SemaDeclCXX.cpp revision 627c055b81f90ad8af138615887af68a55bd1383
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
392  assert(CXXBaseDecl && "Base type is not a C++ type");
393  if (!CXXBaseDecl->isEmpty())
394    Class->setEmpty(false);
395  if (CXXBaseDecl->isPolymorphic())
396    Class->setPolymorphic(true);
397
398  // C++ [dcl.init.aggr]p1:
399  //   An aggregate is [...] a class with [...] no base classes [...].
400  Class->setAggregate(false);
401  Class->setPOD(false);
402
403  if (Virtual) {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialConstructor(false);
407
408    // C++ [class.copy]p6:
409    //   A copy constructor is trivial if its class has no virtual base classes.
410    Class->setHasTrivialCopyConstructor(false);
411
412    // C++ [class.copy]p11:
413    //   A copy assignment operator is trivial if its class has no virtual
414    //   base classes.
415    Class->setHasTrivialCopyAssignment(false);
416
417    // C++0x [meta.unary.prop] is_empty:
418    //    T is a class type, but not a union type, with ... no virtual base
419    //    classes
420    Class->setEmpty(false);
421  } else {
422    // C++ [class.ctor]p5:
423    //   A constructor is trivial if all the direct base classes of its
424    //   class have trivial constructors.
425    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
426      Class->setHasTrivialConstructor(false);
427
428    // C++ [class.copy]p6:
429    //   A copy constructor is trivial if all the direct base classes of its
430    //   class have trivial copy constructors.
431    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
432      Class->setHasTrivialCopyConstructor(false);
433
434    // C++ [class.copy]p11:
435    //   A copy assignment operator is trivial if all the direct base classes
436    //   of its class have trivial copy assignment operators.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
438      Class->setHasTrivialCopyAssignment(false);
439  }
440
441  // C++ [class.ctor]p3:
442  //   A destructor is trivial if all the direct base classes of its class
443  //   have trivial destructors.
444  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
445    Class->setHasTrivialDestructor(false);
446
447  // Create the base specifier.
448  // FIXME: Allocate via ASTContext?
449  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
450                              Class->getTagKind() == RecordDecl::TK_class,
451                              Access, BaseType);
452}
453
454/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
455/// one entry in the base class list of a class specifier, for
456/// example:
457///    class foo : public bar, virtual private baz {
458/// 'public bar' and 'virtual private baz' are each base-specifiers.
459Sema::BaseResult
460Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
461                         bool Virtual, AccessSpecifier Access,
462                         TypeTy *basetype, SourceLocation BaseLoc) {
463  if (!classdecl)
464    return true;
465
466  AdjustDeclIfTemplate(classdecl);
467  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
468  QualType BaseType = GetTypeFromParser(basetype);
469  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
470                                                      Virtual, Access,
471                                                      BaseType, BaseLoc))
472    return BaseSpec;
473
474  return true;
475}
476
477/// \brief Performs the actual work of attaching the given base class
478/// specifiers to a C++ class.
479bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
480                                unsigned NumBases) {
481 if (NumBases == 0)
482    return false;
483
484  // Used to keep track of which base types we have already seen, so
485  // that we can properly diagnose redundant direct base types. Note
486  // that the key is always the unqualified canonical type of the base
487  // class.
488  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
489
490  // Copy non-redundant base specifiers into permanent storage.
491  unsigned NumGoodBases = 0;
492  bool Invalid = false;
493  for (unsigned idx = 0; idx < NumBases; ++idx) {
494    QualType NewBaseType
495      = Context.getCanonicalType(Bases[idx]->getType());
496    NewBaseType = NewBaseType.getUnqualifiedType();
497
498    if (KnownBaseTypes[NewBaseType]) {
499      // C++ [class.mi]p3:
500      //   A class shall not be specified as a direct base class of a
501      //   derived class more than once.
502      Diag(Bases[idx]->getSourceRange().getBegin(),
503           diag::err_duplicate_base_class)
504        << KnownBaseTypes[NewBaseType]->getType()
505        << Bases[idx]->getSourceRange();
506
507      // Delete the duplicate base class specifier; we're going to
508      // overwrite its pointer later.
509      Context.Deallocate(Bases[idx]);
510
511      Invalid = true;
512    } else {
513      // Okay, add this new base class.
514      KnownBaseTypes[NewBaseType] = Bases[idx];
515      Bases[NumGoodBases++] = Bases[idx];
516    }
517  }
518
519  // Attach the remaining base class specifiers to the derived class.
520  Class->setBases(Context, Bases, NumGoodBases);
521
522  // Delete the remaining (good) base class specifiers, since their
523  // data has been copied into the CXXRecordDecl.
524  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
525    Context.Deallocate(Bases[idx]);
526
527  return Invalid;
528}
529
530/// ActOnBaseSpecifiers - Attach the given base specifiers to the
531/// class, after checking whether there are any duplicate base
532/// classes.
533void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
534                               unsigned NumBases) {
535  if (!ClassDecl || !Bases || !NumBases)
536    return;
537
538  AdjustDeclIfTemplate(ClassDecl);
539  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
540                       (CXXBaseSpecifier**)(Bases), NumBases);
541}
542
543//===----------------------------------------------------------------------===//
544// C++ class member Handling
545//===----------------------------------------------------------------------===//
546
547/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
548/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
549/// bitfield width if there is one and 'InitExpr' specifies the initializer if
550/// any.
551Sema::DeclPtrTy
552Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
553                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
554  const DeclSpec &DS = D.getDeclSpec();
555  DeclarationName Name = GetNameForDeclarator(D);
556  Expr *BitWidth = static_cast<Expr*>(BW);
557  Expr *Init = static_cast<Expr*>(InitExpr);
558  SourceLocation Loc = D.getIdentifierLoc();
559
560  bool isFunc = D.isFunctionDeclarator();
561
562  assert(!DS.isFriendSpecified());
563
564  // C++ 9.2p6: A member shall not be declared to have automatic storage
565  // duration (auto, register) or with the extern storage-class-specifier.
566  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
567  // data members and cannot be applied to names declared const or static,
568  // and cannot be applied to reference members.
569  switch (DS.getStorageClassSpec()) {
570    case DeclSpec::SCS_unspecified:
571    case DeclSpec::SCS_typedef:
572    case DeclSpec::SCS_static:
573      // FALL THROUGH.
574      break;
575    case DeclSpec::SCS_mutable:
576      if (isFunc) {
577        if (DS.getStorageClassSpecLoc().isValid())
578          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
579        else
580          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
581
582        // FIXME: It would be nicer if the keyword was ignored only for this
583        // declarator. Otherwise we could get follow-up errors.
584        D.getMutableDeclSpec().ClearStorageClassSpecs();
585      } else {
586        QualType T = GetTypeForDeclarator(D, S);
587        diag::kind err = static_cast<diag::kind>(0);
588        if (T->isReferenceType())
589          err = diag::err_mutable_reference;
590        else if (T.isConstQualified())
591          err = diag::err_mutable_const;
592        if (err != 0) {
593          if (DS.getStorageClassSpecLoc().isValid())
594            Diag(DS.getStorageClassSpecLoc(), err);
595          else
596            Diag(DS.getThreadSpecLoc(), err);
597          // FIXME: It would be nicer if the keyword was ignored only for this
598          // declarator. Otherwise we could get follow-up errors.
599          D.getMutableDeclSpec().ClearStorageClassSpecs();
600        }
601      }
602      break;
603    default:
604      if (DS.getStorageClassSpecLoc().isValid())
605        Diag(DS.getStorageClassSpecLoc(),
606             diag::err_storageclass_invalid_for_member);
607      else
608        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
609      D.getMutableDeclSpec().ClearStorageClassSpecs();
610  }
611
612  if (!isFunc &&
613      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
614      D.getNumTypeObjects() == 0) {
615    // Check also for this case:
616    //
617    // typedef int f();
618    // f a;
619    //
620    QualType TDType = GetTypeFromParser(DS.getTypeRep());
621    isFunc = TDType->isFunctionType();
622  }
623
624  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
625                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
626                      !isFunc);
627
628  Decl *Member;
629  if (isInstField) {
630    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
631                         AS);
632    assert(Member && "HandleField never returns null");
633  } else {
634    Member = ActOnDeclarator(S, D).getAs<Decl>();
635    if (!Member) {
636      if (BitWidth) DeleteExpr(BitWidth);
637      return DeclPtrTy();
638    }
639
640    // Non-instance-fields can't have a bitfield.
641    if (BitWidth) {
642      if (Member->isInvalidDecl()) {
643        // don't emit another diagnostic.
644      } else if (isa<VarDecl>(Member)) {
645        // C++ 9.6p3: A bit-field shall not be a static member.
646        // "static member 'A' cannot be a bit-field"
647        Diag(Loc, diag::err_static_not_bitfield)
648          << Name << BitWidth->getSourceRange();
649      } else if (isa<TypedefDecl>(Member)) {
650        // "typedef member 'x' cannot be a bit-field"
651        Diag(Loc, diag::err_typedef_not_bitfield)
652          << Name << BitWidth->getSourceRange();
653      } else {
654        // A function typedef ("typedef int f(); f a;").
655        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
656        Diag(Loc, diag::err_not_integral_type_bitfield)
657          << Name << cast<ValueDecl>(Member)->getType()
658          << BitWidth->getSourceRange();
659      }
660
661      DeleteExpr(BitWidth);
662      BitWidth = 0;
663      Member->setInvalidDecl();
664    }
665
666    Member->setAccess(AS);
667  }
668
669  assert((Name || isInstField) && "No identifier for non-field ?");
670
671  if (Init)
672    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
673  if (Deleted) // FIXME: Source location is not very good.
674    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
675
676  if (isInstField) {
677    FieldCollector->Add(cast<FieldDecl>(Member));
678    return DeclPtrTy();
679  }
680  return DeclPtrTy::make(Member);
681}
682
683/// ActOnMemInitializer - Handle a C++ member initializer.
684Sema::MemInitResult
685Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
686                          Scope *S,
687                          const CXXScopeSpec &SS,
688                          IdentifierInfo *MemberOrBase,
689                          TypeTy *TemplateTypeTy,
690                          SourceLocation IdLoc,
691                          SourceLocation LParenLoc,
692                          ExprTy **Args, unsigned NumArgs,
693                          SourceLocation *CommaLocs,
694                          SourceLocation RParenLoc) {
695  if (!ConstructorD)
696    return true;
697
698  CXXConstructorDecl *Constructor
699    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
700  if (!Constructor) {
701    // The user wrote a constructor initializer on a function that is
702    // not a C++ constructor. Ignore the error for now, because we may
703    // have more member initializers coming; we'll diagnose it just
704    // once in ActOnMemInitializers.
705    return true;
706  }
707
708  CXXRecordDecl *ClassDecl = Constructor->getParent();
709
710  // C++ [class.base.init]p2:
711  //   Names in a mem-initializer-id are looked up in the scope of the
712  //   constructor’s class and, if not found in that scope, are looked
713  //   up in the scope containing the constructor’s
714  //   definition. [Note: if the constructor’s class contains a member
715  //   with the same name as a direct or virtual base class of the
716  //   class, a mem-initializer-id naming the member or base class and
717  //   composed of a single identifier refers to the class member. A
718  //   mem-initializer-id for the hidden base class may be specified
719  //   using a qualified name. ]
720  if (!SS.getScopeRep() && !TemplateTypeTy) {
721    // Look for a member, first.
722    FieldDecl *Member = 0;
723    DeclContext::lookup_result Result
724      = ClassDecl->lookup(MemberOrBase);
725    if (Result.first != Result.second)
726      Member = dyn_cast<FieldDecl>(*Result.first);
727
728    // FIXME: Handle members of an anonymous union.
729
730    if (Member)
731      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
732                                    RParenLoc);
733  }
734  // It didn't name a member, so see if it names a class.
735  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
736                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
737  if (!BaseTy)
738    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
739      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
740
741  QualType BaseType = GetTypeFromParser(BaseTy);
742
743  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
744                              RParenLoc, ClassDecl);
745}
746
747Sema::MemInitResult
748Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
749                             unsigned NumArgs, SourceLocation IdLoc,
750                             SourceLocation RParenLoc) {
751  bool HasDependentArg = false;
752  for (unsigned i = 0; i < NumArgs; i++)
753    HasDependentArg |= Args[i]->isTypeDependent();
754
755  CXXConstructorDecl *C = 0;
756  QualType FieldType = Member->getType();
757  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
758    FieldType = Array->getElementType();
759  if (FieldType->isDependentType()) {
760    // Can't check init for dependent type.
761  } else if (FieldType->getAs<RecordType>()) {
762    if (!HasDependentArg)
763      C = PerformInitializationByConstructor(
764            FieldType, (Expr **)Args, NumArgs, IdLoc,
765            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
766  } else if (NumArgs != 1) {
767    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
768                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
769  } else if (!HasDependentArg) {
770    Expr *NewExp = (Expr*)Args[0];
771    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
772      return true;
773    Args[0] = NewExp;
774  }
775  // FIXME: Perform direct initialization of the member.
776  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
777                                                  NumArgs, C, IdLoc);
778}
779
780Sema::MemInitResult
781Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
782                           unsigned NumArgs, SourceLocation IdLoc,
783                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
784  bool HasDependentArg = false;
785  for (unsigned i = 0; i < NumArgs; i++)
786    HasDependentArg |= Args[i]->isTypeDependent();
787
788  if (!BaseType->isDependentType()) {
789    if (!BaseType->isRecordType())
790      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
791        << BaseType << SourceRange(IdLoc, RParenLoc);
792
793    // C++ [class.base.init]p2:
794    //   [...] Unless the mem-initializer-id names a nonstatic data
795    //   member of the constructor’s class or a direct or virtual base
796    //   of that class, the mem-initializer is ill-formed. A
797    //   mem-initializer-list can initialize a base class using any
798    //   name that denotes that base class type.
799
800    // First, check for a direct base class.
801    const CXXBaseSpecifier *DirectBaseSpec = 0;
802    for (CXXRecordDecl::base_class_const_iterator Base =
803         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
804      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
805          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
806        // We found a direct base of this type. That's what we're
807        // initializing.
808        DirectBaseSpec = &*Base;
809        break;
810      }
811    }
812
813    // Check for a virtual base class.
814    // FIXME: We might be able to short-circuit this if we know in advance that
815    // there are no virtual bases.
816    const CXXBaseSpecifier *VirtualBaseSpec = 0;
817    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
818      // We haven't found a base yet; search the class hierarchy for a
819      // virtual base class.
820      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
821                      /*DetectVirtual=*/false);
822      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
823        for (BasePaths::paths_iterator Path = Paths.begin();
824             Path != Paths.end(); ++Path) {
825          if (Path->back().Base->isVirtual()) {
826            VirtualBaseSpec = Path->back().Base;
827            break;
828          }
829        }
830      }
831    }
832
833    // C++ [base.class.init]p2:
834    //   If a mem-initializer-id is ambiguous because it designates both
835    //   a direct non-virtual base class and an inherited virtual base
836    //   class, the mem-initializer is ill-formed.
837    if (DirectBaseSpec && VirtualBaseSpec)
838      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
839        << BaseType << SourceRange(IdLoc, RParenLoc);
840    // C++ [base.class.init]p2:
841    // Unless the mem-initializer-id names a nonstatic data membeer of the
842    // constructor's class ot a direst or virtual base of that class, the
843    // mem-initializer is ill-formed.
844    if (!DirectBaseSpec && !VirtualBaseSpec)
845      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
846      << BaseType << ClassDecl->getNameAsCString()
847      << SourceRange(IdLoc, RParenLoc);
848  }
849
850  CXXConstructorDecl *C = 0;
851  if (!BaseType->isDependentType() && !HasDependentArg) {
852    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
853                                            Context.getCanonicalType(BaseType));
854    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
855                                           IdLoc, SourceRange(IdLoc, RParenLoc),
856                                           Name, IK_Direct);
857  }
858
859  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
860                                                  NumArgs, C, IdLoc);
861}
862
863void
864Sema::BuildBaseOrMemberInitializers(ASTContext &C,
865                                 CXXConstructorDecl *Constructor,
866                                 CXXBaseOrMemberInitializer **Initializers,
867                                 unsigned NumInitializers
868                                 ) {
869  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
870  llvm::SmallVector<FieldDecl *, 4>Members;
871
872  Constructor->setBaseOrMemberInitializers(C,
873                                           Initializers, NumInitializers,
874                                           Bases, Members);
875  for (unsigned int i = 0; i < Bases.size(); i++)
876    Diag(Bases[i]->getSourceRange().getBegin(),
877         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
878  for (unsigned int i = 0; i < Members.size(); i++)
879    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
880          << 1 << Members[i]->getType();
881}
882
883static void *GetKeyForTopLevelField(FieldDecl *Field) {
884  // For anonymous unions, use the class declaration as the key.
885  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
886    if (RT->getDecl()->isAnonymousStructOrUnion())
887      return static_cast<void *>(RT->getDecl());
888  }
889  return static_cast<void *>(Field);
890}
891
892static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
893                             bool MemberMaybeAnon=false) {
894  // For fields injected into the class via declaration of an anonymous union,
895  // use its anonymous union class declaration as the unique key.
896  if (FieldDecl *Field = Member->getMember()) {
897    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
898    // data member of the class. Data member used in the initializer list is
899    // in AnonUnionMember field.
900    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
901      Field = Member->getAnonUnionMember();
902    if (Field->getDeclContext()->isRecord()) {
903      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
904      if (RD->isAnonymousStructOrUnion())
905        return static_cast<void *>(RD);
906    }
907    return static_cast<void *>(Field);
908  }
909  return static_cast<RecordType *>(Member->getBaseClass());
910}
911
912void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
913                                SourceLocation ColonLoc,
914                                MemInitTy **MemInits, unsigned NumMemInits) {
915  if (!ConstructorDecl)
916    return;
917
918  CXXConstructorDecl *Constructor
919    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
920
921  if (!Constructor) {
922    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
923    return;
924  }
925  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
926  bool err = false;
927  for (unsigned i = 0; i < NumMemInits; i++) {
928    CXXBaseOrMemberInitializer *Member =
929      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
930    void *KeyToMember = GetKeyForMember(Member);
931    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
932    if (!PrevMember) {
933      PrevMember = Member;
934      continue;
935    }
936    if (FieldDecl *Field = Member->getMember())
937      Diag(Member->getSourceLocation(),
938           diag::error_multiple_mem_initialization)
939      << Field->getNameAsString();
940    else {
941      Type *BaseClass = Member->getBaseClass();
942      assert(BaseClass && "ActOnMemInitializers - neither field or base");
943      Diag(Member->getSourceLocation(),
944           diag::error_multiple_base_initialization)
945        << BaseClass->getDesugaredType(true);
946    }
947    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
948      << 0;
949    err = true;
950  }
951  if (!err)
952    BuildBaseOrMemberInitializers(Context, Constructor,
953                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
954                      NumMemInits);
955
956  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
957               != Diagnostic::Ignored ||
958               Diags.getDiagnosticLevel(diag::warn_field_initialized)
959               != Diagnostic::Ignored)) {
960    // Also issue warning if order of ctor-initializer list does not match order
961    // of 1) base class declarations and 2) order of non-static data members.
962    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
963
964    CXXRecordDecl *ClassDecl
965      = cast<CXXRecordDecl>(Constructor->getDeclContext());
966    // Push virtual bases before others.
967    for (CXXRecordDecl::base_class_iterator VBase =
968         ClassDecl->vbases_begin(),
969         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
970      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
971
972    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
973         E = ClassDecl->bases_end(); Base != E; ++Base) {
974      // Virtuals are alread in the virtual base list and are constructed
975      // first.
976      if (Base->isVirtual())
977        continue;
978      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
979    }
980
981    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
982         E = ClassDecl->field_end(); Field != E; ++Field)
983      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
984
985    int Last = AllBaseOrMembers.size();
986    int curIndex = 0;
987    CXXBaseOrMemberInitializer *PrevMember = 0;
988    for (unsigned i = 0; i < NumMemInits; i++) {
989      CXXBaseOrMemberInitializer *Member =
990        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
991      void *MemberInCtorList = GetKeyForMember(Member, true);
992
993      for (; curIndex < Last; curIndex++)
994        if (MemberInCtorList == AllBaseOrMembers[curIndex])
995          break;
996      if (curIndex == Last) {
997        assert(PrevMember && "Member not in member list?!");
998        // Initializer as specified in ctor-initializer list is out of order.
999        // Issue a warning diagnostic.
1000        if (PrevMember->isBaseInitializer()) {
1001          // Diagnostics is for an initialized base class.
1002          Type *BaseClass = PrevMember->getBaseClass();
1003          Diag(PrevMember->getSourceLocation(),
1004               diag::warn_base_initialized)
1005                << BaseClass->getDesugaredType(true);
1006        } else {
1007          FieldDecl *Field = PrevMember->getMember();
1008          Diag(PrevMember->getSourceLocation(),
1009               diag::warn_field_initialized)
1010            << Field->getNameAsString();
1011        }
1012        // Also the note!
1013        if (FieldDecl *Field = Member->getMember())
1014          Diag(Member->getSourceLocation(),
1015               diag::note_fieldorbase_initialized_here) << 0
1016            << Field->getNameAsString();
1017        else {
1018          Type *BaseClass = Member->getBaseClass();
1019          Diag(Member->getSourceLocation(),
1020               diag::note_fieldorbase_initialized_here) << 1
1021            << BaseClass->getDesugaredType(true);
1022        }
1023        for (curIndex = 0; curIndex < Last; curIndex++)
1024          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1025            break;
1026      }
1027      PrevMember = Member;
1028    }
1029  }
1030}
1031
1032void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1033  if (!CDtorDecl)
1034    return;
1035
1036  if (CXXConstructorDecl *Constructor
1037      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1038    BuildBaseOrMemberInitializers(Context,
1039                                     Constructor,
1040                                     (CXXBaseOrMemberInitializer **)0, 0);
1041}
1042
1043namespace {
1044  /// PureVirtualMethodCollector - traverses a class and its superclasses
1045  /// and determines if it has any pure virtual methods.
1046  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1047    ASTContext &Context;
1048
1049  public:
1050    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1051
1052  private:
1053    MethodList Methods;
1054
1055    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1056
1057  public:
1058    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1059      : Context(Ctx) {
1060
1061      MethodList List;
1062      Collect(RD, List);
1063
1064      // Copy the temporary list to methods, and make sure to ignore any
1065      // null entries.
1066      for (size_t i = 0, e = List.size(); i != e; ++i) {
1067        if (List[i])
1068          Methods.push_back(List[i]);
1069      }
1070    }
1071
1072    bool empty() const { return Methods.empty(); }
1073
1074    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1075    MethodList::const_iterator methods_end() { return Methods.end(); }
1076  };
1077
1078  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1079                                           MethodList& Methods) {
1080    // First, collect the pure virtual methods for the base classes.
1081    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1082         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1083      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1084        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1085        if (BaseDecl && BaseDecl->isAbstract())
1086          Collect(BaseDecl, Methods);
1087      }
1088    }
1089
1090    // Next, zero out any pure virtual methods that this class overrides.
1091    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1092
1093    MethodSetTy OverriddenMethods;
1094    size_t MethodsSize = Methods.size();
1095
1096    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1097         i != e; ++i) {
1098      // Traverse the record, looking for methods.
1099      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1100        // If the method is pure virtual, add it to the methods vector.
1101        if (MD->isPure()) {
1102          Methods.push_back(MD);
1103          continue;
1104        }
1105
1106        // Otherwise, record all the overridden methods in our set.
1107        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1108             E = MD->end_overridden_methods(); I != E; ++I) {
1109          // Keep track of the overridden methods.
1110          OverriddenMethods.insert(*I);
1111        }
1112      }
1113    }
1114
1115    // Now go through the methods and zero out all the ones we know are
1116    // overridden.
1117    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1118      if (OverriddenMethods.count(Methods[i]))
1119        Methods[i] = 0;
1120    }
1121
1122  }
1123}
1124
1125bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1126                                  unsigned DiagID, AbstractDiagSelID SelID,
1127                                  const CXXRecordDecl *CurrentRD) {
1128
1129  if (!getLangOptions().CPlusPlus)
1130    return false;
1131
1132  if (const ArrayType *AT = Context.getAsArrayType(T))
1133    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1134                                  CurrentRD);
1135
1136  if (const PointerType *PT = T->getAs<PointerType>()) {
1137    // Find the innermost pointer type.
1138    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1139      PT = T;
1140
1141    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1142      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1143                                    CurrentRD);
1144  }
1145
1146  const RecordType *RT = T->getAs<RecordType>();
1147  if (!RT)
1148    return false;
1149
1150  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1151  if (!RD)
1152    return false;
1153
1154  if (CurrentRD && CurrentRD != RD)
1155    return false;
1156
1157  if (!RD->isAbstract())
1158    return false;
1159
1160  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1161
1162  // Check if we've already emitted the list of pure virtual functions for this
1163  // class.
1164  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1165    return true;
1166
1167  PureVirtualMethodCollector Collector(Context, RD);
1168
1169  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1170       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1171    const CXXMethodDecl *MD = *I;
1172
1173    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1174      MD->getDeclName();
1175  }
1176
1177  if (!PureVirtualClassDiagSet)
1178    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1179  PureVirtualClassDiagSet->insert(RD);
1180
1181  return true;
1182}
1183
1184namespace {
1185  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1186    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1187    Sema &SemaRef;
1188    CXXRecordDecl *AbstractClass;
1189
1190    bool VisitDeclContext(const DeclContext *DC) {
1191      bool Invalid = false;
1192
1193      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1194           E = DC->decls_end(); I != E; ++I)
1195        Invalid |= Visit(*I);
1196
1197      return Invalid;
1198    }
1199
1200  public:
1201    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1202      : SemaRef(SemaRef), AbstractClass(ac) {
1203        Visit(SemaRef.Context.getTranslationUnitDecl());
1204    }
1205
1206    bool VisitFunctionDecl(const FunctionDecl *FD) {
1207      if (FD->isThisDeclarationADefinition()) {
1208        // No need to do the check if we're in a definition, because it requires
1209        // that the return/param types are complete.
1210        // because that requires
1211        return VisitDeclContext(FD);
1212      }
1213
1214      // Check the return type.
1215      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1216      bool Invalid =
1217        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1218                                       diag::err_abstract_type_in_decl,
1219                                       Sema::AbstractReturnType,
1220                                       AbstractClass);
1221
1222      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1223           E = FD->param_end(); I != E; ++I) {
1224        const ParmVarDecl *VD = *I;
1225        Invalid |=
1226          SemaRef.RequireNonAbstractType(VD->getLocation(),
1227                                         VD->getOriginalType(),
1228                                         diag::err_abstract_type_in_decl,
1229                                         Sema::AbstractParamType,
1230                                         AbstractClass);
1231      }
1232
1233      return Invalid;
1234    }
1235
1236    bool VisitDecl(const Decl* D) {
1237      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1238        return VisitDeclContext(DC);
1239
1240      return false;
1241    }
1242  };
1243}
1244
1245void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1246                                             DeclPtrTy TagDecl,
1247                                             SourceLocation LBrac,
1248                                             SourceLocation RBrac) {
1249  if (!TagDecl)
1250    return;
1251
1252  AdjustDeclIfTemplate(TagDecl);
1253  ActOnFields(S, RLoc, TagDecl,
1254              (DeclPtrTy*)FieldCollector->getCurFields(),
1255              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1256
1257  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1258  if (!RD->isAbstract()) {
1259    // Collect all the pure virtual methods and see if this is an abstract
1260    // class after all.
1261    PureVirtualMethodCollector Collector(Context, RD);
1262    if (!Collector.empty())
1263      RD->setAbstract(true);
1264  }
1265
1266  if (RD->isAbstract())
1267    AbstractClassUsageDiagnoser(*this, RD);
1268
1269  if (!RD->isDependentType())
1270    AddImplicitlyDeclaredMembersToClass(RD);
1271}
1272
1273/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1274/// special functions, such as the default constructor, copy
1275/// constructor, or destructor, to the given C++ class (C++
1276/// [special]p1).  This routine can only be executed just before the
1277/// definition of the class is complete.
1278void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1279  CanQualType ClassType
1280    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1281
1282  // FIXME: Implicit declarations have exception specifications, which are
1283  // the union of the specifications of the implicitly called functions.
1284
1285  if (!ClassDecl->hasUserDeclaredConstructor()) {
1286    // C++ [class.ctor]p5:
1287    //   A default constructor for a class X is a constructor of class X
1288    //   that can be called without an argument. If there is no
1289    //   user-declared constructor for class X, a default constructor is
1290    //   implicitly declared. An implicitly-declared default constructor
1291    //   is an inline public member of its class.
1292    DeclarationName Name
1293      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1294    CXXConstructorDecl *DefaultCon =
1295      CXXConstructorDecl::Create(Context, ClassDecl,
1296                                 ClassDecl->getLocation(), Name,
1297                                 Context.getFunctionType(Context.VoidTy,
1298                                                         0, 0, false, 0),
1299                                 /*DInfo=*/0,
1300                                 /*isExplicit=*/false,
1301                                 /*isInline=*/true,
1302                                 /*isImplicitlyDeclared=*/true);
1303    DefaultCon->setAccess(AS_public);
1304    DefaultCon->setImplicit();
1305    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1306    ClassDecl->addDecl(DefaultCon);
1307  }
1308
1309  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1310    // C++ [class.copy]p4:
1311    //   If the class definition does not explicitly declare a copy
1312    //   constructor, one is declared implicitly.
1313
1314    // C++ [class.copy]p5:
1315    //   The implicitly-declared copy constructor for a class X will
1316    //   have the form
1317    //
1318    //       X::X(const X&)
1319    //
1320    //   if
1321    bool HasConstCopyConstructor = true;
1322
1323    //     -- each direct or virtual base class B of X has a copy
1324    //        constructor whose first parameter is of type const B& or
1325    //        const volatile B&, and
1326    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1327         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1328      const CXXRecordDecl *BaseClassDecl
1329        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1330      HasConstCopyConstructor
1331        = BaseClassDecl->hasConstCopyConstructor(Context);
1332    }
1333
1334    //     -- for all the nonstatic data members of X that are of a
1335    //        class type M (or array thereof), each such class type
1336    //        has a copy constructor whose first parameter is of type
1337    //        const M& or const volatile M&.
1338    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1339         HasConstCopyConstructor && Field != ClassDecl->field_end();
1340         ++Field) {
1341      QualType FieldType = (*Field)->getType();
1342      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1343        FieldType = Array->getElementType();
1344      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1345        const CXXRecordDecl *FieldClassDecl
1346          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1347        HasConstCopyConstructor
1348          = FieldClassDecl->hasConstCopyConstructor(Context);
1349      }
1350    }
1351
1352    //   Otherwise, the implicitly declared copy constructor will have
1353    //   the form
1354    //
1355    //       X::X(X&)
1356    QualType ArgType = ClassType;
1357    if (HasConstCopyConstructor)
1358      ArgType = ArgType.withConst();
1359    ArgType = Context.getLValueReferenceType(ArgType);
1360
1361    //   An implicitly-declared copy constructor is an inline public
1362    //   member of its class.
1363    DeclarationName Name
1364      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1365    CXXConstructorDecl *CopyConstructor
1366      = CXXConstructorDecl::Create(Context, ClassDecl,
1367                                   ClassDecl->getLocation(), Name,
1368                                   Context.getFunctionType(Context.VoidTy,
1369                                                           &ArgType, 1,
1370                                                           false, 0),
1371                                   /*DInfo=*/0,
1372                                   /*isExplicit=*/false,
1373                                   /*isInline=*/true,
1374                                   /*isImplicitlyDeclared=*/true);
1375    CopyConstructor->setAccess(AS_public);
1376    CopyConstructor->setImplicit();
1377    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1378
1379    // Add the parameter to the constructor.
1380    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1381                                                 ClassDecl->getLocation(),
1382                                                 /*IdentifierInfo=*/0,
1383                                                 ArgType, /*DInfo=*/0,
1384                                                 VarDecl::None, 0);
1385    CopyConstructor->setParams(Context, &FromParam, 1);
1386    ClassDecl->addDecl(CopyConstructor);
1387  }
1388
1389  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1390    // Note: The following rules are largely analoguous to the copy
1391    // constructor rules. Note that virtual bases are not taken into account
1392    // for determining the argument type of the operator. Note also that
1393    // operators taking an object instead of a reference are allowed.
1394    //
1395    // C++ [class.copy]p10:
1396    //   If the class definition does not explicitly declare a copy
1397    //   assignment operator, one is declared implicitly.
1398    //   The implicitly-defined copy assignment operator for a class X
1399    //   will have the form
1400    //
1401    //       X& X::operator=(const X&)
1402    //
1403    //   if
1404    bool HasConstCopyAssignment = true;
1405
1406    //       -- each direct base class B of X has a copy assignment operator
1407    //          whose parameter is of type const B&, const volatile B& or B,
1408    //          and
1409    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1410         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1411      const CXXRecordDecl *BaseClassDecl
1412        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1413      const CXXMethodDecl *MD = 0;
1414      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1415                                                                     MD);
1416    }
1417
1418    //       -- for all the nonstatic data members of X that are of a class
1419    //          type M (or array thereof), each such class type has a copy
1420    //          assignment operator whose parameter is of type const M&,
1421    //          const volatile M& or M.
1422    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1423         HasConstCopyAssignment && Field != ClassDecl->field_end();
1424         ++Field) {
1425      QualType FieldType = (*Field)->getType();
1426      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1427        FieldType = Array->getElementType();
1428      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1429        const CXXRecordDecl *FieldClassDecl
1430          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1431        const CXXMethodDecl *MD = 0;
1432        HasConstCopyAssignment
1433          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1434      }
1435    }
1436
1437    //   Otherwise, the implicitly declared copy assignment operator will
1438    //   have the form
1439    //
1440    //       X& X::operator=(X&)
1441    QualType ArgType = ClassType;
1442    QualType RetType = Context.getLValueReferenceType(ArgType);
1443    if (HasConstCopyAssignment)
1444      ArgType = ArgType.withConst();
1445    ArgType = Context.getLValueReferenceType(ArgType);
1446
1447    //   An implicitly-declared copy assignment operator is an inline public
1448    //   member of its class.
1449    DeclarationName Name =
1450      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1451    CXXMethodDecl *CopyAssignment =
1452      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1453                            Context.getFunctionType(RetType, &ArgType, 1,
1454                                                    false, 0),
1455                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1456    CopyAssignment->setAccess(AS_public);
1457    CopyAssignment->setImplicit();
1458    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1459    CopyAssignment->setCopyAssignment(true);
1460
1461    // Add the parameter to the operator.
1462    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1463                                                 ClassDecl->getLocation(),
1464                                                 /*IdentifierInfo=*/0,
1465                                                 ArgType, /*DInfo=*/0,
1466                                                 VarDecl::None, 0);
1467    CopyAssignment->setParams(Context, &FromParam, 1);
1468
1469    // Don't call addedAssignmentOperator. There is no way to distinguish an
1470    // implicit from an explicit assignment operator.
1471    ClassDecl->addDecl(CopyAssignment);
1472  }
1473
1474  if (!ClassDecl->hasUserDeclaredDestructor()) {
1475    // C++ [class.dtor]p2:
1476    //   If a class has no user-declared destructor, a destructor is
1477    //   declared implicitly. An implicitly-declared destructor is an
1478    //   inline public member of its class.
1479    DeclarationName Name
1480      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1481    CXXDestructorDecl *Destructor
1482      = CXXDestructorDecl::Create(Context, ClassDecl,
1483                                  ClassDecl->getLocation(), Name,
1484                                  Context.getFunctionType(Context.VoidTy,
1485                                                          0, 0, false, 0),
1486                                  /*isInline=*/true,
1487                                  /*isImplicitlyDeclared=*/true);
1488    Destructor->setAccess(AS_public);
1489    Destructor->setImplicit();
1490    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1491    ClassDecl->addDecl(Destructor);
1492  }
1493}
1494
1495void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1496  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1497  if (!Template)
1498    return;
1499
1500  TemplateParameterList *Params = Template->getTemplateParameters();
1501  for (TemplateParameterList::iterator Param = Params->begin(),
1502                                    ParamEnd = Params->end();
1503       Param != ParamEnd; ++Param) {
1504    NamedDecl *Named = cast<NamedDecl>(*Param);
1505    if (Named->getDeclName()) {
1506      S->AddDecl(DeclPtrTy::make(Named));
1507      IdResolver.AddDecl(Named);
1508    }
1509  }
1510}
1511
1512/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1513/// parsing a top-level (non-nested) C++ class, and we are now
1514/// parsing those parts of the given Method declaration that could
1515/// not be parsed earlier (C++ [class.mem]p2), such as default
1516/// arguments. This action should enter the scope of the given
1517/// Method declaration as if we had just parsed the qualified method
1518/// name. However, it should not bring the parameters into scope;
1519/// that will be performed by ActOnDelayedCXXMethodParameter.
1520void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1521  if (!MethodD)
1522    return;
1523
1524  CXXScopeSpec SS;
1525  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1526  QualType ClassTy
1527    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1528  SS.setScopeRep(
1529    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1530  ActOnCXXEnterDeclaratorScope(S, SS);
1531}
1532
1533/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1534/// C++ method declaration. We're (re-)introducing the given
1535/// function parameter into scope for use in parsing later parts of
1536/// the method declaration. For example, we could see an
1537/// ActOnParamDefaultArgument event for this parameter.
1538void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1539  if (!ParamD)
1540    return;
1541
1542  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1543
1544  // If this parameter has an unparsed default argument, clear it out
1545  // to make way for the parsed default argument.
1546  if (Param->hasUnparsedDefaultArg())
1547    Param->setDefaultArg(0);
1548
1549  S->AddDecl(DeclPtrTy::make(Param));
1550  if (Param->getDeclName())
1551    IdResolver.AddDecl(Param);
1552}
1553
1554/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1555/// processing the delayed method declaration for Method. The method
1556/// declaration is now considered finished. There may be a separate
1557/// ActOnStartOfFunctionDef action later (not necessarily
1558/// immediately!) for this method, if it was also defined inside the
1559/// class body.
1560void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1561  if (!MethodD)
1562    return;
1563
1564  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1565  CXXScopeSpec SS;
1566  QualType ClassTy
1567    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1568  SS.setScopeRep(
1569    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1570  ActOnCXXExitDeclaratorScope(S, SS);
1571
1572  // Now that we have our default arguments, check the constructor
1573  // again. It could produce additional diagnostics or affect whether
1574  // the class has implicitly-declared destructors, among other
1575  // things.
1576  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1577    CheckConstructor(Constructor);
1578
1579  // Check the default arguments, which we may have added.
1580  if (!Method->isInvalidDecl())
1581    CheckCXXDefaultArguments(Method);
1582}
1583
1584/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1585/// the well-formedness of the constructor declarator @p D with type @p
1586/// R. If there are any errors in the declarator, this routine will
1587/// emit diagnostics and set the invalid bit to true.  In any case, the type
1588/// will be updated to reflect a well-formed type for the constructor and
1589/// returned.
1590QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1591                                          FunctionDecl::StorageClass &SC) {
1592  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1593
1594  // C++ [class.ctor]p3:
1595  //   A constructor shall not be virtual (10.3) or static (9.4). A
1596  //   constructor can be invoked for a const, volatile or const
1597  //   volatile object. A constructor shall not be declared const,
1598  //   volatile, or const volatile (9.3.2).
1599  if (isVirtual) {
1600    if (!D.isInvalidType())
1601      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1602        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1603        << SourceRange(D.getIdentifierLoc());
1604    D.setInvalidType();
1605  }
1606  if (SC == FunctionDecl::Static) {
1607    if (!D.isInvalidType())
1608      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1609        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1610        << SourceRange(D.getIdentifierLoc());
1611    D.setInvalidType();
1612    SC = FunctionDecl::None;
1613  }
1614
1615  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1616  if (FTI.TypeQuals != 0) {
1617    if (FTI.TypeQuals & QualType::Const)
1618      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1619        << "const" << SourceRange(D.getIdentifierLoc());
1620    if (FTI.TypeQuals & QualType::Volatile)
1621      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1622        << "volatile" << SourceRange(D.getIdentifierLoc());
1623    if (FTI.TypeQuals & QualType::Restrict)
1624      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1625        << "restrict" << SourceRange(D.getIdentifierLoc());
1626  }
1627
1628  // Rebuild the function type "R" without any type qualifiers (in
1629  // case any of the errors above fired) and with "void" as the
1630  // return type, since constructors don't have return types. We
1631  // *always* have to do this, because GetTypeForDeclarator will
1632  // put in a result type of "int" when none was specified.
1633  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1634  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1635                                 Proto->getNumArgs(),
1636                                 Proto->isVariadic(), 0);
1637}
1638
1639/// CheckConstructor - Checks a fully-formed constructor for
1640/// well-formedness, issuing any diagnostics required. Returns true if
1641/// the constructor declarator is invalid.
1642void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1643  CXXRecordDecl *ClassDecl
1644    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1645  if (!ClassDecl)
1646    return Constructor->setInvalidDecl();
1647
1648  // C++ [class.copy]p3:
1649  //   A declaration of a constructor for a class X is ill-formed if
1650  //   its first parameter is of type (optionally cv-qualified) X and
1651  //   either there are no other parameters or else all other
1652  //   parameters have default arguments.
1653  if (!Constructor->isInvalidDecl() &&
1654      ((Constructor->getNumParams() == 1) ||
1655       (Constructor->getNumParams() > 1 &&
1656        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1657    QualType ParamType = Constructor->getParamDecl(0)->getType();
1658    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1659    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1660      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1661      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1662        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1663      Constructor->setInvalidDecl();
1664    }
1665  }
1666
1667  // Notify the class that we've added a constructor.
1668  ClassDecl->addedConstructor(Context, Constructor);
1669}
1670
1671static inline bool
1672FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1673  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1674          FTI.ArgInfo[0].Param &&
1675          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1676}
1677
1678/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1679/// the well-formednes of the destructor declarator @p D with type @p
1680/// R. If there are any errors in the declarator, this routine will
1681/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1682/// will be updated to reflect a well-formed type for the destructor and
1683/// returned.
1684QualType Sema::CheckDestructorDeclarator(Declarator &D,
1685                                         FunctionDecl::StorageClass& SC) {
1686  // C++ [class.dtor]p1:
1687  //   [...] A typedef-name that names a class is a class-name
1688  //   (7.1.3); however, a typedef-name that names a class shall not
1689  //   be used as the identifier in the declarator for a destructor
1690  //   declaration.
1691  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1692  if (isa<TypedefType>(DeclaratorType)) {
1693    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1694      << DeclaratorType;
1695    D.setInvalidType();
1696  }
1697
1698  // C++ [class.dtor]p2:
1699  //   A destructor is used to destroy objects of its class type. A
1700  //   destructor takes no parameters, and no return type can be
1701  //   specified for it (not even void). The address of a destructor
1702  //   shall not be taken. A destructor shall not be static. A
1703  //   destructor can be invoked for a const, volatile or const
1704  //   volatile object. A destructor shall not be declared const,
1705  //   volatile or const volatile (9.3.2).
1706  if (SC == FunctionDecl::Static) {
1707    if (!D.isInvalidType())
1708      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1709        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1710        << SourceRange(D.getIdentifierLoc());
1711    SC = FunctionDecl::None;
1712    D.setInvalidType();
1713  }
1714  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1715    // Destructors don't have return types, but the parser will
1716    // happily parse something like:
1717    //
1718    //   class X {
1719    //     float ~X();
1720    //   };
1721    //
1722    // The return type will be eliminated later.
1723    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1724      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1725      << SourceRange(D.getIdentifierLoc());
1726  }
1727
1728  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1729  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1730    if (FTI.TypeQuals & QualType::Const)
1731      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1732        << "const" << SourceRange(D.getIdentifierLoc());
1733    if (FTI.TypeQuals & QualType::Volatile)
1734      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1735        << "volatile" << SourceRange(D.getIdentifierLoc());
1736    if (FTI.TypeQuals & QualType::Restrict)
1737      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1738        << "restrict" << SourceRange(D.getIdentifierLoc());
1739    D.setInvalidType();
1740  }
1741
1742  // Make sure we don't have any parameters.
1743  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1744    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1745
1746    // Delete the parameters.
1747    FTI.freeArgs();
1748    D.setInvalidType();
1749  }
1750
1751  // Make sure the destructor isn't variadic.
1752  if (FTI.isVariadic) {
1753    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1754    D.setInvalidType();
1755  }
1756
1757  // Rebuild the function type "R" without any type qualifiers or
1758  // parameters (in case any of the errors above fired) and with
1759  // "void" as the return type, since destructors don't have return
1760  // types. We *always* have to do this, because GetTypeForDeclarator
1761  // will put in a result type of "int" when none was specified.
1762  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1763}
1764
1765/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1766/// well-formednes of the conversion function declarator @p D with
1767/// type @p R. If there are any errors in the declarator, this routine
1768/// will emit diagnostics and return true. Otherwise, it will return
1769/// false. Either way, the type @p R will be updated to reflect a
1770/// well-formed type for the conversion operator.
1771void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1772                                     FunctionDecl::StorageClass& SC) {
1773  // C++ [class.conv.fct]p1:
1774  //   Neither parameter types nor return type can be specified. The
1775  //   type of a conversion function (8.3.5) is "function taking no
1776  //   parameter returning conversion-type-id."
1777  if (SC == FunctionDecl::Static) {
1778    if (!D.isInvalidType())
1779      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1780        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1781        << SourceRange(D.getIdentifierLoc());
1782    D.setInvalidType();
1783    SC = FunctionDecl::None;
1784  }
1785  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1786    // Conversion functions don't have return types, but the parser will
1787    // happily parse something like:
1788    //
1789    //   class X {
1790    //     float operator bool();
1791    //   };
1792    //
1793    // The return type will be changed later anyway.
1794    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1795      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1796      << SourceRange(D.getIdentifierLoc());
1797  }
1798
1799  // Make sure we don't have any parameters.
1800  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1801    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1802
1803    // Delete the parameters.
1804    D.getTypeObject(0).Fun.freeArgs();
1805    D.setInvalidType();
1806  }
1807
1808  // Make sure the conversion function isn't variadic.
1809  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1810    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1811    D.setInvalidType();
1812  }
1813
1814  // C++ [class.conv.fct]p4:
1815  //   The conversion-type-id shall not represent a function type nor
1816  //   an array type.
1817  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1818  if (ConvType->isArrayType()) {
1819    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1820    ConvType = Context.getPointerType(ConvType);
1821    D.setInvalidType();
1822  } else if (ConvType->isFunctionType()) {
1823    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1824    ConvType = Context.getPointerType(ConvType);
1825    D.setInvalidType();
1826  }
1827
1828  // Rebuild the function type "R" without any parameters (in case any
1829  // of the errors above fired) and with the conversion type as the
1830  // return type.
1831  R = Context.getFunctionType(ConvType, 0, 0, false,
1832                              R->getAsFunctionProtoType()->getTypeQuals());
1833
1834  // C++0x explicit conversion operators.
1835  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1836    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1837         diag::warn_explicit_conversion_functions)
1838      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1839}
1840
1841/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1842/// the declaration of the given C++ conversion function. This routine
1843/// is responsible for recording the conversion function in the C++
1844/// class, if possible.
1845Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1846  assert(Conversion && "Expected to receive a conversion function declaration");
1847
1848  // Set the lexical context of this conversion function
1849  Conversion->setLexicalDeclContext(CurContext);
1850
1851  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1852
1853  // Make sure we aren't redeclaring the conversion function.
1854  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1855
1856  // C++ [class.conv.fct]p1:
1857  //   [...] A conversion function is never used to convert a
1858  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1859  //   same object type (or a reference to it), to a (possibly
1860  //   cv-qualified) base class of that type (or a reference to it),
1861  //   or to (possibly cv-qualified) void.
1862  // FIXME: Suppress this warning if the conversion function ends up being a
1863  // virtual function that overrides a virtual function in a base class.
1864  QualType ClassType
1865    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1866  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1867    ConvType = ConvTypeRef->getPointeeType();
1868  if (ConvType->isRecordType()) {
1869    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1870    if (ConvType == ClassType)
1871      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1872        << ClassType;
1873    else if (IsDerivedFrom(ClassType, ConvType))
1874      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1875        <<  ClassType << ConvType;
1876  } else if (ConvType->isVoidType()) {
1877    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1878      << ClassType << ConvType;
1879  }
1880
1881  if (Conversion->getPreviousDeclaration()) {
1882    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1883    for (OverloadedFunctionDecl::function_iterator
1884           Conv = Conversions->function_begin(),
1885           ConvEnd = Conversions->function_end();
1886         Conv != ConvEnd; ++Conv) {
1887      if (*Conv
1888            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1889        *Conv = Conversion;
1890        return DeclPtrTy::make(Conversion);
1891      }
1892    }
1893    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1894  } else
1895    ClassDecl->addConversionFunction(Context, Conversion);
1896
1897  return DeclPtrTy::make(Conversion);
1898}
1899
1900//===----------------------------------------------------------------------===//
1901// Namespace Handling
1902//===----------------------------------------------------------------------===//
1903
1904/// ActOnStartNamespaceDef - This is called at the start of a namespace
1905/// definition.
1906Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1907                                             SourceLocation IdentLoc,
1908                                             IdentifierInfo *II,
1909                                             SourceLocation LBrace) {
1910  NamespaceDecl *Namespc =
1911      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1912  Namespc->setLBracLoc(LBrace);
1913
1914  Scope *DeclRegionScope = NamespcScope->getParent();
1915
1916  if (II) {
1917    // C++ [namespace.def]p2:
1918    // The identifier in an original-namespace-definition shall not have been
1919    // previously defined in the declarative region in which the
1920    // original-namespace-definition appears. The identifier in an
1921    // original-namespace-definition is the name of the namespace. Subsequently
1922    // in that declarative region, it is treated as an original-namespace-name.
1923
1924    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1925                                     true);
1926
1927    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1928      // This is an extended namespace definition.
1929      // Attach this namespace decl to the chain of extended namespace
1930      // definitions.
1931      OrigNS->setNextNamespace(Namespc);
1932      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1933
1934      // Remove the previous declaration from the scope.
1935      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1936        IdResolver.RemoveDecl(OrigNS);
1937        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1938      }
1939    } else if (PrevDecl) {
1940      // This is an invalid name redefinition.
1941      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1942       << Namespc->getDeclName();
1943      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1944      Namespc->setInvalidDecl();
1945      // Continue on to push Namespc as current DeclContext and return it.
1946    }
1947
1948    PushOnScopeChains(Namespc, DeclRegionScope);
1949  } else {
1950    // FIXME: Handle anonymous namespaces
1951  }
1952
1953  // Although we could have an invalid decl (i.e. the namespace name is a
1954  // redefinition), push it as current DeclContext and try to continue parsing.
1955  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1956  // for the namespace has the declarations that showed up in that particular
1957  // namespace definition.
1958  PushDeclContext(NamespcScope, Namespc);
1959  return DeclPtrTy::make(Namespc);
1960}
1961
1962/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1963/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1964void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1965  Decl *Dcl = D.getAs<Decl>();
1966  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1967  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1968  Namespc->setRBracLoc(RBrace);
1969  PopDeclContext();
1970}
1971
1972Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1973                                          SourceLocation UsingLoc,
1974                                          SourceLocation NamespcLoc,
1975                                          const CXXScopeSpec &SS,
1976                                          SourceLocation IdentLoc,
1977                                          IdentifierInfo *NamespcName,
1978                                          AttributeList *AttrList) {
1979  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1980  assert(NamespcName && "Invalid NamespcName.");
1981  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1982  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1983
1984  UsingDirectiveDecl *UDir = 0;
1985
1986  // Lookup namespace name.
1987  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1988                                    LookupNamespaceName, false);
1989  if (R.isAmbiguous()) {
1990    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1991    return DeclPtrTy();
1992  }
1993  if (NamedDecl *NS = R) {
1994    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1995    // C++ [namespace.udir]p1:
1996    //   A using-directive specifies that the names in the nominated
1997    //   namespace can be used in the scope in which the
1998    //   using-directive appears after the using-directive. During
1999    //   unqualified name lookup (3.4.1), the names appear as if they
2000    //   were declared in the nearest enclosing namespace which
2001    //   contains both the using-directive and the nominated
2002    //   namespace. [Note: in this context, "contains" means "contains
2003    //   directly or indirectly". ]
2004
2005    // Find enclosing context containing both using-directive and
2006    // nominated namespace.
2007    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2008    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2009      CommonAncestor = CommonAncestor->getParent();
2010
2011    UDir = UsingDirectiveDecl::Create(Context,
2012                                      CurContext, UsingLoc,
2013                                      NamespcLoc,
2014                                      SS.getRange(),
2015                                      (NestedNameSpecifier *)SS.getScopeRep(),
2016                                      IdentLoc,
2017                                      cast<NamespaceDecl>(NS),
2018                                      CommonAncestor);
2019    PushUsingDirective(S, UDir);
2020  } else {
2021    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2022  }
2023
2024  // FIXME: We ignore attributes for now.
2025  delete AttrList;
2026  return DeclPtrTy::make(UDir);
2027}
2028
2029void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2030  // If scope has associated entity, then using directive is at namespace
2031  // or translation unit scope. We add UsingDirectiveDecls, into
2032  // it's lookup structure.
2033  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2034    Ctx->addDecl(UDir);
2035  else
2036    // Otherwise it is block-sope. using-directives will affect lookup
2037    // only to the end of scope.
2038    S->PushUsingDirective(DeclPtrTy::make(UDir));
2039}
2040
2041
2042Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2043                                          SourceLocation UsingLoc,
2044                                          const CXXScopeSpec &SS,
2045                                          SourceLocation IdentLoc,
2046                                          IdentifierInfo *TargetName,
2047                                          OverloadedOperatorKind Op,
2048                                          AttributeList *AttrList,
2049                                          bool IsTypeName) {
2050  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2051  assert((TargetName || Op) && "Invalid TargetName.");
2052  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2053  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2054
2055  UsingDecl *UsingAlias = 0;
2056
2057  DeclarationName Name;
2058  if (TargetName)
2059    Name = TargetName;
2060  else
2061    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2062
2063  // Lookup target name.
2064  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2065
2066  if (NamedDecl *NS = R) {
2067    if (IsTypeName && !isa<TypeDecl>(NS)) {
2068      Diag(IdentLoc, diag::err_using_typename_non_type);
2069    }
2070    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2071        NS->getLocation(), UsingLoc, NS,
2072        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2073        IsTypeName);
2074    PushOnScopeChains(UsingAlias, S);
2075  } else {
2076    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2077  }
2078
2079  // FIXME: We ignore attributes for now.
2080  delete AttrList;
2081  return DeclPtrTy::make(UsingAlias);
2082}
2083
2084/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2085/// is a namespace alias, returns the namespace it points to.
2086static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2087  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2088    return AD->getNamespace();
2089  return dyn_cast_or_null<NamespaceDecl>(D);
2090}
2091
2092Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2093                                             SourceLocation NamespaceLoc,
2094                                             SourceLocation AliasLoc,
2095                                             IdentifierInfo *Alias,
2096                                             const CXXScopeSpec &SS,
2097                                             SourceLocation IdentLoc,
2098                                             IdentifierInfo *Ident) {
2099
2100  // Lookup the namespace name.
2101  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2102
2103  // Check if we have a previous declaration with the same name.
2104  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2105    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2106      // We already have an alias with the same name that points to the same
2107      // namespace, so don't create a new one.
2108      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2109        return DeclPtrTy();
2110    }
2111
2112    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2113      diag::err_redefinition_different_kind;
2114    Diag(AliasLoc, DiagID) << Alias;
2115    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2116    return DeclPtrTy();
2117  }
2118
2119  if (R.isAmbiguous()) {
2120    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2121    return DeclPtrTy();
2122  }
2123
2124  if (!R) {
2125    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2126    return DeclPtrTy();
2127  }
2128
2129  NamespaceAliasDecl *AliasDecl =
2130    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2131                               Alias, SS.getRange(),
2132                               (NestedNameSpecifier *)SS.getScopeRep(),
2133                               IdentLoc, R);
2134
2135  CurContext->addDecl(AliasDecl);
2136  return DeclPtrTy::make(AliasDecl);
2137}
2138
2139void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2140                                            CXXConstructorDecl *Constructor) {
2141  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2142          !Constructor->isUsed()) &&
2143    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2144
2145  CXXRecordDecl *ClassDecl
2146    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2147  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2148  // Before the implicitly-declared default constructor for a class is
2149  // implicitly defined, all the implicitly-declared default constructors
2150  // for its base class and its non-static data members shall have been
2151  // implicitly defined.
2152  bool err = false;
2153  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2154       E = ClassDecl->bases_end(); Base != E; ++Base) {
2155    CXXRecordDecl *BaseClassDecl
2156      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2157    if (!BaseClassDecl->hasTrivialConstructor()) {
2158      if (CXXConstructorDecl *BaseCtor =
2159            BaseClassDecl->getDefaultConstructor(Context))
2160        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2161      else {
2162        Diag(CurrentLocation, diag::err_defining_default_ctor)
2163          << Context.getTagDeclType(ClassDecl) << 1
2164          << Context.getTagDeclType(BaseClassDecl);
2165        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2166              << Context.getTagDeclType(BaseClassDecl);
2167        err = true;
2168      }
2169    }
2170  }
2171  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2172       E = ClassDecl->field_end(); Field != E; ++Field) {
2173    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2174    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2175      FieldType = Array->getElementType();
2176    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2177      CXXRecordDecl *FieldClassDecl
2178        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2179      if (!FieldClassDecl->hasTrivialConstructor()) {
2180        if (CXXConstructorDecl *FieldCtor =
2181            FieldClassDecl->getDefaultConstructor(Context))
2182          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2183        else {
2184          Diag(CurrentLocation, diag::err_defining_default_ctor)
2185          << Context.getTagDeclType(ClassDecl) << 0 <<
2186              Context.getTagDeclType(FieldClassDecl);
2187          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2188          << Context.getTagDeclType(FieldClassDecl);
2189          err = true;
2190        }
2191      }
2192    } else if (FieldType->isReferenceType()) {
2193      Diag(CurrentLocation, diag::err_unintialized_member)
2194        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2195      Diag((*Field)->getLocation(), diag::note_declared_at);
2196      err = true;
2197    } else if (FieldType.isConstQualified()) {
2198      Diag(CurrentLocation, diag::err_unintialized_member)
2199        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2200       Diag((*Field)->getLocation(), diag::note_declared_at);
2201      err = true;
2202    }
2203  }
2204  if (!err)
2205    Constructor->setUsed();
2206  else
2207    Constructor->setInvalidDecl();
2208}
2209
2210void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2211                                            CXXDestructorDecl *Destructor) {
2212  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2213         "DefineImplicitDestructor - call it for implicit default dtor");
2214
2215  CXXRecordDecl *ClassDecl
2216  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2217  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2218  // C++ [class.dtor] p5
2219  // Before the implicitly-declared default destructor for a class is
2220  // implicitly defined, all the implicitly-declared default destructors
2221  // for its base class and its non-static data members shall have been
2222  // implicitly defined.
2223  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2224       E = ClassDecl->bases_end(); Base != E; ++Base) {
2225    CXXRecordDecl *BaseClassDecl
2226      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2227    if (!BaseClassDecl->hasTrivialDestructor()) {
2228      if (CXXDestructorDecl *BaseDtor =
2229          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2230        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2231      else
2232        assert(false &&
2233               "DefineImplicitDestructor - missing dtor in a base class");
2234    }
2235  }
2236
2237  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2238       E = ClassDecl->field_end(); Field != E; ++Field) {
2239    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2240    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2241      FieldType = Array->getElementType();
2242    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2243      CXXRecordDecl *FieldClassDecl
2244        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2245      if (!FieldClassDecl->hasTrivialDestructor()) {
2246        if (CXXDestructorDecl *FieldDtor =
2247            const_cast<CXXDestructorDecl*>(
2248                                        FieldClassDecl->getDestructor(Context)))
2249          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2250        else
2251          assert(false &&
2252          "DefineImplicitDestructor - missing dtor in class of a data member");
2253      }
2254    }
2255  }
2256  Destructor->setUsed();
2257}
2258
2259void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2260                                          CXXMethodDecl *MethodDecl) {
2261  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2262          MethodDecl->getOverloadedOperator() == OO_Equal &&
2263          !MethodDecl->isUsed()) &&
2264         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2265
2266  CXXRecordDecl *ClassDecl
2267    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2268
2269  // C++[class.copy] p12
2270  // Before the implicitly-declared copy assignment operator for a class is
2271  // implicitly defined, all implicitly-declared copy assignment operators
2272  // for its direct base classes and its nonstatic data members shall have
2273  // been implicitly defined.
2274  bool err = false;
2275  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2276       E = ClassDecl->bases_end(); Base != E; ++Base) {
2277    CXXRecordDecl *BaseClassDecl
2278      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2279    if (CXXMethodDecl *BaseAssignOpMethod =
2280          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2281      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2282  }
2283  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2284       E = ClassDecl->field_end(); Field != E; ++Field) {
2285    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2286    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2287      FieldType = Array->getElementType();
2288    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2289      CXXRecordDecl *FieldClassDecl
2290        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2291      if (CXXMethodDecl *FieldAssignOpMethod =
2292          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2293        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2294    } else if (FieldType->isReferenceType()) {
2295      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2296      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2297      Diag(Field->getLocation(), diag::note_declared_at);
2298      Diag(CurrentLocation, diag::note_first_required_here);
2299      err = true;
2300    } else if (FieldType.isConstQualified()) {
2301      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2302      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2303      Diag(Field->getLocation(), diag::note_declared_at);
2304      Diag(CurrentLocation, diag::note_first_required_here);
2305      err = true;
2306    }
2307  }
2308  if (!err)
2309    MethodDecl->setUsed();
2310}
2311
2312CXXMethodDecl *
2313Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2314                              CXXRecordDecl *ClassDecl) {
2315  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2316  QualType RHSType(LHSType);
2317  // If class's assignment operator argument is const/volatile qualified,
2318  // look for operator = (const/volatile B&). Otherwise, look for
2319  // operator = (B&).
2320  if (ParmDecl->getType().isConstQualified())
2321    RHSType.addConst();
2322  if (ParmDecl->getType().isVolatileQualified())
2323    RHSType.addVolatile();
2324  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2325                                                          LHSType,
2326                                                          SourceLocation()));
2327  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2328                                                          RHSType,
2329                                                          SourceLocation()));
2330  Expr *Args[2] = { &*LHS, &*RHS };
2331  OverloadCandidateSet CandidateSet;
2332  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2333                              CandidateSet);
2334  OverloadCandidateSet::iterator Best;
2335  if (BestViableFunction(CandidateSet,
2336                         ClassDecl->getLocation(), Best) == OR_Success)
2337    return cast<CXXMethodDecl>(Best->Function);
2338  assert(false &&
2339         "getAssignOperatorMethod - copy assignment operator method not found");
2340  return 0;
2341}
2342
2343void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2344                                   CXXConstructorDecl *CopyConstructor,
2345                                   unsigned TypeQuals) {
2346  assert((CopyConstructor->isImplicit() &&
2347          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2348          !CopyConstructor->isUsed()) &&
2349         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2350
2351  CXXRecordDecl *ClassDecl
2352    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2353  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2354  // C++ [class.copy] p209
2355  // Before the implicitly-declared copy constructor for a class is
2356  // implicitly defined, all the implicitly-declared copy constructors
2357  // for its base class and its non-static data members shall have been
2358  // implicitly defined.
2359  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2360       Base != ClassDecl->bases_end(); ++Base) {
2361    CXXRecordDecl *BaseClassDecl
2362      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2363    if (CXXConstructorDecl *BaseCopyCtor =
2364        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2365      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2366  }
2367  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2368                                  FieldEnd = ClassDecl->field_end();
2369       Field != FieldEnd; ++Field) {
2370    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2371    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2372      FieldType = Array->getElementType();
2373    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2374      CXXRecordDecl *FieldClassDecl
2375        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2376      if (CXXConstructorDecl *FieldCopyCtor =
2377          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2378        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2379    }
2380  }
2381  CopyConstructor->setUsed();
2382}
2383
2384Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2385                                  CXXConstructorDecl *Constructor,
2386                                  Expr **Exprs, unsigned NumExprs) {
2387  bool Elidable = false;
2388
2389  // [class.copy]p15:
2390  // Whenever a temporary class object is copied using a copy constructor, and
2391  // this object and the copy have the same cv-unqualified type, an
2392  // implementation is permitted to treat the original and the copy as two
2393  // different ways of referring to the same object and not perform a copy at
2394  //all, even if the class copy constructor or destructor have side effects.
2395
2396  // FIXME: Is this enough?
2397  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2398    Expr *E = Exprs[0];
2399    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2400      E = BE->getSubExpr();
2401
2402    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2403      Elidable = true;
2404  }
2405
2406  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2407                               Exprs, NumExprs);
2408}
2409
2410/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2411/// including handling of its default argument expressions.
2412Expr *Sema::BuildCXXConstructExpr(QualType DeclInitType,
2413                                  CXXConstructorDecl *Constructor,
2414                                  bool Elidable,
2415                                  Expr **Exprs, unsigned NumExprs) {
2416  CXXConstructExpr *Temp = CXXConstructExpr::Create(Context, DeclInitType,
2417                                                    Constructor,
2418                                                    Elidable, Exprs, NumExprs);
2419  // default arguments must be added to constructor call expression.
2420  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2421  unsigned NumArgsInProto = FDecl->param_size();
2422  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2423    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2424
2425    // If the default expression creates temporaries, we need to
2426    // push them to the current stack of expression temporaries so they'll
2427    // be properly destroyed.
2428    if (CXXExprWithTemporaries *E
2429        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2430      assert(!E->shouldDestroyTemporaries() &&
2431             "Can't destroy temporaries in a default argument expr!");
2432      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2433        ExprTemporaries.push_back(E->getTemporary(I));
2434    }
2435    Expr *Arg = CXXDefaultArgExpr::Create(Context, FDecl->getParamDecl(j));
2436    Temp->setArg(j, Arg);
2437  }
2438  return Temp;
2439}
2440
2441void Sema::InitializeVarWithConstructor(VarDecl *VD,
2442                                        CXXConstructorDecl *Constructor,
2443                                        QualType DeclInitType,
2444                                        Expr **Exprs, unsigned NumExprs) {
2445  Expr *Temp = BuildCXXConstructExpr(DeclInitType, Constructor,
2446                                     Exprs, NumExprs);
2447  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2448  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2449  VD->setInit(Context, Temp);
2450}
2451
2452void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2453{
2454  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2455                                  DeclInitType->getAs<RecordType>()->getDecl());
2456  if (!ClassDecl->hasTrivialDestructor())
2457    if (CXXDestructorDecl *Destructor =
2458        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2459      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2460}
2461
2462/// AddCXXDirectInitializerToDecl - This action is called immediately after
2463/// ActOnDeclarator, when a C++ direct initializer is present.
2464/// e.g: "int x(1);"
2465void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2466                                         SourceLocation LParenLoc,
2467                                         MultiExprArg Exprs,
2468                                         SourceLocation *CommaLocs,
2469                                         SourceLocation RParenLoc) {
2470  unsigned NumExprs = Exprs.size();
2471  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2472  Decl *RealDecl = Dcl.getAs<Decl>();
2473
2474  // If there is no declaration, there was an error parsing it.  Just ignore
2475  // the initializer.
2476  if (RealDecl == 0)
2477    return;
2478
2479  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2480  if (!VDecl) {
2481    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2482    RealDecl->setInvalidDecl();
2483    return;
2484  }
2485
2486  // FIXME: Need to handle dependent types and expressions here.
2487
2488  // We will treat direct-initialization as a copy-initialization:
2489  //    int x(1);  -as-> int x = 1;
2490  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2491  //
2492  // Clients that want to distinguish between the two forms, can check for
2493  // direct initializer using VarDecl::hasCXXDirectInitializer().
2494  // A major benefit is that clients that don't particularly care about which
2495  // exactly form was it (like the CodeGen) can handle both cases without
2496  // special case code.
2497
2498  // C++ 8.5p11:
2499  // The form of initialization (using parentheses or '=') is generally
2500  // insignificant, but does matter when the entity being initialized has a
2501  // class type.
2502  QualType DeclInitType = VDecl->getType();
2503  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2504    DeclInitType = Array->getElementType();
2505
2506  // FIXME: This isn't the right place to complete the type.
2507  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2508                          diag::err_typecheck_decl_incomplete_type)) {
2509    VDecl->setInvalidDecl();
2510    return;
2511  }
2512
2513  if (VDecl->getType()->isRecordType()) {
2514    CXXConstructorDecl *Constructor
2515      = PerformInitializationByConstructor(DeclInitType,
2516                                           (Expr **)Exprs.get(), NumExprs,
2517                                           VDecl->getLocation(),
2518                                           SourceRange(VDecl->getLocation(),
2519                                                       RParenLoc),
2520                                           VDecl->getDeclName(),
2521                                           IK_Direct);
2522    if (!Constructor)
2523      RealDecl->setInvalidDecl();
2524    else {
2525      VDecl->setCXXDirectInitializer(true);
2526      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2527                                   (Expr**)Exprs.release(), NumExprs);
2528      FinalizeVarWithDestructor(VDecl, DeclInitType);
2529    }
2530    return;
2531  }
2532
2533  if (NumExprs > 1) {
2534    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2535      << SourceRange(VDecl->getLocation(), RParenLoc);
2536    RealDecl->setInvalidDecl();
2537    return;
2538  }
2539
2540  // Let clients know that initialization was done with a direct initializer.
2541  VDecl->setCXXDirectInitializer(true);
2542
2543  assert(NumExprs == 1 && "Expected 1 expression");
2544  // Set the init expression, handles conversions.
2545  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2546                       /*DirectInit=*/true);
2547}
2548
2549/// PerformInitializationByConstructor - Perform initialization by
2550/// constructor (C++ [dcl.init]p14), which may occur as part of
2551/// direct-initialization or copy-initialization. We are initializing
2552/// an object of type @p ClassType with the given arguments @p
2553/// Args. @p Loc is the location in the source code where the
2554/// initializer occurs (e.g., a declaration, member initializer,
2555/// functional cast, etc.) while @p Range covers the whole
2556/// initialization. @p InitEntity is the entity being initialized,
2557/// which may by the name of a declaration or a type. @p Kind is the
2558/// kind of initialization we're performing, which affects whether
2559/// explicit constructors will be considered. When successful, returns
2560/// the constructor that will be used to perform the initialization;
2561/// when the initialization fails, emits a diagnostic and returns
2562/// null.
2563CXXConstructorDecl *
2564Sema::PerformInitializationByConstructor(QualType ClassType,
2565                                         Expr **Args, unsigned NumArgs,
2566                                         SourceLocation Loc, SourceRange Range,
2567                                         DeclarationName InitEntity,
2568                                         InitializationKind Kind) {
2569  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2570  assert(ClassRec && "Can only initialize a class type here");
2571
2572  // C++ [dcl.init]p14:
2573  //
2574  //   If the initialization is direct-initialization, or if it is
2575  //   copy-initialization where the cv-unqualified version of the
2576  //   source type is the same class as, or a derived class of, the
2577  //   class of the destination, constructors are considered. The
2578  //   applicable constructors are enumerated (13.3.1.3), and the
2579  //   best one is chosen through overload resolution (13.3). The
2580  //   constructor so selected is called to initialize the object,
2581  //   with the initializer expression(s) as its argument(s). If no
2582  //   constructor applies, or the overload resolution is ambiguous,
2583  //   the initialization is ill-formed.
2584  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2585  OverloadCandidateSet CandidateSet;
2586
2587  // Add constructors to the overload set.
2588  DeclarationName ConstructorName
2589    = Context.DeclarationNames.getCXXConstructorName(
2590                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2591  DeclContext::lookup_const_iterator Con, ConEnd;
2592  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2593       Con != ConEnd; ++Con) {
2594    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2595    if ((Kind == IK_Direct) ||
2596        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2597        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2598      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2599  }
2600
2601  // FIXME: When we decide not to synthesize the implicitly-declared
2602  // constructors, we'll need to make them appear here.
2603
2604  OverloadCandidateSet::iterator Best;
2605  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2606  case OR_Success:
2607    // We found a constructor. Return it.
2608    return cast<CXXConstructorDecl>(Best->Function);
2609
2610  case OR_No_Viable_Function:
2611    if (InitEntity)
2612      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2613        << InitEntity << Range;
2614    else
2615      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2616        << ClassType << Range;
2617    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2618    return 0;
2619
2620  case OR_Ambiguous:
2621    if (InitEntity)
2622      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2623    else
2624      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2625    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2626    return 0;
2627
2628  case OR_Deleted:
2629    if (InitEntity)
2630      Diag(Loc, diag::err_ovl_deleted_init)
2631        << Best->Function->isDeleted()
2632        << InitEntity << Range;
2633    else
2634      Diag(Loc, diag::err_ovl_deleted_init)
2635        << Best->Function->isDeleted()
2636        << InitEntity << Range;
2637    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2638    return 0;
2639  }
2640
2641  return 0;
2642}
2643
2644/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2645/// determine whether they are reference-related,
2646/// reference-compatible, reference-compatible with added
2647/// qualification, or incompatible, for use in C++ initialization by
2648/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2649/// type, and the first type (T1) is the pointee type of the reference
2650/// type being initialized.
2651Sema::ReferenceCompareResult
2652Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2653                                   bool& DerivedToBase) {
2654  assert(!T1->isReferenceType() &&
2655    "T1 must be the pointee type of the reference type");
2656  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2657
2658  T1 = Context.getCanonicalType(T1);
2659  T2 = Context.getCanonicalType(T2);
2660  QualType UnqualT1 = T1.getUnqualifiedType();
2661  QualType UnqualT2 = T2.getUnqualifiedType();
2662
2663  // C++ [dcl.init.ref]p4:
2664  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2665  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2666  //   T1 is a base class of T2.
2667  if (UnqualT1 == UnqualT2)
2668    DerivedToBase = false;
2669  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2670    DerivedToBase = true;
2671  else
2672    return Ref_Incompatible;
2673
2674  // At this point, we know that T1 and T2 are reference-related (at
2675  // least).
2676
2677  // C++ [dcl.init.ref]p4:
2678  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2679  //   reference-related to T2 and cv1 is the same cv-qualification
2680  //   as, or greater cv-qualification than, cv2. For purposes of
2681  //   overload resolution, cases for which cv1 is greater
2682  //   cv-qualification than cv2 are identified as
2683  //   reference-compatible with added qualification (see 13.3.3.2).
2684  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2685    return Ref_Compatible;
2686  else if (T1.isMoreQualifiedThan(T2))
2687    return Ref_Compatible_With_Added_Qualification;
2688  else
2689    return Ref_Related;
2690}
2691
2692/// CheckReferenceInit - Check the initialization of a reference
2693/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2694/// the initializer (either a simple initializer or an initializer
2695/// list), and DeclType is the type of the declaration. When ICS is
2696/// non-null, this routine will compute the implicit conversion
2697/// sequence according to C++ [over.ics.ref] and will not produce any
2698/// diagnostics; when ICS is null, it will emit diagnostics when any
2699/// errors are found. Either way, a return value of true indicates
2700/// that there was a failure, a return value of false indicates that
2701/// the reference initialization succeeded.
2702///
2703/// When @p SuppressUserConversions, user-defined conversions are
2704/// suppressed.
2705/// When @p AllowExplicit, we also permit explicit user-defined
2706/// conversion functions.
2707/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2708bool
2709Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2710                         ImplicitConversionSequence *ICS,
2711                         bool SuppressUserConversions,
2712                         bool AllowExplicit, bool ForceRValue) {
2713  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2714
2715  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2716  QualType T2 = Init->getType();
2717
2718  // If the initializer is the address of an overloaded function, try
2719  // to resolve the overloaded function. If all goes well, T2 is the
2720  // type of the resulting function.
2721  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2722    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2723                                                          ICS != 0);
2724    if (Fn) {
2725      // Since we're performing this reference-initialization for
2726      // real, update the initializer with the resulting function.
2727      if (!ICS) {
2728        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2729          return true;
2730
2731        FixOverloadedFunctionReference(Init, Fn);
2732      }
2733
2734      T2 = Fn->getType();
2735    }
2736  }
2737
2738  // Compute some basic properties of the types and the initializer.
2739  bool isRValRef = DeclType->isRValueReferenceType();
2740  bool DerivedToBase = false;
2741  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2742                                                  Init->isLvalue(Context);
2743  ReferenceCompareResult RefRelationship
2744    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2745
2746  // Most paths end in a failed conversion.
2747  if (ICS)
2748    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2749
2750  // C++ [dcl.init.ref]p5:
2751  //   A reference to type "cv1 T1" is initialized by an expression
2752  //   of type "cv2 T2" as follows:
2753
2754  //     -- If the initializer expression
2755
2756  // Rvalue references cannot bind to lvalues (N2812).
2757  // There is absolutely no situation where they can. In particular, note that
2758  // this is ill-formed, even if B has a user-defined conversion to A&&:
2759  //   B b;
2760  //   A&& r = b;
2761  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2762    if (!ICS)
2763      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2764        << Init->getSourceRange();
2765    return true;
2766  }
2767
2768  bool BindsDirectly = false;
2769  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2770  //          reference-compatible with "cv2 T2," or
2771  //
2772  // Note that the bit-field check is skipped if we are just computing
2773  // the implicit conversion sequence (C++ [over.best.ics]p2).
2774  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2775      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2776    BindsDirectly = true;
2777
2778    if (ICS) {
2779      // C++ [over.ics.ref]p1:
2780      //   When a parameter of reference type binds directly (8.5.3)
2781      //   to an argument expression, the implicit conversion sequence
2782      //   is the identity conversion, unless the argument expression
2783      //   has a type that is a derived class of the parameter type,
2784      //   in which case the implicit conversion sequence is a
2785      //   derived-to-base Conversion (13.3.3.1).
2786      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2787      ICS->Standard.First = ICK_Identity;
2788      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2789      ICS->Standard.Third = ICK_Identity;
2790      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2791      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2792      ICS->Standard.ReferenceBinding = true;
2793      ICS->Standard.DirectBinding = true;
2794      ICS->Standard.RRefBinding = false;
2795      ICS->Standard.CopyConstructor = 0;
2796
2797      // Nothing more to do: the inaccessibility/ambiguity check for
2798      // derived-to-base conversions is suppressed when we're
2799      // computing the implicit conversion sequence (C++
2800      // [over.best.ics]p2).
2801      return false;
2802    } else {
2803      // Perform the conversion.
2804      // FIXME: Binding to a subobject of the lvalue is going to require more
2805      // AST annotation than this.
2806      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2807    }
2808  }
2809
2810  //       -- has a class type (i.e., T2 is a class type) and can be
2811  //          implicitly converted to an lvalue of type "cv3 T3,"
2812  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2813  //          92) (this conversion is selected by enumerating the
2814  //          applicable conversion functions (13.3.1.6) and choosing
2815  //          the best one through overload resolution (13.3)),
2816  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2817    // FIXME: Look for conversions in base classes!
2818    CXXRecordDecl *T2RecordDecl
2819      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2820
2821    OverloadCandidateSet CandidateSet;
2822    OverloadedFunctionDecl *Conversions
2823      = T2RecordDecl->getConversionFunctions();
2824    for (OverloadedFunctionDecl::function_iterator Func
2825           = Conversions->function_begin();
2826         Func != Conversions->function_end(); ++Func) {
2827      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2828
2829      // If the conversion function doesn't return a reference type,
2830      // it can't be considered for this conversion.
2831      if (Conv->getConversionType()->isLValueReferenceType() &&
2832          (AllowExplicit || !Conv->isExplicit()))
2833        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2834    }
2835
2836    OverloadCandidateSet::iterator Best;
2837    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2838    case OR_Success:
2839      // This is a direct binding.
2840      BindsDirectly = true;
2841
2842      if (ICS) {
2843        // C++ [over.ics.ref]p1:
2844        //
2845        //   [...] If the parameter binds directly to the result of
2846        //   applying a conversion function to the argument
2847        //   expression, the implicit conversion sequence is a
2848        //   user-defined conversion sequence (13.3.3.1.2), with the
2849        //   second standard conversion sequence either an identity
2850        //   conversion or, if the conversion function returns an
2851        //   entity of a type that is a derived class of the parameter
2852        //   type, a derived-to-base Conversion.
2853        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2854        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2855        ICS->UserDefined.After = Best->FinalConversion;
2856        ICS->UserDefined.ConversionFunction = Best->Function;
2857        assert(ICS->UserDefined.After.ReferenceBinding &&
2858               ICS->UserDefined.After.DirectBinding &&
2859               "Expected a direct reference binding!");
2860        return false;
2861      } else {
2862        // Perform the conversion.
2863        // FIXME: Binding to a subobject of the lvalue is going to require more
2864        // AST annotation than this.
2865        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2866      }
2867      break;
2868
2869    case OR_Ambiguous:
2870      assert(false && "Ambiguous reference binding conversions not implemented.");
2871      return true;
2872
2873    case OR_No_Viable_Function:
2874    case OR_Deleted:
2875      // There was no suitable conversion, or we found a deleted
2876      // conversion; continue with other checks.
2877      break;
2878    }
2879  }
2880
2881  if (BindsDirectly) {
2882    // C++ [dcl.init.ref]p4:
2883    //   [...] In all cases where the reference-related or
2884    //   reference-compatible relationship of two types is used to
2885    //   establish the validity of a reference binding, and T1 is a
2886    //   base class of T2, a program that necessitates such a binding
2887    //   is ill-formed if T1 is an inaccessible (clause 11) or
2888    //   ambiguous (10.2) base class of T2.
2889    //
2890    // Note that we only check this condition when we're allowed to
2891    // complain about errors, because we should not be checking for
2892    // ambiguity (or inaccessibility) unless the reference binding
2893    // actually happens.
2894    if (DerivedToBase)
2895      return CheckDerivedToBaseConversion(T2, T1,
2896                                          Init->getSourceRange().getBegin(),
2897                                          Init->getSourceRange());
2898    else
2899      return false;
2900  }
2901
2902  //     -- Otherwise, the reference shall be to a non-volatile const
2903  //        type (i.e., cv1 shall be const), or the reference shall be an
2904  //        rvalue reference and the initializer expression shall be an rvalue.
2905  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2906    if (!ICS)
2907      Diag(Init->getSourceRange().getBegin(),
2908           diag::err_not_reference_to_const_init)
2909        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2910        << T2 << Init->getSourceRange();
2911    return true;
2912  }
2913
2914  //       -- If the initializer expression is an rvalue, with T2 a
2915  //          class type, and "cv1 T1" is reference-compatible with
2916  //          "cv2 T2," the reference is bound in one of the
2917  //          following ways (the choice is implementation-defined):
2918  //
2919  //          -- The reference is bound to the object represented by
2920  //             the rvalue (see 3.10) or to a sub-object within that
2921  //             object.
2922  //
2923  //          -- A temporary of type "cv1 T2" [sic] is created, and
2924  //             a constructor is called to copy the entire rvalue
2925  //             object into the temporary. The reference is bound to
2926  //             the temporary or to a sub-object within the
2927  //             temporary.
2928  //
2929  //          The constructor that would be used to make the copy
2930  //          shall be callable whether or not the copy is actually
2931  //          done.
2932  //
2933  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2934  // freedom, so we will always take the first option and never build
2935  // a temporary in this case. FIXME: We will, however, have to check
2936  // for the presence of a copy constructor in C++98/03 mode.
2937  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2938      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2939    if (ICS) {
2940      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2941      ICS->Standard.First = ICK_Identity;
2942      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2943      ICS->Standard.Third = ICK_Identity;
2944      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2945      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2946      ICS->Standard.ReferenceBinding = true;
2947      ICS->Standard.DirectBinding = false;
2948      ICS->Standard.RRefBinding = isRValRef;
2949      ICS->Standard.CopyConstructor = 0;
2950    } else {
2951      // FIXME: Binding to a subobject of the rvalue is going to require more
2952      // AST annotation than this.
2953      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2954    }
2955    return false;
2956  }
2957
2958  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2959  //          initialized from the initializer expression using the
2960  //          rules for a non-reference copy initialization (8.5). The
2961  //          reference is then bound to the temporary. If T1 is
2962  //          reference-related to T2, cv1 must be the same
2963  //          cv-qualification as, or greater cv-qualification than,
2964  //          cv2; otherwise, the program is ill-formed.
2965  if (RefRelationship == Ref_Related) {
2966    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2967    // we would be reference-compatible or reference-compatible with
2968    // added qualification. But that wasn't the case, so the reference
2969    // initialization fails.
2970    if (!ICS)
2971      Diag(Init->getSourceRange().getBegin(),
2972           diag::err_reference_init_drops_quals)
2973        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2974        << T2 << Init->getSourceRange();
2975    return true;
2976  }
2977
2978  // If at least one of the types is a class type, the types are not
2979  // related, and we aren't allowed any user conversions, the
2980  // reference binding fails. This case is important for breaking
2981  // recursion, since TryImplicitConversion below will attempt to
2982  // create a temporary through the use of a copy constructor.
2983  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2984      (T1->isRecordType() || T2->isRecordType())) {
2985    if (!ICS)
2986      Diag(Init->getSourceRange().getBegin(),
2987           diag::err_typecheck_convert_incompatible)
2988        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2989    return true;
2990  }
2991
2992  // Actually try to convert the initializer to T1.
2993  if (ICS) {
2994    // C++ [over.ics.ref]p2:
2995    //
2996    //   When a parameter of reference type is not bound directly to
2997    //   an argument expression, the conversion sequence is the one
2998    //   required to convert the argument expression to the
2999    //   underlying type of the reference according to
3000    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3001    //   to copy-initializing a temporary of the underlying type with
3002    //   the argument expression. Any difference in top-level
3003    //   cv-qualification is subsumed by the initialization itself
3004    //   and does not constitute a conversion.
3005    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
3006    // Of course, that's still a reference binding.
3007    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3008      ICS->Standard.ReferenceBinding = true;
3009      ICS->Standard.RRefBinding = isRValRef;
3010    } else if(ICS->ConversionKind ==
3011              ImplicitConversionSequence::UserDefinedConversion) {
3012      ICS->UserDefined.After.ReferenceBinding = true;
3013      ICS->UserDefined.After.RRefBinding = isRValRef;
3014    }
3015    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3016  } else {
3017    return PerformImplicitConversion(Init, T1, "initializing");
3018  }
3019}
3020
3021/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3022/// of this overloaded operator is well-formed. If so, returns false;
3023/// otherwise, emits appropriate diagnostics and returns true.
3024bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3025  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3026         "Expected an overloaded operator declaration");
3027
3028  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3029
3030  // C++ [over.oper]p5:
3031  //   The allocation and deallocation functions, operator new,
3032  //   operator new[], operator delete and operator delete[], are
3033  //   described completely in 3.7.3. The attributes and restrictions
3034  //   found in the rest of this subclause do not apply to them unless
3035  //   explicitly stated in 3.7.3.
3036  // FIXME: Write a separate routine for checking this. For now, just allow it.
3037  if (Op == OO_New || Op == OO_Array_New ||
3038      Op == OO_Delete || Op == OO_Array_Delete)
3039    return false;
3040
3041  // C++ [over.oper]p6:
3042  //   An operator function shall either be a non-static member
3043  //   function or be a non-member function and have at least one
3044  //   parameter whose type is a class, a reference to a class, an
3045  //   enumeration, or a reference to an enumeration.
3046  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3047    if (MethodDecl->isStatic())
3048      return Diag(FnDecl->getLocation(),
3049                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3050  } else {
3051    bool ClassOrEnumParam = false;
3052    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3053                                   ParamEnd = FnDecl->param_end();
3054         Param != ParamEnd; ++Param) {
3055      QualType ParamType = (*Param)->getType().getNonReferenceType();
3056      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3057          ParamType->isEnumeralType()) {
3058        ClassOrEnumParam = true;
3059        break;
3060      }
3061    }
3062
3063    if (!ClassOrEnumParam)
3064      return Diag(FnDecl->getLocation(),
3065                  diag::err_operator_overload_needs_class_or_enum)
3066        << FnDecl->getDeclName();
3067  }
3068
3069  // C++ [over.oper]p8:
3070  //   An operator function cannot have default arguments (8.3.6),
3071  //   except where explicitly stated below.
3072  //
3073  // Only the function-call operator allows default arguments
3074  // (C++ [over.call]p1).
3075  if (Op != OO_Call) {
3076    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3077         Param != FnDecl->param_end(); ++Param) {
3078      if ((*Param)->hasUnparsedDefaultArg())
3079        return Diag((*Param)->getLocation(),
3080                    diag::err_operator_overload_default_arg)
3081          << FnDecl->getDeclName();
3082      else if (Expr *DefArg = (*Param)->getDefaultArg())
3083        return Diag((*Param)->getLocation(),
3084                    diag::err_operator_overload_default_arg)
3085          << FnDecl->getDeclName() << DefArg->getSourceRange();
3086    }
3087  }
3088
3089  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3090    { false, false, false }
3091#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3092    , { Unary, Binary, MemberOnly }
3093#include "clang/Basic/OperatorKinds.def"
3094  };
3095
3096  bool CanBeUnaryOperator = OperatorUses[Op][0];
3097  bool CanBeBinaryOperator = OperatorUses[Op][1];
3098  bool MustBeMemberOperator = OperatorUses[Op][2];
3099
3100  // C++ [over.oper]p8:
3101  //   [...] Operator functions cannot have more or fewer parameters
3102  //   than the number required for the corresponding operator, as
3103  //   described in the rest of this subclause.
3104  unsigned NumParams = FnDecl->getNumParams()
3105                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3106  if (Op != OO_Call &&
3107      ((NumParams == 1 && !CanBeUnaryOperator) ||
3108       (NumParams == 2 && !CanBeBinaryOperator) ||
3109       (NumParams < 1) || (NumParams > 2))) {
3110    // We have the wrong number of parameters.
3111    unsigned ErrorKind;
3112    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3113      ErrorKind = 2;  // 2 -> unary or binary.
3114    } else if (CanBeUnaryOperator) {
3115      ErrorKind = 0;  // 0 -> unary
3116    } else {
3117      assert(CanBeBinaryOperator &&
3118             "All non-call overloaded operators are unary or binary!");
3119      ErrorKind = 1;  // 1 -> binary
3120    }
3121
3122    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3123      << FnDecl->getDeclName() << NumParams << ErrorKind;
3124  }
3125
3126  // Overloaded operators other than operator() cannot be variadic.
3127  if (Op != OO_Call &&
3128      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3129    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3130      << FnDecl->getDeclName();
3131  }
3132
3133  // Some operators must be non-static member functions.
3134  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3135    return Diag(FnDecl->getLocation(),
3136                diag::err_operator_overload_must_be_member)
3137      << FnDecl->getDeclName();
3138  }
3139
3140  // C++ [over.inc]p1:
3141  //   The user-defined function called operator++ implements the
3142  //   prefix and postfix ++ operator. If this function is a member
3143  //   function with no parameters, or a non-member function with one
3144  //   parameter of class or enumeration type, it defines the prefix
3145  //   increment operator ++ for objects of that type. If the function
3146  //   is a member function with one parameter (which shall be of type
3147  //   int) or a non-member function with two parameters (the second
3148  //   of which shall be of type int), it defines the postfix
3149  //   increment operator ++ for objects of that type.
3150  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3151    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3152    bool ParamIsInt = false;
3153    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3154      ParamIsInt = BT->getKind() == BuiltinType::Int;
3155
3156    if (!ParamIsInt)
3157      return Diag(LastParam->getLocation(),
3158                  diag::err_operator_overload_post_incdec_must_be_int)
3159        << LastParam->getType() << (Op == OO_MinusMinus);
3160  }
3161
3162  // Notify the class if it got an assignment operator.
3163  if (Op == OO_Equal) {
3164    // Would have returned earlier otherwise.
3165    assert(isa<CXXMethodDecl>(FnDecl) &&
3166      "Overloaded = not member, but not filtered.");
3167    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3168    Method->setCopyAssignment(true);
3169    Method->getParent()->addedAssignmentOperator(Context, Method);
3170  }
3171
3172  return false;
3173}
3174
3175/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3176/// linkage specification, including the language and (if present)
3177/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3178/// the location of the language string literal, which is provided
3179/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3180/// the '{' brace. Otherwise, this linkage specification does not
3181/// have any braces.
3182Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3183                                                     SourceLocation ExternLoc,
3184                                                     SourceLocation LangLoc,
3185                                                     const char *Lang,
3186                                                     unsigned StrSize,
3187                                                     SourceLocation LBraceLoc) {
3188  LinkageSpecDecl::LanguageIDs Language;
3189  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3190    Language = LinkageSpecDecl::lang_c;
3191  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3192    Language = LinkageSpecDecl::lang_cxx;
3193  else {
3194    Diag(LangLoc, diag::err_bad_language);
3195    return DeclPtrTy();
3196  }
3197
3198  // FIXME: Add all the various semantics of linkage specifications
3199
3200  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3201                                               LangLoc, Language,
3202                                               LBraceLoc.isValid());
3203  CurContext->addDecl(D);
3204  PushDeclContext(S, D);
3205  return DeclPtrTy::make(D);
3206}
3207
3208/// ActOnFinishLinkageSpecification - Completely the definition of
3209/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3210/// valid, it's the position of the closing '}' brace in a linkage
3211/// specification that uses braces.
3212Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3213                                                      DeclPtrTy LinkageSpec,
3214                                                      SourceLocation RBraceLoc) {
3215  if (LinkageSpec)
3216    PopDeclContext();
3217  return LinkageSpec;
3218}
3219
3220/// \brief Perform semantic analysis for the variable declaration that
3221/// occurs within a C++ catch clause, returning the newly-created
3222/// variable.
3223VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3224                                         DeclaratorInfo *DInfo,
3225                                         IdentifierInfo *Name,
3226                                         SourceLocation Loc,
3227                                         SourceRange Range) {
3228  bool Invalid = false;
3229
3230  // Arrays and functions decay.
3231  if (ExDeclType->isArrayType())
3232    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3233  else if (ExDeclType->isFunctionType())
3234    ExDeclType = Context.getPointerType(ExDeclType);
3235
3236  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3237  // The exception-declaration shall not denote a pointer or reference to an
3238  // incomplete type, other than [cv] void*.
3239  // N2844 forbids rvalue references.
3240  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3241    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3242    Invalid = true;
3243  }
3244
3245  QualType BaseType = ExDeclType;
3246  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3247  unsigned DK = diag::err_catch_incomplete;
3248  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3249    BaseType = Ptr->getPointeeType();
3250    Mode = 1;
3251    DK = diag::err_catch_incomplete_ptr;
3252  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3253    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3254    BaseType = Ref->getPointeeType();
3255    Mode = 2;
3256    DK = diag::err_catch_incomplete_ref;
3257  }
3258  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3259      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3260    Invalid = true;
3261
3262  if (!Invalid && !ExDeclType->isDependentType() &&
3263      RequireNonAbstractType(Loc, ExDeclType,
3264                             diag::err_abstract_type_in_decl,
3265                             AbstractVariableType))
3266    Invalid = true;
3267
3268  // FIXME: Need to test for ability to copy-construct and destroy the
3269  // exception variable.
3270
3271  // FIXME: Need to check for abstract classes.
3272
3273  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3274                                    Name, ExDeclType, DInfo, VarDecl::None,
3275                                    Range.getBegin());
3276
3277  if (Invalid)
3278    ExDecl->setInvalidDecl();
3279
3280  return ExDecl;
3281}
3282
3283/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3284/// handler.
3285Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3286  DeclaratorInfo *DInfo = 0;
3287  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3288
3289  bool Invalid = D.isInvalidType();
3290  IdentifierInfo *II = D.getIdentifier();
3291  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3292    // The scope should be freshly made just for us. There is just no way
3293    // it contains any previous declaration.
3294    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3295    if (PrevDecl->isTemplateParameter()) {
3296      // Maybe we will complain about the shadowed template parameter.
3297      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3298    }
3299  }
3300
3301  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3302    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3303      << D.getCXXScopeSpec().getRange();
3304    Invalid = true;
3305  }
3306
3307  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3308                                              D.getIdentifier(),
3309                                              D.getIdentifierLoc(),
3310                                            D.getDeclSpec().getSourceRange());
3311
3312  if (Invalid)
3313    ExDecl->setInvalidDecl();
3314
3315  // Add the exception declaration into this scope.
3316  if (II)
3317    PushOnScopeChains(ExDecl, S);
3318  else
3319    CurContext->addDecl(ExDecl);
3320
3321  ProcessDeclAttributes(S, ExDecl, D);
3322  return DeclPtrTy::make(ExDecl);
3323}
3324
3325Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3326                                                   ExprArg assertexpr,
3327                                                   ExprArg assertmessageexpr) {
3328  Expr *AssertExpr = (Expr *)assertexpr.get();
3329  StringLiteral *AssertMessage =
3330    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3331
3332  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3333    llvm::APSInt Value(32);
3334    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3335      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3336        AssertExpr->getSourceRange();
3337      return DeclPtrTy();
3338    }
3339
3340    if (Value == 0) {
3341      std::string str(AssertMessage->getStrData(),
3342                      AssertMessage->getByteLength());
3343      Diag(AssertLoc, diag::err_static_assert_failed)
3344        << str << AssertExpr->getSourceRange();
3345    }
3346  }
3347
3348  assertexpr.release();
3349  assertmessageexpr.release();
3350  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3351                                        AssertExpr, AssertMessage);
3352
3353  CurContext->addDecl(Decl);
3354  return DeclPtrTy::make(Decl);
3355}
3356
3357Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3358                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3359                                      bool IsDefinition) {
3360  Declarator *D = DU.dyn_cast<Declarator*>();
3361  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3362
3363  assert(DS.isFriendSpecified());
3364  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3365
3366  // If there's no declarator, then this can only be a friend class
3367  // declaration (or else it's just syntactically invalid).
3368  if (!D) {
3369    SourceLocation Loc = DS.getSourceRange().getBegin();
3370
3371    QualType T;
3372    DeclContext *DC;
3373
3374    // In C++0x, we just accept any old type.
3375    if (getLangOptions().CPlusPlus0x) {
3376      bool invalid = false;
3377      QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3378      if (invalid)
3379        return DeclPtrTy();
3380
3381      // The semantic context in which to create the decl.  If it's not
3382      // a record decl (or we don't yet know if it is), create it in the
3383      // current context.
3384      DC = CurContext;
3385      if (const RecordType *RT = T->getAs<RecordType>())
3386        DC = RT->getDecl()->getDeclContext();
3387
3388    // The C++98 rules are somewhat more complex.
3389    } else {
3390      // C++ [class.friend]p2:
3391      //   An elaborated-type-specifier shall be used in a friend declaration
3392      //   for a class.*
3393      //   * The class-key of the elaborated-type-specifier is required.
3394      CXXRecordDecl *RD = 0;
3395
3396      switch (DS.getTypeSpecType()) {
3397      case DeclSpec::TST_class:
3398      case DeclSpec::TST_struct:
3399      case DeclSpec::TST_union:
3400        RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3401        if (!RD) return DeclPtrTy();
3402        break;
3403
3404      case DeclSpec::TST_typename:
3405        if (const RecordType *RT =
3406            ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3407          RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3408        // fallthrough
3409      default:
3410        if (RD) {
3411          Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3412            << (RD->isUnion())
3413            << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3414                                         RD->isUnion() ? " union" : " class");
3415          return DeclPtrTy::make(RD);
3416        }
3417
3418        Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3419          << DS.getSourceRange();
3420        return DeclPtrTy();
3421      }
3422
3423      // The record declaration we get from friend declarations is not
3424      // canonicalized; see ActOnTag.
3425
3426      // C++ [class.friend]p2: A class shall not be defined inside
3427      //   a friend declaration.
3428      if (RD->isDefinition())
3429        Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3430          << RD->getSourceRange();
3431
3432      // C++98 [class.friend]p1: A friend of a class is a function
3433      //   or class that is not a member of the class . . .
3434      // But that's a silly restriction which nobody implements for
3435      // inner classes, and C++0x removes it anyway, so we only report
3436      // this (as a warning) if we're being pedantic.
3437      //
3438      // Also, definitions currently get treated in a way that causes
3439      // this error, so only report it if we didn't see a definition.
3440      else if (RD->getDeclContext() == CurContext &&
3441               !getLangOptions().CPlusPlus0x)
3442        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3443
3444      T = QualType(RD->getTypeForDecl(), 0);
3445      DC = RD->getDeclContext();
3446    }
3447
3448    FriendClassDecl *FCD = FriendClassDecl::Create(Context, DC, Loc, T,
3449                                                   DS.getFriendSpecLoc());
3450    FCD->setLexicalDeclContext(CurContext);
3451
3452    if (CurContext->isDependentContext())
3453      CurContext->addHiddenDecl(FCD);
3454    else
3455      CurContext->addDecl(FCD);
3456
3457    return DeclPtrTy::make(FCD);
3458  }
3459
3460  // We have a declarator.
3461  assert(D);
3462
3463  SourceLocation Loc = D->getIdentifierLoc();
3464  DeclaratorInfo *DInfo = 0;
3465  QualType T = GetTypeForDeclarator(*D, S, &DInfo);
3466
3467  // C++ [class.friend]p1
3468  //   A friend of a class is a function or class....
3469  // Note that this sees through typedefs, which is intended.
3470  if (!T->isFunctionType()) {
3471    Diag(Loc, diag::err_unexpected_friend);
3472
3473    // It might be worthwhile to try to recover by creating an
3474    // appropriate declaration.
3475    return DeclPtrTy();
3476  }
3477
3478  // C++ [namespace.memdef]p3
3479  //  - If a friend declaration in a non-local class first declares a
3480  //    class or function, the friend class or function is a member
3481  //    of the innermost enclosing namespace.
3482  //  - The name of the friend is not found by simple name lookup
3483  //    until a matching declaration is provided in that namespace
3484  //    scope (either before or after the class declaration granting
3485  //    friendship).
3486  //  - If a friend function is called, its name may be found by the
3487  //    name lookup that considers functions from namespaces and
3488  //    classes associated with the types of the function arguments.
3489  //  - When looking for a prior declaration of a class or a function
3490  //    declared as a friend, scopes outside the innermost enclosing
3491  //    namespace scope are not considered.
3492
3493  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3494  DeclarationName Name = GetNameForDeclarator(*D);
3495  assert(Name);
3496
3497  // The existing declaration we found.
3498  FunctionDecl *FD = NULL;
3499
3500  // The context we found the declaration in, or in which we should
3501  // create the declaration.
3502  DeclContext *DC;
3503
3504  // FIXME: handle local classes
3505
3506  // Recover from invalid scope qualifiers as if they just weren't there.
3507  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3508    DC = computeDeclContext(ScopeQual);
3509
3510    // FIXME: handle dependent contexts
3511    if (!DC) return DeclPtrTy();
3512
3513    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3514
3515    // If searching in that context implicitly found a declaration in
3516    // a different context, treat it like it wasn't found at all.
3517    // TODO: better diagnostics for this case.  Suggesting the right
3518    // qualified scope would be nice...
3519    if (!Dec || Dec->getDeclContext() != DC) {
3520      D->setInvalidType();
3521      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3522      return DeclPtrTy();
3523    }
3524
3525    // C++ [class.friend]p1: A friend of a class is a function or
3526    //   class that is not a member of the class . . .
3527    if (DC == CurContext)
3528      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3529
3530    FD = cast<FunctionDecl>(Dec);
3531
3532  // Otherwise walk out to the nearest namespace scope looking for matches.
3533  } else {
3534    // TODO: handle local class contexts.
3535
3536    DC = CurContext;
3537    while (true) {
3538      // Skip class contexts.  If someone can cite chapter and verse
3539      // for this behavior, that would be nice --- it's what GCC and
3540      // EDG do, and it seems like a reasonable intent, but the spec
3541      // really only says that checks for unqualified existing
3542      // declarations should stop at the nearest enclosing namespace,
3543      // not that they should only consider the nearest enclosing
3544      // namespace.
3545      while (DC->isRecord()) DC = DC->getParent();
3546
3547      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3548
3549      // TODO: decide what we think about using declarations.
3550      if (Dec) {
3551        FD = cast<FunctionDecl>(Dec);
3552        break;
3553      }
3554      if (DC->isFileContext()) break;
3555      DC = DC->getParent();
3556    }
3557
3558    // C++ [class.friend]p1: A friend of a class is a function or
3559    //   class that is not a member of the class . . .
3560    // C++0x changes this for both friend types and functions.
3561    // Most C++ 98 compilers do seem to give an error here, so
3562    // we do, too.
3563    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3564      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3565  }
3566
3567  bool Redeclaration = (FD != 0);
3568
3569  // If we found a match, create a friend function declaration with
3570  // that function as the previous declaration.
3571  if (Redeclaration) {
3572    // Create it in the semantic context of the original declaration.
3573    DC = FD->getDeclContext();
3574
3575  // If we didn't find something matching the type exactly, create
3576  // a declaration.  This declaration should only be findable via
3577  // argument-dependent lookup.
3578  } else {
3579    assert(DC->isFileContext());
3580
3581    // This implies that it has to be an operator or function.
3582    if (D->getKind() == Declarator::DK_Constructor ||
3583        D->getKind() == Declarator::DK_Destructor ||
3584        D->getKind() == Declarator::DK_Conversion) {
3585      Diag(Loc, diag::err_introducing_special_friend) <<
3586        (D->getKind() == Declarator::DK_Constructor ? 0 :
3587         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3588      return DeclPtrTy();
3589    }
3590  }
3591
3592  NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T, DInfo,
3593                                          /* PrevDecl = */ FD,
3594                                          MultiTemplateParamsArg(*this),
3595                                          IsDefinition,
3596                                          Redeclaration);
3597  FD = cast_or_null<FriendFunctionDecl>(ND);
3598
3599  assert(FD->getDeclContext() == DC);
3600  assert(FD->getLexicalDeclContext() == CurContext);
3601
3602  // If this is a dependent context, just add the decl to the
3603  // class's decl list and don't both with the lookup tables.  This
3604  // doesn't affect lookup because any call that might find this
3605  // function via ADL necessarily has to involve dependently-typed
3606  // arguments and hence can't be resolved until
3607  // template-instantiation anyway.
3608  if (CurContext->isDependentContext())
3609    CurContext->addHiddenDecl(FD);
3610  else
3611    CurContext->addDecl(FD);
3612
3613  return DeclPtrTy::make(FD);
3614}
3615
3616void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3617  Decl *Dcl = dcl.getAs<Decl>();
3618  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3619  if (!Fn) {
3620    Diag(DelLoc, diag::err_deleted_non_function);
3621    return;
3622  }
3623  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3624    Diag(DelLoc, diag::err_deleted_decl_not_first);
3625    Diag(Prev->getLocation(), diag::note_previous_declaration);
3626    // If the declaration wasn't the first, we delete the function anyway for
3627    // recovery.
3628  }
3629  Fn->setDeleted();
3630}
3631
3632static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3633  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3634       ++CI) {
3635    Stmt *SubStmt = *CI;
3636    if (!SubStmt)
3637      continue;
3638    if (isa<ReturnStmt>(SubStmt))
3639      Self.Diag(SubStmt->getSourceRange().getBegin(),
3640           diag::err_return_in_constructor_handler);
3641    if (!isa<Expr>(SubStmt))
3642      SearchForReturnInStmt(Self, SubStmt);
3643  }
3644}
3645
3646void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3647  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3648    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3649    SearchForReturnInStmt(*this, Handler);
3650  }
3651}
3652
3653bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3654                                             const CXXMethodDecl *Old) {
3655  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3656  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3657
3658  QualType CNewTy = Context.getCanonicalType(NewTy);
3659  QualType COldTy = Context.getCanonicalType(OldTy);
3660
3661  if (CNewTy == COldTy &&
3662      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3663    return false;
3664
3665  // Check if the return types are covariant
3666  QualType NewClassTy, OldClassTy;
3667
3668  /// Both types must be pointers or references to classes.
3669  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3670    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3671      NewClassTy = NewPT->getPointeeType();
3672      OldClassTy = OldPT->getPointeeType();
3673    }
3674  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3675    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3676      NewClassTy = NewRT->getPointeeType();
3677      OldClassTy = OldRT->getPointeeType();
3678    }
3679  }
3680
3681  // The return types aren't either both pointers or references to a class type.
3682  if (NewClassTy.isNull()) {
3683    Diag(New->getLocation(),
3684         diag::err_different_return_type_for_overriding_virtual_function)
3685      << New->getDeclName() << NewTy << OldTy;
3686    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3687
3688    return true;
3689  }
3690
3691  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3692    // Check if the new class derives from the old class.
3693    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3694      Diag(New->getLocation(),
3695           diag::err_covariant_return_not_derived)
3696      << New->getDeclName() << NewTy << OldTy;
3697      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3698      return true;
3699    }
3700
3701    // Check if we the conversion from derived to base is valid.
3702    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3703                      diag::err_covariant_return_inaccessible_base,
3704                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3705                      // FIXME: Should this point to the return type?
3706                      New->getLocation(), SourceRange(), New->getDeclName())) {
3707      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3708      return true;
3709    }
3710  }
3711
3712  // The qualifiers of the return types must be the same.
3713  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3714    Diag(New->getLocation(),
3715         diag::err_covariant_return_type_different_qualifications)
3716    << New->getDeclName() << NewTy << OldTy;
3717    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3718    return true;
3719  };
3720
3721
3722  // The new class type must have the same or less qualifiers as the old type.
3723  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3724    Diag(New->getLocation(),
3725         diag::err_covariant_return_type_class_type_more_qualified)
3726    << New->getDeclName() << NewTy << OldTy;
3727    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3728    return true;
3729  };
3730
3731  return false;
3732}
3733
3734bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3735                                                const CXXMethodDecl *Old)
3736{
3737  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3738                                  diag::note_overridden_virtual_function,
3739                                  Old->getType()->getAsFunctionProtoType(),
3740                                  Old->getLocation(),
3741                                  New->getType()->getAsFunctionProtoType(),
3742                                  New->getLocation());
3743}
3744
3745/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3746/// initializer for the declaration 'Dcl'.
3747/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3748/// static data member of class X, names should be looked up in the scope of
3749/// class X.
3750void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3751  Decl *D = Dcl.getAs<Decl>();
3752  // If there is no declaration, there was an error parsing it.
3753  if (D == 0)
3754    return;
3755
3756  // Check whether it is a declaration with a nested name specifier like
3757  // int foo::bar;
3758  if (!D->isOutOfLine())
3759    return;
3760
3761  // C++ [basic.lookup.unqual]p13
3762  //
3763  // A name used in the definition of a static data member of class X
3764  // (after the qualified-id of the static member) is looked up as if the name
3765  // was used in a member function of X.
3766
3767  // Change current context into the context of the initializing declaration.
3768  EnterDeclaratorContext(S, D->getDeclContext());
3769}
3770
3771/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3772/// initializer for the declaration 'Dcl'.
3773void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3774  Decl *D = Dcl.getAs<Decl>();
3775  // If there is no declaration, there was an error parsing it.
3776  if (D == 0)
3777    return;
3778
3779  // Check whether it is a declaration with a nested name specifier like
3780  // int foo::bar;
3781  if (!D->isOutOfLine())
3782    return;
3783
3784  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3785  ExitDeclaratorContext(S);
3786}
3787