IdLoc,
937                          SourceLocation LParenLoc,
938                          ExprTy **Args, unsigned NumArgs,
939                          SourceLocation *CommaLocs,
940                          SourceLocation RParenLoc) {
941  if (!ConstructorD)
942    return true;
943
944  AdjustDeclIfTemplate(ConstructorD);
945
946  CXXConstructorDecl *Constructor
947    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
948  if (!Constructor) {
949    // The user wrote a constructor initializer on a function that is
950    // not a C++ constructor. Ignore the error for now, because we may
951    // have more member initializers coming; we'll diagnose it just
952    // once in ActOnMemInitializers.
953    return true;
954  }
955
956  CXXRecordDecl *ClassDecl = Constructor->getParent();
957
958  // C++ [class.base.init]p2:
959  //   Names in a mem-initializer-id are looked up in the scope of the
960  //   constructor’s class and, if not found in that scope, are looked
961  //   up in the scope containing the constructor’s
962  //   definition. [Note: if the constructor’s class contains a member
963  //   with the same name as a direct or virtual base class of the
964  //   class, a mem-initializer-id naming the member or base class and
965  //   composed of a single identifier refers to the class member. A
966  //   mem-initializer-id for the hidden base class may be specified
967  //   using a qualified name. ]
968  if (!SS.getScopeRep() && !TemplateTypeTy) {
969    // Look for a member, first.
970    FieldDecl *Member = 0;
971    DeclContext::lookup_result Result
972      = ClassDecl->lookup(MemberOrBase);
973    if (Result.first != Result.second)
974      Member = dyn_cast<FieldDecl>(*Result.first);
975
976    // FIXME: Handle members of an anonymous union.
977
978    if (Member)
979      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
980                                    RParenLoc);
981  }
982  // It didn't name a member, so see if it names a class.
983  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
984                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
985  if (!BaseTy)
986    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
987      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
988
989  QualType BaseType = GetTypeFromParser(BaseTy);
990
991  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
992                              RParenLoc, ClassDecl);
993}
994
995/// Checks an initializer expression for use of uninitialized fields, such as
996/// containing the field that is being initialized. Returns true if there is an
997/// uninitialized field was used an updates the SourceLocation parameter; false
998/// otherwise.
999static bool InitExprContainsUninitializedFields(const Stmt* S,
1000                                                const FieldDecl* LhsField,
1001                                                SourceLocation* L) {
1002  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1003  if (ME) {
1004    const NamedDecl* RhsField = ME->getMemberDecl();
1005    if (RhsField == LhsField) {
1006      // Initializing a field with itself. Throw a warning.
1007      // But wait; there are exceptions!
1008      // Exception #1:  The field may not belong to this record.
1009      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1010      const Expr* base = ME->getBase();
1011      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1012        // Even though the field matches, it does not belong to this record.
1013        return false;
1014      }
1015      // None of the exceptions triggered; return true to indicate an
1016      // uninitialized field was used.
1017      *L = ME->getMemberLoc();
1018      return true;
1019    }
1020  }
1021  bool found = false;
1022  for (Stmt::const_child_iterator it = S->child_begin();
1023       it != S->child_end() && found == false;
1024       ++it) {
1025    if (isa<CallExpr>(S)) {
1026      // Do not descend into function calls or constructors, as the use
1027      // of an uninitialized field may be valid. One would have to inspect
1028      // the contents of the function/ctor to determine if it is safe or not.
1029      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1030      // may be safe, depending on what the function/ctor does.
1031      continue;
1032    }
1033    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1034  }
1035  return found;
1036}
1037
1038Sema::MemInitResult
1039Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1040                             unsigned NumArgs, SourceLocation IdLoc,
1041                             SourceLocation RParenLoc) {
1042  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1043  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1044  ExprTemporaries.clear();
1045
1046  // Diagnose value-uses of fields to initialize themselves, e.g.
1047  //   foo(foo)
1048  // where foo is not also a parameter to the constructor.
1049  // TODO: implement -Wuninitialized and fold this into that framework.
1050  for (unsigned i = 0; i < NumArgs; ++i) {
1051    SourceLocation L;
1052    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1053      // FIXME: Return true in the case when other fields are used before being
1054      // uninitialized. For example, let this field be the i'th field. When
1055      // initializing the i'th field, throw a warning if any of the >= i'th
1056      // fields are used, as they are not yet initialized.
1057      // Right now we are only handling the case where the i'th field uses
1058      // itself in its initializer.
1059      Diag(L, diag::warn_field_is_uninit);
1060    }
1061  }
1062
1063  bool HasDependentArg = false;
1064  for (unsigned i = 0; i < NumArgs; i++)
1065    HasDependentArg |= Args[i]->isTypeDependent();
1066
1067  CXXConstructorDecl *C = 0;
1068  QualType FieldType = Member->getType();
1069  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1070    FieldType = Array->getElementType();
1071  if (FieldType->isDependentType()) {
1072    // Can't check init for dependent type.
1073  } else if (FieldType->isRecordType()) {
1074    // Member is a record (struct/union/class), so pass the initializer
1075    // arguments down to the record's constructor.
1076    if (!HasDependentArg) {
1077      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1078
1079      C = PerformInitializationByConstructor(FieldType,
1080                                             MultiExprArg(*this,
1081                                                          (void**)Args,
1082                                                          NumArgs),
1083                                             IdLoc,
1084                                             SourceRange(IdLoc, RParenLoc),
1085                                             Member->getDeclName(), IK_Direct,
1086                                             ConstructorArgs);
1087
1088      if (C) {
1089        // Take over the constructor arguments as our own.
1090        NumArgs = ConstructorArgs.size();
1091        Args = (Expr **)ConstructorArgs.take();
1092      }
1093    }
1094  } else if (NumArgs != 1 && NumArgs != 0) {
1095    // The member type is not a record type (or an array of record
1096    // types), so it can be only be default- or copy-initialized.
1097    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1098                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1099  } else if (!HasDependentArg) {
1100    Expr *NewExp;
1101    if (NumArgs == 0) {
1102      if (FieldType->isReferenceType()) {
1103        Diag(IdLoc, diag::err_null_intialized_reference_member)
1104              << Member->getDeclName();
1105        return Diag(Member->getLocation(), diag::note_declared_at);
1106      }
1107      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1108      NumArgs = 1;
1109    }
1110    else
1111      NewExp = (Expr*)Args[0];
1112    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1113      return true;
1114    Args[0] = NewExp;
1115  }
1116
1117  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1118  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1119  ExprTemporaries.clear();
1120
1121  // FIXME: Perform direct initialization of the member.
1122  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1123                                                  NumArgs, C, IdLoc, RParenLoc);
1124}
1125
1126Sema::MemInitResult
1127Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1128                           unsigned NumArgs, SourceLocation IdLoc,
1129                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1130  bool HasDependentArg = false;
1131  for (unsigned i = 0; i < NumArgs; i++)
1132    HasDependentArg |= Args[i]->isTypeDependent();
1133
1134  if (!BaseType->isDependentType()) {
1135    if (!BaseType->isRecordType())
1136      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1137        << BaseType << SourceRange(IdLoc, RParenLoc);
1138
1139    // C++ [class.base.init]p2:
1140    //   [...] Unless the mem-initializer-id names a nonstatic data
1141    //   member of the constructor’s class or a direct or virtual base
1142    //   of that class, the mem-initializer is ill-formed. A
1143    //   mem-initializer-list can initialize a base class using any
1144    //   name that denotes that base class type.
1145
1146    // First, check for a direct base class.
1147    const CXXBaseSpecifier *DirectBaseSpec = 0;
1148    for (CXXRecordDecl::base_class_const_iterator Base =
1149         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1150      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1151        // We found a direct base of this type. That's what we're
1152        // initializing.
1153        DirectBaseSpec = &*Base;
1154        break;
1155      }
1156    }
1157
1158    // Check for a virtual base class.
1159    // FIXME: We might be able to short-circuit this if we know in advance that
1160    // there are no virtual bases.
1161    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1162    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1163      // We haven't found a base yet; search the class hierarchy for a
1164      // virtual base class.
1165      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1166                         /*DetectVirtual=*/false);
1167      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1168        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1169             Path != Paths.end(); ++Path) {
1170          if (Path->back().Base->isVirtual()) {
1171            VirtualBaseSpec = Path->back().Base;
1172            break;
1173          }
1174        }
1175      }
1176    }
1177
1178    // C++ [base.class.init]p2:
1179    //   If a mem-initializer-id is ambiguous because it designates both
1180    //   a direct non-virtual base class and an inherited virtual base
1181    //   class, the mem-initializer is ill-formed.
1182    if (DirectBaseSpec && VirtualBaseSpec)
1183      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1184        << BaseType << SourceRange(IdLoc, RParenLoc);
1185    // C++ [base.class.init]p2:
1186    // Unless the mem-initializer-id names a nonstatic data membeer of the
1187    // constructor's class ot a direst or virtual base of that class, the
1188    // mem-initializer is ill-formed.
1189    if (!DirectBaseSpec && !VirtualBaseSpec)
1190      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1191      << BaseType << ClassDecl->getNameAsCString()
1192      << SourceRange(IdLoc, RParenLoc);
1193  }
1194
1195  CXXConstructorDecl *C = 0;
1196  if (!BaseType->isDependentType() && !HasDependentArg) {
1197    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1198                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1199    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1200
1201    C = PerformInitializationByConstructor(BaseType,
1202                                           MultiExprArg(*this,
1203                                                        (void**)Args, NumArgs),
1204                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1205                                           Name, IK_Direct,
1206                                           ConstructorArgs);
1207    if (C) {
1208      // Take over the constructor arguments as our own.
1209      NumArgs = ConstructorArgs.size();
1210      Args = (Expr **)ConstructorArgs.take();
1211    }
1212  }
1213
1214  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1215  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1216  ExprTemporaries.clear();
1217
1218  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1219                                                  NumArgs, C, IdLoc, RParenLoc);
1220}
1221
1222bool
1223Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1224                              CXXBaseOrMemberInitializer **Initializers,
1225                              unsigned NumInitializers,
1226                              bool IsImplicitConstructor) {
1227  // We need to build the initializer AST according to order of construction
1228  // and not what user specified in the Initializers list.
1229  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1230  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1231  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1232  bool HasDependentBaseInit = false;
1233  bool HadError = false;
1234
1235  for (unsigned i = 0; i < NumInitializers; i++) {
1236    CXXBaseOrMemberInitializer *Member = Initializers[i];
1237    if (Member->isBaseInitializer()) {
1238      if (Member->getBaseClass()->isDependentType())
1239        HasDependentBaseInit = true;
1240      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1241    } else {
1242      AllBaseFields[Member->getMember()] = Member;
1243    }
1244  }
1245
1246  if (HasDependentBaseInit) {
1247    // FIXME. This does not preserve the ordering of the initializers.
1248    // Try (with -Wreorder)
1249    // template<class X> struct A {};
1250    // template<class X> struct B : A<X> {
1251    //   B() : x1(10), A<X>() {}
1252    //   int x1;
1253    // };
1254    // B<int> x;
1255    // On seeing one dependent type, we should essentially exit this routine
1256    // while preserving user-declared initializer list. When this routine is
1257    // called during instantiatiation process, this routine will rebuild the
1258    // ordered initializer list correctly.
1259
1260    // If we have a dependent base initialization, we can't determine the
1261    // association between initializers and bases; just dump the known
1262    // initializers into the list, and don't try to deal with other bases.
1263    for (unsigned i = 0; i < NumInitializers; i++) {
1264      CXXBaseOrMemberInitializer *Member = Initializers[i];
1265      if (Member->isBaseInitializer())
1266        AllToInit.push_back(Member);
1267    }
1268  } else {
1269    // Push virtual bases before others.
1270    for (CXXRecordDecl::base_class_iterator VBase =
1271         ClassDecl->vbases_begin(),
1272         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1273      if (VBase->getType()->isDependentType())
1274        continue;
1275      if (CXXBaseOrMemberInitializer *Value
1276            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1277        AllToInit.push_back(Value);
1278      }
1279      else {
1280        CXXRecordDecl *VBaseDecl =
1281        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1282        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1283        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1284        if (!Ctor) {
1285          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1286            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1287            << 0 << VBase->getType();
1288          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1289            << Context.getTagDeclType(VBaseDecl);
1290          HadError = true;
1291          continue;
1292        }
1293
1294        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1295        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1296                                    Constructor->getLocation(), CtorArgs))
1297          continue;
1298
1299        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1300
1301        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1302        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1303        ExprTemporaries.clear();
1304        CXXBaseOrMemberInitializer *Member =
1305          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1306                                                   CtorArgs.takeAs<Expr>(),
1307                                                   CtorArgs.size(), Ctor,
1308                                                   SourceLocation(),
1309                                                   SourceLocation());
1310        AllToInit.push_back(Member);
1311      }
1312    }
1313
1314    for (CXXRecordDecl::base_class_iterator Base =
1315         ClassDecl->bases_begin(),
1316         E = ClassDecl->bases_end(); Base != E; ++Base) {
1317      // Virtuals are in the virtual base list and already constructed.
1318      if (Base->isVirtual())
1319        continue;
1320      // Skip dependent types.
1321      if (Base->getType()->isDependentType())
1322        continue;
1323      if (CXXBaseOrMemberInitializer *Value
1324            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1325        AllToInit.push_back(Value);
1326      }
1327      else {
1328        CXXRecordDecl *BaseDecl =
1329          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1330        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1331         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1332        if (!Ctor) {
1333          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1334            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1335            << 0 << Base->getType();
1336          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1337            << Context.getTagDeclType(BaseDecl);
1338          HadError = true;
1339          continue;
1340        }
1341
1342        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1343        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1344                                     Constructor->getLocation(), CtorArgs))
1345          continue;
1346
1347        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1348
1349        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1350        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1351        ExprTemporaries.clear();
1352        CXXBaseOrMemberInitializer *Member =
1353          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1354                                                   CtorArgs.takeAs<Expr>(),
1355                                                   CtorArgs.size(), Ctor,
1356                                                   SourceLocation(),
1357                                                   SourceLocation());
1358        AllToInit.push_back(Member);
1359      }
1360    }
1361  }
1362
1363  // non-static data members.
1364  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1365       E = ClassDecl->field_end(); Field != E; ++Field) {
1366    if ((*Field)->isAnonymousStructOrUnion()) {
1367      if (const RecordType *FieldClassType =
1368          Field->getType()->getAs<RecordType>()) {
1369        CXXRecordDecl *FieldClassDecl
1370          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1371        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1372            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1373          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1374            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1375            // set to the anonymous union data member used in the initializer
1376            // list.
1377            Value->setMember(*Field);
1378            Value->setAnonUnionMember(*FA);
1379            AllToInit.push_back(Value);
1380            break;
1381          }
1382        }
1383      }
1384      continue;
1385    }
1386    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1387      AllToInit.push_back(Value);
1388      continue;
1389    }
1390
1391    if ((*Field)->getType()->isDependentType())
1392      continue;
1393
1394    QualType FT = Context.getBaseElementType((*Field)->getType());
1395    if (const RecordType* RT = FT->getAs<RecordType>()) {
1396      CXXConstructorDecl *Ctor =
1397        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1398      if (!Ctor) {
1399        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1400          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1401          << 1 << (*Field)->getDeclName();
1402        Diag(Field->getLocation(), diag::note_field_decl);
1403        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1404          << Context.getTagDeclType(RT->getDecl());
1405        HadError = true;
1406        continue;
1407      }
1408
1409      if (FT.isConstQualified() && Ctor->isTrivial()) {
1410        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1411          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1412          << 1 << (*Field)->getDeclName();
1413        Diag((*Field)->getLocation(), diag::note_declared_at);
1414        HadError = true;
1415      }
1416
1417      // Don't create initializers for trivial constructors, since they don't
1418      // actually need to be run.
1419      if (Ctor->isTrivial())
1420        continue;
1421
1422      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1423      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1424                                  Constructor->getLocation(), CtorArgs))
1425        continue;
1426
1427      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1428      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1429      ExprTemporaries.clear();
1430      CXXBaseOrMemberInitializer *Member =
1431        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1432                                                 CtorArgs.size(), Ctor,
1433                                                 SourceLocation(),
1434                                                 SourceLocation());
1435
1436      AllToInit.push_back(Member);
1437      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1438    }
1439    else if (FT->isReferenceType()) {
1440      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1441        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1442        << 0 << (*Field)->getDeclName();
1443      Diag((*Field)->getLocation(), diag::note_declared_at);
1444      HadError = true;
1445    }
1446    else if (FT.isConstQualified()) {
1447      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1448        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1449        << 1 << (*Field)->getDeclName();
1450      Diag((*Field)->getLocation(), diag::note_declared_at);
1451      HadError = true;
1452    }
1453  }
1454
1455  NumInitializers = AllToInit.size();
1456  if (NumInitializers > 0) {
1457    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1458    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1459      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1460
1461    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1462    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1463      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1464  }
1465
1466  return HadError;
1467}
1468
1469static void *GetKeyForTopLevelField(FieldDecl *Field) {
1470  // For anonymous unions, use the class declaration as the key.
1471  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1472    if (RT->getDecl()->isAnonymousStructOrUnion())
1473      return static_cast<void *>(RT->getDecl());
1474  }
1475  return static_cast<void *>(Field);
1476}
1477
1478static void *GetKeyForBase(QualType BaseType) {
1479  if (const RecordType *RT = BaseType->getAs<RecordType>())
1480    return (void *)RT;
1481
1482  assert(0 && "Unexpected base type!");
1483  return 0;
1484}
1485
1486static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1487                             bool MemberMaybeAnon = false) {
1488  // For fields injected into the class via declaration of an anonymous union,
1489  // use its anonymous union class declaration as the unique key.
1490  if (Member->isMemberInitializer()) {
1491    FieldDecl *Field = Member->getMember();
1492
1493    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1494    // data member of the class. Data member used in the initializer list is
1495    // in AnonUnionMember field.
1496    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1497      Field = Member->getAnonUnionMember();
1498    if (Field->getDeclContext()->isRecord()) {
1499      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1500      if (RD->isAnonymousStructOrUnion())
1501        return static_cast<void *>(RD);
1502    }
1503    return static_cast<void *>(Field);
1504  }
1505
1506  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1507}
1508
1509/// ActOnMemInitializers - Handle the member initializers for a constructor.
1510void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1511                                SourceLocation ColonLoc,
1512                                MemInitTy **MemInits, unsigned NumMemInits) {
1513  if (!ConstructorDecl)
1514    return;
1515
1516  AdjustDeclIfTemplate(ConstructorDecl);
1517
1518  CXXConstructorDecl *Constructor
1519    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1520
1521  if (!Constructor) {
1522    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1523    return;
1524  }
1525
1526  if (!Constructor->isDependentContext()) {
1527    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1528    bool err = false;
1529    for (unsigned i = 0; i < NumMemInits; i++) {
1530      CXXBaseOrMemberInitializer *Member =
1531        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1532      void *KeyToMember = GetKeyForMember(Member);
1533      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1534      if (!PrevMember) {
1535        PrevMember = Member;
1536        continue;
1537      }
1538      if (FieldDecl *Field = Member->getMember())
1539        Diag(Member->getSourceLocation(),
1540             diag::error_multiple_mem_initialization)
1541        << Field->getNameAsString();
1542      else {
1543        Type *BaseClass = Member->getBaseClass();
1544        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1545        Diag(Member->getSourceLocation(),
1546             diag::error_multiple_base_initialization)
1547          << QualType(BaseClass, 0);
1548      }
1549      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1550        << 0;
1551      err = true;
1552    }
1553
1554    if (err)
1555      return;
1556  }
1557
1558  SetBaseOrMemberInitializers(Constructor,
1559                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1560                      NumMemInits, false);
1561
1562  if (Constructor->isDependentContext())
1563    return;
1564
1565  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1566      Diagnostic::Ignored &&
1567      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1568      Diagnostic::Ignored)
1569    return;
1570
1571  // Also issue warning if order of ctor-initializer list does not match order
1572  // of 1) base class declarations and 2) order of non-static data members.
1573  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1574
1575  CXXRecordDecl *ClassDecl
1576    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1577  // Push virtual bases before others.
1578  for (CXXRecordDecl::base_class_iterator VBase =
1579       ClassDecl->vbases_begin(),
1580       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1581    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1582
1583  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1584       E = ClassDecl->bases_end(); Base != E; ++Base) {
1585    // Virtuals are alread in the virtual base list and are constructed
1586    // first.
1587    if (Base->isVirtual())
1588      continue;
1589    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1590  }
1591
1592  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1593       E = ClassDecl->field_end(); Field != E; ++Field)
1594    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1595
1596  int Last = AllBaseOrMembers.size();
1597  int curIndex = 0;
1598  CXXBaseOrMemberInitializer *PrevMember = 0;
1599  for (unsigned i = 0; i < NumMemInits; i++) {
1600    CXXBaseOrMemberInitializer *Member =
1601      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1602    void *MemberInCtorList = GetKeyForMember(Member, true);
1603
1604    for (; curIndex < Last; curIndex++)
1605      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1606        break;
1607    if (curIndex == Last) {
1608      assert(PrevMember && "Member not in member list?!");
1609      // Initializer as specified in ctor-initializer list is out of order.
1610      // Issue a warning diagnostic.
1611      if (PrevMember->isBaseInitializer()) {
1612        // Diagnostics is for an initialized base class.
1613        Type *BaseClass = PrevMember->getBaseClass();
1614        Diag(PrevMember->getSourceLocation(),
1615             diag::warn_base_initialized)
1616          << QualType(BaseClass, 0);
1617      } else {
1618        FieldDecl *Field = PrevMember->getMember();
1619        Diag(PrevMember->getSourceLocation(),
1620             diag::warn_field_initialized)
1621          << Field->getNameAsString();
1622      }
1623      // Also the note!
1624      if (FieldDecl *Field = Member->getMember())
1625        Diag(Member->getSourceLocation(),
1626             diag::note_fieldorbase_initialized_here) << 0
1627          << Field->getNameAsString();
1628      else {
1629        Type *BaseClass = Member->getBaseClass();
1630        Diag(Member->getSourceLocation(),
1631             diag::note_fieldorbase_initialized_here) << 1
1632          << QualType(BaseClass, 0);
1633      }
1634      for (curIndex = 0; curIndex < Last; curIndex++)
1635        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1636          break;
1637    }
1638    PrevMember = Member;
1639  }
1640}
1641
1642void
1643Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1644  // Ignore dependent destructors.
1645  if (Destructor->isDependentContext())
1646    return;
1647
1648  CXXRecordDecl *ClassDecl = Destructor->getParent();
1649
1650  // Non-static data members.
1651  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1652       E = ClassDecl->field_end(); I != E; ++I) {
1653    FieldDecl *Field = *I;
1654
1655    QualType FieldType = Context.getBaseElementType(Field->getType());
1656
1657    const RecordType* RT = FieldType->getAs<RecordType>();
1658    if (!RT)
1659      continue;
1660
1661    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1662    if (FieldClassDecl->hasTrivialDestructor())
1663      continue;
1664
1665    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1666    MarkDeclarationReferenced(Destructor->getLocation(),
1667                              const_cast<CXXDestructorDecl*>(Dtor));
1668  }
1669
1670  // Bases.
1671  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1672       E = ClassDecl->bases_end(); Base != E; ++Base) {
1673    // Ignore virtual bases.
1674    if (Base->isVirtual())
1675      continue;
1676
1677    // Ignore trivial destructors.
1678    CXXRecordDecl *BaseClassDecl
1679      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1680    if (BaseClassDecl->hasTrivialDestructor())
1681      continue;
1682
1683    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1684    MarkDeclarationReferenced(Destructor->getLocation(),
1685                              const_cast<CXXDestructorDecl*>(Dtor));
1686  }
1687
1688  // Virtual bases.
1689  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1690       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1691    // Ignore trivial destructors.
1692    CXXRecordDecl *BaseClassDecl
1693      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1694    if (BaseClassDecl->hasTrivialDestructor())
1695      continue;
1696
1697    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1698    MarkDeclarationReferenced(Destructor->getLocation(),
1699                              const_cast<CXXDestructorDecl*>(Dtor));
1700  }
1701}
1702
1703void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1704  if (!CDtorDecl)
1705    return;
1706
1707  AdjustDeclIfTemplate(CDtorDecl);
1708
1709  if (CXXConstructorDecl *Constructor
1710      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1711    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1712}
1713
1714namespace {
1715  /// PureVirtualMethodCollector - traverses a class and its superclasses
1716  /// and determines if it has any pure virtual methods.
1717  class PureVirtualMethodCollector {
1718    ASTContext &Context;
1719
1720  public:
1721    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1722
1723  private:
1724    MethodList Methods;
1725
1726    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1727
1728  public:
1729    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1730      : Context(Ctx) {
1731
1732      MethodList List;
1733      Collect(RD, List);
1734
1735      // Copy the temporary list to methods, and make sure to ignore any
1736      // null entries.
1737      for (size_t i = 0, e = List.size(); i != e; ++i) {
1738        if (List[i])
1739          Methods.push_back(List[i]);
1740      }
1741    }
1742
1743    bool empty() const { return Methods.empty(); }
1744
1745    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1746    MethodList::const_iterator methods_end() { return Methods.end(); }
1747  };
1748
1749  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1750                                           MethodList& Methods) {
1751    // First, collect the pure virtual methods for the base classes.
1752    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1753         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1754      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1755        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1756        if (BaseDecl && BaseDecl->isAbstract())
1757          Collect(BaseDecl, Methods);
1758      }
1759    }
1760
1761    // Next, zero out any pure virtual methods that this class overrides.
1762    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1763
1764    MethodSetTy OverriddenMethods;
1765    size_t MethodsSize = Methods.size();
1766
1767    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1768         i != e; ++i) {
1769      // Traverse the record, looking for methods.
1770      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1771        // If the method is pure virtual, add it to the methods vector.
1772        if (MD->isPure())
1773          Methods.push_back(MD);
1774
1775        // Record all the overridden methods in our set.
1776        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1777             E = MD->end_overridden_methods(); I != E; ++I) {
1778          // Keep track of the overridden methods.
1779          OverriddenMethods.insert(*I);
1780        }
1781      }
1782    }
1783
1784    // Now go through the methods and zero out all the ones we know are
1785    // overridden.
1786    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1787      if (OverriddenMethods.count(Methods[i]))
1788        Methods[i] = 0;
1789    }
1790
1791  }
1792}
1793
1794
1795bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1796                                  unsigned DiagID, AbstractDiagSelID SelID,
1797                                  const CXXRecordDecl *CurrentRD) {
1798  if (SelID == -1)
1799    return RequireNonAbstractType(Loc, T,
1800                                  PDiag(DiagID), CurrentRD);
1801  else
1802    return RequireNonAbstractType(Loc, T,
1803                                  PDiag(DiagID) << SelID, CurrentRD);
1804}
1805
1806bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1807                                  const PartialDiagnostic &PD,
1808                                  const CXXRecordDecl *CurrentRD) {
1809  if (!getLangOptions().CPlusPlus)
1810    return false;
1811
1812  if (const ArrayType *AT = Context.getAsArrayType(T))
1813    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1814                                  CurrentRD);
1815
1816  if (const PointerType *PT = T->getAs<PointerType>()) {
1817    // Find the innermost pointer type.
1818    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1819      PT = T;
1820
1821    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1822      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1823  }
1824
1825  const RecordType *RT = T->getAs<RecordType>();
1826  if (!RT)
1827    return false;
1828
1829  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1830  if (!RD)
1831    return false;
1832
1833  if (CurrentRD && CurrentRD != RD)
1834    return false;
1835
1836  if (!RD->isAbstract())
1837    return false;
1838
1839  Diag(Loc, PD) << RD->getDeclName();
1840
1841  // Check if we've already emitted the list of pure virtual functions for this
1842  // class.
1843  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1844    return true;
1845
1846  PureVirtualMethodCollector Collector(Context, RD);
1847
1848  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1849       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1850    const CXXMethodDecl *MD = *I;
1851
1852    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1853      MD->getDeclName();
1854  }
1855
1856  if (!PureVirtualClassDiagSet)
1857    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1858  PureVirtualClassDiagSet->insert(RD);
1859
1860  return true;
1861}
1862
1863namespace {
1864  class AbstractClassUsageDiagnoser
1865    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1866    Sema &SemaRef;
1867    CXXRecordDecl *AbstractClass;
1868
1869    bool VisitDeclContext(const DeclContext *DC) {
1870      bool Invalid = false;
1871
1872      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1873           E = DC->decls_end(); I != E; ++I)
1874        Invalid |= Visit(*I);
1875
1876      return Invalid;
1877    }
1878
1879  public:
1880    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1881      : SemaRef(SemaRef), AbstractClass(ac) {
1882        Visit(SemaRef.Context.getTranslationUnitDecl());
1883    }
1884
1885    bool VisitFunctionDecl(const FunctionDecl *FD) {
1886      if (FD->isThisDeclarationADefinition()) {
1887        // No need to do the check if we're in a definition, because it requires
1888        // that the return/param types are complete.
1889        // because that requires
1890        return VisitDeclContext(FD);
1891      }
1892
1893      // Check the return type.
1894      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1895      bool Invalid =
1896        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1897                                       diag::err_abstract_type_in_decl,
1898                                       Sema::AbstractReturnType,
1899                                       AbstractClass);
1900
1901      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1902           E = FD->param_end(); I != E; ++I) {
1903        const ParmVarDecl *VD = *I;
1904        Invalid |=
1905          SemaRef.RequireNonAbstractType(VD->getLocation(),
1906                                         VD->getOriginalType(),
1907                                         diag::err_abstract_type_in_decl,
1908                                         Sema::AbstractParamType,
1909                                         AbstractClass);
1910      }
1911
1912      return Invalid;
1913    }
1914
1915    bool VisitDecl(const Decl* D) {
1916      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1917        return VisitDeclContext(DC);
1918
1919      return false;
1920    }
1921  };
1922}
1923
1924void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1925                                             DeclPtrTy TagDecl,
1926                                             SourceLocation LBrac,
1927                                             SourceLocation RBrac) {
1928  if (!TagDecl)
1929    return;
1930
1931  AdjustDeclIfTemplate(TagDecl);
1932  ActOnFields(S, RLoc, TagDecl,
1933              (DeclPtrTy*)FieldCollector->getCurFields(),
1934              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1935
1936  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1937  if (!RD->isAbstract()) {
1938    // Collect all the pure virtual methods and see if this is an abstract
1939    // class after all.
1940    PureVirtualMethodCollector Collector(Context, RD);
1941    if (!Collector.empty())
1942      RD->setAbstract(true);
1943  }
1944
1945  if (RD->isAbstract())
1946    (void)AbstractClassUsageDiagnoser(*this, RD);
1947
1948  if (!RD->isDependentType() && !RD->isInvalidDecl())
1949    AddImplicitlyDeclaredMembersToClass(RD);
1950}
1951
1952/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1953/// special functions, such as the default constructor, copy
1954/// constructor, or destructor, to the given C++ class (C++
1955/// [special]p1).  This routine can only be executed just before the
1956/// definition of the class is complete.
1957void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1958  CanQualType ClassType
1959    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1960
1961  // FIXME: Implicit declarations have exception specifications, which are
1962  // the union of the specifications of the implicitly called functions.
1963
1964  if (!ClassDecl->hasUserDeclaredConstructor()) {
1965    // C++ [class.ctor]p5:
1966    //   A default constructor for a class X is a constructor of class X
1967    //   that can be called without an argument. If there is no
1968    //   user-declared constructor for class X, a default constructor is
1969    //   implicitly declared. An implicitly-declared default constructor
1970    //   is an inline public member of its class.
1971    DeclarationName Name
1972      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1973    CXXConstructorDecl *DefaultCon =
1974      CXXConstructorDecl::Create(Context, ClassDecl,
1975                                 ClassDecl->getLocation(), Name,
1976                                 Context.getFunctionType(Context.VoidTy,
1977                                                         0, 0, false, 0),
1978                                 /*DInfo=*/0,
1979                                 /*isExplicit=*/false,
1980                                 /*isInline=*/true,
1981                                 /*isImplicitlyDeclared=*/true);
1982    DefaultCon->setAccess(AS_public);
1983    DefaultCon->setImplicit();
1984    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1985    ClassDecl->addDecl(DefaultCon);
1986  }
1987
1988  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1989    // C++ [class.copy]p4:
1990    //   If the class definition does not explicitly declare a copy
1991    //   constructor, one is declared implicitly.
1992
1993    // C++ [class.copy]p5:
1994    //   The implicitly-declared copy constructor for a class X will
1995    //   have the form
1996    //
1997    //       X::X(const X&)
1998    //
1999    //   if
2000    bool HasConstCopyConstructor = true;
2001
2002    //     -- each direct or virtual base class B of X has a copy
2003    //        constructor whose first parameter is of type const B& or
2004    //        const volatile B&, and
2005    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2006         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2007      const CXXRecordDecl *BaseClassDecl
2008        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2009      HasConstCopyConstructor
2010        = BaseClassDecl->hasConstCopyConstructor(Context);
2011    }
2012
2013    //     -- for all the nonstatic data members of X that are of a
2014    //        class type M (or array thereof), each such class type
2015    //        has a copy constructor whose first parameter is of type
2016    //        const M& or const volatile M&.
2017    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2018         HasConstCopyConstructor && Field != ClassDecl->field_end();
2019         ++Field) {
2020      QualType FieldType = (*Field)->getType();
2021      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2022        FieldType = Array->getElementType();
2023      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2024        const CXXRecordDecl *FieldClassDecl
2025          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2026        HasConstCopyConstructor
2027          = FieldClassDecl->hasConstCopyConstructor(Context);
2028      }
2029    }
2030
2031    //   Otherwise, the implicitly declared copy constructor will have
2032    //   the form
2033    //
2034    //       X::X(X&)
2035    QualType ArgType = ClassType;
2036    if (HasConstCopyConstructor)
2037      ArgType = ArgType.withConst();
2038    ArgType = Context.getLValueReferenceType(ArgType);
2039
2040    //   An implicitly-declared copy constructor is an inline public
2041    //   member of its class.
2042    DeclarationName Name
2043      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2044    CXXConstructorDecl *CopyConstructor
2045      = CXXConstructorDecl::Create(Context, ClassDecl,
2046                                   ClassDecl->getLocation(), Name,
2047                                   Context.getFunctionType(Context.VoidTy,
2048                                                           &ArgType, 1,
2049                                                           false, 0),
2050                                   /*DInfo=*/0,
2051                                   /*isExplicit=*/false,
2052                                   /*isInline=*/true,
2053                                   /*isImplicitlyDeclared=*/true);
2054    CopyConstructor->setAccess(AS_public);
2055    CopyConstructor->setImplicit();
2056    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2057
2058    // Add the parameter to the constructor.
2059    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2060                                                 ClassDecl->getLocation(),
2061                                                 /*IdentifierInfo=*/0,
2062                                                 ArgType, /*DInfo=*/0,
2063                                                 VarDecl::None, 0);
2064    CopyConstructor->setParams(Context, &FromParam, 1);
2065    ClassDecl->addDecl(CopyConstructor);
2066  }
2067
2068  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2069    // Note: The following rules are largely analoguous to the copy
2070    // constructor rules. Note that virtual bases are not taken into account
2071    // for determining the argument type of the operator. Note also that
2072    // operators taking an object instead of a reference are allowed.
2073    //
2074    // C++ [class.copy]p10:
2075    //   If the class definition does not explicitly declare a copy
2076    //   assignment operator, one is declared implicitly.
2077    //   The implicitly-defined copy assignment operator for a class X
2078    //   will have the form
2079    //
2080    //       X& X::operator=(const X&)
2081    //
2082    //   if
2083    bool HasConstCopyAssignment = true;
2084
2085    //       -- each direct base class B of X has a copy assignment operator
2086    //          whose parameter is of type const B&, const volatile B& or B,
2087    //          and
2088    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2089         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2090      assert(!Base->getType()->isDependentType() &&
2091            "Cannot generate implicit members for class with dependent bases.");
2092      const CXXRecordDecl *BaseClassDecl
2093        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2094      const CXXMethodDecl *MD = 0;
2095      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2096                                                                     MD);
2097    }
2098
2099    //       -- for all the nonstatic data members of X that are of a class
2100    //          type M (or array thereof), each such class type has a copy
2101    //          assignment operator whose parameter is of type const M&,
2102    //          const volatile M& or M.
2103    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2104         HasConstCopyAssignment && Field != ClassDecl->field_end();
2105         ++Field) {
2106      QualType FieldType = (*Field)->getType();
2107      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2108        FieldType = Array->getElementType();
2109      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2110        const CXXRecordDecl *FieldClassDecl
2111          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2112        const CXXMethodDecl *MD = 0;
2113        HasConstCopyAssignment
2114          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2115      }
2116    }
2117
2118    //   Otherwise, the implicitly declared copy assignment operator will
2119    //   have the form
2120    //
2121    //       X& X::operator=(X&)
2122    QualType ArgType = ClassType;
2123    QualType RetType = Context.getLValueReferenceType(ArgType);
2124    if (HasConstCopyAssignment)
2125      ArgType = ArgType.withConst();
2126    ArgType = Context.getLValueReferenceType(ArgType);
2127
2128    //   An implicitly-declared copy assignment operator is an inline public
2129    //   member of its class.
2130    DeclarationName Name =
2131      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2132    CXXMethodDecl *CopyAssignment =
2133      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2134                            Context.getFunctionType(RetType, &ArgType, 1,
2135                                                    false, 0),
2136                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2137    CopyAssignment->setAccess(AS_public);
2138    CopyAssignment->setImplicit();
2139    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2140    CopyAssignment->setCopyAssignment(true);
2141
2142    // Add the parameter to the operator.
2143    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2144                                                 ClassDecl->getLocation(),
2145                                                 /*IdentifierInfo=*/0,
2146                                                 ArgType, /*DInfo=*/0,
2147                                                 VarDecl::None, 0);
2148    CopyAssignment->setParams(Context, &FromParam, 1);
2149
2150    // Don't call addedAssignmentOperator. There is no way to distinguish an
2151    // implicit from an explicit assignment operator.
2152    ClassDecl->addDecl(CopyAssignment);
2153    AddOverriddenMethods(ClassDecl, CopyAssignment);
2154  }
2155
2156  if (!ClassDecl->hasUserDeclaredDestructor()) {
2157    // C++ [class.dtor]p2:
2158    //   If a class has no user-declared destructor, a destructor is
2159    //   declared implicitly. An implicitly-declared destructor is an
2160    //   inline public member of its class.
2161    DeclarationName Name
2162      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2163    CXXDestructorDecl *Destructor
2164      = CXXDestructorDecl::Create(Context, ClassDecl,
2165                                  ClassDecl->getLocation(), Name,
2166                                  Context.getFunctionType(Context.VoidTy,
2167                                                          0, 0, false, 0),
2168                                  /*isInline=*/true,
2169                                  /*isImplicitlyDeclared=*/true);
2170    Destructor->setAccess(AS_public);
2171    Destructor->setImplicit();
2172    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2173    ClassDecl->addDecl(Destructor);
2174
2175    AddOverriddenMethods(ClassDecl, Destructor);
2176  }
2177}
2178
2179void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2180  Decl *D = TemplateD.getAs<Decl>();
2181  if (!D)
2182    return;
2183
2184  TemplateParameterList *Params = 0;
2185  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2186    Params = Template->getTemplateParameters();
2187  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2188           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2189    Params = PartialSpec->getTemplateParameters();
2190  else
2191    return;
2192
2193  for (TemplateParameterList::iterator Param = Params->begin(),
2194                                    ParamEnd = Params->end();
2195       Param != ParamEnd; ++Param) {
2196    NamedDecl *Named = cast<NamedDecl>(*Param);
2197    if (Named->getDeclName()) {
2198      S->AddDecl(DeclPtrTy::make(Named));
2199      IdResolver.AddDecl(Named);
2200    }
2201  }
2202}
2203
2204/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2205/// parsing a top-level (non-nested) C++ class, and we are now
2206/// parsing those parts of the given Method declaration that could
2207/// not be parsed earlier (C++ [class.mem]p2), such as default
2208/// arguments. This action should enter the scope of the given
2209/// Method declaration as if we had just parsed the qualified method
2210/// name. However, it should not bring the parameters into scope;
2211/// that will be performed by ActOnDelayedCXXMethodParameter.
2212void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2213  if (!MethodD)
2214    return;
2215
2216  AdjustDeclIfTemplate(MethodD);
2217
2218  CXXScopeSpec SS;
2219  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2220  QualType ClassTy
2221    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2222  SS.setScopeRep(
2223    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2224  ActOnCXXEnterDeclaratorScope(S, SS);
2225}
2226
2227/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2228/// C++ method declaration. We're (re-)introducing the given
2229/// function parameter into scope for use in parsing later parts of
2230/// the method declaration. For example, we could see an
2231/// ActOnParamDefaultArgument event for this parameter.
2232void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2233  if (!ParamD)
2234    return;
2235
2236  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2237
2238  // If this parameter has an unparsed default argument, clear it out
2239  // to make way for the parsed default argument.
2240  if (Param->hasUnparsedDefaultArg())
2241    Param->setDefaultArg(0);
2242
2243  S->AddDecl(DeclPtrTy::make(Param));
2244  if (Param->getDeclName())
2245    IdResolver.AddDecl(Param);
2246}
2247
2248/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2249/// processing the delayed method declaration for Method. The method
2250/// declaration is now considered finished. There may be a separate
2251/// ActOnStartOfFunctionDef action later (not necessarily
2252/// immediately!) for this method, if it was also defined inside the
2253/// class body.
2254void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2255  if (!MethodD)
2256    return;
2257
2258  AdjustDeclIfTemplate(MethodD);
2259
2260  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2261  CXXScopeSpec SS;
2262  QualType ClassTy
2263    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2264  SS.setScopeRep(
2265    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2266  ActOnCXXExitDeclaratorScope(S, SS);
2267
2268  // Now that we have our default arguments, check the constructor
2269  // again. It could produce additional diagnostics or affect whether
2270  // the class has implicitly-declared destructors, among other
2271  // things.
2272  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2273    CheckConstructor(Constructor);
2274
2275  // Check the default arguments, which we may have added.
2276  if (!Method->isInvalidDecl())
2277    CheckCXXDefaultArguments(Method);
2278}
2279
2280/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2281/// the well-formedness of the constructor declarator @p D with type @p
2282/// R. If there are any errors in the declarator, this routine will
2283/// emit diagnostics and set the invalid bit to true.  In any case, the type
2284/// will be updated to reflect a well-formed type for the constructor and
2285/// returned.
2286QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2287                                          FunctionDecl::StorageClass &SC) {
2288  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2289
2290  // C++ [class.ctor]p3:
2291  //   A constructor shall not be virtual (10.3) or static (9.4). A
2292  //   constructor can be invoked for a const, volatile or const
2293  //   volatile object. A constructor shall not be declared const,
2294  //   volatile, or const volatile (9.3.2).
2295  if (isVirtual) {
2296    if (!D.isInvalidType())
2297      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2298        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2299        << SourceRange(D.getIdentifierLoc());
2300    D.setInvalidType();
2301  }
2302  if (SC == FunctionDecl::Static) {
2303    if (!D.isInvalidType())
2304      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2305        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2306        << SourceRange(D.getIdentifierLoc());
2307    D.setInvalidType();
2308    SC = FunctionDecl::None;
2309  }
2310
2311  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2312  if (FTI.TypeQuals != 0) {
2313    if (FTI.TypeQuals & Qualifiers::Const)
2314      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2315        << "const" << SourceRange(D.getIdentifierLoc());
2316    if (FTI.TypeQuals & Qualifiers::Volatile)
2317      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2318        << "volatile" << SourceRange(D.getIdentifierLoc());
2319    if (FTI.TypeQuals & Qualifiers::Restrict)
2320      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2321        << "restrict" << SourceRange(D.getIdentifierLoc());
2322  }
2323
2324  // Rebuild the function type "R" without any type qualifiers (in
2325  // case any of the errors above fired) and with "void" as the
2326  // return type, since constructors don't have return types. We
2327  // *always* have to do this, because GetTypeForDeclarator will
2328  // put in a result type of "int" when none was specified.
2329  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2330  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2331                                 Proto->getNumArgs(),
2332                                 Proto->isVariadic(), 0);
2333}
2334
2335/// CheckConstructor - Checks a fully-formed constructor for
2336/// well-formedness, issuing any diagnostics required. Returns true if
2337/// the constructor declarator is invalid.
2338void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2339  CXXRecordDecl *ClassDecl
2340    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2341  if (!ClassDecl)
2342    return Constructor->setInvalidDecl();
2343
2344  // C++ [class.copy]p3:
2345  //   A declaration of a constructor for a class X is ill-formed if
2346  //   its first parameter is of type (optionally cv-qualified) X and
2347  //   either there are no other parameters or else all other
2348  //   parameters have default arguments.
2349  if (!Constructor->isInvalidDecl() &&
2350      ((Constructor->getNumParams() == 1) ||
2351       (Constructor->getNumParams() > 1 &&
2352        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2353      Constructor->getTemplateSpecializationKind()
2354                                              != TSK_ImplicitInstantiation) {
2355    QualType ParamType = Constructor->getParamDecl(0)->getType();
2356    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2357    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2358      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2359      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2360        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2361
2362      // FIXME: Rather that making the constructor invalid, we should endeavor
2363      // to fix the type.
2364      Constructor->setInvalidDecl();
2365    }
2366  }
2367
2368  // Notify the class that we've added a constructor.
2369  ClassDecl->addedConstructor(Context, Constructor);
2370}
2371
2372/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2373/// issuing any diagnostics required. Returns true on error.
2374bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2375  CXXRecordDecl *RD = Destructor->getParent();
2376
2377  if (Destructor->isVirtual()) {
2378    SourceLocation Loc;
2379
2380    if (!Destructor->isImplicit())
2381      Loc = Destructor->getLocation();
2382    else
2383      Loc = RD->getLocation();
2384
2385    // If we have a virtual destructor, look up the deallocation function
2386    FunctionDecl *OperatorDelete = 0;
2387    DeclarationName Name =
2388    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2389    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2390      return true;
2391
2392    Destructor->setOperatorDelete(OperatorDelete);
2393  }
2394
2395  return false;
2396}
2397
2398static inline bool
2399FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2400  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2401          FTI.ArgInfo[0].Param &&
2402          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2403}
2404
2405/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2406/// the well-formednes of the destructor declarator @p D with type @p
2407/// R. If there are any errors in the declarator, this routine will
2408/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2409/// will be updated to reflect a well-formed type for the destructor and
2410/// returned.
2411QualType Sema::CheckDestructorDeclarator(Declarator &D,
2412                                         FunctionDecl::StorageClass& SC) {
2413  // C++ [class.dtor]p1:
2414  //   [...] A typedef-name that names a class is a class-name
2415  //   (7.1.3); however, a typedef-name that names a class shall not
2416  //   be used as the identifier in the declarator for a destructor
2417  //   declaration.
2418  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2419  if (isa<TypedefType>(DeclaratorType)) {
2420    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2421      << DeclaratorType;
2422    D.setInvalidType();
2423  }
2424
2425  // C++ [class.dtor]p2:
2426  //   A destructor is used to destroy objects of its class type. A
2427  //   destructor takes no parameters, and no return type can be
2428  //   specified for it (not even void). The address of a destructor
2429  //   shall not be taken. A destructor shall not be static. A
2430  //   destructor can be invoked for a const, volatile or const
2431  //   volatile object. A destructor shall not be declared const,
2432  //   volatile or const volatile (9.3.2).
2433  if (SC == FunctionDecl::Static) {
2434    if (!D.isInvalidType())
2435      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2436        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2437        << SourceRange(D.getIdentifierLoc());
2438    SC = FunctionDecl::None;
2439    D.setInvalidType();
2440  }
2441  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2442    // Destructors don't have return types, but the parser will
2443    // happily parse something like:
2444    //
2445    //   class X {
2446    //     float ~X();
2447    //   };
2448    //
2449    // The return type will be eliminated later.
2450    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2451      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2452      << SourceRange(D.getIdentifierLoc());
2453  }
2454
2455  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2456  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2457    if (FTI.TypeQuals & Qualifiers::Const)
2458      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2459        << "const" << SourceRange(D.getIdentifierLoc());
2460    if (FTI.TypeQuals & Qualifiers::Volatile)
2461      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2462        << "volatile" << SourceRange(D.getIdentifierLoc());
2463    if (FTI.TypeQuals & Qualifiers::Restrict)
2464      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2465        << "restrict" << SourceRange(D.getIdentifierLoc());
2466    D.setInvalidType();
2467  }
2468
2469  // Make sure we don't have any parameters.
2470  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2471    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2472
2473    // Delete the parameters.
2474    FTI.freeArgs();
2475    D.setInvalidType();
2476  }
2477
2478  // Make sure the destructor isn't variadic.
2479  if (FTI.isVariadic) {
2480    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2481    D.setInvalidType();
2482  }
2483
2484  // Rebuild the function type "R" without any type qualifiers or
2485  // parameters (in case any of the errors above fired) and with
2486  // "void" as the return type, since destructors don't have return
2487  // types. We *always* have to do this, because GetTypeForDeclarator
2488  // will put in a result type of "int" when none was specified.
2489  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2490}
2491
2492/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2493/// well-formednes of the conversion function declarator @p D with
2494/// type @p R. If there are any errors in the declarator, this routine
2495/// will emit diagnostics and return true. Otherwise, it will return
2496/// false. Either way, the type @p R will be updated to reflect a
2497/// well-formed type for the conversion operator.
2498void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2499                                     FunctionDecl::StorageClass& SC) {
2500  // C++ [class.conv.fct]p1:
2501  //   Neither parameter types nor return type can be specified. The
2502  //   type of a conversion function (8.3.5) is "function taking no
2503  //   parameter returning conversion-type-id."
2504  if (SC == FunctionDecl::Static) {
2505    if (!D.isInvalidType())
2506      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2507        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2508        << SourceRange(D.getIdentifierLoc());
2509    D.setInvalidType();
2510    SC = FunctionDecl::None;
2511  }
2512  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2513    // Conversion functions don't have return types, but the parser will
2514    // happily parse something like:
2515    //
2516    //   class X {
2517    //     float operator bool();
2518    //   };
2519    //
2520    // The return type will be changed later anyway.
2521    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2522      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2523      << SourceRange(D.getIdentifierLoc());
2524  }
2525
2526  // Make sure we don't have any parameters.
2527  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2528    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2529
2530    // Delete the parameters.
2531    D.getTypeObject(0).Fun.freeArgs();
2532    D.setInvalidType();
2533  }
2534
2535  // Make sure the conversion function isn't variadic.
2536  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2537    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2538    D.setInvalidType();
2539  }
2540
2541  // C++ [class.conv.fct]p4:
2542  //   The conversion-type-id shall not represent a function type nor
2543  //   an array type.
2544  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2545  if (ConvType->isArrayType()) {
2546    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2547    ConvType = Context.getPointerType(ConvType);
2548    D.setInvalidType();
2549  } else if (ConvType->isFunctionType()) {
2550    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2551    ConvType = Context.getPointerType(ConvType);
2552    D.setInvalidType();
2553  }
2554
2555  // Rebuild the function type "R" without any parameters (in case any
2556  // of the errors above fired) and with the conversion type as the
2557  // return type.
2558  R = Context.getFunctionType(ConvType, 0, 0, false,
2559                              R->getAs<FunctionProtoType>()->getTypeQuals());
2560
2561  // C++0x explicit conversion operators.
2562  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2563    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2564         diag::warn_explicit_conversion_functions)
2565      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2566}
2567
2568/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2569/// the declaration of the given C++ conversion function. This routine
2570/// is responsible for recording the conversion function in the C++
2571/// class, if possible.
2572Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2573  assert(Conversion && "Expected to receive a conversion function declaration");
2574
2575  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2576
2577  // Make sure we aren't redeclaring the conversion function.
2578  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2579
2580  // C++ [class.conv.fct]p1:
2581  //   [...] A conversion function is never used to convert a
2582  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2583  //   same object type (or a reference to it), to a (possibly
2584  //   cv-qualified) base class of that type (or a reference to it),
2585  //   or to (possibly cv-qualified) void.
2586  // FIXME: Suppress this warning if the conversion function ends up being a
2587  // virtual function that overrides a virtual function in a base class.
2588  QualType ClassType
2589    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2590  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2591    ConvType = ConvTypeRef->getPointeeType();
2592  if (ConvType->isRecordType()) {
2593    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2594    if (ConvType == ClassType)
2595      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2596        << ClassType;
2597    else if (IsDerivedFrom(ClassType, ConvType))
2598      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2599        <<  ClassType << ConvType;
2600  } else if (ConvType->isVoidType()) {
2601    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2602      << ClassType << ConvType;
2603  }
2604
2605  if (Conversion->getPreviousDeclaration()) {
2606    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2607    if (FunctionTemplateDecl *ConversionTemplate
2608          = Conversion->getDescribedFunctionTemplate())
2609      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2610    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2611      return DeclPtrTy::make(Conversion);
2612    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2613  } else if (FunctionTemplateDecl *ConversionTemplate
2614               = Conversion->getDescribedFunctionTemplate())
2615    ClassDecl->addConversionFunction(ConversionTemplate);
2616  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2617    ClassDecl->addConversionFunction(Conversion);
2618
2619  return DeclPtrTy::make(Conversion);
2620}
2621
2622//===----------------------------------------------------------------------===//
2623// Namespace Handling
2624//===----------------------------------------------------------------------===//
2625
2626/// ActOnStartNamespaceDef - This is called at the start of a namespace
2627/// definition.
2628Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2629                                             SourceLocation IdentLoc,
2630                                             IdentifierInfo *II,
2631                                             SourceLocation LBrace) {
2632  NamespaceDecl *Namespc =
2633      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2634  Namespc->setLBracLoc(LBrace);
2635
2636  Scope *DeclRegionScope = NamespcScope->getParent();
2637
2638  if (II) {
2639    // C++ [namespace.def]p2:
2640    // The identifier in an original-namespace-definition shall not have been
2641    // previously defined in the declarative region in which the
2642    // original-namespace-definition appears. The identifier in an
2643    // original-namespace-definition is the name of the namespace. Subsequently
2644    // in that declarative region, it is treated as an original-namespace-name.
2645
2646    NamedDecl *PrevDecl
2647      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2648                         ForRedeclaration);
2649
2650    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2651      // This is an extended namespace definition.
2652      // Attach this namespace decl to the chain of extended namespace
2653      // definitions.
2654      OrigNS->setNextNamespace(Namespc);
2655      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2656
2657      // Remove the previous declaration from the scope.
2658      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2659        IdResolver.RemoveDecl(OrigNS);
2660        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2661      }
2662    } else if (PrevDecl) {
2663      // This is an invalid name redefinition.
2664      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2665       << Namespc->getDeclName();
2666      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2667      Namespc->setInvalidDecl();
2668      // Continue on to push Namespc as current DeclContext and return it.
2669    } else if (II->isStr("std") &&
2670               CurContext->getLookupContext()->isTranslationUnit()) {
2671      // This is the first "real" definition of the namespace "std", so update
2672      // our cache of the "std" namespace to point at this definition.
2673      if (StdNamespace) {
2674        // We had already defined a dummy namespace "std". Link this new
2675        // namespace definition to the dummy namespace "std".
2676        StdNamespace->setNextNamespace(Namespc);
2677        StdNamespace->setLocation(IdentLoc);
2678        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2679      }
2680
2681      // Make our StdNamespace cache point at the first real definition of the
2682      // "std" namespace.
2683      StdNamespace = Namespc;
2684    }
2685
2686    PushOnScopeChains(Namespc, DeclRegionScope);
2687  } else {
2688    // Anonymous namespaces.
2689
2690    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2691    //   behaves as if it were replaced by
2692    //     namespace unique { /* empty body */ }
2693    //     using namespace unique;
2694    //     namespace unique { namespace-body }
2695    //   where all occurrences of 'unique' in a translation unit are
2696    //   replaced by the same identifier and this identifier differs
2697    //   from all other identifiers in the entire program.
2698
2699    // We just create the namespace with an empty name and then add an
2700    // implicit using declaration, just like the standard suggests.
2701    //
2702    // CodeGen enforces the "universally unique" aspect by giving all
2703    // declarations semantically contained within an anonymous
2704    // namespace internal linkage.
2705
2706    assert(Namespc->isAnonymousNamespace());
2707    CurContext->addDecl(Namespc);
2708
2709    UsingDirectiveDecl* UD
2710      = UsingDirectiveDecl::Create(Context, CurContext,
2711                                   /* 'using' */ LBrace,
2712                                   /* 'namespace' */ SourceLocation(),
2713                                   /* qualifier */ SourceRange(),
2714                                   /* NNS */ NULL,
2715                                   /* identifier */ SourceLocation(),
2716                                   Namespc,
2717                                   /* Ancestor */ CurContext);
2718    UD->setImplicit();
2719    CurContext->addDecl(UD);
2720  }
2721
2722  // Although we could have an invalid decl (i.e. the namespace name is a
2723  // redefinition), push it as current DeclContext and try to continue parsing.
2724  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2725  // for the namespace has the declarations that showed up in that particular
2726  // namespace definition.
2727  PushDeclContext(NamespcScope, Namespc);
2728  return DeclPtrTy::make(Namespc);
2729}
2730
2731/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2732/// is a namespace alias, returns the namespace it points to.
2733static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2734  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2735    return AD->getNamespace();
2736  return dyn_cast_or_null<NamespaceDecl>(D);
2737}
2738
2739/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2740/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2741void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2742  Decl *Dcl = D.getAs<Decl>();
2743  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2744  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2745  Namespc->setRBracLoc(RBrace);
2746  PopDeclContext();
2747}
2748
2749Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2750                                          SourceLocation UsingLoc,
2751                                          SourceLocation NamespcLoc,
2752                                          const CXXScopeSpec &SS,
2753                                          SourceLocation IdentLoc,
2754                                          IdentifierInfo *NamespcName,
2755                                          AttributeList *AttrList) {
2756  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2757  assert(NamespcName && "Invalid NamespcName.");
2758  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2759  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2760
2761  UsingDirectiveDecl *UDir = 0;
2762
2763  // Lookup namespace name.
2764  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2765  LookupParsedName(R, S, &SS);
2766  if (R.isAmbiguous())
2767    return DeclPtrTy();
2768
2769  if (!R.empty()) {
2770    NamedDecl *Named = R.getFoundDecl();
2771    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2772        && "expected namespace decl");
2773    // C++ [namespace.udir]p1:
2774    //   A using-directive specifies that the names in the nominated
2775    //   namespace can be used in the scope in which the
2776    //   using-directive appears after the using-directive. During
2777    //   unqualified name lookup (3.4.1), the names appear as if they
2778    //   were declared in the nearest enclosing namespace which
2779    //   contains both the using-directive and the nominated
2780    //   namespace. [Note: in this context, "contains" means "contains
2781    //   directly or indirectly". ]
2782
2783    // Find enclosing context containing both using-directive and
2784    // nominated namespace.
2785    NamespaceDecl *NS = getNamespaceDecl(Named);
2786    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2787    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2788      CommonAncestor = CommonAncestor->getParent();
2789
2790    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2791                                      SS.getRange(),
2792                                      (NestedNameSpecifier *)SS.getScopeRep(),
2793                                      IdentLoc, Named, CommonAncestor);
2794    PushUsingDirective(S, UDir);
2795  } else {
2796    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2797  }
2798
2799  // FIXME: We ignore attributes for now.
2800  delete AttrList;
2801  return DeclPtrTy::make(UDir);
2802}
2803
2804void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2805  // If scope has associated entity, then using directive is at namespace
2806  // or translation unit scope. We add UsingDirectiveDecls, into
2807  // it's lookup structure.
2808  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2809    Ctx->addDecl(UDir);
2810  else
2811    // Otherwise it is block-sope. using-directives will affect lookup
2812    // only to the end of scope.
2813    S->PushUsingDirective(DeclPtrTy::make(UDir));
2814}
2815
2816
2817Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2818                                            AccessSpecifier AS,
2819                                            SourceLocation UsingLoc,
2820                                            const CXXScopeSpec &SS,
2821                                            UnqualifiedId &Name,
2822                                            AttributeList *AttrList,
2823                                            bool IsTypeName,
2824                                            SourceLocation TypenameLoc) {
2825  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2826
2827  switch (Name.getKind()) {
2828  case UnqualifiedId::IK_Identifier:
2829  case UnqualifiedId::IK_OperatorFunctionId:
2830  case UnqualifiedId::IK_LiteralOperatorId:
2831  case UnqualifiedId::IK_ConversionFunctionId:
2832    break;
2833
2834  case UnqualifiedId::IK_ConstructorName:
2835    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2836      << SS.getRange();
2837    return DeclPtrTy();
2838
2839  case UnqualifiedId::IK_DestructorName:
2840    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2841      << SS.getRange();
2842    return DeclPtrTy();
2843
2844  case UnqualifiedId::IK_TemplateId:
2845    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2846      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2847    return DeclPtrTy();
2848  }
2849
2850  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2851  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2852                                        Name.getSourceRange().getBegin(),
2853                                        TargetName, AttrList,
2854                                        /* IsInstantiation */ false,
2855                                        IsTypeName, TypenameLoc);
2856  if (UD) {
2857    PushOnScopeChains(UD, S);
2858    UD->setAccess(AS);
2859  }
2860
2861  return DeclPtrTy::make(UD);
2862}
2863
2864/// Builds a shadow declaration corresponding to a 'using' declaration.
2865static UsingShadowDecl *BuildUsingShadowDecl(Sema &SemaRef, Scope *S,
2866                                             AccessSpecifier AS,
2867                                             UsingDecl *UD, NamedDecl *Orig) {
2868  // FIXME: diagnose hiding, collisions
2869
2870  // If we resolved to another shadow declaration, just coalesce them.
2871  if (isa<UsingShadowDecl>(Orig)) {
2872    Orig = cast<UsingShadowDecl>(Orig)->getTargetDecl();
2873    assert(!isa<UsingShadowDecl>(Orig) && "nested shadow declaration");
2874  }
2875
2876  UsingShadowDecl *Shadow
2877    = UsingShadowDecl::Create(SemaRef.Context, SemaRef.CurContext,
2878                              UD->getLocation(), UD, Orig);
2879  UD->addShadowDecl(Shadow);
2880
2881  if (S)
2882    SemaRef.PushOnScopeChains(Shadow, S);
2883  else
2884    SemaRef.CurContext->addDecl(Shadow);
2885  Shadow->setAccess(AS);
2886
2887  return Shadow;
2888}
2889
2890/// Builds a using declaration.
2891///
2892/// \param IsInstantiation - Whether this call arises from an
2893///   instantiation of an unresolved using declaration.  We treat
2894///   the lookup differently for these declarations.
2895NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
2896                                       SourceLocation UsingLoc,
2897                                       const CXXScopeSpec &SS,
2898                                       SourceLocation IdentLoc,
2899                                       DeclarationName Name,
2900                                       AttributeList *AttrList,
2901                                       bool IsInstantiation,
2902                                       bool IsTypeName,
2903                                       SourceLocation TypenameLoc) {
2904  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2905  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2906
2907  // FIXME: We ignore attributes for now.
2908  delete AttrList;
2909
2910  if (SS.isEmpty()) {
2911    Diag(IdentLoc, diag::err_using_requires_qualname);
2912    return 0;
2913  }
2914
2915  NestedNameSpecifier *NNS =
2916    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2917
2918  DeclContext *LookupContext = computeDeclContext(SS);
2919  if (!LookupContext) {
2920    if (IsTypeName) {
2921      return UnresolvedUsingTypenameDecl::Create(Context, CurContext,
2922                                                 UsingLoc, TypenameLoc,
2923                                                 SS.getRange(), NNS,
2924                                                 IdentLoc, Name);
2925    } else {
2926      return UnresolvedUsingValueDecl::Create(Context, CurContext,
2927                                              UsingLoc, SS.getRange(), NNS,
2928                                              IdentLoc, Name);
2929    }
2930  }
2931
2932  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2933    // C++0x N2914 [namespace.udecl]p3:
2934    // A using-declaration used as a member-declaration shall refer to a member
2935    // of a base class of the class being defined, shall refer to a member of an
2936    // anonymous union that is a member of a base class of the class being
2937    // defined, or shall refer to an enumerator for an enumeration type that is
2938    // a member of a base class of the class being defined.
2939
2940    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2941    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2942      Diag(SS.getRange().getBegin(),
2943           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2944        << NNS << RD->getDeclName();
2945      return 0;
2946    }
2947  } else {
2948    // C++0x N2914 [namespace.udecl]p8:
2949    // A using-declaration for a class member shall be a member-declaration.
2950    if (isa<CXXRecordDecl>(LookupContext)) {
2951      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2952        << SS.getRange();
2953      return 0;
2954    }
2955  }
2956
2957  // Look up the target name.  Unlike most lookups, we do not want to
2958  // hide tag declarations: tag names are visible through the using
2959  // declaration even if hidden by ordinary names.
2960  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
2961
2962  // We don't hide tags behind ordinary decls if we're in a
2963  // non-dependent context, but in a dependent context, this is
2964  // important for the stability of two-phase lookup.
2965  if (!IsInstantiation)
2966    R.setHideTags(false);
2967
2968  LookupQualifiedName(R, LookupContext);
2969
2970  if (R.empty()) {
2971    Diag(IdentLoc, diag::err_no_member)
2972      << Name << LookupContext << SS.getRange();
2973    return 0;
2974  }
2975
2976  if (R.isAmbiguous())
2977    return 0;
2978
2979  if (IsTypeName) {
2980    // If we asked for a typename and got a non-type decl, error out.
2981    if (R.getResultKind() != LookupResult::Found
2982        || !isa<TypeDecl>(R.getFoundDecl())) {
2983      Diag(IdentLoc, diag::err_using_typename_non_type);
2984      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2985        Diag((*I)->getUnderlyingDecl()->getLocation(),
2986             diag::note_using_decl_target);
2987      return 0;
2988    }
2989  } else {
2990    // If we asked for a non-typename and we got a type, error out,
2991    // but only if this is an instantiation of an unresolved using
2992    // decl.  Otherwise just silently find the type name.
2993    if (IsInstantiation &&
2994        R.getResultKind() == LookupResult::Found &&
2995        isa<TypeDecl>(R.getFoundDecl())) {
2996      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
2997      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
2998      return 0;
2999    }
3000  }
3001
3002  // C++0x N2914 [namespace.udecl]p6:
3003  // A using-declaration shall not name a namespace.
3004  if (R.getResultKind() == LookupResult::Found
3005      && isa<NamespaceDecl>(R.getFoundDecl())) {
3006    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3007      << SS.getRange();
3008    return 0;
3009  }
3010
3011  UsingDecl *UD = UsingDecl::Create(Context, CurContext, IdentLoc,
3012                                    SS.getRange(), UsingLoc, NNS, Name,
3013                                    IsTypeName);
3014
3015  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3016    BuildUsingShadowDecl(*this, S, AS, UD, *I);
3017
3018  return UD;
3019}
3020
3021Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3022                                             SourceLocation NamespaceLoc,
3023                                             SourceLocation AliasLoc,
3024                                             IdentifierInfo *Alias,
3025                                             const CXXScopeSpec &SS,
3026                                             SourceLocation IdentLoc,
3027                                             IdentifierInfo *Ident) {
3028
3029  // Lookup the namespace name.
3030  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3031  LookupParsedName(R, S, &SS);
3032
3033  // Check if we have a previous declaration with the same name.
3034  if (NamedDecl *PrevDecl
3035        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3036    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3037      // We already have an alias with the same name that points to the same
3038      // namespace, so don't create a new one.
3039      if (!R.isAmbiguous() && !R.empty() &&
3040          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3041        return DeclPtrTy();
3042    }
3043
3044    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3045      diag::err_redefinition_different_kind;
3046    Diag(AliasLoc, DiagID) << Alias;
3047    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3048    return DeclPtrTy();
3049  }
3050
3051  if (R.isAmbiguous())
3052    return DeclPtrTy();
3053
3054  if (R.empty()) {
3055    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3056    return DeclPtrTy();
3057  }
3058
3059  NamespaceAliasDecl *AliasDecl =
3060    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3061                               Alias, SS.getRange(),
3062                               (NestedNameSpecifier *)SS.getScopeRep(),
3063                               IdentLoc, R.getFoundDecl());
3064
3065  CurContext->addDecl(AliasDecl);
3066  return DeclPtrTy::make(AliasDecl);
3067}
3068
3069void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3070                                            CXXConstructorDecl *Constructor) {
3071  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3072          !Constructor->isUsed()) &&
3073    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3074
3075  CXXRecordDecl *ClassDecl
3076    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3077  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3078
3079  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3080    Diag(CurrentLocation, diag::note_member_synthesized_at)
3081      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3082    Constructor->setInvalidDecl();
3083  } else {
3084    Constructor->setUsed();
3085  }
3086
3087  MaybeMarkVirtualImplicitMembersReferenced(CurrentLocation, Constructor);
3088}
3089
3090void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3091                                    CXXDestructorDecl *Destructor) {
3092  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3093         "DefineImplicitDestructor - call it for implicit default dtor");
3094  CXXRecordDecl *ClassDecl = Destructor->getParent();
3095  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3096  // C++ [class.dtor] p5
3097  // Before the implicitly-declared default destructor for a class is
3098  // implicitly defined, all the implicitly-declared default destructors
3099  // for its base class and its non-static data members shall have been
3100  // implicitly defined.
3101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3102       E = ClassDecl->bases_end(); Base != E; ++Base) {
3103    CXXRecordDecl *BaseClassDecl
3104      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3105    if (!BaseClassDecl->hasTrivialDestructor()) {
3106      if (CXXDestructorDecl *BaseDtor =
3107          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3108        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3109      else
3110        assert(false &&
3111               "DefineImplicitDestructor - missing dtor in a base class");
3112    }
3113  }
3114
3115  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3116       E = ClassDecl->field_end(); Field != E; ++Field) {
3117    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3118    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3119      FieldType = Array->getElementType();
3120    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3121      CXXRecordDecl *FieldClassDecl
3122        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3123      if (!FieldClassDecl->hasTrivialDestructor()) {
3124        if (CXXDestructorDecl *FieldDtor =
3125            const_cast<CXXDestructorDecl*>(
3126                                        FieldClassDecl->getDestructor(Context)))
3127          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3128        else
3129          assert(false &&
3130          "DefineImplicitDestructor - missing dtor in class of a data member");
3131      }
3132    }
3133  }
3134
3135  // FIXME: If CheckDestructor fails, we should emit a note about where the
3136  // implicit destructor was needed.
3137  if (CheckDestructor(Destructor)) {
3138    Diag(CurrentLocation, diag::note_member_synthesized_at)
3139      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3140
3141    Destructor->setInvalidDecl();
3142    return;
3143  }
3144
3145  Destructor->setUsed();
3146}
3147
3148void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3149                                          CXXMethodDecl *MethodDecl) {
3150  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3151          MethodDecl->getOverloadedOperator() == OO_Equal &&
3152          !MethodDecl->isUsed()) &&
3153         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3154
3155  CXXRecordDecl *ClassDecl
3156    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3157
3158  // C++[class.copy] p12
3159  // Before the implicitly-declared copy assignment operator for a class is
3160  // implicitly defined, all implicitly-declared copy assignment operators
3161  // for its direct base classes and its nonstatic data members shall have
3162  // been implicitly defined.
3163  bool err = false;
3164  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3165       E = ClassDecl->bases_end(); Base != E; ++Base) {
3166    CXXRecordDecl *BaseClassDecl
3167      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3168    if (CXXMethodDecl *BaseAssignOpMethod =
3169          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3170      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3171  }
3172  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3173       E = ClassDecl->field_end(); Field != E; ++Field) {
3174    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3175    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3176      FieldType = Array->getElementType();
3177    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3178      CXXRecordDecl *FieldClassDecl
3179        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3180      if (CXXMethodDecl *FieldAssignOpMethod =
3181          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3182        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3183    } else if (FieldType->isReferenceType()) {
3184      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3185      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3186      Diag(Field->getLocation(), diag::note_declared_at);
3187      Diag(CurrentLocation, diag::note_first_required_here);
3188      err = true;
3189    } else if (FieldType.isConstQualified()) {
3190      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3191      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3192      Diag(Field->getLocation(), diag::note_declared_at);
3193      Diag(CurrentLocation, diag::note_first_required_here);
3194      err = true;
3195    }
3196  }
3197  if (!err)
3198    MethodDecl->setUsed();
3199}
3200
3201CXXMethodDecl *
3202Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3203                              CXXRecordDecl *ClassDecl) {
3204  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3205  QualType RHSType(LHSType);
3206  // If class's assignment operator argument is const/volatile qualified,
3207  // look for operator = (const/volatile B&). Otherwise, look for
3208  // operator = (B&).
3209  RHSType = Context.getCVRQualifiedType(RHSType,
3210                                     ParmDecl->getType().getCVRQualifiers());
3211  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3212                                                          LHSType,
3213                                                          SourceLocation()));
3214  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3215                                                          RHSType,
3216                                                          SourceLocation()));
3217  Expr *Args[2] = { &*LHS, &*RHS };
3218  OverloadCandidateSet CandidateSet;
3219  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3220                              CandidateSet);
3221  OverloadCandidateSet::iterator Best;
3222  if (BestViableFunction(CandidateSet,
3223                         ClassDecl->getLocation(), Best) == OR_Success)
3224    return cast<CXXMethodDecl>(Best->Function);
3225  assert(false &&
3226         "getAssignOperatorMethod - copy assignment operator method not found");
3227  return 0;
3228}
3229
3230void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3231                                   CXXConstructorDecl *CopyConstructor,
3232                                   unsigned TypeQuals) {
3233  assert((CopyConstructor->isImplicit() &&
3234          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3235          !CopyConstructor->isUsed()) &&
3236         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3237
3238  CXXRecordDecl *ClassDecl
3239    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3240  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3241  // C++ [class.copy] p209
3242  // Before the implicitly-declared copy constructor for a class is
3243  // implicitly defined, all the implicitly-declared copy constructors
3244  // for its base class and its non-static data members shall have been
3245  // implicitly defined.
3246  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3247       Base != ClassDecl->bases_end(); ++Base) {
3248    CXXRecordDecl *BaseClassDecl
3249      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3250    if (CXXConstructorDecl *BaseCopyCtor =
3251        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3252      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3253  }
3254  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3255                                  FieldEnd = ClassDecl->field_end();
3256       Field != FieldEnd; ++Field) {
3257    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3258    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3259      FieldType = Array->getElementType();
3260    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3261      CXXRecordDecl *FieldClassDecl
3262        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3263      if (CXXConstructorDecl *FieldCopyCtor =
3264          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3265        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3266    }
3267  }
3268  CopyConstructor->setUsed();
3269}
3270
3271Sema::OwningExprResult
3272Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3273                            CXXConstructorDecl *Constructor,
3274                            MultiExprArg ExprArgs) {
3275  bool Elidable = false;
3276
3277  // C++ [class.copy]p15:
3278  //   Whenever a temporary class object is copied using a copy constructor, and
3279  //   this object and the copy have the same cv-unqualified type, an
3280  //   implementation is permitted to treat the original and the copy as two
3281  //   different ways of referring to the same object and not perform a copy at
3282  //   all, even if the class copy constructor or destructor have side effects.
3283
3284  // FIXME: Is this enough?
3285  if (Constructor->isCopyConstructor(Context)) {
3286    Expr *E = ((Expr **)ExprArgs.get())[0];
3287    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3288      E = BE->getSubExpr();
3289    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3290      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3291        E = ICE->getSubExpr();
3292
3293    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3294      Elidable = true;
3295  }
3296
3297  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3298                               Elidable, move(ExprArgs));
3299}
3300
3301/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3302/// including handling of its default argument expressions.
3303Sema::OwningExprResult
3304Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3305                            CXXConstructorDecl *Constructor, bool Elidable,
3306                            MultiExprArg ExprArgs) {
3307  unsigned NumExprs = ExprArgs.size();
3308  Expr **Exprs = (Expr **)ExprArgs.release();
3309
3310  MarkDeclarationReferenced(ConstructLoc, Constructor);
3311  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3312                                        Elidable, Exprs, NumExprs));
3313}
3314
3315Sema::OwningExprResult
3316Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3317                                  QualType Ty,
3318                                  SourceLocation TyBeginLoc,
3319                                  MultiExprArg Args,
3320                                  SourceLocation RParenLoc) {
3321  unsigned NumExprs = Args.size();
3322  Expr **Exprs = (Expr **)Args.release();
3323
3324  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3325  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3326                                                    TyBeginLoc, Exprs,
3327                                                    NumExprs, RParenLoc));
3328}
3329
3330
3331bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3332                                        CXXConstructorDecl *Constructor,
3333                                        MultiExprArg Exprs) {
3334  OwningExprResult TempResult =
3335    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3336                          move(Exprs));
3337  if (TempResult.isInvalid())
3338    return true;
3339
3340  Expr *Temp = TempResult.takeAs<Expr>();
3341  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3342  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3343  VD->setInit(Context, Temp);
3344
3345  return false;
3346}
3347
3348void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3349  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3350                                  DeclInitType->getAs<RecordType>()->getDecl());
3351  if (!ClassDecl->hasTrivialDestructor())
3352    if (CXXDestructorDecl *Destructor =
3353        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3354      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3355}
3356
3357/// AddCXXDirectInitializerToDecl - This action is called immediately after
3358/// ActOnDeclarator, when a C++ direct initializer is present.
3359/// e.g: "int x(1);"
3360void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3361                                         SourceLocation LParenLoc,
3362                                         MultiExprArg Exprs,
3363                                         SourceLocation *CommaLocs,
3364                                         SourceLocation RParenLoc) {
3365  unsigned NumExprs = Exprs.size();
3366  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3367  Decl *RealDecl = Dcl.getAs<Decl>();
3368
3369  // If there is no declaration, there was an error parsing it.  Just ignore
3370  // the initializer.
3371  if (RealDecl == 0)
3372    return;
3373
3374  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3375  if (!VDecl) {
3376    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3377    RealDecl->setInvalidDecl();
3378    return;
3379  }
3380
3381  // We will represent direct-initialization similarly to copy-initialization:
3382  //    int x(1);  -as-> int x = 1;
3383  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3384  //
3385  // Clients that want to distinguish between the two forms, can check for
3386  // direct initializer using VarDecl::hasCXXDirectInitializer().
3387  // A major benefit is that clients that don't particularly care about which
3388  // exactly form was it (like the CodeGen) can handle both cases without
3389  // special case code.
3390
3391  // If either the declaration has a dependent type or if any of the expressions
3392  // is type-dependent, we represent the initialization via a ParenListExpr for
3393  // later use during template instantiation.
3394  if (VDecl->getType()->isDependentType() ||
3395      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3396    // Let clients know that initialization was done with a direct initializer.
3397    VDecl->setCXXDirectInitializer(true);
3398
3399    // Store the initialization expressions as a ParenListExpr.
3400    unsigned NumExprs = Exprs.size();
3401    VDecl->setInit(Context,
3402                   new (Context) ParenListExpr(Context, LParenLoc,
3403                                               (Expr **)Exprs.release(),
3404                                               NumExprs, RParenLoc));
3405    return;
3406  }
3407
3408
3409  // C++ 8.5p11:
3410  // The form of initialization (using parentheses or '=') is generally
3411  // insignificant, but does matter when the entity being initialized has a
3412  // class type.
3413  QualType DeclInitType = VDecl->getType();
3414  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3415    DeclInitType = Context.getBaseElementType(Array);
3416
3417  // FIXME: This isn't the right place to complete the type.
3418  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3419                          diag::err_typecheck_decl_incomplete_type)) {
3420    VDecl->setInvalidDecl();
3421    return;
3422  }
3423
3424  if (VDecl->getType()->isRecordType()) {
3425    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3426
3427    CXXConstructorDecl *Constructor
3428      = PerformInitializationByConstructor(DeclInitType,
3429                                           move(Exprs),
3430                                           VDecl->getLocation(),
3431                                           SourceRange(VDecl->getLocation(),
3432                                                       RParenLoc),
3433                                           VDecl->getDeclName(),
3434                                           IK_Direct,
3435                                           ConstructorArgs);
3436    if (!Constructor)
3437      RealDecl->setInvalidDecl();
3438    else {
3439      VDecl->setCXXDirectInitializer(true);
3440      if (InitializeVarWithConstructor(VDecl, Constructor,
3441                                       move_arg(ConstructorArgs)))
3442        RealDecl->setInvalidDecl();
3443      FinalizeVarWithDestructor(VDecl, DeclInitType);
3444    }
3445    return;
3446  }
3447
3448  if (NumExprs > 1) {
3449    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3450      << SourceRange(VDecl->getLocation(), RParenLoc);
3451    RealDecl->setInvalidDecl();
3452    return;
3453  }
3454
3455  // Let clients know that initialization was done with a direct initializer.
3456  VDecl->setCXXDirectInitializer(true);
3457
3458  assert(NumExprs == 1 && "Expected 1 expression");
3459  // Set the init expression, handles conversions.
3460  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3461                       /*DirectInit=*/true);
3462}
3463
3464/// \brief Add the applicable constructor candidates for an initialization
3465/// by constructor.
3466static void AddConstructorInitializationCandidates(Sema &SemaRef,
3467                                                   QualType ClassType,
3468                                                   Expr **Args,
3469                                                   unsigned NumArgs,
3470                                                  Sema::InitializationKind Kind,
3471                                           OverloadCandidateSet &CandidateSet) {
3472  // C++ [dcl.init]p14:
3473  //   If the initialization is direct-initialization, or if it is
3474  //   copy-initialization where the cv-unqualified version of the
3475  //   source type is the same class as, or a derived class of, the
3476  //   class of the destination, constructors are considered. The
3477  //   applicable constructors are enumerated (13.3.1.3), and the
3478  //   best one is chosen through overload resolution (13.3). The
3479  //   constructor so selected is called to initialize the object,
3480  //   with the initializer expression(s) as its argument(s). If no
3481  //   constructor applies, or the overload resolution is ambiguous,
3482  //   the initialization is ill-formed.
3483  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3484  assert(ClassRec && "Can only initialize a class type here");
3485
3486  // FIXME: When we decide not to synthesize the implicitly-declared
3487  // constructors, we'll need to make them appear here.
3488
3489  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3490  DeclarationName ConstructorName
3491    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3492              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3493  DeclContext::lookup_const_iterator Con, ConEnd;
3494  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3495       Con != ConEnd; ++Con) {
3496    // Find the constructor (which may be a template).
3497    CXXConstructorDecl *Constructor = 0;
3498    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3499    if (ConstructorTmpl)
3500      Constructor
3501      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3502    else
3503      Constructor = cast<CXXConstructorDecl>(*Con);
3504
3505    if ((Kind == Sema::IK_Direct) ||
3506        (Kind == Sema::IK_Copy &&
3507         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3508        (Kind == Sema::IK_Default && Constructor->isDefaultConstructor())) {
3509      if (ConstructorTmpl)
3510        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
3511                                             /*ExplicitArgs*/ 0,
3512                                             Args, NumArgs, CandidateSet);
3513      else
3514        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3515    }
3516  }
3517}
3518
3519/// \brief Attempt to perform initialization by constructor
3520/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
3521/// copy-initialization.
3522///
3523/// This routine determines whether initialization by constructor is possible,
3524/// but it does not emit any diagnostics in the case where the initialization
3525/// is ill-formed.
3526///
3527/// \param ClassType the type of the object being initialized, which must have
3528/// class type.
3529///
3530/// \param Args the arguments provided to initialize the object
3531///
3532/// \param NumArgs the number of arguments provided to initialize the object
3533///
3534/// \param Kind the type of initialization being performed
3535///
3536/// \returns the constructor used to initialize the object, if successful.
3537/// Otherwise, emits a diagnostic and returns NULL.
3538CXXConstructorDecl *
3539Sema::TryInitializationByConstructor(QualType ClassType,
3540                                     Expr **Args, unsigned NumArgs,
3541                                     SourceLocation Loc,
3542                                     InitializationKind Kind) {
3543  // Build the overload candidate set
3544  OverloadCandidateSet CandidateSet;
3545  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3546                                         CandidateSet);
3547
3548  // Determine whether we found a constructor we can use.
3549  OverloadCandidateSet::iterator Best;
3550  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3551    case OR_Success:
3552    case OR_Deleted:
3553      // We found a constructor. Return it.
3554      return cast<CXXConstructorDecl>(Best->Function);
3555
3556    case OR_No_Viable_Function:
3557    case OR_Ambiguous:
3558      // Overload resolution failed. Return nothing.
3559      return 0;
3560  }
3561
3562  // Silence GCC warning
3563  return 0;
3564}
3565
3566/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3567/// may occur as part of direct-initialization or copy-initialization.
3568///
3569/// \param ClassType the type of the object being initialized, which must have
3570/// class type.
3571///
3572/// \param ArgsPtr the arguments provided to initialize the object
3573///
3574/// \param Loc the source location where the initialization occurs
3575///
3576/// \param Range the source range that covers the entire initialization
3577///
3578/// \param InitEntity the name of the entity being initialized, if known
3579///
3580/// \param Kind the type of initialization being performed
3581///
3582/// \param ConvertedArgs a vector that will be filled in with the
3583/// appropriately-converted arguments to the constructor (if initialization
3584/// succeeded).
3585///
3586/// \returns the constructor used to initialize the object, if successful.
3587/// Otherwise, emits a diagnostic and returns NULL.
3588CXXConstructorDecl *
3589Sema::PerformInitializationByConstructor(QualType ClassType,
3590                                         MultiExprArg ArgsPtr,
3591                                         SourceLocation Loc, SourceRange Range,
3592                                         DeclarationName InitEntity,
3593                                         InitializationKind Kind,
3594                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3595
3596  // Build the overload candidate set
3597  Expr **Args = (Expr **)ArgsPtr.get();
3598  unsigned NumArgs = ArgsPtr.size();
3599  OverloadCandidateSet CandidateSet;
3600  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3601                                         CandidateSet);
3602
3603  OverloadCandidateSet::iterator Best;
3604  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3605  case OR_Success:
3606    // We found a constructor. Break out so that we can convert the arguments
3607    // appropriately.
3608    break;
3609
3610  case OR_No_Viable_Function:
3611    if (InitEntity)
3612      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3613        << InitEntity << Range;
3614    else
3615      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3616        << ClassType << Range;
3617    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3618    return 0;
3619
3620  case OR_Ambiguous:
3621    if (InitEntity)
3622      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3623    else
3624      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3625    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3626    return 0;
3627
3628  case OR_Deleted:
3629    if (InitEntity)
3630      Diag(Loc, diag::err_ovl_deleted_init)
3631        << Best->Function->isDeleted()
3632        << InitEntity << Range;
3633    else {
3634      const CXXRecordDecl *RD =
3635          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
3636      Diag(Loc, diag::err_ovl_deleted_init)
3637        << Best->Function->isDeleted()
3638        << RD->getDeclName() << Range;
3639    }
3640    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3641    return 0;
3642  }
3643
3644  // Convert the arguments, fill in default arguments, etc.
3645  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3646  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3647    return 0;
3648
3649  return Constructor;
3650}
3651
3652/// \brief Given a constructor and the set of arguments provided for the
3653/// constructor, convert the arguments and add any required default arguments
3654/// to form a proper call to this constructor.
3655///
3656/// \returns true if an error occurred, false otherwise.
3657bool
3658Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3659                              MultiExprArg ArgsPtr,
3660                              SourceLocation Loc,
3661                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3662  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3663  unsigned NumArgs = ArgsPtr.size();
3664  Expr **Args = (Expr **)ArgsPtr.get();
3665
3666  const FunctionProtoType *Proto
3667    = Constructor->getType()->getAs<FunctionProtoType>();
3668  assert(Proto && "Constructor without a prototype?");
3669  unsigned NumArgsInProto = Proto->getNumArgs();
3670
3671  // If too few arguments are available, we'll fill in the rest with defaults.
3672  if (NumArgs < NumArgsInProto)
3673    ConvertedArgs.reserve(NumArgsInProto);
3674  else
3675    ConvertedArgs.reserve(NumArgs);
3676
3677  VariadicCallType CallType =
3678    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3679  llvm::SmallVector<Expr *, 8> AllArgs;
3680  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
3681                                        Proto, 0, Args, NumArgs, AllArgs,
3682                                        CallType);
3683  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
3684    ConvertedArgs.push_back(AllArgs[i]);
3685  return Invalid;
3686}
3687
3688/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3689/// determine whether they are reference-related,
3690/// reference-compatible, reference-compatible with added
3691/// qualification, or incompatible, for use in C++ initialization by
3692/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3693/// type, and the first type (T1) is the pointee type of the reference
3694/// type being initialized.
3695Sema::ReferenceCompareResult
3696Sema::CompareReferenceRelationship(SourceLocation Loc,
3697                                   QualType OrigT1, QualType OrigT2,
3698                                   bool& DerivedToBase) {
3699  assert(!OrigT1->isReferenceType() &&
3700    "T1 must be the pointee type of the reference type");
3701  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3702
3703  QualType T1 = Context.getCanonicalType(OrigT1);
3704  QualType T2 = Context.getCanonicalType(OrigT2);
3705  QualType UnqualT1 = T1.getLocalUnqualifiedType();
3706  QualType UnqualT2 = T2.getLocalUnqualifiedType();
3707
3708  // C++ [dcl.init.ref]p4:
3709  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3710  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3711  //   T1 is a base class of T2.
3712  if (UnqualT1 == UnqualT2)
3713    DerivedToBase = false;
3714  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3715           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3716           IsDerivedFrom(UnqualT2, UnqualT1))
3717    DerivedToBase = true;
3718  else
3719    return Ref_Incompatible;
3720
3721  // At this point, we know that T1 and T2 are reference-related (at
3722  // least).
3723
3724  // C++ [dcl.init.ref]p4:
3725  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3726  //   reference-related to T2 and cv1 is the same cv-qualification
3727  //   as, or greater cv-qualification than, cv2. For purposes of
3728  //   overload resolution, cases for which cv1 is greater
3729  //   cv-qualification than cv2 are identified as
3730  //   reference-compatible with added qualification (see 13.3.3.2).
3731  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3732    return Ref_Compatible;
3733  else if (T1.isMoreQualifiedThan(T2))
3734    return Ref_Compatible_With_Added_Qualification;
3735  else
3736    return Ref_Related;
3737}
3738
3739/// CheckReferenceInit - Check the initialization of a reference
3740/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3741/// the initializer (either a simple initializer or an initializer
3742/// list), and DeclType is the type of the declaration. When ICS is
3743/// non-null, this routine will compute the implicit conversion
3744/// sequence according to C++ [over.ics.ref] and will not produce any
3745/// diagnostics; when ICS is null, it will emit diagnostics when any
3746/// errors are found. Either way, a return value of true indicates
3747/// that there was a failure, a return value of false indicates that
3748/// the reference initialization succeeded.
3749///
3750/// When @p SuppressUserConversions, user-defined conversions are
3751/// suppressed.
3752/// When @p AllowExplicit, we also permit explicit user-defined
3753/// conversion functions.
3754/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3755/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
3756/// This is used when this is called from a C-style cast.
3757bool
3758Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3759                         SourceLocation DeclLoc,
3760                         bool SuppressUserConversions,
3761                         bool AllowExplicit, bool ForceRValue,
3762                         ImplicitConversionSequence *ICS,
3763                         bool IgnoreBaseAccess) {
3764  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3765
3766  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3767  QualType T2 = Init->getType();
3768
3769  // If the initializer is the address of an overloaded function, try
3770  // to resolve the overloaded function. If all goes well, T2 is the
3771  // type of the resulting function.
3772  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3773    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3774                                                          ICS != 0);
3775    if (Fn) {
3776      // Since we're performing this reference-initialization for
3777      // real, update the initializer with the resulting function.
3778      if (!ICS) {
3779        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3780          return true;
3781
3782        Init = FixOverloadedFunctionReference(Init, Fn);
3783      }
3784
3785      T2 = Fn->getType();
3786    }
3787  }
3788
3789  // Compute some basic properties of the types and the initializer.
3790  bool isRValRef = DeclType->isRValueReferenceType();
3791  bool DerivedToBase = false;
3792  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3793                                                  Init->isLvalue(Context);
3794  ReferenceCompareResult RefRelationship
3795    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3796
3797  // Most paths end in a failed conversion.
3798  if (ICS)
3799    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3800
3801  // C++ [dcl.init.ref]p5:
3802  //   A reference to type "cv1 T1" is initialized by an expression
3803  //   of type "cv2 T2" as follows:
3804
3805  //     -- If the initializer expression
3806
3807  // Rvalue references cannot bind to lvalues (N2812).
3808  // There is absolutely no situation where they can. In particular, note that
3809  // this is ill-formed, even if B has a user-defined conversion to A&&:
3810  //   B b;
3811  //   A&& r = b;
3812  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3813    if (!ICS)
3814      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3815        << Init->getSourceRange();
3816    return true;
3817  }
3818
3819  bool BindsDirectly = false;
3820  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3821  //          reference-compatible with "cv2 T2," or
3822  //
3823  // Note that the bit-field check is skipped if we are just computing
3824  // the implicit conversion sequence (C++ [over.best.ics]p2).
3825  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3826      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3827    BindsDirectly = true;
3828
3829    if (ICS) {
3830      // C++ [over.ics.ref]p1:
3831      //   When a parameter of reference type binds directly (8.5.3)
3832      //   to an argument expression, the implicit conversion sequence
3833      //   is the identity conversion, unless the argument expression
3834      //   has a type that is a derived class of the parameter type,
3835      //   in which case the implicit conversion sequence is a
3836      //   derived-to-base Conversion (13.3.3.1).
3837      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3838      ICS->Standard.First = ICK_Identity;
3839      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3840      ICS->Standard.Third = ICK_Identity;
3841      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3842      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3843      ICS->Standard.ReferenceBinding = true;
3844      ICS->Standard.DirectBinding = true;
3845      ICS->Standard.RRefBinding = false;
3846      ICS->Standard.CopyConstructor = 0;
3847
3848      // Nothing more to do: the inaccessibility/ambiguity check for
3849      // derived-to-base conversions is suppressed when we're
3850      // computing the implicit conversion sequence (C++
3851      // [over.best.ics]p2).
3852      return false;
3853    } else {
3854      // Perform the conversion.
3855      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3856      if (DerivedToBase)
3857        CK = CastExpr::CK_DerivedToBase;
3858      else if(CheckExceptionSpecCompatibility(Init, T1))
3859        return true;
3860      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3861    }
3862  }
3863
3864  //       -- has a class type (i.e., T2 is a class type) and can be
3865  //          implicitly converted to an lvalue of type "cv3 T3,"
3866  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3867  //          92) (this conversion is selected by enumerating the
3868  //          applicable conversion functions (13.3.1.6) and choosing
3869  //          the best one through overload resolution (13.3)),
3870  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3871      !RequireCompleteType(DeclLoc, T2, 0)) {
3872    CXXRecordDecl *T2RecordDecl
3873      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3874
3875    OverloadCandidateSet CandidateSet;
3876    const UnresolvedSet *Conversions
3877      = T2RecordDecl->getVisibleConversionFunctions();
3878    for (UnresolvedSet::iterator I = Conversions->begin(),
3879           E = Conversions->end(); I != E; ++I) {
3880      FunctionTemplateDecl *ConvTemplate
3881        = dyn_cast<FunctionTemplateDecl>(*I);
3882      CXXConversionDecl *Conv;
3883      if (ConvTemplate)
3884        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3885      else
3886        Conv = cast<CXXConversionDecl>(*I);
3887
3888      // If the conversion function doesn't return a reference type,
3889      // it can't be considered for this conversion.
3890      if (Conv->getConversionType()->isLValueReferenceType() &&
3891          (AllowExplicit || !Conv->isExplicit())) {
3892        if (ConvTemplate)
3893          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3894                                         CandidateSet);
3895        else
3896          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3897      }
3898    }
3899
3900    OverloadCandidateSet::iterator Best;
3901    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3902    case OR_Success:
3903      // This is a direct binding.
3904      BindsDirectly = true;
3905
3906      if (ICS) {
3907        // C++ [over.ics.ref]p1:
3908        //
3909        //   [...] If the parameter binds directly to the result of
3910        //   applying a conversion function to the argument
3911        //   expression, the implicit conversion sequence is a
3912        //   user-defined conversion sequence (13.3.3.1.2), with the
3913        //   second standard conversion sequence either an identity
3914        //   conversion or, if the conversion function returns an
3915        //   entity of a type that is a derived class of the parameter
3916        //   type, a derived-to-base Conversion.
3917        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3918        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3919        ICS->UserDefined.After = Best->FinalConversion;
3920        ICS->UserDefined.ConversionFunction = Best->Function;
3921        ICS->UserDefined.EllipsisConversion = false;
3922        assert(ICS->UserDefined.After.ReferenceBinding &&
3923               ICS->UserDefined.After.DirectBinding &&
3924               "Expected a direct reference binding!");
3925        return false;
3926      } else {
3927        OwningExprResult InitConversion =
3928          BuildCXXCastArgument(DeclLoc, QualType(),
3929                               CastExpr::CK_UserDefinedConversion,
3930                               cast<CXXMethodDecl>(Best->Function),
3931                               Owned(Init));
3932        Init = InitConversion.takeAs<Expr>();
3933
3934        if (CheckExceptionSpecCompatibility(Init, T1))
3935          return true;
3936        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3937                          /*isLvalue=*/true);
3938      }
3939      break;
3940
3941    case OR_Ambiguous:
3942      if (ICS) {
3943        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3944             Cand != CandidateSet.end(); ++Cand)
3945          if (Cand->Viable)
3946            ICS->ConversionFunctionSet.push_back(Cand->Function);
3947        break;
3948      }
3949      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3950            << Init->getSourceRange();
3951      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3952      return true;
3953
3954    case OR_No_Viable_Function:
3955    case OR_Deleted:
3956      // There was no suitable conversion, or we found a deleted
3957      // conversion; continue with other checks.
3958      break;
3959    }
3960  }
3961
3962  if (BindsDirectly) {
3963    // C++ [dcl.init.ref]p4:
3964    //   [...] In all cases where the reference-related or
3965    //   reference-compatible relationship of two types is used to
3966    //   establish the validity of a reference binding, and T1 is a
3967    //   base class of T2, a program that necessitates such a binding
3968    //   is ill-formed if T1 is an inaccessible (clause 11) or
3969    //   ambiguous (10.2) base class of T2.
3970    //
3971    // Note that we only check this condition when we're allowed to
3972    // complain about errors, because we should not be checking for
3973    // ambiguity (or inaccessibility) unless the reference binding
3974    // actually happens.
3975    if (DerivedToBase)
3976      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3977                                          Init->getSourceRange(),
3978                                          IgnoreBaseAccess);
3979    else
3980      return false;
3981  }
3982
3983  //     -- Otherwise, the reference shall be to a non-volatile const
3984  //        type (i.e., cv1 shall be const), or the reference shall be an
3985  //        rvalue reference and the initializer expression shall be an rvalue.
3986  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3987    if (!ICS)
3988      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3989        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3990        << T2 << Init->getSourceRange();
3991    return true;
3992  }
3993
3994  //       -- If the initializer expression is an rvalue, with T2 a
3995  //          class type, and "cv1 T1" is reference-compatible with
3996  //          "cv2 T2," the reference is bound in one of the
3997  //          following ways (the choice is implementation-defined):
3998  //
3999  //          -- The reference is bound to the object represented by
4000  //             the rvalue (see 3.10) or to a sub-object within that
4001  //             object.
4002  //
4003  //          -- A temporary of type "cv1 T2" [sic] is created, and
4004  //             a constructor is called to copy the entire rvalue
4005  //             object into the temporary. The reference is bound to
4006  //             the temporary or to a sub-object within the
4007  //             temporary.
4008  //
4009  //          The constructor that would be used to make the copy
4010  //          shall be callable whether or not the copy is actually
4011  //          done.
4012  //
4013  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4014  // freedom, so we will always take the first option and never build
4015  // a temporary in this case. FIXME: We will, however, have to check
4016  // for the presence of a copy constructor in C++98/03 mode.
4017  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4018      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4019    if (ICS) {
4020      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4021      ICS->Standard.First = ICK_Identity;
4022      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4023      ICS->Standard.Third = ICK_Identity;
4024      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4025      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4026      ICS->Standard.ReferenceBinding = true;
4027      ICS->Standard.DirectBinding = false;
4028      ICS->Standard.RRefBinding = isRValRef;
4029      ICS->Standard.CopyConstructor = 0;
4030    } else {
4031      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4032      if (DerivedToBase)
4033        CK = CastExpr::CK_DerivedToBase;
4034      else if(CheckExceptionSpecCompatibility(Init, T1))
4035        return true;
4036      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4037    }
4038    return false;
4039  }
4040
4041  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4042  //          initialized from the initializer expression using the
4043  //          rules for a non-reference copy initialization (8.5). The
4044  //          reference is then bound to the temporary. If T1 is
4045  //          reference-related to T2, cv1 must be the same
4046  //          cv-qualification as, or greater cv-qualification than,
4047  //          cv2; otherwise, the program is ill-formed.
4048  if (RefRelationship == Ref_Related) {
4049    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4050    // we would be reference-compatible or reference-compatible with
4051    // added qualification. But that wasn't the case, so the reference
4052    // initialization fails.
4053    if (!ICS)
4054      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4055        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4056        << T2 << Init->getSourceRange();
4057    return true;
4058  }
4059
4060  // If at least one of the types is a class type, the types are not
4061  // related, and we aren't allowed any user conversions, the
4062  // reference binding fails. This case is important for breaking
4063  // recursion, since TryImplicitConversion below will attempt to
4064  // create a temporary through the use of a copy constructor.
4065  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4066      (T1->isRecordType() || T2->isRecordType())) {
4067    if (!ICS)
4068      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4069        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
4070    return true;
4071  }
4072
4073  // Actually try to convert the initializer to T1.
4074  if (ICS) {
4075    // C++ [over.ics.ref]p2:
4076    //
4077    //   When a parameter of reference type is not bound directly to
4078    //   an argument expression, the conversion sequence is the one
4079    //   required to convert the argument expression to the
4080    //   underlying type of the reference according to
4081    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4082    //   to copy-initializing a temporary of the underlying type with
4083    //   the argument expression. Any difference in top-level
4084    //   cv-qualification is subsumed by the initialization itself
4085    //   and does not constitute a conversion.
4086    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4087                                 /*AllowExplicit=*/false,
4088                                 /*ForceRValue=*/false,
4089                                 /*InOverloadResolution=*/false);
4090
4091    // Of course, that's still a reference binding.
4092    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4093      ICS->Standard.ReferenceBinding = true;
4094      ICS->Standard.RRefBinding = isRValRef;
4095    } else if (ICS->ConversionKind ==
4096              ImplicitConversionSequence::UserDefinedConversion) {
4097      ICS->UserDefined.After.ReferenceBinding = true;
4098      ICS->UserDefined.After.RRefBinding = isRValRef;
4099    }
4100    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4101  } else {
4102    ImplicitConversionSequence Conversions;
4103    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
4104                                                   false, false,
4105                                                   Conversions);
4106    if (badConversion) {
4107      if ((Conversions.ConversionKind  ==
4108            ImplicitConversionSequence::BadConversion)
4109          && !Conversions.ConversionFunctionSet.empty()) {
4110        Diag(DeclLoc,
4111             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4112        for (int j = Conversions.ConversionFunctionSet.size()-1;
4113             j >= 0; j--) {
4114          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4115          Diag(Func->getLocation(), diag::err_ovl_candidate);
4116        }
4117      }
4118      else {
4119        if (isRValRef)
4120          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4121            << Init->getSourceRange();
4122        else
4123          Diag(DeclLoc, diag::err_invalid_initialization)
4124            << DeclType << Init->getType() << Init->getSourceRange();
4125      }
4126    }
4127    return badConversion;
4128  }
4129}
4130
4131/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4132/// of this overloaded operator is well-formed. If so, returns false;
4133/// otherwise, emits appropriate diagnostics and returns true.
4134bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4135  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4136         "Expected an overloaded operator declaration");
4137
4138  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4139
4140  // C++ [over.oper]p5:
4141  //   The allocation and deallocation functions, operator new,
4142  //   operator new[], operator delete and operator delete[], are
4143  //   described completely in 3.7.3. The attributes and restrictions
4144  //   found in the rest of this subclause do not apply to them unless
4145  //   explicitly stated in 3.7.3.
4146  // FIXME: Write a separate routine for checking this. For now, just allow it.
4147  if (Op == OO_Delete || Op == OO_Array_Delete)
4148    return false;
4149
4150  if (Op == OO_New || Op == OO_Array_New) {
4151    bool ret = false;
4152    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4153      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4154      QualType T = Context.getCanonicalType((*Param)->getType());
4155      if (!T->isDependentType() && SizeTy != T) {
4156        Diag(FnDecl->getLocation(),
4157             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4158              << SizeTy;
4159        ret = true;
4160      }
4161    }
4162    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4163    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4164      return Diag(FnDecl->getLocation(),
4165                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4166                  << static_cast<QualType>(Context.VoidPtrTy);
4167    return ret;
4168  }
4169
4170  // C++ [over.oper]p6:
4171  //   An operator function shall either be a non-static member
4172  //   function or be a non-member function and have at least one
4173  //   parameter whose type is a class, a reference to a class, an
4174  //   enumeration, or a reference to an enumeration.
4175  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4176    if (MethodDecl->isStatic())
4177      return Diag(FnDecl->getLocation(),
4178                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4179  } else {
4180    bool ClassOrEnumParam = false;
4181    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4182                                   ParamEnd = FnDecl->param_end();
4183         Param != ParamEnd; ++Param) {
4184      QualType ParamType = (*Param)->getType().getNonReferenceType();
4185      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4186          ParamType->isEnumeralType()) {
4187        ClassOrEnumParam = true;
4188        break;
4189      }
4190    }
4191
4192    if (!ClassOrEnumParam)
4193      return Diag(FnDecl->getLocation(),
4194                  diag::err_operator_overload_needs_class_or_enum)
4195        << FnDecl->getDeclName();
4196  }
4197
4198  // C++ [over.oper]p8:
4199  //   An operator function cannot have default arguments (8.3.6),
4200  //   except where explicitly stated below.
4201  //
4202  // Only the function-call operator allows default arguments
4203  // (C++ [over.call]p1).
4204  if (Op != OO_Call) {
4205    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4206         Param != FnDecl->param_end(); ++Param) {
4207      if ((*Param)->hasUnparsedDefaultArg())
4208        return Diag((*Param)->getLocation(),
4209                    diag::err_operator_overload_default_arg)
4210          << FnDecl->getDeclName();
4211      else if (Expr *DefArg = (*Param)->getDefaultArg())
4212        return Diag((*Param)->getLocation(),
4213                    diag::err_operator_overload_default_arg)
4214          << FnDecl->getDeclName() << DefArg->getSourceRange();
4215    }
4216  }
4217
4218  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4219    { false, false, false }
4220#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4221    , { Unary, Binary, MemberOnly }
4222#include "clang/Basic/OperatorKinds.def"
4223  };
4224
4225  bool CanBeUnaryOperator = OperatorUses[Op][0];
4226  bool CanBeBinaryOperator = OperatorUses[Op][1];
4227  bool MustBeMemberOperator = OperatorUses[Op][2];
4228
4229  // C++ [over.oper]p8:
4230  //   [...] Operator functions cannot have more or fewer parameters
4231  //   than the number required for the corresponding operator, as
4232  //   described in the rest of this subclause.
4233  unsigned NumParams = FnDecl->getNumParams()
4234                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4235  if (Op != OO_Call &&
4236      ((NumParams == 1 && !CanBeUnaryOperator) ||
4237       (NumParams == 2 && !CanBeBinaryOperator) ||
4238       (NumParams < 1) || (NumParams > 2))) {
4239    // We have the wrong number of parameters.
4240    unsigned ErrorKind;
4241    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4242      ErrorKind = 2;  // 2 -> unary or binary.
4243    } else if (CanBeUnaryOperator) {
4244      ErrorKind = 0;  // 0 -> unary
4245    } else {
4246      assert(CanBeBinaryOperator &&
4247             "All non-call overloaded operators are unary or binary!");
4248      ErrorKind = 1;  // 1 -> binary
4249    }
4250
4251    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4252      << FnDecl->getDeclName() << NumParams << ErrorKind;
4253  }
4254
4255  // Overloaded operators other than operator() cannot be variadic.
4256  if (Op != OO_Call &&
4257      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4258    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4259      << FnDecl->getDeclName();
4260  }
4261
4262  // Some operators must be non-static member functions.
4263  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4264    return Diag(FnDecl->getLocation(),
4265                diag::err_operator_overload_must_be_member)
4266      << FnDecl->getDeclName();
4267  }
4268
4269  // C++ [over.inc]p1:
4270  //   The user-defined function called operator++ implements the
4271  //   prefix and postfix ++ operator. If this function is a member
4272  //   function with no parameters, or a non-member function with one
4273  //   parameter of class or enumeration type, it defines the prefix
4274  //   increment operator ++ for objects of that type. If the function
4275  //   is a member function with one parameter (which shall be of type
4276  //   int) or a non-member function with two parameters (the second
4277  //   of which shall be of type int), it defines the postfix
4278  //   increment operator ++ for objects of that type.
4279  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4280    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4281    bool ParamIsInt = false;
4282    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4283      ParamIsInt = BT->getKind() == BuiltinType::Int;
4284
4285    if (!ParamIsInt)
4286      return Diag(LastParam->getLocation(),
4287                  diag::err_operator_overload_post_incdec_must_be_int)
4288        << LastParam->getType() << (Op == OO_MinusMinus);
4289  }
4290
4291  // Notify the class if it got an assignment operator.
4292  if (Op == OO_Equal) {
4293    // Would have returned earlier otherwise.
4294    assert(isa<CXXMethodDecl>(FnDecl) &&
4295      "Overloaded = not member, but not filtered.");
4296    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4297    Method->getParent()->addedAssignmentOperator(Context, Method);
4298  }
4299
4300  return false;
4301}
4302
4303/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4304/// linkage specification, including the language and (if present)
4305/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4306/// the location of the language string literal, which is provided
4307/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4308/// the '{' brace. Otherwise, this linkage specification does not
4309/// have any braces.
4310Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4311                                                     SourceLocation ExternLoc,
4312                                                     SourceLocation LangLoc,
4313                                                     const char *Lang,
4314                                                     unsigned StrSize,
4315                                                     SourceLocation LBraceLoc) {
4316  LinkageSpecDecl::LanguageIDs Language;
4317  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4318    Language = LinkageSpecDecl::lang_c;
4319  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4320    Language = LinkageSpecDecl::lang_cxx;
4321  else {
4322    Diag(LangLoc, diag::err_bad_language);
4323    return DeclPtrTy();
4324  }
4325
4326  // FIXME: Add all the various semantics of linkage specifications
4327
4328  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4329                                               LangLoc, Language,
4330                                               LBraceLoc.isValid());
4331  CurContext->addDecl(D);
4332  PushDeclContext(S, D);
4333  return DeclPtrTy::make(D);
4334}
4335
4336/// ActOnFinishLinkageSpecification - Completely the definition of
4337/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4338/// valid, it's the position of the closing '}' brace in a linkage
4339/// specification that uses braces.
4340Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4341                                                      DeclPtrTy LinkageSpec,
4342                                                      SourceLocation RBraceLoc) {
4343  if (LinkageSpec)
4344    PopDeclContext();
4345  return LinkageSpec;
4346}
4347
4348/// \brief Perform semantic analysis for the variable declaration that
4349/// occurs within a C++ catch clause, returning the newly-created
4350/// variable.
4351VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4352                                         DeclaratorInfo *DInfo,
4353                                         IdentifierInfo *Name,
4354                                         SourceLocation Loc,
4355                                         SourceRange Range) {
4356  bool Invalid = false;
4357
4358  // Arrays and functions decay.
4359  if (ExDeclType->isArrayType())
4360    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4361  else if (ExDeclType->isFunctionType())
4362    ExDeclType = Context.getPointerType(ExDeclType);
4363
4364  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4365  // The exception-declaration shall not denote a pointer or reference to an
4366  // incomplete type, other than [cv] void*.
4367  // N2844 forbids rvalue references.
4368  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4369    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4370    Invalid = true;
4371  }
4372
4373  QualType BaseType = ExDeclType;
4374  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4375  unsigned DK = diag::err_catch_incomplete;
4376  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4377    BaseType = Ptr->getPointeeType();
4378    Mode = 1;
4379    DK = diag::err_catch_incomplete_ptr;
4380  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4381    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4382    BaseType = Ref->getPointeeType();
4383    Mode = 2;
4384    DK = diag::err_catch_incomplete_ref;
4385  }
4386  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4387      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4388    Invalid = true;
4389
4390  if (!Invalid && !ExDeclType->isDependentType() &&
4391      RequireNonAbstractType(Loc, ExDeclType,
4392                             diag::err_abstract_type_in_decl,
4393                             AbstractVariableType))
4394    Invalid = true;
4395
4396  // FIXME: Need to test for ability to copy-construct and destroy the
4397  // exception variable.
4398
4399  // FIXME: Need to check for abstract classes.
4400
4401  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4402                                    Name, ExDeclType, DInfo, VarDecl::None);
4403
4404  if (Invalid)
4405    ExDecl->setInvalidDecl();
4406
4407  return ExDecl;
4408}
4409
4410/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4411/// handler.
4412Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4413  DeclaratorInfo *DInfo = 0;
4414  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4415
4416  bool Invalid = D.isInvalidType();
4417  IdentifierInfo *II = D.getIdentifier();
4418  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4419    // The scope should be freshly made just for us. There is just no way
4420    // it contains any previous declaration.
4421    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4422    if (PrevDecl->isTemplateParameter()) {
4423      // Maybe we will complain about the shadowed template parameter.
4424      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4425    }
4426  }
4427
4428  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4429    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4430      << D.getCXXScopeSpec().getRange();
4431    Invalid = true;
4432  }
4433
4434  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4435                                              D.getIdentifier(),
4436                                              D.getIdentifierLoc(),
4437                                            D.getDeclSpec().getSourceRange());
4438
4439  if (Invalid)
4440    ExDecl->setInvalidDecl();
4441
4442  // Add the exception declaration into this scope.
4443  if (II)
4444    PushOnScopeChains(ExDecl, S);
4445  else
4446    CurContext->addDecl(ExDecl);
4447
4448  ProcessDeclAttributes(S, ExDecl, D);
4449  return DeclPtrTy::make(ExDecl);
4450}
4451
4452Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4453                                                   ExprArg assertexpr,
4454                                                   ExprArg assertmessageexpr) {
4455  Expr *AssertExpr = (Expr *)assertexpr.get();
4456  StringLiteral *AssertMessage =
4457    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4458
4459  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4460    llvm::APSInt Value(32);
4461    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4462      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4463        AssertExpr->getSourceRange();
4464      return DeclPtrTy();
4465    }
4466
4467    if (Value == 0) {
4468      std::string str(AssertMessage->getStrData(),
4469                      AssertMessage->getByteLength());
4470      Diag(AssertLoc, diag::err_static_assert_failed)
4471        << str << AssertExpr->getSourceRange();
4472    }
4473  }
4474
4475  assertexpr.release();
4476  assertmessageexpr.release();
4477  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4478                                        AssertExpr, AssertMessage);
4479
4480  CurContext->addDecl(Decl);
4481  return DeclPtrTy::make(Decl);
4482}
4483
4484/// Handle a friend type declaration.  This works in tandem with
4485/// ActOnTag.
4486///
4487/// Notes on friend class templates:
4488///
4489/// We generally treat friend class declarations as if they were
4490/// declaring a class.  So, for example, the elaborated type specifier
4491/// in a friend declaration is required to obey the restrictions of a
4492/// class-head (i.e. no typedefs in the scope chain), template
4493/// parameters are required to match up with simple template-ids, &c.
4494/// However, unlike when declaring a template specialization, it's
4495/// okay to refer to a template specialization without an empty
4496/// template parameter declaration, e.g.
4497///   friend class A<T>::B<unsigned>;
4498/// We permit this as a special case; if there are any template
4499/// parameters present at all, require proper matching, i.e.
4500///   template <> template <class T> friend class A<int>::B;
4501Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4502                                          MultiTemplateParamsArg TempParams) {
4503  SourceLocation Loc = DS.getSourceRange().getBegin();
4504
4505  assert(DS.isFriendSpecified());
4506  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4507
4508  // Try to convert the decl specifier to a type.  This works for
4509  // friend templates because ActOnTag never produces a ClassTemplateDecl
4510  // for a TUK_Friend.
4511  Declarator TheDeclarator(DS, Declarator::MemberContext);
4512  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4513  if (TheDeclarator.isInvalidType())
4514    return DeclPtrTy();
4515
4516  // This is definitely an error in C++98.  It's probably meant to
4517  // be forbidden in C++0x, too, but the specification is just
4518  // poorly written.
4519  //
4520  // The problem is with declarations like the following:
4521  //   template <T> friend A<T>::foo;
4522  // where deciding whether a class C is a friend or not now hinges
4523  // on whether there exists an instantiation of A that causes
4524  // 'foo' to equal C.  There are restrictions on class-heads
4525  // (which we declare (by fiat) elaborated friend declarations to
4526  // be) that makes this tractable.
4527  //
4528  // FIXME: handle "template <> friend class A<T>;", which
4529  // is possibly well-formed?  Who even knows?
4530  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4531    Diag(Loc, diag::err_tagless_friend_type_template)
4532      << DS.getSourceRange();
4533    return DeclPtrTy();
4534  }
4535
4536  // C++ [class.friend]p2:
4537  //   An elaborated-type-specifier shall be used in a friend declaration
4538  //   for a class.*
4539  //   * The class-key of the elaborated-type-specifier is required.
4540  // This is one of the rare places in Clang where it's legitimate to
4541  // ask about the "spelling" of the type.
4542  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4543    // If we evaluated the type to a record type, suggest putting
4544    // a tag in front.
4545    if (const RecordType *RT = T->getAs<RecordType>()) {
4546      RecordDecl *RD = RT->getDecl();
4547
4548      std::string InsertionText = std::string(" ") + RD->getKindName();
4549
4550      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4551        << (unsigned) RD->getTagKind()
4552        << T
4553        << SourceRange(DS.getFriendSpecLoc())
4554        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4555                                                 InsertionText);
4556      return DeclPtrTy();
4557    }else {
4558      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4559          << DS.getSourceRange();
4560      return DeclPtrTy();
4561    }
4562  }
4563
4564  // Enum types cannot be friends.
4565  if (T->getAs<EnumType>()) {
4566    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4567      << SourceRange(DS.getFriendSpecLoc());
4568    return DeclPtrTy();
4569  }
4570
4571  // C++98 [class.friend]p1: A friend of a class is a function
4572  //   or class that is not a member of the class . . .
4573  // But that's a silly restriction which nobody implements for
4574  // inner classes, and C++0x removes it anyway, so we only report
4575  // this (as a warning) if we're being pedantic.
4576  if (!getLangOptions().CPlusPlus0x)
4577    if (const RecordType *RT = T->getAs<RecordType>())
4578      if (RT->getDecl()->getDeclContext() == CurContext)
4579        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4580
4581  Decl *D;
4582  if (TempParams.size())
4583    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4584                                   TempParams.size(),
4585                                 (TemplateParameterList**) TempParams.release(),
4586                                   T.getTypePtr(),
4587                                   DS.getFriendSpecLoc());
4588  else
4589    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4590                           DS.getFriendSpecLoc());
4591  D->setAccess(AS_public);
4592  CurContext->addDecl(D);
4593
4594  return DeclPtrTy::make(D);
4595}
4596
4597Sema::DeclPtrTy
4598Sema::ActOnFriendFunctionDecl(Scope *S,
4599                              Declarator &D,
4600                              bool IsDefinition,
4601                              MultiTemplateParamsArg TemplateParams) {
4602  const DeclSpec &DS = D.getDeclSpec();
4603
4604  assert(DS.isFriendSpecified());
4605  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4606
4607  SourceLocation Loc = D.getIdentifierLoc();
4608  DeclaratorInfo *DInfo = 0;
4609  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4610
4611  // C++ [class.friend]p1
4612  //   A friend of a class is a function or class....
4613  // Note that this sees through typedefs, which is intended.
4614  // It *doesn't* see through dependent types, which is correct
4615  // according to [temp.arg.type]p3:
4616  //   If a declaration acquires a function type through a
4617  //   type dependent on a template-parameter and this causes
4618  //   a declaration that does not use the syntactic form of a
4619  //   function declarator to have a function type, the program
4620  //   is ill-formed.
4621  if (!T->isFunctionType()) {
4622    Diag(Loc, diag::err_unexpected_friend);
4623
4624    // It might be worthwhile to try to recover by creating an
4625    // appropriate declaration.
4626    return DeclPtrTy();
4627  }
4628
4629  // C++ [namespace.memdef]p3
4630  //  - If a friend declaration in a non-local class first declares a
4631  //    class or function, the friend class or function is a member
4632  //    of the innermost enclosing namespace.
4633  //  - The name of the friend is not found by simple name lookup
4634  //    until a matching declaration is provided in that namespace
4635  //    scope (either before or after the class declaration granting
4636  //    friendship).
4637  //  - If a friend function is called, its name may be found by the
4638  //    name lookup that considers functions from namespaces and
4639  //    classes associated with the types of the function arguments.
4640  //  - When looking for a prior declaration of a class or a function
4641  //    declared as a friend, scopes outside the innermost enclosing
4642  //    namespace scope are not considered.
4643
4644  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4645  DeclarationName Name = GetNameForDeclarator(D);
4646  assert(Name);
4647
4648  // The context we found the declaration in, or in which we should
4649  // create the declaration.
4650  DeclContext *DC;
4651
4652  // FIXME: handle local classes
4653
4654  // Recover from invalid scope qualifiers as if they just weren't there.
4655  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
4656                        ForRedeclaration);
4657  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4658    // FIXME: RequireCompleteDeclContext
4659    DC = computeDeclContext(ScopeQual);
4660
4661    // FIXME: handle dependent contexts
4662    if (!DC) return DeclPtrTy();
4663
4664    LookupQualifiedName(Previous, DC);
4665
4666    // If searching in that context implicitly found a declaration in
4667    // a different context, treat it like it wasn't found at all.
4668    // TODO: better diagnostics for this case.  Suggesting the right
4669    // qualified scope would be nice...
4670    // FIXME: getRepresentativeDecl() is not right here at all
4671    if (Previous.empty() ||
4672        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
4673      D.setInvalidType();
4674      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4675      return DeclPtrTy();
4676    }
4677
4678    // C++ [class.friend]p1: A friend of a class is a function or
4679    //   class that is not a member of the class . . .
4680    if (DC->Equals(CurContext))
4681      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4682
4683  // Otherwise walk out to the nearest namespace scope looking for matches.
4684  } else {
4685    // TODO: handle local class contexts.
4686
4687    DC = CurContext;
4688    while (true) {
4689      // Skip class contexts.  If someone can cite chapter and verse
4690      // for this behavior, that would be nice --- it's what GCC and
4691      // EDG do, and it seems like a reasonable intent, but the spec
4692      // really only says that checks for unqualified existing
4693      // declarations should stop at the nearest enclosing namespace,
4694      // not that they should only consider the nearest enclosing
4695      // namespace.
4696      while (DC->isRecord())
4697        DC = DC->getParent();
4698
4699      LookupQualifiedName(Previous, DC);
4700
4701      // TODO: decide what we think about using declarations.
4702      if (!Previous.empty())
4703        break;
4704
4705      if (DC->isFileContext()) break;
4706      DC = DC->getParent();
4707    }
4708
4709    // C++ [class.friend]p1: A friend of a class is a function or
4710    //   class that is not a member of the class . . .
4711    // C++0x changes this for both friend types and functions.
4712    // Most C++ 98 compilers do seem to give an error here, so
4713    // we do, too.
4714    if (!Previous.empty() && DC->Equals(CurContext)
4715        && !getLangOptions().CPlusPlus0x)
4716      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4717  }
4718
4719  if (DC->isFileContext()) {
4720    // This implies that it has to be an operator or function.
4721    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4722        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4723        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4724      Diag(Loc, diag::err_introducing_special_friend) <<
4725        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4726         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4727      return DeclPtrTy();
4728    }
4729  }
4730
4731  bool Redeclaration = false;
4732  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, Previous,
4733                                          move(TemplateParams),
4734                                          IsDefinition,
4735                                          Redeclaration);
4736  if (!ND) return DeclPtrTy();
4737
4738  assert(ND->getDeclContext() == DC);
4739  assert(ND->getLexicalDeclContext() == CurContext);
4740
4741  // Add the function declaration to the appropriate lookup tables,
4742  // adjusting the redeclarations list as necessary.  We don't
4743  // want to do this yet if the friending class is dependent.
4744  //
4745  // Also update the scope-based lookup if the target context's
4746  // lookup context is in lexical scope.
4747  if (!CurContext->isDependentContext()) {
4748    DC = DC->getLookupContext();
4749    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4750    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4751      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4752  }
4753
4754  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4755                                       D.getIdentifierLoc(), ND,
4756                                       DS.getFriendSpecLoc());
4757  FrD->setAccess(AS_public);
4758  CurContext->addDecl(FrD);
4759
4760  return DeclPtrTy::make(ND);
4761}
4762
4763void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4764  AdjustDeclIfTemplate(dcl);
4765
4766  Decl *Dcl = dcl.getAs<Decl>();
4767  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4768  if (!Fn) {
4769    Diag(DelLoc, diag::err_deleted_non_function);
4770    return;
4771  }
4772  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4773    Diag(DelLoc, diag::err_deleted_decl_not_first);
4774    Diag(Prev->getLocation(), diag::note_previous_declaration);
4775    // If the declaration wasn't the first, we delete the function anyway for
4776    // recovery.
4777  }
4778  Fn->setDeleted();
4779}
4780
4781static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4782  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4783       ++CI) {
4784    Stmt *SubStmt = *CI;
4785    if (!SubStmt)
4786      continue;
4787    if (isa<ReturnStmt>(SubStmt))
4788      Self.Diag(SubStmt->getSourceRange().getBegin(),
4789           diag::err_return_in_constructor_handler);
4790    if (!isa<Expr>(SubStmt))
4791      SearchForReturnInStmt(Self, SubStmt);
4792  }
4793}
4794
4795void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4796  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4797    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4798    SearchForReturnInStmt(*this, Handler);
4799  }
4800}
4801
4802bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4803                                             const CXXMethodDecl *Old) {
4804  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4805  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4806
4807  QualType CNewTy = Context.getCanonicalType(NewTy);
4808  QualType COldTy = Context.getCanonicalType(OldTy);
4809
4810  if (CNewTy == COldTy &&
4811      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
4812    return false;
4813
4814  // Check if the return types are covariant
4815  QualType NewClassTy, OldClassTy;
4816
4817  /// Both types must be pointers or references to classes.
4818  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4819    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4820      NewClassTy = NewPT->getPointeeType();
4821      OldClassTy = OldPT->getPointeeType();
4822    }
4823  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4824    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4825      NewClassTy = NewRT->getPointeeType();
4826      OldClassTy = OldRT->getPointeeType();
4827    }
4828  }
4829
4830  // The return types aren't either both pointers or references to a class type.
4831  if (NewClassTy.isNull()) {
4832    Diag(New->getLocation(),
4833         diag::err_different_return_type_for_overriding_virtual_function)
4834      << New->getDeclName() << NewTy << OldTy;
4835    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4836
4837    return true;
4838  }
4839
4840  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
4841    // Check if the new class derives from the old class.
4842    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4843      Diag(New->getLocation(),
4844           diag::err_covariant_return_not_derived)
4845      << New->getDeclName() << NewTy << OldTy;
4846      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4847      return true;
4848    }
4849
4850    // Check if we the conversion from derived to base is valid.
4851    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4852                      diag::err_covariant_return_inaccessible_base,
4853                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4854                      // FIXME: Should this point to the return type?
4855                      New->getLocation(), SourceRange(), New->getDeclName())) {
4856      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4857      return true;
4858    }
4859  }
4860
4861  // The qualifiers of the return types must be the same.
4862  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
4863    Diag(New->getLocation(),
4864         diag::err_covariant_return_type_different_qualifications)
4865    << New->getDeclName() << NewTy << OldTy;
4866    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4867    return true;
4868  };
4869
4870
4871  // The new class type must have the same or less qualifiers as the old type.
4872  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4873    Diag(New->getLocation(),
4874         diag::err_covariant_return_type_class_type_more_qualified)
4875    << New->getDeclName() << NewTy << OldTy;
4876    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4877    return true;
4878  };
4879
4880  return false;
4881}
4882
4883bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
4884                                             const CXXMethodDecl *Old)
4885{
4886  if (Old->hasAttr<FinalAttr>()) {
4887    Diag(New->getLocation(), diag::err_final_function_overridden)
4888      << New->getDeclName();
4889    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4890    return true;
4891  }
4892
4893  return false;
4894}
4895
4896/// \brief Mark the given method pure.
4897///
4898/// \param Method the method to be marked pure.
4899///
4900/// \param InitRange the source range that covers the "0" initializer.
4901bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
4902  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
4903    Method->setPure();
4904
4905    // A class is abstract if at least one function is pure virtual.
4906    Method->getParent()->setAbstract(true);
4907    return false;
4908  }
4909
4910  if (!Method->isInvalidDecl())
4911    Diag(Method->getLocation(), diag::err_non_virtual_pure)
4912      << Method->getDeclName() << InitRange;
4913  return true;
4914}
4915
4916/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4917/// initializer for the declaration 'Dcl'.
4918/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4919/// static data member of class X, names should be looked up in the scope of
4920/// class X.
4921void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4922  AdjustDeclIfTemplate(Dcl);
4923
4924  Decl *D = Dcl.getAs<Decl>();
4925  // If there is no declaration, there was an error parsing it.
4926  if (D == 0)
4927    return;
4928
4929  // Check whether it is a declaration with a nested name specifier like
4930  // int foo::bar;
4931  if (!D->isOutOfLine())
4932    return;
4933
4934  // C++ [basic.lookup.unqual]p13
4935  //
4936  // A name used in the definition of a static data member of class X
4937  // (after the qualified-id of the static member) is looked up as if the name
4938  // was used in a member function of X.
4939
4940  // Change current context into the context of the initializing declaration.
4941  EnterDeclaratorContext(S, D->getDeclContext());
4942}
4943
4944/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4945/// initializer for the declaration 'Dcl'.
4946void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4947  AdjustDeclIfTemplate(Dcl);
4948
4949  Decl *D = Dcl.getAs<Decl>();
4950  // If there is no declaration, there was an error parsing it.
4951  if (D == 0)
4952    return;
4953
4954  // Check whether it is a declaration with a nested name specifier like
4955  // int foo::bar;
4956  if (!D->isOutOfLine())
4957    return;
4958
4959  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4960  ExitDeclaratorContext(S);
4961}
4962
4963/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
4964/// C++ if/switch/while/for statement.
4965/// e.g: "if (int x = f()) {...}"
4966Action::DeclResult
4967Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
4968  // C++ 6.4p2:
4969  // The declarator shall not specify a function or an array.
4970  // The type-specifier-seq shall not contain typedef and shall not declare a
4971  // new class or enumeration.
4972  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
4973         "Parser allowed 'typedef' as storage class of condition decl.");
4974
4975  DeclaratorInfo *DInfo = 0;
4976  TagDecl *OwnedTag = 0;
4977  QualType Ty = GetTypeForDeclarator(D, S, &DInfo, &OwnedTag);
4978
4979  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
4980                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
4981                              // would be created and CXXConditionDeclExpr wants a VarDecl.
4982    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
4983      << D.getSourceRange();
4984    return DeclResult();
4985  } else if (OwnedTag && OwnedTag->isDefinition()) {
4986    // The type-specifier-seq shall not declare a new class or enumeration.
4987    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
4988  }
4989
4990  DeclPtrTy Dcl = ActOnDeclarator(S, D);
4991  if (!Dcl)
4992    return DeclResult();
4993
4994  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
4995  VD->setDeclaredInCondition(true);
4996  return Dcl;
4997}
4998
4999void Sema::MaybeMarkVirtualImplicitMembersReferenced(SourceLocation Loc,
5000                                                     CXXMethodDecl *MD) {
5001  // Ignore dependent types.
5002  if (MD->isDependentContext())
5003    return;
5004
5005  CXXRecordDecl *RD = MD->getParent();
5006  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5007  const CXXMethodDecl *KeyFunction = Layout.getKeyFunction();
5008
5009  if (!KeyFunction) {
5010    // This record does not have a key function, so we assume that the vtable
5011    // will be emitted when it's used by the constructor.
5012    if (!isa<CXXConstructorDecl>(MD))
5013      return;
5014  } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) {
5015    // We don't have the right key function.
5016    return;
5017  }
5018
5019  if (CXXDestructorDecl *Dtor = RD->getDestructor(Context)) {
5020    if (Dtor->isImplicit() && Dtor->isVirtual())
5021      MarkDeclarationReferenced(Loc, Dtor);
5022  }
5023
5024  // FIXME: Need to handle the virtual assignment operator here too.
5025}
5026