SemaDeclCXX.cpp revision 6347f420ee0b097c0e642dc6c51afee5f1b14235
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor’s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor’s
682  //   definition. [Note: if the constructor’s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor’s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777static void *GetKeyForTopLevelField(FieldDecl *Field) {
778  // For anonymous unions, use the class declaration as the key.
779  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
780    if (RT->getDecl()->isAnonymousStructOrUnion())
781      return static_cast<void *>(RT->getDecl());
782  }
783  return static_cast<void *>(Field);
784}
785
786static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
787  // For fields injected into the class via declaration of an anonymous union,
788  // use its anonymous union class declaration as the unique key.
789  if (FieldDecl *Field = Member->getMember()) {
790    if (Field->getDeclContext()->isRecord()) {
791      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
792      if (RD->isAnonymousStructOrUnion())
793        return static_cast<void *>(RD);
794    }
795    return static_cast<void *>(Field);
796  }
797  return static_cast<RecordType *>(Member->getBaseClass());
798}
799
800void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
801                                SourceLocation ColonLoc,
802                                MemInitTy **MemInits, unsigned NumMemInits) {
803  if (!ConstructorDecl)
804    return;
805
806  CXXConstructorDecl *Constructor
807    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
808
809  if (!Constructor) {
810    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
811    return;
812  }
813  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
814  bool err = false;
815  for (unsigned i = 0; i < NumMemInits; i++) {
816    CXXBaseOrMemberInitializer *Member =
817      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
818    void *KeyToMember = GetKeyForMember(Member);
819    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
820    if (!PrevMember) {
821      PrevMember = Member;
822      continue;
823    }
824    if (FieldDecl *Field = Member->getMember())
825      Diag(Member->getSourceLocation(),
826           diag::error_multiple_mem_initialization)
827      << Field->getNameAsString();
828    else {
829      Type *BaseClass = Member->getBaseClass();
830      assert(BaseClass && "ActOnMemInitializers - neither field or base");
831      Diag(Member->getSourceLocation(),
832           diag::error_multiple_base_initialization)
833        << BaseClass->getDesugaredType(true);
834    }
835    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
836      << 0;
837    err = true;
838  }
839  if (!err) {
840    Constructor->setBaseOrMemberInitializers(Context,
841                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
842                    NumMemInits);
843  }
844  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
845               != Diagnostic::Ignored ||
846               Diags.getDiagnosticLevel(diag::warn_field_initialized)
847               != Diagnostic::Ignored)) {
848    // Also issue warning if order of ctor-initializer list does not match order
849    // of 1) base class declarations and 2) order of non-static data members.
850    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
851
852    CXXRecordDecl *ClassDecl
853      = cast<CXXRecordDecl>(Constructor->getDeclContext());
854    // Push virtual bases before others.
855    for (CXXRecordDecl::base_class_iterator VBase =
856         ClassDecl->vbases_begin(),
857         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
858      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
859
860    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
861         E = ClassDecl->bases_end(); Base != E; ++Base) {
862      // Virtuals are alread in the virtual base list and are constructed
863      // first.
864      if (Base->isVirtual())
865        continue;
866      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
867    }
868
869    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
870         E = ClassDecl->field_end(); Field != E; ++Field)
871      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
872
873    int Last = AllBaseOrMembers.size();
874    int curIndex = 0;
875    CXXBaseOrMemberInitializer *PrevMember = 0;
876    for (unsigned i = 0; i < NumMemInits; i++) {
877      CXXBaseOrMemberInitializer *Member =
878        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
879      void *MemberInCtorList = GetKeyForMember(Member);
880
881      for (; curIndex < Last; curIndex++)
882        if (MemberInCtorList == AllBaseOrMembers[curIndex])
883          break;
884      if (curIndex == Last) {
885        assert(PrevMember && "Member not in member list?!");
886        // Initializer as specified in ctor-initializer list is out of order.
887        // Issue a warning diagnostic.
888        if (PrevMember->isBaseInitializer()) {
889          // Diagnostics is for an initialized base class.
890          Type *BaseClass = PrevMember->getBaseClass();
891          Diag(PrevMember->getSourceLocation(),
892               diag::warn_base_initialized)
893                << BaseClass->getDesugaredType(true);
894        }
895        else {
896          FieldDecl *Field = PrevMember->getMember();
897          Diag(PrevMember->getSourceLocation(),
898               diag::warn_field_initialized)
899            << Field->getNameAsString();
900        }
901        // Also the note!
902        if (FieldDecl *Field = Member->getMember())
903          Diag(Member->getSourceLocation(),
904               diag::note_fieldorbase_initialized_here) << 0
905            << Field->getNameAsString();
906        else {
907          Type *BaseClass = Member->getBaseClass();
908          Diag(Member->getSourceLocation(),
909               diag::note_fieldorbase_initialized_here) << 1
910            << BaseClass->getDesugaredType(true);
911        }
912        for (curIndex = 0; curIndex < Last; curIndex++)
913          if (MemberInCtorList == AllBaseOrMembers[curIndex])
914            break;
915      }
916      PrevMember = Member;
917    }
918  }
919}
920
921void Sema::ActOnDefaultCDtorInitializers(DeclPtrTy CDtorDecl) {
922  if (!CDtorDecl)
923    return;
924
925  if (CXXConstructorDecl *Constructor
926      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
927    Constructor->setBaseOrMemberInitializers(Context,
928                                           (CXXBaseOrMemberInitializer **)0, 0);
929  else
930    if (CXXDestructorDecl *Destructor
931        = dyn_cast<CXXDestructorDecl>(CDtorDecl.getAs<Decl>()))
932      Destructor->setBaseOrMemberDestructions(Context);
933}
934
935namespace {
936  /// PureVirtualMethodCollector - traverses a class and its superclasses
937  /// and determines if it has any pure virtual methods.
938  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
939    ASTContext &Context;
940
941  public:
942    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
943
944  private:
945    MethodList Methods;
946
947    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
948
949  public:
950    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
951      : Context(Ctx) {
952
953      MethodList List;
954      Collect(RD, List);
955
956      // Copy the temporary list to methods, and make sure to ignore any
957      // null entries.
958      for (size_t i = 0, e = List.size(); i != e; ++i) {
959        if (List[i])
960          Methods.push_back(List[i]);
961      }
962    }
963
964    bool empty() const { return Methods.empty(); }
965
966    MethodList::const_iterator methods_begin() { return Methods.begin(); }
967    MethodList::const_iterator methods_end() { return Methods.end(); }
968  };
969
970  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
971                                           MethodList& Methods) {
972    // First, collect the pure virtual methods for the base classes.
973    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
974         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
975      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
976        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
977        if (BaseDecl && BaseDecl->isAbstract())
978          Collect(BaseDecl, Methods);
979      }
980    }
981
982    // Next, zero out any pure virtual methods that this class overrides.
983    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
984
985    MethodSetTy OverriddenMethods;
986    size_t MethodsSize = Methods.size();
987
988    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
989         i != e; ++i) {
990      // Traverse the record, looking for methods.
991      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
992        // If the method is pure virtual, add it to the methods vector.
993        if (MD->isPure()) {
994          Methods.push_back(MD);
995          continue;
996        }
997
998        // Otherwise, record all the overridden methods in our set.
999        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1000             E = MD->end_overridden_methods(); I != E; ++I) {
1001          // Keep track of the overridden methods.
1002          OverriddenMethods.insert(*I);
1003        }
1004      }
1005    }
1006
1007    // Now go through the methods and zero out all the ones we know are
1008    // overridden.
1009    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1010      if (OverriddenMethods.count(Methods[i]))
1011        Methods[i] = 0;
1012    }
1013
1014  }
1015}
1016
1017bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1018                                  unsigned DiagID, AbstractDiagSelID SelID,
1019                                  const CXXRecordDecl *CurrentRD) {
1020
1021  if (!getLangOptions().CPlusPlus)
1022    return false;
1023
1024  if (const ArrayType *AT = Context.getAsArrayType(T))
1025    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1026                                  CurrentRD);
1027
1028  if (const PointerType *PT = T->getAsPointerType()) {
1029    // Find the innermost pointer type.
1030    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1031      PT = T;
1032
1033    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1034      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1035                                    CurrentRD);
1036  }
1037
1038  const RecordType *RT = T->getAsRecordType();
1039  if (!RT)
1040    return false;
1041
1042  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1043  if (!RD)
1044    return false;
1045
1046  if (CurrentRD && CurrentRD != RD)
1047    return false;
1048
1049  if (!RD->isAbstract())
1050    return false;
1051
1052  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1053
1054  // Check if we've already emitted the list of pure virtual functions for this
1055  // class.
1056  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1057    return true;
1058
1059  PureVirtualMethodCollector Collector(Context, RD);
1060
1061  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1062       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1063    const CXXMethodDecl *MD = *I;
1064
1065    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1066      MD->getDeclName();
1067  }
1068
1069  if (!PureVirtualClassDiagSet)
1070    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1071  PureVirtualClassDiagSet->insert(RD);
1072
1073  return true;
1074}
1075
1076namespace {
1077  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1078    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1079    Sema &SemaRef;
1080    CXXRecordDecl *AbstractClass;
1081
1082    bool VisitDeclContext(const DeclContext *DC) {
1083      bool Invalid = false;
1084
1085      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1086           E = DC->decls_end(); I != E; ++I)
1087        Invalid |= Visit(*I);
1088
1089      return Invalid;
1090    }
1091
1092  public:
1093    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1094      : SemaRef(SemaRef), AbstractClass(ac) {
1095        Visit(SemaRef.Context.getTranslationUnitDecl());
1096    }
1097
1098    bool VisitFunctionDecl(const FunctionDecl *FD) {
1099      if (FD->isThisDeclarationADefinition()) {
1100        // No need to do the check if we're in a definition, because it requires
1101        // that the return/param types are complete.
1102        // because that requires
1103        return VisitDeclContext(FD);
1104      }
1105
1106      // Check the return type.
1107      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1108      bool Invalid =
1109        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1110                                       diag::err_abstract_type_in_decl,
1111                                       Sema::AbstractReturnType,
1112                                       AbstractClass);
1113
1114      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1115           E = FD->param_end(); I != E; ++I) {
1116        const ParmVarDecl *VD = *I;
1117        Invalid |=
1118          SemaRef.RequireNonAbstractType(VD->getLocation(),
1119                                         VD->getOriginalType(),
1120                                         diag::err_abstract_type_in_decl,
1121                                         Sema::AbstractParamType,
1122                                         AbstractClass);
1123      }
1124
1125      return Invalid;
1126    }
1127
1128    bool VisitDecl(const Decl* D) {
1129      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1130        return VisitDeclContext(DC);
1131
1132      return false;
1133    }
1134  };
1135}
1136
1137void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1138                                             DeclPtrTy TagDecl,
1139                                             SourceLocation LBrac,
1140                                             SourceLocation RBrac) {
1141  if (!TagDecl)
1142    return;
1143
1144  AdjustDeclIfTemplate(TagDecl);
1145  ActOnFields(S, RLoc, TagDecl,
1146              (DeclPtrTy*)FieldCollector->getCurFields(),
1147              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1148
1149  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1150  if (!RD->isAbstract()) {
1151    // Collect all the pure virtual methods and see if this is an abstract
1152    // class after all.
1153    PureVirtualMethodCollector Collector(Context, RD);
1154    if (!Collector.empty())
1155      RD->setAbstract(true);
1156  }
1157
1158  if (RD->isAbstract())
1159    AbstractClassUsageDiagnoser(*this, RD);
1160
1161  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1162    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1163         i != e; ++i) {
1164      // All the nonstatic data members must have trivial constructors.
1165      QualType FTy = i->getType();
1166      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1167        FTy = AT->getElementType();
1168
1169      if (const RecordType *RT = FTy->getAsRecordType()) {
1170        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1171
1172        if (!FieldRD->hasTrivialConstructor())
1173          RD->setHasTrivialConstructor(false);
1174        if (!FieldRD->hasTrivialDestructor())
1175          RD->setHasTrivialDestructor(false);
1176
1177        // If RD has neither a trivial constructor nor a trivial destructor
1178        // we don't need to continue checking.
1179        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1180          break;
1181      }
1182    }
1183  }
1184
1185  if (!RD->isDependentType())
1186    AddImplicitlyDeclaredMembersToClass(RD);
1187}
1188
1189/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1190/// special functions, such as the default constructor, copy
1191/// constructor, or destructor, to the given C++ class (C++
1192/// [special]p1).  This routine can only be executed just before the
1193/// definition of the class is complete.
1194void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1195  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1196  ClassType = Context.getCanonicalType(ClassType);
1197
1198  // FIXME: Implicit declarations have exception specifications, which are
1199  // the union of the specifications of the implicitly called functions.
1200
1201  if (!ClassDecl->hasUserDeclaredConstructor()) {
1202    // C++ [class.ctor]p5:
1203    //   A default constructor for a class X is a constructor of class X
1204    //   that can be called without an argument. If there is no
1205    //   user-declared constructor for class X, a default constructor is
1206    //   implicitly declared. An implicitly-declared default constructor
1207    //   is an inline public member of its class.
1208    DeclarationName Name
1209      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1210    CXXConstructorDecl *DefaultCon =
1211      CXXConstructorDecl::Create(Context, ClassDecl,
1212                                 ClassDecl->getLocation(), Name,
1213                                 Context.getFunctionType(Context.VoidTy,
1214                                                         0, 0, false, 0),
1215                                 /*isExplicit=*/false,
1216                                 /*isInline=*/true,
1217                                 /*isImplicitlyDeclared=*/true);
1218    DefaultCon->setAccess(AS_public);
1219    DefaultCon->setImplicit();
1220    ClassDecl->addDecl(DefaultCon);
1221  }
1222
1223  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1224    // C++ [class.copy]p4:
1225    //   If the class definition does not explicitly declare a copy
1226    //   constructor, one is declared implicitly.
1227
1228    // C++ [class.copy]p5:
1229    //   The implicitly-declared copy constructor for a class X will
1230    //   have the form
1231    //
1232    //       X::X(const X&)
1233    //
1234    //   if
1235    bool HasConstCopyConstructor = true;
1236
1237    //     -- each direct or virtual base class B of X has a copy
1238    //        constructor whose first parameter is of type const B& or
1239    //        const volatile B&, and
1240    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1241         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1242      const CXXRecordDecl *BaseClassDecl
1243        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1244      HasConstCopyConstructor
1245        = BaseClassDecl->hasConstCopyConstructor(Context);
1246    }
1247
1248    //     -- for all the nonstatic data members of X that are of a
1249    //        class type M (or array thereof), each such class type
1250    //        has a copy constructor whose first parameter is of type
1251    //        const M& or const volatile M&.
1252    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1253         HasConstCopyConstructor && Field != ClassDecl->field_end();
1254         ++Field) {
1255      QualType FieldType = (*Field)->getType();
1256      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1257        FieldType = Array->getElementType();
1258      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1259        const CXXRecordDecl *FieldClassDecl
1260          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1261        HasConstCopyConstructor
1262          = FieldClassDecl->hasConstCopyConstructor(Context);
1263      }
1264    }
1265
1266    //   Otherwise, the implicitly declared copy constructor will have
1267    //   the form
1268    //
1269    //       X::X(X&)
1270    QualType ArgType = ClassType;
1271    if (HasConstCopyConstructor)
1272      ArgType = ArgType.withConst();
1273    ArgType = Context.getLValueReferenceType(ArgType);
1274
1275    //   An implicitly-declared copy constructor is an inline public
1276    //   member of its class.
1277    DeclarationName Name
1278      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1279    CXXConstructorDecl *CopyConstructor
1280      = CXXConstructorDecl::Create(Context, ClassDecl,
1281                                   ClassDecl->getLocation(), Name,
1282                                   Context.getFunctionType(Context.VoidTy,
1283                                                           &ArgType, 1,
1284                                                           false, 0),
1285                                   /*isExplicit=*/false,
1286                                   /*isInline=*/true,
1287                                   /*isImplicitlyDeclared=*/true);
1288    CopyConstructor->setAccess(AS_public);
1289    CopyConstructor->setImplicit();
1290
1291    // Add the parameter to the constructor.
1292    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1293                                                 ClassDecl->getLocation(),
1294                                                 /*IdentifierInfo=*/0,
1295                                                 ArgType, VarDecl::None, 0);
1296    CopyConstructor->setParams(Context, &FromParam, 1);
1297    ClassDecl->addDecl(CopyConstructor);
1298  }
1299
1300  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1301    // Note: The following rules are largely analoguous to the copy
1302    // constructor rules. Note that virtual bases are not taken into account
1303    // for determining the argument type of the operator. Note also that
1304    // operators taking an object instead of a reference are allowed.
1305    //
1306    // C++ [class.copy]p10:
1307    //   If the class definition does not explicitly declare a copy
1308    //   assignment operator, one is declared implicitly.
1309    //   The implicitly-defined copy assignment operator for a class X
1310    //   will have the form
1311    //
1312    //       X& X::operator=(const X&)
1313    //
1314    //   if
1315    bool HasConstCopyAssignment = true;
1316
1317    //       -- each direct base class B of X has a copy assignment operator
1318    //          whose parameter is of type const B&, const volatile B& or B,
1319    //          and
1320    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1321         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1322      const CXXRecordDecl *BaseClassDecl
1323        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1324      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1325    }
1326
1327    //       -- for all the nonstatic data members of X that are of a class
1328    //          type M (or array thereof), each such class type has a copy
1329    //          assignment operator whose parameter is of type const M&,
1330    //          const volatile M& or M.
1331    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1332         HasConstCopyAssignment && Field != ClassDecl->field_end();
1333         ++Field) {
1334      QualType FieldType = (*Field)->getType();
1335      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1336        FieldType = Array->getElementType();
1337      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1338        const CXXRecordDecl *FieldClassDecl
1339          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1340        HasConstCopyAssignment
1341          = FieldClassDecl->hasConstCopyAssignment(Context);
1342      }
1343    }
1344
1345    //   Otherwise, the implicitly declared copy assignment operator will
1346    //   have the form
1347    //
1348    //       X& X::operator=(X&)
1349    QualType ArgType = ClassType;
1350    QualType RetType = Context.getLValueReferenceType(ArgType);
1351    if (HasConstCopyAssignment)
1352      ArgType = ArgType.withConst();
1353    ArgType = Context.getLValueReferenceType(ArgType);
1354
1355    //   An implicitly-declared copy assignment operator is an inline public
1356    //   member of its class.
1357    DeclarationName Name =
1358      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1359    CXXMethodDecl *CopyAssignment =
1360      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1361                            Context.getFunctionType(RetType, &ArgType, 1,
1362                                                    false, 0),
1363                            /*isStatic=*/false, /*isInline=*/true);
1364    CopyAssignment->setAccess(AS_public);
1365    CopyAssignment->setImplicit();
1366
1367    // Add the parameter to the operator.
1368    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1369                                                 ClassDecl->getLocation(),
1370                                                 /*IdentifierInfo=*/0,
1371                                                 ArgType, VarDecl::None, 0);
1372    CopyAssignment->setParams(Context, &FromParam, 1);
1373
1374    // Don't call addedAssignmentOperator. There is no way to distinguish an
1375    // implicit from an explicit assignment operator.
1376    ClassDecl->addDecl(CopyAssignment);
1377  }
1378
1379  if (!ClassDecl->hasUserDeclaredDestructor()) {
1380    // C++ [class.dtor]p2:
1381    //   If a class has no user-declared destructor, a destructor is
1382    //   declared implicitly. An implicitly-declared destructor is an
1383    //   inline public member of its class.
1384    DeclarationName Name
1385      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1386    CXXDestructorDecl *Destructor
1387      = CXXDestructorDecl::Create(Context, ClassDecl,
1388                                  ClassDecl->getLocation(), Name,
1389                                  Context.getFunctionType(Context.VoidTy,
1390                                                          0, 0, false, 0),
1391                                  /*isInline=*/true,
1392                                  /*isImplicitlyDeclared=*/true);
1393    Destructor->setAccess(AS_public);
1394    Destructor->setImplicit();
1395    ClassDecl->addDecl(Destructor);
1396  }
1397}
1398
1399void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1400  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1401  if (!Template)
1402    return;
1403
1404  TemplateParameterList *Params = Template->getTemplateParameters();
1405  for (TemplateParameterList::iterator Param = Params->begin(),
1406                                    ParamEnd = Params->end();
1407       Param != ParamEnd; ++Param) {
1408    NamedDecl *Named = cast<NamedDecl>(*Param);
1409    if (Named->getDeclName()) {
1410      S->AddDecl(DeclPtrTy::make(Named));
1411      IdResolver.AddDecl(Named);
1412    }
1413  }
1414}
1415
1416/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1417/// parsing a top-level (non-nested) C++ class, and we are now
1418/// parsing those parts of the given Method declaration that could
1419/// not be parsed earlier (C++ [class.mem]p2), such as default
1420/// arguments. This action should enter the scope of the given
1421/// Method declaration as if we had just parsed the qualified method
1422/// name. However, it should not bring the parameters into scope;
1423/// that will be performed by ActOnDelayedCXXMethodParameter.
1424void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1425  if (!MethodD)
1426    return;
1427
1428  CXXScopeSpec SS;
1429  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1430  QualType ClassTy
1431    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1432  SS.setScopeRep(
1433    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1434  ActOnCXXEnterDeclaratorScope(S, SS);
1435}
1436
1437/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1438/// C++ method declaration. We're (re-)introducing the given
1439/// function parameter into scope for use in parsing later parts of
1440/// the method declaration. For example, we could see an
1441/// ActOnParamDefaultArgument event for this parameter.
1442void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1443  if (!ParamD)
1444    return;
1445
1446  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1447
1448  // If this parameter has an unparsed default argument, clear it out
1449  // to make way for the parsed default argument.
1450  if (Param->hasUnparsedDefaultArg())
1451    Param->setDefaultArg(0);
1452
1453  S->AddDecl(DeclPtrTy::make(Param));
1454  if (Param->getDeclName())
1455    IdResolver.AddDecl(Param);
1456}
1457
1458/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1459/// processing the delayed method declaration for Method. The method
1460/// declaration is now considered finished. There may be a separate
1461/// ActOnStartOfFunctionDef action later (not necessarily
1462/// immediately!) for this method, if it was also defined inside the
1463/// class body.
1464void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1465  if (!MethodD)
1466    return;
1467
1468  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1469  CXXScopeSpec SS;
1470  QualType ClassTy
1471    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1472  SS.setScopeRep(
1473    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1474  ActOnCXXExitDeclaratorScope(S, SS);
1475
1476  // Now that we have our default arguments, check the constructor
1477  // again. It could produce additional diagnostics or affect whether
1478  // the class has implicitly-declared destructors, among other
1479  // things.
1480  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1481    CheckConstructor(Constructor);
1482
1483  // Check the default arguments, which we may have added.
1484  if (!Method->isInvalidDecl())
1485    CheckCXXDefaultArguments(Method);
1486}
1487
1488/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1489/// the well-formedness of the constructor declarator @p D with type @p
1490/// R. If there are any errors in the declarator, this routine will
1491/// emit diagnostics and set the invalid bit to true.  In any case, the type
1492/// will be updated to reflect a well-formed type for the constructor and
1493/// returned.
1494QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1495                                          FunctionDecl::StorageClass &SC) {
1496  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1497
1498  // C++ [class.ctor]p3:
1499  //   A constructor shall not be virtual (10.3) or static (9.4). A
1500  //   constructor can be invoked for a const, volatile or const
1501  //   volatile object. A constructor shall not be declared const,
1502  //   volatile, or const volatile (9.3.2).
1503  if (isVirtual) {
1504    if (!D.isInvalidType())
1505      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1506        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1507        << SourceRange(D.getIdentifierLoc());
1508    D.setInvalidType();
1509  }
1510  if (SC == FunctionDecl::Static) {
1511    if (!D.isInvalidType())
1512      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1513        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1514        << SourceRange(D.getIdentifierLoc());
1515    D.setInvalidType();
1516    SC = FunctionDecl::None;
1517  }
1518
1519  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1520  if (FTI.TypeQuals != 0) {
1521    if (FTI.TypeQuals & QualType::Const)
1522      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1523        << "const" << SourceRange(D.getIdentifierLoc());
1524    if (FTI.TypeQuals & QualType::Volatile)
1525      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1526        << "volatile" << SourceRange(D.getIdentifierLoc());
1527    if (FTI.TypeQuals & QualType::Restrict)
1528      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1529        << "restrict" << SourceRange(D.getIdentifierLoc());
1530  }
1531
1532  // Rebuild the function type "R" without any type qualifiers (in
1533  // case any of the errors above fired) and with "void" as the
1534  // return type, since constructors don't have return types. We
1535  // *always* have to do this, because GetTypeForDeclarator will
1536  // put in a result type of "int" when none was specified.
1537  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1538  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1539                                 Proto->getNumArgs(),
1540                                 Proto->isVariadic(), 0);
1541}
1542
1543/// CheckConstructor - Checks a fully-formed constructor for
1544/// well-formedness, issuing any diagnostics required. Returns true if
1545/// the constructor declarator is invalid.
1546void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1547  CXXRecordDecl *ClassDecl
1548    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1549  if (!ClassDecl)
1550    return Constructor->setInvalidDecl();
1551
1552  // C++ [class.copy]p3:
1553  //   A declaration of a constructor for a class X is ill-formed if
1554  //   its first parameter is of type (optionally cv-qualified) X and
1555  //   either there are no other parameters or else all other
1556  //   parameters have default arguments.
1557  if (!Constructor->isInvalidDecl() &&
1558      ((Constructor->getNumParams() == 1) ||
1559       (Constructor->getNumParams() > 1 &&
1560        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1561    QualType ParamType = Constructor->getParamDecl(0)->getType();
1562    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1563    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1564      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1565      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1566        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1567      Constructor->setInvalidDecl();
1568    }
1569  }
1570
1571  // Notify the class that we've added a constructor.
1572  ClassDecl->addedConstructor(Context, Constructor);
1573}
1574
1575static inline bool
1576FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1577  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1578          FTI.ArgInfo[0].Param &&
1579          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1580}
1581
1582/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1583/// the well-formednes of the destructor declarator @p D with type @p
1584/// R. If there are any errors in the declarator, this routine will
1585/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1586/// will be updated to reflect a well-formed type for the destructor and
1587/// returned.
1588QualType Sema::CheckDestructorDeclarator(Declarator &D,
1589                                         FunctionDecl::StorageClass& SC) {
1590  // C++ [class.dtor]p1:
1591  //   [...] A typedef-name that names a class is a class-name
1592  //   (7.1.3); however, a typedef-name that names a class shall not
1593  //   be used as the identifier in the declarator for a destructor
1594  //   declaration.
1595  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1596  if (isa<TypedefType>(DeclaratorType)) {
1597    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1598      << DeclaratorType;
1599    D.setInvalidType();
1600  }
1601
1602  // C++ [class.dtor]p2:
1603  //   A destructor is used to destroy objects of its class type. A
1604  //   destructor takes no parameters, and no return type can be
1605  //   specified for it (not even void). The address of a destructor
1606  //   shall not be taken. A destructor shall not be static. A
1607  //   destructor can be invoked for a const, volatile or const
1608  //   volatile object. A destructor shall not be declared const,
1609  //   volatile or const volatile (9.3.2).
1610  if (SC == FunctionDecl::Static) {
1611    if (!D.isInvalidType())
1612      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1613        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1614        << SourceRange(D.getIdentifierLoc());
1615    SC = FunctionDecl::None;
1616    D.setInvalidType();
1617  }
1618  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1619    // Destructors don't have return types, but the parser will
1620    // happily parse something like:
1621    //
1622    //   class X {
1623    //     float ~X();
1624    //   };
1625    //
1626    // The return type will be eliminated later.
1627    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1628      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1629      << SourceRange(D.getIdentifierLoc());
1630  }
1631
1632  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1633  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1634    if (FTI.TypeQuals & QualType::Const)
1635      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1636        << "const" << SourceRange(D.getIdentifierLoc());
1637    if (FTI.TypeQuals & QualType::Volatile)
1638      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1639        << "volatile" << SourceRange(D.getIdentifierLoc());
1640    if (FTI.TypeQuals & QualType::Restrict)
1641      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1642        << "restrict" << SourceRange(D.getIdentifierLoc());
1643    D.setInvalidType();
1644  }
1645
1646  // Make sure we don't have any parameters.
1647  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1648    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1649
1650    // Delete the parameters.
1651    FTI.freeArgs();
1652    D.setInvalidType();
1653  }
1654
1655  // Make sure the destructor isn't variadic.
1656  if (FTI.isVariadic) {
1657    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1658    D.setInvalidType();
1659  }
1660
1661  // Rebuild the function type "R" without any type qualifiers or
1662  // parameters (in case any of the errors above fired) and with
1663  // "void" as the return type, since destructors don't have return
1664  // types. We *always* have to do this, because GetTypeForDeclarator
1665  // will put in a result type of "int" when none was specified.
1666  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1667}
1668
1669/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1670/// well-formednes of the conversion function declarator @p D with
1671/// type @p R. If there are any errors in the declarator, this routine
1672/// will emit diagnostics and return true. Otherwise, it will return
1673/// false. Either way, the type @p R will be updated to reflect a
1674/// well-formed type for the conversion operator.
1675void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1676                                     FunctionDecl::StorageClass& SC) {
1677  // C++ [class.conv.fct]p1:
1678  //   Neither parameter types nor return type can be specified. The
1679  //   type of a conversion function (8.3.5) is “function taking no
1680  //   parameter returning conversion-type-id.”
1681  if (SC == FunctionDecl::Static) {
1682    if (!D.isInvalidType())
1683      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1684        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1685        << SourceRange(D.getIdentifierLoc());
1686    D.setInvalidType();
1687    SC = FunctionDecl::None;
1688  }
1689  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1690    // Conversion functions don't have return types, but the parser will
1691    // happily parse something like:
1692    //
1693    //   class X {
1694    //     float operator bool();
1695    //   };
1696    //
1697    // The return type will be changed later anyway.
1698    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1699      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1700      << SourceRange(D.getIdentifierLoc());
1701  }
1702
1703  // Make sure we don't have any parameters.
1704  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1705    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1706
1707    // Delete the parameters.
1708    D.getTypeObject(0).Fun.freeArgs();
1709    D.setInvalidType();
1710  }
1711
1712  // Make sure the conversion function isn't variadic.
1713  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1714    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1715    D.setInvalidType();
1716  }
1717
1718  // C++ [class.conv.fct]p4:
1719  //   The conversion-type-id shall not represent a function type nor
1720  //   an array type.
1721  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1722  if (ConvType->isArrayType()) {
1723    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1724    ConvType = Context.getPointerType(ConvType);
1725    D.setInvalidType();
1726  } else if (ConvType->isFunctionType()) {
1727    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1728    ConvType = Context.getPointerType(ConvType);
1729    D.setInvalidType();
1730  }
1731
1732  // Rebuild the function type "R" without any parameters (in case any
1733  // of the errors above fired) and with the conversion type as the
1734  // return type.
1735  R = Context.getFunctionType(ConvType, 0, 0, false,
1736                              R->getAsFunctionProtoType()->getTypeQuals());
1737
1738  // C++0x explicit conversion operators.
1739  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1740    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1741         diag::warn_explicit_conversion_functions)
1742      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1743}
1744
1745/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1746/// the declaration of the given C++ conversion function. This routine
1747/// is responsible for recording the conversion function in the C++
1748/// class, if possible.
1749Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1750  assert(Conversion && "Expected to receive a conversion function declaration");
1751
1752  // Set the lexical context of this conversion function
1753  Conversion->setLexicalDeclContext(CurContext);
1754
1755  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1756
1757  // Make sure we aren't redeclaring the conversion function.
1758  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1759
1760  // C++ [class.conv.fct]p1:
1761  //   [...] A conversion function is never used to convert a
1762  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1763  //   same object type (or a reference to it), to a (possibly
1764  //   cv-qualified) base class of that type (or a reference to it),
1765  //   or to (possibly cv-qualified) void.
1766  // FIXME: Suppress this warning if the conversion function ends up being a
1767  // virtual function that overrides a virtual function in a base class.
1768  QualType ClassType
1769    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1770  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1771    ConvType = ConvTypeRef->getPointeeType();
1772  if (ConvType->isRecordType()) {
1773    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1774    if (ConvType == ClassType)
1775      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1776        << ClassType;
1777    else if (IsDerivedFrom(ClassType, ConvType))
1778      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1779        <<  ClassType << ConvType;
1780  } else if (ConvType->isVoidType()) {
1781    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1782      << ClassType << ConvType;
1783  }
1784
1785  if (Conversion->getPreviousDeclaration()) {
1786    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1787    for (OverloadedFunctionDecl::function_iterator
1788           Conv = Conversions->function_begin(),
1789           ConvEnd = Conversions->function_end();
1790         Conv != ConvEnd; ++Conv) {
1791      if (*Conv
1792            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1793        *Conv = Conversion;
1794        return DeclPtrTy::make(Conversion);
1795      }
1796    }
1797    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1798  } else
1799    ClassDecl->addConversionFunction(Context, Conversion);
1800
1801  return DeclPtrTy::make(Conversion);
1802}
1803
1804//===----------------------------------------------------------------------===//
1805// Namespace Handling
1806//===----------------------------------------------------------------------===//
1807
1808/// ActOnStartNamespaceDef - This is called at the start of a namespace
1809/// definition.
1810Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1811                                             SourceLocation IdentLoc,
1812                                             IdentifierInfo *II,
1813                                             SourceLocation LBrace) {
1814  NamespaceDecl *Namespc =
1815      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1816  Namespc->setLBracLoc(LBrace);
1817
1818  Scope *DeclRegionScope = NamespcScope->getParent();
1819
1820  if (II) {
1821    // C++ [namespace.def]p2:
1822    // The identifier in an original-namespace-definition shall not have been
1823    // previously defined in the declarative region in which the
1824    // original-namespace-definition appears. The identifier in an
1825    // original-namespace-definition is the name of the namespace. Subsequently
1826    // in that declarative region, it is treated as an original-namespace-name.
1827
1828    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1829                                     true);
1830
1831    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1832      // This is an extended namespace definition.
1833      // Attach this namespace decl to the chain of extended namespace
1834      // definitions.
1835      OrigNS->setNextNamespace(Namespc);
1836      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1837
1838      // Remove the previous declaration from the scope.
1839      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1840        IdResolver.RemoveDecl(OrigNS);
1841        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1842      }
1843    } else if (PrevDecl) {
1844      // This is an invalid name redefinition.
1845      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1846       << Namespc->getDeclName();
1847      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1848      Namespc->setInvalidDecl();
1849      // Continue on to push Namespc as current DeclContext and return it.
1850    }
1851
1852    PushOnScopeChains(Namespc, DeclRegionScope);
1853  } else {
1854    // FIXME: Handle anonymous namespaces
1855  }
1856
1857  // Although we could have an invalid decl (i.e. the namespace name is a
1858  // redefinition), push it as current DeclContext and try to continue parsing.
1859  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1860  // for the namespace has the declarations that showed up in that particular
1861  // namespace definition.
1862  PushDeclContext(NamespcScope, Namespc);
1863  return DeclPtrTy::make(Namespc);
1864}
1865
1866/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1867/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1868void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1869  Decl *Dcl = D.getAs<Decl>();
1870  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1871  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1872  Namespc->setRBracLoc(RBrace);
1873  PopDeclContext();
1874}
1875
1876Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1877                                          SourceLocation UsingLoc,
1878                                          SourceLocation NamespcLoc,
1879                                          const CXXScopeSpec &SS,
1880                                          SourceLocation IdentLoc,
1881                                          IdentifierInfo *NamespcName,
1882                                          AttributeList *AttrList) {
1883  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1884  assert(NamespcName && "Invalid NamespcName.");
1885  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1886  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1887
1888  UsingDirectiveDecl *UDir = 0;
1889
1890  // Lookup namespace name.
1891  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1892                                    LookupNamespaceName, false);
1893  if (R.isAmbiguous()) {
1894    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1895    return DeclPtrTy();
1896  }
1897  if (NamedDecl *NS = R) {
1898    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1899    // C++ [namespace.udir]p1:
1900    //   A using-directive specifies that the names in the nominated
1901    //   namespace can be used in the scope in which the
1902    //   using-directive appears after the using-directive. During
1903    //   unqualified name lookup (3.4.1), the names appear as if they
1904    //   were declared in the nearest enclosing namespace which
1905    //   contains both the using-directive and the nominated
1906    //   namespace. [Note: in this context, “contains” means “contains
1907    //   directly or indirectly”. ]
1908
1909    // Find enclosing context containing both using-directive and
1910    // nominated namespace.
1911    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1912    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1913      CommonAncestor = CommonAncestor->getParent();
1914
1915    UDir = UsingDirectiveDecl::Create(Context,
1916                                      CurContext, UsingLoc,
1917                                      NamespcLoc,
1918                                      SS.getRange(),
1919                                      (NestedNameSpecifier *)SS.getScopeRep(),
1920                                      IdentLoc,
1921                                      cast<NamespaceDecl>(NS),
1922                                      CommonAncestor);
1923    PushUsingDirective(S, UDir);
1924  } else {
1925    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1926  }
1927
1928  // FIXME: We ignore attributes for now.
1929  delete AttrList;
1930  return DeclPtrTy::make(UDir);
1931}
1932
1933void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1934  // If scope has associated entity, then using directive is at namespace
1935  // or translation unit scope. We add UsingDirectiveDecls, into
1936  // it's lookup structure.
1937  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1938    Ctx->addDecl(UDir);
1939  else
1940    // Otherwise it is block-sope. using-directives will affect lookup
1941    // only to the end of scope.
1942    S->PushUsingDirective(DeclPtrTy::make(UDir));
1943}
1944
1945
1946Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1947                                          SourceLocation UsingLoc,
1948                                          const CXXScopeSpec &SS,
1949                                          SourceLocation IdentLoc,
1950                                          IdentifierInfo *TargetName,
1951                                          OverloadedOperatorKind Op,
1952                                          AttributeList *AttrList,
1953                                          bool IsTypeName) {
1954  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1955  assert((TargetName || Op) && "Invalid TargetName.");
1956  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1957  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1958
1959  UsingDecl *UsingAlias = 0;
1960
1961  DeclarationName Name;
1962  if (TargetName)
1963    Name = TargetName;
1964  else
1965    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1966
1967  // Lookup target name.
1968  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1969
1970  if (NamedDecl *NS = R) {
1971    if (IsTypeName && !isa<TypeDecl>(NS)) {
1972      Diag(IdentLoc, diag::err_using_typename_non_type);
1973    }
1974    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1975        NS->getLocation(), UsingLoc, NS,
1976        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1977        IsTypeName);
1978    PushOnScopeChains(UsingAlias, S);
1979  } else {
1980    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1981  }
1982
1983  // FIXME: We ignore attributes for now.
1984  delete AttrList;
1985  return DeclPtrTy::make(UsingAlias);
1986}
1987
1988/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1989/// is a namespace alias, returns the namespace it points to.
1990static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1991  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1992    return AD->getNamespace();
1993  return dyn_cast_or_null<NamespaceDecl>(D);
1994}
1995
1996Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1997                                             SourceLocation NamespaceLoc,
1998                                             SourceLocation AliasLoc,
1999                                             IdentifierInfo *Alias,
2000                                             const CXXScopeSpec &SS,
2001                                             SourceLocation IdentLoc,
2002                                             IdentifierInfo *Ident) {
2003
2004  // Lookup the namespace name.
2005  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2006
2007  // Check if we have a previous declaration with the same name.
2008  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2009    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2010      // We already have an alias with the same name that points to the same
2011      // namespace, so don't create a new one.
2012      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2013        return DeclPtrTy();
2014    }
2015
2016    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2017      diag::err_redefinition_different_kind;
2018    Diag(AliasLoc, DiagID) << Alias;
2019    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2020    return DeclPtrTy();
2021  }
2022
2023  if (R.isAmbiguous()) {
2024    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2025    return DeclPtrTy();
2026  }
2027
2028  if (!R) {
2029    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2030    return DeclPtrTy();
2031  }
2032
2033  NamespaceAliasDecl *AliasDecl =
2034    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2035                               Alias, SS.getRange(),
2036                               (NestedNameSpecifier *)SS.getScopeRep(),
2037                               IdentLoc, R);
2038
2039  CurContext->addDecl(AliasDecl);
2040  return DeclPtrTy::make(AliasDecl);
2041}
2042
2043void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2044                                            CXXConstructorDecl *Constructor) {
2045  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2046          !Constructor->isUsed()) &&
2047    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2048
2049  CXXRecordDecl *ClassDecl
2050    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2051  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2052  // Before the implicitly-declared default constructor for a class is
2053  // implicitly defined, all the implicitly-declared default constructors
2054  // for its base class and its non-static data members shall have been
2055  // implicitly defined.
2056  bool err = false;
2057  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2058       E = ClassDecl->bases_end(); Base != E; ++Base) {
2059    CXXRecordDecl *BaseClassDecl
2060      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2061    if (!BaseClassDecl->hasTrivialConstructor()) {
2062      if (CXXConstructorDecl *BaseCtor =
2063            BaseClassDecl->getDefaultConstructor(Context))
2064        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2065      else {
2066        Diag(CurrentLocation, diag::err_defining_default_ctor)
2067          << Context.getTagDeclType(ClassDecl) << 1
2068          << Context.getTagDeclType(BaseClassDecl);
2069        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2070              << Context.getTagDeclType(BaseClassDecl);
2071        err = true;
2072      }
2073    }
2074  }
2075  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2076       E = ClassDecl->field_end(); Field != E; ++Field) {
2077    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2078    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2079      FieldType = Array->getElementType();
2080    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2081      CXXRecordDecl *FieldClassDecl
2082        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2083      if (!FieldClassDecl->hasTrivialConstructor()) {
2084        if (CXXConstructorDecl *FieldCtor =
2085            FieldClassDecl->getDefaultConstructor(Context))
2086          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2087        else {
2088          Diag(CurrentLocation, diag::err_defining_default_ctor)
2089          << Context.getTagDeclType(ClassDecl) << 0 <<
2090              Context.getTagDeclType(FieldClassDecl);
2091          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2092          << Context.getTagDeclType(FieldClassDecl);
2093          err = true;
2094        }
2095      }
2096    }
2097    else if (FieldType->isReferenceType()) {
2098      Diag(CurrentLocation, diag::err_unintialized_member)
2099        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2100      Diag((*Field)->getLocation(), diag::note_declared_at);
2101      err = true;
2102    }
2103    else if (FieldType.isConstQualified()) {
2104      Diag(CurrentLocation, diag::err_unintialized_member)
2105        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2106       Diag((*Field)->getLocation(), diag::note_declared_at);
2107      err = true;
2108    }
2109  }
2110  if (!err)
2111    Constructor->setUsed();
2112  else
2113    Constructor->setInvalidDecl();
2114}
2115
2116void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2117                                            CXXDestructorDecl *Destructor) {
2118  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2119         "DefineImplicitDestructor - call it for implicit default dtor");
2120
2121  CXXRecordDecl *ClassDecl
2122  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2123  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2124  // C++ [class.dtor] p5
2125  // Before the implicitly-declared default destructor for a class is
2126  // implicitly defined, all the implicitly-declared default destructors
2127  // for its base class and its non-static data members shall have been
2128  // implicitly defined.
2129  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2130       E = ClassDecl->bases_end(); Base != E; ++Base) {
2131    CXXRecordDecl *BaseClassDecl
2132      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2133    if (!BaseClassDecl->hasTrivialDestructor()) {
2134      if (CXXDestructorDecl *BaseDtor =
2135          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2136        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2137      else
2138        assert(false &&
2139               "DefineImplicitDestructor - missing dtor in a base class");
2140    }
2141  }
2142
2143  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2144       E = ClassDecl->field_end(); Field != E; ++Field) {
2145    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2146    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2147      FieldType = Array->getElementType();
2148    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2149      CXXRecordDecl *FieldClassDecl
2150        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2151      if (!FieldClassDecl->hasTrivialDestructor()) {
2152        if (CXXDestructorDecl *FieldDtor =
2153            const_cast<CXXDestructorDecl*>(
2154                                        FieldClassDecl->getDestructor(Context)))
2155          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2156        else
2157          assert(false &&
2158          "DefineImplicitDestructor - missing dtor in class of a data member");
2159      }
2160    }
2161  }
2162  Destructor->setUsed();
2163}
2164
2165void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2166                                          CXXMethodDecl *MethodDecl) {
2167  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2168          MethodDecl->getOverloadedOperator() == OO_Equal &&
2169          !MethodDecl->isUsed()) &&
2170         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2171
2172  CXXRecordDecl *ClassDecl
2173    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2174
2175  // C++[class.copy] p12
2176  // Before the implicitly-declared copy assignment operator for a class is
2177  // implicitly defined, all implicitly-declared copy assignment operators
2178  // for its direct base classes and its nonstatic data members shall have
2179  // been implicitly defined.
2180  bool err = false;
2181  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2182       E = ClassDecl->bases_end(); Base != E; ++Base) {
2183    CXXRecordDecl *BaseClassDecl
2184      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2185    if (CXXMethodDecl *BaseAssignOpMethod =
2186          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2187      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2188  }
2189  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2190       E = ClassDecl->field_end(); Field != E; ++Field) {
2191    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2192    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2193      FieldType = Array->getElementType();
2194    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2195      CXXRecordDecl *FieldClassDecl
2196        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2197      if (CXXMethodDecl *FieldAssignOpMethod =
2198          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2199        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2200    }
2201    else if (FieldType->isReferenceType()) {
2202      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2203      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2204      Diag(Field->getLocation(), diag::note_declared_at);
2205      Diag(CurrentLocation, diag::note_first_required_here);
2206      err = true;
2207    }
2208    else if (FieldType.isConstQualified()) {
2209      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2210      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2211      Diag(Field->getLocation(), diag::note_declared_at);
2212      Diag(CurrentLocation, diag::note_first_required_here);
2213      err = true;
2214    }
2215  }
2216  if (!err)
2217    MethodDecl->setUsed();
2218}
2219
2220CXXMethodDecl *
2221Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2222                              CXXRecordDecl *ClassDecl) {
2223  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2224  QualType RHSType(LHSType);
2225  // If class's assignment operator argument is const/volatile qualified,
2226  // look for operator = (const/volatile B&). Otherwise, look for
2227  // operator = (B&).
2228  if (ParmDecl->getType().isConstQualified())
2229    RHSType.addConst();
2230  if (ParmDecl->getType().isVolatileQualified())
2231    RHSType.addVolatile();
2232  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2233                                                          LHSType,
2234                                                          SourceLocation()));
2235  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2236                                                          RHSType,
2237                                                          SourceLocation()));
2238  Expr *Args[2] = { &*LHS, &*RHS };
2239  OverloadCandidateSet CandidateSet;
2240  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2241                              CandidateSet);
2242  OverloadCandidateSet::iterator Best;
2243  if (BestViableFunction(CandidateSet,
2244                         ClassDecl->getLocation(), Best) == OR_Success)
2245    return cast<CXXMethodDecl>(Best->Function);
2246  assert(false &&
2247         "getAssignOperatorMethod - copy assignment operator method not found");
2248  return 0;
2249}
2250
2251void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2252                                   CXXConstructorDecl *CopyConstructor,
2253                                   unsigned TypeQuals) {
2254  assert((CopyConstructor->isImplicit() &&
2255          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2256          !CopyConstructor->isUsed()) &&
2257         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2258
2259  CXXRecordDecl *ClassDecl
2260    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2261  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2262  // C++ [class.copy] p209
2263  // Before the implicitly-declared copy constructor for a class is
2264  // implicitly defined, all the implicitly-declared copy constructors
2265  // for its base class and its non-static data members shall have been
2266  // implicitly defined.
2267  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2268       Base != ClassDecl->bases_end(); ++Base) {
2269    CXXRecordDecl *BaseClassDecl
2270      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2271    if (CXXConstructorDecl *BaseCopyCtor =
2272        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2273      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2274  }
2275  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2276                                  FieldEnd = ClassDecl->field_end();
2277       Field != FieldEnd; ++Field) {
2278    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2279    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2280      FieldType = Array->getElementType();
2281    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2282      CXXRecordDecl *FieldClassDecl
2283        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2284      if (CXXConstructorDecl *FieldCopyCtor =
2285          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2286        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2287    }
2288  }
2289  CopyConstructor->setUsed();
2290}
2291
2292void Sema::InitializeVarWithConstructor(VarDecl *VD,
2293                                        CXXConstructorDecl *Constructor,
2294                                        QualType DeclInitType,
2295                                        Expr **Exprs, unsigned NumExprs) {
2296  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2297                                        false, Exprs, NumExprs);
2298  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2299  VD->setInit(Context, Temp);
2300}
2301
2302void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2303{
2304  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2305                                  DeclInitType->getAsRecordType()->getDecl());
2306  if (!ClassDecl->hasTrivialDestructor())
2307    if (CXXDestructorDecl *Destructor =
2308        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2309      MarkDeclarationReferenced(Loc, Destructor);
2310}
2311
2312/// AddCXXDirectInitializerToDecl - This action is called immediately after
2313/// ActOnDeclarator, when a C++ direct initializer is present.
2314/// e.g: "int x(1);"
2315void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2316                                         SourceLocation LParenLoc,
2317                                         MultiExprArg Exprs,
2318                                         SourceLocation *CommaLocs,
2319                                         SourceLocation RParenLoc) {
2320  unsigned NumExprs = Exprs.size();
2321  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2322  Decl *RealDecl = Dcl.getAs<Decl>();
2323
2324  // If there is no declaration, there was an error parsing it.  Just ignore
2325  // the initializer.
2326  if (RealDecl == 0)
2327    return;
2328
2329  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2330  if (!VDecl) {
2331    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2332    RealDecl->setInvalidDecl();
2333    return;
2334  }
2335
2336  // FIXME: Need to handle dependent types and expressions here.
2337
2338  // We will treat direct-initialization as a copy-initialization:
2339  //    int x(1);  -as-> int x = 1;
2340  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2341  //
2342  // Clients that want to distinguish between the two forms, can check for
2343  // direct initializer using VarDecl::hasCXXDirectInitializer().
2344  // A major benefit is that clients that don't particularly care about which
2345  // exactly form was it (like the CodeGen) can handle both cases without
2346  // special case code.
2347
2348  // C++ 8.5p11:
2349  // The form of initialization (using parentheses or '=') is generally
2350  // insignificant, but does matter when the entity being initialized has a
2351  // class type.
2352  QualType DeclInitType = VDecl->getType();
2353  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2354    DeclInitType = Array->getElementType();
2355
2356  // FIXME: This isn't the right place to complete the type.
2357  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2358                          diag::err_typecheck_decl_incomplete_type)) {
2359    VDecl->setInvalidDecl();
2360    return;
2361  }
2362
2363  if (VDecl->getType()->isRecordType()) {
2364    CXXConstructorDecl *Constructor
2365      = PerformInitializationByConstructor(DeclInitType,
2366                                           (Expr **)Exprs.get(), NumExprs,
2367                                           VDecl->getLocation(),
2368                                           SourceRange(VDecl->getLocation(),
2369                                                       RParenLoc),
2370                                           VDecl->getDeclName(),
2371                                           IK_Direct);
2372    if (!Constructor)
2373      RealDecl->setInvalidDecl();
2374    else {
2375      VDecl->setCXXDirectInitializer(true);
2376      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2377                                   (Expr**)Exprs.release(), NumExprs);
2378      // FIXME. Must do all that is needed to destroy the object
2379      // on scope exit. For now, just mark the destructor as used.
2380      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2381    }
2382    return;
2383  }
2384
2385  if (NumExprs > 1) {
2386    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2387      << SourceRange(VDecl->getLocation(), RParenLoc);
2388    RealDecl->setInvalidDecl();
2389    return;
2390  }
2391
2392  // Let clients know that initialization was done with a direct initializer.
2393  VDecl->setCXXDirectInitializer(true);
2394
2395  assert(NumExprs == 1 && "Expected 1 expression");
2396  // Set the init expression, handles conversions.
2397  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2398                       /*DirectInit=*/true);
2399}
2400
2401/// PerformInitializationByConstructor - Perform initialization by
2402/// constructor (C++ [dcl.init]p14), which may occur as part of
2403/// direct-initialization or copy-initialization. We are initializing
2404/// an object of type @p ClassType with the given arguments @p
2405/// Args. @p Loc is the location in the source code where the
2406/// initializer occurs (e.g., a declaration, member initializer,
2407/// functional cast, etc.) while @p Range covers the whole
2408/// initialization. @p InitEntity is the entity being initialized,
2409/// which may by the name of a declaration or a type. @p Kind is the
2410/// kind of initialization we're performing, which affects whether
2411/// explicit constructors will be considered. When successful, returns
2412/// the constructor that will be used to perform the initialization;
2413/// when the initialization fails, emits a diagnostic and returns
2414/// null.
2415CXXConstructorDecl *
2416Sema::PerformInitializationByConstructor(QualType ClassType,
2417                                         Expr **Args, unsigned NumArgs,
2418                                         SourceLocation Loc, SourceRange Range,
2419                                         DeclarationName InitEntity,
2420                                         InitializationKind Kind) {
2421  const RecordType *ClassRec = ClassType->getAsRecordType();
2422  assert(ClassRec && "Can only initialize a class type here");
2423
2424  // C++ [dcl.init]p14:
2425  //
2426  //   If the initialization is direct-initialization, or if it is
2427  //   copy-initialization where the cv-unqualified version of the
2428  //   source type is the same class as, or a derived class of, the
2429  //   class of the destination, constructors are considered. The
2430  //   applicable constructors are enumerated (13.3.1.3), and the
2431  //   best one is chosen through overload resolution (13.3). The
2432  //   constructor so selected is called to initialize the object,
2433  //   with the initializer expression(s) as its argument(s). If no
2434  //   constructor applies, or the overload resolution is ambiguous,
2435  //   the initialization is ill-formed.
2436  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2437  OverloadCandidateSet CandidateSet;
2438
2439  // Add constructors to the overload set.
2440  DeclarationName ConstructorName
2441    = Context.DeclarationNames.getCXXConstructorName(
2442                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2443  DeclContext::lookup_const_iterator Con, ConEnd;
2444  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2445       Con != ConEnd; ++Con) {
2446    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2447    if ((Kind == IK_Direct) ||
2448        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2449        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2450      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2451  }
2452
2453  // FIXME: When we decide not to synthesize the implicitly-declared
2454  // constructors, we'll need to make them appear here.
2455
2456  OverloadCandidateSet::iterator Best;
2457  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2458  case OR_Success:
2459    // We found a constructor. Return it.
2460    return cast<CXXConstructorDecl>(Best->Function);
2461
2462  case OR_No_Viable_Function:
2463    if (InitEntity)
2464      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2465        << InitEntity << Range;
2466    else
2467      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2468        << ClassType << Range;
2469    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2470    return 0;
2471
2472  case OR_Ambiguous:
2473    if (InitEntity)
2474      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2475    else
2476      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2477    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2478    return 0;
2479
2480  case OR_Deleted:
2481    if (InitEntity)
2482      Diag(Loc, diag::err_ovl_deleted_init)
2483        << Best->Function->isDeleted()
2484        << InitEntity << Range;
2485    else
2486      Diag(Loc, diag::err_ovl_deleted_init)
2487        << Best->Function->isDeleted()
2488        << InitEntity << Range;
2489    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2490    return 0;
2491  }
2492
2493  return 0;
2494}
2495
2496/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2497/// determine whether they are reference-related,
2498/// reference-compatible, reference-compatible with added
2499/// qualification, or incompatible, for use in C++ initialization by
2500/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2501/// type, and the first type (T1) is the pointee type of the reference
2502/// type being initialized.
2503Sema::ReferenceCompareResult
2504Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2505                                   bool& DerivedToBase) {
2506  assert(!T1->isReferenceType() &&
2507    "T1 must be the pointee type of the reference type");
2508  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2509
2510  T1 = Context.getCanonicalType(T1);
2511  T2 = Context.getCanonicalType(T2);
2512  QualType UnqualT1 = T1.getUnqualifiedType();
2513  QualType UnqualT2 = T2.getUnqualifiedType();
2514
2515  // C++ [dcl.init.ref]p4:
2516  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2517  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2518  //   T1 is a base class of T2.
2519  if (UnqualT1 == UnqualT2)
2520    DerivedToBase = false;
2521  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2522    DerivedToBase = true;
2523  else
2524    return Ref_Incompatible;
2525
2526  // At this point, we know that T1 and T2 are reference-related (at
2527  // least).
2528
2529  // C++ [dcl.init.ref]p4:
2530  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2531  //   reference-related to T2 and cv1 is the same cv-qualification
2532  //   as, or greater cv-qualification than, cv2. For purposes of
2533  //   overload resolution, cases for which cv1 is greater
2534  //   cv-qualification than cv2 are identified as
2535  //   reference-compatible with added qualification (see 13.3.3.2).
2536  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2537    return Ref_Compatible;
2538  else if (T1.isMoreQualifiedThan(T2))
2539    return Ref_Compatible_With_Added_Qualification;
2540  else
2541    return Ref_Related;
2542}
2543
2544/// CheckReferenceInit - Check the initialization of a reference
2545/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2546/// the initializer (either a simple initializer or an initializer
2547/// list), and DeclType is the type of the declaration. When ICS is
2548/// non-null, this routine will compute the implicit conversion
2549/// sequence according to C++ [over.ics.ref] and will not produce any
2550/// diagnostics; when ICS is null, it will emit diagnostics when any
2551/// errors are found. Either way, a return value of true indicates
2552/// that there was a failure, a return value of false indicates that
2553/// the reference initialization succeeded.
2554///
2555/// When @p SuppressUserConversions, user-defined conversions are
2556/// suppressed.
2557/// When @p AllowExplicit, we also permit explicit user-defined
2558/// conversion functions.
2559/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2560bool
2561Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2562                         ImplicitConversionSequence *ICS,
2563                         bool SuppressUserConversions,
2564                         bool AllowExplicit, bool ForceRValue) {
2565  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2566
2567  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2568  QualType T2 = Init->getType();
2569
2570  // If the initializer is the address of an overloaded function, try
2571  // to resolve the overloaded function. If all goes well, T2 is the
2572  // type of the resulting function.
2573  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2574    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2575                                                          ICS != 0);
2576    if (Fn) {
2577      // Since we're performing this reference-initialization for
2578      // real, update the initializer with the resulting function.
2579      if (!ICS) {
2580        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2581          return true;
2582
2583        FixOverloadedFunctionReference(Init, Fn);
2584      }
2585
2586      T2 = Fn->getType();
2587    }
2588  }
2589
2590  // Compute some basic properties of the types and the initializer.
2591  bool isRValRef = DeclType->isRValueReferenceType();
2592  bool DerivedToBase = false;
2593  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2594                                                  Init->isLvalue(Context);
2595  ReferenceCompareResult RefRelationship
2596    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2597
2598  // Most paths end in a failed conversion.
2599  if (ICS)
2600    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2601
2602  // C++ [dcl.init.ref]p5:
2603  //   A reference to type “cv1 T1” is initialized by an expression
2604  //   of type “cv2 T2” as follows:
2605
2606  //     -- If the initializer expression
2607
2608  // Rvalue references cannot bind to lvalues (N2812).
2609  // There is absolutely no situation where they can. In particular, note that
2610  // this is ill-formed, even if B has a user-defined conversion to A&&:
2611  //   B b;
2612  //   A&& r = b;
2613  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2614    if (!ICS)
2615      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2616        << Init->getSourceRange();
2617    return true;
2618  }
2619
2620  bool BindsDirectly = false;
2621  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2622  //          reference-compatible with “cv2 T2,” or
2623  //
2624  // Note that the bit-field check is skipped if we are just computing
2625  // the implicit conversion sequence (C++ [over.best.ics]p2).
2626  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2627      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2628    BindsDirectly = true;
2629
2630    if (ICS) {
2631      // C++ [over.ics.ref]p1:
2632      //   When a parameter of reference type binds directly (8.5.3)
2633      //   to an argument expression, the implicit conversion sequence
2634      //   is the identity conversion, unless the argument expression
2635      //   has a type that is a derived class of the parameter type,
2636      //   in which case the implicit conversion sequence is a
2637      //   derived-to-base Conversion (13.3.3.1).
2638      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2639      ICS->Standard.First = ICK_Identity;
2640      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2641      ICS->Standard.Third = ICK_Identity;
2642      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2643      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2644      ICS->Standard.ReferenceBinding = true;
2645      ICS->Standard.DirectBinding = true;
2646      ICS->Standard.RRefBinding = false;
2647      ICS->Standard.CopyConstructor = 0;
2648
2649      // Nothing more to do: the inaccessibility/ambiguity check for
2650      // derived-to-base conversions is suppressed when we're
2651      // computing the implicit conversion sequence (C++
2652      // [over.best.ics]p2).
2653      return false;
2654    } else {
2655      // Perform the conversion.
2656      // FIXME: Binding to a subobject of the lvalue is going to require more
2657      // AST annotation than this.
2658      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2659    }
2660  }
2661
2662  //       -- has a class type (i.e., T2 is a class type) and can be
2663  //          implicitly converted to an lvalue of type “cv3 T3,”
2664  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2665  //          92) (this conversion is selected by enumerating the
2666  //          applicable conversion functions (13.3.1.6) and choosing
2667  //          the best one through overload resolution (13.3)),
2668  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2669    // FIXME: Look for conversions in base classes!
2670    CXXRecordDecl *T2RecordDecl
2671      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2672
2673    OverloadCandidateSet CandidateSet;
2674    OverloadedFunctionDecl *Conversions
2675      = T2RecordDecl->getConversionFunctions();
2676    for (OverloadedFunctionDecl::function_iterator Func
2677           = Conversions->function_begin();
2678         Func != Conversions->function_end(); ++Func) {
2679      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2680
2681      // If the conversion function doesn't return a reference type,
2682      // it can't be considered for this conversion.
2683      if (Conv->getConversionType()->isLValueReferenceType() &&
2684          (AllowExplicit || !Conv->isExplicit()))
2685        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2686    }
2687
2688    OverloadCandidateSet::iterator Best;
2689    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2690    case OR_Success:
2691      // This is a direct binding.
2692      BindsDirectly = true;
2693
2694      if (ICS) {
2695        // C++ [over.ics.ref]p1:
2696        //
2697        //   [...] If the parameter binds directly to the result of
2698        //   applying a conversion function to the argument
2699        //   expression, the implicit conversion sequence is a
2700        //   user-defined conversion sequence (13.3.3.1.2), with the
2701        //   second standard conversion sequence either an identity
2702        //   conversion or, if the conversion function returns an
2703        //   entity of a type that is a derived class of the parameter
2704        //   type, a derived-to-base Conversion.
2705        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2706        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2707        ICS->UserDefined.After = Best->FinalConversion;
2708        ICS->UserDefined.ConversionFunction = Best->Function;
2709        assert(ICS->UserDefined.After.ReferenceBinding &&
2710               ICS->UserDefined.After.DirectBinding &&
2711               "Expected a direct reference binding!");
2712        return false;
2713      } else {
2714        // Perform the conversion.
2715        // FIXME: Binding to a subobject of the lvalue is going to require more
2716        // AST annotation than this.
2717        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2718      }
2719      break;
2720
2721    case OR_Ambiguous:
2722      assert(false && "Ambiguous reference binding conversions not implemented.");
2723      return true;
2724
2725    case OR_No_Viable_Function:
2726    case OR_Deleted:
2727      // There was no suitable conversion, or we found a deleted
2728      // conversion; continue with other checks.
2729      break;
2730    }
2731  }
2732
2733  if (BindsDirectly) {
2734    // C++ [dcl.init.ref]p4:
2735    //   [...] In all cases where the reference-related or
2736    //   reference-compatible relationship of two types is used to
2737    //   establish the validity of a reference binding, and T1 is a
2738    //   base class of T2, a program that necessitates such a binding
2739    //   is ill-formed if T1 is an inaccessible (clause 11) or
2740    //   ambiguous (10.2) base class of T2.
2741    //
2742    // Note that we only check this condition when we're allowed to
2743    // complain about errors, because we should not be checking for
2744    // ambiguity (or inaccessibility) unless the reference binding
2745    // actually happens.
2746    if (DerivedToBase)
2747      return CheckDerivedToBaseConversion(T2, T1,
2748                                          Init->getSourceRange().getBegin(),
2749                                          Init->getSourceRange());
2750    else
2751      return false;
2752  }
2753
2754  //     -- Otherwise, the reference shall be to a non-volatile const
2755  //        type (i.e., cv1 shall be const), or the reference shall be an
2756  //        rvalue reference and the initializer expression shall be an rvalue.
2757  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2758    if (!ICS)
2759      Diag(Init->getSourceRange().getBegin(),
2760           diag::err_not_reference_to_const_init)
2761        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2762        << T2 << Init->getSourceRange();
2763    return true;
2764  }
2765
2766  //       -- If the initializer expression is an rvalue, with T2 a
2767  //          class type, and “cv1 T1” is reference-compatible with
2768  //          “cv2 T2,” the reference is bound in one of the
2769  //          following ways (the choice is implementation-defined):
2770  //
2771  //          -- The reference is bound to the object represented by
2772  //             the rvalue (see 3.10) or to a sub-object within that
2773  //             object.
2774  //
2775  //          -- A temporary of type “cv1 T2” [sic] is created, and
2776  //             a constructor is called to copy the entire rvalue
2777  //             object into the temporary. The reference is bound to
2778  //             the temporary or to a sub-object within the
2779  //             temporary.
2780  //
2781  //          The constructor that would be used to make the copy
2782  //          shall be callable whether or not the copy is actually
2783  //          done.
2784  //
2785  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2786  // freedom, so we will always take the first option and never build
2787  // a temporary in this case. FIXME: We will, however, have to check
2788  // for the presence of a copy constructor in C++98/03 mode.
2789  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2790      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2791    if (ICS) {
2792      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2793      ICS->Standard.First = ICK_Identity;
2794      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2795      ICS->Standard.Third = ICK_Identity;
2796      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2797      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2798      ICS->Standard.ReferenceBinding = true;
2799      ICS->Standard.DirectBinding = false;
2800      ICS->Standard.RRefBinding = isRValRef;
2801      ICS->Standard.CopyConstructor = 0;
2802    } else {
2803      // FIXME: Binding to a subobject of the rvalue is going to require more
2804      // AST annotation than this.
2805      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2806    }
2807    return false;
2808  }
2809
2810  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2811  //          initialized from the initializer expression using the
2812  //          rules for a non-reference copy initialization (8.5). The
2813  //          reference is then bound to the temporary. If T1 is
2814  //          reference-related to T2, cv1 must be the same
2815  //          cv-qualification as, or greater cv-qualification than,
2816  //          cv2; otherwise, the program is ill-formed.
2817  if (RefRelationship == Ref_Related) {
2818    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2819    // we would be reference-compatible or reference-compatible with
2820    // added qualification. But that wasn't the case, so the reference
2821    // initialization fails.
2822    if (!ICS)
2823      Diag(Init->getSourceRange().getBegin(),
2824           diag::err_reference_init_drops_quals)
2825        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2826        << T2 << Init->getSourceRange();
2827    return true;
2828  }
2829
2830  // If at least one of the types is a class type, the types are not
2831  // related, and we aren't allowed any user conversions, the
2832  // reference binding fails. This case is important for breaking
2833  // recursion, since TryImplicitConversion below will attempt to
2834  // create a temporary through the use of a copy constructor.
2835  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2836      (T1->isRecordType() || T2->isRecordType())) {
2837    if (!ICS)
2838      Diag(Init->getSourceRange().getBegin(),
2839           diag::err_typecheck_convert_incompatible)
2840        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2841    return true;
2842  }
2843
2844  // Actually try to convert the initializer to T1.
2845  if (ICS) {
2846    // C++ [over.ics.ref]p2:
2847    //
2848    //   When a parameter of reference type is not bound directly to
2849    //   an argument expression, the conversion sequence is the one
2850    //   required to convert the argument expression to the
2851    //   underlying type of the reference according to
2852    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2853    //   to copy-initializing a temporary of the underlying type with
2854    //   the argument expression. Any difference in top-level
2855    //   cv-qualification is subsumed by the initialization itself
2856    //   and does not constitute a conversion.
2857    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2858    // Of course, that's still a reference binding.
2859    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2860      ICS->Standard.ReferenceBinding = true;
2861      ICS->Standard.RRefBinding = isRValRef;
2862    } else if(ICS->ConversionKind ==
2863              ImplicitConversionSequence::UserDefinedConversion) {
2864      ICS->UserDefined.After.ReferenceBinding = true;
2865      ICS->UserDefined.After.RRefBinding = isRValRef;
2866    }
2867    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2868  } else {
2869    return PerformImplicitConversion(Init, T1, "initializing");
2870  }
2871}
2872
2873/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2874/// of this overloaded operator is well-formed. If so, returns false;
2875/// otherwise, emits appropriate diagnostics and returns true.
2876bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2877  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2878         "Expected an overloaded operator declaration");
2879
2880  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2881
2882  // C++ [over.oper]p5:
2883  //   The allocation and deallocation functions, operator new,
2884  //   operator new[], operator delete and operator delete[], are
2885  //   described completely in 3.7.3. The attributes and restrictions
2886  //   found in the rest of this subclause do not apply to them unless
2887  //   explicitly stated in 3.7.3.
2888  // FIXME: Write a separate routine for checking this. For now, just allow it.
2889  if (Op == OO_New || Op == OO_Array_New ||
2890      Op == OO_Delete || Op == OO_Array_Delete)
2891    return false;
2892
2893  // C++ [over.oper]p6:
2894  //   An operator function shall either be a non-static member
2895  //   function or be a non-member function and have at least one
2896  //   parameter whose type is a class, a reference to a class, an
2897  //   enumeration, or a reference to an enumeration.
2898  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2899    if (MethodDecl->isStatic())
2900      return Diag(FnDecl->getLocation(),
2901                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2902  } else {
2903    bool ClassOrEnumParam = false;
2904    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2905                                   ParamEnd = FnDecl->param_end();
2906         Param != ParamEnd; ++Param) {
2907      QualType ParamType = (*Param)->getType().getNonReferenceType();
2908      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2909          ParamType->isEnumeralType()) {
2910        ClassOrEnumParam = true;
2911        break;
2912      }
2913    }
2914
2915    if (!ClassOrEnumParam)
2916      return Diag(FnDecl->getLocation(),
2917                  diag::err_operator_overload_needs_class_or_enum)
2918        << FnDecl->getDeclName();
2919  }
2920
2921  // C++ [over.oper]p8:
2922  //   An operator function cannot have default arguments (8.3.6),
2923  //   except where explicitly stated below.
2924  //
2925  // Only the function-call operator allows default arguments
2926  // (C++ [over.call]p1).
2927  if (Op != OO_Call) {
2928    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2929         Param != FnDecl->param_end(); ++Param) {
2930      if ((*Param)->hasUnparsedDefaultArg())
2931        return Diag((*Param)->getLocation(),
2932                    diag::err_operator_overload_default_arg)
2933          << FnDecl->getDeclName();
2934      else if (Expr *DefArg = (*Param)->getDefaultArg())
2935        return Diag((*Param)->getLocation(),
2936                    diag::err_operator_overload_default_arg)
2937          << FnDecl->getDeclName() << DefArg->getSourceRange();
2938    }
2939  }
2940
2941  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2942    { false, false, false }
2943#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2944    , { Unary, Binary, MemberOnly }
2945#include "clang/Basic/OperatorKinds.def"
2946  };
2947
2948  bool CanBeUnaryOperator = OperatorUses[Op][0];
2949  bool CanBeBinaryOperator = OperatorUses[Op][1];
2950  bool MustBeMemberOperator = OperatorUses[Op][2];
2951
2952  // C++ [over.oper]p8:
2953  //   [...] Operator functions cannot have more or fewer parameters
2954  //   than the number required for the corresponding operator, as
2955  //   described in the rest of this subclause.
2956  unsigned NumParams = FnDecl->getNumParams()
2957                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2958  if (Op != OO_Call &&
2959      ((NumParams == 1 && !CanBeUnaryOperator) ||
2960       (NumParams == 2 && !CanBeBinaryOperator) ||
2961       (NumParams < 1) || (NumParams > 2))) {
2962    // We have the wrong number of parameters.
2963    unsigned ErrorKind;
2964    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2965      ErrorKind = 2;  // 2 -> unary or binary.
2966    } else if (CanBeUnaryOperator) {
2967      ErrorKind = 0;  // 0 -> unary
2968    } else {
2969      assert(CanBeBinaryOperator &&
2970             "All non-call overloaded operators are unary or binary!");
2971      ErrorKind = 1;  // 1 -> binary
2972    }
2973
2974    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2975      << FnDecl->getDeclName() << NumParams << ErrorKind;
2976  }
2977
2978  // Overloaded operators other than operator() cannot be variadic.
2979  if (Op != OO_Call &&
2980      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2981    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2982      << FnDecl->getDeclName();
2983  }
2984
2985  // Some operators must be non-static member functions.
2986  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2987    return Diag(FnDecl->getLocation(),
2988                diag::err_operator_overload_must_be_member)
2989      << FnDecl->getDeclName();
2990  }
2991
2992  // C++ [over.inc]p1:
2993  //   The user-defined function called operator++ implements the
2994  //   prefix and postfix ++ operator. If this function is a member
2995  //   function with no parameters, or a non-member function with one
2996  //   parameter of class or enumeration type, it defines the prefix
2997  //   increment operator ++ for objects of that type. If the function
2998  //   is a member function with one parameter (which shall be of type
2999  //   int) or a non-member function with two parameters (the second
3000  //   of which shall be of type int), it defines the postfix
3001  //   increment operator ++ for objects of that type.
3002  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3003    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3004    bool ParamIsInt = false;
3005    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3006      ParamIsInt = BT->getKind() == BuiltinType::Int;
3007
3008    if (!ParamIsInt)
3009      return Diag(LastParam->getLocation(),
3010                  diag::err_operator_overload_post_incdec_must_be_int)
3011        << LastParam->getType() << (Op == OO_MinusMinus);
3012  }
3013
3014  // Notify the class if it got an assignment operator.
3015  if (Op == OO_Equal) {
3016    // Would have returned earlier otherwise.
3017    assert(isa<CXXMethodDecl>(FnDecl) &&
3018      "Overloaded = not member, but not filtered.");
3019    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3020    Method->getParent()->addedAssignmentOperator(Context, Method);
3021  }
3022
3023  return false;
3024}
3025
3026/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3027/// linkage specification, including the language and (if present)
3028/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3029/// the location of the language string literal, which is provided
3030/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3031/// the '{' brace. Otherwise, this linkage specification does not
3032/// have any braces.
3033Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3034                                                     SourceLocation ExternLoc,
3035                                                     SourceLocation LangLoc,
3036                                                     const char *Lang,
3037                                                     unsigned StrSize,
3038                                                     SourceLocation LBraceLoc) {
3039  LinkageSpecDecl::LanguageIDs Language;
3040  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3041    Language = LinkageSpecDecl::lang_c;
3042  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3043    Language = LinkageSpecDecl::lang_cxx;
3044  else {
3045    Diag(LangLoc, diag::err_bad_language);
3046    return DeclPtrTy();
3047  }
3048
3049  // FIXME: Add all the various semantics of linkage specifications
3050
3051  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3052                                               LangLoc, Language,
3053                                               LBraceLoc.isValid());
3054  CurContext->addDecl(D);
3055  PushDeclContext(S, D);
3056  return DeclPtrTy::make(D);
3057}
3058
3059/// ActOnFinishLinkageSpecification - Completely the definition of
3060/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3061/// valid, it's the position of the closing '}' brace in a linkage
3062/// specification that uses braces.
3063Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3064                                                      DeclPtrTy LinkageSpec,
3065                                                      SourceLocation RBraceLoc) {
3066  if (LinkageSpec)
3067    PopDeclContext();
3068  return LinkageSpec;
3069}
3070
3071/// \brief Perform semantic analysis for the variable declaration that
3072/// occurs within a C++ catch clause, returning the newly-created
3073/// variable.
3074VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3075                                         IdentifierInfo *Name,
3076                                         SourceLocation Loc,
3077                                         SourceRange Range) {
3078  bool Invalid = false;
3079
3080  // Arrays and functions decay.
3081  if (ExDeclType->isArrayType())
3082    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3083  else if (ExDeclType->isFunctionType())
3084    ExDeclType = Context.getPointerType(ExDeclType);
3085
3086  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3087  // The exception-declaration shall not denote a pointer or reference to an
3088  // incomplete type, other than [cv] void*.
3089  // N2844 forbids rvalue references.
3090  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3091    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3092    Invalid = true;
3093  }
3094
3095  QualType BaseType = ExDeclType;
3096  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3097  unsigned DK = diag::err_catch_incomplete;
3098  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3099    BaseType = Ptr->getPointeeType();
3100    Mode = 1;
3101    DK = diag::err_catch_incomplete_ptr;
3102  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3103    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3104    BaseType = Ref->getPointeeType();
3105    Mode = 2;
3106    DK = diag::err_catch_incomplete_ref;
3107  }
3108  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3109      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3110    Invalid = true;
3111
3112  if (!Invalid && !ExDeclType->isDependentType() &&
3113      RequireNonAbstractType(Loc, ExDeclType,
3114                             diag::err_abstract_type_in_decl,
3115                             AbstractVariableType))
3116    Invalid = true;
3117
3118  // FIXME: Need to test for ability to copy-construct and destroy the
3119  // exception variable.
3120
3121  // FIXME: Need to check for abstract classes.
3122
3123  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3124                                    Name, ExDeclType, VarDecl::None,
3125                                    Range.getBegin());
3126
3127  if (Invalid)
3128    ExDecl->setInvalidDecl();
3129
3130  return ExDecl;
3131}
3132
3133/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3134/// handler.
3135Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3136  QualType ExDeclType = GetTypeForDeclarator(D, S);
3137
3138  bool Invalid = D.isInvalidType();
3139  IdentifierInfo *II = D.getIdentifier();
3140  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3141    // The scope should be freshly made just for us. There is just no way
3142    // it contains any previous declaration.
3143    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3144    if (PrevDecl->isTemplateParameter()) {
3145      // Maybe we will complain about the shadowed template parameter.
3146      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3147    }
3148  }
3149
3150  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3151    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3152      << D.getCXXScopeSpec().getRange();
3153    Invalid = true;
3154  }
3155
3156  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3157                                              D.getIdentifier(),
3158                                              D.getIdentifierLoc(),
3159                                            D.getDeclSpec().getSourceRange());
3160
3161  if (Invalid)
3162    ExDecl->setInvalidDecl();
3163
3164  // Add the exception declaration into this scope.
3165  if (II)
3166    PushOnScopeChains(ExDecl, S);
3167  else
3168    CurContext->addDecl(ExDecl);
3169
3170  ProcessDeclAttributes(S, ExDecl, D);
3171  return DeclPtrTy::make(ExDecl);
3172}
3173
3174Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3175                                                   ExprArg assertexpr,
3176                                                   ExprArg assertmessageexpr) {
3177  Expr *AssertExpr = (Expr *)assertexpr.get();
3178  StringLiteral *AssertMessage =
3179    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3180
3181  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3182    llvm::APSInt Value(32);
3183    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3184      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3185        AssertExpr->getSourceRange();
3186      return DeclPtrTy();
3187    }
3188
3189    if (Value == 0) {
3190      std::string str(AssertMessage->getStrData(),
3191                      AssertMessage->getByteLength());
3192      Diag(AssertLoc, diag::err_static_assert_failed)
3193        << str << AssertExpr->getSourceRange();
3194    }
3195  }
3196
3197  assertexpr.release();
3198  assertmessageexpr.release();
3199  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3200                                        AssertExpr, AssertMessage);
3201
3202  CurContext->addDecl(Decl);
3203  return DeclPtrTy::make(Decl);
3204}
3205
3206bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3207  if (!(S->getFlags() & Scope::ClassScope)) {
3208    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3209    return true;
3210  }
3211
3212  return false;
3213}
3214
3215void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3216  Decl *Dcl = dcl.getAs<Decl>();
3217  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3218  if (!Fn) {
3219    Diag(DelLoc, diag::err_deleted_non_function);
3220    return;
3221  }
3222  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3223    Diag(DelLoc, diag::err_deleted_decl_not_first);
3224    Diag(Prev->getLocation(), diag::note_previous_declaration);
3225    // If the declaration wasn't the first, we delete the function anyway for
3226    // recovery.
3227  }
3228  Fn->setDeleted();
3229}
3230
3231static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3232  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3233       ++CI) {
3234    Stmt *SubStmt = *CI;
3235    if (!SubStmt)
3236      continue;
3237    if (isa<ReturnStmt>(SubStmt))
3238      Self.Diag(SubStmt->getSourceRange().getBegin(),
3239           diag::err_return_in_constructor_handler);
3240    if (!isa<Expr>(SubStmt))
3241      SearchForReturnInStmt(Self, SubStmt);
3242  }
3243}
3244
3245void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3246  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3247    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3248    SearchForReturnInStmt(*this, Handler);
3249  }
3250}
3251
3252bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3253                                             const CXXMethodDecl *Old) {
3254  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3255  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3256
3257  QualType CNewTy = Context.getCanonicalType(NewTy);
3258  QualType COldTy = Context.getCanonicalType(OldTy);
3259
3260  if (CNewTy == COldTy &&
3261      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3262    return false;
3263
3264  // Check if the return types are covariant
3265  QualType NewClassTy, OldClassTy;
3266
3267  /// Both types must be pointers or references to classes.
3268  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3269    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3270      NewClassTy = NewPT->getPointeeType();
3271      OldClassTy = OldPT->getPointeeType();
3272    }
3273  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3274    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3275      NewClassTy = NewRT->getPointeeType();
3276      OldClassTy = OldRT->getPointeeType();
3277    }
3278  }
3279
3280  // The return types aren't either both pointers or references to a class type.
3281  if (NewClassTy.isNull()) {
3282    Diag(New->getLocation(),
3283         diag::err_different_return_type_for_overriding_virtual_function)
3284      << New->getDeclName() << NewTy << OldTy;
3285    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3286
3287    return true;
3288  }
3289
3290  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3291    // Check if the new class derives from the old class.
3292    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3293      Diag(New->getLocation(),
3294           diag::err_covariant_return_not_derived)
3295      << New->getDeclName() << NewTy << OldTy;
3296      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3297      return true;
3298    }
3299
3300    // Check if we the conversion from derived to base is valid.
3301    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3302                      diag::err_covariant_return_inaccessible_base,
3303                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3304                      // FIXME: Should this point to the return type?
3305                      New->getLocation(), SourceRange(), New->getDeclName())) {
3306      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3307      return true;
3308    }
3309  }
3310
3311  // The qualifiers of the return types must be the same.
3312  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3313    Diag(New->getLocation(),
3314         diag::err_covariant_return_type_different_qualifications)
3315    << New->getDeclName() << NewTy << OldTy;
3316    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3317    return true;
3318  };
3319
3320
3321  // The new class type must have the same or less qualifiers as the old type.
3322  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3323    Diag(New->getLocation(),
3324         diag::err_covariant_return_type_class_type_more_qualified)
3325    << New->getDeclName() << NewTy << OldTy;
3326    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3327    return true;
3328  };
3329
3330  return false;
3331}
3332
3333bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3334                                                const CXXMethodDecl *Old)
3335{
3336  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3337                                  diag::note_overridden_virtual_function,
3338                                  Old->getType()->getAsFunctionProtoType(),
3339                                  Old->getLocation(),
3340                                  New->getType()->getAsFunctionProtoType(),
3341                                  New->getLocation());
3342}
3343
3344/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3345/// initializer for the declaration 'Dcl'.
3346/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3347/// static data member of class X, names should be looked up in the scope of
3348/// class X.
3349void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3350  Decl *D = Dcl.getAs<Decl>();
3351  // If there is no declaration, there was an error parsing it.
3352  if (D == 0)
3353    return;
3354
3355  // Check whether it is a declaration with a nested name specifier like
3356  // int foo::bar;
3357  if (!D->isOutOfLine())
3358    return;
3359
3360  // C++ [basic.lookup.unqual]p13
3361  //
3362  // A name used in the definition of a static data member of class X
3363  // (after the qualified-id of the static member) is looked up as if the name
3364  // was used in a member function of X.
3365
3366  // Change current context into the context of the initializing declaration.
3367  EnterDeclaratorContext(S, D->getDeclContext());
3368}
3369
3370/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3371/// initializer for the declaration 'Dcl'.
3372void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3373  Decl *D = Dcl.getAs<Decl>();
3374  // If there is no declaration, there was an error parsing it.
3375  if (D == 0)
3376    return;
3377
3378  // Check whether it is a declaration with a nested name specifier like
3379  // int foo::bar;
3380  if (!D->isOutOfLine())
3381    return;
3382
3383  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3384  ExitDeclaratorContext(S);
3385}
3386