SemaDeclCXX.cpp revision 62b7cfb73e202051e7ab0dad42ba213acd0dec7e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  return true;
976}
977
978/// isCurrentClassName - Determine whether the identifier II is the
979/// name of the class type currently being defined. In the case of
980/// nested classes, this will only return true if II is the name of
981/// the innermost class.
982bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
983                              const CXXScopeSpec *SS) {
984  assert(getLangOptions().CPlusPlus && "No class names in C!");
985
986  CXXRecordDecl *CurDecl;
987  if (SS && SS->isSet() && !SS->isInvalid()) {
988    DeclContext *DC = computeDeclContext(*SS, true);
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
990  } else
991    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
992
993  if (CurDecl && CurDecl->getIdentifier())
994    return &II == CurDecl->getIdentifier();
995  else
996    return false;
997}
998
999/// \brief Check the validity of a C++ base class specifier.
1000///
1001/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1002/// and returns NULL otherwise.
1003CXXBaseSpecifier *
1004Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1005                         SourceRange SpecifierRange,
1006                         bool Virtual, AccessSpecifier Access,
1007                         TypeSourceInfo *TInfo,
1008                         SourceLocation EllipsisLoc) {
1009  QualType BaseType = TInfo->getType();
1010
1011  // C++ [class.union]p1:
1012  //   A union shall not have base classes.
1013  if (Class->isUnion()) {
1014    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1015      << SpecifierRange;
1016    return 0;
1017  }
1018
1019  if (EllipsisLoc.isValid() &&
1020      !TInfo->getType()->containsUnexpandedParameterPack()) {
1021    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1022      << TInfo->getTypeLoc().getSourceRange();
1023    EllipsisLoc = SourceLocation();
1024  }
1025
1026  if (BaseType->isDependentType())
1027    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1028                                          Class->getTagKind() == TTK_Class,
1029                                          Access, TInfo, EllipsisLoc);
1030
1031  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1032
1033  // Base specifiers must be record types.
1034  if (!BaseType->isRecordType()) {
1035    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.union]p1:
1040  //   A union shall not be used as a base class.
1041  if (BaseType->isUnionType()) {
1042    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1043    return 0;
1044  }
1045
1046  // C++ [class.derived]p2:
1047  //   The class-name in a base-specifier shall not be an incompletely
1048  //   defined class.
1049  if (RequireCompleteType(BaseLoc, BaseType,
1050                          PDiag(diag::err_incomplete_base_class)
1051                            << SpecifierRange)) {
1052    Class->setInvalidDecl();
1053    return 0;
1054  }
1055
1056  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1057  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1058  assert(BaseDecl && "Record type has no declaration");
1059  BaseDecl = BaseDecl->getDefinition();
1060  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1061  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1062  assert(CXXBaseDecl && "Base type is not a C++ type");
1063
1064  // C++ [class]p3:
1065  //   If a class is marked final and it appears as a base-type-specifier in
1066  //   base-clause, the program is ill-formed.
1067  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1068    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1069      << CXXBaseDecl->getDeclName();
1070    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1071      << CXXBaseDecl->getDeclName();
1072    return 0;
1073  }
1074
1075  if (BaseDecl->isInvalidDecl())
1076    Class->setInvalidDecl();
1077
1078  // Create the base specifier.
1079  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1080                                        Class->getTagKind() == TTK_Class,
1081                                        Access, TInfo, EllipsisLoc);
1082}
1083
1084/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1085/// one entry in the base class list of a class specifier, for
1086/// example:
1087///    class foo : public bar, virtual private baz {
1088/// 'public bar' and 'virtual private baz' are each base-specifiers.
1089BaseResult
1090Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1091                         bool Virtual, AccessSpecifier Access,
1092                         ParsedType basetype, SourceLocation BaseLoc,
1093                         SourceLocation EllipsisLoc) {
1094  if (!classdecl)
1095    return true;
1096
1097  AdjustDeclIfTemplate(classdecl);
1098  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1099  if (!Class)
1100    return true;
1101
1102  TypeSourceInfo *TInfo = 0;
1103  GetTypeFromParser(basetype, &TInfo);
1104
1105  if (EllipsisLoc.isInvalid() &&
1106      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1107                                      UPPC_BaseType))
1108    return true;
1109
1110  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1111                                                      Virtual, Access, TInfo,
1112                                                      EllipsisLoc))
1113    return BaseSpec;
1114
1115  return true;
1116}
1117
1118/// \brief Performs the actual work of attaching the given base class
1119/// specifiers to a C++ class.
1120bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1121                                unsigned NumBases) {
1122 if (NumBases == 0)
1123    return false;
1124
1125  // Used to keep track of which base types we have already seen, so
1126  // that we can properly diagnose redundant direct base types. Note
1127  // that the key is always the unqualified canonical type of the base
1128  // class.
1129  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1130
1131  // Copy non-redundant base specifiers into permanent storage.
1132  unsigned NumGoodBases = 0;
1133  bool Invalid = false;
1134  for (unsigned idx = 0; idx < NumBases; ++idx) {
1135    QualType NewBaseType
1136      = Context.getCanonicalType(Bases[idx]->getType());
1137    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1138    if (KnownBaseTypes[NewBaseType]) {
1139      // C++ [class.mi]p3:
1140      //   A class shall not be specified as a direct base class of a
1141      //   derived class more than once.
1142      Diag(Bases[idx]->getSourceRange().getBegin(),
1143           diag::err_duplicate_base_class)
1144        << KnownBaseTypes[NewBaseType]->getType()
1145        << Bases[idx]->getSourceRange();
1146
1147      // Delete the duplicate base class specifier; we're going to
1148      // overwrite its pointer later.
1149      Context.Deallocate(Bases[idx]);
1150
1151      Invalid = true;
1152    } else {
1153      // Okay, add this new base class.
1154      KnownBaseTypes[NewBaseType] = Bases[idx];
1155      Bases[NumGoodBases++] = Bases[idx];
1156      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1157        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1158          if (RD->hasAttr<WeakAttr>())
1159            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1160    }
1161  }
1162
1163  // Attach the remaining base class specifiers to the derived class.
1164  Class->setBases(Bases, NumGoodBases);
1165
1166  // Delete the remaining (good) base class specifiers, since their
1167  // data has been copied into the CXXRecordDecl.
1168  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1169    Context.Deallocate(Bases[idx]);
1170
1171  return Invalid;
1172}
1173
1174/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1175/// class, after checking whether there are any duplicate base
1176/// classes.
1177void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1178                               unsigned NumBases) {
1179  if (!ClassDecl || !Bases || !NumBases)
1180    return;
1181
1182  AdjustDeclIfTemplate(ClassDecl);
1183  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1184                       (CXXBaseSpecifier**)(Bases), NumBases);
1185}
1186
1187static CXXRecordDecl *GetClassForType(QualType T) {
1188  if (const RecordType *RT = T->getAs<RecordType>())
1189    return cast<CXXRecordDecl>(RT->getDecl());
1190  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1191    return ICT->getDecl();
1192  else
1193    return 0;
1194}
1195
1196/// \brief Determine whether the type \p Derived is a C++ class that is
1197/// derived from the type \p Base.
1198bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1199  if (!getLangOptions().CPlusPlus)
1200    return false;
1201
1202  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1203  if (!DerivedRD)
1204    return false;
1205
1206  CXXRecordDecl *BaseRD = GetClassForType(Base);
1207  if (!BaseRD)
1208    return false;
1209
1210  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1211  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1212}
1213
1214/// \brief Determine whether the type \p Derived is a C++ class that is
1215/// derived from the type \p Base.
1216bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1217  if (!getLangOptions().CPlusPlus)
1218    return false;
1219
1220  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1221  if (!DerivedRD)
1222    return false;
1223
1224  CXXRecordDecl *BaseRD = GetClassForType(Base);
1225  if (!BaseRD)
1226    return false;
1227
1228  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1229}
1230
1231void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1232                              CXXCastPath &BasePathArray) {
1233  assert(BasePathArray.empty() && "Base path array must be empty!");
1234  assert(Paths.isRecordingPaths() && "Must record paths!");
1235
1236  const CXXBasePath &Path = Paths.front();
1237
1238  // We first go backward and check if we have a virtual base.
1239  // FIXME: It would be better if CXXBasePath had the base specifier for
1240  // the nearest virtual base.
1241  unsigned Start = 0;
1242  for (unsigned I = Path.size(); I != 0; --I) {
1243    if (Path[I - 1].Base->isVirtual()) {
1244      Start = I - 1;
1245      break;
1246    }
1247  }
1248
1249  // Now add all bases.
1250  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1251    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1252}
1253
1254/// \brief Determine whether the given base path includes a virtual
1255/// base class.
1256bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1257  for (CXXCastPath::const_iterator B = BasePath.begin(),
1258                                BEnd = BasePath.end();
1259       B != BEnd; ++B)
1260    if ((*B)->isVirtual())
1261      return true;
1262
1263  return false;
1264}
1265
1266/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1267/// conversion (where Derived and Base are class types) is
1268/// well-formed, meaning that the conversion is unambiguous (and
1269/// that all of the base classes are accessible). Returns true
1270/// and emits a diagnostic if the code is ill-formed, returns false
1271/// otherwise. Loc is the location where this routine should point to
1272/// if there is an error, and Range is the source range to highlight
1273/// if there is an error.
1274bool
1275Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1276                                   unsigned InaccessibleBaseID,
1277                                   unsigned AmbigiousBaseConvID,
1278                                   SourceLocation Loc, SourceRange Range,
1279                                   DeclarationName Name,
1280                                   CXXCastPath *BasePath) {
1281  // First, determine whether the path from Derived to Base is
1282  // ambiguous. This is slightly more expensive than checking whether
1283  // the Derived to Base conversion exists, because here we need to
1284  // explore multiple paths to determine if there is an ambiguity.
1285  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1286                     /*DetectVirtual=*/false);
1287  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1288  assert(DerivationOkay &&
1289         "Can only be used with a derived-to-base conversion");
1290  (void)DerivationOkay;
1291
1292  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1293    if (InaccessibleBaseID) {
1294      // Check that the base class can be accessed.
1295      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1296                                   InaccessibleBaseID)) {
1297        case AR_inaccessible:
1298          return true;
1299        case AR_accessible:
1300        case AR_dependent:
1301        case AR_delayed:
1302          break;
1303      }
1304    }
1305
1306    // Build a base path if necessary.
1307    if (BasePath)
1308      BuildBasePathArray(Paths, *BasePath);
1309    return false;
1310  }
1311
1312  // We know that the derived-to-base conversion is ambiguous, and
1313  // we're going to produce a diagnostic. Perform the derived-to-base
1314  // search just one more time to compute all of the possible paths so
1315  // that we can print them out. This is more expensive than any of
1316  // the previous derived-to-base checks we've done, but at this point
1317  // performance isn't as much of an issue.
1318  Paths.clear();
1319  Paths.setRecordingPaths(true);
1320  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1321  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1322  (void)StillOkay;
1323
1324  // Build up a textual representation of the ambiguous paths, e.g.,
1325  // D -> B -> A, that will be used to illustrate the ambiguous
1326  // conversions in the diagnostic. We only print one of the paths
1327  // to each base class subobject.
1328  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1329
1330  Diag(Loc, AmbigiousBaseConvID)
1331  << Derived << Base << PathDisplayStr << Range << Name;
1332  return true;
1333}
1334
1335bool
1336Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1337                                   SourceLocation Loc, SourceRange Range,
1338                                   CXXCastPath *BasePath,
1339                                   bool IgnoreAccess) {
1340  return CheckDerivedToBaseConversion(Derived, Base,
1341                                      IgnoreAccess ? 0
1342                                       : diag::err_upcast_to_inaccessible_base,
1343                                      diag::err_ambiguous_derived_to_base_conv,
1344                                      Loc, Range, DeclarationName(),
1345                                      BasePath);
1346}
1347
1348
1349/// @brief Builds a string representing ambiguous paths from a
1350/// specific derived class to different subobjects of the same base
1351/// class.
1352///
1353/// This function builds a string that can be used in error messages
1354/// to show the different paths that one can take through the
1355/// inheritance hierarchy to go from the derived class to different
1356/// subobjects of a base class. The result looks something like this:
1357/// @code
1358/// struct D -> struct B -> struct A
1359/// struct D -> struct C -> struct A
1360/// @endcode
1361std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1362  std::string PathDisplayStr;
1363  std::set<unsigned> DisplayedPaths;
1364  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1365       Path != Paths.end(); ++Path) {
1366    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1367      // We haven't displayed a path to this particular base
1368      // class subobject yet.
1369      PathDisplayStr += "\n    ";
1370      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1371      for (CXXBasePath::const_iterator Element = Path->begin();
1372           Element != Path->end(); ++Element)
1373        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1374    }
1375  }
1376
1377  return PathDisplayStr;
1378}
1379
1380//===----------------------------------------------------------------------===//
1381// C++ class member Handling
1382//===----------------------------------------------------------------------===//
1383
1384/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1385bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1386                                SourceLocation ASLoc,
1387                                SourceLocation ColonLoc,
1388                                AttributeList *Attrs) {
1389  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1390  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1391                                                  ASLoc, ColonLoc);
1392  CurContext->addHiddenDecl(ASDecl);
1393  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1394}
1395
1396/// CheckOverrideControl - Check C++0x override control semantics.
1397void Sema::CheckOverrideControl(const Decl *D) {
1398  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1399  if (!MD || !MD->isVirtual())
1400    return;
1401
1402  if (MD->isDependentContext())
1403    return;
1404
1405  // C++0x [class.virtual]p3:
1406  //   If a virtual function is marked with the virt-specifier override and does
1407  //   not override a member function of a base class,
1408  //   the program is ill-formed.
1409  bool HasOverriddenMethods =
1410    MD->begin_overridden_methods() != MD->end_overridden_methods();
1411  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1412    Diag(MD->getLocation(),
1413                 diag::err_function_marked_override_not_overriding)
1414      << MD->getDeclName();
1415    return;
1416  }
1417}
1418
1419/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1420/// function overrides a virtual member function marked 'final', according to
1421/// C++0x [class.virtual]p3.
1422bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1423                                                  const CXXMethodDecl *Old) {
1424  if (!Old->hasAttr<FinalAttr>())
1425    return false;
1426
1427  Diag(New->getLocation(), diag::err_final_function_overridden)
1428    << New->getDeclName();
1429  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1430  return true;
1431}
1432
1433/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1434/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1435/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1436/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1437/// present but parsing it has been deferred.
1438Decl *
1439Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1440                               MultiTemplateParamsArg TemplateParameterLists,
1441                               Expr *BW, const VirtSpecifiers &VS,
1442                               bool HasDeferredInit) {
1443  const DeclSpec &DS = D.getDeclSpec();
1444  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1445  DeclarationName Name = NameInfo.getName();
1446  SourceLocation Loc = NameInfo.getLoc();
1447
1448  // For anonymous bitfields, the location should point to the type.
1449  if (Loc.isInvalid())
1450    Loc = D.getSourceRange().getBegin();
1451
1452  Expr *BitWidth = static_cast<Expr*>(BW);
1453
1454  assert(isa<CXXRecordDecl>(CurContext));
1455  assert(!DS.isFriendSpecified());
1456
1457  bool isFunc = D.isDeclarationOfFunction();
1458
1459  // C++ 9.2p6: A member shall not be declared to have automatic storage
1460  // duration (auto, register) or with the extern storage-class-specifier.
1461  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1462  // data members and cannot be applied to names declared const or static,
1463  // and cannot be applied to reference members.
1464  switch (DS.getStorageClassSpec()) {
1465    case DeclSpec::SCS_unspecified:
1466    case DeclSpec::SCS_typedef:
1467    case DeclSpec::SCS_static:
1468      // FALL THROUGH.
1469      break;
1470    case DeclSpec::SCS_mutable:
1471      if (isFunc) {
1472        if (DS.getStorageClassSpecLoc().isValid())
1473          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1474        else
1475          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1476
1477        // FIXME: It would be nicer if the keyword was ignored only for this
1478        // declarator. Otherwise we could get follow-up errors.
1479        D.getMutableDeclSpec().ClearStorageClassSpecs();
1480      }
1481      break;
1482    default:
1483      if (DS.getStorageClassSpecLoc().isValid())
1484        Diag(DS.getStorageClassSpecLoc(),
1485             diag::err_storageclass_invalid_for_member);
1486      else
1487        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1488      D.getMutableDeclSpec().ClearStorageClassSpecs();
1489  }
1490
1491  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1492                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1493                      !isFunc);
1494
1495  Decl *Member;
1496  if (isInstField) {
1497    CXXScopeSpec &SS = D.getCXXScopeSpec();
1498
1499    // Data members must have identifiers for names.
1500    if (Name.getNameKind() != DeclarationName::Identifier) {
1501      Diag(Loc, diag::err_bad_variable_name)
1502        << Name;
1503      return 0;
1504    }
1505
1506    IdentifierInfo *II = Name.getAsIdentifierInfo();
1507
1508    // Member field could not be with "template" keyword.
1509    // So TemplateParameterLists should be empty in this case.
1510    if (TemplateParameterLists.size()) {
1511      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1512      if (TemplateParams->size()) {
1513        // There is no such thing as a member field template.
1514        Diag(D.getIdentifierLoc(), diag::err_template_member)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      } else {
1519        // There is an extraneous 'template<>' for this member.
1520        Diag(TemplateParams->getTemplateLoc(),
1521            diag::err_template_member_noparams)
1522            << II
1523            << SourceRange(TemplateParams->getTemplateLoc(),
1524                TemplateParams->getRAngleLoc());
1525      }
1526      return 0;
1527    }
1528
1529    if (SS.isSet() && !SS.isInvalid()) {
1530      // The user provided a superfluous scope specifier inside a class
1531      // definition:
1532      //
1533      // class X {
1534      //   int X::member;
1535      // };
1536      DeclContext *DC = 0;
1537      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1538        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1539          << Name << FixItHint::CreateRemoval(SS.getRange());
1540      else
1541        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1542          << Name << SS.getRange();
1543
1544      SS.clear();
1545    }
1546
1547    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1548                         HasDeferredInit, AS);
1549    assert(Member && "HandleField never returns null");
1550  } else {
1551    assert(!HasDeferredInit);
1552
1553    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1554    if (!Member) {
1555      return 0;
1556    }
1557
1558    // Non-instance-fields can't have a bitfield.
1559    if (BitWidth) {
1560      if (Member->isInvalidDecl()) {
1561        // don't emit another diagnostic.
1562      } else if (isa<VarDecl>(Member)) {
1563        // C++ 9.6p3: A bit-field shall not be a static member.
1564        // "static member 'A' cannot be a bit-field"
1565        Diag(Loc, diag::err_static_not_bitfield)
1566          << Name << BitWidth->getSourceRange();
1567      } else if (isa<TypedefDecl>(Member)) {
1568        // "typedef member 'x' cannot be a bit-field"
1569        Diag(Loc, diag::err_typedef_not_bitfield)
1570          << Name << BitWidth->getSourceRange();
1571      } else {
1572        // A function typedef ("typedef int f(); f a;").
1573        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1574        Diag(Loc, diag::err_not_integral_type_bitfield)
1575          << Name << cast<ValueDecl>(Member)->getType()
1576          << BitWidth->getSourceRange();
1577      }
1578
1579      BitWidth = 0;
1580      Member->setInvalidDecl();
1581    }
1582
1583    Member->setAccess(AS);
1584
1585    // If we have declared a member function template, set the access of the
1586    // templated declaration as well.
1587    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1588      FunTmpl->getTemplatedDecl()->setAccess(AS);
1589  }
1590
1591  if (VS.isOverrideSpecified()) {
1592    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1593    if (!MD || !MD->isVirtual()) {
1594      Diag(Member->getLocStart(),
1595           diag::override_keyword_only_allowed_on_virtual_member_functions)
1596        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1597    } else
1598      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1599  }
1600  if (VS.isFinalSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1606    } else
1607      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1608  }
1609
1610  if (VS.getLastLocation().isValid()) {
1611    // Update the end location of a method that has a virt-specifiers.
1612    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1613      MD->setRangeEnd(VS.getLastLocation());
1614  }
1615
1616  CheckOverrideControl(Member);
1617
1618  assert((Name || isInstField) && "No identifier for non-field ?");
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1641    FD->setInvalidDecl();
1642    FD->removeInClassInitializer();
1643    return;
1644  }
1645
1646  ExprResult Init = InitExpr;
1647  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1648    // FIXME: if there is no EqualLoc, this is list-initialization.
1649    Init = PerformCopyInitialization(
1650      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1651    if (Init.isInvalid()) {
1652      FD->setInvalidDecl();
1653      return;
1654    }
1655
1656    CheckImplicitConversions(Init.get(), EqualLoc);
1657  }
1658
1659  // C++0x [class.base.init]p7:
1660  //   The initialization of each base and member constitutes a
1661  //   full-expression.
1662  Init = MaybeCreateExprWithCleanups(Init);
1663  if (Init.isInvalid()) {
1664    FD->setInvalidDecl();
1665    return;
1666  }
1667
1668  InitExpr = Init.release();
1669
1670  FD->setInClassInitializer(InitExpr);
1671}
1672
1673/// \brief Find the direct and/or virtual base specifiers that
1674/// correspond to the given base type, for use in base initialization
1675/// within a constructor.
1676static bool FindBaseInitializer(Sema &SemaRef,
1677                                CXXRecordDecl *ClassDecl,
1678                                QualType BaseType,
1679                                const CXXBaseSpecifier *&DirectBaseSpec,
1680                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1681  // First, check for a direct base class.
1682  DirectBaseSpec = 0;
1683  for (CXXRecordDecl::base_class_const_iterator Base
1684         = ClassDecl->bases_begin();
1685       Base != ClassDecl->bases_end(); ++Base) {
1686    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1687      // We found a direct base of this type. That's what we're
1688      // initializing.
1689      DirectBaseSpec = &*Base;
1690      break;
1691    }
1692  }
1693
1694  // Check for a virtual base class.
1695  // FIXME: We might be able to short-circuit this if we know in advance that
1696  // there are no virtual bases.
1697  VirtualBaseSpec = 0;
1698  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1699    // We haven't found a base yet; search the class hierarchy for a
1700    // virtual base class.
1701    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1702                       /*DetectVirtual=*/false);
1703    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1704                              BaseType, Paths)) {
1705      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1706           Path != Paths.end(); ++Path) {
1707        if (Path->back().Base->isVirtual()) {
1708          VirtualBaseSpec = Path->back().Base;
1709          break;
1710        }
1711      }
1712    }
1713  }
1714
1715  return DirectBaseSpec || VirtualBaseSpec;
1716}
1717
1718/// \brief Handle a C++ member initializer using braced-init-list syntax.
1719MemInitResult
1720Sema::ActOnMemInitializer(Decl *ConstructorD,
1721                          Scope *S,
1722                          CXXScopeSpec &SS,
1723                          IdentifierInfo *MemberOrBase,
1724                          ParsedType TemplateTypeTy,
1725                          SourceLocation IdLoc,
1726                          Expr *InitList,
1727                          SourceLocation EllipsisLoc) {
1728  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1729                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1730}
1731
1732/// \brief Handle a C++ member initializer using parentheses syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          SourceLocation IdLoc,
1740                          SourceLocation LParenLoc,
1741                          Expr **Args, unsigned NumArgs,
1742                          SourceLocation RParenLoc,
1743                          SourceLocation EllipsisLoc) {
1744  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1745                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1746                                                     RParenLoc),
1747                             EllipsisLoc);
1748}
1749
1750namespace {
1751
1752// Callback to only accept typo corrections that can be a valid C++ member
1753// intializer: either a non-static field member or a base class.
1754class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1755 public:
1756  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1757      : ClassDecl(ClassDecl) {}
1758
1759  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1760    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1761      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1762        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1763      else
1764        return isa<TypeDecl>(ND);
1765    }
1766    return false;
1767  }
1768
1769 private:
1770  CXXRecordDecl *ClassDecl;
1771};
1772
1773}
1774
1775/// \brief Handle a C++ member initializer.
1776MemInitResult
1777Sema::BuildMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          SourceLocation IdLoc,
1783                          const MultiInitializer &Args,
1784                          SourceLocation EllipsisLoc) {
1785  if (!ConstructorD)
1786    return true;
1787
1788  AdjustDeclIfTemplate(ConstructorD);
1789
1790  CXXConstructorDecl *Constructor
1791    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1792  if (!Constructor) {
1793    // The user wrote a constructor initializer on a function that is
1794    // not a C++ constructor. Ignore the error for now, because we may
1795    // have more member initializers coming; we'll diagnose it just
1796    // once in ActOnMemInitializers.
1797    return true;
1798  }
1799
1800  CXXRecordDecl *ClassDecl = Constructor->getParent();
1801
1802  // C++ [class.base.init]p2:
1803  //   Names in a mem-initializer-id are looked up in the scope of the
1804  //   constructor's class and, if not found in that scope, are looked
1805  //   up in the scope containing the constructor's definition.
1806  //   [Note: if the constructor's class contains a member with the
1807  //   same name as a direct or virtual base class of the class, a
1808  //   mem-initializer-id naming the member or base class and composed
1809  //   of a single identifier refers to the class member. A
1810  //   mem-initializer-id for the hidden base class may be specified
1811  //   using a qualified name. ]
1812  if (!SS.getScopeRep() && !TemplateTypeTy) {
1813    // Look for a member, first.
1814    DeclContext::lookup_result Result
1815      = ClassDecl->lookup(MemberOrBase);
1816    if (Result.first != Result.second) {
1817      ValueDecl *Member;
1818      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1819          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1820        if (EllipsisLoc.isValid())
1821          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1822            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1823
1824        return BuildMemberInitializer(Member, Args, IdLoc);
1825      }
1826    }
1827  }
1828  // It didn't name a member, so see if it names a class.
1829  QualType BaseType;
1830  TypeSourceInfo *TInfo = 0;
1831
1832  if (TemplateTypeTy) {
1833    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1834  } else {
1835    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1836    LookupParsedName(R, S, &SS);
1837
1838    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1839    if (!TyD) {
1840      if (R.isAmbiguous()) return true;
1841
1842      // We don't want access-control diagnostics here.
1843      R.suppressDiagnostics();
1844
1845      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1846        bool NotUnknownSpecialization = false;
1847        DeclContext *DC = computeDeclContext(SS, false);
1848        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1849          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1850
1851        if (!NotUnknownSpecialization) {
1852          // When the scope specifier can refer to a member of an unknown
1853          // specialization, we take it as a type name.
1854          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1855                                       SS.getWithLocInContext(Context),
1856                                       *MemberOrBase, IdLoc);
1857          if (BaseType.isNull())
1858            return true;
1859
1860          R.clear();
1861          R.setLookupName(MemberOrBase);
1862        }
1863      }
1864
1865      // If no results were found, try to correct typos.
1866      TypoCorrection Corr;
1867      MemInitializerValidatorCCC Validator(ClassDecl);
1868      if (R.empty() && BaseType.isNull() &&
1869          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1870                              &Validator, ClassDecl))) {
1871        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1872        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1873        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1874          // We have found a non-static data member with a similar
1875          // name to what was typed; complain and initialize that
1876          // member.
1877          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1878            << MemberOrBase << true << CorrectedQuotedStr
1879            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1880          Diag(Member->getLocation(), diag::note_previous_decl)
1881            << CorrectedQuotedStr;
1882
1883          return BuildMemberInitializer(Member, Args, IdLoc);
1884        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1885          const CXXBaseSpecifier *DirectBaseSpec;
1886          const CXXBaseSpecifier *VirtualBaseSpec;
1887          if (FindBaseInitializer(*this, ClassDecl,
1888                                  Context.getTypeDeclType(Type),
1889                                  DirectBaseSpec, VirtualBaseSpec)) {
1890            // We have found a direct or virtual base class with a
1891            // similar name to what was typed; complain and initialize
1892            // that base class.
1893            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1894              << MemberOrBase << false << CorrectedQuotedStr
1895              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1896
1897            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1898                                                             : VirtualBaseSpec;
1899            Diag(BaseSpec->getSourceRange().getBegin(),
1900                 diag::note_base_class_specified_here)
1901              << BaseSpec->getType()
1902              << BaseSpec->getSourceRange();
1903
1904            TyD = Type;
1905          }
1906        }
1907      }
1908
1909      if (!TyD && BaseType.isNull()) {
1910        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1911          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1912        return true;
1913      }
1914    }
1915
1916    if (BaseType.isNull()) {
1917      BaseType = Context.getTypeDeclType(TyD);
1918      if (SS.isSet()) {
1919        NestedNameSpecifier *Qualifier =
1920          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1921
1922        // FIXME: preserve source range information
1923        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1924      }
1925    }
1926  }
1927
1928  if (!TInfo)
1929    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1930
1931  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1932}
1933
1934/// Checks a member initializer expression for cases where reference (or
1935/// pointer) members are bound to by-value parameters (or their addresses).
1936static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1937                                               Expr *Init,
1938                                               SourceLocation IdLoc) {
1939  QualType MemberTy = Member->getType();
1940
1941  // We only handle pointers and references currently.
1942  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1943  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1944    return;
1945
1946  const bool IsPointer = MemberTy->isPointerType();
1947  if (IsPointer) {
1948    if (const UnaryOperator *Op
1949          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1950      // The only case we're worried about with pointers requires taking the
1951      // address.
1952      if (Op->getOpcode() != UO_AddrOf)
1953        return;
1954
1955      Init = Op->getSubExpr();
1956    } else {
1957      // We only handle address-of expression initializers for pointers.
1958      return;
1959    }
1960  }
1961
1962  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1963    // Taking the address of a temporary will be diagnosed as a hard error.
1964    if (IsPointer)
1965      return;
1966
1967    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1968      << Member << Init->getSourceRange();
1969  } else if (const DeclRefExpr *DRE
1970               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1971    // We only warn when referring to a non-reference parameter declaration.
1972    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1973    if (!Parameter || Parameter->getType()->isReferenceType())
1974      return;
1975
1976    S.Diag(Init->getExprLoc(),
1977           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1978                     : diag::warn_bind_ref_member_to_parameter)
1979      << Member << Parameter << Init->getSourceRange();
1980  } else {
1981    // Other initializers are fine.
1982    return;
1983  }
1984
1985  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1986    << (unsigned)IsPointer;
1987}
1988
1989/// Checks an initializer expression for use of uninitialized fields, such as
1990/// containing the field that is being initialized. Returns true if there is an
1991/// uninitialized field was used an updates the SourceLocation parameter; false
1992/// otherwise.
1993static bool InitExprContainsUninitializedFields(const Stmt *S,
1994                                                const ValueDecl *LhsField,
1995                                                SourceLocation *L) {
1996  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1997
1998  if (isa<CallExpr>(S)) {
1999    // Do not descend into function calls or constructors, as the use
2000    // of an uninitialized field may be valid. One would have to inspect
2001    // the contents of the function/ctor to determine if it is safe or not.
2002    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2003    // may be safe, depending on what the function/ctor does.
2004    return false;
2005  }
2006  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2007    const NamedDecl *RhsField = ME->getMemberDecl();
2008
2009    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2010      // The member expression points to a static data member.
2011      assert(VD->isStaticDataMember() &&
2012             "Member points to non-static data member!");
2013      (void)VD;
2014      return false;
2015    }
2016
2017    if (isa<EnumConstantDecl>(RhsField)) {
2018      // The member expression points to an enum.
2019      return false;
2020    }
2021
2022    if (RhsField == LhsField) {
2023      // Initializing a field with itself. Throw a warning.
2024      // But wait; there are exceptions!
2025      // Exception #1:  The field may not belong to this record.
2026      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2027      const Expr *base = ME->getBase();
2028      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2029        // Even though the field matches, it does not belong to this record.
2030        return false;
2031      }
2032      // None of the exceptions triggered; return true to indicate an
2033      // uninitialized field was used.
2034      *L = ME->getMemberLoc();
2035      return true;
2036    }
2037  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2038    // sizeof/alignof doesn't reference contents, do not warn.
2039    return false;
2040  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2041    // address-of doesn't reference contents (the pointer may be dereferenced
2042    // in the same expression but it would be rare; and weird).
2043    if (UOE->getOpcode() == UO_AddrOf)
2044      return false;
2045  }
2046  for (Stmt::const_child_range it = S->children(); it; ++it) {
2047    if (!*it) {
2048      // An expression such as 'member(arg ?: "")' may trigger this.
2049      continue;
2050    }
2051    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2052      return true;
2053  }
2054  return false;
2055}
2056
2057MemInitResult
2058Sema::BuildMemberInitializer(ValueDecl *Member,
2059                             const MultiInitializer &Args,
2060                             SourceLocation IdLoc) {
2061  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2062  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2063  assert((DirectMember || IndirectMember) &&
2064         "Member must be a FieldDecl or IndirectFieldDecl");
2065
2066  if (Args.DiagnoseUnexpandedParameterPack(*this))
2067    return true;
2068
2069  if (Member->isInvalidDecl())
2070    return true;
2071
2072  // Diagnose value-uses of fields to initialize themselves, e.g.
2073  //   foo(foo)
2074  // where foo is not also a parameter to the constructor.
2075  // TODO: implement -Wuninitialized and fold this into that framework.
2076  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2077       I != E; ++I) {
2078    SourceLocation L;
2079    Expr *Arg = *I;
2080    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2081      Arg = DIE->getInit();
2082    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2083      // FIXME: Return true in the case when other fields are used before being
2084      // uninitialized. For example, let this field be the i'th field. When
2085      // initializing the i'th field, throw a warning if any of the >= i'th
2086      // fields are used, as they are not yet initialized.
2087      // Right now we are only handling the case where the i'th field uses
2088      // itself in its initializer.
2089      Diag(L, diag::warn_field_is_uninit);
2090    }
2091  }
2092
2093  bool HasDependentArg = Args.isTypeDependent();
2094
2095  Expr *Init;
2096  if (Member->getType()->isDependentType() || HasDependentArg) {
2097    // Can't check initialization for a member of dependent type or when
2098    // any of the arguments are type-dependent expressions.
2099    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2100
2101    DiscardCleanupsInEvaluationContext();
2102  } else {
2103    // Initialize the member.
2104    InitializedEntity MemberEntity =
2105      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2106                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2107    InitializationKind Kind =
2108      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2109                                       Args.getEndLoc());
2110
2111    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2112    if (MemberInit.isInvalid())
2113      return true;
2114
2115    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2116
2117    // C++0x [class.base.init]p7:
2118    //   The initialization of each base and member constitutes a
2119    //   full-expression.
2120    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2121    if (MemberInit.isInvalid())
2122      return true;
2123
2124    // If we are in a dependent context, template instantiation will
2125    // perform this type-checking again. Just save the arguments that we
2126    // received in a ParenListExpr.
2127    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2128    // of the information that we have about the member
2129    // initializer. However, deconstructing the ASTs is a dicey process,
2130    // and this approach is far more likely to get the corner cases right.
2131    if (CurContext->isDependentContext()) {
2132      Init = Args.CreateInitExpr(Context,
2133                                 Member->getType().getNonReferenceType());
2134    } else {
2135      Init = MemberInit.get();
2136      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2137    }
2138  }
2139
2140  if (DirectMember) {
2141    return new (Context) CXXCtorInitializer(Context, DirectMember,
2142                                                    IdLoc, Args.getStartLoc(),
2143                                                    Init, Args.getEndLoc());
2144  } else {
2145    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2146                                                    IdLoc, Args.getStartLoc(),
2147                                                    Init, Args.getEndLoc());
2148  }
2149}
2150
2151MemInitResult
2152Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2153                                 const MultiInitializer &Args,
2154                                 CXXRecordDecl *ClassDecl) {
2155  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2156  if (!LangOpts.CPlusPlus0x)
2157    return Diag(NameLoc, diag::err_delegating_ctor)
2158      << TInfo->getTypeLoc().getLocalSourceRange();
2159  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2160
2161  // Initialize the object.
2162  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2163                                     QualType(ClassDecl->getTypeForDecl(), 0));
2164  InitializationKind Kind =
2165    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2166                                     Args.getEndLoc());
2167
2168  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2169  if (DelegationInit.isInvalid())
2170    return true;
2171
2172  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2173         "Delegating constructor with no target?");
2174
2175  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2176
2177  // C++0x [class.base.init]p7:
2178  //   The initialization of each base and member constitutes a
2179  //   full-expression.
2180  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2181  if (DelegationInit.isInvalid())
2182    return true;
2183
2184  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2185                                          DelegationInit.takeAs<Expr>(),
2186                                          Args.getEndLoc());
2187}
2188
2189MemInitResult
2190Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2191                           const MultiInitializer &Args,
2192                           CXXRecordDecl *ClassDecl,
2193                           SourceLocation EllipsisLoc) {
2194  bool HasDependentArg = Args.isTypeDependent();
2195
2196  SourceLocation BaseLoc
2197    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2198
2199  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2200    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2201             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2202
2203  // C++ [class.base.init]p2:
2204  //   [...] Unless the mem-initializer-id names a nonstatic data
2205  //   member of the constructor's class or a direct or virtual base
2206  //   of that class, the mem-initializer is ill-formed. A
2207  //   mem-initializer-list can initialize a base class using any
2208  //   name that denotes that base class type.
2209  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2210
2211  if (EllipsisLoc.isValid()) {
2212    // This is a pack expansion.
2213    if (!BaseType->containsUnexpandedParameterPack())  {
2214      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2215        << SourceRange(BaseLoc, Args.getEndLoc());
2216
2217      EllipsisLoc = SourceLocation();
2218    }
2219  } else {
2220    // Check for any unexpanded parameter packs.
2221    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2222      return true;
2223
2224    if (Args.DiagnoseUnexpandedParameterPack(*this))
2225      return true;
2226  }
2227
2228  // Check for direct and virtual base classes.
2229  const CXXBaseSpecifier *DirectBaseSpec = 0;
2230  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2231  if (!Dependent) {
2232    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2233                                       BaseType))
2234      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2235
2236    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2237                        VirtualBaseSpec);
2238
2239    // C++ [base.class.init]p2:
2240    // Unless the mem-initializer-id names a nonstatic data member of the
2241    // constructor's class or a direct or virtual base of that class, the
2242    // mem-initializer is ill-formed.
2243    if (!DirectBaseSpec && !VirtualBaseSpec) {
2244      // If the class has any dependent bases, then it's possible that
2245      // one of those types will resolve to the same type as
2246      // BaseType. Therefore, just treat this as a dependent base
2247      // class initialization.  FIXME: Should we try to check the
2248      // initialization anyway? It seems odd.
2249      if (ClassDecl->hasAnyDependentBases())
2250        Dependent = true;
2251      else
2252        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2253          << BaseType << Context.getTypeDeclType(ClassDecl)
2254          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2255    }
2256  }
2257
2258  if (Dependent) {
2259    // Can't check initialization for a base of dependent type or when
2260    // any of the arguments are type-dependent expressions.
2261    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2262
2263    DiscardCleanupsInEvaluationContext();
2264
2265    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2266                                            /*IsVirtual=*/false,
2267                                            Args.getStartLoc(), BaseInit,
2268                                            Args.getEndLoc(), EllipsisLoc);
2269  }
2270
2271  // C++ [base.class.init]p2:
2272  //   If a mem-initializer-id is ambiguous because it designates both
2273  //   a direct non-virtual base class and an inherited virtual base
2274  //   class, the mem-initializer is ill-formed.
2275  if (DirectBaseSpec && VirtualBaseSpec)
2276    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2277      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2278
2279  CXXBaseSpecifier *BaseSpec
2280    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2281  if (!BaseSpec)
2282    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2283
2284  // Initialize the base.
2285  InitializedEntity BaseEntity =
2286    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2287  InitializationKind Kind =
2288    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2289                                     Args.getEndLoc());
2290
2291  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2292  if (BaseInit.isInvalid())
2293    return true;
2294
2295  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2296
2297  // C++0x [class.base.init]p7:
2298  //   The initialization of each base and member constitutes a
2299  //   full-expression.
2300  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2301  if (BaseInit.isInvalid())
2302    return true;
2303
2304  // If we are in a dependent context, template instantiation will
2305  // perform this type-checking again. Just save the arguments that we
2306  // received in a ParenListExpr.
2307  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2308  // of the information that we have about the base
2309  // initializer. However, deconstructing the ASTs is a dicey process,
2310  // and this approach is far more likely to get the corner cases right.
2311  if (CurContext->isDependentContext())
2312    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2313
2314  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2315                                          BaseSpec->isVirtual(),
2316                                          Args.getStartLoc(),
2317                                          BaseInit.takeAs<Expr>(),
2318                                          Args.getEndLoc(), EllipsisLoc);
2319}
2320
2321// Create a static_cast\<T&&>(expr).
2322static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2323  QualType ExprType = E->getType();
2324  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2325  SourceLocation ExprLoc = E->getLocStart();
2326  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2327      TargetType, ExprLoc);
2328
2329  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2330                                   SourceRange(ExprLoc, ExprLoc),
2331                                   E->getSourceRange()).take();
2332}
2333
2334/// ImplicitInitializerKind - How an implicit base or member initializer should
2335/// initialize its base or member.
2336enum ImplicitInitializerKind {
2337  IIK_Default,
2338  IIK_Copy,
2339  IIK_Move
2340};
2341
2342static bool
2343BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2344                             ImplicitInitializerKind ImplicitInitKind,
2345                             CXXBaseSpecifier *BaseSpec,
2346                             bool IsInheritedVirtualBase,
2347                             CXXCtorInitializer *&CXXBaseInit) {
2348  InitializedEntity InitEntity
2349    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2350                                        IsInheritedVirtualBase);
2351
2352  ExprResult BaseInit;
2353
2354  switch (ImplicitInitKind) {
2355  case IIK_Default: {
2356    InitializationKind InitKind
2357      = InitializationKind::CreateDefault(Constructor->getLocation());
2358    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2359    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2360                               MultiExprArg(SemaRef, 0, 0));
2361    break;
2362  }
2363
2364  case IIK_Move:
2365  case IIK_Copy: {
2366    bool Moving = ImplicitInitKind == IIK_Move;
2367    ParmVarDecl *Param = Constructor->getParamDecl(0);
2368    QualType ParamType = Param->getType().getNonReferenceType();
2369
2370    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2371
2372    Expr *CopyCtorArg =
2373      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2374                          Constructor->getLocation(), ParamType,
2375                          VK_LValue, 0);
2376
2377    // Cast to the base class to avoid ambiguities.
2378    QualType ArgTy =
2379      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2380                                       ParamType.getQualifiers());
2381
2382    if (Moving) {
2383      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2384    }
2385
2386    CXXCastPath BasePath;
2387    BasePath.push_back(BaseSpec);
2388    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2389                                            CK_UncheckedDerivedToBase,
2390                                            Moving ? VK_XValue : VK_LValue,
2391                                            &BasePath).take();
2392
2393    InitializationKind InitKind
2394      = InitializationKind::CreateDirect(Constructor->getLocation(),
2395                                         SourceLocation(), SourceLocation());
2396    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2397                                   &CopyCtorArg, 1);
2398    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2399                               MultiExprArg(&CopyCtorArg, 1));
2400    break;
2401  }
2402  }
2403
2404  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2405  if (BaseInit.isInvalid())
2406    return true;
2407
2408  CXXBaseInit =
2409    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2410               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2411                                                        SourceLocation()),
2412                                             BaseSpec->isVirtual(),
2413                                             SourceLocation(),
2414                                             BaseInit.takeAs<Expr>(),
2415                                             SourceLocation(),
2416                                             SourceLocation());
2417
2418  return false;
2419}
2420
2421static bool RefersToRValueRef(Expr *MemRef) {
2422  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2423  return Referenced->getType()->isRValueReferenceType();
2424}
2425
2426static bool
2427BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2428                               ImplicitInitializerKind ImplicitInitKind,
2429                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2430                               CXXCtorInitializer *&CXXMemberInit) {
2431  if (Field->isInvalidDecl())
2432    return true;
2433
2434  SourceLocation Loc = Constructor->getLocation();
2435
2436  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2437    bool Moving = ImplicitInitKind == IIK_Move;
2438    ParmVarDecl *Param = Constructor->getParamDecl(0);
2439    QualType ParamType = Param->getType().getNonReferenceType();
2440
2441    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2442
2443    // Suppress copying zero-width bitfields.
2444    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2445      return false;
2446
2447    Expr *MemberExprBase =
2448      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2449                          Loc, ParamType, VK_LValue, 0);
2450
2451    if (Moving) {
2452      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2453    }
2454
2455    // Build a reference to this field within the parameter.
2456    CXXScopeSpec SS;
2457    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2458                              Sema::LookupMemberName);
2459    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2460                                  : cast<ValueDecl>(Field), AS_public);
2461    MemberLookup.resolveKind();
2462    ExprResult CtorArg
2463      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2464                                         ParamType, Loc,
2465                                         /*IsArrow=*/false,
2466                                         SS,
2467                                         /*FirstQualifierInScope=*/0,
2468                                         MemberLookup,
2469                                         /*TemplateArgs=*/0);
2470    if (CtorArg.isInvalid())
2471      return true;
2472
2473    // C++11 [class.copy]p15:
2474    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2475    //     with static_cast<T&&>(x.m);
2476    if (RefersToRValueRef(CtorArg.get())) {
2477      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2478    }
2479
2480    // When the field we are copying is an array, create index variables for
2481    // each dimension of the array. We use these index variables to subscript
2482    // the source array, and other clients (e.g., CodeGen) will perform the
2483    // necessary iteration with these index variables.
2484    SmallVector<VarDecl *, 4> IndexVariables;
2485    QualType BaseType = Field->getType();
2486    QualType SizeType = SemaRef.Context.getSizeType();
2487    bool InitializingArray = false;
2488    while (const ConstantArrayType *Array
2489                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2490      InitializingArray = true;
2491      // Create the iteration variable for this array index.
2492      IdentifierInfo *IterationVarName = 0;
2493      {
2494        llvm::SmallString<8> Str;
2495        llvm::raw_svector_ostream OS(Str);
2496        OS << "__i" << IndexVariables.size();
2497        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2498      }
2499      VarDecl *IterationVar
2500        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2501                          IterationVarName, SizeType,
2502                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2503                          SC_None, SC_None);
2504      IndexVariables.push_back(IterationVar);
2505
2506      // Create a reference to the iteration variable.
2507      ExprResult IterationVarRef
2508        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2509      assert(!IterationVarRef.isInvalid() &&
2510             "Reference to invented variable cannot fail!");
2511
2512      // Subscript the array with this iteration variable.
2513      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2514                                                        IterationVarRef.take(),
2515                                                        Loc);
2516      if (CtorArg.isInvalid())
2517        return true;
2518
2519      BaseType = Array->getElementType();
2520    }
2521
2522    // The array subscript expression is an lvalue, which is wrong for moving.
2523    if (Moving && InitializingArray)
2524      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2525
2526    // Construct the entity that we will be initializing. For an array, this
2527    // will be first element in the array, which may require several levels
2528    // of array-subscript entities.
2529    SmallVector<InitializedEntity, 4> Entities;
2530    Entities.reserve(1 + IndexVariables.size());
2531    if (Indirect)
2532      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2533    else
2534      Entities.push_back(InitializedEntity::InitializeMember(Field));
2535    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2536      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2537                                                              0,
2538                                                              Entities.back()));
2539
2540    // Direct-initialize to use the copy constructor.
2541    InitializationKind InitKind =
2542      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2543
2544    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2545    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2546                                   &CtorArgE, 1);
2547
2548    ExprResult MemberInit
2549      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2550                        MultiExprArg(&CtorArgE, 1));
2551    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2552    if (MemberInit.isInvalid())
2553      return true;
2554
2555    if (Indirect) {
2556      assert(IndexVariables.size() == 0 &&
2557             "Indirect field improperly initialized");
2558      CXXMemberInit
2559        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2560                                                   Loc, Loc,
2561                                                   MemberInit.takeAs<Expr>(),
2562                                                   Loc);
2563    } else
2564      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2565                                                 Loc, MemberInit.takeAs<Expr>(),
2566                                                 Loc,
2567                                                 IndexVariables.data(),
2568                                                 IndexVariables.size());
2569    return false;
2570  }
2571
2572  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2573
2574  QualType FieldBaseElementType =
2575    SemaRef.Context.getBaseElementType(Field->getType());
2576
2577  if (FieldBaseElementType->isRecordType()) {
2578    InitializedEntity InitEntity
2579      = Indirect? InitializedEntity::InitializeMember(Indirect)
2580                : InitializedEntity::InitializeMember(Field);
2581    InitializationKind InitKind =
2582      InitializationKind::CreateDefault(Loc);
2583
2584    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2585    ExprResult MemberInit =
2586      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2587
2588    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2589    if (MemberInit.isInvalid())
2590      return true;
2591
2592    if (Indirect)
2593      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2594                                                               Indirect, Loc,
2595                                                               Loc,
2596                                                               MemberInit.get(),
2597                                                               Loc);
2598    else
2599      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2600                                                               Field, Loc, Loc,
2601                                                               MemberInit.get(),
2602                                                               Loc);
2603    return false;
2604  }
2605
2606  if (!Field->getParent()->isUnion()) {
2607    if (FieldBaseElementType->isReferenceType()) {
2608      SemaRef.Diag(Constructor->getLocation(),
2609                   diag::err_uninitialized_member_in_ctor)
2610      << (int)Constructor->isImplicit()
2611      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2612      << 0 << Field->getDeclName();
2613      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2614      return true;
2615    }
2616
2617    if (FieldBaseElementType.isConstQualified()) {
2618      SemaRef.Diag(Constructor->getLocation(),
2619                   diag::err_uninitialized_member_in_ctor)
2620      << (int)Constructor->isImplicit()
2621      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2622      << 1 << Field->getDeclName();
2623      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2624      return true;
2625    }
2626  }
2627
2628  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2629      FieldBaseElementType->isObjCRetainableType() &&
2630      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2631      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2632    // Instant objects:
2633    //   Default-initialize Objective-C pointers to NULL.
2634    CXXMemberInit
2635      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2636                                                 Loc, Loc,
2637                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2638                                                 Loc);
2639    return false;
2640  }
2641
2642  // Nothing to initialize.
2643  CXXMemberInit = 0;
2644  return false;
2645}
2646
2647namespace {
2648struct BaseAndFieldInfo {
2649  Sema &S;
2650  CXXConstructorDecl *Ctor;
2651  bool AnyErrorsInInits;
2652  ImplicitInitializerKind IIK;
2653  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2654  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2655
2656  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2657    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2658    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2659    if (Generated && Ctor->isCopyConstructor())
2660      IIK = IIK_Copy;
2661    else if (Generated && Ctor->isMoveConstructor())
2662      IIK = IIK_Move;
2663    else
2664      IIK = IIK_Default;
2665  }
2666
2667  bool isImplicitCopyOrMove() const {
2668    switch (IIK) {
2669    case IIK_Copy:
2670    case IIK_Move:
2671      return true;
2672
2673    case IIK_Default:
2674      return false;
2675    }
2676
2677    return false;
2678  }
2679};
2680}
2681
2682/// \brief Determine whether the given indirect field declaration is somewhere
2683/// within an anonymous union.
2684static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2685  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2686                                      CEnd = F->chain_end();
2687       C != CEnd; ++C)
2688    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2689      if (Record->isUnion())
2690        return true;
2691
2692  return false;
2693}
2694
2695/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2696/// array type.
2697static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2698  if (T->isIncompleteArrayType())
2699    return true;
2700
2701  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2702    if (!ArrayT->getSize())
2703      return true;
2704
2705    T = ArrayT->getElementType();
2706  }
2707
2708  return false;
2709}
2710
2711static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2712                                    FieldDecl *Field,
2713                                    IndirectFieldDecl *Indirect = 0) {
2714
2715  // Overwhelmingly common case: we have a direct initializer for this field.
2716  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2717    Info.AllToInit.push_back(Init);
2718    return false;
2719  }
2720
2721  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2722  // has a brace-or-equal-initializer, the entity is initialized as specified
2723  // in [dcl.init].
2724  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2725    CXXCtorInitializer *Init;
2726    if (Indirect)
2727      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2728                                                      SourceLocation(),
2729                                                      SourceLocation(), 0,
2730                                                      SourceLocation());
2731    else
2732      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2733                                                      SourceLocation(),
2734                                                      SourceLocation(), 0,
2735                                                      SourceLocation());
2736    Info.AllToInit.push_back(Init);
2737    return false;
2738  }
2739
2740  // Don't build an implicit initializer for union members if none was
2741  // explicitly specified.
2742  if (Field->getParent()->isUnion() ||
2743      (Indirect && isWithinAnonymousUnion(Indirect)))
2744    return false;
2745
2746  // Don't initialize incomplete or zero-length arrays.
2747  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2748    return false;
2749
2750  // Don't try to build an implicit initializer if there were semantic
2751  // errors in any of the initializers (and therefore we might be
2752  // missing some that the user actually wrote).
2753  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2754    return false;
2755
2756  CXXCtorInitializer *Init = 0;
2757  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2758                                     Indirect, Init))
2759    return true;
2760
2761  if (Init)
2762    Info.AllToInit.push_back(Init);
2763
2764  return false;
2765}
2766
2767bool
2768Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2769                               CXXCtorInitializer *Initializer) {
2770  assert(Initializer->isDelegatingInitializer());
2771  Constructor->setNumCtorInitializers(1);
2772  CXXCtorInitializer **initializer =
2773    new (Context) CXXCtorInitializer*[1];
2774  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2775  Constructor->setCtorInitializers(initializer);
2776
2777  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2778    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2779    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2780  }
2781
2782  DelegatingCtorDecls.push_back(Constructor);
2783
2784  return false;
2785}
2786
2787bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2788                               CXXCtorInitializer **Initializers,
2789                               unsigned NumInitializers,
2790                               bool AnyErrors) {
2791  if (Constructor->isDependentContext()) {
2792    // Just store the initializers as written, they will be checked during
2793    // instantiation.
2794    if (NumInitializers > 0) {
2795      Constructor->setNumCtorInitializers(NumInitializers);
2796      CXXCtorInitializer **baseOrMemberInitializers =
2797        new (Context) CXXCtorInitializer*[NumInitializers];
2798      memcpy(baseOrMemberInitializers, Initializers,
2799             NumInitializers * sizeof(CXXCtorInitializer*));
2800      Constructor->setCtorInitializers(baseOrMemberInitializers);
2801    }
2802
2803    return false;
2804  }
2805
2806  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2807
2808  // We need to build the initializer AST according to order of construction
2809  // and not what user specified in the Initializers list.
2810  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2811  if (!ClassDecl)
2812    return true;
2813
2814  bool HadError = false;
2815
2816  for (unsigned i = 0; i < NumInitializers; i++) {
2817    CXXCtorInitializer *Member = Initializers[i];
2818
2819    if (Member->isBaseInitializer())
2820      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2821    else
2822      Info.AllBaseFields[Member->getAnyMember()] = Member;
2823  }
2824
2825  // Keep track of the direct virtual bases.
2826  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2827  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2828       E = ClassDecl->bases_end(); I != E; ++I) {
2829    if (I->isVirtual())
2830      DirectVBases.insert(I);
2831  }
2832
2833  // Push virtual bases before others.
2834  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2835       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2836
2837    if (CXXCtorInitializer *Value
2838        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2839      Info.AllToInit.push_back(Value);
2840    } else if (!AnyErrors) {
2841      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2842      CXXCtorInitializer *CXXBaseInit;
2843      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2844                                       VBase, IsInheritedVirtualBase,
2845                                       CXXBaseInit)) {
2846        HadError = true;
2847        continue;
2848      }
2849
2850      Info.AllToInit.push_back(CXXBaseInit);
2851    }
2852  }
2853
2854  // Non-virtual bases.
2855  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2856       E = ClassDecl->bases_end(); Base != E; ++Base) {
2857    // Virtuals are in the virtual base list and already constructed.
2858    if (Base->isVirtual())
2859      continue;
2860
2861    if (CXXCtorInitializer *Value
2862          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2863      Info.AllToInit.push_back(Value);
2864    } else if (!AnyErrors) {
2865      CXXCtorInitializer *CXXBaseInit;
2866      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2867                                       Base, /*IsInheritedVirtualBase=*/false,
2868                                       CXXBaseInit)) {
2869        HadError = true;
2870        continue;
2871      }
2872
2873      Info.AllToInit.push_back(CXXBaseInit);
2874    }
2875  }
2876
2877  // Fields.
2878  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2879                               MemEnd = ClassDecl->decls_end();
2880       Mem != MemEnd; ++Mem) {
2881    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2882      // C++ [class.bit]p2:
2883      //   A declaration for a bit-field that omits the identifier declares an
2884      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2885      //   initialized.
2886      if (F->isUnnamedBitfield())
2887        continue;
2888
2889      // If we're not generating the implicit copy/move constructor, then we'll
2890      // handle anonymous struct/union fields based on their individual
2891      // indirect fields.
2892      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2893        continue;
2894
2895      if (CollectFieldInitializer(*this, Info, F))
2896        HadError = true;
2897      continue;
2898    }
2899
2900    // Beyond this point, we only consider default initialization.
2901    if (Info.IIK != IIK_Default)
2902      continue;
2903
2904    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2905      if (F->getType()->isIncompleteArrayType()) {
2906        assert(ClassDecl->hasFlexibleArrayMember() &&
2907               "Incomplete array type is not valid");
2908        continue;
2909      }
2910
2911      // Initialize each field of an anonymous struct individually.
2912      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2913        HadError = true;
2914
2915      continue;
2916    }
2917  }
2918
2919  NumInitializers = Info.AllToInit.size();
2920  if (NumInitializers > 0) {
2921    Constructor->setNumCtorInitializers(NumInitializers);
2922    CXXCtorInitializer **baseOrMemberInitializers =
2923      new (Context) CXXCtorInitializer*[NumInitializers];
2924    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2925           NumInitializers * sizeof(CXXCtorInitializer*));
2926    Constructor->setCtorInitializers(baseOrMemberInitializers);
2927
2928    // Constructors implicitly reference the base and member
2929    // destructors.
2930    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2931                                           Constructor->getParent());
2932  }
2933
2934  return HadError;
2935}
2936
2937static void *GetKeyForTopLevelField(FieldDecl *Field) {
2938  // For anonymous unions, use the class declaration as the key.
2939  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2940    if (RT->getDecl()->isAnonymousStructOrUnion())
2941      return static_cast<void *>(RT->getDecl());
2942  }
2943  return static_cast<void *>(Field);
2944}
2945
2946static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2947  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2948}
2949
2950static void *GetKeyForMember(ASTContext &Context,
2951                             CXXCtorInitializer *Member) {
2952  if (!Member->isAnyMemberInitializer())
2953    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2954
2955  // For fields injected into the class via declaration of an anonymous union,
2956  // use its anonymous union class declaration as the unique key.
2957  FieldDecl *Field = Member->getAnyMember();
2958
2959  // If the field is a member of an anonymous struct or union, our key
2960  // is the anonymous record decl that's a direct child of the class.
2961  RecordDecl *RD = Field->getParent();
2962  if (RD->isAnonymousStructOrUnion()) {
2963    while (true) {
2964      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2965      if (Parent->isAnonymousStructOrUnion())
2966        RD = Parent;
2967      else
2968        break;
2969    }
2970
2971    return static_cast<void *>(RD);
2972  }
2973
2974  return static_cast<void *>(Field);
2975}
2976
2977static void
2978DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2979                                  const CXXConstructorDecl *Constructor,
2980                                  CXXCtorInitializer **Inits,
2981                                  unsigned NumInits) {
2982  if (Constructor->getDeclContext()->isDependentContext())
2983    return;
2984
2985  // Don't check initializers order unless the warning is enabled at the
2986  // location of at least one initializer.
2987  bool ShouldCheckOrder = false;
2988  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2989    CXXCtorInitializer *Init = Inits[InitIndex];
2990    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2991                                         Init->getSourceLocation())
2992          != DiagnosticsEngine::Ignored) {
2993      ShouldCheckOrder = true;
2994      break;
2995    }
2996  }
2997  if (!ShouldCheckOrder)
2998    return;
2999
3000  // Build the list of bases and members in the order that they'll
3001  // actually be initialized.  The explicit initializers should be in
3002  // this same order but may be missing things.
3003  SmallVector<const void*, 32> IdealInitKeys;
3004
3005  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3006
3007  // 1. Virtual bases.
3008  for (CXXRecordDecl::base_class_const_iterator VBase =
3009       ClassDecl->vbases_begin(),
3010       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3011    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3012
3013  // 2. Non-virtual bases.
3014  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3015       E = ClassDecl->bases_end(); Base != E; ++Base) {
3016    if (Base->isVirtual())
3017      continue;
3018    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3019  }
3020
3021  // 3. Direct fields.
3022  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3023       E = ClassDecl->field_end(); Field != E; ++Field) {
3024    if (Field->isUnnamedBitfield())
3025      continue;
3026
3027    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3028  }
3029
3030  unsigned NumIdealInits = IdealInitKeys.size();
3031  unsigned IdealIndex = 0;
3032
3033  CXXCtorInitializer *PrevInit = 0;
3034  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3035    CXXCtorInitializer *Init = Inits[InitIndex];
3036    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3037
3038    // Scan forward to try to find this initializer in the idealized
3039    // initializers list.
3040    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3041      if (InitKey == IdealInitKeys[IdealIndex])
3042        break;
3043
3044    // If we didn't find this initializer, it must be because we
3045    // scanned past it on a previous iteration.  That can only
3046    // happen if we're out of order;  emit a warning.
3047    if (IdealIndex == NumIdealInits && PrevInit) {
3048      Sema::SemaDiagnosticBuilder D =
3049        SemaRef.Diag(PrevInit->getSourceLocation(),
3050                     diag::warn_initializer_out_of_order);
3051
3052      if (PrevInit->isAnyMemberInitializer())
3053        D << 0 << PrevInit->getAnyMember()->getDeclName();
3054      else
3055        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3056
3057      if (Init->isAnyMemberInitializer())
3058        D << 0 << Init->getAnyMember()->getDeclName();
3059      else
3060        D << 1 << Init->getTypeSourceInfo()->getType();
3061
3062      // Move back to the initializer's location in the ideal list.
3063      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3064        if (InitKey == IdealInitKeys[IdealIndex])
3065          break;
3066
3067      assert(IdealIndex != NumIdealInits &&
3068             "initializer not found in initializer list");
3069    }
3070
3071    PrevInit = Init;
3072  }
3073}
3074
3075namespace {
3076bool CheckRedundantInit(Sema &S,
3077                        CXXCtorInitializer *Init,
3078                        CXXCtorInitializer *&PrevInit) {
3079  if (!PrevInit) {
3080    PrevInit = Init;
3081    return false;
3082  }
3083
3084  if (FieldDecl *Field = Init->getMember())
3085    S.Diag(Init->getSourceLocation(),
3086           diag::err_multiple_mem_initialization)
3087      << Field->getDeclName()
3088      << Init->getSourceRange();
3089  else {
3090    const Type *BaseClass = Init->getBaseClass();
3091    assert(BaseClass && "neither field nor base");
3092    S.Diag(Init->getSourceLocation(),
3093           diag::err_multiple_base_initialization)
3094      << QualType(BaseClass, 0)
3095      << Init->getSourceRange();
3096  }
3097  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3098    << 0 << PrevInit->getSourceRange();
3099
3100  return true;
3101}
3102
3103typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3104typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3105
3106bool CheckRedundantUnionInit(Sema &S,
3107                             CXXCtorInitializer *Init,
3108                             RedundantUnionMap &Unions) {
3109  FieldDecl *Field = Init->getAnyMember();
3110  RecordDecl *Parent = Field->getParent();
3111  NamedDecl *Child = Field;
3112
3113  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3114    if (Parent->isUnion()) {
3115      UnionEntry &En = Unions[Parent];
3116      if (En.first && En.first != Child) {
3117        S.Diag(Init->getSourceLocation(),
3118               diag::err_multiple_mem_union_initialization)
3119          << Field->getDeclName()
3120          << Init->getSourceRange();
3121        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3122          << 0 << En.second->getSourceRange();
3123        return true;
3124      }
3125      if (!En.first) {
3126        En.first = Child;
3127        En.second = Init;
3128      }
3129      if (!Parent->isAnonymousStructOrUnion())
3130        return false;
3131    }
3132
3133    Child = Parent;
3134    Parent = cast<RecordDecl>(Parent->getDeclContext());
3135  }
3136
3137  return false;
3138}
3139}
3140
3141/// ActOnMemInitializers - Handle the member initializers for a constructor.
3142void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3143                                SourceLocation ColonLoc,
3144                                CXXCtorInitializer **meminits,
3145                                unsigned NumMemInits,
3146                                bool AnyErrors) {
3147  if (!ConstructorDecl)
3148    return;
3149
3150  AdjustDeclIfTemplate(ConstructorDecl);
3151
3152  CXXConstructorDecl *Constructor
3153    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3154
3155  if (!Constructor) {
3156    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3157    return;
3158  }
3159
3160  CXXCtorInitializer **MemInits =
3161    reinterpret_cast<CXXCtorInitializer **>(meminits);
3162
3163  // Mapping for the duplicate initializers check.
3164  // For member initializers, this is keyed with a FieldDecl*.
3165  // For base initializers, this is keyed with a Type*.
3166  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3167
3168  // Mapping for the inconsistent anonymous-union initializers check.
3169  RedundantUnionMap MemberUnions;
3170
3171  bool HadError = false;
3172  for (unsigned i = 0; i < NumMemInits; i++) {
3173    CXXCtorInitializer *Init = MemInits[i];
3174
3175    // Set the source order index.
3176    Init->setSourceOrder(i);
3177
3178    if (Init->isAnyMemberInitializer()) {
3179      FieldDecl *Field = Init->getAnyMember();
3180      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3181          CheckRedundantUnionInit(*this, Init, MemberUnions))
3182        HadError = true;
3183    } else if (Init->isBaseInitializer()) {
3184      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3185      if (CheckRedundantInit(*this, Init, Members[Key]))
3186        HadError = true;
3187    } else {
3188      assert(Init->isDelegatingInitializer());
3189      // This must be the only initializer
3190      if (i != 0 || NumMemInits > 1) {
3191        Diag(MemInits[0]->getSourceLocation(),
3192             diag::err_delegating_initializer_alone)
3193          << MemInits[0]->getSourceRange();
3194        HadError = true;
3195        // We will treat this as being the only initializer.
3196      }
3197      SetDelegatingInitializer(Constructor, MemInits[i]);
3198      // Return immediately as the initializer is set.
3199      return;
3200    }
3201  }
3202
3203  if (HadError)
3204    return;
3205
3206  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3207
3208  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3209}
3210
3211void
3212Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3213                                             CXXRecordDecl *ClassDecl) {
3214  // Ignore dependent contexts. Also ignore unions, since their members never
3215  // have destructors implicitly called.
3216  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3217    return;
3218
3219  // FIXME: all the access-control diagnostics are positioned on the
3220  // field/base declaration.  That's probably good; that said, the
3221  // user might reasonably want to know why the destructor is being
3222  // emitted, and we currently don't say.
3223
3224  // Non-static data members.
3225  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3226       E = ClassDecl->field_end(); I != E; ++I) {
3227    FieldDecl *Field = *I;
3228    if (Field->isInvalidDecl())
3229      continue;
3230
3231    // Don't destroy incomplete or zero-length arrays.
3232    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3233      continue;
3234
3235    QualType FieldType = Context.getBaseElementType(Field->getType());
3236
3237    const RecordType* RT = FieldType->getAs<RecordType>();
3238    if (!RT)
3239      continue;
3240
3241    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3242    if (FieldClassDecl->isInvalidDecl())
3243      continue;
3244    if (FieldClassDecl->hasTrivialDestructor())
3245      continue;
3246
3247    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3248    assert(Dtor && "No dtor found for FieldClassDecl!");
3249    CheckDestructorAccess(Field->getLocation(), Dtor,
3250                          PDiag(diag::err_access_dtor_field)
3251                            << Field->getDeclName()
3252                            << FieldType);
3253
3254    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3255  }
3256
3257  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3258
3259  // Bases.
3260  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3261       E = ClassDecl->bases_end(); Base != E; ++Base) {
3262    // Bases are always records in a well-formed non-dependent class.
3263    const RecordType *RT = Base->getType()->getAs<RecordType>();
3264
3265    // Remember direct virtual bases.
3266    if (Base->isVirtual())
3267      DirectVirtualBases.insert(RT);
3268
3269    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3270    // If our base class is invalid, we probably can't get its dtor anyway.
3271    if (BaseClassDecl->isInvalidDecl())
3272      continue;
3273    // Ignore trivial destructors.
3274    if (BaseClassDecl->hasTrivialDestructor())
3275      continue;
3276
3277    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3278    assert(Dtor && "No dtor found for BaseClassDecl!");
3279
3280    // FIXME: caret should be on the start of the class name
3281    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3282                          PDiag(diag::err_access_dtor_base)
3283                            << Base->getType()
3284                            << Base->getSourceRange());
3285
3286    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3287  }
3288
3289  // Virtual bases.
3290  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3291       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3292
3293    // Bases are always records in a well-formed non-dependent class.
3294    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3295
3296    // Ignore direct virtual bases.
3297    if (DirectVirtualBases.count(RT))
3298      continue;
3299
3300    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3301    // If our base class is invalid, we probably can't get its dtor anyway.
3302    if (BaseClassDecl->isInvalidDecl())
3303      continue;
3304    // Ignore trivial destructors.
3305    if (BaseClassDecl->hasTrivialDestructor())
3306      continue;
3307
3308    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3309    assert(Dtor && "No dtor found for BaseClassDecl!");
3310    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3311                          PDiag(diag::err_access_dtor_vbase)
3312                            << VBase->getType());
3313
3314    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3315  }
3316}
3317
3318void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3319  if (!CDtorDecl)
3320    return;
3321
3322  if (CXXConstructorDecl *Constructor
3323      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3324    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3325}
3326
3327bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3328                                  unsigned DiagID, AbstractDiagSelID SelID) {
3329  if (SelID == -1)
3330    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3331  else
3332    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3333}
3334
3335bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3336                                  const PartialDiagnostic &PD) {
3337  if (!getLangOptions().CPlusPlus)
3338    return false;
3339
3340  if (const ArrayType *AT = Context.getAsArrayType(T))
3341    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3342
3343  if (const PointerType *PT = T->getAs<PointerType>()) {
3344    // Find the innermost pointer type.
3345    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3346      PT = T;
3347
3348    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3349      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3350  }
3351
3352  const RecordType *RT = T->getAs<RecordType>();
3353  if (!RT)
3354    return false;
3355
3356  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3357
3358  // We can't answer whether something is abstract until it has a
3359  // definition.  If it's currently being defined, we'll walk back
3360  // over all the declarations when we have a full definition.
3361  const CXXRecordDecl *Def = RD->getDefinition();
3362  if (!Def || Def->isBeingDefined())
3363    return false;
3364
3365  if (!RD->isAbstract())
3366    return false;
3367
3368  Diag(Loc, PD) << RD->getDeclName();
3369  DiagnoseAbstractType(RD);
3370
3371  return true;
3372}
3373
3374void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3375  // Check if we've already emitted the list of pure virtual functions
3376  // for this class.
3377  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3378    return;
3379
3380  CXXFinalOverriderMap FinalOverriders;
3381  RD->getFinalOverriders(FinalOverriders);
3382
3383  // Keep a set of seen pure methods so we won't diagnose the same method
3384  // more than once.
3385  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3386
3387  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3388                                   MEnd = FinalOverriders.end();
3389       M != MEnd;
3390       ++M) {
3391    for (OverridingMethods::iterator SO = M->second.begin(),
3392                                  SOEnd = M->second.end();
3393         SO != SOEnd; ++SO) {
3394      // C++ [class.abstract]p4:
3395      //   A class is abstract if it contains or inherits at least one
3396      //   pure virtual function for which the final overrider is pure
3397      //   virtual.
3398
3399      //
3400      if (SO->second.size() != 1)
3401        continue;
3402
3403      if (!SO->second.front().Method->isPure())
3404        continue;
3405
3406      if (!SeenPureMethods.insert(SO->second.front().Method))
3407        continue;
3408
3409      Diag(SO->second.front().Method->getLocation(),
3410           diag::note_pure_virtual_function)
3411        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3412    }
3413  }
3414
3415  if (!PureVirtualClassDiagSet)
3416    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3417  PureVirtualClassDiagSet->insert(RD);
3418}
3419
3420namespace {
3421struct AbstractUsageInfo {
3422  Sema &S;
3423  CXXRecordDecl *Record;
3424  CanQualType AbstractType;
3425  bool Invalid;
3426
3427  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3428    : S(S), Record(Record),
3429      AbstractType(S.Context.getCanonicalType(
3430                   S.Context.getTypeDeclType(Record))),
3431      Invalid(false) {}
3432
3433  void DiagnoseAbstractType() {
3434    if (Invalid) return;
3435    S.DiagnoseAbstractType(Record);
3436    Invalid = true;
3437  }
3438
3439  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3440};
3441
3442struct CheckAbstractUsage {
3443  AbstractUsageInfo &Info;
3444  const NamedDecl *Ctx;
3445
3446  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3447    : Info(Info), Ctx(Ctx) {}
3448
3449  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3450    switch (TL.getTypeLocClass()) {
3451#define ABSTRACT_TYPELOC(CLASS, PARENT)
3452#define TYPELOC(CLASS, PARENT) \
3453    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3454#include "clang/AST/TypeLocNodes.def"
3455    }
3456  }
3457
3458  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3459    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3460    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3461      if (!TL.getArg(I))
3462        continue;
3463
3464      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3465      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3466    }
3467  }
3468
3469  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3470    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3471  }
3472
3473  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3474    // Visit the type parameters from a permissive context.
3475    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3476      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3477      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3478        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3479          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3480      // TODO: other template argument types?
3481    }
3482  }
3483
3484  // Visit pointee types from a permissive context.
3485#define CheckPolymorphic(Type) \
3486  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3487    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3488  }
3489  CheckPolymorphic(PointerTypeLoc)
3490  CheckPolymorphic(ReferenceTypeLoc)
3491  CheckPolymorphic(MemberPointerTypeLoc)
3492  CheckPolymorphic(BlockPointerTypeLoc)
3493  CheckPolymorphic(AtomicTypeLoc)
3494
3495  /// Handle all the types we haven't given a more specific
3496  /// implementation for above.
3497  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3498    // Every other kind of type that we haven't called out already
3499    // that has an inner type is either (1) sugar or (2) contains that
3500    // inner type in some way as a subobject.
3501    if (TypeLoc Next = TL.getNextTypeLoc())
3502      return Visit(Next, Sel);
3503
3504    // If there's no inner type and we're in a permissive context,
3505    // don't diagnose.
3506    if (Sel == Sema::AbstractNone) return;
3507
3508    // Check whether the type matches the abstract type.
3509    QualType T = TL.getType();
3510    if (T->isArrayType()) {
3511      Sel = Sema::AbstractArrayType;
3512      T = Info.S.Context.getBaseElementType(T);
3513    }
3514    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3515    if (CT != Info.AbstractType) return;
3516
3517    // It matched; do some magic.
3518    if (Sel == Sema::AbstractArrayType) {
3519      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3520        << T << TL.getSourceRange();
3521    } else {
3522      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3523        << Sel << T << TL.getSourceRange();
3524    }
3525    Info.DiagnoseAbstractType();
3526  }
3527};
3528
3529void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3530                                  Sema::AbstractDiagSelID Sel) {
3531  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3532}
3533
3534}
3535
3536/// Check for invalid uses of an abstract type in a method declaration.
3537static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3538                                    CXXMethodDecl *MD) {
3539  // No need to do the check on definitions, which require that
3540  // the return/param types be complete.
3541  if (MD->doesThisDeclarationHaveABody())
3542    return;
3543
3544  // For safety's sake, just ignore it if we don't have type source
3545  // information.  This should never happen for non-implicit methods,
3546  // but...
3547  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3548    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3549}
3550
3551/// Check for invalid uses of an abstract type within a class definition.
3552static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3553                                    CXXRecordDecl *RD) {
3554  for (CXXRecordDecl::decl_iterator
3555         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3556    Decl *D = *I;
3557    if (D->isImplicit()) continue;
3558
3559    // Methods and method templates.
3560    if (isa<CXXMethodDecl>(D)) {
3561      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3562    } else if (isa<FunctionTemplateDecl>(D)) {
3563      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3564      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3565
3566    // Fields and static variables.
3567    } else if (isa<FieldDecl>(D)) {
3568      FieldDecl *FD = cast<FieldDecl>(D);
3569      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3570        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3571    } else if (isa<VarDecl>(D)) {
3572      VarDecl *VD = cast<VarDecl>(D);
3573      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3574        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3575
3576    // Nested classes and class templates.
3577    } else if (isa<CXXRecordDecl>(D)) {
3578      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3579    } else if (isa<ClassTemplateDecl>(D)) {
3580      CheckAbstractClassUsage(Info,
3581                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3582    }
3583  }
3584}
3585
3586/// \brief Perform semantic checks on a class definition that has been
3587/// completing, introducing implicitly-declared members, checking for
3588/// abstract types, etc.
3589void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3590  if (!Record)
3591    return;
3592
3593  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3594    AbstractUsageInfo Info(*this, Record);
3595    CheckAbstractClassUsage(Info, Record);
3596  }
3597
3598  // If this is not an aggregate type and has no user-declared constructor,
3599  // complain about any non-static data members of reference or const scalar
3600  // type, since they will never get initializers.
3601  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3602      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3603    bool Complained = false;
3604    for (RecordDecl::field_iterator F = Record->field_begin(),
3605                                 FEnd = Record->field_end();
3606         F != FEnd; ++F) {
3607      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3608        continue;
3609
3610      if (F->getType()->isReferenceType() ||
3611          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3612        if (!Complained) {
3613          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3614            << Record->getTagKind() << Record;
3615          Complained = true;
3616        }
3617
3618        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3619          << F->getType()->isReferenceType()
3620          << F->getDeclName();
3621      }
3622    }
3623  }
3624
3625  if (Record->isDynamicClass() && !Record->isDependentType())
3626    DynamicClasses.push_back(Record);
3627
3628  if (Record->getIdentifier()) {
3629    // C++ [class.mem]p13:
3630    //   If T is the name of a class, then each of the following shall have a
3631    //   name different from T:
3632    //     - every member of every anonymous union that is a member of class T.
3633    //
3634    // C++ [class.mem]p14:
3635    //   In addition, if class T has a user-declared constructor (12.1), every
3636    //   non-static data member of class T shall have a name different from T.
3637    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3638         R.first != R.second; ++R.first) {
3639      NamedDecl *D = *R.first;
3640      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3641          isa<IndirectFieldDecl>(D)) {
3642        Diag(D->getLocation(), diag::err_member_name_of_class)
3643          << D->getDeclName();
3644        break;
3645      }
3646    }
3647  }
3648
3649  // Warn if the class has virtual methods but non-virtual public destructor.
3650  if (Record->isPolymorphic() && !Record->isDependentType()) {
3651    CXXDestructorDecl *dtor = Record->getDestructor();
3652    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3653      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3654           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3655  }
3656
3657  // See if a method overloads virtual methods in a base
3658  /// class without overriding any.
3659  if (!Record->isDependentType()) {
3660    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3661                                     MEnd = Record->method_end();
3662         M != MEnd; ++M) {
3663      if (!(*M)->isStatic())
3664        DiagnoseHiddenVirtualMethods(Record, *M);
3665    }
3666  }
3667
3668  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3669  // function that is not a constructor declares that member function to be
3670  // const. [...] The class of which that function is a member shall be
3671  // a literal type.
3672  //
3673  // It's fine to diagnose constructors here too: such constructors cannot
3674  // produce a constant expression, so are ill-formed (no diagnostic required).
3675  //
3676  // If the class has virtual bases, any constexpr members will already have
3677  // been diagnosed by the checks performed on the member declaration, so
3678  // suppress this (less useful) diagnostic.
3679  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3680      !Record->isLiteral() && !Record->getNumVBases()) {
3681    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3682                                     MEnd = Record->method_end();
3683         M != MEnd; ++M) {
3684      if (M->isConstexpr() && M->isInstance()) {
3685        switch (Record->getTemplateSpecializationKind()) {
3686        case TSK_ImplicitInstantiation:
3687        case TSK_ExplicitInstantiationDeclaration:
3688        case TSK_ExplicitInstantiationDefinition:
3689          // If a template instantiates to a non-literal type, but its members
3690          // instantiate to constexpr functions, the template is technically
3691          // ill-formed, but we allow it for sanity. Such members are treated as
3692          // non-constexpr.
3693          (*M)->setConstexpr(false);
3694          continue;
3695
3696        case TSK_Undeclared:
3697        case TSK_ExplicitSpecialization:
3698          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3699                             PDiag(diag::err_constexpr_method_non_literal));
3700          break;
3701        }
3702
3703        // Only produce one error per class.
3704        break;
3705      }
3706    }
3707  }
3708
3709  // Declare inherited constructors. We do this eagerly here because:
3710  // - The standard requires an eager diagnostic for conflicting inherited
3711  //   constructors from different classes.
3712  // - The lazy declaration of the other implicit constructors is so as to not
3713  //   waste space and performance on classes that are not meant to be
3714  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3715  //   have inherited constructors.
3716  DeclareInheritedConstructors(Record);
3717
3718  if (!Record->isDependentType())
3719    CheckExplicitlyDefaultedMethods(Record);
3720}
3721
3722void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3723  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3724                                      ME = Record->method_end();
3725       MI != ME; ++MI) {
3726    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3727      switch (getSpecialMember(*MI)) {
3728      case CXXDefaultConstructor:
3729        CheckExplicitlyDefaultedDefaultConstructor(
3730                                                  cast<CXXConstructorDecl>(*MI));
3731        break;
3732
3733      case CXXDestructor:
3734        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3735        break;
3736
3737      case CXXCopyConstructor:
3738        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3739        break;
3740
3741      case CXXCopyAssignment:
3742        CheckExplicitlyDefaultedCopyAssignment(*MI);
3743        break;
3744
3745      case CXXMoveConstructor:
3746        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3747        break;
3748
3749      case CXXMoveAssignment:
3750        CheckExplicitlyDefaultedMoveAssignment(*MI);
3751        break;
3752
3753      case CXXInvalid:
3754        llvm_unreachable("non-special member explicitly defaulted!");
3755      }
3756    }
3757  }
3758
3759}
3760
3761void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3762  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3763
3764  // Whether this was the first-declared instance of the constructor.
3765  // This affects whether we implicitly add an exception spec (and, eventually,
3766  // constexpr). It is also ill-formed to explicitly default a constructor such
3767  // that it would be deleted. (C++0x [decl.fct.def.default])
3768  bool First = CD == CD->getCanonicalDecl();
3769
3770  bool HadError = false;
3771  if (CD->getNumParams() != 0) {
3772    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3773      << CD->getSourceRange();
3774    HadError = true;
3775  }
3776
3777  ImplicitExceptionSpecification Spec
3778    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3779  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3780  if (EPI.ExceptionSpecType == EST_Delayed) {
3781    // Exception specification depends on some deferred part of the class. We'll
3782    // try again when the class's definition has been fully processed.
3783    return;
3784  }
3785  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3786                          *ExceptionType = Context.getFunctionType(
3787                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3788
3789  // C++11 [dcl.fct.def.default]p2:
3790  //   An explicitly-defaulted function may be declared constexpr only if it
3791  //   would have been implicitly declared as constexpr,
3792  if (CD->isConstexpr()) {
3793    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3794      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3795        << CXXDefaultConstructor;
3796      HadError = true;
3797    }
3798  }
3799  //   and may have an explicit exception-specification only if it is compatible
3800  //   with the exception-specification on the implicit declaration.
3801  if (CtorType->hasExceptionSpec()) {
3802    if (CheckEquivalentExceptionSpec(
3803          PDiag(diag::err_incorrect_defaulted_exception_spec)
3804            << CXXDefaultConstructor,
3805          PDiag(),
3806          ExceptionType, SourceLocation(),
3807          CtorType, CD->getLocation())) {
3808      HadError = true;
3809    }
3810  }
3811
3812  //   If a function is explicitly defaulted on its first declaration,
3813  if (First) {
3814    //  -- it is implicitly considered to be constexpr if the implicit
3815    //     definition would be,
3816    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3817
3818    //  -- it is implicitly considered to have the same
3819    //     exception-specification as if it had been implicitly declared
3820    //
3821    // FIXME: a compatible, but different, explicit exception specification
3822    // will be silently overridden. We should issue a warning if this happens.
3823    EPI.ExtInfo = CtorType->getExtInfo();
3824  }
3825
3826  if (HadError) {
3827    CD->setInvalidDecl();
3828    return;
3829  }
3830
3831  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3832    if (First) {
3833      CD->setDeletedAsWritten();
3834    } else {
3835      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3836        << CXXDefaultConstructor;
3837      CD->setInvalidDecl();
3838    }
3839  }
3840}
3841
3842void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3843  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3844
3845  // Whether this was the first-declared instance of the constructor.
3846  bool First = CD == CD->getCanonicalDecl();
3847
3848  bool HadError = false;
3849  if (CD->getNumParams() != 1) {
3850    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3851      << CD->getSourceRange();
3852    HadError = true;
3853  }
3854
3855  ImplicitExceptionSpecification Spec(Context);
3856  bool Const;
3857  llvm::tie(Spec, Const) =
3858    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3859
3860  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3861  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3862                          *ExceptionType = Context.getFunctionType(
3863                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3864
3865  // Check for parameter type matching.
3866  // This is a copy ctor so we know it's a cv-qualified reference to T.
3867  QualType ArgType = CtorType->getArgType(0);
3868  if (ArgType->getPointeeType().isVolatileQualified()) {
3869    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3870    HadError = true;
3871  }
3872  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3873    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3874    HadError = true;
3875  }
3876
3877  // C++11 [dcl.fct.def.default]p2:
3878  //   An explicitly-defaulted function may be declared constexpr only if it
3879  //   would have been implicitly declared as constexpr,
3880  if (CD->isConstexpr()) {
3881    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3882      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3883        << CXXCopyConstructor;
3884      HadError = true;
3885    }
3886  }
3887  //   and may have an explicit exception-specification only if it is compatible
3888  //   with the exception-specification on the implicit declaration.
3889  if (CtorType->hasExceptionSpec()) {
3890    if (CheckEquivalentExceptionSpec(
3891          PDiag(diag::err_incorrect_defaulted_exception_spec)
3892            << CXXCopyConstructor,
3893          PDiag(),
3894          ExceptionType, SourceLocation(),
3895          CtorType, CD->getLocation())) {
3896      HadError = true;
3897    }
3898  }
3899
3900  //   If a function is explicitly defaulted on its first declaration,
3901  if (First) {
3902    //  -- it is implicitly considered to be constexpr if the implicit
3903    //     definition would be,
3904    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3905
3906    //  -- it is implicitly considered to have the same
3907    //     exception-specification as if it had been implicitly declared, and
3908    //
3909    // FIXME: a compatible, but different, explicit exception specification
3910    // will be silently overridden. We should issue a warning if this happens.
3911    EPI.ExtInfo = CtorType->getExtInfo();
3912
3913    //  -- [...] it shall have the same parameter type as if it had been
3914    //     implicitly declared.
3915    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3916  }
3917
3918  if (HadError) {
3919    CD->setInvalidDecl();
3920    return;
3921  }
3922
3923  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3924    if (First) {
3925      CD->setDeletedAsWritten();
3926    } else {
3927      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3928        << CXXCopyConstructor;
3929      CD->setInvalidDecl();
3930    }
3931  }
3932}
3933
3934void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3935  assert(MD->isExplicitlyDefaulted());
3936
3937  // Whether this was the first-declared instance of the operator
3938  bool First = MD == MD->getCanonicalDecl();
3939
3940  bool HadError = false;
3941  if (MD->getNumParams() != 1) {
3942    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3943      << MD->getSourceRange();
3944    HadError = true;
3945  }
3946
3947  QualType ReturnType =
3948    MD->getType()->getAs<FunctionType>()->getResultType();
3949  if (!ReturnType->isLValueReferenceType() ||
3950      !Context.hasSameType(
3951        Context.getCanonicalType(ReturnType->getPointeeType()),
3952        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3953    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3954    HadError = true;
3955  }
3956
3957  ImplicitExceptionSpecification Spec(Context);
3958  bool Const;
3959  llvm::tie(Spec, Const) =
3960    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3961
3962  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3963  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3964                          *ExceptionType = Context.getFunctionType(
3965                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3966
3967  QualType ArgType = OperType->getArgType(0);
3968  if (!ArgType->isLValueReferenceType()) {
3969    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3970    HadError = true;
3971  } else {
3972    if (ArgType->getPointeeType().isVolatileQualified()) {
3973      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3974      HadError = true;
3975    }
3976    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3977      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3978      HadError = true;
3979    }
3980  }
3981
3982  if (OperType->getTypeQuals()) {
3983    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3984    HadError = true;
3985  }
3986
3987  if (OperType->hasExceptionSpec()) {
3988    if (CheckEquivalentExceptionSpec(
3989          PDiag(diag::err_incorrect_defaulted_exception_spec)
3990            << CXXCopyAssignment,
3991          PDiag(),
3992          ExceptionType, SourceLocation(),
3993          OperType, MD->getLocation())) {
3994      HadError = true;
3995    }
3996  }
3997  if (First) {
3998    // We set the declaration to have the computed exception spec here.
3999    // We duplicate the one parameter type.
4000    EPI.RefQualifier = OperType->getRefQualifier();
4001    EPI.ExtInfo = OperType->getExtInfo();
4002    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4003  }
4004
4005  if (HadError) {
4006    MD->setInvalidDecl();
4007    return;
4008  }
4009
4010  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4011    if (First) {
4012      MD->setDeletedAsWritten();
4013    } else {
4014      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4015        << CXXCopyAssignment;
4016      MD->setInvalidDecl();
4017    }
4018  }
4019}
4020
4021void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4022  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4023
4024  // Whether this was the first-declared instance of the constructor.
4025  bool First = CD == CD->getCanonicalDecl();
4026
4027  bool HadError = false;
4028  if (CD->getNumParams() != 1) {
4029    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4030      << CD->getSourceRange();
4031    HadError = true;
4032  }
4033
4034  ImplicitExceptionSpecification Spec(
4035      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4036
4037  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4038  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4039                          *ExceptionType = Context.getFunctionType(
4040                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4041
4042  // Check for parameter type matching.
4043  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4044  QualType ArgType = CtorType->getArgType(0);
4045  if (ArgType->getPointeeType().isVolatileQualified()) {
4046    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4047    HadError = true;
4048  }
4049  if (ArgType->getPointeeType().isConstQualified()) {
4050    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4051    HadError = true;
4052  }
4053
4054  // C++11 [dcl.fct.def.default]p2:
4055  //   An explicitly-defaulted function may be declared constexpr only if it
4056  //   would have been implicitly declared as constexpr,
4057  if (CD->isConstexpr()) {
4058    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4059      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4060        << CXXMoveConstructor;
4061      HadError = true;
4062    }
4063  }
4064  //   and may have an explicit exception-specification only if it is compatible
4065  //   with the exception-specification on the implicit declaration.
4066  if (CtorType->hasExceptionSpec()) {
4067    if (CheckEquivalentExceptionSpec(
4068          PDiag(diag::err_incorrect_defaulted_exception_spec)
4069            << CXXMoveConstructor,
4070          PDiag(),
4071          ExceptionType, SourceLocation(),
4072          CtorType, CD->getLocation())) {
4073      HadError = true;
4074    }
4075  }
4076
4077  //   If a function is explicitly defaulted on its first declaration,
4078  if (First) {
4079    //  -- it is implicitly considered to be constexpr if the implicit
4080    //     definition would be,
4081    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4082
4083    //  -- it is implicitly considered to have the same
4084    //     exception-specification as if it had been implicitly declared, and
4085    //
4086    // FIXME: a compatible, but different, explicit exception specification
4087    // will be silently overridden. We should issue a warning if this happens.
4088    EPI.ExtInfo = CtorType->getExtInfo();
4089
4090    //  -- [...] it shall have the same parameter type as if it had been
4091    //     implicitly declared.
4092    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4093  }
4094
4095  if (HadError) {
4096    CD->setInvalidDecl();
4097    return;
4098  }
4099
4100  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4101    if (First) {
4102      CD->setDeletedAsWritten();
4103    } else {
4104      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4105        << CXXMoveConstructor;
4106      CD->setInvalidDecl();
4107    }
4108  }
4109}
4110
4111void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4112  assert(MD->isExplicitlyDefaulted());
4113
4114  // Whether this was the first-declared instance of the operator
4115  bool First = MD == MD->getCanonicalDecl();
4116
4117  bool HadError = false;
4118  if (MD->getNumParams() != 1) {
4119    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4120      << MD->getSourceRange();
4121    HadError = true;
4122  }
4123
4124  QualType ReturnType =
4125    MD->getType()->getAs<FunctionType>()->getResultType();
4126  if (!ReturnType->isLValueReferenceType() ||
4127      !Context.hasSameType(
4128        Context.getCanonicalType(ReturnType->getPointeeType()),
4129        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4130    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4131    HadError = true;
4132  }
4133
4134  ImplicitExceptionSpecification Spec(
4135      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4136
4137  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4138  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4139                          *ExceptionType = Context.getFunctionType(
4140                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4141
4142  QualType ArgType = OperType->getArgType(0);
4143  if (!ArgType->isRValueReferenceType()) {
4144    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4145    HadError = true;
4146  } else {
4147    if (ArgType->getPointeeType().isVolatileQualified()) {
4148      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4149      HadError = true;
4150    }
4151    if (ArgType->getPointeeType().isConstQualified()) {
4152      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4153      HadError = true;
4154    }
4155  }
4156
4157  if (OperType->getTypeQuals()) {
4158    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4159    HadError = true;
4160  }
4161
4162  if (OperType->hasExceptionSpec()) {
4163    if (CheckEquivalentExceptionSpec(
4164          PDiag(diag::err_incorrect_defaulted_exception_spec)
4165            << CXXMoveAssignment,
4166          PDiag(),
4167          ExceptionType, SourceLocation(),
4168          OperType, MD->getLocation())) {
4169      HadError = true;
4170    }
4171  }
4172  if (First) {
4173    // We set the declaration to have the computed exception spec here.
4174    // We duplicate the one parameter type.
4175    EPI.RefQualifier = OperType->getRefQualifier();
4176    EPI.ExtInfo = OperType->getExtInfo();
4177    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4178  }
4179
4180  if (HadError) {
4181    MD->setInvalidDecl();
4182    return;
4183  }
4184
4185  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4186    if (First) {
4187      MD->setDeletedAsWritten();
4188    } else {
4189      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4190        << CXXMoveAssignment;
4191      MD->setInvalidDecl();
4192    }
4193  }
4194}
4195
4196void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4197  assert(DD->isExplicitlyDefaulted());
4198
4199  // Whether this was the first-declared instance of the destructor.
4200  bool First = DD == DD->getCanonicalDecl();
4201
4202  ImplicitExceptionSpecification Spec
4203    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4204  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4205  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4206                          *ExceptionType = Context.getFunctionType(
4207                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4208
4209  if (DtorType->hasExceptionSpec()) {
4210    if (CheckEquivalentExceptionSpec(
4211          PDiag(diag::err_incorrect_defaulted_exception_spec)
4212            << CXXDestructor,
4213          PDiag(),
4214          ExceptionType, SourceLocation(),
4215          DtorType, DD->getLocation())) {
4216      DD->setInvalidDecl();
4217      return;
4218    }
4219  }
4220  if (First) {
4221    // We set the declaration to have the computed exception spec here.
4222    // There are no parameters.
4223    EPI.ExtInfo = DtorType->getExtInfo();
4224    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4225  }
4226
4227  if (ShouldDeleteDestructor(DD)) {
4228    if (First) {
4229      DD->setDeletedAsWritten();
4230    } else {
4231      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4232        << CXXDestructor;
4233      DD->setInvalidDecl();
4234    }
4235  }
4236}
4237
4238/// This function implements the following C++0x paragraphs:
4239///  - [class.ctor]/5
4240///  - [class.copy]/11
4241bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4242  assert(!MD->isInvalidDecl());
4243  CXXRecordDecl *RD = MD->getParent();
4244  assert(!RD->isDependentType() && "do deletion after instantiation");
4245  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4246    return false;
4247
4248  bool IsUnion = RD->isUnion();
4249  bool IsConstructor = false;
4250  bool IsAssignment = false;
4251  bool IsMove = false;
4252
4253  bool ConstArg = false;
4254
4255  switch (CSM) {
4256  case CXXDefaultConstructor:
4257    IsConstructor = true;
4258    break;
4259  case CXXCopyConstructor:
4260    IsConstructor = true;
4261    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4262    break;
4263  case CXXMoveConstructor:
4264    IsConstructor = true;
4265    IsMove = true;
4266    break;
4267  default:
4268    llvm_unreachable("function only currently implemented for default ctors");
4269  }
4270
4271  SourceLocation Loc = MD->getLocation();
4272
4273  // Do access control from the special member function
4274  ContextRAII MethodContext(*this, MD);
4275
4276  bool AllConst = true;
4277
4278  // We do this because we should never actually use an anonymous
4279  // union's constructor.
4280  if (IsUnion && RD->isAnonymousStructOrUnion())
4281    return false;
4282
4283  // FIXME: We should put some diagnostic logic right into this function.
4284
4285  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4286                                          BE = RD->bases_end();
4287       BI != BE; ++BI) {
4288    // We'll handle this one later
4289    if (BI->isVirtual())
4290      continue;
4291
4292    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4293    assert(BaseDecl && "base isn't a CXXRecordDecl");
4294
4295    // Unless we have an assignment operator, the base's destructor must
4296    // be accessible and not deleted.
4297    if (!IsAssignment) {
4298      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4299      if (BaseDtor->isDeleted())
4300        return true;
4301      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4302          AR_accessible)
4303        return true;
4304    }
4305
4306    // Finding the corresponding member in the base should lead to a
4307    // unique, accessible, non-deleted function. If we are doing
4308    // a destructor, we have already checked this case.
4309    if (CSM != CXXDestructor) {
4310      SpecialMemberOverloadResult *SMOR =
4311        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4312                            false);
4313      if (!SMOR->hasSuccess())
4314        return true;
4315      CXXMethodDecl *BaseMember = SMOR->getMethod();
4316      if (IsConstructor) {
4317        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4318        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4319                                   PDiag()) != AR_accessible)
4320          return true;
4321
4322        // For a move operation, the corresponding operation must actually
4323        // be a move operation (and not a copy selected by overload
4324        // resolution) unless we are working on a trivially copyable class.
4325        if (IsMove && !BaseCtor->isMoveConstructor() &&
4326            !BaseDecl->isTriviallyCopyable())
4327          return true;
4328      }
4329    }
4330  }
4331
4332  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4333                                          BE = RD->vbases_end();
4334       BI != BE; ++BI) {
4335    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4336    assert(BaseDecl && "base isn't a CXXRecordDecl");
4337
4338    // Unless we have an assignment operator, the base's destructor must
4339    // be accessible and not deleted.
4340    if (!IsAssignment) {
4341      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4342      if (BaseDtor->isDeleted())
4343        return true;
4344      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4345          AR_accessible)
4346        return true;
4347    }
4348
4349    // Finding the corresponding member in the base should lead to a
4350    // unique, accessible, non-deleted function.
4351    if (CSM != CXXDestructor) {
4352      SpecialMemberOverloadResult *SMOR =
4353        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4354                            false);
4355      if (!SMOR->hasSuccess())
4356        return true;
4357      CXXMethodDecl *BaseMember = SMOR->getMethod();
4358      if (IsConstructor) {
4359        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4360        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4361                                   PDiag()) != AR_accessible)
4362          return true;
4363
4364        // For a move operation, the corresponding operation must actually
4365        // be a move operation (and not a copy selected by overload
4366        // resolution) unless we are working on a trivially copyable class.
4367        if (IsMove && !BaseCtor->isMoveConstructor() &&
4368            !BaseDecl->isTriviallyCopyable())
4369          return true;
4370      }
4371    }
4372  }
4373
4374  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4375                                     FE = RD->field_end();
4376       FI != FE; ++FI) {
4377    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4378      continue;
4379
4380    QualType FieldType = Context.getBaseElementType(FI->getType());
4381    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4382
4383    // For a default constructor, all references must be initialized in-class
4384    // and, if a union, it must have a non-const member.
4385    if (CSM == CXXDefaultConstructor) {
4386      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4387        return true;
4388
4389      if (IsUnion && !FieldType.isConstQualified())
4390        AllConst = false;
4391    // For a copy constructor, data members must not be of rvalue reference
4392    // type.
4393    } else if (CSM == CXXCopyConstructor) {
4394      if (FieldType->isRValueReferenceType())
4395        return true;
4396    }
4397
4398    if (FieldRecord) {
4399      // For a default constructor, a const member must have a user-provided
4400      // default constructor or else be explicitly initialized.
4401      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4402          !FI->hasInClassInitializer() &&
4403          !FieldRecord->hasUserProvidedDefaultConstructor())
4404        return true;
4405
4406      // Some additional restrictions exist on the variant members.
4407      if (!IsUnion && FieldRecord->isUnion() &&
4408          FieldRecord->isAnonymousStructOrUnion()) {
4409        // We're okay to reuse AllConst here since we only care about the
4410        // value otherwise if we're in a union.
4411        AllConst = true;
4412
4413        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4414                                           UE = FieldRecord->field_end();
4415             UI != UE; ++UI) {
4416          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4417          CXXRecordDecl *UnionFieldRecord =
4418            UnionFieldType->getAsCXXRecordDecl();
4419
4420          if (!UnionFieldType.isConstQualified())
4421            AllConst = false;
4422
4423          if (UnionFieldRecord) {
4424            // FIXME: Checking for accessibility and validity of this
4425            //        destructor is technically going beyond the
4426            //        standard, but this is believed to be a defect.
4427            if (!IsAssignment) {
4428              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4429              if (FieldDtor->isDeleted())
4430                return true;
4431              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4432                  AR_accessible)
4433                return true;
4434              if (!FieldDtor->isTrivial())
4435                return true;
4436            }
4437
4438            if (CSM != CXXDestructor) {
4439              SpecialMemberOverloadResult *SMOR =
4440                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4441                                    false, false, false);
4442              // FIXME: Checking for accessibility and validity of this
4443              //        corresponding member is technically going beyond the
4444              //        standard, but this is believed to be a defect.
4445              if (!SMOR->hasSuccess())
4446                return true;
4447
4448              CXXMethodDecl *FieldMember = SMOR->getMethod();
4449              // A member of a union must have a trivial corresponding
4450              // constructor.
4451              if (!FieldMember->isTrivial())
4452                return true;
4453
4454              if (IsConstructor) {
4455                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4456                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4457                                           PDiag()) != AR_accessible)
4458                return true;
4459              }
4460            }
4461          }
4462        }
4463
4464        // At least one member in each anonymous union must be non-const
4465        if (CSM == CXXDefaultConstructor && AllConst)
4466          return true;
4467
4468        // Don't try to initialize the anonymous union
4469        // This is technically non-conformant, but sanity demands it.
4470        continue;
4471      }
4472
4473      // Unless we're doing assignment, the field's destructor must be
4474      // accessible and not deleted.
4475      if (!IsAssignment) {
4476        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4477        if (FieldDtor->isDeleted())
4478          return true;
4479        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4480            AR_accessible)
4481          return true;
4482      }
4483
4484      // Check that the corresponding member of the field is accessible,
4485      // unique, and non-deleted. We don't do this if it has an explicit
4486      // initialization when default-constructing.
4487      if (CSM != CXXDestructor &&
4488          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4489        SpecialMemberOverloadResult *SMOR =
4490          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4491                              false);
4492        if (!SMOR->hasSuccess())
4493          return true;
4494
4495        CXXMethodDecl *FieldMember = SMOR->getMethod();
4496        if (IsConstructor) {
4497          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4498          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4499                                     PDiag()) != AR_accessible)
4500          return true;
4501
4502          // For a move operation, the corresponding operation must actually
4503          // be a move operation (and not a copy selected by overload
4504          // resolution) unless we are working on a trivially copyable class.
4505          if (IsMove && !FieldCtor->isMoveConstructor() &&
4506              !FieldRecord->isTriviallyCopyable())
4507            return true;
4508        }
4509
4510        // We need the corresponding member of a union to be trivial so that
4511        // we can safely copy them all simultaneously.
4512        // FIXME: Note that performing the check here (where we rely on the lack
4513        // of an in-class initializer) is technically ill-formed. However, this
4514        // seems most obviously to be a bug in the standard.
4515        if (IsUnion && !FieldMember->isTrivial())
4516          return true;
4517      }
4518    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4519               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4520      // We can't initialize a const member of non-class type to any value.
4521      return true;
4522    }
4523  }
4524
4525  // We can't have all const members in a union when default-constructing,
4526  // or else they're all nonsensical garbage values that can't be changed.
4527  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4528    return true;
4529
4530  return false;
4531}
4532
4533bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4534  CXXRecordDecl *RD = MD->getParent();
4535  assert(!RD->isDependentType() && "do deletion after instantiation");
4536  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4537    return false;
4538
4539  SourceLocation Loc = MD->getLocation();
4540
4541  // Do access control from the constructor
4542  ContextRAII MethodContext(*this, MD);
4543
4544  bool Union = RD->isUnion();
4545
4546  unsigned ArgQuals =
4547    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4548      Qualifiers::Const : 0;
4549
4550  // We do this because we should never actually use an anonymous
4551  // union's constructor.
4552  if (Union && RD->isAnonymousStructOrUnion())
4553    return false;
4554
4555  // FIXME: We should put some diagnostic logic right into this function.
4556
4557  // C++0x [class.copy]/20
4558  //    A defaulted [copy] assignment operator for class X is defined as deleted
4559  //    if X has:
4560
4561  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4562                                          BE = RD->bases_end();
4563       BI != BE; ++BI) {
4564    // We'll handle this one later
4565    if (BI->isVirtual())
4566      continue;
4567
4568    QualType BaseType = BI->getType();
4569    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4570    assert(BaseDecl && "base isn't a CXXRecordDecl");
4571
4572    // -- a [direct base class] B that cannot be [copied] because overload
4573    //    resolution, as applied to B's [copy] assignment operator, results in
4574    //    an ambiguity or a function that is deleted or inaccessible from the
4575    //    assignment operator
4576    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4577                                                      0);
4578    if (!CopyOper || CopyOper->isDeleted())
4579      return true;
4580    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4581      return true;
4582  }
4583
4584  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4585                                          BE = RD->vbases_end();
4586       BI != BE; ++BI) {
4587    QualType BaseType = BI->getType();
4588    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4589    assert(BaseDecl && "base isn't a CXXRecordDecl");
4590
4591    // -- a [virtual base class] B that cannot be [copied] because overload
4592    //    resolution, as applied to B's [copy] assignment operator, results in
4593    //    an ambiguity or a function that is deleted or inaccessible from the
4594    //    assignment operator
4595    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4596                                                      0);
4597    if (!CopyOper || CopyOper->isDeleted())
4598      return true;
4599    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4600      return true;
4601  }
4602
4603  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4604                                     FE = RD->field_end();
4605       FI != FE; ++FI) {
4606    if (FI->isUnnamedBitfield())
4607      continue;
4608
4609    QualType FieldType = Context.getBaseElementType(FI->getType());
4610
4611    // -- a non-static data member of reference type
4612    if (FieldType->isReferenceType())
4613      return true;
4614
4615    // -- a non-static data member of const non-class type (or array thereof)
4616    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4617      return true;
4618
4619    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4620
4621    if (FieldRecord) {
4622      // This is an anonymous union
4623      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4624        // Anonymous unions inside unions do not variant members create
4625        if (!Union) {
4626          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4627                                             UE = FieldRecord->field_end();
4628               UI != UE; ++UI) {
4629            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4630            CXXRecordDecl *UnionFieldRecord =
4631              UnionFieldType->getAsCXXRecordDecl();
4632
4633            // -- a variant member with a non-trivial [copy] assignment operator
4634            //    and X is a union-like class
4635            if (UnionFieldRecord &&
4636                !UnionFieldRecord->hasTrivialCopyAssignment())
4637              return true;
4638          }
4639        }
4640
4641        // Don't try to initalize an anonymous union
4642        continue;
4643      // -- a variant member with a non-trivial [copy] assignment operator
4644      //    and X is a union-like class
4645      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4646          return true;
4647      }
4648
4649      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4650                                                        false, 0);
4651      if (!CopyOper || CopyOper->isDeleted())
4652        return true;
4653      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4654        return true;
4655    }
4656  }
4657
4658  return false;
4659}
4660
4661bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4662  CXXRecordDecl *RD = MD->getParent();
4663  assert(!RD->isDependentType() && "do deletion after instantiation");
4664  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4665    return false;
4666
4667  SourceLocation Loc = MD->getLocation();
4668
4669  // Do access control from the constructor
4670  ContextRAII MethodContext(*this, MD);
4671
4672  bool Union = RD->isUnion();
4673
4674  // We do this because we should never actually use an anonymous
4675  // union's constructor.
4676  if (Union && RD->isAnonymousStructOrUnion())
4677    return false;
4678
4679  // C++0x [class.copy]/20
4680  //    A defaulted [move] assignment operator for class X is defined as deleted
4681  //    if X has:
4682
4683  //    -- for the move constructor, [...] any direct or indirect virtual base
4684  //       class.
4685  if (RD->getNumVBases() != 0)
4686    return true;
4687
4688  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4689                                          BE = RD->bases_end();
4690       BI != BE; ++BI) {
4691
4692    QualType BaseType = BI->getType();
4693    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4694    assert(BaseDecl && "base isn't a CXXRecordDecl");
4695
4696    // -- a [direct base class] B that cannot be [moved] because overload
4697    //    resolution, as applied to B's [move] assignment operator, results in
4698    //    an ambiguity or a function that is deleted or inaccessible from the
4699    //    assignment operator
4700    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4701    if (!MoveOper || MoveOper->isDeleted())
4702      return true;
4703    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4704      return true;
4705
4706    // -- for the move assignment operator, a [direct base class] with a type
4707    //    that does not have a move assignment operator and is not trivially
4708    //    copyable.
4709    if (!MoveOper->isMoveAssignmentOperator() &&
4710        !BaseDecl->isTriviallyCopyable())
4711      return true;
4712  }
4713
4714  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4715                                     FE = RD->field_end();
4716       FI != FE; ++FI) {
4717    if (FI->isUnnamedBitfield())
4718      continue;
4719
4720    QualType FieldType = Context.getBaseElementType(FI->getType());
4721
4722    // -- a non-static data member of reference type
4723    if (FieldType->isReferenceType())
4724      return true;
4725
4726    // -- a non-static data member of const non-class type (or array thereof)
4727    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4728      return true;
4729
4730    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4731
4732    if (FieldRecord) {
4733      // This is an anonymous union
4734      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4735        // Anonymous unions inside unions do not variant members create
4736        if (!Union) {
4737          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4738                                             UE = FieldRecord->field_end();
4739               UI != UE; ++UI) {
4740            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4741            CXXRecordDecl *UnionFieldRecord =
4742              UnionFieldType->getAsCXXRecordDecl();
4743
4744            // -- a variant member with a non-trivial [move] assignment operator
4745            //    and X is a union-like class
4746            if (UnionFieldRecord &&
4747                !UnionFieldRecord->hasTrivialMoveAssignment())
4748              return true;
4749          }
4750        }
4751
4752        // Don't try to initalize an anonymous union
4753        continue;
4754      // -- a variant member with a non-trivial [move] assignment operator
4755      //    and X is a union-like class
4756      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4757          return true;
4758      }
4759
4760      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4761      if (!MoveOper || MoveOper->isDeleted())
4762        return true;
4763      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4764        return true;
4765
4766      // -- for the move assignment operator, a [non-static data member] with a
4767      //    type that does not have a move assignment operator and is not
4768      //    trivially copyable.
4769      if (!MoveOper->isMoveAssignmentOperator() &&
4770          !FieldRecord->isTriviallyCopyable())
4771        return true;
4772    }
4773  }
4774
4775  return false;
4776}
4777
4778bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4779  CXXRecordDecl *RD = DD->getParent();
4780  assert(!RD->isDependentType() && "do deletion after instantiation");
4781  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4782    return false;
4783
4784  SourceLocation Loc = DD->getLocation();
4785
4786  // Do access control from the destructor
4787  ContextRAII CtorContext(*this, DD);
4788
4789  bool Union = RD->isUnion();
4790
4791  // We do this because we should never actually use an anonymous
4792  // union's destructor.
4793  if (Union && RD->isAnonymousStructOrUnion())
4794    return false;
4795
4796  // C++0x [class.dtor]p5
4797  //    A defaulted destructor for a class X is defined as deleted if:
4798  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4799                                          BE = RD->bases_end();
4800       BI != BE; ++BI) {
4801    // We'll handle this one later
4802    if (BI->isVirtual())
4803      continue;
4804
4805    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4806    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4807    assert(BaseDtor && "base has no destructor");
4808
4809    // -- any direct or virtual base class has a deleted destructor or
4810    //    a destructor that is inaccessible from the defaulted destructor
4811    if (BaseDtor->isDeleted())
4812      return true;
4813    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4814        AR_accessible)
4815      return true;
4816  }
4817
4818  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4819                                          BE = RD->vbases_end();
4820       BI != BE; ++BI) {
4821    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4822    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4823    assert(BaseDtor && "base has no destructor");
4824
4825    // -- any direct or virtual base class has a deleted destructor or
4826    //    a destructor that is inaccessible from the defaulted destructor
4827    if (BaseDtor->isDeleted())
4828      return true;
4829    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4830        AR_accessible)
4831      return true;
4832  }
4833
4834  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4835                                     FE = RD->field_end();
4836       FI != FE; ++FI) {
4837    QualType FieldType = Context.getBaseElementType(FI->getType());
4838    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4839    if (FieldRecord) {
4840      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4841         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4842                                            UE = FieldRecord->field_end();
4843              UI != UE; ++UI) {
4844           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4845           CXXRecordDecl *UnionFieldRecord =
4846             UnionFieldType->getAsCXXRecordDecl();
4847
4848           // -- X is a union-like class that has a variant member with a non-
4849           //    trivial destructor.
4850           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4851             return true;
4852         }
4853      // Technically we are supposed to do this next check unconditionally.
4854      // But that makes absolutely no sense.
4855      } else {
4856        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4857
4858        // -- any of the non-static data members has class type M (or array
4859        //    thereof) and M has a deleted destructor or a destructor that is
4860        //    inaccessible from the defaulted destructor
4861        if (FieldDtor->isDeleted())
4862          return true;
4863        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4864          AR_accessible)
4865        return true;
4866
4867        // -- X is a union-like class that has a variant member with a non-
4868        //    trivial destructor.
4869        if (Union && !FieldDtor->isTrivial())
4870          return true;
4871      }
4872    }
4873  }
4874
4875  if (DD->isVirtual()) {
4876    FunctionDecl *OperatorDelete = 0;
4877    DeclarationName Name =
4878      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4879    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4880          false))
4881      return true;
4882  }
4883
4884
4885  return false;
4886}
4887
4888/// \brief Data used with FindHiddenVirtualMethod
4889namespace {
4890  struct FindHiddenVirtualMethodData {
4891    Sema *S;
4892    CXXMethodDecl *Method;
4893    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4894    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4895  };
4896}
4897
4898/// \brief Member lookup function that determines whether a given C++
4899/// method overloads virtual methods in a base class without overriding any,
4900/// to be used with CXXRecordDecl::lookupInBases().
4901static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4902                                    CXXBasePath &Path,
4903                                    void *UserData) {
4904  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4905
4906  FindHiddenVirtualMethodData &Data
4907    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4908
4909  DeclarationName Name = Data.Method->getDeclName();
4910  assert(Name.getNameKind() == DeclarationName::Identifier);
4911
4912  bool foundSameNameMethod = false;
4913  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4914  for (Path.Decls = BaseRecord->lookup(Name);
4915       Path.Decls.first != Path.Decls.second;
4916       ++Path.Decls.first) {
4917    NamedDecl *D = *Path.Decls.first;
4918    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4919      MD = MD->getCanonicalDecl();
4920      foundSameNameMethod = true;
4921      // Interested only in hidden virtual methods.
4922      if (!MD->isVirtual())
4923        continue;
4924      // If the method we are checking overrides a method from its base
4925      // don't warn about the other overloaded methods.
4926      if (!Data.S->IsOverload(Data.Method, MD, false))
4927        return true;
4928      // Collect the overload only if its hidden.
4929      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4930        overloadedMethods.push_back(MD);
4931    }
4932  }
4933
4934  if (foundSameNameMethod)
4935    Data.OverloadedMethods.append(overloadedMethods.begin(),
4936                                   overloadedMethods.end());
4937  return foundSameNameMethod;
4938}
4939
4940/// \brief See if a method overloads virtual methods in a base class without
4941/// overriding any.
4942void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4943  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4944                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4945    return;
4946  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4947    return;
4948
4949  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4950                     /*bool RecordPaths=*/false,
4951                     /*bool DetectVirtual=*/false);
4952  FindHiddenVirtualMethodData Data;
4953  Data.Method = MD;
4954  Data.S = this;
4955
4956  // Keep the base methods that were overriden or introduced in the subclass
4957  // by 'using' in a set. A base method not in this set is hidden.
4958  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4959       res.first != res.second; ++res.first) {
4960    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4961      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4962                                          E = MD->end_overridden_methods();
4963           I != E; ++I)
4964        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4965    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4966      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4967        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4968  }
4969
4970  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4971      !Data.OverloadedMethods.empty()) {
4972    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4973      << MD << (Data.OverloadedMethods.size() > 1);
4974
4975    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4976      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4977      Diag(overloadedMD->getLocation(),
4978           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4979    }
4980  }
4981}
4982
4983void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4984                                             Decl *TagDecl,
4985                                             SourceLocation LBrac,
4986                                             SourceLocation RBrac,
4987                                             AttributeList *AttrList) {
4988  if (!TagDecl)
4989    return;
4990
4991  AdjustDeclIfTemplate(TagDecl);
4992
4993  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4994              // strict aliasing violation!
4995              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4996              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4997
4998  CheckCompletedCXXClass(
4999                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5000}
5001
5002/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5003/// special functions, such as the default constructor, copy
5004/// constructor, or destructor, to the given C++ class (C++
5005/// [special]p1).  This routine can only be executed just before the
5006/// definition of the class is complete.
5007void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5008  if (!ClassDecl->hasUserDeclaredConstructor())
5009    ++ASTContext::NumImplicitDefaultConstructors;
5010
5011  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5012    ++ASTContext::NumImplicitCopyConstructors;
5013
5014  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5015    ++ASTContext::NumImplicitMoveConstructors;
5016
5017  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5018    ++ASTContext::NumImplicitCopyAssignmentOperators;
5019
5020    // If we have a dynamic class, then the copy assignment operator may be
5021    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5022    // it shows up in the right place in the vtable and that we diagnose
5023    // problems with the implicit exception specification.
5024    if (ClassDecl->isDynamicClass())
5025      DeclareImplicitCopyAssignment(ClassDecl);
5026  }
5027
5028  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5029    ++ASTContext::NumImplicitMoveAssignmentOperators;
5030
5031    // Likewise for the move assignment operator.
5032    if (ClassDecl->isDynamicClass())
5033      DeclareImplicitMoveAssignment(ClassDecl);
5034  }
5035
5036  if (!ClassDecl->hasUserDeclaredDestructor()) {
5037    ++ASTContext::NumImplicitDestructors;
5038
5039    // If we have a dynamic class, then the destructor may be virtual, so we
5040    // have to declare the destructor immediately. This ensures that, e.g., it
5041    // shows up in the right place in the vtable and that we diagnose problems
5042    // with the implicit exception specification.
5043    if (ClassDecl->isDynamicClass())
5044      DeclareImplicitDestructor(ClassDecl);
5045  }
5046}
5047
5048void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5049  if (!D)
5050    return;
5051
5052  int NumParamList = D->getNumTemplateParameterLists();
5053  for (int i = 0; i < NumParamList; i++) {
5054    TemplateParameterList* Params = D->getTemplateParameterList(i);
5055    for (TemplateParameterList::iterator Param = Params->begin(),
5056                                      ParamEnd = Params->end();
5057          Param != ParamEnd; ++Param) {
5058      NamedDecl *Named = cast<NamedDecl>(*Param);
5059      if (Named->getDeclName()) {
5060        S->AddDecl(Named);
5061        IdResolver.AddDecl(Named);
5062      }
5063    }
5064  }
5065}
5066
5067void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5068  if (!D)
5069    return;
5070
5071  TemplateParameterList *Params = 0;
5072  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5073    Params = Template->getTemplateParameters();
5074  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5075           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5076    Params = PartialSpec->getTemplateParameters();
5077  else
5078    return;
5079
5080  for (TemplateParameterList::iterator Param = Params->begin(),
5081                                    ParamEnd = Params->end();
5082       Param != ParamEnd; ++Param) {
5083    NamedDecl *Named = cast<NamedDecl>(*Param);
5084    if (Named->getDeclName()) {
5085      S->AddDecl(Named);
5086      IdResolver.AddDecl(Named);
5087    }
5088  }
5089}
5090
5091void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5092  if (!RecordD) return;
5093  AdjustDeclIfTemplate(RecordD);
5094  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5095  PushDeclContext(S, Record);
5096}
5097
5098void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5099  if (!RecordD) return;
5100  PopDeclContext();
5101}
5102
5103/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5104/// parsing a top-level (non-nested) C++ class, and we are now
5105/// parsing those parts of the given Method declaration that could
5106/// not be parsed earlier (C++ [class.mem]p2), such as default
5107/// arguments. This action should enter the scope of the given
5108/// Method declaration as if we had just parsed the qualified method
5109/// name. However, it should not bring the parameters into scope;
5110/// that will be performed by ActOnDelayedCXXMethodParameter.
5111void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5112}
5113
5114/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5115/// C++ method declaration. We're (re-)introducing the given
5116/// function parameter into scope for use in parsing later parts of
5117/// the method declaration. For example, we could see an
5118/// ActOnParamDefaultArgument event for this parameter.
5119void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5120  if (!ParamD)
5121    return;
5122
5123  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5124
5125  // If this parameter has an unparsed default argument, clear it out
5126  // to make way for the parsed default argument.
5127  if (Param->hasUnparsedDefaultArg())
5128    Param->setDefaultArg(0);
5129
5130  S->AddDecl(Param);
5131  if (Param->getDeclName())
5132    IdResolver.AddDecl(Param);
5133}
5134
5135/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5136/// processing the delayed method declaration for Method. The method
5137/// declaration is now considered finished. There may be a separate
5138/// ActOnStartOfFunctionDef action later (not necessarily
5139/// immediately!) for this method, if it was also defined inside the
5140/// class body.
5141void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5142  if (!MethodD)
5143    return;
5144
5145  AdjustDeclIfTemplate(MethodD);
5146
5147  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5148
5149  // Now that we have our default arguments, check the constructor
5150  // again. It could produce additional diagnostics or affect whether
5151  // the class has implicitly-declared destructors, among other
5152  // things.
5153  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5154    CheckConstructor(Constructor);
5155
5156  // Check the default arguments, which we may have added.
5157  if (!Method->isInvalidDecl())
5158    CheckCXXDefaultArguments(Method);
5159}
5160
5161/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5162/// the well-formedness of the constructor declarator @p D with type @p
5163/// R. If there are any errors in the declarator, this routine will
5164/// emit diagnostics and set the invalid bit to true.  In any case, the type
5165/// will be updated to reflect a well-formed type for the constructor and
5166/// returned.
5167QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5168                                          StorageClass &SC) {
5169  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5170
5171  // C++ [class.ctor]p3:
5172  //   A constructor shall not be virtual (10.3) or static (9.4). A
5173  //   constructor can be invoked for a const, volatile or const
5174  //   volatile object. A constructor shall not be declared const,
5175  //   volatile, or const volatile (9.3.2).
5176  if (isVirtual) {
5177    if (!D.isInvalidType())
5178      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5179        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5180        << SourceRange(D.getIdentifierLoc());
5181    D.setInvalidType();
5182  }
5183  if (SC == SC_Static) {
5184    if (!D.isInvalidType())
5185      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5186        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5187        << SourceRange(D.getIdentifierLoc());
5188    D.setInvalidType();
5189    SC = SC_None;
5190  }
5191
5192  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5193  if (FTI.TypeQuals != 0) {
5194    if (FTI.TypeQuals & Qualifiers::Const)
5195      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5196        << "const" << SourceRange(D.getIdentifierLoc());
5197    if (FTI.TypeQuals & Qualifiers::Volatile)
5198      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5199        << "volatile" << SourceRange(D.getIdentifierLoc());
5200    if (FTI.TypeQuals & Qualifiers::Restrict)
5201      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5202        << "restrict" << SourceRange(D.getIdentifierLoc());
5203    D.setInvalidType();
5204  }
5205
5206  // C++0x [class.ctor]p4:
5207  //   A constructor shall not be declared with a ref-qualifier.
5208  if (FTI.hasRefQualifier()) {
5209    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5210      << FTI.RefQualifierIsLValueRef
5211      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5212    D.setInvalidType();
5213  }
5214
5215  // Rebuild the function type "R" without any type qualifiers (in
5216  // case any of the errors above fired) and with "void" as the
5217  // return type, since constructors don't have return types.
5218  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5219  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5220    return R;
5221
5222  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5223  EPI.TypeQuals = 0;
5224  EPI.RefQualifier = RQ_None;
5225
5226  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5227                                 Proto->getNumArgs(), EPI);
5228}
5229
5230/// CheckConstructor - Checks a fully-formed constructor for
5231/// well-formedness, issuing any diagnostics required. Returns true if
5232/// the constructor declarator is invalid.
5233void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5234  CXXRecordDecl *ClassDecl
5235    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5236  if (!ClassDecl)
5237    return Constructor->setInvalidDecl();
5238
5239  // C++ [class.copy]p3:
5240  //   A declaration of a constructor for a class X is ill-formed if
5241  //   its first parameter is of type (optionally cv-qualified) X and
5242  //   either there are no other parameters or else all other
5243  //   parameters have default arguments.
5244  if (!Constructor->isInvalidDecl() &&
5245      ((Constructor->getNumParams() == 1) ||
5246       (Constructor->getNumParams() > 1 &&
5247        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5248      Constructor->getTemplateSpecializationKind()
5249                                              != TSK_ImplicitInstantiation) {
5250    QualType ParamType = Constructor->getParamDecl(0)->getType();
5251    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5252    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5253      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5254      const char *ConstRef
5255        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5256                                                        : " const &";
5257      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5258        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5259
5260      // FIXME: Rather that making the constructor invalid, we should endeavor
5261      // to fix the type.
5262      Constructor->setInvalidDecl();
5263    }
5264  }
5265}
5266
5267/// CheckDestructor - Checks a fully-formed destructor definition for
5268/// well-formedness, issuing any diagnostics required.  Returns true
5269/// on error.
5270bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5271  CXXRecordDecl *RD = Destructor->getParent();
5272
5273  if (Destructor->isVirtual()) {
5274    SourceLocation Loc;
5275
5276    if (!Destructor->isImplicit())
5277      Loc = Destructor->getLocation();
5278    else
5279      Loc = RD->getLocation();
5280
5281    // If we have a virtual destructor, look up the deallocation function
5282    FunctionDecl *OperatorDelete = 0;
5283    DeclarationName Name =
5284    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5285    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5286      return true;
5287
5288    MarkDeclarationReferenced(Loc, OperatorDelete);
5289
5290    Destructor->setOperatorDelete(OperatorDelete);
5291  }
5292
5293  return false;
5294}
5295
5296static inline bool
5297FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5298  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5299          FTI.ArgInfo[0].Param &&
5300          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5301}
5302
5303/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5304/// the well-formednes of the destructor declarator @p D with type @p
5305/// R. If there are any errors in the declarator, this routine will
5306/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5307/// will be updated to reflect a well-formed type for the destructor and
5308/// returned.
5309QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5310                                         StorageClass& SC) {
5311  // C++ [class.dtor]p1:
5312  //   [...] A typedef-name that names a class is a class-name
5313  //   (7.1.3); however, a typedef-name that names a class shall not
5314  //   be used as the identifier in the declarator for a destructor
5315  //   declaration.
5316  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5317  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5318    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5319      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5320  else if (const TemplateSpecializationType *TST =
5321             DeclaratorType->getAs<TemplateSpecializationType>())
5322    if (TST->isTypeAlias())
5323      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5324        << DeclaratorType << 1;
5325
5326  // C++ [class.dtor]p2:
5327  //   A destructor is used to destroy objects of its class type. A
5328  //   destructor takes no parameters, and no return type can be
5329  //   specified for it (not even void). The address of a destructor
5330  //   shall not be taken. A destructor shall not be static. A
5331  //   destructor can be invoked for a const, volatile or const
5332  //   volatile object. A destructor shall not be declared const,
5333  //   volatile or const volatile (9.3.2).
5334  if (SC == SC_Static) {
5335    if (!D.isInvalidType())
5336      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5337        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5338        << SourceRange(D.getIdentifierLoc())
5339        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5340
5341    SC = SC_None;
5342  }
5343  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5344    // Destructors don't have return types, but the parser will
5345    // happily parse something like:
5346    //
5347    //   class X {
5348    //     float ~X();
5349    //   };
5350    //
5351    // The return type will be eliminated later.
5352    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5353      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5354      << SourceRange(D.getIdentifierLoc());
5355  }
5356
5357  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5358  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5359    if (FTI.TypeQuals & Qualifiers::Const)
5360      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5361        << "const" << SourceRange(D.getIdentifierLoc());
5362    if (FTI.TypeQuals & Qualifiers::Volatile)
5363      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5364        << "volatile" << SourceRange(D.getIdentifierLoc());
5365    if (FTI.TypeQuals & Qualifiers::Restrict)
5366      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5367        << "restrict" << SourceRange(D.getIdentifierLoc());
5368    D.setInvalidType();
5369  }
5370
5371  // C++0x [class.dtor]p2:
5372  //   A destructor shall not be declared with a ref-qualifier.
5373  if (FTI.hasRefQualifier()) {
5374    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5375      << FTI.RefQualifierIsLValueRef
5376      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5377    D.setInvalidType();
5378  }
5379
5380  // Make sure we don't have any parameters.
5381  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5382    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5383
5384    // Delete the parameters.
5385    FTI.freeArgs();
5386    D.setInvalidType();
5387  }
5388
5389  // Make sure the destructor isn't variadic.
5390  if (FTI.isVariadic) {
5391    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5392    D.setInvalidType();
5393  }
5394
5395  // Rebuild the function type "R" without any type qualifiers or
5396  // parameters (in case any of the errors above fired) and with
5397  // "void" as the return type, since destructors don't have return
5398  // types.
5399  if (!D.isInvalidType())
5400    return R;
5401
5402  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5403  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5404  EPI.Variadic = false;
5405  EPI.TypeQuals = 0;
5406  EPI.RefQualifier = RQ_None;
5407  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5408}
5409
5410/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5411/// well-formednes of the conversion function declarator @p D with
5412/// type @p R. If there are any errors in the declarator, this routine
5413/// will emit diagnostics and return true. Otherwise, it will return
5414/// false. Either way, the type @p R will be updated to reflect a
5415/// well-formed type for the conversion operator.
5416void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5417                                     StorageClass& SC) {
5418  // C++ [class.conv.fct]p1:
5419  //   Neither parameter types nor return type can be specified. The
5420  //   type of a conversion function (8.3.5) is "function taking no
5421  //   parameter returning conversion-type-id."
5422  if (SC == SC_Static) {
5423    if (!D.isInvalidType())
5424      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5425        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5426        << SourceRange(D.getIdentifierLoc());
5427    D.setInvalidType();
5428    SC = SC_None;
5429  }
5430
5431  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5432
5433  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5434    // Conversion functions don't have return types, but the parser will
5435    // happily parse something like:
5436    //
5437    //   class X {
5438    //     float operator bool();
5439    //   };
5440    //
5441    // The return type will be changed later anyway.
5442    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5443      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5444      << SourceRange(D.getIdentifierLoc());
5445    D.setInvalidType();
5446  }
5447
5448  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5449
5450  // Make sure we don't have any parameters.
5451  if (Proto->getNumArgs() > 0) {
5452    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5453
5454    // Delete the parameters.
5455    D.getFunctionTypeInfo().freeArgs();
5456    D.setInvalidType();
5457  } else if (Proto->isVariadic()) {
5458    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5459    D.setInvalidType();
5460  }
5461
5462  // Diagnose "&operator bool()" and other such nonsense.  This
5463  // is actually a gcc extension which we don't support.
5464  if (Proto->getResultType() != ConvType) {
5465    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5466      << Proto->getResultType();
5467    D.setInvalidType();
5468    ConvType = Proto->getResultType();
5469  }
5470
5471  // C++ [class.conv.fct]p4:
5472  //   The conversion-type-id shall not represent a function type nor
5473  //   an array type.
5474  if (ConvType->isArrayType()) {
5475    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5476    ConvType = Context.getPointerType(ConvType);
5477    D.setInvalidType();
5478  } else if (ConvType->isFunctionType()) {
5479    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5480    ConvType = Context.getPointerType(ConvType);
5481    D.setInvalidType();
5482  }
5483
5484  // Rebuild the function type "R" without any parameters (in case any
5485  // of the errors above fired) and with the conversion type as the
5486  // return type.
5487  if (D.isInvalidType())
5488    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5489
5490  // C++0x explicit conversion operators.
5491  if (D.getDeclSpec().isExplicitSpecified())
5492    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5493         getLangOptions().CPlusPlus0x ?
5494           diag::warn_cxx98_compat_explicit_conversion_functions :
5495           diag::ext_explicit_conversion_functions)
5496      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5497}
5498
5499/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5500/// the declaration of the given C++ conversion function. This routine
5501/// is responsible for recording the conversion function in the C++
5502/// class, if possible.
5503Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5504  assert(Conversion && "Expected to receive a conversion function declaration");
5505
5506  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5507
5508  // Make sure we aren't redeclaring the conversion function.
5509  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5510
5511  // C++ [class.conv.fct]p1:
5512  //   [...] A conversion function is never used to convert a
5513  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5514  //   same object type (or a reference to it), to a (possibly
5515  //   cv-qualified) base class of that type (or a reference to it),
5516  //   or to (possibly cv-qualified) void.
5517  // FIXME: Suppress this warning if the conversion function ends up being a
5518  // virtual function that overrides a virtual function in a base class.
5519  QualType ClassType
5520    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5521  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5522    ConvType = ConvTypeRef->getPointeeType();
5523  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5524      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5525    /* Suppress diagnostics for instantiations. */;
5526  else if (ConvType->isRecordType()) {
5527    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5528    if (ConvType == ClassType)
5529      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5530        << ClassType;
5531    else if (IsDerivedFrom(ClassType, ConvType))
5532      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5533        <<  ClassType << ConvType;
5534  } else if (ConvType->isVoidType()) {
5535    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5536      << ClassType << ConvType;
5537  }
5538
5539  if (FunctionTemplateDecl *ConversionTemplate
5540                                = Conversion->getDescribedFunctionTemplate())
5541    return ConversionTemplate;
5542
5543  return Conversion;
5544}
5545
5546//===----------------------------------------------------------------------===//
5547// Namespace Handling
5548//===----------------------------------------------------------------------===//
5549
5550
5551
5552/// ActOnStartNamespaceDef - This is called at the start of a namespace
5553/// definition.
5554Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5555                                   SourceLocation InlineLoc,
5556                                   SourceLocation NamespaceLoc,
5557                                   SourceLocation IdentLoc,
5558                                   IdentifierInfo *II,
5559                                   SourceLocation LBrace,
5560                                   AttributeList *AttrList) {
5561  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5562  // For anonymous namespace, take the location of the left brace.
5563  SourceLocation Loc = II ? IdentLoc : LBrace;
5564  bool IsInline = InlineLoc.isValid();
5565  bool IsInvalid = false;
5566  bool IsStd = false;
5567  bool AddToKnown = false;
5568  Scope *DeclRegionScope = NamespcScope->getParent();
5569
5570  NamespaceDecl *PrevNS = 0;
5571  if (II) {
5572    // C++ [namespace.def]p2:
5573    //   The identifier in an original-namespace-definition shall not
5574    //   have been previously defined in the declarative region in
5575    //   which the original-namespace-definition appears. The
5576    //   identifier in an original-namespace-definition is the name of
5577    //   the namespace. Subsequently in that declarative region, it is
5578    //   treated as an original-namespace-name.
5579    //
5580    // Since namespace names are unique in their scope, and we don't
5581    // look through using directives, just look for any ordinary names.
5582
5583    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5584    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5585    Decl::IDNS_Namespace;
5586    NamedDecl *PrevDecl = 0;
5587    for (DeclContext::lookup_result R
5588         = CurContext->getRedeclContext()->lookup(II);
5589         R.first != R.second; ++R.first) {
5590      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5591        PrevDecl = *R.first;
5592        break;
5593      }
5594    }
5595
5596    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5597
5598    if (PrevNS) {
5599      // This is an extended namespace definition.
5600      if (IsInline != PrevNS->isInline()) {
5601        // inline-ness must match
5602        if (PrevNS->isInline()) {
5603          // The user probably just forgot the 'inline', so suggest that it
5604          // be added back.
5605          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5606            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5607        } else {
5608          Diag(Loc, diag::err_inline_namespace_mismatch)
5609            << IsInline;
5610        }
5611        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5612
5613        IsInline = PrevNS->isInline();
5614      }
5615    } else if (PrevDecl) {
5616      // This is an invalid name redefinition.
5617      Diag(Loc, diag::err_redefinition_different_kind)
5618        << II;
5619      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5620      IsInvalid = true;
5621      // Continue on to push Namespc as current DeclContext and return it.
5622    } else if (II->isStr("std") &&
5623               CurContext->getRedeclContext()->isTranslationUnit()) {
5624      // This is the first "real" definition of the namespace "std", so update
5625      // our cache of the "std" namespace to point at this definition.
5626      PrevNS = getStdNamespace();
5627      IsStd = true;
5628      AddToKnown = !IsInline;
5629    } else {
5630      // We've seen this namespace for the first time.
5631      AddToKnown = !IsInline;
5632    }
5633  } else {
5634    // Anonymous namespaces.
5635
5636    // Determine whether the parent already has an anonymous namespace.
5637    DeclContext *Parent = CurContext->getRedeclContext();
5638    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5639      PrevNS = TU->getAnonymousNamespace();
5640    } else {
5641      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5642      PrevNS = ND->getAnonymousNamespace();
5643    }
5644
5645    if (PrevNS && IsInline != PrevNS->isInline()) {
5646      // inline-ness must match
5647      Diag(Loc, diag::err_inline_namespace_mismatch)
5648        << IsInline;
5649      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5650
5651      // Recover by ignoring the new namespace's inline status.
5652      IsInline = PrevNS->isInline();
5653    }
5654  }
5655
5656  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5657                                                 StartLoc, Loc, II, PrevNS);
5658  if (IsInvalid)
5659    Namespc->setInvalidDecl();
5660
5661  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5662
5663  // FIXME: Should we be merging attributes?
5664  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5665    PushNamespaceVisibilityAttr(Attr);
5666
5667  if (IsStd)
5668    StdNamespace = Namespc;
5669  if (AddToKnown)
5670    KnownNamespaces[Namespc] = false;
5671
5672  if (II) {
5673    PushOnScopeChains(Namespc, DeclRegionScope);
5674  } else {
5675    // Link the anonymous namespace into its parent.
5676    DeclContext *Parent = CurContext->getRedeclContext();
5677    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5678      TU->setAnonymousNamespace(Namespc);
5679    } else {
5680      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5681    }
5682
5683    CurContext->addDecl(Namespc);
5684
5685    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5686    //   behaves as if it were replaced by
5687    //     namespace unique { /* empty body */ }
5688    //     using namespace unique;
5689    //     namespace unique { namespace-body }
5690    //   where all occurrences of 'unique' in a translation unit are
5691    //   replaced by the same identifier and this identifier differs
5692    //   from all other identifiers in the entire program.
5693
5694    // We just create the namespace with an empty name and then add an
5695    // implicit using declaration, just like the standard suggests.
5696    //
5697    // CodeGen enforces the "universally unique" aspect by giving all
5698    // declarations semantically contained within an anonymous
5699    // namespace internal linkage.
5700
5701    if (!PrevNS) {
5702      UsingDirectiveDecl* UD
5703        = UsingDirectiveDecl::Create(Context, CurContext,
5704                                     /* 'using' */ LBrace,
5705                                     /* 'namespace' */ SourceLocation(),
5706                                     /* qualifier */ NestedNameSpecifierLoc(),
5707                                     /* identifier */ SourceLocation(),
5708                                     Namespc,
5709                                     /* Ancestor */ CurContext);
5710      UD->setImplicit();
5711      CurContext->addDecl(UD);
5712    }
5713  }
5714
5715  // Although we could have an invalid decl (i.e. the namespace name is a
5716  // redefinition), push it as current DeclContext and try to continue parsing.
5717  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5718  // for the namespace has the declarations that showed up in that particular
5719  // namespace definition.
5720  PushDeclContext(NamespcScope, Namespc);
5721  return Namespc;
5722}
5723
5724/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5725/// is a namespace alias, returns the namespace it points to.
5726static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5727  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5728    return AD->getNamespace();
5729  return dyn_cast_or_null<NamespaceDecl>(D);
5730}
5731
5732/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5733/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5734void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5735  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5736  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5737  Namespc->setRBraceLoc(RBrace);
5738  PopDeclContext();
5739  if (Namespc->hasAttr<VisibilityAttr>())
5740    PopPragmaVisibility();
5741}
5742
5743CXXRecordDecl *Sema::getStdBadAlloc() const {
5744  return cast_or_null<CXXRecordDecl>(
5745                                  StdBadAlloc.get(Context.getExternalSource()));
5746}
5747
5748NamespaceDecl *Sema::getStdNamespace() const {
5749  return cast_or_null<NamespaceDecl>(
5750                                 StdNamespace.get(Context.getExternalSource()));
5751}
5752
5753/// \brief Retrieve the special "std" namespace, which may require us to
5754/// implicitly define the namespace.
5755NamespaceDecl *Sema::getOrCreateStdNamespace() {
5756  if (!StdNamespace) {
5757    // The "std" namespace has not yet been defined, so build one implicitly.
5758    StdNamespace = NamespaceDecl::Create(Context,
5759                                         Context.getTranslationUnitDecl(),
5760                                         /*Inline=*/false,
5761                                         SourceLocation(), SourceLocation(),
5762                                         &PP.getIdentifierTable().get("std"),
5763                                         /*PrevDecl=*/0);
5764    getStdNamespace()->setImplicit(true);
5765  }
5766
5767  return getStdNamespace();
5768}
5769
5770bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5771  assert(getLangOptions().CPlusPlus &&
5772         "Looking for std::initializer_list outside of C++.");
5773
5774  // We're looking for implicit instantiations of
5775  // template <typename E> class std::initializer_list.
5776
5777  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5778    return false;
5779
5780  ClassTemplateDecl *Template = 0;
5781  const TemplateArgument *Arguments = 0;
5782
5783  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5784
5785    ClassTemplateSpecializationDecl *Specialization =
5786        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5787    if (!Specialization)
5788      return false;
5789
5790    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5791      return false;
5792
5793    Template = Specialization->getSpecializedTemplate();
5794    Arguments = Specialization->getTemplateArgs().data();
5795  } else if (const TemplateSpecializationType *TST =
5796                 Ty->getAs<TemplateSpecializationType>()) {
5797    Template = dyn_cast_or_null<ClassTemplateDecl>(
5798        TST->getTemplateName().getAsTemplateDecl());
5799    Arguments = TST->getArgs();
5800  }
5801  if (!Template)
5802    return false;
5803
5804  if (!StdInitializerList) {
5805    // Haven't recognized std::initializer_list yet, maybe this is it.
5806    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5807    if (TemplateClass->getIdentifier() !=
5808            &PP.getIdentifierTable().get("initializer_list") ||
5809        !TemplateClass->getDeclContext()->Equals(getStdNamespace()))
5810      return false;
5811    // This is a template called std::initializer_list, but is it the right
5812    // template?
5813    TemplateParameterList *Params = Template->getTemplateParameters();
5814    if (Params->size() != 1)
5815      return false;
5816    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5817      return false;
5818
5819    // It's the right template.
5820    StdInitializerList = Template;
5821  }
5822
5823  if (Template != StdInitializerList)
5824    return false;
5825
5826  // This is an instance of std::initializer_list. Find the argument type.
5827  if (Element)
5828    *Element = Arguments[0].getAsType();
5829  return true;
5830}
5831
5832static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5833  NamespaceDecl *Std = S.getStdNamespace();
5834  if (!Std) {
5835    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5836    return 0;
5837  }
5838
5839  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5840                      Loc, Sema::LookupOrdinaryName);
5841  if (!S.LookupQualifiedName(Result, Std)) {
5842    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5843    return 0;
5844  }
5845  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5846  if (!Template) {
5847    Result.suppressDiagnostics();
5848    // We found something weird. Complain about the first thing we found.
5849    NamedDecl *Found = *Result.begin();
5850    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5851    return 0;
5852  }
5853
5854  // We found some template called std::initializer_list. Now verify that it's
5855  // correct.
5856  TemplateParameterList *Params = Template->getTemplateParameters();
5857  if (Params->size() != 1 || !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5858    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5859    return 0;
5860  }
5861
5862  return Template;
5863}
5864
5865QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5866  if (!StdInitializerList) {
5867    StdInitializerList = LookupStdInitializerList(*this, Loc);
5868    if (!StdInitializerList)
5869      return QualType();
5870  }
5871
5872  TemplateArgumentListInfo Args(Loc, Loc);
5873  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5874                                       Context.getTrivialTypeSourceInfo(Element,
5875                                                                        Loc)));
5876  return Context.getCanonicalType(
5877      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5878}
5879
5880/// \brief Determine whether a using statement is in a context where it will be
5881/// apply in all contexts.
5882static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5883  switch (CurContext->getDeclKind()) {
5884    case Decl::TranslationUnit:
5885      return true;
5886    case Decl::LinkageSpec:
5887      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5888    default:
5889      return false;
5890  }
5891}
5892
5893namespace {
5894
5895// Callback to only accept typo corrections that are namespaces.
5896class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5897 public:
5898  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5899    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5900      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5901    }
5902    return false;
5903  }
5904};
5905
5906}
5907
5908static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5909                                       CXXScopeSpec &SS,
5910                                       SourceLocation IdentLoc,
5911                                       IdentifierInfo *Ident) {
5912  NamespaceValidatorCCC Validator;
5913  R.clear();
5914  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5915                                               R.getLookupKind(), Sc, &SS,
5916                                               &Validator)) {
5917    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5918    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5919    if (DeclContext *DC = S.computeDeclContext(SS, false))
5920      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5921        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5922        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5923    else
5924      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5925        << Ident << CorrectedQuotedStr
5926        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5927
5928    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5929         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5930
5931    Ident = Corrected.getCorrectionAsIdentifierInfo();
5932    R.addDecl(Corrected.getCorrectionDecl());
5933    return true;
5934  }
5935  return false;
5936}
5937
5938Decl *Sema::ActOnUsingDirective(Scope *S,
5939                                          SourceLocation UsingLoc,
5940                                          SourceLocation NamespcLoc,
5941                                          CXXScopeSpec &SS,
5942                                          SourceLocation IdentLoc,
5943                                          IdentifierInfo *NamespcName,
5944                                          AttributeList *AttrList) {
5945  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5946  assert(NamespcName && "Invalid NamespcName.");
5947  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5948
5949  // This can only happen along a recovery path.
5950  while (S->getFlags() & Scope::TemplateParamScope)
5951    S = S->getParent();
5952  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5953
5954  UsingDirectiveDecl *UDir = 0;
5955  NestedNameSpecifier *Qualifier = 0;
5956  if (SS.isSet())
5957    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5958
5959  // Lookup namespace name.
5960  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5961  LookupParsedName(R, S, &SS);
5962  if (R.isAmbiguous())
5963    return 0;
5964
5965  if (R.empty()) {
5966    R.clear();
5967    // Allow "using namespace std;" or "using namespace ::std;" even if
5968    // "std" hasn't been defined yet, for GCC compatibility.
5969    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5970        NamespcName->isStr("std")) {
5971      Diag(IdentLoc, diag::ext_using_undefined_std);
5972      R.addDecl(getOrCreateStdNamespace());
5973      R.resolveKind();
5974    }
5975    // Otherwise, attempt typo correction.
5976    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5977  }
5978
5979  if (!R.empty()) {
5980    NamedDecl *Named = R.getFoundDecl();
5981    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5982        && "expected namespace decl");
5983    // C++ [namespace.udir]p1:
5984    //   A using-directive specifies that the names in the nominated
5985    //   namespace can be used in the scope in which the
5986    //   using-directive appears after the using-directive. During
5987    //   unqualified name lookup (3.4.1), the names appear as if they
5988    //   were declared in the nearest enclosing namespace which
5989    //   contains both the using-directive and the nominated
5990    //   namespace. [Note: in this context, "contains" means "contains
5991    //   directly or indirectly". ]
5992
5993    // Find enclosing context containing both using-directive and
5994    // nominated namespace.
5995    NamespaceDecl *NS = getNamespaceDecl(Named);
5996    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5997    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5998      CommonAncestor = CommonAncestor->getParent();
5999
6000    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6001                                      SS.getWithLocInContext(Context),
6002                                      IdentLoc, Named, CommonAncestor);
6003
6004    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6005        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6006      Diag(IdentLoc, diag::warn_using_directive_in_header);
6007    }
6008
6009    PushUsingDirective(S, UDir);
6010  } else {
6011    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6012  }
6013
6014  // FIXME: We ignore attributes for now.
6015  return UDir;
6016}
6017
6018void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6019  // If scope has associated entity, then using directive is at namespace
6020  // or translation unit scope. We add UsingDirectiveDecls, into
6021  // it's lookup structure.
6022  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6023    Ctx->addDecl(UDir);
6024  else
6025    // Otherwise it is block-sope. using-directives will affect lookup
6026    // only to the end of scope.
6027    S->PushUsingDirective(UDir);
6028}
6029
6030
6031Decl *Sema::ActOnUsingDeclaration(Scope *S,
6032                                  AccessSpecifier AS,
6033                                  bool HasUsingKeyword,
6034                                  SourceLocation UsingLoc,
6035                                  CXXScopeSpec &SS,
6036                                  UnqualifiedId &Name,
6037                                  AttributeList *AttrList,
6038                                  bool IsTypeName,
6039                                  SourceLocation TypenameLoc) {
6040  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6041
6042  switch (Name.getKind()) {
6043  case UnqualifiedId::IK_ImplicitSelfParam:
6044  case UnqualifiedId::IK_Identifier:
6045  case UnqualifiedId::IK_OperatorFunctionId:
6046  case UnqualifiedId::IK_LiteralOperatorId:
6047  case UnqualifiedId::IK_ConversionFunctionId:
6048    break;
6049
6050  case UnqualifiedId::IK_ConstructorName:
6051  case UnqualifiedId::IK_ConstructorTemplateId:
6052    // C++0x inherited constructors.
6053    Diag(Name.getSourceRange().getBegin(),
6054         getLangOptions().CPlusPlus0x ?
6055           diag::warn_cxx98_compat_using_decl_constructor :
6056           diag::err_using_decl_constructor)
6057      << SS.getRange();
6058
6059    if (getLangOptions().CPlusPlus0x) break;
6060
6061    return 0;
6062
6063  case UnqualifiedId::IK_DestructorName:
6064    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6065      << SS.getRange();
6066    return 0;
6067
6068  case UnqualifiedId::IK_TemplateId:
6069    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6070      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6071    return 0;
6072  }
6073
6074  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6075  DeclarationName TargetName = TargetNameInfo.getName();
6076  if (!TargetName)
6077    return 0;
6078
6079  // Warn about using declarations.
6080  // TODO: store that the declaration was written without 'using' and
6081  // talk about access decls instead of using decls in the
6082  // diagnostics.
6083  if (!HasUsingKeyword) {
6084    UsingLoc = Name.getSourceRange().getBegin();
6085
6086    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6087      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6088  }
6089
6090  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6091      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6092    return 0;
6093
6094  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6095                                        TargetNameInfo, AttrList,
6096                                        /* IsInstantiation */ false,
6097                                        IsTypeName, TypenameLoc);
6098  if (UD)
6099    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6100
6101  return UD;
6102}
6103
6104/// \brief Determine whether a using declaration considers the given
6105/// declarations as "equivalent", e.g., if they are redeclarations of
6106/// the same entity or are both typedefs of the same type.
6107static bool
6108IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6109                         bool &SuppressRedeclaration) {
6110  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6111    SuppressRedeclaration = false;
6112    return true;
6113  }
6114
6115  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6116    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6117      SuppressRedeclaration = true;
6118      return Context.hasSameType(TD1->getUnderlyingType(),
6119                                 TD2->getUnderlyingType());
6120    }
6121
6122  return false;
6123}
6124
6125
6126/// Determines whether to create a using shadow decl for a particular
6127/// decl, given the set of decls existing prior to this using lookup.
6128bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6129                                const LookupResult &Previous) {
6130  // Diagnose finding a decl which is not from a base class of the
6131  // current class.  We do this now because there are cases where this
6132  // function will silently decide not to build a shadow decl, which
6133  // will pre-empt further diagnostics.
6134  //
6135  // We don't need to do this in C++0x because we do the check once on
6136  // the qualifier.
6137  //
6138  // FIXME: diagnose the following if we care enough:
6139  //   struct A { int foo; };
6140  //   struct B : A { using A::foo; };
6141  //   template <class T> struct C : A {};
6142  //   template <class T> struct D : C<T> { using B::foo; } // <---
6143  // This is invalid (during instantiation) in C++03 because B::foo
6144  // resolves to the using decl in B, which is not a base class of D<T>.
6145  // We can't diagnose it immediately because C<T> is an unknown
6146  // specialization.  The UsingShadowDecl in D<T> then points directly
6147  // to A::foo, which will look well-formed when we instantiate.
6148  // The right solution is to not collapse the shadow-decl chain.
6149  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6150    DeclContext *OrigDC = Orig->getDeclContext();
6151
6152    // Handle enums and anonymous structs.
6153    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6154    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6155    while (OrigRec->isAnonymousStructOrUnion())
6156      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6157
6158    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6159      if (OrigDC == CurContext) {
6160        Diag(Using->getLocation(),
6161             diag::err_using_decl_nested_name_specifier_is_current_class)
6162          << Using->getQualifierLoc().getSourceRange();
6163        Diag(Orig->getLocation(), diag::note_using_decl_target);
6164        return true;
6165      }
6166
6167      Diag(Using->getQualifierLoc().getBeginLoc(),
6168           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6169        << Using->getQualifier()
6170        << cast<CXXRecordDecl>(CurContext)
6171        << Using->getQualifierLoc().getSourceRange();
6172      Diag(Orig->getLocation(), diag::note_using_decl_target);
6173      return true;
6174    }
6175  }
6176
6177  if (Previous.empty()) return false;
6178
6179  NamedDecl *Target = Orig;
6180  if (isa<UsingShadowDecl>(Target))
6181    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6182
6183  // If the target happens to be one of the previous declarations, we
6184  // don't have a conflict.
6185  //
6186  // FIXME: but we might be increasing its access, in which case we
6187  // should redeclare it.
6188  NamedDecl *NonTag = 0, *Tag = 0;
6189  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6190         I != E; ++I) {
6191    NamedDecl *D = (*I)->getUnderlyingDecl();
6192    bool Result;
6193    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6194      return Result;
6195
6196    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6197  }
6198
6199  if (Target->isFunctionOrFunctionTemplate()) {
6200    FunctionDecl *FD;
6201    if (isa<FunctionTemplateDecl>(Target))
6202      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6203    else
6204      FD = cast<FunctionDecl>(Target);
6205
6206    NamedDecl *OldDecl = 0;
6207    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6208    case Ovl_Overload:
6209      return false;
6210
6211    case Ovl_NonFunction:
6212      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6213      break;
6214
6215    // We found a decl with the exact signature.
6216    case Ovl_Match:
6217      // If we're in a record, we want to hide the target, so we
6218      // return true (without a diagnostic) to tell the caller not to
6219      // build a shadow decl.
6220      if (CurContext->isRecord())
6221        return true;
6222
6223      // If we're not in a record, this is an error.
6224      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6225      break;
6226    }
6227
6228    Diag(Target->getLocation(), diag::note_using_decl_target);
6229    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6230    return true;
6231  }
6232
6233  // Target is not a function.
6234
6235  if (isa<TagDecl>(Target)) {
6236    // No conflict between a tag and a non-tag.
6237    if (!Tag) return false;
6238
6239    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6240    Diag(Target->getLocation(), diag::note_using_decl_target);
6241    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6242    return true;
6243  }
6244
6245  // No conflict between a tag and a non-tag.
6246  if (!NonTag) return false;
6247
6248  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6249  Diag(Target->getLocation(), diag::note_using_decl_target);
6250  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6251  return true;
6252}
6253
6254/// Builds a shadow declaration corresponding to a 'using' declaration.
6255UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6256                                            UsingDecl *UD,
6257                                            NamedDecl *Orig) {
6258
6259  // If we resolved to another shadow declaration, just coalesce them.
6260  NamedDecl *Target = Orig;
6261  if (isa<UsingShadowDecl>(Target)) {
6262    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6263    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6264  }
6265
6266  UsingShadowDecl *Shadow
6267    = UsingShadowDecl::Create(Context, CurContext,
6268                              UD->getLocation(), UD, Target);
6269  UD->addShadowDecl(Shadow);
6270
6271  Shadow->setAccess(UD->getAccess());
6272  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6273    Shadow->setInvalidDecl();
6274
6275  if (S)
6276    PushOnScopeChains(Shadow, S);
6277  else
6278    CurContext->addDecl(Shadow);
6279
6280
6281  return Shadow;
6282}
6283
6284/// Hides a using shadow declaration.  This is required by the current
6285/// using-decl implementation when a resolvable using declaration in a
6286/// class is followed by a declaration which would hide or override
6287/// one or more of the using decl's targets; for example:
6288///
6289///   struct Base { void foo(int); };
6290///   struct Derived : Base {
6291///     using Base::foo;
6292///     void foo(int);
6293///   };
6294///
6295/// The governing language is C++03 [namespace.udecl]p12:
6296///
6297///   When a using-declaration brings names from a base class into a
6298///   derived class scope, member functions in the derived class
6299///   override and/or hide member functions with the same name and
6300///   parameter types in a base class (rather than conflicting).
6301///
6302/// There are two ways to implement this:
6303///   (1) optimistically create shadow decls when they're not hidden
6304///       by existing declarations, or
6305///   (2) don't create any shadow decls (or at least don't make them
6306///       visible) until we've fully parsed/instantiated the class.
6307/// The problem with (1) is that we might have to retroactively remove
6308/// a shadow decl, which requires several O(n) operations because the
6309/// decl structures are (very reasonably) not designed for removal.
6310/// (2) avoids this but is very fiddly and phase-dependent.
6311void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6312  if (Shadow->getDeclName().getNameKind() ==
6313        DeclarationName::CXXConversionFunctionName)
6314    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6315
6316  // Remove it from the DeclContext...
6317  Shadow->getDeclContext()->removeDecl(Shadow);
6318
6319  // ...and the scope, if applicable...
6320  if (S) {
6321    S->RemoveDecl(Shadow);
6322    IdResolver.RemoveDecl(Shadow);
6323  }
6324
6325  // ...and the using decl.
6326  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6327
6328  // TODO: complain somehow if Shadow was used.  It shouldn't
6329  // be possible for this to happen, because...?
6330}
6331
6332/// Builds a using declaration.
6333///
6334/// \param IsInstantiation - Whether this call arises from an
6335///   instantiation of an unresolved using declaration.  We treat
6336///   the lookup differently for these declarations.
6337NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6338                                       SourceLocation UsingLoc,
6339                                       CXXScopeSpec &SS,
6340                                       const DeclarationNameInfo &NameInfo,
6341                                       AttributeList *AttrList,
6342                                       bool IsInstantiation,
6343                                       bool IsTypeName,
6344                                       SourceLocation TypenameLoc) {
6345  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6346  SourceLocation IdentLoc = NameInfo.getLoc();
6347  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6348
6349  // FIXME: We ignore attributes for now.
6350
6351  if (SS.isEmpty()) {
6352    Diag(IdentLoc, diag::err_using_requires_qualname);
6353    return 0;
6354  }
6355
6356  // Do the redeclaration lookup in the current scope.
6357  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6358                        ForRedeclaration);
6359  Previous.setHideTags(false);
6360  if (S) {
6361    LookupName(Previous, S);
6362
6363    // It is really dumb that we have to do this.
6364    LookupResult::Filter F = Previous.makeFilter();
6365    while (F.hasNext()) {
6366      NamedDecl *D = F.next();
6367      if (!isDeclInScope(D, CurContext, S))
6368        F.erase();
6369    }
6370    F.done();
6371  } else {
6372    assert(IsInstantiation && "no scope in non-instantiation");
6373    assert(CurContext->isRecord() && "scope not record in instantiation");
6374    LookupQualifiedName(Previous, CurContext);
6375  }
6376
6377  // Check for invalid redeclarations.
6378  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6379    return 0;
6380
6381  // Check for bad qualifiers.
6382  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6383    return 0;
6384
6385  DeclContext *LookupContext = computeDeclContext(SS);
6386  NamedDecl *D;
6387  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6388  if (!LookupContext) {
6389    if (IsTypeName) {
6390      // FIXME: not all declaration name kinds are legal here
6391      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6392                                              UsingLoc, TypenameLoc,
6393                                              QualifierLoc,
6394                                              IdentLoc, NameInfo.getName());
6395    } else {
6396      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6397                                           QualifierLoc, NameInfo);
6398    }
6399  } else {
6400    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6401                          NameInfo, IsTypeName);
6402  }
6403  D->setAccess(AS);
6404  CurContext->addDecl(D);
6405
6406  if (!LookupContext) return D;
6407  UsingDecl *UD = cast<UsingDecl>(D);
6408
6409  if (RequireCompleteDeclContext(SS, LookupContext)) {
6410    UD->setInvalidDecl();
6411    return UD;
6412  }
6413
6414  // Constructor inheriting using decls get special treatment.
6415  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6416    if (CheckInheritedConstructorUsingDecl(UD))
6417      UD->setInvalidDecl();
6418    return UD;
6419  }
6420
6421  // Otherwise, look up the target name.
6422
6423  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6424
6425  // Unlike most lookups, we don't always want to hide tag
6426  // declarations: tag names are visible through the using declaration
6427  // even if hidden by ordinary names, *except* in a dependent context
6428  // where it's important for the sanity of two-phase lookup.
6429  if (!IsInstantiation)
6430    R.setHideTags(false);
6431
6432  LookupQualifiedName(R, LookupContext);
6433
6434  if (R.empty()) {
6435    Diag(IdentLoc, diag::err_no_member)
6436      << NameInfo.getName() << LookupContext << SS.getRange();
6437    UD->setInvalidDecl();
6438    return UD;
6439  }
6440
6441  if (R.isAmbiguous()) {
6442    UD->setInvalidDecl();
6443    return UD;
6444  }
6445
6446  if (IsTypeName) {
6447    // If we asked for a typename and got a non-type decl, error out.
6448    if (!R.getAsSingle<TypeDecl>()) {
6449      Diag(IdentLoc, diag::err_using_typename_non_type);
6450      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6451        Diag((*I)->getUnderlyingDecl()->getLocation(),
6452             diag::note_using_decl_target);
6453      UD->setInvalidDecl();
6454      return UD;
6455    }
6456  } else {
6457    // If we asked for a non-typename and we got a type, error out,
6458    // but only if this is an instantiation of an unresolved using
6459    // decl.  Otherwise just silently find the type name.
6460    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6461      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6462      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6463      UD->setInvalidDecl();
6464      return UD;
6465    }
6466  }
6467
6468  // C++0x N2914 [namespace.udecl]p6:
6469  // A using-declaration shall not name a namespace.
6470  if (R.getAsSingle<NamespaceDecl>()) {
6471    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6472      << SS.getRange();
6473    UD->setInvalidDecl();
6474    return UD;
6475  }
6476
6477  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6478    if (!CheckUsingShadowDecl(UD, *I, Previous))
6479      BuildUsingShadowDecl(S, UD, *I);
6480  }
6481
6482  return UD;
6483}
6484
6485/// Additional checks for a using declaration referring to a constructor name.
6486bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6487  if (UD->isTypeName()) {
6488    // FIXME: Cannot specify typename when specifying constructor
6489    return true;
6490  }
6491
6492  const Type *SourceType = UD->getQualifier()->getAsType();
6493  assert(SourceType &&
6494         "Using decl naming constructor doesn't have type in scope spec.");
6495  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6496
6497  // Check whether the named type is a direct base class.
6498  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6499  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6500  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6501       BaseIt != BaseE; ++BaseIt) {
6502    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6503    if (CanonicalSourceType == BaseType)
6504      break;
6505  }
6506
6507  if (BaseIt == BaseE) {
6508    // Did not find SourceType in the bases.
6509    Diag(UD->getUsingLocation(),
6510         diag::err_using_decl_constructor_not_in_direct_base)
6511      << UD->getNameInfo().getSourceRange()
6512      << QualType(SourceType, 0) << TargetClass;
6513    return true;
6514  }
6515
6516  BaseIt->setInheritConstructors();
6517
6518  return false;
6519}
6520
6521/// Checks that the given using declaration is not an invalid
6522/// redeclaration.  Note that this is checking only for the using decl
6523/// itself, not for any ill-formedness among the UsingShadowDecls.
6524bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6525                                       bool isTypeName,
6526                                       const CXXScopeSpec &SS,
6527                                       SourceLocation NameLoc,
6528                                       const LookupResult &Prev) {
6529  // C++03 [namespace.udecl]p8:
6530  // C++0x [namespace.udecl]p10:
6531  //   A using-declaration is a declaration and can therefore be used
6532  //   repeatedly where (and only where) multiple declarations are
6533  //   allowed.
6534  //
6535  // That's in non-member contexts.
6536  if (!CurContext->getRedeclContext()->isRecord())
6537    return false;
6538
6539  NestedNameSpecifier *Qual
6540    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6541
6542  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6543    NamedDecl *D = *I;
6544
6545    bool DTypename;
6546    NestedNameSpecifier *DQual;
6547    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6548      DTypename = UD->isTypeName();
6549      DQual = UD->getQualifier();
6550    } else if (UnresolvedUsingValueDecl *UD
6551                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6552      DTypename = false;
6553      DQual = UD->getQualifier();
6554    } else if (UnresolvedUsingTypenameDecl *UD
6555                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6556      DTypename = true;
6557      DQual = UD->getQualifier();
6558    } else continue;
6559
6560    // using decls differ if one says 'typename' and the other doesn't.
6561    // FIXME: non-dependent using decls?
6562    if (isTypeName != DTypename) continue;
6563
6564    // using decls differ if they name different scopes (but note that
6565    // template instantiation can cause this check to trigger when it
6566    // didn't before instantiation).
6567    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6568        Context.getCanonicalNestedNameSpecifier(DQual))
6569      continue;
6570
6571    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6572    Diag(D->getLocation(), diag::note_using_decl) << 1;
6573    return true;
6574  }
6575
6576  return false;
6577}
6578
6579
6580/// Checks that the given nested-name qualifier used in a using decl
6581/// in the current context is appropriately related to the current
6582/// scope.  If an error is found, diagnoses it and returns true.
6583bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6584                                   const CXXScopeSpec &SS,
6585                                   SourceLocation NameLoc) {
6586  DeclContext *NamedContext = computeDeclContext(SS);
6587
6588  if (!CurContext->isRecord()) {
6589    // C++03 [namespace.udecl]p3:
6590    // C++0x [namespace.udecl]p8:
6591    //   A using-declaration for a class member shall be a member-declaration.
6592
6593    // If we weren't able to compute a valid scope, it must be a
6594    // dependent class scope.
6595    if (!NamedContext || NamedContext->isRecord()) {
6596      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6597        << SS.getRange();
6598      return true;
6599    }
6600
6601    // Otherwise, everything is known to be fine.
6602    return false;
6603  }
6604
6605  // The current scope is a record.
6606
6607  // If the named context is dependent, we can't decide much.
6608  if (!NamedContext) {
6609    // FIXME: in C++0x, we can diagnose if we can prove that the
6610    // nested-name-specifier does not refer to a base class, which is
6611    // still possible in some cases.
6612
6613    // Otherwise we have to conservatively report that things might be
6614    // okay.
6615    return false;
6616  }
6617
6618  if (!NamedContext->isRecord()) {
6619    // Ideally this would point at the last name in the specifier,
6620    // but we don't have that level of source info.
6621    Diag(SS.getRange().getBegin(),
6622         diag::err_using_decl_nested_name_specifier_is_not_class)
6623      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6624    return true;
6625  }
6626
6627  if (!NamedContext->isDependentContext() &&
6628      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6629    return true;
6630
6631  if (getLangOptions().CPlusPlus0x) {
6632    // C++0x [namespace.udecl]p3:
6633    //   In a using-declaration used as a member-declaration, the
6634    //   nested-name-specifier shall name a base class of the class
6635    //   being defined.
6636
6637    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6638                                 cast<CXXRecordDecl>(NamedContext))) {
6639      if (CurContext == NamedContext) {
6640        Diag(NameLoc,
6641             diag::err_using_decl_nested_name_specifier_is_current_class)
6642          << SS.getRange();
6643        return true;
6644      }
6645
6646      Diag(SS.getRange().getBegin(),
6647           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6648        << (NestedNameSpecifier*) SS.getScopeRep()
6649        << cast<CXXRecordDecl>(CurContext)
6650        << SS.getRange();
6651      return true;
6652    }
6653
6654    return false;
6655  }
6656
6657  // C++03 [namespace.udecl]p4:
6658  //   A using-declaration used as a member-declaration shall refer
6659  //   to a member of a base class of the class being defined [etc.].
6660
6661  // Salient point: SS doesn't have to name a base class as long as
6662  // lookup only finds members from base classes.  Therefore we can
6663  // diagnose here only if we can prove that that can't happen,
6664  // i.e. if the class hierarchies provably don't intersect.
6665
6666  // TODO: it would be nice if "definitely valid" results were cached
6667  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6668  // need to be repeated.
6669
6670  struct UserData {
6671    llvm::DenseSet<const CXXRecordDecl*> Bases;
6672
6673    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6674      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6675      Data->Bases.insert(Base);
6676      return true;
6677    }
6678
6679    bool hasDependentBases(const CXXRecordDecl *Class) {
6680      return !Class->forallBases(collect, this);
6681    }
6682
6683    /// Returns true if the base is dependent or is one of the
6684    /// accumulated base classes.
6685    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6686      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6687      return !Data->Bases.count(Base);
6688    }
6689
6690    bool mightShareBases(const CXXRecordDecl *Class) {
6691      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6692    }
6693  };
6694
6695  UserData Data;
6696
6697  // Returns false if we find a dependent base.
6698  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6699    return false;
6700
6701  // Returns false if the class has a dependent base or if it or one
6702  // of its bases is present in the base set of the current context.
6703  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6704    return false;
6705
6706  Diag(SS.getRange().getBegin(),
6707       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6708    << (NestedNameSpecifier*) SS.getScopeRep()
6709    << cast<CXXRecordDecl>(CurContext)
6710    << SS.getRange();
6711
6712  return true;
6713}
6714
6715Decl *Sema::ActOnAliasDeclaration(Scope *S,
6716                                  AccessSpecifier AS,
6717                                  MultiTemplateParamsArg TemplateParamLists,
6718                                  SourceLocation UsingLoc,
6719                                  UnqualifiedId &Name,
6720                                  TypeResult Type) {
6721  // Skip up to the relevant declaration scope.
6722  while (S->getFlags() & Scope::TemplateParamScope)
6723    S = S->getParent();
6724  assert((S->getFlags() & Scope::DeclScope) &&
6725         "got alias-declaration outside of declaration scope");
6726
6727  if (Type.isInvalid())
6728    return 0;
6729
6730  bool Invalid = false;
6731  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6732  TypeSourceInfo *TInfo = 0;
6733  GetTypeFromParser(Type.get(), &TInfo);
6734
6735  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6736    return 0;
6737
6738  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6739                                      UPPC_DeclarationType)) {
6740    Invalid = true;
6741    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6742                                             TInfo->getTypeLoc().getBeginLoc());
6743  }
6744
6745  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6746  LookupName(Previous, S);
6747
6748  // Warn about shadowing the name of a template parameter.
6749  if (Previous.isSingleResult() &&
6750      Previous.getFoundDecl()->isTemplateParameter()) {
6751    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6752    Previous.clear();
6753  }
6754
6755  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6756         "name in alias declaration must be an identifier");
6757  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6758                                               Name.StartLocation,
6759                                               Name.Identifier, TInfo);
6760
6761  NewTD->setAccess(AS);
6762
6763  if (Invalid)
6764    NewTD->setInvalidDecl();
6765
6766  CheckTypedefForVariablyModifiedType(S, NewTD);
6767  Invalid |= NewTD->isInvalidDecl();
6768
6769  bool Redeclaration = false;
6770
6771  NamedDecl *NewND;
6772  if (TemplateParamLists.size()) {
6773    TypeAliasTemplateDecl *OldDecl = 0;
6774    TemplateParameterList *OldTemplateParams = 0;
6775
6776    if (TemplateParamLists.size() != 1) {
6777      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6778        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6779         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6780    }
6781    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6782
6783    // Only consider previous declarations in the same scope.
6784    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6785                         /*ExplicitInstantiationOrSpecialization*/false);
6786    if (!Previous.empty()) {
6787      Redeclaration = true;
6788
6789      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6790      if (!OldDecl && !Invalid) {
6791        Diag(UsingLoc, diag::err_redefinition_different_kind)
6792          << Name.Identifier;
6793
6794        NamedDecl *OldD = Previous.getRepresentativeDecl();
6795        if (OldD->getLocation().isValid())
6796          Diag(OldD->getLocation(), diag::note_previous_definition);
6797
6798        Invalid = true;
6799      }
6800
6801      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6802        if (TemplateParameterListsAreEqual(TemplateParams,
6803                                           OldDecl->getTemplateParameters(),
6804                                           /*Complain=*/true,
6805                                           TPL_TemplateMatch))
6806          OldTemplateParams = OldDecl->getTemplateParameters();
6807        else
6808          Invalid = true;
6809
6810        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6811        if (!Invalid &&
6812            !Context.hasSameType(OldTD->getUnderlyingType(),
6813                                 NewTD->getUnderlyingType())) {
6814          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6815          // but we can't reasonably accept it.
6816          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6817            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6818          if (OldTD->getLocation().isValid())
6819            Diag(OldTD->getLocation(), diag::note_previous_definition);
6820          Invalid = true;
6821        }
6822      }
6823    }
6824
6825    // Merge any previous default template arguments into our parameters,
6826    // and check the parameter list.
6827    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6828                                   TPC_TypeAliasTemplate))
6829      return 0;
6830
6831    TypeAliasTemplateDecl *NewDecl =
6832      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6833                                    Name.Identifier, TemplateParams,
6834                                    NewTD);
6835
6836    NewDecl->setAccess(AS);
6837
6838    if (Invalid)
6839      NewDecl->setInvalidDecl();
6840    else if (OldDecl)
6841      NewDecl->setPreviousDeclaration(OldDecl);
6842
6843    NewND = NewDecl;
6844  } else {
6845    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6846    NewND = NewTD;
6847  }
6848
6849  if (!Redeclaration)
6850    PushOnScopeChains(NewND, S);
6851
6852  return NewND;
6853}
6854
6855Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6856                                             SourceLocation NamespaceLoc,
6857                                             SourceLocation AliasLoc,
6858                                             IdentifierInfo *Alias,
6859                                             CXXScopeSpec &SS,
6860                                             SourceLocation IdentLoc,
6861                                             IdentifierInfo *Ident) {
6862
6863  // Lookup the namespace name.
6864  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6865  LookupParsedName(R, S, &SS);
6866
6867  // Check if we have a previous declaration with the same name.
6868  NamedDecl *PrevDecl
6869    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6870                       ForRedeclaration);
6871  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6872    PrevDecl = 0;
6873
6874  if (PrevDecl) {
6875    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6876      // We already have an alias with the same name that points to the same
6877      // namespace, so don't create a new one.
6878      // FIXME: At some point, we'll want to create the (redundant)
6879      // declaration to maintain better source information.
6880      if (!R.isAmbiguous() && !R.empty() &&
6881          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6882        return 0;
6883    }
6884
6885    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6886      diag::err_redefinition_different_kind;
6887    Diag(AliasLoc, DiagID) << Alias;
6888    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6889    return 0;
6890  }
6891
6892  if (R.isAmbiguous())
6893    return 0;
6894
6895  if (R.empty()) {
6896    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6897      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6898      return 0;
6899    }
6900  }
6901
6902  NamespaceAliasDecl *AliasDecl =
6903    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6904                               Alias, SS.getWithLocInContext(Context),
6905                               IdentLoc, R.getFoundDecl());
6906
6907  PushOnScopeChains(AliasDecl, S);
6908  return AliasDecl;
6909}
6910
6911namespace {
6912  /// \brief Scoped object used to handle the state changes required in Sema
6913  /// to implicitly define the body of a C++ member function;
6914  class ImplicitlyDefinedFunctionScope {
6915    Sema &S;
6916    Sema::ContextRAII SavedContext;
6917
6918  public:
6919    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6920      : S(S), SavedContext(S, Method)
6921    {
6922      S.PushFunctionScope();
6923      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6924    }
6925
6926    ~ImplicitlyDefinedFunctionScope() {
6927      S.PopExpressionEvaluationContext();
6928      S.PopFunctionScopeInfo();
6929    }
6930  };
6931}
6932
6933Sema::ImplicitExceptionSpecification
6934Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6935  // C++ [except.spec]p14:
6936  //   An implicitly declared special member function (Clause 12) shall have an
6937  //   exception-specification. [...]
6938  ImplicitExceptionSpecification ExceptSpec(Context);
6939  if (ClassDecl->isInvalidDecl())
6940    return ExceptSpec;
6941
6942  // Direct base-class constructors.
6943  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6944                                       BEnd = ClassDecl->bases_end();
6945       B != BEnd; ++B) {
6946    if (B->isVirtual()) // Handled below.
6947      continue;
6948
6949    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6950      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6951      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6952      // If this is a deleted function, add it anyway. This might be conformant
6953      // with the standard. This might not. I'm not sure. It might not matter.
6954      if (Constructor)
6955        ExceptSpec.CalledDecl(Constructor);
6956    }
6957  }
6958
6959  // Virtual base-class constructors.
6960  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6961                                       BEnd = ClassDecl->vbases_end();
6962       B != BEnd; ++B) {
6963    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6964      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6965      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6966      // If this is a deleted function, add it anyway. This might be conformant
6967      // with the standard. This might not. I'm not sure. It might not matter.
6968      if (Constructor)
6969        ExceptSpec.CalledDecl(Constructor);
6970    }
6971  }
6972
6973  // Field constructors.
6974  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6975                               FEnd = ClassDecl->field_end();
6976       F != FEnd; ++F) {
6977    if (F->hasInClassInitializer()) {
6978      if (Expr *E = F->getInClassInitializer())
6979        ExceptSpec.CalledExpr(E);
6980      else if (!F->isInvalidDecl())
6981        ExceptSpec.SetDelayed();
6982    } else if (const RecordType *RecordTy
6983              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6984      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6985      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6986      // If this is a deleted function, add it anyway. This might be conformant
6987      // with the standard. This might not. I'm not sure. It might not matter.
6988      // In particular, the problem is that this function never gets called. It
6989      // might just be ill-formed because this function attempts to refer to
6990      // a deleted function here.
6991      if (Constructor)
6992        ExceptSpec.CalledDecl(Constructor);
6993    }
6994  }
6995
6996  return ExceptSpec;
6997}
6998
6999CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7000                                                     CXXRecordDecl *ClassDecl) {
7001  // C++ [class.ctor]p5:
7002  //   A default constructor for a class X is a constructor of class X
7003  //   that can be called without an argument. If there is no
7004  //   user-declared constructor for class X, a default constructor is
7005  //   implicitly declared. An implicitly-declared default constructor
7006  //   is an inline public member of its class.
7007  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7008         "Should not build implicit default constructor!");
7009
7010  ImplicitExceptionSpecification Spec =
7011    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7012  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7013
7014  // Create the actual constructor declaration.
7015  CanQualType ClassType
7016    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7017  SourceLocation ClassLoc = ClassDecl->getLocation();
7018  DeclarationName Name
7019    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7020  DeclarationNameInfo NameInfo(Name, ClassLoc);
7021  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7022      Context, ClassDecl, ClassLoc, NameInfo,
7023      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7024      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7025      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7026        getLangOptions().CPlusPlus0x);
7027  DefaultCon->setAccess(AS_public);
7028  DefaultCon->setDefaulted();
7029  DefaultCon->setImplicit();
7030  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7031
7032  // Note that we have declared this constructor.
7033  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7034
7035  if (Scope *S = getScopeForContext(ClassDecl))
7036    PushOnScopeChains(DefaultCon, S, false);
7037  ClassDecl->addDecl(DefaultCon);
7038
7039  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7040    DefaultCon->setDeletedAsWritten();
7041
7042  return DefaultCon;
7043}
7044
7045void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7046                                            CXXConstructorDecl *Constructor) {
7047  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7048          !Constructor->doesThisDeclarationHaveABody() &&
7049          !Constructor->isDeleted()) &&
7050    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7051
7052  CXXRecordDecl *ClassDecl = Constructor->getParent();
7053  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7054
7055  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7056  DiagnosticErrorTrap Trap(Diags);
7057  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7058      Trap.hasErrorOccurred()) {
7059    Diag(CurrentLocation, diag::note_member_synthesized_at)
7060      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7061    Constructor->setInvalidDecl();
7062    return;
7063  }
7064
7065  SourceLocation Loc = Constructor->getLocation();
7066  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7067
7068  Constructor->setUsed();
7069  MarkVTableUsed(CurrentLocation, ClassDecl);
7070
7071  if (ASTMutationListener *L = getASTMutationListener()) {
7072    L->CompletedImplicitDefinition(Constructor);
7073  }
7074}
7075
7076/// Get any existing defaulted default constructor for the given class. Do not
7077/// implicitly define one if it does not exist.
7078static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7079                                                             CXXRecordDecl *D) {
7080  ASTContext &Context = Self.Context;
7081  QualType ClassType = Context.getTypeDeclType(D);
7082  DeclarationName ConstructorName
7083    = Context.DeclarationNames.getCXXConstructorName(
7084                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7085
7086  DeclContext::lookup_const_iterator Con, ConEnd;
7087  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7088       Con != ConEnd; ++Con) {
7089    // A function template cannot be defaulted.
7090    if (isa<FunctionTemplateDecl>(*Con))
7091      continue;
7092
7093    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7094    if (Constructor->isDefaultConstructor())
7095      return Constructor->isDefaulted() ? Constructor : 0;
7096  }
7097  return 0;
7098}
7099
7100void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7101  if (!D) return;
7102  AdjustDeclIfTemplate(D);
7103
7104  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7105  CXXConstructorDecl *CtorDecl
7106    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7107
7108  if (!CtorDecl) return;
7109
7110  // Compute the exception specification for the default constructor.
7111  const FunctionProtoType *CtorTy =
7112    CtorDecl->getType()->castAs<FunctionProtoType>();
7113  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7114    ImplicitExceptionSpecification Spec =
7115      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7116    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7117    assert(EPI.ExceptionSpecType != EST_Delayed);
7118
7119    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7120  }
7121
7122  // If the default constructor is explicitly defaulted, checking the exception
7123  // specification is deferred until now.
7124  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7125      !ClassDecl->isDependentType())
7126    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7127}
7128
7129void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7130  // We start with an initial pass over the base classes to collect those that
7131  // inherit constructors from. If there are none, we can forgo all further
7132  // processing.
7133  typedef SmallVector<const RecordType *, 4> BasesVector;
7134  BasesVector BasesToInheritFrom;
7135  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7136                                          BaseE = ClassDecl->bases_end();
7137         BaseIt != BaseE; ++BaseIt) {
7138    if (BaseIt->getInheritConstructors()) {
7139      QualType Base = BaseIt->getType();
7140      if (Base->isDependentType()) {
7141        // If we inherit constructors from anything that is dependent, just
7142        // abort processing altogether. We'll get another chance for the
7143        // instantiations.
7144        return;
7145      }
7146      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7147    }
7148  }
7149  if (BasesToInheritFrom.empty())
7150    return;
7151
7152  // Now collect the constructors that we already have in the current class.
7153  // Those take precedence over inherited constructors.
7154  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7155  //   unless there is a user-declared constructor with the same signature in
7156  //   the class where the using-declaration appears.
7157  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7158  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7159                                    CtorE = ClassDecl->ctor_end();
7160       CtorIt != CtorE; ++CtorIt) {
7161    ExistingConstructors.insert(
7162        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7163  }
7164
7165  Scope *S = getScopeForContext(ClassDecl);
7166  DeclarationName CreatedCtorName =
7167      Context.DeclarationNames.getCXXConstructorName(
7168          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7169
7170  // Now comes the true work.
7171  // First, we keep a map from constructor types to the base that introduced
7172  // them. Needed for finding conflicting constructors. We also keep the
7173  // actually inserted declarations in there, for pretty diagnostics.
7174  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7175  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7176  ConstructorToSourceMap InheritedConstructors;
7177  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7178                             BaseE = BasesToInheritFrom.end();
7179       BaseIt != BaseE; ++BaseIt) {
7180    const RecordType *Base = *BaseIt;
7181    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7182    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7183    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7184                                      CtorE = BaseDecl->ctor_end();
7185         CtorIt != CtorE; ++CtorIt) {
7186      // Find the using declaration for inheriting this base's constructors.
7187      DeclarationName Name =
7188          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7189      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7190          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7191      SourceLocation UsingLoc = UD ? UD->getLocation() :
7192                                     ClassDecl->getLocation();
7193
7194      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7195      //   from the class X named in the using-declaration consists of actual
7196      //   constructors and notional constructors that result from the
7197      //   transformation of defaulted parameters as follows:
7198      //   - all non-template default constructors of X, and
7199      //   - for each non-template constructor of X that has at least one
7200      //     parameter with a default argument, the set of constructors that
7201      //     results from omitting any ellipsis parameter specification and
7202      //     successively omitting parameters with a default argument from the
7203      //     end of the parameter-type-list.
7204      CXXConstructorDecl *BaseCtor = *CtorIt;
7205      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7206      const FunctionProtoType *BaseCtorType =
7207          BaseCtor->getType()->getAs<FunctionProtoType>();
7208
7209      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7210                    maxParams = BaseCtor->getNumParams();
7211           params <= maxParams; ++params) {
7212        // Skip default constructors. They're never inherited.
7213        if (params == 0)
7214          continue;
7215        // Skip copy and move constructors for the same reason.
7216        if (CanBeCopyOrMove && params == 1)
7217          continue;
7218
7219        // Build up a function type for this particular constructor.
7220        // FIXME: The working paper does not consider that the exception spec
7221        // for the inheriting constructor might be larger than that of the
7222        // source. This code doesn't yet, either. When it does, this code will
7223        // need to be delayed until after exception specifications and in-class
7224        // member initializers are attached.
7225        const Type *NewCtorType;
7226        if (params == maxParams)
7227          NewCtorType = BaseCtorType;
7228        else {
7229          SmallVector<QualType, 16> Args;
7230          for (unsigned i = 0; i < params; ++i) {
7231            Args.push_back(BaseCtorType->getArgType(i));
7232          }
7233          FunctionProtoType::ExtProtoInfo ExtInfo =
7234              BaseCtorType->getExtProtoInfo();
7235          ExtInfo.Variadic = false;
7236          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7237                                                Args.data(), params, ExtInfo)
7238                       .getTypePtr();
7239        }
7240        const Type *CanonicalNewCtorType =
7241            Context.getCanonicalType(NewCtorType);
7242
7243        // Now that we have the type, first check if the class already has a
7244        // constructor with this signature.
7245        if (ExistingConstructors.count(CanonicalNewCtorType))
7246          continue;
7247
7248        // Then we check if we have already declared an inherited constructor
7249        // with this signature.
7250        std::pair<ConstructorToSourceMap::iterator, bool> result =
7251            InheritedConstructors.insert(std::make_pair(
7252                CanonicalNewCtorType,
7253                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7254        if (!result.second) {
7255          // Already in the map. If it came from a different class, that's an
7256          // error. Not if it's from the same.
7257          CanQualType PreviousBase = result.first->second.first;
7258          if (CanonicalBase != PreviousBase) {
7259            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7260            const CXXConstructorDecl *PrevBaseCtor =
7261                PrevCtor->getInheritedConstructor();
7262            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7263
7264            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7265            Diag(BaseCtor->getLocation(),
7266                 diag::note_using_decl_constructor_conflict_current_ctor);
7267            Diag(PrevBaseCtor->getLocation(),
7268                 diag::note_using_decl_constructor_conflict_previous_ctor);
7269            Diag(PrevCtor->getLocation(),
7270                 diag::note_using_decl_constructor_conflict_previous_using);
7271          }
7272          continue;
7273        }
7274
7275        // OK, we're there, now add the constructor.
7276        // C++0x [class.inhctor]p8: [...] that would be performed by a
7277        //   user-written inline constructor [...]
7278        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7279        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7280            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7281            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7282            /*ImplicitlyDeclared=*/true,
7283            // FIXME: Due to a defect in the standard, we treat inherited
7284            // constructors as constexpr even if that makes them ill-formed.
7285            /*Constexpr=*/BaseCtor->isConstexpr());
7286        NewCtor->setAccess(BaseCtor->getAccess());
7287
7288        // Build up the parameter decls and add them.
7289        SmallVector<ParmVarDecl *, 16> ParamDecls;
7290        for (unsigned i = 0; i < params; ++i) {
7291          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7292                                                   UsingLoc, UsingLoc,
7293                                                   /*IdentifierInfo=*/0,
7294                                                   BaseCtorType->getArgType(i),
7295                                                   /*TInfo=*/0, SC_None,
7296                                                   SC_None, /*DefaultArg=*/0));
7297        }
7298        NewCtor->setParams(ParamDecls);
7299        NewCtor->setInheritedConstructor(BaseCtor);
7300
7301        PushOnScopeChains(NewCtor, S, false);
7302        ClassDecl->addDecl(NewCtor);
7303        result.first->second.second = NewCtor;
7304      }
7305    }
7306  }
7307}
7308
7309Sema::ImplicitExceptionSpecification
7310Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7311  // C++ [except.spec]p14:
7312  //   An implicitly declared special member function (Clause 12) shall have
7313  //   an exception-specification.
7314  ImplicitExceptionSpecification ExceptSpec(Context);
7315  if (ClassDecl->isInvalidDecl())
7316    return ExceptSpec;
7317
7318  // Direct base-class destructors.
7319  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7320                                       BEnd = ClassDecl->bases_end();
7321       B != BEnd; ++B) {
7322    if (B->isVirtual()) // Handled below.
7323      continue;
7324
7325    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7326      ExceptSpec.CalledDecl(
7327                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7328  }
7329
7330  // Virtual base-class destructors.
7331  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7332                                       BEnd = ClassDecl->vbases_end();
7333       B != BEnd; ++B) {
7334    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7335      ExceptSpec.CalledDecl(
7336                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7337  }
7338
7339  // Field destructors.
7340  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7341                               FEnd = ClassDecl->field_end();
7342       F != FEnd; ++F) {
7343    if (const RecordType *RecordTy
7344        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7345      ExceptSpec.CalledDecl(
7346                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7347  }
7348
7349  return ExceptSpec;
7350}
7351
7352CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7353  // C++ [class.dtor]p2:
7354  //   If a class has no user-declared destructor, a destructor is
7355  //   declared implicitly. An implicitly-declared destructor is an
7356  //   inline public member of its class.
7357
7358  ImplicitExceptionSpecification Spec =
7359      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7360  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7361
7362  // Create the actual destructor declaration.
7363  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7364
7365  CanQualType ClassType
7366    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7367  SourceLocation ClassLoc = ClassDecl->getLocation();
7368  DeclarationName Name
7369    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7370  DeclarationNameInfo NameInfo(Name, ClassLoc);
7371  CXXDestructorDecl *Destructor
7372      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7373                                  /*isInline=*/true,
7374                                  /*isImplicitlyDeclared=*/true);
7375  Destructor->setAccess(AS_public);
7376  Destructor->setDefaulted();
7377  Destructor->setImplicit();
7378  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7379
7380  // Note that we have declared this destructor.
7381  ++ASTContext::NumImplicitDestructorsDeclared;
7382
7383  // Introduce this destructor into its scope.
7384  if (Scope *S = getScopeForContext(ClassDecl))
7385    PushOnScopeChains(Destructor, S, false);
7386  ClassDecl->addDecl(Destructor);
7387
7388  // This could be uniqued if it ever proves significant.
7389  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7390
7391  if (ShouldDeleteDestructor(Destructor))
7392    Destructor->setDeletedAsWritten();
7393
7394  AddOverriddenMethods(ClassDecl, Destructor);
7395
7396  return Destructor;
7397}
7398
7399void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7400                                    CXXDestructorDecl *Destructor) {
7401  assert((Destructor->isDefaulted() &&
7402          !Destructor->doesThisDeclarationHaveABody()) &&
7403         "DefineImplicitDestructor - call it for implicit default dtor");
7404  CXXRecordDecl *ClassDecl = Destructor->getParent();
7405  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7406
7407  if (Destructor->isInvalidDecl())
7408    return;
7409
7410  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7411
7412  DiagnosticErrorTrap Trap(Diags);
7413  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7414                                         Destructor->getParent());
7415
7416  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7417    Diag(CurrentLocation, diag::note_member_synthesized_at)
7418      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7419
7420    Destructor->setInvalidDecl();
7421    return;
7422  }
7423
7424  SourceLocation Loc = Destructor->getLocation();
7425  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7426  Destructor->setImplicitlyDefined(true);
7427  Destructor->setUsed();
7428  MarkVTableUsed(CurrentLocation, ClassDecl);
7429
7430  if (ASTMutationListener *L = getASTMutationListener()) {
7431    L->CompletedImplicitDefinition(Destructor);
7432  }
7433}
7434
7435void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7436                                         CXXDestructorDecl *destructor) {
7437  // C++11 [class.dtor]p3:
7438  //   A declaration of a destructor that does not have an exception-
7439  //   specification is implicitly considered to have the same exception-
7440  //   specification as an implicit declaration.
7441  const FunctionProtoType *dtorType = destructor->getType()->
7442                                        getAs<FunctionProtoType>();
7443  if (dtorType->hasExceptionSpec())
7444    return;
7445
7446  ImplicitExceptionSpecification exceptSpec =
7447      ComputeDefaultedDtorExceptionSpec(classDecl);
7448
7449  // Replace the destructor's type, building off the existing one. Fortunately,
7450  // the only thing of interest in the destructor type is its extended info.
7451  // The return and arguments are fixed.
7452  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7453  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7454  epi.NumExceptions = exceptSpec.size();
7455  epi.Exceptions = exceptSpec.data();
7456  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7457
7458  destructor->setType(ty);
7459
7460  // FIXME: If the destructor has a body that could throw, and the newly created
7461  // spec doesn't allow exceptions, we should emit a warning, because this
7462  // change in behavior can break conforming C++03 programs at runtime.
7463  // However, we don't have a body yet, so it needs to be done somewhere else.
7464}
7465
7466/// \brief Builds a statement that copies/moves the given entity from \p From to
7467/// \c To.
7468///
7469/// This routine is used to copy/move the members of a class with an
7470/// implicitly-declared copy/move assignment operator. When the entities being
7471/// copied are arrays, this routine builds for loops to copy them.
7472///
7473/// \param S The Sema object used for type-checking.
7474///
7475/// \param Loc The location where the implicit copy/move is being generated.
7476///
7477/// \param T The type of the expressions being copied/moved. Both expressions
7478/// must have this type.
7479///
7480/// \param To The expression we are copying/moving to.
7481///
7482/// \param From The expression we are copying/moving from.
7483///
7484/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7485/// Otherwise, it's a non-static member subobject.
7486///
7487/// \param Copying Whether we're copying or moving.
7488///
7489/// \param Depth Internal parameter recording the depth of the recursion.
7490///
7491/// \returns A statement or a loop that copies the expressions.
7492static StmtResult
7493BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7494                      Expr *To, Expr *From,
7495                      bool CopyingBaseSubobject, bool Copying,
7496                      unsigned Depth = 0) {
7497  // C++0x [class.copy]p28:
7498  //   Each subobject is assigned in the manner appropriate to its type:
7499  //
7500  //     - if the subobject is of class type, as if by a call to operator= with
7501  //       the subobject as the object expression and the corresponding
7502  //       subobject of x as a single function argument (as if by explicit
7503  //       qualification; that is, ignoring any possible virtual overriding
7504  //       functions in more derived classes);
7505  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7506    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7507
7508    // Look for operator=.
7509    DeclarationName Name
7510      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7511    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7512    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7513
7514    // Filter out any result that isn't a copy/move-assignment operator.
7515    LookupResult::Filter F = OpLookup.makeFilter();
7516    while (F.hasNext()) {
7517      NamedDecl *D = F.next();
7518      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7519        if (Copying ? Method->isCopyAssignmentOperator() :
7520                      Method->isMoveAssignmentOperator())
7521          continue;
7522
7523      F.erase();
7524    }
7525    F.done();
7526
7527    // Suppress the protected check (C++ [class.protected]) for each of the
7528    // assignment operators we found. This strange dance is required when
7529    // we're assigning via a base classes's copy-assignment operator. To
7530    // ensure that we're getting the right base class subobject (without
7531    // ambiguities), we need to cast "this" to that subobject type; to
7532    // ensure that we don't go through the virtual call mechanism, we need
7533    // to qualify the operator= name with the base class (see below). However,
7534    // this means that if the base class has a protected copy assignment
7535    // operator, the protected member access check will fail. So, we
7536    // rewrite "protected" access to "public" access in this case, since we
7537    // know by construction that we're calling from a derived class.
7538    if (CopyingBaseSubobject) {
7539      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7540           L != LEnd; ++L) {
7541        if (L.getAccess() == AS_protected)
7542          L.setAccess(AS_public);
7543      }
7544    }
7545
7546    // Create the nested-name-specifier that will be used to qualify the
7547    // reference to operator=; this is required to suppress the virtual
7548    // call mechanism.
7549    CXXScopeSpec SS;
7550    SS.MakeTrivial(S.Context,
7551                   NestedNameSpecifier::Create(S.Context, 0, false,
7552                                               T.getTypePtr()),
7553                   Loc);
7554
7555    // Create the reference to operator=.
7556    ExprResult OpEqualRef
7557      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7558                                   /*FirstQualifierInScope=*/0, OpLookup,
7559                                   /*TemplateArgs=*/0,
7560                                   /*SuppressQualifierCheck=*/true);
7561    if (OpEqualRef.isInvalid())
7562      return StmtError();
7563
7564    // Build the call to the assignment operator.
7565
7566    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7567                                                  OpEqualRef.takeAs<Expr>(),
7568                                                  Loc, &From, 1, Loc);
7569    if (Call.isInvalid())
7570      return StmtError();
7571
7572    return S.Owned(Call.takeAs<Stmt>());
7573  }
7574
7575  //     - if the subobject is of scalar type, the built-in assignment
7576  //       operator is used.
7577  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7578  if (!ArrayTy) {
7579    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7580    if (Assignment.isInvalid())
7581      return StmtError();
7582
7583    return S.Owned(Assignment.takeAs<Stmt>());
7584  }
7585
7586  //     - if the subobject is an array, each element is assigned, in the
7587  //       manner appropriate to the element type;
7588
7589  // Construct a loop over the array bounds, e.g.,
7590  //
7591  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7592  //
7593  // that will copy each of the array elements.
7594  QualType SizeType = S.Context.getSizeType();
7595
7596  // Create the iteration variable.
7597  IdentifierInfo *IterationVarName = 0;
7598  {
7599    llvm::SmallString<8> Str;
7600    llvm::raw_svector_ostream OS(Str);
7601    OS << "__i" << Depth;
7602    IterationVarName = &S.Context.Idents.get(OS.str());
7603  }
7604  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7605                                          IterationVarName, SizeType,
7606                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7607                                          SC_None, SC_None);
7608
7609  // Initialize the iteration variable to zero.
7610  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7611  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7612
7613  // Create a reference to the iteration variable; we'll use this several
7614  // times throughout.
7615  Expr *IterationVarRef
7616    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7617  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7618
7619  // Create the DeclStmt that holds the iteration variable.
7620  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7621
7622  // Create the comparison against the array bound.
7623  llvm::APInt Upper
7624    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7625  Expr *Comparison
7626    = new (S.Context) BinaryOperator(IterationVarRef,
7627                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7628                                     BO_NE, S.Context.BoolTy,
7629                                     VK_RValue, OK_Ordinary, Loc);
7630
7631  // Create the pre-increment of the iteration variable.
7632  Expr *Increment
7633    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7634                                    VK_LValue, OK_Ordinary, Loc);
7635
7636  // Subscript the "from" and "to" expressions with the iteration variable.
7637  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7638                                                         IterationVarRef, Loc));
7639  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7640                                                       IterationVarRef, Loc));
7641  if (!Copying) // Cast to rvalue
7642    From = CastForMoving(S, From);
7643
7644  // Build the copy/move for an individual element of the array.
7645  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7646                                          To, From, CopyingBaseSubobject,
7647                                          Copying, Depth + 1);
7648  if (Copy.isInvalid())
7649    return StmtError();
7650
7651  // Construct the loop that copies all elements of this array.
7652  return S.ActOnForStmt(Loc, Loc, InitStmt,
7653                        S.MakeFullExpr(Comparison),
7654                        0, S.MakeFullExpr(Increment),
7655                        Loc, Copy.take());
7656}
7657
7658std::pair<Sema::ImplicitExceptionSpecification, bool>
7659Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7660                                                   CXXRecordDecl *ClassDecl) {
7661  if (ClassDecl->isInvalidDecl())
7662    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7663
7664  // C++ [class.copy]p10:
7665  //   If the class definition does not explicitly declare a copy
7666  //   assignment operator, one is declared implicitly.
7667  //   The implicitly-defined copy assignment operator for a class X
7668  //   will have the form
7669  //
7670  //       X& X::operator=(const X&)
7671  //
7672  //   if
7673  bool HasConstCopyAssignment = true;
7674
7675  //       -- each direct base class B of X has a copy assignment operator
7676  //          whose parameter is of type const B&, const volatile B& or B,
7677  //          and
7678  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7679                                       BaseEnd = ClassDecl->bases_end();
7680       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7681    // We'll handle this below
7682    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7683      continue;
7684
7685    assert(!Base->getType()->isDependentType() &&
7686           "Cannot generate implicit members for class with dependent bases.");
7687    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7688    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7689                            &HasConstCopyAssignment);
7690  }
7691
7692  // In C++11, the above citation has "or virtual" added
7693  if (LangOpts.CPlusPlus0x) {
7694    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7695                                         BaseEnd = ClassDecl->vbases_end();
7696         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7697      assert(!Base->getType()->isDependentType() &&
7698             "Cannot generate implicit members for class with dependent bases.");
7699      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7700      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7701                              &HasConstCopyAssignment);
7702    }
7703  }
7704
7705  //       -- for all the nonstatic data members of X that are of a class
7706  //          type M (or array thereof), each such class type has a copy
7707  //          assignment operator whose parameter is of type const M&,
7708  //          const volatile M& or M.
7709  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7710                                  FieldEnd = ClassDecl->field_end();
7711       HasConstCopyAssignment && Field != FieldEnd;
7712       ++Field) {
7713    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7714    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7715      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7716                              &HasConstCopyAssignment);
7717    }
7718  }
7719
7720  //   Otherwise, the implicitly declared copy assignment operator will
7721  //   have the form
7722  //
7723  //       X& X::operator=(X&)
7724
7725  // C++ [except.spec]p14:
7726  //   An implicitly declared special member function (Clause 12) shall have an
7727  //   exception-specification. [...]
7728
7729  // It is unspecified whether or not an implicit copy assignment operator
7730  // attempts to deduplicate calls to assignment operators of virtual bases are
7731  // made. As such, this exception specification is effectively unspecified.
7732  // Based on a similar decision made for constness in C++0x, we're erring on
7733  // the side of assuming such calls to be made regardless of whether they
7734  // actually happen.
7735  ImplicitExceptionSpecification ExceptSpec(Context);
7736  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7737  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7738                                       BaseEnd = ClassDecl->bases_end();
7739       Base != BaseEnd; ++Base) {
7740    if (Base->isVirtual())
7741      continue;
7742
7743    CXXRecordDecl *BaseClassDecl
7744      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7745    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7746                                                            ArgQuals, false, 0))
7747      ExceptSpec.CalledDecl(CopyAssign);
7748  }
7749
7750  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7751                                       BaseEnd = ClassDecl->vbases_end();
7752       Base != BaseEnd; ++Base) {
7753    CXXRecordDecl *BaseClassDecl
7754      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7755    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7756                                                            ArgQuals, false, 0))
7757      ExceptSpec.CalledDecl(CopyAssign);
7758  }
7759
7760  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7761                                  FieldEnd = ClassDecl->field_end();
7762       Field != FieldEnd;
7763       ++Field) {
7764    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7765    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7766      if (CXXMethodDecl *CopyAssign =
7767          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7768        ExceptSpec.CalledDecl(CopyAssign);
7769    }
7770  }
7771
7772  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7773}
7774
7775CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7776  // Note: The following rules are largely analoguous to the copy
7777  // constructor rules. Note that virtual bases are not taken into account
7778  // for determining the argument type of the operator. Note also that
7779  // operators taking an object instead of a reference are allowed.
7780
7781  ImplicitExceptionSpecification Spec(Context);
7782  bool Const;
7783  llvm::tie(Spec, Const) =
7784    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7785
7786  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7787  QualType RetType = Context.getLValueReferenceType(ArgType);
7788  if (Const)
7789    ArgType = ArgType.withConst();
7790  ArgType = Context.getLValueReferenceType(ArgType);
7791
7792  //   An implicitly-declared copy assignment operator is an inline public
7793  //   member of its class.
7794  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7795  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7796  SourceLocation ClassLoc = ClassDecl->getLocation();
7797  DeclarationNameInfo NameInfo(Name, ClassLoc);
7798  CXXMethodDecl *CopyAssignment
7799    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7800                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7801                            /*TInfo=*/0, /*isStatic=*/false,
7802                            /*StorageClassAsWritten=*/SC_None,
7803                            /*isInline=*/true, /*isConstexpr=*/false,
7804                            SourceLocation());
7805  CopyAssignment->setAccess(AS_public);
7806  CopyAssignment->setDefaulted();
7807  CopyAssignment->setImplicit();
7808  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7809
7810  // Add the parameter to the operator.
7811  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7812                                               ClassLoc, ClassLoc, /*Id=*/0,
7813                                               ArgType, /*TInfo=*/0,
7814                                               SC_None,
7815                                               SC_None, 0);
7816  CopyAssignment->setParams(FromParam);
7817
7818  // Note that we have added this copy-assignment operator.
7819  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7820
7821  if (Scope *S = getScopeForContext(ClassDecl))
7822    PushOnScopeChains(CopyAssignment, S, false);
7823  ClassDecl->addDecl(CopyAssignment);
7824
7825  // C++0x [class.copy]p18:
7826  //   ... If the class definition declares a move constructor or move
7827  //   assignment operator, the implicitly declared copy assignment operator is
7828  //   defined as deleted; ...
7829  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7830      ClassDecl->hasUserDeclaredMoveAssignment() ||
7831      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7832    CopyAssignment->setDeletedAsWritten();
7833
7834  AddOverriddenMethods(ClassDecl, CopyAssignment);
7835  return CopyAssignment;
7836}
7837
7838void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7839                                        CXXMethodDecl *CopyAssignOperator) {
7840  assert((CopyAssignOperator->isDefaulted() &&
7841          CopyAssignOperator->isOverloadedOperator() &&
7842          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7843          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7844         "DefineImplicitCopyAssignment called for wrong function");
7845
7846  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7847
7848  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7849    CopyAssignOperator->setInvalidDecl();
7850    return;
7851  }
7852
7853  CopyAssignOperator->setUsed();
7854
7855  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7856  DiagnosticErrorTrap Trap(Diags);
7857
7858  // C++0x [class.copy]p30:
7859  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7860  //   for a non-union class X performs memberwise copy assignment of its
7861  //   subobjects. The direct base classes of X are assigned first, in the
7862  //   order of their declaration in the base-specifier-list, and then the
7863  //   immediate non-static data members of X are assigned, in the order in
7864  //   which they were declared in the class definition.
7865
7866  // The statements that form the synthesized function body.
7867  ASTOwningVector<Stmt*> Statements(*this);
7868
7869  // The parameter for the "other" object, which we are copying from.
7870  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7871  Qualifiers OtherQuals = Other->getType().getQualifiers();
7872  QualType OtherRefType = Other->getType();
7873  if (const LValueReferenceType *OtherRef
7874                                = OtherRefType->getAs<LValueReferenceType>()) {
7875    OtherRefType = OtherRef->getPointeeType();
7876    OtherQuals = OtherRefType.getQualifiers();
7877  }
7878
7879  // Our location for everything implicitly-generated.
7880  SourceLocation Loc = CopyAssignOperator->getLocation();
7881
7882  // Construct a reference to the "other" object. We'll be using this
7883  // throughout the generated ASTs.
7884  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7885  assert(OtherRef && "Reference to parameter cannot fail!");
7886
7887  // Construct the "this" pointer. We'll be using this throughout the generated
7888  // ASTs.
7889  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7890  assert(This && "Reference to this cannot fail!");
7891
7892  // Assign base classes.
7893  bool Invalid = false;
7894  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7895       E = ClassDecl->bases_end(); Base != E; ++Base) {
7896    // Form the assignment:
7897    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7898    QualType BaseType = Base->getType().getUnqualifiedType();
7899    if (!BaseType->isRecordType()) {
7900      Invalid = true;
7901      continue;
7902    }
7903
7904    CXXCastPath BasePath;
7905    BasePath.push_back(Base);
7906
7907    // Construct the "from" expression, which is an implicit cast to the
7908    // appropriately-qualified base type.
7909    Expr *From = OtherRef;
7910    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7911                             CK_UncheckedDerivedToBase,
7912                             VK_LValue, &BasePath).take();
7913
7914    // Dereference "this".
7915    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7916
7917    // Implicitly cast "this" to the appropriately-qualified base type.
7918    To = ImpCastExprToType(To.take(),
7919                           Context.getCVRQualifiedType(BaseType,
7920                                     CopyAssignOperator->getTypeQualifiers()),
7921                           CK_UncheckedDerivedToBase,
7922                           VK_LValue, &BasePath);
7923
7924    // Build the copy.
7925    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7926                                            To.get(), From,
7927                                            /*CopyingBaseSubobject=*/true,
7928                                            /*Copying=*/true);
7929    if (Copy.isInvalid()) {
7930      Diag(CurrentLocation, diag::note_member_synthesized_at)
7931        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7932      CopyAssignOperator->setInvalidDecl();
7933      return;
7934    }
7935
7936    // Success! Record the copy.
7937    Statements.push_back(Copy.takeAs<Expr>());
7938  }
7939
7940  // \brief Reference to the __builtin_memcpy function.
7941  Expr *BuiltinMemCpyRef = 0;
7942  // \brief Reference to the __builtin_objc_memmove_collectable function.
7943  Expr *CollectableMemCpyRef = 0;
7944
7945  // Assign non-static members.
7946  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7947                                  FieldEnd = ClassDecl->field_end();
7948       Field != FieldEnd; ++Field) {
7949    if (Field->isUnnamedBitfield())
7950      continue;
7951
7952    // Check for members of reference type; we can't copy those.
7953    if (Field->getType()->isReferenceType()) {
7954      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7955        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7956      Diag(Field->getLocation(), diag::note_declared_at);
7957      Diag(CurrentLocation, diag::note_member_synthesized_at)
7958        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7959      Invalid = true;
7960      continue;
7961    }
7962
7963    // Check for members of const-qualified, non-class type.
7964    QualType BaseType = Context.getBaseElementType(Field->getType());
7965    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7966      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7967        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7968      Diag(Field->getLocation(), diag::note_declared_at);
7969      Diag(CurrentLocation, diag::note_member_synthesized_at)
7970        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7971      Invalid = true;
7972      continue;
7973    }
7974
7975    // Suppress assigning zero-width bitfields.
7976    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7977      continue;
7978
7979    QualType FieldType = Field->getType().getNonReferenceType();
7980    if (FieldType->isIncompleteArrayType()) {
7981      assert(ClassDecl->hasFlexibleArrayMember() &&
7982             "Incomplete array type is not valid");
7983      continue;
7984    }
7985
7986    // Build references to the field in the object we're copying from and to.
7987    CXXScopeSpec SS; // Intentionally empty
7988    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7989                              LookupMemberName);
7990    MemberLookup.addDecl(*Field);
7991    MemberLookup.resolveKind();
7992    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7993                                               Loc, /*IsArrow=*/false,
7994                                               SS, 0, MemberLookup, 0);
7995    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7996                                             Loc, /*IsArrow=*/true,
7997                                             SS, 0, MemberLookup, 0);
7998    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7999    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8000
8001    // If the field should be copied with __builtin_memcpy rather than via
8002    // explicit assignments, do so. This optimization only applies for arrays
8003    // of scalars and arrays of class type with trivial copy-assignment
8004    // operators.
8005    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8006        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8007      // Compute the size of the memory buffer to be copied.
8008      QualType SizeType = Context.getSizeType();
8009      llvm::APInt Size(Context.getTypeSize(SizeType),
8010                       Context.getTypeSizeInChars(BaseType).getQuantity());
8011      for (const ConstantArrayType *Array
8012              = Context.getAsConstantArrayType(FieldType);
8013           Array;
8014           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8015        llvm::APInt ArraySize
8016          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8017        Size *= ArraySize;
8018      }
8019
8020      // Take the address of the field references for "from" and "to".
8021      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8022      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8023
8024      bool NeedsCollectableMemCpy =
8025          (BaseType->isRecordType() &&
8026           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8027
8028      if (NeedsCollectableMemCpy) {
8029        if (!CollectableMemCpyRef) {
8030          // Create a reference to the __builtin_objc_memmove_collectable function.
8031          LookupResult R(*this,
8032                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8033                         Loc, LookupOrdinaryName);
8034          LookupName(R, TUScope, true);
8035
8036          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8037          if (!CollectableMemCpy) {
8038            // Something went horribly wrong earlier, and we will have
8039            // complained about it.
8040            Invalid = true;
8041            continue;
8042          }
8043
8044          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8045                                                  CollectableMemCpy->getType(),
8046                                                  VK_LValue, Loc, 0).take();
8047          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8048        }
8049      }
8050      // Create a reference to the __builtin_memcpy builtin function.
8051      else if (!BuiltinMemCpyRef) {
8052        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8053                       LookupOrdinaryName);
8054        LookupName(R, TUScope, true);
8055
8056        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8057        if (!BuiltinMemCpy) {
8058          // Something went horribly wrong earlier, and we will have complained
8059          // about it.
8060          Invalid = true;
8061          continue;
8062        }
8063
8064        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8065                                            BuiltinMemCpy->getType(),
8066                                            VK_LValue, Loc, 0).take();
8067        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8068      }
8069
8070      ASTOwningVector<Expr*> CallArgs(*this);
8071      CallArgs.push_back(To.takeAs<Expr>());
8072      CallArgs.push_back(From.takeAs<Expr>());
8073      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8074      ExprResult Call = ExprError();
8075      if (NeedsCollectableMemCpy)
8076        Call = ActOnCallExpr(/*Scope=*/0,
8077                             CollectableMemCpyRef,
8078                             Loc, move_arg(CallArgs),
8079                             Loc);
8080      else
8081        Call = ActOnCallExpr(/*Scope=*/0,
8082                             BuiltinMemCpyRef,
8083                             Loc, move_arg(CallArgs),
8084                             Loc);
8085
8086      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8087      Statements.push_back(Call.takeAs<Expr>());
8088      continue;
8089    }
8090
8091    // Build the copy of this field.
8092    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8093                                            To.get(), From.get(),
8094                                            /*CopyingBaseSubobject=*/false,
8095                                            /*Copying=*/true);
8096    if (Copy.isInvalid()) {
8097      Diag(CurrentLocation, diag::note_member_synthesized_at)
8098        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8099      CopyAssignOperator->setInvalidDecl();
8100      return;
8101    }
8102
8103    // Success! Record the copy.
8104    Statements.push_back(Copy.takeAs<Stmt>());
8105  }
8106
8107  if (!Invalid) {
8108    // Add a "return *this;"
8109    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8110
8111    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8112    if (Return.isInvalid())
8113      Invalid = true;
8114    else {
8115      Statements.push_back(Return.takeAs<Stmt>());
8116
8117      if (Trap.hasErrorOccurred()) {
8118        Diag(CurrentLocation, diag::note_member_synthesized_at)
8119          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8120        Invalid = true;
8121      }
8122    }
8123  }
8124
8125  if (Invalid) {
8126    CopyAssignOperator->setInvalidDecl();
8127    return;
8128  }
8129
8130  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8131                                            /*isStmtExpr=*/false);
8132  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8133  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8134
8135  if (ASTMutationListener *L = getASTMutationListener()) {
8136    L->CompletedImplicitDefinition(CopyAssignOperator);
8137  }
8138}
8139
8140Sema::ImplicitExceptionSpecification
8141Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8142  ImplicitExceptionSpecification ExceptSpec(Context);
8143
8144  if (ClassDecl->isInvalidDecl())
8145    return ExceptSpec;
8146
8147  // C++0x [except.spec]p14:
8148  //   An implicitly declared special member function (Clause 12) shall have an
8149  //   exception-specification. [...]
8150
8151  // It is unspecified whether or not an implicit move assignment operator
8152  // attempts to deduplicate calls to assignment operators of virtual bases are
8153  // made. As such, this exception specification is effectively unspecified.
8154  // Based on a similar decision made for constness in C++0x, we're erring on
8155  // the side of assuming such calls to be made regardless of whether they
8156  // actually happen.
8157  // Note that a move constructor is not implicitly declared when there are
8158  // virtual bases, but it can still be user-declared and explicitly defaulted.
8159  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8160                                       BaseEnd = ClassDecl->bases_end();
8161       Base != BaseEnd; ++Base) {
8162    if (Base->isVirtual())
8163      continue;
8164
8165    CXXRecordDecl *BaseClassDecl
8166      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8167    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8168                                                           false, 0))
8169      ExceptSpec.CalledDecl(MoveAssign);
8170  }
8171
8172  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8173                                       BaseEnd = ClassDecl->vbases_end();
8174       Base != BaseEnd; ++Base) {
8175    CXXRecordDecl *BaseClassDecl
8176      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8177    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8178                                                           false, 0))
8179      ExceptSpec.CalledDecl(MoveAssign);
8180  }
8181
8182  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8183                                  FieldEnd = ClassDecl->field_end();
8184       Field != FieldEnd;
8185       ++Field) {
8186    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8187    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8188      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8189                                                             false, 0))
8190        ExceptSpec.CalledDecl(MoveAssign);
8191    }
8192  }
8193
8194  return ExceptSpec;
8195}
8196
8197CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8198  // Note: The following rules are largely analoguous to the move
8199  // constructor rules.
8200
8201  ImplicitExceptionSpecification Spec(
8202      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8203
8204  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8205  QualType RetType = Context.getLValueReferenceType(ArgType);
8206  ArgType = Context.getRValueReferenceType(ArgType);
8207
8208  //   An implicitly-declared move assignment operator is an inline public
8209  //   member of its class.
8210  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8211  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8212  SourceLocation ClassLoc = ClassDecl->getLocation();
8213  DeclarationNameInfo NameInfo(Name, ClassLoc);
8214  CXXMethodDecl *MoveAssignment
8215    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8216                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8217                            /*TInfo=*/0, /*isStatic=*/false,
8218                            /*StorageClassAsWritten=*/SC_None,
8219                            /*isInline=*/true,
8220                            /*isConstexpr=*/false,
8221                            SourceLocation());
8222  MoveAssignment->setAccess(AS_public);
8223  MoveAssignment->setDefaulted();
8224  MoveAssignment->setImplicit();
8225  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8226
8227  // Add the parameter to the operator.
8228  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8229                                               ClassLoc, ClassLoc, /*Id=*/0,
8230                                               ArgType, /*TInfo=*/0,
8231                                               SC_None,
8232                                               SC_None, 0);
8233  MoveAssignment->setParams(FromParam);
8234
8235  // Note that we have added this copy-assignment operator.
8236  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8237
8238  // C++0x [class.copy]p9:
8239  //   If the definition of a class X does not explicitly declare a move
8240  //   assignment operator, one will be implicitly declared as defaulted if and
8241  //   only if:
8242  //   [...]
8243  //   - the move assignment operator would not be implicitly defined as
8244  //     deleted.
8245  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8246    // Cache this result so that we don't try to generate this over and over
8247    // on every lookup, leaking memory and wasting time.
8248    ClassDecl->setFailedImplicitMoveAssignment();
8249    return 0;
8250  }
8251
8252  if (Scope *S = getScopeForContext(ClassDecl))
8253    PushOnScopeChains(MoveAssignment, S, false);
8254  ClassDecl->addDecl(MoveAssignment);
8255
8256  AddOverriddenMethods(ClassDecl, MoveAssignment);
8257  return MoveAssignment;
8258}
8259
8260void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8261                                        CXXMethodDecl *MoveAssignOperator) {
8262  assert((MoveAssignOperator->isDefaulted() &&
8263          MoveAssignOperator->isOverloadedOperator() &&
8264          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8265          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8266         "DefineImplicitMoveAssignment called for wrong function");
8267
8268  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8269
8270  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8271    MoveAssignOperator->setInvalidDecl();
8272    return;
8273  }
8274
8275  MoveAssignOperator->setUsed();
8276
8277  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8278  DiagnosticErrorTrap Trap(Diags);
8279
8280  // C++0x [class.copy]p28:
8281  //   The implicitly-defined or move assignment operator for a non-union class
8282  //   X performs memberwise move assignment of its subobjects. The direct base
8283  //   classes of X are assigned first, in the order of their declaration in the
8284  //   base-specifier-list, and then the immediate non-static data members of X
8285  //   are assigned, in the order in which they were declared in the class
8286  //   definition.
8287
8288  // The statements that form the synthesized function body.
8289  ASTOwningVector<Stmt*> Statements(*this);
8290
8291  // The parameter for the "other" object, which we are move from.
8292  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8293  QualType OtherRefType = Other->getType()->
8294      getAs<RValueReferenceType>()->getPointeeType();
8295  assert(OtherRefType.getQualifiers() == 0 &&
8296         "Bad argument type of defaulted move assignment");
8297
8298  // Our location for everything implicitly-generated.
8299  SourceLocation Loc = MoveAssignOperator->getLocation();
8300
8301  // Construct a reference to the "other" object. We'll be using this
8302  // throughout the generated ASTs.
8303  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8304  assert(OtherRef && "Reference to parameter cannot fail!");
8305  // Cast to rvalue.
8306  OtherRef = CastForMoving(*this, OtherRef);
8307
8308  // Construct the "this" pointer. We'll be using this throughout the generated
8309  // ASTs.
8310  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8311  assert(This && "Reference to this cannot fail!");
8312
8313  // Assign base classes.
8314  bool Invalid = false;
8315  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8316       E = ClassDecl->bases_end(); Base != E; ++Base) {
8317    // Form the assignment:
8318    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8319    QualType BaseType = Base->getType().getUnqualifiedType();
8320    if (!BaseType->isRecordType()) {
8321      Invalid = true;
8322      continue;
8323    }
8324
8325    CXXCastPath BasePath;
8326    BasePath.push_back(Base);
8327
8328    // Construct the "from" expression, which is an implicit cast to the
8329    // appropriately-qualified base type.
8330    Expr *From = OtherRef;
8331    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8332                             VK_XValue, &BasePath).take();
8333
8334    // Dereference "this".
8335    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8336
8337    // Implicitly cast "this" to the appropriately-qualified base type.
8338    To = ImpCastExprToType(To.take(),
8339                           Context.getCVRQualifiedType(BaseType,
8340                                     MoveAssignOperator->getTypeQualifiers()),
8341                           CK_UncheckedDerivedToBase,
8342                           VK_LValue, &BasePath);
8343
8344    // Build the move.
8345    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8346                                            To.get(), From,
8347                                            /*CopyingBaseSubobject=*/true,
8348                                            /*Copying=*/false);
8349    if (Move.isInvalid()) {
8350      Diag(CurrentLocation, diag::note_member_synthesized_at)
8351        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8352      MoveAssignOperator->setInvalidDecl();
8353      return;
8354    }
8355
8356    // Success! Record the move.
8357    Statements.push_back(Move.takeAs<Expr>());
8358  }
8359
8360  // \brief Reference to the __builtin_memcpy function.
8361  Expr *BuiltinMemCpyRef = 0;
8362  // \brief Reference to the __builtin_objc_memmove_collectable function.
8363  Expr *CollectableMemCpyRef = 0;
8364
8365  // Assign non-static members.
8366  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8367                                  FieldEnd = ClassDecl->field_end();
8368       Field != FieldEnd; ++Field) {
8369    if (Field->isUnnamedBitfield())
8370      continue;
8371
8372    // Check for members of reference type; we can't move those.
8373    if (Field->getType()->isReferenceType()) {
8374      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8375        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8376      Diag(Field->getLocation(), diag::note_declared_at);
8377      Diag(CurrentLocation, diag::note_member_synthesized_at)
8378        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8379      Invalid = true;
8380      continue;
8381    }
8382
8383    // Check for members of const-qualified, non-class type.
8384    QualType BaseType = Context.getBaseElementType(Field->getType());
8385    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8386      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8387        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8388      Diag(Field->getLocation(), diag::note_declared_at);
8389      Diag(CurrentLocation, diag::note_member_synthesized_at)
8390        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8391      Invalid = true;
8392      continue;
8393    }
8394
8395    // Suppress assigning zero-width bitfields.
8396    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8397      continue;
8398
8399    QualType FieldType = Field->getType().getNonReferenceType();
8400    if (FieldType->isIncompleteArrayType()) {
8401      assert(ClassDecl->hasFlexibleArrayMember() &&
8402             "Incomplete array type is not valid");
8403      continue;
8404    }
8405
8406    // Build references to the field in the object we're copying from and to.
8407    CXXScopeSpec SS; // Intentionally empty
8408    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8409                              LookupMemberName);
8410    MemberLookup.addDecl(*Field);
8411    MemberLookup.resolveKind();
8412    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8413                                               Loc, /*IsArrow=*/false,
8414                                               SS, 0, MemberLookup, 0);
8415    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8416                                             Loc, /*IsArrow=*/true,
8417                                             SS, 0, MemberLookup, 0);
8418    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8419    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8420
8421    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8422        "Member reference with rvalue base must be rvalue except for reference "
8423        "members, which aren't allowed for move assignment.");
8424
8425    // If the field should be copied with __builtin_memcpy rather than via
8426    // explicit assignments, do so. This optimization only applies for arrays
8427    // of scalars and arrays of class type with trivial move-assignment
8428    // operators.
8429    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8430        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8431      // Compute the size of the memory buffer to be copied.
8432      QualType SizeType = Context.getSizeType();
8433      llvm::APInt Size(Context.getTypeSize(SizeType),
8434                       Context.getTypeSizeInChars(BaseType).getQuantity());
8435      for (const ConstantArrayType *Array
8436              = Context.getAsConstantArrayType(FieldType);
8437           Array;
8438           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8439        llvm::APInt ArraySize
8440          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8441        Size *= ArraySize;
8442      }
8443
8444      // Take the address of the field references for "from" and "to". We
8445      // directly construct UnaryOperators here because semantic analysis
8446      // does not permit us to take the address of an xvalue.
8447      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8448                             Context.getPointerType(From.get()->getType()),
8449                             VK_RValue, OK_Ordinary, Loc);
8450      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8451                           Context.getPointerType(To.get()->getType()),
8452                           VK_RValue, OK_Ordinary, Loc);
8453
8454      bool NeedsCollectableMemCpy =
8455          (BaseType->isRecordType() &&
8456           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8457
8458      if (NeedsCollectableMemCpy) {
8459        if (!CollectableMemCpyRef) {
8460          // Create a reference to the __builtin_objc_memmove_collectable function.
8461          LookupResult R(*this,
8462                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8463                         Loc, LookupOrdinaryName);
8464          LookupName(R, TUScope, true);
8465
8466          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8467          if (!CollectableMemCpy) {
8468            // Something went horribly wrong earlier, and we will have
8469            // complained about it.
8470            Invalid = true;
8471            continue;
8472          }
8473
8474          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8475                                                  CollectableMemCpy->getType(),
8476                                                  VK_LValue, Loc, 0).take();
8477          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8478        }
8479      }
8480      // Create a reference to the __builtin_memcpy builtin function.
8481      else if (!BuiltinMemCpyRef) {
8482        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8483                       LookupOrdinaryName);
8484        LookupName(R, TUScope, true);
8485
8486        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8487        if (!BuiltinMemCpy) {
8488          // Something went horribly wrong earlier, and we will have complained
8489          // about it.
8490          Invalid = true;
8491          continue;
8492        }
8493
8494        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8495                                            BuiltinMemCpy->getType(),
8496                                            VK_LValue, Loc, 0).take();
8497        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8498      }
8499
8500      ASTOwningVector<Expr*> CallArgs(*this);
8501      CallArgs.push_back(To.takeAs<Expr>());
8502      CallArgs.push_back(From.takeAs<Expr>());
8503      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8504      ExprResult Call = ExprError();
8505      if (NeedsCollectableMemCpy)
8506        Call = ActOnCallExpr(/*Scope=*/0,
8507                             CollectableMemCpyRef,
8508                             Loc, move_arg(CallArgs),
8509                             Loc);
8510      else
8511        Call = ActOnCallExpr(/*Scope=*/0,
8512                             BuiltinMemCpyRef,
8513                             Loc, move_arg(CallArgs),
8514                             Loc);
8515
8516      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8517      Statements.push_back(Call.takeAs<Expr>());
8518      continue;
8519    }
8520
8521    // Build the move of this field.
8522    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8523                                            To.get(), From.get(),
8524                                            /*CopyingBaseSubobject=*/false,
8525                                            /*Copying=*/false);
8526    if (Move.isInvalid()) {
8527      Diag(CurrentLocation, diag::note_member_synthesized_at)
8528        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8529      MoveAssignOperator->setInvalidDecl();
8530      return;
8531    }
8532
8533    // Success! Record the copy.
8534    Statements.push_back(Move.takeAs<Stmt>());
8535  }
8536
8537  if (!Invalid) {
8538    // Add a "return *this;"
8539    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8540
8541    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8542    if (Return.isInvalid())
8543      Invalid = true;
8544    else {
8545      Statements.push_back(Return.takeAs<Stmt>());
8546
8547      if (Trap.hasErrorOccurred()) {
8548        Diag(CurrentLocation, diag::note_member_synthesized_at)
8549          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8550        Invalid = true;
8551      }
8552    }
8553  }
8554
8555  if (Invalid) {
8556    MoveAssignOperator->setInvalidDecl();
8557    return;
8558  }
8559
8560  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8561                                            /*isStmtExpr=*/false);
8562  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8563  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8564
8565  if (ASTMutationListener *L = getASTMutationListener()) {
8566    L->CompletedImplicitDefinition(MoveAssignOperator);
8567  }
8568}
8569
8570std::pair<Sema::ImplicitExceptionSpecification, bool>
8571Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8572  if (ClassDecl->isInvalidDecl())
8573    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8574
8575  // C++ [class.copy]p5:
8576  //   The implicitly-declared copy constructor for a class X will
8577  //   have the form
8578  //
8579  //       X::X(const X&)
8580  //
8581  //   if
8582  // FIXME: It ought to be possible to store this on the record.
8583  bool HasConstCopyConstructor = true;
8584
8585  //     -- each direct or virtual base class B of X has a copy
8586  //        constructor whose first parameter is of type const B& or
8587  //        const volatile B&, and
8588  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8589                                       BaseEnd = ClassDecl->bases_end();
8590       HasConstCopyConstructor && Base != BaseEnd;
8591       ++Base) {
8592    // Virtual bases are handled below.
8593    if (Base->isVirtual())
8594      continue;
8595
8596    CXXRecordDecl *BaseClassDecl
8597      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8598    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8599                             &HasConstCopyConstructor);
8600  }
8601
8602  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8603                                       BaseEnd = ClassDecl->vbases_end();
8604       HasConstCopyConstructor && Base != BaseEnd;
8605       ++Base) {
8606    CXXRecordDecl *BaseClassDecl
8607      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8608    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8609                             &HasConstCopyConstructor);
8610  }
8611
8612  //     -- for all the nonstatic data members of X that are of a
8613  //        class type M (or array thereof), each such class type
8614  //        has a copy constructor whose first parameter is of type
8615  //        const M& or const volatile M&.
8616  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8617                                  FieldEnd = ClassDecl->field_end();
8618       HasConstCopyConstructor && Field != FieldEnd;
8619       ++Field) {
8620    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8621    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8622      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8623                               &HasConstCopyConstructor);
8624    }
8625  }
8626  //   Otherwise, the implicitly declared copy constructor will have
8627  //   the form
8628  //
8629  //       X::X(X&)
8630
8631  // C++ [except.spec]p14:
8632  //   An implicitly declared special member function (Clause 12) shall have an
8633  //   exception-specification. [...]
8634  ImplicitExceptionSpecification ExceptSpec(Context);
8635  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8636  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8637                                       BaseEnd = ClassDecl->bases_end();
8638       Base != BaseEnd;
8639       ++Base) {
8640    // Virtual bases are handled below.
8641    if (Base->isVirtual())
8642      continue;
8643
8644    CXXRecordDecl *BaseClassDecl
8645      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8646    if (CXXConstructorDecl *CopyConstructor =
8647          LookupCopyingConstructor(BaseClassDecl, Quals))
8648      ExceptSpec.CalledDecl(CopyConstructor);
8649  }
8650  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8651                                       BaseEnd = ClassDecl->vbases_end();
8652       Base != BaseEnd;
8653       ++Base) {
8654    CXXRecordDecl *BaseClassDecl
8655      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8656    if (CXXConstructorDecl *CopyConstructor =
8657          LookupCopyingConstructor(BaseClassDecl, Quals))
8658      ExceptSpec.CalledDecl(CopyConstructor);
8659  }
8660  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8661                                  FieldEnd = ClassDecl->field_end();
8662       Field != FieldEnd;
8663       ++Field) {
8664    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8665    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8666      if (CXXConstructorDecl *CopyConstructor =
8667        LookupCopyingConstructor(FieldClassDecl, Quals))
8668      ExceptSpec.CalledDecl(CopyConstructor);
8669    }
8670  }
8671
8672  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8673}
8674
8675CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8676                                                    CXXRecordDecl *ClassDecl) {
8677  // C++ [class.copy]p4:
8678  //   If the class definition does not explicitly declare a copy
8679  //   constructor, one is declared implicitly.
8680
8681  ImplicitExceptionSpecification Spec(Context);
8682  bool Const;
8683  llvm::tie(Spec, Const) =
8684    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8685
8686  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8687  QualType ArgType = ClassType;
8688  if (Const)
8689    ArgType = ArgType.withConst();
8690  ArgType = Context.getLValueReferenceType(ArgType);
8691
8692  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8693
8694  DeclarationName Name
8695    = Context.DeclarationNames.getCXXConstructorName(
8696                                           Context.getCanonicalType(ClassType));
8697  SourceLocation ClassLoc = ClassDecl->getLocation();
8698  DeclarationNameInfo NameInfo(Name, ClassLoc);
8699
8700  //   An implicitly-declared copy constructor is an inline public
8701  //   member of its class.
8702  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8703      Context, ClassDecl, ClassLoc, NameInfo,
8704      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8705      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8706      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8707        getLangOptions().CPlusPlus0x);
8708  CopyConstructor->setAccess(AS_public);
8709  CopyConstructor->setDefaulted();
8710  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8711
8712  // Note that we have declared this constructor.
8713  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8714
8715  // Add the parameter to the constructor.
8716  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8717                                               ClassLoc, ClassLoc,
8718                                               /*IdentifierInfo=*/0,
8719                                               ArgType, /*TInfo=*/0,
8720                                               SC_None,
8721                                               SC_None, 0);
8722  CopyConstructor->setParams(FromParam);
8723
8724  if (Scope *S = getScopeForContext(ClassDecl))
8725    PushOnScopeChains(CopyConstructor, S, false);
8726  ClassDecl->addDecl(CopyConstructor);
8727
8728  // C++0x [class.copy]p7:
8729  //   ... If the class definition declares a move constructor or move
8730  //   assignment operator, the implicitly declared constructor is defined as
8731  //   deleted; ...
8732  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8733      ClassDecl->hasUserDeclaredMoveAssignment() ||
8734      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8735    CopyConstructor->setDeletedAsWritten();
8736
8737  return CopyConstructor;
8738}
8739
8740void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8741                                   CXXConstructorDecl *CopyConstructor) {
8742  assert((CopyConstructor->isDefaulted() &&
8743          CopyConstructor->isCopyConstructor() &&
8744          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8745         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8746
8747  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8748  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8749
8750  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8751  DiagnosticErrorTrap Trap(Diags);
8752
8753  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8754      Trap.hasErrorOccurred()) {
8755    Diag(CurrentLocation, diag::note_member_synthesized_at)
8756      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8757    CopyConstructor->setInvalidDecl();
8758  }  else {
8759    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8760                                               CopyConstructor->getLocation(),
8761                                               MultiStmtArg(*this, 0, 0),
8762                                               /*isStmtExpr=*/false)
8763                                                              .takeAs<Stmt>());
8764    CopyConstructor->setImplicitlyDefined(true);
8765  }
8766
8767  CopyConstructor->setUsed();
8768  if (ASTMutationListener *L = getASTMutationListener()) {
8769    L->CompletedImplicitDefinition(CopyConstructor);
8770  }
8771}
8772
8773Sema::ImplicitExceptionSpecification
8774Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8775  // C++ [except.spec]p14:
8776  //   An implicitly declared special member function (Clause 12) shall have an
8777  //   exception-specification. [...]
8778  ImplicitExceptionSpecification ExceptSpec(Context);
8779  if (ClassDecl->isInvalidDecl())
8780    return ExceptSpec;
8781
8782  // Direct base-class constructors.
8783  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8784                                       BEnd = ClassDecl->bases_end();
8785       B != BEnd; ++B) {
8786    if (B->isVirtual()) // Handled below.
8787      continue;
8788
8789    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8790      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8791      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8792      // If this is a deleted function, add it anyway. This might be conformant
8793      // with the standard. This might not. I'm not sure. It might not matter.
8794      if (Constructor)
8795        ExceptSpec.CalledDecl(Constructor);
8796    }
8797  }
8798
8799  // Virtual base-class constructors.
8800  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8801                                       BEnd = ClassDecl->vbases_end();
8802       B != BEnd; ++B) {
8803    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8804      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8805      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8806      // If this is a deleted function, add it anyway. This might be conformant
8807      // with the standard. This might not. I'm not sure. It might not matter.
8808      if (Constructor)
8809        ExceptSpec.CalledDecl(Constructor);
8810    }
8811  }
8812
8813  // Field constructors.
8814  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8815                               FEnd = ClassDecl->field_end();
8816       F != FEnd; ++F) {
8817    if (const RecordType *RecordTy
8818              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8819      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8820      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8821      // If this is a deleted function, add it anyway. This might be conformant
8822      // with the standard. This might not. I'm not sure. It might not matter.
8823      // In particular, the problem is that this function never gets called. It
8824      // might just be ill-formed because this function attempts to refer to
8825      // a deleted function here.
8826      if (Constructor)
8827        ExceptSpec.CalledDecl(Constructor);
8828    }
8829  }
8830
8831  return ExceptSpec;
8832}
8833
8834CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8835                                                    CXXRecordDecl *ClassDecl) {
8836  ImplicitExceptionSpecification Spec(
8837      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8838
8839  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8840  QualType ArgType = Context.getRValueReferenceType(ClassType);
8841
8842  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8843
8844  DeclarationName Name
8845    = Context.DeclarationNames.getCXXConstructorName(
8846                                           Context.getCanonicalType(ClassType));
8847  SourceLocation ClassLoc = ClassDecl->getLocation();
8848  DeclarationNameInfo NameInfo(Name, ClassLoc);
8849
8850  // C++0x [class.copy]p11:
8851  //   An implicitly-declared copy/move constructor is an inline public
8852  //   member of its class.
8853  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8854      Context, ClassDecl, ClassLoc, NameInfo,
8855      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8856      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8857      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8858        getLangOptions().CPlusPlus0x);
8859  MoveConstructor->setAccess(AS_public);
8860  MoveConstructor->setDefaulted();
8861  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8862
8863  // Add the parameter to the constructor.
8864  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8865                                               ClassLoc, ClassLoc,
8866                                               /*IdentifierInfo=*/0,
8867                                               ArgType, /*TInfo=*/0,
8868                                               SC_None,
8869                                               SC_None, 0);
8870  MoveConstructor->setParams(FromParam);
8871
8872  // C++0x [class.copy]p9:
8873  //   If the definition of a class X does not explicitly declare a move
8874  //   constructor, one will be implicitly declared as defaulted if and only if:
8875  //   [...]
8876  //   - the move constructor would not be implicitly defined as deleted.
8877  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8878    // Cache this result so that we don't try to generate this over and over
8879    // on every lookup, leaking memory and wasting time.
8880    ClassDecl->setFailedImplicitMoveConstructor();
8881    return 0;
8882  }
8883
8884  // Note that we have declared this constructor.
8885  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8886
8887  if (Scope *S = getScopeForContext(ClassDecl))
8888    PushOnScopeChains(MoveConstructor, S, false);
8889  ClassDecl->addDecl(MoveConstructor);
8890
8891  return MoveConstructor;
8892}
8893
8894void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8895                                   CXXConstructorDecl *MoveConstructor) {
8896  assert((MoveConstructor->isDefaulted() &&
8897          MoveConstructor->isMoveConstructor() &&
8898          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8899         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8900
8901  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8902  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8903
8904  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8905  DiagnosticErrorTrap Trap(Diags);
8906
8907  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8908      Trap.hasErrorOccurred()) {
8909    Diag(CurrentLocation, diag::note_member_synthesized_at)
8910      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8911    MoveConstructor->setInvalidDecl();
8912  }  else {
8913    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8914                                               MoveConstructor->getLocation(),
8915                                               MultiStmtArg(*this, 0, 0),
8916                                               /*isStmtExpr=*/false)
8917                                                              .takeAs<Stmt>());
8918    MoveConstructor->setImplicitlyDefined(true);
8919  }
8920
8921  MoveConstructor->setUsed();
8922
8923  if (ASTMutationListener *L = getASTMutationListener()) {
8924    L->CompletedImplicitDefinition(MoveConstructor);
8925  }
8926}
8927
8928ExprResult
8929Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8930                            CXXConstructorDecl *Constructor,
8931                            MultiExprArg ExprArgs,
8932                            bool HadMultipleCandidates,
8933                            bool RequiresZeroInit,
8934                            unsigned ConstructKind,
8935                            SourceRange ParenRange) {
8936  bool Elidable = false;
8937
8938  // C++0x [class.copy]p34:
8939  //   When certain criteria are met, an implementation is allowed to
8940  //   omit the copy/move construction of a class object, even if the
8941  //   copy/move constructor and/or destructor for the object have
8942  //   side effects. [...]
8943  //     - when a temporary class object that has not been bound to a
8944  //       reference (12.2) would be copied/moved to a class object
8945  //       with the same cv-unqualified type, the copy/move operation
8946  //       can be omitted by constructing the temporary object
8947  //       directly into the target of the omitted copy/move
8948  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8949      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8950    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8951    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8952  }
8953
8954  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8955                               Elidable, move(ExprArgs), HadMultipleCandidates,
8956                               RequiresZeroInit, ConstructKind, ParenRange);
8957}
8958
8959/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8960/// including handling of its default argument expressions.
8961ExprResult
8962Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8963                            CXXConstructorDecl *Constructor, bool Elidable,
8964                            MultiExprArg ExprArgs,
8965                            bool HadMultipleCandidates,
8966                            bool RequiresZeroInit,
8967                            unsigned ConstructKind,
8968                            SourceRange ParenRange) {
8969  unsigned NumExprs = ExprArgs.size();
8970  Expr **Exprs = (Expr **)ExprArgs.release();
8971
8972  for (specific_attr_iterator<NonNullAttr>
8973           i = Constructor->specific_attr_begin<NonNullAttr>(),
8974           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8975    const NonNullAttr *NonNull = *i;
8976    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8977  }
8978
8979  MarkDeclarationReferenced(ConstructLoc, Constructor);
8980  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8981                                        Constructor, Elidable, Exprs, NumExprs,
8982                                        HadMultipleCandidates, RequiresZeroInit,
8983              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8984                                        ParenRange));
8985}
8986
8987bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8988                                        CXXConstructorDecl *Constructor,
8989                                        MultiExprArg Exprs,
8990                                        bool HadMultipleCandidates) {
8991  // FIXME: Provide the correct paren SourceRange when available.
8992  ExprResult TempResult =
8993    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8994                          move(Exprs), HadMultipleCandidates, false,
8995                          CXXConstructExpr::CK_Complete, SourceRange());
8996  if (TempResult.isInvalid())
8997    return true;
8998
8999  Expr *Temp = TempResult.takeAs<Expr>();
9000  CheckImplicitConversions(Temp, VD->getLocation());
9001  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9002  Temp = MaybeCreateExprWithCleanups(Temp);
9003  VD->setInit(Temp);
9004
9005  return false;
9006}
9007
9008void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9009  if (VD->isInvalidDecl()) return;
9010
9011  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9012  if (ClassDecl->isInvalidDecl()) return;
9013  if (ClassDecl->hasTrivialDestructor()) return;
9014  if (ClassDecl->isDependentContext()) return;
9015
9016  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9017  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9018  CheckDestructorAccess(VD->getLocation(), Destructor,
9019                        PDiag(diag::err_access_dtor_var)
9020                        << VD->getDeclName()
9021                        << VD->getType());
9022
9023  if (!VD->hasGlobalStorage()) return;
9024
9025  // Emit warning for non-trivial dtor in global scope (a real global,
9026  // class-static, function-static).
9027  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9028
9029  // TODO: this should be re-enabled for static locals by !CXAAtExit
9030  if (!VD->isStaticLocal())
9031    Diag(VD->getLocation(), diag::warn_global_destructor);
9032}
9033
9034/// AddCXXDirectInitializerToDecl - This action is called immediately after
9035/// ActOnDeclarator, when a C++ direct initializer is present.
9036/// e.g: "int x(1);"
9037void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9038                                         SourceLocation LParenLoc,
9039                                         MultiExprArg Exprs,
9040                                         SourceLocation RParenLoc,
9041                                         bool TypeMayContainAuto) {
9042  // If there is no declaration, there was an error parsing it.  Just ignore
9043  // the initializer.
9044  if (RealDecl == 0)
9045    return;
9046
9047  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9048  if (!VDecl) {
9049    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9050    RealDecl->setInvalidDecl();
9051    return;
9052  }
9053
9054  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9055  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9056    if (Exprs.size() == 0) {
9057      // It isn't possible to write this directly, but it is possible to
9058      // end up in this situation with "auto x(some_pack...);"
9059      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9060        << VDecl->getDeclName() << VDecl->getType()
9061        << VDecl->getSourceRange();
9062      RealDecl->setInvalidDecl();
9063      return;
9064    }
9065
9066    if (Exprs.size() > 1) {
9067      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9068           diag::err_auto_var_init_multiple_expressions)
9069        << VDecl->getDeclName() << VDecl->getType()
9070        << VDecl->getSourceRange();
9071      RealDecl->setInvalidDecl();
9072      return;
9073    }
9074
9075    Expr *Init = Exprs.get()[0];
9076    TypeSourceInfo *DeducedType = 0;
9077    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
9078      DiagnoseAutoDeductionFailure(VDecl, Init);
9079    if (!DeducedType) {
9080      RealDecl->setInvalidDecl();
9081      return;
9082    }
9083    VDecl->setTypeSourceInfo(DeducedType);
9084    VDecl->setType(DeducedType->getType());
9085
9086    // In ARC, infer lifetime.
9087    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9088      VDecl->setInvalidDecl();
9089
9090    // If this is a redeclaration, check that the type we just deduced matches
9091    // the previously declared type.
9092    if (VarDecl *Old = VDecl->getPreviousDecl())
9093      MergeVarDeclTypes(VDecl, Old);
9094  }
9095
9096  // We will represent direct-initialization similarly to copy-initialization:
9097  //    int x(1);  -as-> int x = 1;
9098  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9099  //
9100  // Clients that want to distinguish between the two forms, can check for
9101  // direct initializer using VarDecl::hasCXXDirectInitializer().
9102  // A major benefit is that clients that don't particularly care about which
9103  // exactly form was it (like the CodeGen) can handle both cases without
9104  // special case code.
9105
9106  // C++ 8.5p11:
9107  // The form of initialization (using parentheses or '=') is generally
9108  // insignificant, but does matter when the entity being initialized has a
9109  // class type.
9110
9111  if (!VDecl->getType()->isDependentType() &&
9112      !VDecl->getType()->isIncompleteArrayType() &&
9113      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9114                          diag::err_typecheck_decl_incomplete_type)) {
9115    VDecl->setInvalidDecl();
9116    return;
9117  }
9118
9119  // The variable can not have an abstract class type.
9120  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9121                             diag::err_abstract_type_in_decl,
9122                             AbstractVariableType))
9123    VDecl->setInvalidDecl();
9124
9125  const VarDecl *Def;
9126  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9127    Diag(VDecl->getLocation(), diag::err_redefinition)
9128    << VDecl->getDeclName();
9129    Diag(Def->getLocation(), diag::note_previous_definition);
9130    VDecl->setInvalidDecl();
9131    return;
9132  }
9133
9134  // C++ [class.static.data]p4
9135  //   If a static data member is of const integral or const
9136  //   enumeration type, its declaration in the class definition can
9137  //   specify a constant-initializer which shall be an integral
9138  //   constant expression (5.19). In that case, the member can appear
9139  //   in integral constant expressions. The member shall still be
9140  //   defined in a namespace scope if it is used in the program and the
9141  //   namespace scope definition shall not contain an initializer.
9142  //
9143  // We already performed a redefinition check above, but for static
9144  // data members we also need to check whether there was an in-class
9145  // declaration with an initializer.
9146  const VarDecl* PrevInit = 0;
9147  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9148    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9149    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9150    return;
9151  }
9152
9153  bool IsDependent = false;
9154  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9155    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9156      VDecl->setInvalidDecl();
9157      return;
9158    }
9159
9160    if (Exprs.get()[I]->isTypeDependent())
9161      IsDependent = true;
9162  }
9163
9164  // If either the declaration has a dependent type or if any of the
9165  // expressions is type-dependent, we represent the initialization
9166  // via a ParenListExpr for later use during template instantiation.
9167  if (VDecl->getType()->isDependentType() || IsDependent) {
9168    // Let clients know that initialization was done with a direct initializer.
9169    VDecl->setCXXDirectInitializer(true);
9170
9171    // Store the initialization expressions as a ParenListExpr.
9172    unsigned NumExprs = Exprs.size();
9173    VDecl->setInit(new (Context) ParenListExpr(
9174        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9175        VDecl->getType().getNonReferenceType()));
9176    return;
9177  }
9178
9179  // Capture the variable that is being initialized and the style of
9180  // initialization.
9181  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9182
9183  // FIXME: Poor source location information.
9184  InitializationKind Kind
9185    = InitializationKind::CreateDirect(VDecl->getLocation(),
9186                                       LParenLoc, RParenLoc);
9187
9188  QualType T = VDecl->getType();
9189  InitializationSequence InitSeq(*this, Entity, Kind,
9190                                 Exprs.get(), Exprs.size());
9191  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9192  if (Result.isInvalid()) {
9193    VDecl->setInvalidDecl();
9194    return;
9195  } else if (T != VDecl->getType()) {
9196    VDecl->setType(T);
9197    Result.get()->setType(T);
9198  }
9199
9200
9201  Expr *Init = Result.get();
9202  CheckImplicitConversions(Init, LParenLoc);
9203
9204  Init = MaybeCreateExprWithCleanups(Init);
9205  VDecl->setInit(Init);
9206  VDecl->setCXXDirectInitializer(true);
9207
9208  CheckCompleteVariableDeclaration(VDecl);
9209}
9210
9211/// \brief Given a constructor and the set of arguments provided for the
9212/// constructor, convert the arguments and add any required default arguments
9213/// to form a proper call to this constructor.
9214///
9215/// \returns true if an error occurred, false otherwise.
9216bool
9217Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9218                              MultiExprArg ArgsPtr,
9219                              SourceLocation Loc,
9220                              ASTOwningVector<Expr*> &ConvertedArgs) {
9221  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9222  unsigned NumArgs = ArgsPtr.size();
9223  Expr **Args = (Expr **)ArgsPtr.get();
9224
9225  const FunctionProtoType *Proto
9226    = Constructor->getType()->getAs<FunctionProtoType>();
9227  assert(Proto && "Constructor without a prototype?");
9228  unsigned NumArgsInProto = Proto->getNumArgs();
9229
9230  // If too few arguments are available, we'll fill in the rest with defaults.
9231  if (NumArgs < NumArgsInProto)
9232    ConvertedArgs.reserve(NumArgsInProto);
9233  else
9234    ConvertedArgs.reserve(NumArgs);
9235
9236  VariadicCallType CallType =
9237    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9238  SmallVector<Expr *, 8> AllArgs;
9239  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9240                                        Proto, 0, Args, NumArgs, AllArgs,
9241                                        CallType);
9242  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9243    ConvertedArgs.push_back(AllArgs[i]);
9244  return Invalid;
9245}
9246
9247static inline bool
9248CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9249                                       const FunctionDecl *FnDecl) {
9250  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9251  if (isa<NamespaceDecl>(DC)) {
9252    return SemaRef.Diag(FnDecl->getLocation(),
9253                        diag::err_operator_new_delete_declared_in_namespace)
9254      << FnDecl->getDeclName();
9255  }
9256
9257  if (isa<TranslationUnitDecl>(DC) &&
9258      FnDecl->getStorageClass() == SC_Static) {
9259    return SemaRef.Diag(FnDecl->getLocation(),
9260                        diag::err_operator_new_delete_declared_static)
9261      << FnDecl->getDeclName();
9262  }
9263
9264  return false;
9265}
9266
9267static inline bool
9268CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9269                            CanQualType ExpectedResultType,
9270                            CanQualType ExpectedFirstParamType,
9271                            unsigned DependentParamTypeDiag,
9272                            unsigned InvalidParamTypeDiag) {
9273  QualType ResultType =
9274    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9275
9276  // Check that the result type is not dependent.
9277  if (ResultType->isDependentType())
9278    return SemaRef.Diag(FnDecl->getLocation(),
9279                        diag::err_operator_new_delete_dependent_result_type)
9280    << FnDecl->getDeclName() << ExpectedResultType;
9281
9282  // Check that the result type is what we expect.
9283  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9284    return SemaRef.Diag(FnDecl->getLocation(),
9285                        diag::err_operator_new_delete_invalid_result_type)
9286    << FnDecl->getDeclName() << ExpectedResultType;
9287
9288  // A function template must have at least 2 parameters.
9289  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9290    return SemaRef.Diag(FnDecl->getLocation(),
9291                      diag::err_operator_new_delete_template_too_few_parameters)
9292        << FnDecl->getDeclName();
9293
9294  // The function decl must have at least 1 parameter.
9295  if (FnDecl->getNumParams() == 0)
9296    return SemaRef.Diag(FnDecl->getLocation(),
9297                        diag::err_operator_new_delete_too_few_parameters)
9298      << FnDecl->getDeclName();
9299
9300  // Check the the first parameter type is not dependent.
9301  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9302  if (FirstParamType->isDependentType())
9303    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9304      << FnDecl->getDeclName() << ExpectedFirstParamType;
9305
9306  // Check that the first parameter type is what we expect.
9307  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9308      ExpectedFirstParamType)
9309    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9310    << FnDecl->getDeclName() << ExpectedFirstParamType;
9311
9312  return false;
9313}
9314
9315static bool
9316CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9317  // C++ [basic.stc.dynamic.allocation]p1:
9318  //   A program is ill-formed if an allocation function is declared in a
9319  //   namespace scope other than global scope or declared static in global
9320  //   scope.
9321  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9322    return true;
9323
9324  CanQualType SizeTy =
9325    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9326
9327  // C++ [basic.stc.dynamic.allocation]p1:
9328  //  The return type shall be void*. The first parameter shall have type
9329  //  std::size_t.
9330  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9331                                  SizeTy,
9332                                  diag::err_operator_new_dependent_param_type,
9333                                  diag::err_operator_new_param_type))
9334    return true;
9335
9336  // C++ [basic.stc.dynamic.allocation]p1:
9337  //  The first parameter shall not have an associated default argument.
9338  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9339    return SemaRef.Diag(FnDecl->getLocation(),
9340                        diag::err_operator_new_default_arg)
9341      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9342
9343  return false;
9344}
9345
9346static bool
9347CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9348  // C++ [basic.stc.dynamic.deallocation]p1:
9349  //   A program is ill-formed if deallocation functions are declared in a
9350  //   namespace scope other than global scope or declared static in global
9351  //   scope.
9352  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9353    return true;
9354
9355  // C++ [basic.stc.dynamic.deallocation]p2:
9356  //   Each deallocation function shall return void and its first parameter
9357  //   shall be void*.
9358  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9359                                  SemaRef.Context.VoidPtrTy,
9360                                 diag::err_operator_delete_dependent_param_type,
9361                                 diag::err_operator_delete_param_type))
9362    return true;
9363
9364  return false;
9365}
9366
9367/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9368/// of this overloaded operator is well-formed. If so, returns false;
9369/// otherwise, emits appropriate diagnostics and returns true.
9370bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9371  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9372         "Expected an overloaded operator declaration");
9373
9374  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9375
9376  // C++ [over.oper]p5:
9377  //   The allocation and deallocation functions, operator new,
9378  //   operator new[], operator delete and operator delete[], are
9379  //   described completely in 3.7.3. The attributes and restrictions
9380  //   found in the rest of this subclause do not apply to them unless
9381  //   explicitly stated in 3.7.3.
9382  if (Op == OO_Delete || Op == OO_Array_Delete)
9383    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9384
9385  if (Op == OO_New || Op == OO_Array_New)
9386    return CheckOperatorNewDeclaration(*this, FnDecl);
9387
9388  // C++ [over.oper]p6:
9389  //   An operator function shall either be a non-static member
9390  //   function or be a non-member function and have at least one
9391  //   parameter whose type is a class, a reference to a class, an
9392  //   enumeration, or a reference to an enumeration.
9393  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9394    if (MethodDecl->isStatic())
9395      return Diag(FnDecl->getLocation(),
9396                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9397  } else {
9398    bool ClassOrEnumParam = false;
9399    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9400                                   ParamEnd = FnDecl->param_end();
9401         Param != ParamEnd; ++Param) {
9402      QualType ParamType = (*Param)->getType().getNonReferenceType();
9403      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9404          ParamType->isEnumeralType()) {
9405        ClassOrEnumParam = true;
9406        break;
9407      }
9408    }
9409
9410    if (!ClassOrEnumParam)
9411      return Diag(FnDecl->getLocation(),
9412                  diag::err_operator_overload_needs_class_or_enum)
9413        << FnDecl->getDeclName();
9414  }
9415
9416  // C++ [over.oper]p8:
9417  //   An operator function cannot have default arguments (8.3.6),
9418  //   except where explicitly stated below.
9419  //
9420  // Only the function-call operator allows default arguments
9421  // (C++ [over.call]p1).
9422  if (Op != OO_Call) {
9423    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9424         Param != FnDecl->param_end(); ++Param) {
9425      if ((*Param)->hasDefaultArg())
9426        return Diag((*Param)->getLocation(),
9427                    diag::err_operator_overload_default_arg)
9428          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9429    }
9430  }
9431
9432  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9433    { false, false, false }
9434#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9435    , { Unary, Binary, MemberOnly }
9436#include "clang/Basic/OperatorKinds.def"
9437  };
9438
9439  bool CanBeUnaryOperator = OperatorUses[Op][0];
9440  bool CanBeBinaryOperator = OperatorUses[Op][1];
9441  bool MustBeMemberOperator = OperatorUses[Op][2];
9442
9443  // C++ [over.oper]p8:
9444  //   [...] Operator functions cannot have more or fewer parameters
9445  //   than the number required for the corresponding operator, as
9446  //   described in the rest of this subclause.
9447  unsigned NumParams = FnDecl->getNumParams()
9448                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9449  if (Op != OO_Call &&
9450      ((NumParams == 1 && !CanBeUnaryOperator) ||
9451       (NumParams == 2 && !CanBeBinaryOperator) ||
9452       (NumParams < 1) || (NumParams > 2))) {
9453    // We have the wrong number of parameters.
9454    unsigned ErrorKind;
9455    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9456      ErrorKind = 2;  // 2 -> unary or binary.
9457    } else if (CanBeUnaryOperator) {
9458      ErrorKind = 0;  // 0 -> unary
9459    } else {
9460      assert(CanBeBinaryOperator &&
9461             "All non-call overloaded operators are unary or binary!");
9462      ErrorKind = 1;  // 1 -> binary
9463    }
9464
9465    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9466      << FnDecl->getDeclName() << NumParams << ErrorKind;
9467  }
9468
9469  // Overloaded operators other than operator() cannot be variadic.
9470  if (Op != OO_Call &&
9471      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9472    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9473      << FnDecl->getDeclName();
9474  }
9475
9476  // Some operators must be non-static member functions.
9477  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9478    return Diag(FnDecl->getLocation(),
9479                diag::err_operator_overload_must_be_member)
9480      << FnDecl->getDeclName();
9481  }
9482
9483  // C++ [over.inc]p1:
9484  //   The user-defined function called operator++ implements the
9485  //   prefix and postfix ++ operator. If this function is a member
9486  //   function with no parameters, or a non-member function with one
9487  //   parameter of class or enumeration type, it defines the prefix
9488  //   increment operator ++ for objects of that type. If the function
9489  //   is a member function with one parameter (which shall be of type
9490  //   int) or a non-member function with two parameters (the second
9491  //   of which shall be of type int), it defines the postfix
9492  //   increment operator ++ for objects of that type.
9493  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9494    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9495    bool ParamIsInt = false;
9496    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9497      ParamIsInt = BT->getKind() == BuiltinType::Int;
9498
9499    if (!ParamIsInt)
9500      return Diag(LastParam->getLocation(),
9501                  diag::err_operator_overload_post_incdec_must_be_int)
9502        << LastParam->getType() << (Op == OO_MinusMinus);
9503  }
9504
9505  return false;
9506}
9507
9508/// CheckLiteralOperatorDeclaration - Check whether the declaration
9509/// of this literal operator function is well-formed. If so, returns
9510/// false; otherwise, emits appropriate diagnostics and returns true.
9511bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9512  DeclContext *DC = FnDecl->getDeclContext();
9513  Decl::Kind Kind = DC->getDeclKind();
9514  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9515      Kind != Decl::LinkageSpec) {
9516    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9517      << FnDecl->getDeclName();
9518    return true;
9519  }
9520
9521  bool Valid = false;
9522
9523  // template <char...> type operator "" name() is the only valid template
9524  // signature, and the only valid signature with no parameters.
9525  if (FnDecl->param_size() == 0) {
9526    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9527      // Must have only one template parameter
9528      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9529      if (Params->size() == 1) {
9530        NonTypeTemplateParmDecl *PmDecl =
9531          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9532
9533        // The template parameter must be a char parameter pack.
9534        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9535            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9536          Valid = true;
9537      }
9538    }
9539  } else {
9540    // Check the first parameter
9541    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9542
9543    QualType T = (*Param)->getType();
9544
9545    // unsigned long long int, long double, and any character type are allowed
9546    // as the only parameters.
9547    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9548        Context.hasSameType(T, Context.LongDoubleTy) ||
9549        Context.hasSameType(T, Context.CharTy) ||
9550        Context.hasSameType(T, Context.WCharTy) ||
9551        Context.hasSameType(T, Context.Char16Ty) ||
9552        Context.hasSameType(T, Context.Char32Ty)) {
9553      if (++Param == FnDecl->param_end())
9554        Valid = true;
9555      goto FinishedParams;
9556    }
9557
9558    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9559    const PointerType *PT = T->getAs<PointerType>();
9560    if (!PT)
9561      goto FinishedParams;
9562    T = PT->getPointeeType();
9563    if (!T.isConstQualified())
9564      goto FinishedParams;
9565    T = T.getUnqualifiedType();
9566
9567    // Move on to the second parameter;
9568    ++Param;
9569
9570    // If there is no second parameter, the first must be a const char *
9571    if (Param == FnDecl->param_end()) {
9572      if (Context.hasSameType(T, Context.CharTy))
9573        Valid = true;
9574      goto FinishedParams;
9575    }
9576
9577    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9578    // are allowed as the first parameter to a two-parameter function
9579    if (!(Context.hasSameType(T, Context.CharTy) ||
9580          Context.hasSameType(T, Context.WCharTy) ||
9581          Context.hasSameType(T, Context.Char16Ty) ||
9582          Context.hasSameType(T, Context.Char32Ty)))
9583      goto FinishedParams;
9584
9585    // The second and final parameter must be an std::size_t
9586    T = (*Param)->getType().getUnqualifiedType();
9587    if (Context.hasSameType(T, Context.getSizeType()) &&
9588        ++Param == FnDecl->param_end())
9589      Valid = true;
9590  }
9591
9592  // FIXME: This diagnostic is absolutely terrible.
9593FinishedParams:
9594  if (!Valid) {
9595    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9596      << FnDecl->getDeclName();
9597    return true;
9598  }
9599
9600  StringRef LiteralName
9601    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9602  if (LiteralName[0] != '_') {
9603    // C++0x [usrlit.suffix]p1:
9604    //   Literal suffix identifiers that do not start with an underscore are
9605    //   reserved for future standardization.
9606    bool IsHexFloat = true;
9607    if (LiteralName.size() > 1 &&
9608        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9609      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9610        if (!isdigit(LiteralName[I])) {
9611          IsHexFloat = false;
9612          break;
9613        }
9614      }
9615    }
9616
9617    if (IsHexFloat)
9618      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9619        << LiteralName;
9620    else
9621      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9622  }
9623
9624  return false;
9625}
9626
9627/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9628/// linkage specification, including the language and (if present)
9629/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9630/// the location of the language string literal, which is provided
9631/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9632/// the '{' brace. Otherwise, this linkage specification does not
9633/// have any braces.
9634Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9635                                           SourceLocation LangLoc,
9636                                           StringRef Lang,
9637                                           SourceLocation LBraceLoc) {
9638  LinkageSpecDecl::LanguageIDs Language;
9639  if (Lang == "\"C\"")
9640    Language = LinkageSpecDecl::lang_c;
9641  else if (Lang == "\"C++\"")
9642    Language = LinkageSpecDecl::lang_cxx;
9643  else {
9644    Diag(LangLoc, diag::err_bad_language);
9645    return 0;
9646  }
9647
9648  // FIXME: Add all the various semantics of linkage specifications
9649
9650  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9651                                               ExternLoc, LangLoc, Language);
9652  CurContext->addDecl(D);
9653  PushDeclContext(S, D);
9654  return D;
9655}
9656
9657/// ActOnFinishLinkageSpecification - Complete the definition of
9658/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9659/// valid, it's the position of the closing '}' brace in a linkage
9660/// specification that uses braces.
9661Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9662                                            Decl *LinkageSpec,
9663                                            SourceLocation RBraceLoc) {
9664  if (LinkageSpec) {
9665    if (RBraceLoc.isValid()) {
9666      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9667      LSDecl->setRBraceLoc(RBraceLoc);
9668    }
9669    PopDeclContext();
9670  }
9671  return LinkageSpec;
9672}
9673
9674/// \brief Perform semantic analysis for the variable declaration that
9675/// occurs within a C++ catch clause, returning the newly-created
9676/// variable.
9677VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9678                                         TypeSourceInfo *TInfo,
9679                                         SourceLocation StartLoc,
9680                                         SourceLocation Loc,
9681                                         IdentifierInfo *Name) {
9682  bool Invalid = false;
9683  QualType ExDeclType = TInfo->getType();
9684
9685  // Arrays and functions decay.
9686  if (ExDeclType->isArrayType())
9687    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9688  else if (ExDeclType->isFunctionType())
9689    ExDeclType = Context.getPointerType(ExDeclType);
9690
9691  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9692  // The exception-declaration shall not denote a pointer or reference to an
9693  // incomplete type, other than [cv] void*.
9694  // N2844 forbids rvalue references.
9695  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9696    Diag(Loc, diag::err_catch_rvalue_ref);
9697    Invalid = true;
9698  }
9699
9700  // GCC allows catching pointers and references to incomplete types
9701  // as an extension; so do we, but we warn by default.
9702
9703  QualType BaseType = ExDeclType;
9704  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9705  unsigned DK = diag::err_catch_incomplete;
9706  bool IncompleteCatchIsInvalid = true;
9707  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9708    BaseType = Ptr->getPointeeType();
9709    Mode = 1;
9710    DK = diag::ext_catch_incomplete_ptr;
9711    IncompleteCatchIsInvalid = false;
9712  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9713    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9714    BaseType = Ref->getPointeeType();
9715    Mode = 2;
9716    DK = diag::ext_catch_incomplete_ref;
9717    IncompleteCatchIsInvalid = false;
9718  }
9719  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9720      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9721      IncompleteCatchIsInvalid)
9722    Invalid = true;
9723
9724  if (!Invalid && !ExDeclType->isDependentType() &&
9725      RequireNonAbstractType(Loc, ExDeclType,
9726                             diag::err_abstract_type_in_decl,
9727                             AbstractVariableType))
9728    Invalid = true;
9729
9730  // Only the non-fragile NeXT runtime currently supports C++ catches
9731  // of ObjC types, and no runtime supports catching ObjC types by value.
9732  if (!Invalid && getLangOptions().ObjC1) {
9733    QualType T = ExDeclType;
9734    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9735      T = RT->getPointeeType();
9736
9737    if (T->isObjCObjectType()) {
9738      Diag(Loc, diag::err_objc_object_catch);
9739      Invalid = true;
9740    } else if (T->isObjCObjectPointerType()) {
9741      if (!getLangOptions().ObjCNonFragileABI)
9742        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9743    }
9744  }
9745
9746  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9747                                    ExDeclType, TInfo, SC_None, SC_None);
9748  ExDecl->setExceptionVariable(true);
9749
9750  // In ARC, infer 'retaining' for variables of retainable type.
9751  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9752    Invalid = true;
9753
9754  if (!Invalid && !ExDeclType->isDependentType()) {
9755    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9756      // C++ [except.handle]p16:
9757      //   The object declared in an exception-declaration or, if the
9758      //   exception-declaration does not specify a name, a temporary (12.2) is
9759      //   copy-initialized (8.5) from the exception object. [...]
9760      //   The object is destroyed when the handler exits, after the destruction
9761      //   of any automatic objects initialized within the handler.
9762      //
9763      // We just pretend to initialize the object with itself, then make sure
9764      // it can be destroyed later.
9765      QualType initType = ExDeclType;
9766
9767      InitializedEntity entity =
9768        InitializedEntity::InitializeVariable(ExDecl);
9769      InitializationKind initKind =
9770        InitializationKind::CreateCopy(Loc, SourceLocation());
9771
9772      Expr *opaqueValue =
9773        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9774      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9775      ExprResult result = sequence.Perform(*this, entity, initKind,
9776                                           MultiExprArg(&opaqueValue, 1));
9777      if (result.isInvalid())
9778        Invalid = true;
9779      else {
9780        // If the constructor used was non-trivial, set this as the
9781        // "initializer".
9782        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9783        if (!construct->getConstructor()->isTrivial()) {
9784          Expr *init = MaybeCreateExprWithCleanups(construct);
9785          ExDecl->setInit(init);
9786        }
9787
9788        // And make sure it's destructable.
9789        FinalizeVarWithDestructor(ExDecl, recordType);
9790      }
9791    }
9792  }
9793
9794  if (Invalid)
9795    ExDecl->setInvalidDecl();
9796
9797  return ExDecl;
9798}
9799
9800/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9801/// handler.
9802Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9803  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9804  bool Invalid = D.isInvalidType();
9805
9806  // Check for unexpanded parameter packs.
9807  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9808                                               UPPC_ExceptionType)) {
9809    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9810                                             D.getIdentifierLoc());
9811    Invalid = true;
9812  }
9813
9814  IdentifierInfo *II = D.getIdentifier();
9815  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9816                                             LookupOrdinaryName,
9817                                             ForRedeclaration)) {
9818    // The scope should be freshly made just for us. There is just no way
9819    // it contains any previous declaration.
9820    assert(!S->isDeclScope(PrevDecl));
9821    if (PrevDecl->isTemplateParameter()) {
9822      // Maybe we will complain about the shadowed template parameter.
9823      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9824      PrevDecl = 0;
9825    }
9826  }
9827
9828  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9829    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9830      << D.getCXXScopeSpec().getRange();
9831    Invalid = true;
9832  }
9833
9834  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9835                                              D.getSourceRange().getBegin(),
9836                                              D.getIdentifierLoc(),
9837                                              D.getIdentifier());
9838  if (Invalid)
9839    ExDecl->setInvalidDecl();
9840
9841  // Add the exception declaration into this scope.
9842  if (II)
9843    PushOnScopeChains(ExDecl, S);
9844  else
9845    CurContext->addDecl(ExDecl);
9846
9847  ProcessDeclAttributes(S, ExDecl, D);
9848  return ExDecl;
9849}
9850
9851Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9852                                         Expr *AssertExpr,
9853                                         Expr *AssertMessageExpr_,
9854                                         SourceLocation RParenLoc) {
9855  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9856
9857  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9858    llvm::APSInt Cond;
9859    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9860                             diag::err_static_assert_expression_is_not_constant,
9861                                        /*AllowFold=*/false))
9862      return 0;
9863
9864    if (!Cond)
9865      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9866        << AssertMessage->getString() << AssertExpr->getSourceRange();
9867  }
9868
9869  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9870    return 0;
9871
9872  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9873                                        AssertExpr, AssertMessage, RParenLoc);
9874
9875  CurContext->addDecl(Decl);
9876  return Decl;
9877}
9878
9879/// \brief Perform semantic analysis of the given friend type declaration.
9880///
9881/// \returns A friend declaration that.
9882FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9883                                      SourceLocation FriendLoc,
9884                                      TypeSourceInfo *TSInfo) {
9885  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9886
9887  QualType T = TSInfo->getType();
9888  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9889
9890  // C++03 [class.friend]p2:
9891  //   An elaborated-type-specifier shall be used in a friend declaration
9892  //   for a class.*
9893  //
9894  //   * The class-key of the elaborated-type-specifier is required.
9895  if (!ActiveTemplateInstantiations.empty()) {
9896    // Do not complain about the form of friend template types during
9897    // template instantiation; we will already have complained when the
9898    // template was declared.
9899  } else if (!T->isElaboratedTypeSpecifier()) {
9900    // If we evaluated the type to a record type, suggest putting
9901    // a tag in front.
9902    if (const RecordType *RT = T->getAs<RecordType>()) {
9903      RecordDecl *RD = RT->getDecl();
9904
9905      std::string InsertionText = std::string(" ") + RD->getKindName();
9906
9907      Diag(TypeRange.getBegin(),
9908           getLangOptions().CPlusPlus0x ?
9909             diag::warn_cxx98_compat_unelaborated_friend_type :
9910             diag::ext_unelaborated_friend_type)
9911        << (unsigned) RD->getTagKind()
9912        << T
9913        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9914                                      InsertionText);
9915    } else {
9916      Diag(FriendLoc,
9917           getLangOptions().CPlusPlus0x ?
9918             diag::warn_cxx98_compat_nonclass_type_friend :
9919             diag::ext_nonclass_type_friend)
9920        << T
9921        << SourceRange(FriendLoc, TypeRange.getEnd());
9922    }
9923  } else if (T->getAs<EnumType>()) {
9924    Diag(FriendLoc,
9925         getLangOptions().CPlusPlus0x ?
9926           diag::warn_cxx98_compat_enum_friend :
9927           diag::ext_enum_friend)
9928      << T
9929      << SourceRange(FriendLoc, TypeRange.getEnd());
9930  }
9931
9932  // C++0x [class.friend]p3:
9933  //   If the type specifier in a friend declaration designates a (possibly
9934  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9935  //   the friend declaration is ignored.
9936
9937  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9938  // in [class.friend]p3 that we do not implement.
9939
9940  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9941}
9942
9943/// Handle a friend tag declaration where the scope specifier was
9944/// templated.
9945Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9946                                    unsigned TagSpec, SourceLocation TagLoc,
9947                                    CXXScopeSpec &SS,
9948                                    IdentifierInfo *Name, SourceLocation NameLoc,
9949                                    AttributeList *Attr,
9950                                    MultiTemplateParamsArg TempParamLists) {
9951  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9952
9953  bool isExplicitSpecialization = false;
9954  bool Invalid = false;
9955
9956  if (TemplateParameterList *TemplateParams
9957        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9958                                                  TempParamLists.get(),
9959                                                  TempParamLists.size(),
9960                                                  /*friend*/ true,
9961                                                  isExplicitSpecialization,
9962                                                  Invalid)) {
9963    if (TemplateParams->size() > 0) {
9964      // This is a declaration of a class template.
9965      if (Invalid)
9966        return 0;
9967
9968      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9969                                SS, Name, NameLoc, Attr,
9970                                TemplateParams, AS_public,
9971                                /*ModulePrivateLoc=*/SourceLocation(),
9972                                TempParamLists.size() - 1,
9973                   (TemplateParameterList**) TempParamLists.release()).take();
9974    } else {
9975      // The "template<>" header is extraneous.
9976      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9977        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9978      isExplicitSpecialization = true;
9979    }
9980  }
9981
9982  if (Invalid) return 0;
9983
9984  bool isAllExplicitSpecializations = true;
9985  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9986    if (TempParamLists.get()[I]->size()) {
9987      isAllExplicitSpecializations = false;
9988      break;
9989    }
9990  }
9991
9992  // FIXME: don't ignore attributes.
9993
9994  // If it's explicit specializations all the way down, just forget
9995  // about the template header and build an appropriate non-templated
9996  // friend.  TODO: for source fidelity, remember the headers.
9997  if (isAllExplicitSpecializations) {
9998    if (SS.isEmpty()) {
9999      bool Owned = false;
10000      bool IsDependent = false;
10001      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10002                      Attr, AS_public,
10003                      /*ModulePrivateLoc=*/SourceLocation(),
10004                      MultiTemplateParamsArg(), Owned, IsDependent,
10005                      /*ScopedEnumKWLoc=*/SourceLocation(),
10006                      /*ScopedEnumUsesClassTag=*/false,
10007                      /*UnderlyingType=*/TypeResult());
10008    }
10009
10010    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10011    ElaboratedTypeKeyword Keyword
10012      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10013    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10014                                   *Name, NameLoc);
10015    if (T.isNull())
10016      return 0;
10017
10018    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10019    if (isa<DependentNameType>(T)) {
10020      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10021      TL.setKeywordLoc(TagLoc);
10022      TL.setQualifierLoc(QualifierLoc);
10023      TL.setNameLoc(NameLoc);
10024    } else {
10025      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10026      TL.setKeywordLoc(TagLoc);
10027      TL.setQualifierLoc(QualifierLoc);
10028      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10029    }
10030
10031    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10032                                            TSI, FriendLoc);
10033    Friend->setAccess(AS_public);
10034    CurContext->addDecl(Friend);
10035    return Friend;
10036  }
10037
10038  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10039
10040
10041
10042  // Handle the case of a templated-scope friend class.  e.g.
10043  //   template <class T> class A<T>::B;
10044  // FIXME: we don't support these right now.
10045  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10046  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10047  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10048  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10049  TL.setKeywordLoc(TagLoc);
10050  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10051  TL.setNameLoc(NameLoc);
10052
10053  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10054                                          TSI, FriendLoc);
10055  Friend->setAccess(AS_public);
10056  Friend->setUnsupportedFriend(true);
10057  CurContext->addDecl(Friend);
10058  return Friend;
10059}
10060
10061
10062/// Handle a friend type declaration.  This works in tandem with
10063/// ActOnTag.
10064///
10065/// Notes on friend class templates:
10066///
10067/// We generally treat friend class declarations as if they were
10068/// declaring a class.  So, for example, the elaborated type specifier
10069/// in a friend declaration is required to obey the restrictions of a
10070/// class-head (i.e. no typedefs in the scope chain), template
10071/// parameters are required to match up with simple template-ids, &c.
10072/// However, unlike when declaring a template specialization, it's
10073/// okay to refer to a template specialization without an empty
10074/// template parameter declaration, e.g.
10075///   friend class A<T>::B<unsigned>;
10076/// We permit this as a special case; if there are any template
10077/// parameters present at all, require proper matching, i.e.
10078///   template <> template <class T> friend class A<int>::B;
10079Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10080                                MultiTemplateParamsArg TempParams) {
10081  SourceLocation Loc = DS.getSourceRange().getBegin();
10082
10083  assert(DS.isFriendSpecified());
10084  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10085
10086  // Try to convert the decl specifier to a type.  This works for
10087  // friend templates because ActOnTag never produces a ClassTemplateDecl
10088  // for a TUK_Friend.
10089  Declarator TheDeclarator(DS, Declarator::MemberContext);
10090  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10091  QualType T = TSI->getType();
10092  if (TheDeclarator.isInvalidType())
10093    return 0;
10094
10095  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10096    return 0;
10097
10098  // This is definitely an error in C++98.  It's probably meant to
10099  // be forbidden in C++0x, too, but the specification is just
10100  // poorly written.
10101  //
10102  // The problem is with declarations like the following:
10103  //   template <T> friend A<T>::foo;
10104  // where deciding whether a class C is a friend or not now hinges
10105  // on whether there exists an instantiation of A that causes
10106  // 'foo' to equal C.  There are restrictions on class-heads
10107  // (which we declare (by fiat) elaborated friend declarations to
10108  // be) that makes this tractable.
10109  //
10110  // FIXME: handle "template <> friend class A<T>;", which
10111  // is possibly well-formed?  Who even knows?
10112  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10113    Diag(Loc, diag::err_tagless_friend_type_template)
10114      << DS.getSourceRange();
10115    return 0;
10116  }
10117
10118  // C++98 [class.friend]p1: A friend of a class is a function
10119  //   or class that is not a member of the class . . .
10120  // This is fixed in DR77, which just barely didn't make the C++03
10121  // deadline.  It's also a very silly restriction that seriously
10122  // affects inner classes and which nobody else seems to implement;
10123  // thus we never diagnose it, not even in -pedantic.
10124  //
10125  // But note that we could warn about it: it's always useless to
10126  // friend one of your own members (it's not, however, worthless to
10127  // friend a member of an arbitrary specialization of your template).
10128
10129  Decl *D;
10130  if (unsigned NumTempParamLists = TempParams.size())
10131    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10132                                   NumTempParamLists,
10133                                   TempParams.release(),
10134                                   TSI,
10135                                   DS.getFriendSpecLoc());
10136  else
10137    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10138
10139  if (!D)
10140    return 0;
10141
10142  D->setAccess(AS_public);
10143  CurContext->addDecl(D);
10144
10145  return D;
10146}
10147
10148Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10149                                    MultiTemplateParamsArg TemplateParams) {
10150  const DeclSpec &DS = D.getDeclSpec();
10151
10152  assert(DS.isFriendSpecified());
10153  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10154
10155  SourceLocation Loc = D.getIdentifierLoc();
10156  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10157
10158  // C++ [class.friend]p1
10159  //   A friend of a class is a function or class....
10160  // Note that this sees through typedefs, which is intended.
10161  // It *doesn't* see through dependent types, which is correct
10162  // according to [temp.arg.type]p3:
10163  //   If a declaration acquires a function type through a
10164  //   type dependent on a template-parameter and this causes
10165  //   a declaration that does not use the syntactic form of a
10166  //   function declarator to have a function type, the program
10167  //   is ill-formed.
10168  if (!TInfo->getType()->isFunctionType()) {
10169    Diag(Loc, diag::err_unexpected_friend);
10170
10171    // It might be worthwhile to try to recover by creating an
10172    // appropriate declaration.
10173    return 0;
10174  }
10175
10176  // C++ [namespace.memdef]p3
10177  //  - If a friend declaration in a non-local class first declares a
10178  //    class or function, the friend class or function is a member
10179  //    of the innermost enclosing namespace.
10180  //  - The name of the friend is not found by simple name lookup
10181  //    until a matching declaration is provided in that namespace
10182  //    scope (either before or after the class declaration granting
10183  //    friendship).
10184  //  - If a friend function is called, its name may be found by the
10185  //    name lookup that considers functions from namespaces and
10186  //    classes associated with the types of the function arguments.
10187  //  - When looking for a prior declaration of a class or a function
10188  //    declared as a friend, scopes outside the innermost enclosing
10189  //    namespace scope are not considered.
10190
10191  CXXScopeSpec &SS = D.getCXXScopeSpec();
10192  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10193  DeclarationName Name = NameInfo.getName();
10194  assert(Name);
10195
10196  // Check for unexpanded parameter packs.
10197  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10198      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10199      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10200    return 0;
10201
10202  // The context we found the declaration in, or in which we should
10203  // create the declaration.
10204  DeclContext *DC;
10205  Scope *DCScope = S;
10206  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10207                        ForRedeclaration);
10208
10209  // FIXME: there are different rules in local classes
10210
10211  // There are four cases here.
10212  //   - There's no scope specifier, in which case we just go to the
10213  //     appropriate scope and look for a function or function template
10214  //     there as appropriate.
10215  // Recover from invalid scope qualifiers as if they just weren't there.
10216  if (SS.isInvalid() || !SS.isSet()) {
10217    // C++0x [namespace.memdef]p3:
10218    //   If the name in a friend declaration is neither qualified nor
10219    //   a template-id and the declaration is a function or an
10220    //   elaborated-type-specifier, the lookup to determine whether
10221    //   the entity has been previously declared shall not consider
10222    //   any scopes outside the innermost enclosing namespace.
10223    // C++0x [class.friend]p11:
10224    //   If a friend declaration appears in a local class and the name
10225    //   specified is an unqualified name, a prior declaration is
10226    //   looked up without considering scopes that are outside the
10227    //   innermost enclosing non-class scope. For a friend function
10228    //   declaration, if there is no prior declaration, the program is
10229    //   ill-formed.
10230    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10231    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10232
10233    // Find the appropriate context according to the above.
10234    DC = CurContext;
10235    while (true) {
10236      // Skip class contexts.  If someone can cite chapter and verse
10237      // for this behavior, that would be nice --- it's what GCC and
10238      // EDG do, and it seems like a reasonable intent, but the spec
10239      // really only says that checks for unqualified existing
10240      // declarations should stop at the nearest enclosing namespace,
10241      // not that they should only consider the nearest enclosing
10242      // namespace.
10243      while (DC->isRecord())
10244        DC = DC->getParent();
10245
10246      LookupQualifiedName(Previous, DC);
10247
10248      // TODO: decide what we think about using declarations.
10249      if (isLocal || !Previous.empty())
10250        break;
10251
10252      if (isTemplateId) {
10253        if (isa<TranslationUnitDecl>(DC)) break;
10254      } else {
10255        if (DC->isFileContext()) break;
10256      }
10257      DC = DC->getParent();
10258    }
10259
10260    // C++ [class.friend]p1: A friend of a class is a function or
10261    //   class that is not a member of the class . . .
10262    // C++11 changes this for both friend types and functions.
10263    // Most C++ 98 compilers do seem to give an error here, so
10264    // we do, too.
10265    if (!Previous.empty() && DC->Equals(CurContext))
10266      Diag(DS.getFriendSpecLoc(),
10267           getLangOptions().CPlusPlus0x ?
10268             diag::warn_cxx98_compat_friend_is_member :
10269             diag::err_friend_is_member);
10270
10271    DCScope = getScopeForDeclContext(S, DC);
10272
10273    // C++ [class.friend]p6:
10274    //   A function can be defined in a friend declaration of a class if and
10275    //   only if the class is a non-local class (9.8), the function name is
10276    //   unqualified, and the function has namespace scope.
10277    if (isLocal && D.isFunctionDefinition()) {
10278      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10279    }
10280
10281  //   - There's a non-dependent scope specifier, in which case we
10282  //     compute it and do a previous lookup there for a function
10283  //     or function template.
10284  } else if (!SS.getScopeRep()->isDependent()) {
10285    DC = computeDeclContext(SS);
10286    if (!DC) return 0;
10287
10288    if (RequireCompleteDeclContext(SS, DC)) return 0;
10289
10290    LookupQualifiedName(Previous, DC);
10291
10292    // Ignore things found implicitly in the wrong scope.
10293    // TODO: better diagnostics for this case.  Suggesting the right
10294    // qualified scope would be nice...
10295    LookupResult::Filter F = Previous.makeFilter();
10296    while (F.hasNext()) {
10297      NamedDecl *D = F.next();
10298      if (!DC->InEnclosingNamespaceSetOf(
10299              D->getDeclContext()->getRedeclContext()))
10300        F.erase();
10301    }
10302    F.done();
10303
10304    if (Previous.empty()) {
10305      D.setInvalidType();
10306      Diag(Loc, diag::err_qualified_friend_not_found)
10307          << Name << TInfo->getType();
10308      return 0;
10309    }
10310
10311    // C++ [class.friend]p1: A friend of a class is a function or
10312    //   class that is not a member of the class . . .
10313    if (DC->Equals(CurContext))
10314      Diag(DS.getFriendSpecLoc(),
10315           getLangOptions().CPlusPlus0x ?
10316             diag::warn_cxx98_compat_friend_is_member :
10317             diag::err_friend_is_member);
10318
10319    if (D.isFunctionDefinition()) {
10320      // C++ [class.friend]p6:
10321      //   A function can be defined in a friend declaration of a class if and
10322      //   only if the class is a non-local class (9.8), the function name is
10323      //   unqualified, and the function has namespace scope.
10324      SemaDiagnosticBuilder DB
10325        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10326
10327      DB << SS.getScopeRep();
10328      if (DC->isFileContext())
10329        DB << FixItHint::CreateRemoval(SS.getRange());
10330      SS.clear();
10331    }
10332
10333  //   - There's a scope specifier that does not match any template
10334  //     parameter lists, in which case we use some arbitrary context,
10335  //     create a method or method template, and wait for instantiation.
10336  //   - There's a scope specifier that does match some template
10337  //     parameter lists, which we don't handle right now.
10338  } else {
10339    if (D.isFunctionDefinition()) {
10340      // C++ [class.friend]p6:
10341      //   A function can be defined in a friend declaration of a class if and
10342      //   only if the class is a non-local class (9.8), the function name is
10343      //   unqualified, and the function has namespace scope.
10344      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10345        << SS.getScopeRep();
10346    }
10347
10348    DC = CurContext;
10349    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10350  }
10351
10352  if (!DC->isRecord()) {
10353    // This implies that it has to be an operator or function.
10354    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10355        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10356        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10357      Diag(Loc, diag::err_introducing_special_friend) <<
10358        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10359         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10360      return 0;
10361    }
10362  }
10363
10364  // FIXME: This is an egregious hack to cope with cases where the scope stack
10365  // does not contain the declaration context, i.e., in an out-of-line
10366  // definition of a class.
10367  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10368  if (!DCScope) {
10369    FakeDCScope.setEntity(DC);
10370    DCScope = &FakeDCScope;
10371  }
10372
10373  bool AddToScope = true;
10374  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10375                                          move(TemplateParams), AddToScope);
10376  if (!ND) return 0;
10377
10378  assert(ND->getDeclContext() == DC);
10379  assert(ND->getLexicalDeclContext() == CurContext);
10380
10381  // Add the function declaration to the appropriate lookup tables,
10382  // adjusting the redeclarations list as necessary.  We don't
10383  // want to do this yet if the friending class is dependent.
10384  //
10385  // Also update the scope-based lookup if the target context's
10386  // lookup context is in lexical scope.
10387  if (!CurContext->isDependentContext()) {
10388    DC = DC->getRedeclContext();
10389    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10390    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10391      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10392  }
10393
10394  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10395                                       D.getIdentifierLoc(), ND,
10396                                       DS.getFriendSpecLoc());
10397  FrD->setAccess(AS_public);
10398  CurContext->addDecl(FrD);
10399
10400  if (ND->isInvalidDecl())
10401    FrD->setInvalidDecl();
10402  else {
10403    FunctionDecl *FD;
10404    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10405      FD = FTD->getTemplatedDecl();
10406    else
10407      FD = cast<FunctionDecl>(ND);
10408
10409    // Mark templated-scope function declarations as unsupported.
10410    if (FD->getNumTemplateParameterLists())
10411      FrD->setUnsupportedFriend(true);
10412  }
10413
10414  return ND;
10415}
10416
10417void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10418  AdjustDeclIfTemplate(Dcl);
10419
10420  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10421  if (!Fn) {
10422    Diag(DelLoc, diag::err_deleted_non_function);
10423    return;
10424  }
10425  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10426    Diag(DelLoc, diag::err_deleted_decl_not_first);
10427    Diag(Prev->getLocation(), diag::note_previous_declaration);
10428    // If the declaration wasn't the first, we delete the function anyway for
10429    // recovery.
10430  }
10431  Fn->setDeletedAsWritten();
10432}
10433
10434void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10435  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10436
10437  if (MD) {
10438    if (MD->getParent()->isDependentType()) {
10439      MD->setDefaulted();
10440      MD->setExplicitlyDefaulted();
10441      return;
10442    }
10443
10444    CXXSpecialMember Member = getSpecialMember(MD);
10445    if (Member == CXXInvalid) {
10446      Diag(DefaultLoc, diag::err_default_special_members);
10447      return;
10448    }
10449
10450    MD->setDefaulted();
10451    MD->setExplicitlyDefaulted();
10452
10453    // If this definition appears within the record, do the checking when
10454    // the record is complete.
10455    const FunctionDecl *Primary = MD;
10456    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10457      // Find the uninstantiated declaration that actually had the '= default'
10458      // on it.
10459      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10460
10461    if (Primary == Primary->getCanonicalDecl())
10462      return;
10463
10464    switch (Member) {
10465    case CXXDefaultConstructor: {
10466      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10467      CheckExplicitlyDefaultedDefaultConstructor(CD);
10468      if (!CD->isInvalidDecl())
10469        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10470      break;
10471    }
10472
10473    case CXXCopyConstructor: {
10474      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10475      CheckExplicitlyDefaultedCopyConstructor(CD);
10476      if (!CD->isInvalidDecl())
10477        DefineImplicitCopyConstructor(DefaultLoc, CD);
10478      break;
10479    }
10480
10481    case CXXCopyAssignment: {
10482      CheckExplicitlyDefaultedCopyAssignment(MD);
10483      if (!MD->isInvalidDecl())
10484        DefineImplicitCopyAssignment(DefaultLoc, MD);
10485      break;
10486    }
10487
10488    case CXXDestructor: {
10489      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10490      CheckExplicitlyDefaultedDestructor(DD);
10491      if (!DD->isInvalidDecl())
10492        DefineImplicitDestructor(DefaultLoc, DD);
10493      break;
10494    }
10495
10496    case CXXMoveConstructor: {
10497      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10498      CheckExplicitlyDefaultedMoveConstructor(CD);
10499      if (!CD->isInvalidDecl())
10500        DefineImplicitMoveConstructor(DefaultLoc, CD);
10501      break;
10502    }
10503
10504    case CXXMoveAssignment: {
10505      CheckExplicitlyDefaultedMoveAssignment(MD);
10506      if (!MD->isInvalidDecl())
10507        DefineImplicitMoveAssignment(DefaultLoc, MD);
10508      break;
10509    }
10510
10511    case CXXInvalid:
10512      llvm_unreachable("Invalid special member.");
10513    }
10514  } else {
10515    Diag(DefaultLoc, diag::err_default_special_members);
10516  }
10517}
10518
10519static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10520  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10521    Stmt *SubStmt = *CI;
10522    if (!SubStmt)
10523      continue;
10524    if (isa<ReturnStmt>(SubStmt))
10525      Self.Diag(SubStmt->getSourceRange().getBegin(),
10526           diag::err_return_in_constructor_handler);
10527    if (!isa<Expr>(SubStmt))
10528      SearchForReturnInStmt(Self, SubStmt);
10529  }
10530}
10531
10532void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10533  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10534    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10535    SearchForReturnInStmt(*this, Handler);
10536  }
10537}
10538
10539bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10540                                             const CXXMethodDecl *Old) {
10541  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10542  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10543
10544  if (Context.hasSameType(NewTy, OldTy) ||
10545      NewTy->isDependentType() || OldTy->isDependentType())
10546    return false;
10547
10548  // Check if the return types are covariant
10549  QualType NewClassTy, OldClassTy;
10550
10551  /// Both types must be pointers or references to classes.
10552  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10553    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10554      NewClassTy = NewPT->getPointeeType();
10555      OldClassTy = OldPT->getPointeeType();
10556    }
10557  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10558    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10559      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10560        NewClassTy = NewRT->getPointeeType();
10561        OldClassTy = OldRT->getPointeeType();
10562      }
10563    }
10564  }
10565
10566  // The return types aren't either both pointers or references to a class type.
10567  if (NewClassTy.isNull()) {
10568    Diag(New->getLocation(),
10569         diag::err_different_return_type_for_overriding_virtual_function)
10570      << New->getDeclName() << NewTy << OldTy;
10571    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10572
10573    return true;
10574  }
10575
10576  // C++ [class.virtual]p6:
10577  //   If the return type of D::f differs from the return type of B::f, the
10578  //   class type in the return type of D::f shall be complete at the point of
10579  //   declaration of D::f or shall be the class type D.
10580  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10581    if (!RT->isBeingDefined() &&
10582        RequireCompleteType(New->getLocation(), NewClassTy,
10583                            PDiag(diag::err_covariant_return_incomplete)
10584                              << New->getDeclName()))
10585    return true;
10586  }
10587
10588  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10589    // Check if the new class derives from the old class.
10590    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10591      Diag(New->getLocation(),
10592           diag::err_covariant_return_not_derived)
10593      << New->getDeclName() << NewTy << OldTy;
10594      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10595      return true;
10596    }
10597
10598    // Check if we the conversion from derived to base is valid.
10599    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10600                    diag::err_covariant_return_inaccessible_base,
10601                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10602                    // FIXME: Should this point to the return type?
10603                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10604      // FIXME: this note won't trigger for delayed access control
10605      // diagnostics, and it's impossible to get an undelayed error
10606      // here from access control during the original parse because
10607      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10608      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10609      return true;
10610    }
10611  }
10612
10613  // The qualifiers of the return types must be the same.
10614  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10615    Diag(New->getLocation(),
10616         diag::err_covariant_return_type_different_qualifications)
10617    << New->getDeclName() << NewTy << OldTy;
10618    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10619    return true;
10620  };
10621
10622
10623  // The new class type must have the same or less qualifiers as the old type.
10624  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10625    Diag(New->getLocation(),
10626         diag::err_covariant_return_type_class_type_more_qualified)
10627    << New->getDeclName() << NewTy << OldTy;
10628    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10629    return true;
10630  };
10631
10632  return false;
10633}
10634
10635/// \brief Mark the given method pure.
10636///
10637/// \param Method the method to be marked pure.
10638///
10639/// \param InitRange the source range that covers the "0" initializer.
10640bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10641  SourceLocation EndLoc = InitRange.getEnd();
10642  if (EndLoc.isValid())
10643    Method->setRangeEnd(EndLoc);
10644
10645  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10646    Method->setPure();
10647    return false;
10648  }
10649
10650  if (!Method->isInvalidDecl())
10651    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10652      << Method->getDeclName() << InitRange;
10653  return true;
10654}
10655
10656/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10657/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10658/// is a fresh scope pushed for just this purpose.
10659///
10660/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10661/// static data member of class X, names should be looked up in the scope of
10662/// class X.
10663void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10664  // If there is no declaration, there was an error parsing it.
10665  if (D == 0 || D->isInvalidDecl()) return;
10666
10667  // We should only get called for declarations with scope specifiers, like:
10668  //   int foo::bar;
10669  assert(D->isOutOfLine());
10670  EnterDeclaratorContext(S, D->getDeclContext());
10671}
10672
10673/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10674/// initializer for the out-of-line declaration 'D'.
10675void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10676  // If there is no declaration, there was an error parsing it.
10677  if (D == 0 || D->isInvalidDecl()) return;
10678
10679  assert(D->isOutOfLine());
10680  ExitDeclaratorContext(S);
10681}
10682
10683/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10684/// C++ if/switch/while/for statement.
10685/// e.g: "if (int x = f()) {...}"
10686DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10687  // C++ 6.4p2:
10688  // The declarator shall not specify a function or an array.
10689  // The type-specifier-seq shall not contain typedef and shall not declare a
10690  // new class or enumeration.
10691  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10692         "Parser allowed 'typedef' as storage class of condition decl.");
10693
10694  Decl *Dcl = ActOnDeclarator(S, D);
10695  if (!Dcl)
10696    return true;
10697
10698  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10699    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10700      << D.getSourceRange();
10701    return true;
10702  }
10703
10704  return Dcl;
10705}
10706
10707void Sema::LoadExternalVTableUses() {
10708  if (!ExternalSource)
10709    return;
10710
10711  SmallVector<ExternalVTableUse, 4> VTables;
10712  ExternalSource->ReadUsedVTables(VTables);
10713  SmallVector<VTableUse, 4> NewUses;
10714  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10715    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10716      = VTablesUsed.find(VTables[I].Record);
10717    // Even if a definition wasn't required before, it may be required now.
10718    if (Pos != VTablesUsed.end()) {
10719      if (!Pos->second && VTables[I].DefinitionRequired)
10720        Pos->second = true;
10721      continue;
10722    }
10723
10724    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10725    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10726  }
10727
10728  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10729}
10730
10731void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10732                          bool DefinitionRequired) {
10733  // Ignore any vtable uses in unevaluated operands or for classes that do
10734  // not have a vtable.
10735  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10736      CurContext->isDependentContext() ||
10737      ExprEvalContexts.back().Context == Unevaluated ||
10738      ExprEvalContexts.back().Context == ConstantEvaluated)
10739    return;
10740
10741  // Try to insert this class into the map.
10742  LoadExternalVTableUses();
10743  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10744  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10745    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10746  if (!Pos.second) {
10747    // If we already had an entry, check to see if we are promoting this vtable
10748    // to required a definition. If so, we need to reappend to the VTableUses
10749    // list, since we may have already processed the first entry.
10750    if (DefinitionRequired && !Pos.first->second) {
10751      Pos.first->second = true;
10752    } else {
10753      // Otherwise, we can early exit.
10754      return;
10755    }
10756  }
10757
10758  // Local classes need to have their virtual members marked
10759  // immediately. For all other classes, we mark their virtual members
10760  // at the end of the translation unit.
10761  if (Class->isLocalClass())
10762    MarkVirtualMembersReferenced(Loc, Class);
10763  else
10764    VTableUses.push_back(std::make_pair(Class, Loc));
10765}
10766
10767bool Sema::DefineUsedVTables() {
10768  LoadExternalVTableUses();
10769  if (VTableUses.empty())
10770    return false;
10771
10772  // Note: The VTableUses vector could grow as a result of marking
10773  // the members of a class as "used", so we check the size each
10774  // time through the loop and prefer indices (with are stable) to
10775  // iterators (which are not).
10776  bool DefinedAnything = false;
10777  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10778    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10779    if (!Class)
10780      continue;
10781
10782    SourceLocation Loc = VTableUses[I].second;
10783
10784    // If this class has a key function, but that key function is
10785    // defined in another translation unit, we don't need to emit the
10786    // vtable even though we're using it.
10787    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10788    if (KeyFunction && !KeyFunction->hasBody()) {
10789      switch (KeyFunction->getTemplateSpecializationKind()) {
10790      case TSK_Undeclared:
10791      case TSK_ExplicitSpecialization:
10792      case TSK_ExplicitInstantiationDeclaration:
10793        // The key function is in another translation unit.
10794        continue;
10795
10796      case TSK_ExplicitInstantiationDefinition:
10797      case TSK_ImplicitInstantiation:
10798        // We will be instantiating the key function.
10799        break;
10800      }
10801    } else if (!KeyFunction) {
10802      // If we have a class with no key function that is the subject
10803      // of an explicit instantiation declaration, suppress the
10804      // vtable; it will live with the explicit instantiation
10805      // definition.
10806      bool IsExplicitInstantiationDeclaration
10807        = Class->getTemplateSpecializationKind()
10808                                      == TSK_ExplicitInstantiationDeclaration;
10809      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10810                                 REnd = Class->redecls_end();
10811           R != REnd; ++R) {
10812        TemplateSpecializationKind TSK
10813          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10814        if (TSK == TSK_ExplicitInstantiationDeclaration)
10815          IsExplicitInstantiationDeclaration = true;
10816        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10817          IsExplicitInstantiationDeclaration = false;
10818          break;
10819        }
10820      }
10821
10822      if (IsExplicitInstantiationDeclaration)
10823        continue;
10824    }
10825
10826    // Mark all of the virtual members of this class as referenced, so
10827    // that we can build a vtable. Then, tell the AST consumer that a
10828    // vtable for this class is required.
10829    DefinedAnything = true;
10830    MarkVirtualMembersReferenced(Loc, Class);
10831    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10832    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10833
10834    // Optionally warn if we're emitting a weak vtable.
10835    if (Class->getLinkage() == ExternalLinkage &&
10836        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10837      const FunctionDecl *KeyFunctionDef = 0;
10838      if (!KeyFunction ||
10839          (KeyFunction->hasBody(KeyFunctionDef) &&
10840           KeyFunctionDef->isInlined()))
10841        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10842             TSK_ExplicitInstantiationDefinition
10843             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10844          << Class;
10845    }
10846  }
10847  VTableUses.clear();
10848
10849  return DefinedAnything;
10850}
10851
10852void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10853                                        const CXXRecordDecl *RD) {
10854  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10855       e = RD->method_end(); i != e; ++i) {
10856    CXXMethodDecl *MD = *i;
10857
10858    // C++ [basic.def.odr]p2:
10859    //   [...] A virtual member function is used if it is not pure. [...]
10860    if (MD->isVirtual() && !MD->isPure())
10861      MarkDeclarationReferenced(Loc, MD);
10862  }
10863
10864  // Only classes that have virtual bases need a VTT.
10865  if (RD->getNumVBases() == 0)
10866    return;
10867
10868  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10869           e = RD->bases_end(); i != e; ++i) {
10870    const CXXRecordDecl *Base =
10871        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10872    if (Base->getNumVBases() == 0)
10873      continue;
10874    MarkVirtualMembersReferenced(Loc, Base);
10875  }
10876}
10877
10878/// SetIvarInitializers - This routine builds initialization ASTs for the
10879/// Objective-C implementation whose ivars need be initialized.
10880void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10881  if (!getLangOptions().CPlusPlus)
10882    return;
10883  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10884    SmallVector<ObjCIvarDecl*, 8> ivars;
10885    CollectIvarsToConstructOrDestruct(OID, ivars);
10886    if (ivars.empty())
10887      return;
10888    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10889    for (unsigned i = 0; i < ivars.size(); i++) {
10890      FieldDecl *Field = ivars[i];
10891      if (Field->isInvalidDecl())
10892        continue;
10893
10894      CXXCtorInitializer *Member;
10895      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10896      InitializationKind InitKind =
10897        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10898
10899      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10900      ExprResult MemberInit =
10901        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10902      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10903      // Note, MemberInit could actually come back empty if no initialization
10904      // is required (e.g., because it would call a trivial default constructor)
10905      if (!MemberInit.get() || MemberInit.isInvalid())
10906        continue;
10907
10908      Member =
10909        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10910                                         SourceLocation(),
10911                                         MemberInit.takeAs<Expr>(),
10912                                         SourceLocation());
10913      AllToInit.push_back(Member);
10914
10915      // Be sure that the destructor is accessible and is marked as referenced.
10916      if (const RecordType *RecordTy
10917                  = Context.getBaseElementType(Field->getType())
10918                                                        ->getAs<RecordType>()) {
10919                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10920        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10921          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10922          CheckDestructorAccess(Field->getLocation(), Destructor,
10923                            PDiag(diag::err_access_dtor_ivar)
10924                              << Context.getBaseElementType(Field->getType()));
10925        }
10926      }
10927    }
10928    ObjCImplementation->setIvarInitializers(Context,
10929                                            AllToInit.data(), AllToInit.size());
10930  }
10931}
10932
10933static
10934void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10935                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10936                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10937                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10938                           Sema &S) {
10939  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10940                                                   CE = Current.end();
10941  if (Ctor->isInvalidDecl())
10942    return;
10943
10944  const FunctionDecl *FNTarget = 0;
10945  CXXConstructorDecl *Target;
10946
10947  // We ignore the result here since if we don't have a body, Target will be
10948  // null below.
10949  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10950  Target
10951= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10952
10953  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10954                     // Avoid dereferencing a null pointer here.
10955                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10956
10957  if (!Current.insert(Canonical))
10958    return;
10959
10960  // We know that beyond here, we aren't chaining into a cycle.
10961  if (!Target || !Target->isDelegatingConstructor() ||
10962      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10963    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10964      Valid.insert(*CI);
10965    Current.clear();
10966  // We've hit a cycle.
10967  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10968             Current.count(TCanonical)) {
10969    // If we haven't diagnosed this cycle yet, do so now.
10970    if (!Invalid.count(TCanonical)) {
10971      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10972             diag::warn_delegating_ctor_cycle)
10973        << Ctor;
10974
10975      // Don't add a note for a function delegating directo to itself.
10976      if (TCanonical != Canonical)
10977        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10978
10979      CXXConstructorDecl *C = Target;
10980      while (C->getCanonicalDecl() != Canonical) {
10981        (void)C->getTargetConstructor()->hasBody(FNTarget);
10982        assert(FNTarget && "Ctor cycle through bodiless function");
10983
10984        C
10985       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10986        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10987      }
10988    }
10989
10990    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10991      Invalid.insert(*CI);
10992    Current.clear();
10993  } else {
10994    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10995  }
10996}
10997
10998
10999void Sema::CheckDelegatingCtorCycles() {
11000  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11001
11002  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11003                                                   CE = Current.end();
11004
11005  for (DelegatingCtorDeclsType::iterator
11006         I = DelegatingCtorDecls.begin(ExternalSource),
11007         E = DelegatingCtorDecls.end();
11008       I != E; ++I) {
11009   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11010  }
11011
11012  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11013    (*CI)->setInvalidDecl();
11014}
11015
11016/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11017Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11018  // Implicitly declared functions (e.g. copy constructors) are
11019  // __host__ __device__
11020  if (D->isImplicit())
11021    return CFT_HostDevice;
11022
11023  if (D->hasAttr<CUDAGlobalAttr>())
11024    return CFT_Global;
11025
11026  if (D->hasAttr<CUDADeviceAttr>()) {
11027    if (D->hasAttr<CUDAHostAttr>())
11028      return CFT_HostDevice;
11029    else
11030      return CFT_Device;
11031  }
11032
11033  return CFT_Host;
11034}
11035
11036bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11037                           CUDAFunctionTarget CalleeTarget) {
11038  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11039  // Callable from the device only."
11040  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11041    return true;
11042
11043  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11044  // Callable from the host only."
11045  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11046  // Callable from the host only."
11047  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11048      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11049    return true;
11050
11051  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11052    return true;
11053
11054  return false;
11055}
11056