SemaDeclCXX.cpp revision 66724ea67d7d598b937d86fa66f03f09a1c758f3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Parse/Template.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm> // for std::equal
28#include <map>
29#include <set>
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// CheckDefaultArgumentVisitor
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
39  /// the default argument of a parameter to determine whether it
40  /// contains any ill-formed subexpressions. For example, this will
41  /// diagnose the use of local variables or parameters within the
42  /// default argument expression.
43  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
44    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
45    Expr *DefaultArg;
46    Sema *S;
47
48  public:
49    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
50      : DefaultArg(defarg), S(s) {}
51
52    bool VisitExpr(Expr *Node);
53    bool VisitDeclRefExpr(DeclRefExpr *DRE);
54    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
55  };
56
57  /// VisitExpr - Visit all of the children of this expression.
58  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
59    bool IsInvalid = false;
60    for (Stmt::child_iterator I = Node->child_begin(),
61         E = Node->child_end(); I != E; ++I)
62      IsInvalid |= Visit(*I);
63    return IsInvalid;
64  }
65
66  /// VisitDeclRefExpr - Visit a reference to a declaration, to
67  /// determine whether this declaration can be used in the default
68  /// argument expression.
69  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
70    NamedDecl *Decl = DRE->getDecl();
71    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
72      // C++ [dcl.fct.default]p9
73      //   Default arguments are evaluated each time the function is
74      //   called. The order of evaluation of function arguments is
75      //   unspecified. Consequently, parameters of a function shall not
76      //   be used in default argument expressions, even if they are not
77      //   evaluated. Parameters of a function declared before a default
78      //   argument expression are in scope and can hide namespace and
79      //   class member names.
80      return S->Diag(DRE->getSourceRange().getBegin(),
81                     diag::err_param_default_argument_references_param)
82         << Param->getDeclName() << DefaultArg->getSourceRange();
83    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p7
85      //   Local variables shall not be used in default argument
86      //   expressions.
87      if (VDecl->isBlockVarDecl())
88        return S->Diag(DRE->getSourceRange().getBegin(),
89                       diag::err_param_default_argument_references_local)
90          << VDecl->getDeclName() << DefaultArg->getSourceRange();
91    }
92
93    return false;
94  }
95
96  /// VisitCXXThisExpr - Visit a C++ "this" expression.
97  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
98    // C++ [dcl.fct.default]p8:
99    //   The keyword this shall not be used in a default argument of a
100    //   member function.
101    return S->Diag(ThisE->getSourceRange().getBegin(),
102                   diag::err_param_default_argument_references_this)
103               << ThisE->getSourceRange();
104  }
105}
106
107bool
108Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
109                              SourceLocation EqualLoc) {
110  QualType ParamType = Param->getType();
111
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
127                            Param->getDeclName(), /*DirectInit=*/false))
128    return true;
129
130  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
131
132  // Okay: add the default argument to the parameter
133  Param->setDefaultArg(Arg);
134
135  DefaultArg.release();
136
137  return false;
138}
139
140/// ActOnParamDefaultArgument - Check whether the default argument
141/// provided for a function parameter is well-formed. If so, attach it
142/// to the parameter declaration.
143void
144Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
145                                ExprArg defarg) {
146  if (!param || !defarg.get())
147    return;
148
149  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
150  UnparsedDefaultArgLocs.erase(Param);
151
152  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
153  QualType ParamType = Param->getType();
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
165  if (DefaultArgChecker.Visit(DefaultArg.get())) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If the parameter doesn't have an identifier then the location
269      // points to the '=' which means that the fixit hint won't remove any
270      // extra spaces between the type and the '='.
271      SourceLocation Begin = NewParam->getLocation();
272      if (NewParam->getIdentifier())
273        Begin = PP.getLocForEndOfToken(Begin);
274
275      Diag(NewParam->getLocation(),
276           diag::err_param_default_argument_redefinition)
277        << NewParam->getDefaultArgRange()
278        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
279                                                        NewParam->getLocEnd()));
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter
296      if (OldParam->hasUninstantiatedDefaultArg())
297        NewParam->setUninstantiatedDefaultArg(
298                                      OldParam->getUninstantiatedDefaultArg());
299      else
300        NewParam->setDefaultArg(OldParam->getDefaultArg());
301    } else if (NewParam->hasDefaultArg()) {
302      if (New->getDescribedFunctionTemplate()) {
303        // Paragraph 4, quoted above, only applies to non-template functions.
304        Diag(NewParam->getLocation(),
305             diag::err_param_default_argument_template_redecl)
306          << NewParam->getDefaultArgRange();
307        Diag(Old->getLocation(), diag::note_template_prev_declaration)
308          << false;
309      } else if (New->getTemplateSpecializationKind()
310                   != TSK_ImplicitInstantiation &&
311                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
312        // C++ [temp.expr.spec]p21:
313        //   Default function arguments shall not be specified in a declaration
314        //   or a definition for one of the following explicit specializations:
315        //     - the explicit specialization of a function template;
316        //     - the explicit specialization of a member function template;
317        //     - the explicit specialization of a member function of a class
318        //       template where the class template specialization to which the
319        //       member function specialization belongs is implicitly
320        //       instantiated.
321        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
322          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
323          << New->getDeclName()
324          << NewParam->getDefaultArgRange();
325      } else if (New->getDeclContext()->isDependentContext()) {
326        // C++ [dcl.fct.default]p6 (DR217):
327        //   Default arguments for a member function of a class template shall
328        //   be specified on the initial declaration of the member function
329        //   within the class template.
330        //
331        // Reading the tea leaves a bit in DR217 and its reference to DR205
332        // leads me to the conclusion that one cannot add default function
333        // arguments for an out-of-line definition of a member function of a
334        // dependent type.
335        int WhichKind = 2;
336        if (CXXRecordDecl *Record
337              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
338          if (Record->getDescribedClassTemplate())
339            WhichKind = 0;
340          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
341            WhichKind = 1;
342          else
343            WhichKind = 2;
344        }
345
346        Diag(NewParam->getLocation(),
347             diag::err_param_default_argument_member_template_redecl)
348          << WhichKind
349          << NewParam->getDefaultArgRange();
350      }
351    }
352  }
353
354  if (CheckEquivalentExceptionSpec(
355          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
356          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
357    Invalid = true;
358  }
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491
492  // C++ [dcl.init.aggr]p1:
493  //   An aggregate is [...] a class with [...] no base classes [...].
494  Class->setAggregate(false);
495  Class->setPOD(false);
496
497  if (Virtual) {
498    // C++ [class.ctor]p5:
499    //   A constructor is trivial if its class has no virtual base classes.
500    Class->setHasTrivialConstructor(false);
501
502    // C++ [class.copy]p6:
503    //   A copy constructor is trivial if its class has no virtual base classes.
504    Class->setHasTrivialCopyConstructor(false);
505
506    // C++ [class.copy]p11:
507    //   A copy assignment operator is trivial if its class has no virtual
508    //   base classes.
509    Class->setHasTrivialCopyAssignment(false);
510
511    // C++0x [meta.unary.prop] is_empty:
512    //    T is a class type, but not a union type, with ... no virtual base
513    //    classes
514    Class->setEmpty(false);
515  } else {
516    // C++ [class.ctor]p5:
517    //   A constructor is trivial if all the direct base classes of its
518    //   class have trivial constructors.
519    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
520      Class->setHasTrivialConstructor(false);
521
522    // C++ [class.copy]p6:
523    //   A copy constructor is trivial if all the direct base classes of its
524    //   class have trivial copy constructors.
525    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
526      Class->setHasTrivialCopyConstructor(false);
527
528    // C++ [class.copy]p11:
529    //   A copy assignment operator is trivial if all the direct base classes
530    //   of its class have trivial copy assignment operators.
531    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
532      Class->setHasTrivialCopyAssignment(false);
533  }
534
535  // C++ [class.ctor]p3:
536  //   A destructor is trivial if all the direct base classes of its class
537  //   have trivial destructors.
538  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
539    Class->setHasTrivialDestructor(false);
540
541  // Create the base specifier.
542  // FIXME: Allocate via ASTContext?
543  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
544                              Class->getTagKind() == RecordDecl::TK_class,
545                              Access, BaseType);
546}
547
548/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
549/// one entry in the base class list of a class specifier, for
550/// example:
551///    class foo : public bar, virtual private baz {
552/// 'public bar' and 'virtual private baz' are each base-specifiers.
553Sema::BaseResult
554Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
555                         bool Virtual, AccessSpecifier Access,
556                         TypeTy *basetype, SourceLocation BaseLoc) {
557  if (!classdecl)
558    return true;
559
560  AdjustDeclIfTemplate(classdecl);
561  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
562  QualType BaseType = GetTypeFromParser(basetype);
563  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
564                                                      Virtual, Access,
565                                                      BaseType, BaseLoc))
566    return BaseSpec;
567
568  return true;
569}
570
571/// \brief Performs the actual work of attaching the given base class
572/// specifiers to a C++ class.
573bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
574                                unsigned NumBases) {
575 if (NumBases == 0)
576    return false;
577
578  // Used to keep track of which base types we have already seen, so
579  // that we can properly diagnose redundant direct base types. Note
580  // that the key is always the unqualified canonical type of the base
581  // class.
582  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
583
584  // Copy non-redundant base specifiers into permanent storage.
585  unsigned NumGoodBases = 0;
586  bool Invalid = false;
587  for (unsigned idx = 0; idx < NumBases; ++idx) {
588    QualType NewBaseType
589      = Context.getCanonicalType(Bases[idx]->getType());
590    NewBaseType = NewBaseType.getUnqualifiedType();
591
592    if (KnownBaseTypes[NewBaseType]) {
593      // C++ [class.mi]p3:
594      //   A class shall not be specified as a direct base class of a
595      //   derived class more than once.
596      Diag(Bases[idx]->getSourceRange().getBegin(),
597           diag::err_duplicate_base_class)
598        << KnownBaseTypes[NewBaseType]->getType()
599        << Bases[idx]->getSourceRange();
600
601      // Delete the duplicate base class specifier; we're going to
602      // overwrite its pointer later.
603      Context.Deallocate(Bases[idx]);
604
605      Invalid = true;
606    } else {
607      // Okay, add this new base class.
608      KnownBaseTypes[NewBaseType] = Bases[idx];
609      Bases[NumGoodBases++] = Bases[idx];
610    }
611  }
612
613  // Attach the remaining base class specifiers to the derived class.
614  Class->setBases(Context, Bases, NumGoodBases);
615
616  // Delete the remaining (good) base class specifiers, since their
617  // data has been copied into the CXXRecordDecl.
618  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
619    Context.Deallocate(Bases[idx]);
620
621  return Invalid;
622}
623
624/// ActOnBaseSpecifiers - Attach the given base specifiers to the
625/// class, after checking whether there are any duplicate base
626/// classes.
627void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
628                               unsigned NumBases) {
629  if (!ClassDecl || !Bases || !NumBases)
630    return;
631
632  AdjustDeclIfTemplate(ClassDecl);
633  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
634                       (CXXBaseSpecifier**)(Bases), NumBases);
635}
636
637/// \brief Determine whether the type \p Derived is a C++ class that is
638/// derived from the type \p Base.
639bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
640  if (!getLangOptions().CPlusPlus)
641    return false;
642
643  const RecordType *DerivedRT = Derived->getAs<RecordType>();
644  if (!DerivedRT)
645    return false;
646
647  const RecordType *BaseRT = Base->getAs<RecordType>();
648  if (!BaseRT)
649    return false;
650
651  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
652  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
653  return DerivedRD->isDerivedFrom(BaseRD);
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  const RecordType *DerivedRT = Derived->getAs<RecordType>();
663  if (!DerivedRT)
664    return false;
665
666  const RecordType *BaseRT = Base->getAs<RecordType>();
667  if (!BaseRT)
668    return false;
669
670  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
671  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
672  return DerivedRD->isDerivedFrom(BaseRD, Paths);
673}
674
675/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
676/// conversion (where Derived and Base are class types) is
677/// well-formed, meaning that the conversion is unambiguous (and
678/// that all of the base classes are accessible). Returns true
679/// and emits a diagnostic if the code is ill-formed, returns false
680/// otherwise. Loc is the location where this routine should point to
681/// if there is an error, and Range is the source range to highlight
682/// if there is an error.
683bool
684Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
685                                   unsigned InaccessibleBaseID,
686                                   unsigned AmbigiousBaseConvID,
687                                   SourceLocation Loc, SourceRange Range,
688                                   DeclarationName Name) {
689  // First, determine whether the path from Derived to Base is
690  // ambiguous. This is slightly more expensive than checking whether
691  // the Derived to Base conversion exists, because here we need to
692  // explore multiple paths to determine if there is an ambiguity.
693  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
694                     /*DetectVirtual=*/false);
695  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
696  assert(DerivationOkay &&
697         "Can only be used with a derived-to-base conversion");
698  (void)DerivationOkay;
699
700  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
701    // Check that the base class can be accessed.
702    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
703                                Name);
704  }
705
706  // We know that the derived-to-base conversion is ambiguous, and
707  // we're going to produce a diagnostic. Perform the derived-to-base
708  // search just one more time to compute all of the possible paths so
709  // that we can print them out. This is more expensive than any of
710  // the previous derived-to-base checks we've done, but at this point
711  // performance isn't as much of an issue.
712  Paths.clear();
713  Paths.setRecordingPaths(true);
714  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
715  assert(StillOkay && "Can only be used with a derived-to-base conversion");
716  (void)StillOkay;
717
718  // Build up a textual representation of the ambiguous paths, e.g.,
719  // D -> B -> A, that will be used to illustrate the ambiguous
720  // conversions in the diagnostic. We only print one of the paths
721  // to each base class subobject.
722  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
723
724  Diag(Loc, AmbigiousBaseConvID)
725  << Derived << Base << PathDisplayStr << Range << Name;
726  return true;
727}
728
729bool
730Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
731                                   SourceLocation Loc, SourceRange Range) {
732  return CheckDerivedToBaseConversion(Derived, Base,
733                                      diag::err_conv_to_inaccessible_base,
734                                      diag::err_ambiguous_derived_to_base_conv,
735                                      Loc, Range, DeclarationName());
736}
737
738
739/// @brief Builds a string representing ambiguous paths from a
740/// specific derived class to different subobjects of the same base
741/// class.
742///
743/// This function builds a string that can be used in error messages
744/// to show the different paths that one can take through the
745/// inheritance hierarchy to go from the derived class to different
746/// subobjects of a base class. The result looks something like this:
747/// @code
748/// struct D -> struct B -> struct A
749/// struct D -> struct C -> struct A
750/// @endcode
751std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
752  std::string PathDisplayStr;
753  std::set<unsigned> DisplayedPaths;
754  for (CXXBasePaths::paths_iterator Path = Paths.begin();
755       Path != Paths.end(); ++Path) {
756    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
757      // We haven't displayed a path to this particular base
758      // class subobject yet.
759      PathDisplayStr += "\n    ";
760      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
761      for (CXXBasePath::const_iterator Element = Path->begin();
762           Element != Path->end(); ++Element)
763        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
764    }
765  }
766
767  return PathDisplayStr;
768}
769
770//===----------------------------------------------------------------------===//
771// C++ class member Handling
772//===----------------------------------------------------------------------===//
773
774/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
775/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
776/// bitfield width if there is one and 'InitExpr' specifies the initializer if
777/// any.
778Sema::DeclPtrTy
779Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
780                               MultiTemplateParamsArg TemplateParameterLists,
781                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
782  const DeclSpec &DS = D.getDeclSpec();
783  DeclarationName Name = GetNameForDeclarator(D);
784  Expr *BitWidth = static_cast<Expr*>(BW);
785  Expr *Init = static_cast<Expr*>(InitExpr);
786  SourceLocation Loc = D.getIdentifierLoc();
787
788  bool isFunc = D.isFunctionDeclarator();
789
790  assert(!DS.isFriendSpecified());
791
792  // C++ 9.2p6: A member shall not be declared to have automatic storage
793  // duration (auto, register) or with the extern storage-class-specifier.
794  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
795  // data members and cannot be applied to names declared const or static,
796  // and cannot be applied to reference members.
797  switch (DS.getStorageClassSpec()) {
798    case DeclSpec::SCS_unspecified:
799    case DeclSpec::SCS_typedef:
800    case DeclSpec::SCS_static:
801      // FALL THROUGH.
802      break;
803    case DeclSpec::SCS_mutable:
804      if (isFunc) {
805        if (DS.getStorageClassSpecLoc().isValid())
806          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
807        else
808          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
809
810        // FIXME: It would be nicer if the keyword was ignored only for this
811        // declarator. Otherwise we could get follow-up errors.
812        D.getMutableDeclSpec().ClearStorageClassSpecs();
813      } else {
814        QualType T = GetTypeForDeclarator(D, S);
815        diag::kind err = static_cast<diag::kind>(0);
816        if (T->isReferenceType())
817          err = diag::err_mutable_reference;
818        else if (T.isConstQualified())
819          err = diag::err_mutable_const;
820        if (err != 0) {
821          if (DS.getStorageClassSpecLoc().isValid())
822            Diag(DS.getStorageClassSpecLoc(), err);
823          else
824            Diag(DS.getThreadSpecLoc(), err);
825          // FIXME: It would be nicer if the keyword was ignored only for this
826          // declarator. Otherwise we could get follow-up errors.
827          D.getMutableDeclSpec().ClearStorageClassSpecs();
828        }
829      }
830      break;
831    default:
832      if (DS.getStorageClassSpecLoc().isValid())
833        Diag(DS.getStorageClassSpecLoc(),
834             diag::err_storageclass_invalid_for_member);
835      else
836        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
837      D.getMutableDeclSpec().ClearStorageClassSpecs();
838  }
839
840  if (!isFunc &&
841      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
842      D.getNumTypeObjects() == 0) {
843    // Check also for this case:
844    //
845    // typedef int f();
846    // f a;
847    //
848    QualType TDType = GetTypeFromParser(DS.getTypeRep());
849    isFunc = TDType->isFunctionType();
850  }
851
852  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
853                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
854                      !isFunc);
855
856  Decl *Member;
857  if (isInstField) {
858    // FIXME: Check for template parameters!
859    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
860                         AS);
861    assert(Member && "HandleField never returns null");
862  } else {
863    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
864               .getAs<Decl>();
865    if (!Member) {
866      if (BitWidth) DeleteExpr(BitWidth);
867      return DeclPtrTy();
868    }
869
870    // Non-instance-fields can't have a bitfield.
871    if (BitWidth) {
872      if (Member->isInvalidDecl()) {
873        // don't emit another diagnostic.
874      } else if (isa<VarDecl>(Member)) {
875        // C++ 9.6p3: A bit-field shall not be a static member.
876        // "static member 'A' cannot be a bit-field"
877        Diag(Loc, diag::err_static_not_bitfield)
878          << Name << BitWidth->getSourceRange();
879      } else if (isa<TypedefDecl>(Member)) {
880        // "typedef member 'x' cannot be a bit-field"
881        Diag(Loc, diag::err_typedef_not_bitfield)
882          << Name << BitWidth->getSourceRange();
883      } else {
884        // A function typedef ("typedef int f(); f a;").
885        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
886        Diag(Loc, diag::err_not_integral_type_bitfield)
887          << Name << cast<ValueDecl>(Member)->getType()
888          << BitWidth->getSourceRange();
889      }
890
891      DeleteExpr(BitWidth);
892      BitWidth = 0;
893      Member->setInvalidDecl();
894    }
895
896    Member->setAccess(AS);
897
898    // If we have declared a member function template, set the access of the
899    // templated declaration as well.
900    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
901      FunTmpl->getTemplatedDecl()->setAccess(AS);
902  }
903
904  assert((Name || isInstField) && "No identifier for non-field ?");
905
906  if (Init)
907    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
908  if (Deleted) // FIXME: Source location is not very good.
909    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
910
911  if (isInstField) {
912    FieldCollector->Add(cast<FieldDecl>(Member));
913    return DeclPtrTy();
914  }
915  return DeclPtrTy::make(Member);
916}
917
918/// ActOnMemInitializer - Handle a C++ member initializer.
919Sema::MemInitResult
920Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
921                          Scope *S,
922                          const CXXScopeSpec &SS,
923                          IdentifierInfo *MemberOrBase,
924                          TypeTy *TemplateTypeTy,
925                          SourceLocation IdLoc,
926                          SourceLocation LParenLoc,
927                          ExprTy **Args, unsigned NumArgs,
928                          SourceLocation *CommaLocs,
929                          SourceLocation RParenLoc) {
930  if (!ConstructorD)
931    return true;
932
933  AdjustDeclIfTemplate(ConstructorD);
934
935  CXXConstructorDecl *Constructor
936    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
937  if (!Constructor) {
938    // The user wrote a constructor initializer on a function that is
939    // not a C++ constructor. Ignore the error for now, because we may
940    // have more member initializers coming; we'll diagnose it just
941    // once in ActOnMemInitializers.
942    return true;
943  }
944
945  CXXRecordDecl *ClassDecl = Constructor->getParent();
946
947  // C++ [class.base.init]p2:
948  //   Names in a mem-initializer-id are looked up in the scope of the
949  //   constructor’s class and, if not found in that scope, are looked
950  //   up in the scope containing the constructor’s
951  //   definition. [Note: if the constructor’s class contains a member
952  //   with the same name as a direct or virtual base class of the
953  //   class, a mem-initializer-id naming the member or base class and
954  //   composed of a single identifier refers to the class member. A
955  //   mem-initializer-id for the hidden base class may be specified
956  //   using a qualified name. ]
957  if (!SS.getScopeRep() && !TemplateTypeTy) {
958    // Look for a member, first.
959    FieldDecl *Member = 0;
960    DeclContext::lookup_result Result
961      = ClassDecl->lookup(MemberOrBase);
962    if (Result.first != Result.second)
963      Member = dyn_cast<FieldDecl>(*Result.first);
964
965    // FIXME: Handle members of an anonymous union.
966
967    if (Member)
968      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
969                                    RParenLoc);
970  }
971  // It didn't name a member, so see if it names a class.
972  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
973                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
974  if (!BaseTy)
975    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
976      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
977
978  QualType BaseType = GetTypeFromParser(BaseTy);
979
980  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
981                              RParenLoc, ClassDecl);
982}
983
984/// Checks an initializer expression for use of uninitialized fields, such as
985/// containing the field that is being initialized. Returns true if there is an
986/// uninitialized field was used an updates the SourceLocation parameter; false
987/// otherwise.
988static bool InitExprContainsUninitializedFields(const Stmt* S,
989                                                const FieldDecl* LhsField,
990                                                SourceLocation* L) {
991  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
992  if (ME) {
993    const NamedDecl* RhsField = ME->getMemberDecl();
994    if (RhsField == LhsField) {
995      // Initializing a field with itself. Throw a warning.
996      // But wait; there are exceptions!
997      // Exception #1:  The field may not belong to this record.
998      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
999      const Expr* base = ME->getBase();
1000      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1001        // Even though the field matches, it does not belong to this record.
1002        return false;
1003      }
1004      // None of the exceptions triggered; return true to indicate an
1005      // uninitialized field was used.
1006      *L = ME->getMemberLoc();
1007      return true;
1008    }
1009  }
1010  bool found = false;
1011  for (Stmt::const_child_iterator it = S->child_begin();
1012       it != S->child_end() && found == false;
1013       ++it) {
1014    if (isa<CallExpr>(S)) {
1015      // Do not descend into function calls or constructors, as the use
1016      // of an uninitialized field may be valid. One would have to inspect
1017      // the contents of the function/ctor to determine if it is safe or not.
1018      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1019      // may be safe, depending on what the function/ctor does.
1020      continue;
1021    }
1022    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1023  }
1024  return found;
1025}
1026
1027Sema::MemInitResult
1028Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1029                             unsigned NumArgs, SourceLocation IdLoc,
1030                             SourceLocation RParenLoc) {
1031  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1032  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1033  ExprTemporaries.clear();
1034
1035  // Diagnose value-uses of fields to initialize themselves, e.g.
1036  //   foo(foo)
1037  // where foo is not also a parameter to the constructor.
1038  // TODO: implement -Wuninitialized and fold this into that framework.
1039  for (unsigned i = 0; i < NumArgs; ++i) {
1040    SourceLocation L;
1041    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1042      // FIXME: Return true in the case when other fields are used before being
1043      // uninitialized. For example, let this field be the i'th field. When
1044      // initializing the i'th field, throw a warning if any of the >= i'th
1045      // fields are used, as they are not yet initialized.
1046      // Right now we are only handling the case where the i'th field uses
1047      // itself in its initializer.
1048      Diag(L, diag::warn_field_is_uninit);
1049    }
1050  }
1051
1052  bool HasDependentArg = false;
1053  for (unsigned i = 0; i < NumArgs; i++)
1054    HasDependentArg |= Args[i]->isTypeDependent();
1055
1056  CXXConstructorDecl *C = 0;
1057  QualType FieldType = Member->getType();
1058  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1059    FieldType = Array->getElementType();
1060  if (FieldType->isDependentType()) {
1061    // Can't check init for dependent type.
1062  } else if (FieldType->isRecordType()) {
1063    // Member is a record (struct/union/class), so pass the initializer
1064    // arguments down to the record's constructor.
1065    if (!HasDependentArg) {
1066      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1067
1068      C = PerformInitializationByConstructor(FieldType,
1069                                             MultiExprArg(*this,
1070                                                          (void**)Args,
1071                                                          NumArgs),
1072                                             IdLoc,
1073                                             SourceRange(IdLoc, RParenLoc),
1074                                             Member->getDeclName(), IK_Direct,
1075                                             ConstructorArgs);
1076
1077      if (C) {
1078        // Take over the constructor arguments as our own.
1079        NumArgs = ConstructorArgs.size();
1080        Args = (Expr **)ConstructorArgs.take();
1081      }
1082    }
1083  } else if (NumArgs != 1 && NumArgs != 0) {
1084    // The member type is not a record type (or an array of record
1085    // types), so it can be only be default- or copy-initialized.
1086    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1087                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1088  } else if (!HasDependentArg) {
1089    Expr *NewExp;
1090    if (NumArgs == 0) {
1091      if (FieldType->isReferenceType()) {
1092        Diag(IdLoc, diag::err_null_intialized_reference_member)
1093              << Member->getDeclName();
1094        return Diag(Member->getLocation(), diag::note_declared_at);
1095      }
1096      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1097      NumArgs = 1;
1098    }
1099    else
1100      NewExp = (Expr*)Args[0];
1101    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1102      return true;
1103    Args[0] = NewExp;
1104  }
1105
1106  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1107  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1108  ExprTemporaries.clear();
1109
1110  // FIXME: Perform direct initialization of the member.
1111  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1112                                                  NumArgs, C, IdLoc, RParenLoc);
1113}
1114
1115Sema::MemInitResult
1116Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1117                           unsigned NumArgs, SourceLocation IdLoc,
1118                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1119  bool HasDependentArg = false;
1120  for (unsigned i = 0; i < NumArgs; i++)
1121    HasDependentArg |= Args[i]->isTypeDependent();
1122
1123  if (!BaseType->isDependentType()) {
1124    if (!BaseType->isRecordType())
1125      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1126        << BaseType << SourceRange(IdLoc, RParenLoc);
1127
1128    // C++ [class.base.init]p2:
1129    //   [...] Unless the mem-initializer-id names a nonstatic data
1130    //   member of the constructor’s class or a direct or virtual base
1131    //   of that class, the mem-initializer is ill-formed. A
1132    //   mem-initializer-list can initialize a base class using any
1133    //   name that denotes that base class type.
1134
1135    // First, check for a direct base class.
1136    const CXXBaseSpecifier *DirectBaseSpec = 0;
1137    for (CXXRecordDecl::base_class_const_iterator Base =
1138         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1139      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1140          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1141        // We found a direct base of this type. That's what we're
1142        // initializing.
1143        DirectBaseSpec = &*Base;
1144        break;
1145      }
1146    }
1147
1148    // Check for a virtual base class.
1149    // FIXME: We might be able to short-circuit this if we know in advance that
1150    // there are no virtual bases.
1151    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1152    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1153      // We haven't found a base yet; search the class hierarchy for a
1154      // virtual base class.
1155      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1156                         /*DetectVirtual=*/false);
1157      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1158        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1159             Path != Paths.end(); ++Path) {
1160          if (Path->back().Base->isVirtual()) {
1161            VirtualBaseSpec = Path->back().Base;
1162            break;
1163          }
1164        }
1165      }
1166    }
1167
1168    // C++ [base.class.init]p2:
1169    //   If a mem-initializer-id is ambiguous because it designates both
1170    //   a direct non-virtual base class and an inherited virtual base
1171    //   class, the mem-initializer is ill-formed.
1172    if (DirectBaseSpec && VirtualBaseSpec)
1173      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1174        << BaseType << SourceRange(IdLoc, RParenLoc);
1175    // C++ [base.class.init]p2:
1176    // Unless the mem-initializer-id names a nonstatic data membeer of the
1177    // constructor's class ot a direst or virtual base of that class, the
1178    // mem-initializer is ill-formed.
1179    if (!DirectBaseSpec && !VirtualBaseSpec)
1180      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1181      << BaseType << ClassDecl->getNameAsCString()
1182      << SourceRange(IdLoc, RParenLoc);
1183  }
1184
1185  CXXConstructorDecl *C = 0;
1186  if (!BaseType->isDependentType() && !HasDependentArg) {
1187    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1188                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1189    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1190
1191    C = PerformInitializationByConstructor(BaseType,
1192                                           MultiExprArg(*this,
1193                                                        (void**)Args, NumArgs),
1194                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1195                                           Name, IK_Direct,
1196                                           ConstructorArgs);
1197    if (C) {
1198      // Take over the constructor arguments as our own.
1199      NumArgs = ConstructorArgs.size();
1200      Args = (Expr **)ConstructorArgs.take();
1201    }
1202  }
1203
1204  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1205  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1206  ExprTemporaries.clear();
1207
1208  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1209                                                  NumArgs, C, IdLoc, RParenLoc);
1210}
1211
1212bool
1213Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1214                              CXXBaseOrMemberInitializer **Initializers,
1215                              unsigned NumInitializers,
1216                              bool IsImplicitConstructor) {
1217  // We need to build the initializer AST according to order of construction
1218  // and not what user specified in the Initializers list.
1219  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1220  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1221  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1222  bool HasDependentBaseInit = false;
1223  bool HadError = false;
1224
1225  for (unsigned i = 0; i < NumInitializers; i++) {
1226    CXXBaseOrMemberInitializer *Member = Initializers[i];
1227    if (Member->isBaseInitializer()) {
1228      if (Member->getBaseClass()->isDependentType())
1229        HasDependentBaseInit = true;
1230      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1231    } else {
1232      AllBaseFields[Member->getMember()] = Member;
1233    }
1234  }
1235
1236  if (HasDependentBaseInit) {
1237    // FIXME. This does not preserve the ordering of the initializers.
1238    // Try (with -Wreorder)
1239    // template<class X> struct A {};
1240    // template<class X> struct B : A<X> {
1241    //   B() : x1(10), A<X>() {}
1242    //   int x1;
1243    // };
1244    // B<int> x;
1245    // On seeing one dependent type, we should essentially exit this routine
1246    // while preserving user-declared initializer list. When this routine is
1247    // called during instantiatiation process, this routine will rebuild the
1248    // ordered initializer list correctly.
1249
1250    // If we have a dependent base initialization, we can't determine the
1251    // association between initializers and bases; just dump the known
1252    // initializers into the list, and don't try to deal with other bases.
1253    for (unsigned i = 0; i < NumInitializers; i++) {
1254      CXXBaseOrMemberInitializer *Member = Initializers[i];
1255      if (Member->isBaseInitializer())
1256        AllToInit.push_back(Member);
1257    }
1258  } else {
1259    // Push virtual bases before others.
1260    for (CXXRecordDecl::base_class_iterator VBase =
1261         ClassDecl->vbases_begin(),
1262         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1263      if (VBase->getType()->isDependentType())
1264        continue;
1265      if (CXXBaseOrMemberInitializer *Value =
1266          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1267        CXXRecordDecl *BaseDecl =
1268          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1269        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1270        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1271          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1272        AllToInit.push_back(Value);
1273      }
1274      else {
1275        CXXRecordDecl *VBaseDecl =
1276        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1277        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1278        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1279        if (!Ctor) {
1280          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1281            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1282            << 0 << VBase->getType();
1283          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1284            << Context.getTagDeclType(VBaseDecl);
1285          HadError = true;
1286          continue;
1287        }
1288
1289        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1290        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1291                                    Constructor->getLocation(), CtorArgs))
1292          continue;
1293
1294        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1295
1296        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1297        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1298        ExprTemporaries.clear();
1299        CXXBaseOrMemberInitializer *Member =
1300          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1301                                                   CtorArgs.takeAs<Expr>(),
1302                                                   CtorArgs.size(), Ctor,
1303                                                   SourceLocation(),
1304                                                   SourceLocation());
1305        AllToInit.push_back(Member);
1306      }
1307    }
1308
1309    for (CXXRecordDecl::base_class_iterator Base =
1310         ClassDecl->bases_begin(),
1311         E = ClassDecl->bases_end(); Base != E; ++Base) {
1312      // Virtuals are in the virtual base list and already constructed.
1313      if (Base->isVirtual())
1314        continue;
1315      // Skip dependent types.
1316      if (Base->getType()->isDependentType())
1317        continue;
1318      if (CXXBaseOrMemberInitializer *Value =
1319          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1320        CXXRecordDecl *BaseDecl =
1321          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1322        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1323        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1324          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1325        AllToInit.push_back(Value);
1326      }
1327      else {
1328        CXXRecordDecl *BaseDecl =
1329          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1330        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1331         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1332        if (!Ctor) {
1333          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1334            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1335            << 0 << Base->getType();
1336          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1337            << Context.getTagDeclType(BaseDecl);
1338          HadError = true;
1339          continue;
1340        }
1341
1342        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1343        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1344                                     Constructor->getLocation(), CtorArgs))
1345          continue;
1346
1347        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1348
1349        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1350        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1351        ExprTemporaries.clear();
1352        CXXBaseOrMemberInitializer *Member =
1353          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1354                                                   CtorArgs.takeAs<Expr>(),
1355                                                   CtorArgs.size(), Ctor,
1356                                                   SourceLocation(),
1357                                                   SourceLocation());
1358        AllToInit.push_back(Member);
1359      }
1360    }
1361  }
1362
1363  // non-static data members.
1364  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1365       E = ClassDecl->field_end(); Field != E; ++Field) {
1366    if ((*Field)->isAnonymousStructOrUnion()) {
1367      if (const RecordType *FieldClassType =
1368          Field->getType()->getAs<RecordType>()) {
1369        CXXRecordDecl *FieldClassDecl
1370          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1371        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1372            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1373          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1374            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1375            // set to the anonymous union data member used in the initializer
1376            // list.
1377            Value->setMember(*Field);
1378            Value->setAnonUnionMember(*FA);
1379            AllToInit.push_back(Value);
1380            break;
1381          }
1382        }
1383      }
1384      continue;
1385    }
1386    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1387      QualType FT = (*Field)->getType();
1388      if (const RecordType* RT = FT->getAs<RecordType>()) {
1389        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1390        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1391        if (CXXConstructorDecl *Ctor =
1392              FieldRecDecl->getDefaultConstructor(Context))
1393          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1394      }
1395      AllToInit.push_back(Value);
1396      continue;
1397    }
1398
1399    if ((*Field)->getType()->isDependentType())
1400      continue;
1401
1402    QualType FT = Context.getBaseElementType((*Field)->getType());
1403    if (const RecordType* RT = FT->getAs<RecordType>()) {
1404      CXXConstructorDecl *Ctor =
1405        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1406      if (!Ctor) {
1407        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1408          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1409          << 1 << (*Field)->getDeclName();
1410        Diag(Field->getLocation(), diag::note_field_decl);
1411        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1412          << Context.getTagDeclType(RT->getDecl());
1413        HadError = true;
1414        continue;
1415      }
1416
1417      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1418      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1419                                  Constructor->getLocation(), CtorArgs))
1420        continue;
1421
1422      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1423      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1424      ExprTemporaries.clear();
1425      CXXBaseOrMemberInitializer *Member =
1426        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1427                                                 CtorArgs.size(), Ctor,
1428                                                 SourceLocation(),
1429                                                 SourceLocation());
1430
1431      AllToInit.push_back(Member);
1432      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1433      if (FT.isConstQualified() && Ctor->isTrivial()) {
1434        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1435          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1436          << 1 << (*Field)->getDeclName();
1437        Diag((*Field)->getLocation(), diag::note_declared_at);
1438        HadError = true;
1439      }
1440    }
1441    else if (FT->isReferenceType()) {
1442      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1443        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1444        << 0 << (*Field)->getDeclName();
1445      Diag((*Field)->getLocation(), diag::note_declared_at);
1446      HadError = true;
1447    }
1448    else if (FT.isConstQualified()) {
1449      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1450        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1451        << 1 << (*Field)->getDeclName();
1452      Diag((*Field)->getLocation(), diag::note_declared_at);
1453      HadError = true;
1454    }
1455  }
1456
1457  NumInitializers = AllToInit.size();
1458  if (NumInitializers > 0) {
1459    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1460    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1461      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1462
1463    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1464    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1465      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1466  }
1467
1468  return HadError;
1469}
1470
1471static void *GetKeyForTopLevelField(FieldDecl *Field) {
1472  // For anonymous unions, use the class declaration as the key.
1473  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1474    if (RT->getDecl()->isAnonymousStructOrUnion())
1475      return static_cast<void *>(RT->getDecl());
1476  }
1477  return static_cast<void *>(Field);
1478}
1479
1480static void *GetKeyForBase(QualType BaseType) {
1481  if (const RecordType *RT = BaseType->getAs<RecordType>())
1482    return (void *)RT;
1483
1484  assert(0 && "Unexpected base type!");
1485  return 0;
1486}
1487
1488static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1489                             bool MemberMaybeAnon = false) {
1490  // For fields injected into the class via declaration of an anonymous union,
1491  // use its anonymous union class declaration as the unique key.
1492  if (Member->isMemberInitializer()) {
1493    FieldDecl *Field = Member->getMember();
1494
1495    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1496    // data member of the class. Data member used in the initializer list is
1497    // in AnonUnionMember field.
1498    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1499      Field = Member->getAnonUnionMember();
1500    if (Field->getDeclContext()->isRecord()) {
1501      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1502      if (RD->isAnonymousStructOrUnion())
1503        return static_cast<void *>(RD);
1504    }
1505    return static_cast<void *>(Field);
1506  }
1507
1508  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1509}
1510
1511/// ActOnMemInitializers - Handle the member initializers for a constructor.
1512void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1513                                SourceLocation ColonLoc,
1514                                MemInitTy **MemInits, unsigned NumMemInits) {
1515  if (!ConstructorDecl)
1516    return;
1517
1518  AdjustDeclIfTemplate(ConstructorDecl);
1519
1520  CXXConstructorDecl *Constructor
1521    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1522
1523  if (!Constructor) {
1524    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1525    return;
1526  }
1527
1528  if (!Constructor->isDependentContext()) {
1529    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1530    bool err = false;
1531    for (unsigned i = 0; i < NumMemInits; i++) {
1532      CXXBaseOrMemberInitializer *Member =
1533        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1534      void *KeyToMember = GetKeyForMember(Member);
1535      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1536      if (!PrevMember) {
1537        PrevMember = Member;
1538        continue;
1539      }
1540      if (FieldDecl *Field = Member->getMember())
1541        Diag(Member->getSourceLocation(),
1542             diag::error_multiple_mem_initialization)
1543        << Field->getNameAsString();
1544      else {
1545        Type *BaseClass = Member->getBaseClass();
1546        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1547        Diag(Member->getSourceLocation(),
1548             diag::error_multiple_base_initialization)
1549          << QualType(BaseClass, 0);
1550      }
1551      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1552        << 0;
1553      err = true;
1554    }
1555
1556    if (err)
1557      return;
1558  }
1559
1560  SetBaseOrMemberInitializers(Constructor,
1561                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1562                      NumMemInits, false);
1563
1564  if (Constructor->isDependentContext())
1565    return;
1566
1567  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1568      Diagnostic::Ignored &&
1569      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1570      Diagnostic::Ignored)
1571    return;
1572
1573  // Also issue warning if order of ctor-initializer list does not match order
1574  // of 1) base class declarations and 2) order of non-static data members.
1575  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1576
1577  CXXRecordDecl *ClassDecl
1578    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1579  // Push virtual bases before others.
1580  for (CXXRecordDecl::base_class_iterator VBase =
1581       ClassDecl->vbases_begin(),
1582       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1583    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1584
1585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1586       E = ClassDecl->bases_end(); Base != E; ++Base) {
1587    // Virtuals are alread in the virtual base list and are constructed
1588    // first.
1589    if (Base->isVirtual())
1590      continue;
1591    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1592  }
1593
1594  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1595       E = ClassDecl->field_end(); Field != E; ++Field)
1596    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1597
1598  int Last = AllBaseOrMembers.size();
1599  int curIndex = 0;
1600  CXXBaseOrMemberInitializer *PrevMember = 0;
1601  for (unsigned i = 0; i < NumMemInits; i++) {
1602    CXXBaseOrMemberInitializer *Member =
1603      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1604    void *MemberInCtorList = GetKeyForMember(Member, true);
1605
1606    for (; curIndex < Last; curIndex++)
1607      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1608        break;
1609    if (curIndex == Last) {
1610      assert(PrevMember && "Member not in member list?!");
1611      // Initializer as specified in ctor-initializer list is out of order.
1612      // Issue a warning diagnostic.
1613      if (PrevMember->isBaseInitializer()) {
1614        // Diagnostics is for an initialized base class.
1615        Type *BaseClass = PrevMember->getBaseClass();
1616        Diag(PrevMember->getSourceLocation(),
1617             diag::warn_base_initialized)
1618          << QualType(BaseClass, 0);
1619      } else {
1620        FieldDecl *Field = PrevMember->getMember();
1621        Diag(PrevMember->getSourceLocation(),
1622             diag::warn_field_initialized)
1623          << Field->getNameAsString();
1624      }
1625      // Also the note!
1626      if (FieldDecl *Field = Member->getMember())
1627        Diag(Member->getSourceLocation(),
1628             diag::note_fieldorbase_initialized_here) << 0
1629          << Field->getNameAsString();
1630      else {
1631        Type *BaseClass = Member->getBaseClass();
1632        Diag(Member->getSourceLocation(),
1633             diag::note_fieldorbase_initialized_here) << 1
1634          << QualType(BaseClass, 0);
1635      }
1636      for (curIndex = 0; curIndex < Last; curIndex++)
1637        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1638          break;
1639    }
1640    PrevMember = Member;
1641  }
1642}
1643
1644void
1645Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1646  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1647  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1648
1649  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1650       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1651    if (VBase->getType()->isDependentType())
1652      continue;
1653    // Skip over virtual bases which have trivial destructors.
1654    CXXRecordDecl *BaseClassDecl
1655      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1656    if (BaseClassDecl->hasTrivialDestructor())
1657      continue;
1658    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1659      MarkDeclarationReferenced(Destructor->getLocation(),
1660                                const_cast<CXXDestructorDecl*>(Dtor));
1661
1662    uintptr_t Member =
1663    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1664      | CXXDestructorDecl::VBASE;
1665    AllToDestruct.push_back(Member);
1666  }
1667  for (CXXRecordDecl::base_class_iterator Base =
1668       ClassDecl->bases_begin(),
1669       E = ClassDecl->bases_end(); Base != E; ++Base) {
1670    if (Base->isVirtual())
1671      continue;
1672    if (Base->getType()->isDependentType())
1673      continue;
1674    // Skip over virtual bases which have trivial destructors.
1675    CXXRecordDecl *BaseClassDecl
1676    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1677    if (BaseClassDecl->hasTrivialDestructor())
1678      continue;
1679    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1680      MarkDeclarationReferenced(Destructor->getLocation(),
1681                                const_cast<CXXDestructorDecl*>(Dtor));
1682    uintptr_t Member =
1683    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1684      | CXXDestructorDecl::DRCTNONVBASE;
1685    AllToDestruct.push_back(Member);
1686  }
1687
1688  // non-static data members.
1689  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1690       E = ClassDecl->field_end(); Field != E; ++Field) {
1691    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1692
1693    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1694      // Skip over virtual bases which have trivial destructors.
1695      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1696      if (FieldClassDecl->hasTrivialDestructor())
1697        continue;
1698      if (const CXXDestructorDecl *Dtor =
1699            FieldClassDecl->getDestructor(Context))
1700        MarkDeclarationReferenced(Destructor->getLocation(),
1701                                  const_cast<CXXDestructorDecl*>(Dtor));
1702      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1703      AllToDestruct.push_back(Member);
1704    }
1705  }
1706
1707  unsigned NumDestructions = AllToDestruct.size();
1708  if (NumDestructions > 0) {
1709    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1710    uintptr_t *BaseOrMemberDestructions =
1711      new (Context) uintptr_t [NumDestructions];
1712    // Insert in reverse order.
1713    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1714      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1715    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1716  }
1717}
1718
1719void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1720  if (!CDtorDecl)
1721    return;
1722
1723  AdjustDeclIfTemplate(CDtorDecl);
1724
1725  if (CXXConstructorDecl *Constructor
1726      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1727    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1728}
1729
1730namespace {
1731  /// PureVirtualMethodCollector - traverses a class and its superclasses
1732  /// and determines if it has any pure virtual methods.
1733  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1734    ASTContext &Context;
1735
1736  public:
1737    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1738
1739  private:
1740    MethodList Methods;
1741
1742    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1743
1744  public:
1745    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1746      : Context(Ctx) {
1747
1748      MethodList List;
1749      Collect(RD, List);
1750
1751      // Copy the temporary list to methods, and make sure to ignore any
1752      // null entries.
1753      for (size_t i = 0, e = List.size(); i != e; ++i) {
1754        if (List[i])
1755          Methods.push_back(List[i]);
1756      }
1757    }
1758
1759    bool empty() const { return Methods.empty(); }
1760
1761    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1762    MethodList::const_iterator methods_end() { return Methods.end(); }
1763  };
1764
1765  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1766                                           MethodList& Methods) {
1767    // First, collect the pure virtual methods for the base classes.
1768    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1769         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1770      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1771        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1772        if (BaseDecl && BaseDecl->isAbstract())
1773          Collect(BaseDecl, Methods);
1774      }
1775    }
1776
1777    // Next, zero out any pure virtual methods that this class overrides.
1778    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1779
1780    MethodSetTy OverriddenMethods;
1781    size_t MethodsSize = Methods.size();
1782
1783    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1784         i != e; ++i) {
1785      // Traverse the record, looking for methods.
1786      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1787        // If the method is pure virtual, add it to the methods vector.
1788        if (MD->isPure())
1789          Methods.push_back(MD);
1790
1791        // Record all the overridden methods in our set.
1792        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1793             E = MD->end_overridden_methods(); I != E; ++I) {
1794          // Keep track of the overridden methods.
1795          OverriddenMethods.insert(*I);
1796        }
1797      }
1798    }
1799
1800    // Now go through the methods and zero out all the ones we know are
1801    // overridden.
1802    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1803      if (OverriddenMethods.count(Methods[i]))
1804        Methods[i] = 0;
1805    }
1806
1807  }
1808}
1809
1810
1811bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1812                                  unsigned DiagID, AbstractDiagSelID SelID,
1813                                  const CXXRecordDecl *CurrentRD) {
1814  if (SelID == -1)
1815    return RequireNonAbstractType(Loc, T,
1816                                  PDiag(DiagID), CurrentRD);
1817  else
1818    return RequireNonAbstractType(Loc, T,
1819                                  PDiag(DiagID) << SelID, CurrentRD);
1820}
1821
1822bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1823                                  const PartialDiagnostic &PD,
1824                                  const CXXRecordDecl *CurrentRD) {
1825  if (!getLangOptions().CPlusPlus)
1826    return false;
1827
1828  if (const ArrayType *AT = Context.getAsArrayType(T))
1829    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1830                                  CurrentRD);
1831
1832  if (const PointerType *PT = T->getAs<PointerType>()) {
1833    // Find the innermost pointer type.
1834    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1835      PT = T;
1836
1837    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1838      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1839  }
1840
1841  const RecordType *RT = T->getAs<RecordType>();
1842  if (!RT)
1843    return false;
1844
1845  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1846  if (!RD)
1847    return false;
1848
1849  if (CurrentRD && CurrentRD != RD)
1850    return false;
1851
1852  if (!RD->isAbstract())
1853    return false;
1854
1855  Diag(Loc, PD) << RD->getDeclName();
1856
1857  // Check if we've already emitted the list of pure virtual functions for this
1858  // class.
1859  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1860    return true;
1861
1862  PureVirtualMethodCollector Collector(Context, RD);
1863
1864  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1865       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1866    const CXXMethodDecl *MD = *I;
1867
1868    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1869      MD->getDeclName();
1870  }
1871
1872  if (!PureVirtualClassDiagSet)
1873    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1874  PureVirtualClassDiagSet->insert(RD);
1875
1876  return true;
1877}
1878
1879namespace {
1880  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1881    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1882    Sema &SemaRef;
1883    CXXRecordDecl *AbstractClass;
1884
1885    bool VisitDeclContext(const DeclContext *DC) {
1886      bool Invalid = false;
1887
1888      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1889           E = DC->decls_end(); I != E; ++I)
1890        Invalid |= Visit(*I);
1891
1892      return Invalid;
1893    }
1894
1895  public:
1896    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1897      : SemaRef(SemaRef), AbstractClass(ac) {
1898        Visit(SemaRef.Context.getTranslationUnitDecl());
1899    }
1900
1901    bool VisitFunctionDecl(const FunctionDecl *FD) {
1902      if (FD->isThisDeclarationADefinition()) {
1903        // No need to do the check if we're in a definition, because it requires
1904        // that the return/param types are complete.
1905        // because that requires
1906        return VisitDeclContext(FD);
1907      }
1908
1909      // Check the return type.
1910      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1911      bool Invalid =
1912        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1913                                       diag::err_abstract_type_in_decl,
1914                                       Sema::AbstractReturnType,
1915                                       AbstractClass);
1916
1917      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1918           E = FD->param_end(); I != E; ++I) {
1919        const ParmVarDecl *VD = *I;
1920        Invalid |=
1921          SemaRef.RequireNonAbstractType(VD->getLocation(),
1922                                         VD->getOriginalType(),
1923                                         diag::err_abstract_type_in_decl,
1924                                         Sema::AbstractParamType,
1925                                         AbstractClass);
1926      }
1927
1928      return Invalid;
1929    }
1930
1931    bool VisitDecl(const Decl* D) {
1932      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1933        return VisitDeclContext(DC);
1934
1935      return false;
1936    }
1937  };
1938}
1939
1940void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1941                                             DeclPtrTy TagDecl,
1942                                             SourceLocation LBrac,
1943                                             SourceLocation RBrac) {
1944  if (!TagDecl)
1945    return;
1946
1947  AdjustDeclIfTemplate(TagDecl);
1948  ActOnFields(S, RLoc, TagDecl,
1949              (DeclPtrTy*)FieldCollector->getCurFields(),
1950              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1951
1952  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1953  if (!RD->isAbstract()) {
1954    // Collect all the pure virtual methods and see if this is an abstract
1955    // class after all.
1956    PureVirtualMethodCollector Collector(Context, RD);
1957    if (!Collector.empty())
1958      RD->setAbstract(true);
1959  }
1960
1961  if (RD->isAbstract())
1962    AbstractClassUsageDiagnoser(*this, RD);
1963
1964  if (!RD->isDependentType() && !RD->isInvalidDecl())
1965    AddImplicitlyDeclaredMembersToClass(RD);
1966}
1967
1968/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1969/// special functions, such as the default constructor, copy
1970/// constructor, or destructor, to the given C++ class (C++
1971/// [special]p1).  This routine can only be executed just before the
1972/// definition of the class is complete.
1973void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1974  CanQualType ClassType
1975    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1976
1977  // FIXME: Implicit declarations have exception specifications, which are
1978  // the union of the specifications of the implicitly called functions.
1979
1980  if (!ClassDecl->hasUserDeclaredConstructor()) {
1981    // C++ [class.ctor]p5:
1982    //   A default constructor for a class X is a constructor of class X
1983    //   that can be called without an argument. If there is no
1984    //   user-declared constructor for class X, a default constructor is
1985    //   implicitly declared. An implicitly-declared default constructor
1986    //   is an inline public member of its class.
1987    DeclarationName Name
1988      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1989    CXXConstructorDecl *DefaultCon =
1990      CXXConstructorDecl::Create(Context, ClassDecl,
1991                                 ClassDecl->getLocation(), Name,
1992                                 Context.getFunctionType(Context.VoidTy,
1993                                                         0, 0, false, 0),
1994                                 /*DInfo=*/0,
1995                                 /*isExplicit=*/false,
1996                                 /*isInline=*/true,
1997                                 /*isImplicitlyDeclared=*/true);
1998    DefaultCon->setAccess(AS_public);
1999    DefaultCon->setImplicit();
2000    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2001    ClassDecl->addDecl(DefaultCon);
2002  }
2003
2004  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2005    // C++ [class.copy]p4:
2006    //   If the class definition does not explicitly declare a copy
2007    //   constructor, one is declared implicitly.
2008
2009    // C++ [class.copy]p5:
2010    //   The implicitly-declared copy constructor for a class X will
2011    //   have the form
2012    //
2013    //       X::X(const X&)
2014    //
2015    //   if
2016    bool HasConstCopyConstructor = true;
2017
2018    //     -- each direct or virtual base class B of X has a copy
2019    //        constructor whose first parameter is of type const B& or
2020    //        const volatile B&, and
2021    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2022         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2023      const CXXRecordDecl *BaseClassDecl
2024        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2025      HasConstCopyConstructor
2026        = BaseClassDecl->hasConstCopyConstructor(Context);
2027    }
2028
2029    //     -- for all the nonstatic data members of X that are of a
2030    //        class type M (or array thereof), each such class type
2031    //        has a copy constructor whose first parameter is of type
2032    //        const M& or const volatile M&.
2033    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2034         HasConstCopyConstructor && Field != ClassDecl->field_end();
2035         ++Field) {
2036      QualType FieldType = (*Field)->getType();
2037      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2038        FieldType = Array->getElementType();
2039      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2040        const CXXRecordDecl *FieldClassDecl
2041          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2042        HasConstCopyConstructor
2043          = FieldClassDecl->hasConstCopyConstructor(Context);
2044      }
2045    }
2046
2047    //   Otherwise, the implicitly declared copy constructor will have
2048    //   the form
2049    //
2050    //       X::X(X&)
2051    QualType ArgType = ClassType;
2052    if (HasConstCopyConstructor)
2053      ArgType = ArgType.withConst();
2054    ArgType = Context.getLValueReferenceType(ArgType);
2055
2056    //   An implicitly-declared copy constructor is an inline public
2057    //   member of its class.
2058    DeclarationName Name
2059      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2060    CXXConstructorDecl *CopyConstructor
2061      = CXXConstructorDecl::Create(Context, ClassDecl,
2062                                   ClassDecl->getLocation(), Name,
2063                                   Context.getFunctionType(Context.VoidTy,
2064                                                           &ArgType, 1,
2065                                                           false, 0),
2066                                   /*DInfo=*/0,
2067                                   /*isExplicit=*/false,
2068                                   /*isInline=*/true,
2069                                   /*isImplicitlyDeclared=*/true);
2070    CopyConstructor->setAccess(AS_public);
2071    CopyConstructor->setImplicit();
2072    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2073
2074    // Add the parameter to the constructor.
2075    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2076                                                 ClassDecl->getLocation(),
2077                                                 /*IdentifierInfo=*/0,
2078                                                 ArgType, /*DInfo=*/0,
2079                                                 VarDecl::None, 0);
2080    CopyConstructor->setParams(Context, &FromParam, 1);
2081    ClassDecl->addDecl(CopyConstructor);
2082  }
2083
2084  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2085    // Note: The following rules are largely analoguous to the copy
2086    // constructor rules. Note that virtual bases are not taken into account
2087    // for determining the argument type of the operator. Note also that
2088    // operators taking an object instead of a reference are allowed.
2089    //
2090    // C++ [class.copy]p10:
2091    //   If the class definition does not explicitly declare a copy
2092    //   assignment operator, one is declared implicitly.
2093    //   The implicitly-defined copy assignment operator for a class X
2094    //   will have the form
2095    //
2096    //       X& X::operator=(const X&)
2097    //
2098    //   if
2099    bool HasConstCopyAssignment = true;
2100
2101    //       -- each direct base class B of X has a copy assignment operator
2102    //          whose parameter is of type const B&, const volatile B& or B,
2103    //          and
2104    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2105         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2106      assert(!Base->getType()->isDependentType() &&
2107            "Cannot generate implicit members for class with dependent bases.");
2108      const CXXRecordDecl *BaseClassDecl
2109        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2110      const CXXMethodDecl *MD = 0;
2111      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2112                                                                     MD);
2113    }
2114
2115    //       -- for all the nonstatic data members of X that are of a class
2116    //          type M (or array thereof), each such class type has a copy
2117    //          assignment operator whose parameter is of type const M&,
2118    //          const volatile M& or M.
2119    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2120         HasConstCopyAssignment && Field != ClassDecl->field_end();
2121         ++Field) {
2122      QualType FieldType = (*Field)->getType();
2123      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2124        FieldType = Array->getElementType();
2125      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2126        const CXXRecordDecl *FieldClassDecl
2127          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2128        const CXXMethodDecl *MD = 0;
2129        HasConstCopyAssignment
2130          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2131      }
2132    }
2133
2134    //   Otherwise, the implicitly declared copy assignment operator will
2135    //   have the form
2136    //
2137    //       X& X::operator=(X&)
2138    QualType ArgType = ClassType;
2139    QualType RetType = Context.getLValueReferenceType(ArgType);
2140    if (HasConstCopyAssignment)
2141      ArgType = ArgType.withConst();
2142    ArgType = Context.getLValueReferenceType(ArgType);
2143
2144    //   An implicitly-declared copy assignment operator is an inline public
2145    //   member of its class.
2146    DeclarationName Name =
2147      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2148    CXXMethodDecl *CopyAssignment =
2149      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2150                            Context.getFunctionType(RetType, &ArgType, 1,
2151                                                    false, 0),
2152                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2153    CopyAssignment->setAccess(AS_public);
2154    CopyAssignment->setImplicit();
2155    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2156    CopyAssignment->setCopyAssignment(true);
2157
2158    // Add the parameter to the operator.
2159    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2160                                                 ClassDecl->getLocation(),
2161                                                 /*IdentifierInfo=*/0,
2162                                                 ArgType, /*DInfo=*/0,
2163                                                 VarDecl::None, 0);
2164    CopyAssignment->setParams(Context, &FromParam, 1);
2165
2166    // Don't call addedAssignmentOperator. There is no way to distinguish an
2167    // implicit from an explicit assignment operator.
2168    ClassDecl->addDecl(CopyAssignment);
2169  }
2170
2171  if (!ClassDecl->hasUserDeclaredDestructor()) {
2172    // C++ [class.dtor]p2:
2173    //   If a class has no user-declared destructor, a destructor is
2174    //   declared implicitly. An implicitly-declared destructor is an
2175    //   inline public member of its class.
2176    DeclarationName Name
2177      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2178    CXXDestructorDecl *Destructor
2179      = CXXDestructorDecl::Create(Context, ClassDecl,
2180                                  ClassDecl->getLocation(), Name,
2181                                  Context.getFunctionType(Context.VoidTy,
2182                                                          0, 0, false, 0),
2183                                  /*isInline=*/true,
2184                                  /*isImplicitlyDeclared=*/true);
2185    Destructor->setAccess(AS_public);
2186    Destructor->setImplicit();
2187    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2188    ClassDecl->addDecl(Destructor);
2189  }
2190}
2191
2192void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2193  Decl *D = TemplateD.getAs<Decl>();
2194  if (!D)
2195    return;
2196
2197  TemplateParameterList *Params = 0;
2198  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2199    Params = Template->getTemplateParameters();
2200  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2201           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2202    Params = PartialSpec->getTemplateParameters();
2203  else
2204    return;
2205
2206  for (TemplateParameterList::iterator Param = Params->begin(),
2207                                    ParamEnd = Params->end();
2208       Param != ParamEnd; ++Param) {
2209    NamedDecl *Named = cast<NamedDecl>(*Param);
2210    if (Named->getDeclName()) {
2211      S->AddDecl(DeclPtrTy::make(Named));
2212      IdResolver.AddDecl(Named);
2213    }
2214  }
2215}
2216
2217/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2218/// parsing a top-level (non-nested) C++ class, and we are now
2219/// parsing those parts of the given Method declaration that could
2220/// not be parsed earlier (C++ [class.mem]p2), such as default
2221/// arguments. This action should enter the scope of the given
2222/// Method declaration as if we had just parsed the qualified method
2223/// name. However, it should not bring the parameters into scope;
2224/// that will be performed by ActOnDelayedCXXMethodParameter.
2225void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2226  if (!MethodD)
2227    return;
2228
2229  AdjustDeclIfTemplate(MethodD);
2230
2231  CXXScopeSpec SS;
2232  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2233  QualType ClassTy
2234    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2235  SS.setScopeRep(
2236    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2237  ActOnCXXEnterDeclaratorScope(S, SS);
2238}
2239
2240/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2241/// C++ method declaration. We're (re-)introducing the given
2242/// function parameter into scope for use in parsing later parts of
2243/// the method declaration. For example, we could see an
2244/// ActOnParamDefaultArgument event for this parameter.
2245void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2246  if (!ParamD)
2247    return;
2248
2249  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2250
2251  // If this parameter has an unparsed default argument, clear it out
2252  // to make way for the parsed default argument.
2253  if (Param->hasUnparsedDefaultArg())
2254    Param->setDefaultArg(0);
2255
2256  S->AddDecl(DeclPtrTy::make(Param));
2257  if (Param->getDeclName())
2258    IdResolver.AddDecl(Param);
2259}
2260
2261/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2262/// processing the delayed method declaration for Method. The method
2263/// declaration is now considered finished. There may be a separate
2264/// ActOnStartOfFunctionDef action later (not necessarily
2265/// immediately!) for this method, if it was also defined inside the
2266/// class body.
2267void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2268  if (!MethodD)
2269    return;
2270
2271  AdjustDeclIfTemplate(MethodD);
2272
2273  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2274  CXXScopeSpec SS;
2275  QualType ClassTy
2276    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2277  SS.setScopeRep(
2278    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2279  ActOnCXXExitDeclaratorScope(S, SS);
2280
2281  // Now that we have our default arguments, check the constructor
2282  // again. It could produce additional diagnostics or affect whether
2283  // the class has implicitly-declared destructors, among other
2284  // things.
2285  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2286    CheckConstructor(Constructor);
2287
2288  // Check the default arguments, which we may have added.
2289  if (!Method->isInvalidDecl())
2290    CheckCXXDefaultArguments(Method);
2291}
2292
2293/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2294/// the well-formedness of the constructor declarator @p D with type @p
2295/// R. If there are any errors in the declarator, this routine will
2296/// emit diagnostics and set the invalid bit to true.  In any case, the type
2297/// will be updated to reflect a well-formed type for the constructor and
2298/// returned.
2299QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2300                                          FunctionDecl::StorageClass &SC) {
2301  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2302
2303  // C++ [class.ctor]p3:
2304  //   A constructor shall not be virtual (10.3) or static (9.4). A
2305  //   constructor can be invoked for a const, volatile or const
2306  //   volatile object. A constructor shall not be declared const,
2307  //   volatile, or const volatile (9.3.2).
2308  if (isVirtual) {
2309    if (!D.isInvalidType())
2310      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2311        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2312        << SourceRange(D.getIdentifierLoc());
2313    D.setInvalidType();
2314  }
2315  if (SC == FunctionDecl::Static) {
2316    if (!D.isInvalidType())
2317      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2318        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2319        << SourceRange(D.getIdentifierLoc());
2320    D.setInvalidType();
2321    SC = FunctionDecl::None;
2322  }
2323
2324  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2325  if (FTI.TypeQuals != 0) {
2326    if (FTI.TypeQuals & Qualifiers::Const)
2327      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2328        << "const" << SourceRange(D.getIdentifierLoc());
2329    if (FTI.TypeQuals & Qualifiers::Volatile)
2330      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2331        << "volatile" << SourceRange(D.getIdentifierLoc());
2332    if (FTI.TypeQuals & Qualifiers::Restrict)
2333      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2334        << "restrict" << SourceRange(D.getIdentifierLoc());
2335  }
2336
2337  // Rebuild the function type "R" without any type qualifiers (in
2338  // case any of the errors above fired) and with "void" as the
2339  // return type, since constructors don't have return types. We
2340  // *always* have to do this, because GetTypeForDeclarator will
2341  // put in a result type of "int" when none was specified.
2342  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2343  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2344                                 Proto->getNumArgs(),
2345                                 Proto->isVariadic(), 0);
2346}
2347
2348/// CheckConstructor - Checks a fully-formed constructor for
2349/// well-formedness, issuing any diagnostics required. Returns true if
2350/// the constructor declarator is invalid.
2351void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2352  CXXRecordDecl *ClassDecl
2353    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2354  if (!ClassDecl)
2355    return Constructor->setInvalidDecl();
2356
2357  // C++ [class.copy]p3:
2358  //   A declaration of a constructor for a class X is ill-formed if
2359  //   its first parameter is of type (optionally cv-qualified) X and
2360  //   either there are no other parameters or else all other
2361  //   parameters have default arguments.
2362  if (!Constructor->isInvalidDecl() &&
2363      ((Constructor->getNumParams() == 1) ||
2364       (Constructor->getNumParams() > 1 &&
2365        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2366      Constructor->getTemplateSpecializationKind()
2367                                              != TSK_ImplicitInstantiation) {
2368    QualType ParamType = Constructor->getParamDecl(0)->getType();
2369    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2370    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2371      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2372      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2373        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2374
2375      // FIXME: Rather that making the constructor invalid, we should endeavor
2376      // to fix the type.
2377      Constructor->setInvalidDecl();
2378    }
2379  }
2380
2381  // Notify the class that we've added a constructor.
2382  ClassDecl->addedConstructor(Context, Constructor);
2383}
2384
2385static inline bool
2386FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2387  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2388          FTI.ArgInfo[0].Param &&
2389          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2390}
2391
2392/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2393/// the well-formednes of the destructor declarator @p D with type @p
2394/// R. If there are any errors in the declarator, this routine will
2395/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2396/// will be updated to reflect a well-formed type for the destructor and
2397/// returned.
2398QualType Sema::CheckDestructorDeclarator(Declarator &D,
2399                                         FunctionDecl::StorageClass& SC) {
2400  // C++ [class.dtor]p1:
2401  //   [...] A typedef-name that names a class is a class-name
2402  //   (7.1.3); however, a typedef-name that names a class shall not
2403  //   be used as the identifier in the declarator for a destructor
2404  //   declaration.
2405  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2406  if (isa<TypedefType>(DeclaratorType)) {
2407    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2408      << DeclaratorType;
2409    D.setInvalidType();
2410  }
2411
2412  // C++ [class.dtor]p2:
2413  //   A destructor is used to destroy objects of its class type. A
2414  //   destructor takes no parameters, and no return type can be
2415  //   specified for it (not even void). The address of a destructor
2416  //   shall not be taken. A destructor shall not be static. A
2417  //   destructor can be invoked for a const, volatile or const
2418  //   volatile object. A destructor shall not be declared const,
2419  //   volatile or const volatile (9.3.2).
2420  if (SC == FunctionDecl::Static) {
2421    if (!D.isInvalidType())
2422      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2423        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2424        << SourceRange(D.getIdentifierLoc());
2425    SC = FunctionDecl::None;
2426    D.setInvalidType();
2427  }
2428  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2429    // Destructors don't have return types, but the parser will
2430    // happily parse something like:
2431    //
2432    //   class X {
2433    //     float ~X();
2434    //   };
2435    //
2436    // The return type will be eliminated later.
2437    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2438      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2439      << SourceRange(D.getIdentifierLoc());
2440  }
2441
2442  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2443  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2444    if (FTI.TypeQuals & Qualifiers::Const)
2445      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2446        << "const" << SourceRange(D.getIdentifierLoc());
2447    if (FTI.TypeQuals & Qualifiers::Volatile)
2448      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2449        << "volatile" << SourceRange(D.getIdentifierLoc());
2450    if (FTI.TypeQuals & Qualifiers::Restrict)
2451      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2452        << "restrict" << SourceRange(D.getIdentifierLoc());
2453    D.setInvalidType();
2454  }
2455
2456  // Make sure we don't have any parameters.
2457  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2458    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2459
2460    // Delete the parameters.
2461    FTI.freeArgs();
2462    D.setInvalidType();
2463  }
2464
2465  // Make sure the destructor isn't variadic.
2466  if (FTI.isVariadic) {
2467    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2468    D.setInvalidType();
2469  }
2470
2471  // Rebuild the function type "R" without any type qualifiers or
2472  // parameters (in case any of the errors above fired) and with
2473  // "void" as the return type, since destructors don't have return
2474  // types. We *always* have to do this, because GetTypeForDeclarator
2475  // will put in a result type of "int" when none was specified.
2476  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2477}
2478
2479/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2480/// well-formednes of the conversion function declarator @p D with
2481/// type @p R. If there are any errors in the declarator, this routine
2482/// will emit diagnostics and return true. Otherwise, it will return
2483/// false. Either way, the type @p R will be updated to reflect a
2484/// well-formed type for the conversion operator.
2485void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2486                                     FunctionDecl::StorageClass& SC) {
2487  // C++ [class.conv.fct]p1:
2488  //   Neither parameter types nor return type can be specified. The
2489  //   type of a conversion function (8.3.5) is "function taking no
2490  //   parameter returning conversion-type-id."
2491  if (SC == FunctionDecl::Static) {
2492    if (!D.isInvalidType())
2493      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2494        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2495        << SourceRange(D.getIdentifierLoc());
2496    D.setInvalidType();
2497    SC = FunctionDecl::None;
2498  }
2499  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2500    // Conversion functions don't have return types, but the parser will
2501    // happily parse something like:
2502    //
2503    //   class X {
2504    //     float operator bool();
2505    //   };
2506    //
2507    // The return type will be changed later anyway.
2508    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2509      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2510      << SourceRange(D.getIdentifierLoc());
2511  }
2512
2513  // Make sure we don't have any parameters.
2514  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2515    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2516
2517    // Delete the parameters.
2518    D.getTypeObject(0).Fun.freeArgs();
2519    D.setInvalidType();
2520  }
2521
2522  // Make sure the conversion function isn't variadic.
2523  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2524    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2525    D.setInvalidType();
2526  }
2527
2528  // C++ [class.conv.fct]p4:
2529  //   The conversion-type-id shall not represent a function type nor
2530  //   an array type.
2531  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2532  if (ConvType->isArrayType()) {
2533    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2534    ConvType = Context.getPointerType(ConvType);
2535    D.setInvalidType();
2536  } else if (ConvType->isFunctionType()) {
2537    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2538    ConvType = Context.getPointerType(ConvType);
2539    D.setInvalidType();
2540  }
2541
2542  // Rebuild the function type "R" without any parameters (in case any
2543  // of the errors above fired) and with the conversion type as the
2544  // return type.
2545  R = Context.getFunctionType(ConvType, 0, 0, false,
2546                              R->getAs<FunctionProtoType>()->getTypeQuals());
2547
2548  // C++0x explicit conversion operators.
2549  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2550    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2551         diag::warn_explicit_conversion_functions)
2552      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2553}
2554
2555/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2556/// the declaration of the given C++ conversion function. This routine
2557/// is responsible for recording the conversion function in the C++
2558/// class, if possible.
2559Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2560  assert(Conversion && "Expected to receive a conversion function declaration");
2561
2562  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2563
2564  // Make sure we aren't redeclaring the conversion function.
2565  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2566
2567  // C++ [class.conv.fct]p1:
2568  //   [...] A conversion function is never used to convert a
2569  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2570  //   same object type (or a reference to it), to a (possibly
2571  //   cv-qualified) base class of that type (or a reference to it),
2572  //   or to (possibly cv-qualified) void.
2573  // FIXME: Suppress this warning if the conversion function ends up being a
2574  // virtual function that overrides a virtual function in a base class.
2575  QualType ClassType
2576    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2577  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2578    ConvType = ConvTypeRef->getPointeeType();
2579  if (ConvType->isRecordType()) {
2580    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2581    if (ConvType == ClassType)
2582      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2583        << ClassType;
2584    else if (IsDerivedFrom(ClassType, ConvType))
2585      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2586        <<  ClassType << ConvType;
2587  } else if (ConvType->isVoidType()) {
2588    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2589      << ClassType << ConvType;
2590  }
2591
2592  if (Conversion->getPreviousDeclaration()) {
2593    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2594    if (FunctionTemplateDecl *ConversionTemplate
2595          = Conversion->getDescribedFunctionTemplate())
2596      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2597    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2598    for (OverloadedFunctionDecl::function_iterator
2599           Conv = Conversions->function_begin(),
2600           ConvEnd = Conversions->function_end();
2601         Conv != ConvEnd; ++Conv) {
2602      if (*Conv == ExpectedPrevDecl) {
2603        *Conv = Conversion;
2604        return DeclPtrTy::make(Conversion);
2605      }
2606    }
2607    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2608  } else if (FunctionTemplateDecl *ConversionTemplate
2609               = Conversion->getDescribedFunctionTemplate())
2610    ClassDecl->addConversionFunction(ConversionTemplate);
2611  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2612    ClassDecl->addConversionFunction(Conversion);
2613
2614  return DeclPtrTy::make(Conversion);
2615}
2616
2617//===----------------------------------------------------------------------===//
2618// Namespace Handling
2619//===----------------------------------------------------------------------===//
2620
2621/// ActOnStartNamespaceDef - This is called at the start of a namespace
2622/// definition.
2623Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2624                                             SourceLocation IdentLoc,
2625                                             IdentifierInfo *II,
2626                                             SourceLocation LBrace) {
2627  NamespaceDecl *Namespc =
2628      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2629  Namespc->setLBracLoc(LBrace);
2630
2631  Scope *DeclRegionScope = NamespcScope->getParent();
2632
2633  if (II) {
2634    // C++ [namespace.def]p2:
2635    // The identifier in an original-namespace-definition shall not have been
2636    // previously defined in the declarative region in which the
2637    // original-namespace-definition appears. The identifier in an
2638    // original-namespace-definition is the name of the namespace. Subsequently
2639    // in that declarative region, it is treated as an original-namespace-name.
2640
2641    NamedDecl *PrevDecl
2642      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2643
2644    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2645      // This is an extended namespace definition.
2646      // Attach this namespace decl to the chain of extended namespace
2647      // definitions.
2648      OrigNS->setNextNamespace(Namespc);
2649      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2650
2651      // Remove the previous declaration from the scope.
2652      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2653        IdResolver.RemoveDecl(OrigNS);
2654        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2655      }
2656    } else if (PrevDecl) {
2657      // This is an invalid name redefinition.
2658      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2659       << Namespc->getDeclName();
2660      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2661      Namespc->setInvalidDecl();
2662      // Continue on to push Namespc as current DeclContext and return it.
2663    } else if (II->isStr("std") &&
2664               CurContext->getLookupContext()->isTranslationUnit()) {
2665      // This is the first "real" definition of the namespace "std", so update
2666      // our cache of the "std" namespace to point at this definition.
2667      if (StdNamespace) {
2668        // We had already defined a dummy namespace "std". Link this new
2669        // namespace definition to the dummy namespace "std".
2670        StdNamespace->setNextNamespace(Namespc);
2671        StdNamespace->setLocation(IdentLoc);
2672        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2673      }
2674
2675      // Make our StdNamespace cache point at the first real definition of the
2676      // "std" namespace.
2677      StdNamespace = Namespc;
2678    }
2679
2680    PushOnScopeChains(Namespc, DeclRegionScope);
2681  } else {
2682    // Anonymous namespaces.
2683
2684    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2685    //   behaves as if it were replaced by
2686    //     namespace unique { /* empty body */ }
2687    //     using namespace unique;
2688    //     namespace unique { namespace-body }
2689    //   where all occurrences of 'unique' in a translation unit are
2690    //   replaced by the same identifier and this identifier differs
2691    //   from all other identifiers in the entire program.
2692
2693    // We just create the namespace with an empty name and then add an
2694    // implicit using declaration, just like the standard suggests.
2695    //
2696    // CodeGen enforces the "universally unique" aspect by giving all
2697    // declarations semantically contained within an anonymous
2698    // namespace internal linkage.
2699
2700    assert(Namespc->isAnonymousNamespace());
2701    CurContext->addDecl(Namespc);
2702
2703    UsingDirectiveDecl* UD
2704      = UsingDirectiveDecl::Create(Context, CurContext,
2705                                   /* 'using' */ LBrace,
2706                                   /* 'namespace' */ SourceLocation(),
2707                                   /* qualifier */ SourceRange(),
2708                                   /* NNS */ NULL,
2709                                   /* identifier */ SourceLocation(),
2710                                   Namespc,
2711                                   /* Ancestor */ CurContext);
2712    UD->setImplicit();
2713    CurContext->addDecl(UD);
2714  }
2715
2716  // Although we could have an invalid decl (i.e. the namespace name is a
2717  // redefinition), push it as current DeclContext and try to continue parsing.
2718  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2719  // for the namespace has the declarations that showed up in that particular
2720  // namespace definition.
2721  PushDeclContext(NamespcScope, Namespc);
2722  return DeclPtrTy::make(Namespc);
2723}
2724
2725/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2726/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2727void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2728  Decl *Dcl = D.getAs<Decl>();
2729  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2730  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2731  Namespc->setRBracLoc(RBrace);
2732  PopDeclContext();
2733}
2734
2735Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2736                                          SourceLocation UsingLoc,
2737                                          SourceLocation NamespcLoc,
2738                                          const CXXScopeSpec &SS,
2739                                          SourceLocation IdentLoc,
2740                                          IdentifierInfo *NamespcName,
2741                                          AttributeList *AttrList) {
2742  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2743  assert(NamespcName && "Invalid NamespcName.");
2744  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2745  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2746
2747  UsingDirectiveDecl *UDir = 0;
2748
2749  // Lookup namespace name.
2750  LookupResult R;
2751  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2752  if (R.isAmbiguous()) {
2753    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2754    return DeclPtrTy();
2755  }
2756  if (!R.empty()) {
2757    NamedDecl *NS = R.getFoundDecl();
2758    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2759    // C++ [namespace.udir]p1:
2760    //   A using-directive specifies that the names in the nominated
2761    //   namespace can be used in the scope in which the
2762    //   using-directive appears after the using-directive. During
2763    //   unqualified name lookup (3.4.1), the names appear as if they
2764    //   were declared in the nearest enclosing namespace which
2765    //   contains both the using-directive and the nominated
2766    //   namespace. [Note: in this context, "contains" means "contains
2767    //   directly or indirectly". ]
2768
2769    // Find enclosing context containing both using-directive and
2770    // nominated namespace.
2771    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2772    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2773      CommonAncestor = CommonAncestor->getParent();
2774
2775    UDir = UsingDirectiveDecl::Create(Context,
2776                                      CurContext, UsingLoc,
2777                                      NamespcLoc,
2778                                      SS.getRange(),
2779                                      (NestedNameSpecifier *)SS.getScopeRep(),
2780                                      IdentLoc,
2781                                      cast<NamespaceDecl>(NS),
2782                                      CommonAncestor);
2783    PushUsingDirective(S, UDir);
2784  } else {
2785    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2786  }
2787
2788  // FIXME: We ignore attributes for now.
2789  delete AttrList;
2790  return DeclPtrTy::make(UDir);
2791}
2792
2793void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2794  // If scope has associated entity, then using directive is at namespace
2795  // or translation unit scope. We add UsingDirectiveDecls, into
2796  // it's lookup structure.
2797  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2798    Ctx->addDecl(UDir);
2799  else
2800    // Otherwise it is block-sope. using-directives will affect lookup
2801    // only to the end of scope.
2802    S->PushUsingDirective(DeclPtrTy::make(UDir));
2803}
2804
2805
2806Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2807                                            AccessSpecifier AS,
2808                                            SourceLocation UsingLoc,
2809                                            const CXXScopeSpec &SS,
2810                                            UnqualifiedId &Name,
2811                                            AttributeList *AttrList,
2812                                            bool IsTypeName) {
2813  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2814
2815  switch (Name.getKind()) {
2816  case UnqualifiedId::IK_Identifier:
2817  case UnqualifiedId::IK_OperatorFunctionId:
2818  case UnqualifiedId::IK_ConversionFunctionId:
2819    break;
2820
2821  case UnqualifiedId::IK_ConstructorName:
2822    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2823      << SS.getRange();
2824    return DeclPtrTy();
2825
2826  case UnqualifiedId::IK_DestructorName:
2827    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2828      << SS.getRange();
2829    return DeclPtrTy();
2830
2831  case UnqualifiedId::IK_TemplateId:
2832    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2833      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2834    return DeclPtrTy();
2835  }
2836
2837  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2838  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2839                                        Name.getSourceRange().getBegin(),
2840                                        TargetName, AttrList, IsTypeName);
2841  if (UD) {
2842    PushOnScopeChains(UD, S);
2843    UD->setAccess(AS);
2844  }
2845
2846  return DeclPtrTy::make(UD);
2847}
2848
2849NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2850                                       const CXXScopeSpec &SS,
2851                                       SourceLocation IdentLoc,
2852                                       DeclarationName Name,
2853                                       AttributeList *AttrList,
2854                                       bool IsTypeName) {
2855  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2856  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2857
2858  // FIXME: We ignore attributes for now.
2859  delete AttrList;
2860
2861  if (SS.isEmpty()) {
2862    Diag(IdentLoc, diag::err_using_requires_qualname);
2863    return 0;
2864  }
2865
2866  NestedNameSpecifier *NNS =
2867    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2868
2869  DeclContext *LookupContext = computeDeclContext(SS);
2870  if (!LookupContext) {
2871    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2872                                       SS.getRange(), NNS,
2873                                       IdentLoc, Name, IsTypeName);
2874  }
2875
2876  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2877    // C++0x N2914 [namespace.udecl]p3:
2878    // A using-declaration used as a member-declaration shall refer to a member
2879    // of a base class of the class being defined, shall refer to a member of an
2880    // anonymous union that is a member of a base class of the class being
2881    // defined, or shall refer to an enumerator for an enumeration type that is
2882    // a member of a base class of the class being defined.
2883
2884    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2885    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2886      Diag(SS.getRange().getBegin(),
2887           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2888        << NNS << RD->getDeclName();
2889      return 0;
2890    }
2891  } else {
2892    // C++0x N2914 [namespace.udecl]p8:
2893    // A using-declaration for a class member shall be a member-declaration.
2894    if (isa<CXXRecordDecl>(LookupContext)) {
2895      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2896        << SS.getRange();
2897      return 0;
2898    }
2899  }
2900
2901  // Lookup target name.
2902  LookupResult R;
2903  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2904
2905  if (R.empty()) {
2906    Diag(IdentLoc, diag::err_no_member)
2907      << Name << LookupContext << SS.getRange();
2908    return 0;
2909  }
2910
2911  // FIXME: handle ambiguity?
2912  NamedDecl *ND = R.getAsSingleDecl(Context);
2913
2914  if (IsTypeName && !isa<TypeDecl>(ND)) {
2915    Diag(IdentLoc, diag::err_using_typename_non_type);
2916    return 0;
2917  }
2918
2919  // C++0x N2914 [namespace.udecl]p6:
2920  // A using-declaration shall not name a namespace.
2921  if (isa<NamespaceDecl>(ND)) {
2922    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2923      << SS.getRange();
2924    return 0;
2925  }
2926
2927  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2928                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2929}
2930
2931/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2932/// is a namespace alias, returns the namespace it points to.
2933static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2934  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2935    return AD->getNamespace();
2936  return dyn_cast_or_null<NamespaceDecl>(D);
2937}
2938
2939Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2940                                             SourceLocation NamespaceLoc,
2941                                             SourceLocation AliasLoc,
2942                                             IdentifierInfo *Alias,
2943                                             const CXXScopeSpec &SS,
2944                                             SourceLocation IdentLoc,
2945                                             IdentifierInfo *Ident) {
2946
2947  // Lookup the namespace name.
2948  LookupResult R;
2949  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2950
2951  // Check if we have a previous declaration with the same name.
2952  if (NamedDecl *PrevDecl
2953        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2954    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2955      // We already have an alias with the same name that points to the same
2956      // namespace, so don't create a new one.
2957      if (!R.isAmbiguous() && !R.empty() &&
2958          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2959        return DeclPtrTy();
2960    }
2961
2962    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2963      diag::err_redefinition_different_kind;
2964    Diag(AliasLoc, DiagID) << Alias;
2965    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2966    return DeclPtrTy();
2967  }
2968
2969  if (R.isAmbiguous()) {
2970    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2971    return DeclPtrTy();
2972  }
2973
2974  if (R.empty()) {
2975    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2976    return DeclPtrTy();
2977  }
2978
2979  NamespaceAliasDecl *AliasDecl =
2980    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2981                               Alias, SS.getRange(),
2982                               (NestedNameSpecifier *)SS.getScopeRep(),
2983                               IdentLoc, R.getFoundDecl());
2984
2985  CurContext->addDecl(AliasDecl);
2986  return DeclPtrTy::make(AliasDecl);
2987}
2988
2989void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2990                                            CXXConstructorDecl *Constructor) {
2991  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2992          !Constructor->isUsed()) &&
2993    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2994
2995  CXXRecordDecl *ClassDecl
2996    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2997  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2998
2999  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3000    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
3001      << Context.getTagDeclType(ClassDecl);
3002    Constructor->setInvalidDecl();
3003  } else {
3004    Constructor->setUsed();
3005  }
3006  return;
3007}
3008
3009void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3010                                    CXXDestructorDecl *Destructor) {
3011  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3012         "DefineImplicitDestructor - call it for implicit default dtor");
3013
3014  CXXRecordDecl *ClassDecl
3015  = cast<CXXRecordDecl>(Destructor->getDeclContext());
3016  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3017  // C++ [class.dtor] p5
3018  // Before the implicitly-declared default destructor for a class is
3019  // implicitly defined, all the implicitly-declared default destructors
3020  // for its base class and its non-static data members shall have been
3021  // implicitly defined.
3022  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3023       E = ClassDecl->bases_end(); Base != E; ++Base) {
3024    CXXRecordDecl *BaseClassDecl
3025      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3026    if (!BaseClassDecl->hasTrivialDestructor()) {
3027      if (CXXDestructorDecl *BaseDtor =
3028          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3029        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3030      else
3031        assert(false &&
3032               "DefineImplicitDestructor - missing dtor in a base class");
3033    }
3034  }
3035
3036  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3037       E = ClassDecl->field_end(); Field != E; ++Field) {
3038    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3039    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3040      FieldType = Array->getElementType();
3041    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3042      CXXRecordDecl *FieldClassDecl
3043        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3044      if (!FieldClassDecl->hasTrivialDestructor()) {
3045        if (CXXDestructorDecl *FieldDtor =
3046            const_cast<CXXDestructorDecl*>(
3047                                        FieldClassDecl->getDestructor(Context)))
3048          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3049        else
3050          assert(false &&
3051          "DefineImplicitDestructor - missing dtor in class of a data member");
3052      }
3053    }
3054  }
3055  Destructor->setUsed();
3056}
3057
3058void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3059                                          CXXMethodDecl *MethodDecl) {
3060  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3061          MethodDecl->getOverloadedOperator() == OO_Equal &&
3062          !MethodDecl->isUsed()) &&
3063         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3064
3065  CXXRecordDecl *ClassDecl
3066    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3067
3068  // C++[class.copy] p12
3069  // Before the implicitly-declared copy assignment operator for a class is
3070  // implicitly defined, all implicitly-declared copy assignment operators
3071  // for its direct base classes and its nonstatic data members shall have
3072  // been implicitly defined.
3073  bool err = false;
3074  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3075       E = ClassDecl->bases_end(); Base != E; ++Base) {
3076    CXXRecordDecl *BaseClassDecl
3077      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3078    if (CXXMethodDecl *BaseAssignOpMethod =
3079          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3080      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3081  }
3082  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3083       E = ClassDecl->field_end(); Field != E; ++Field) {
3084    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3085    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3086      FieldType = Array->getElementType();
3087    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3088      CXXRecordDecl *FieldClassDecl
3089        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3090      if (CXXMethodDecl *FieldAssignOpMethod =
3091          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3092        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3093    } else if (FieldType->isReferenceType()) {
3094      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3095      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3096      Diag(Field->getLocation(), diag::note_declared_at);
3097      Diag(CurrentLocation, diag::note_first_required_here);
3098      err = true;
3099    } else if (FieldType.isConstQualified()) {
3100      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3101      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3102      Diag(Field->getLocation(), diag::note_declared_at);
3103      Diag(CurrentLocation, diag::note_first_required_here);
3104      err = true;
3105    }
3106  }
3107  if (!err)
3108    MethodDecl->setUsed();
3109}
3110
3111CXXMethodDecl *
3112Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3113                              CXXRecordDecl *ClassDecl) {
3114  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3115  QualType RHSType(LHSType);
3116  // If class's assignment operator argument is const/volatile qualified,
3117  // look for operator = (const/volatile B&). Otherwise, look for
3118  // operator = (B&).
3119  RHSType = Context.getCVRQualifiedType(RHSType,
3120                                     ParmDecl->getType().getCVRQualifiers());
3121  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3122                                                          LHSType,
3123                                                          SourceLocation()));
3124  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3125                                                          RHSType,
3126                                                          SourceLocation()));
3127  Expr *Args[2] = { &*LHS, &*RHS };
3128  OverloadCandidateSet CandidateSet;
3129  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3130                              CandidateSet);
3131  OverloadCandidateSet::iterator Best;
3132  if (BestViableFunction(CandidateSet,
3133                         ClassDecl->getLocation(), Best) == OR_Success)
3134    return cast<CXXMethodDecl>(Best->Function);
3135  assert(false &&
3136         "getAssignOperatorMethod - copy assignment operator method not found");
3137  return 0;
3138}
3139
3140void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3141                                   CXXConstructorDecl *CopyConstructor,
3142                                   unsigned TypeQuals) {
3143  assert((CopyConstructor->isImplicit() &&
3144          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3145          !CopyConstructor->isUsed()) &&
3146         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3147
3148  CXXRecordDecl *ClassDecl
3149    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3150  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3151  // C++ [class.copy] p209
3152  // Before the implicitly-declared copy constructor for a class is
3153  // implicitly defined, all the implicitly-declared copy constructors
3154  // for its base class and its non-static data members shall have been
3155  // implicitly defined.
3156  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3157       Base != ClassDecl->bases_end(); ++Base) {
3158    CXXRecordDecl *BaseClassDecl
3159      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3160    if (CXXConstructorDecl *BaseCopyCtor =
3161        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3162      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3163  }
3164  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3165                                  FieldEnd = ClassDecl->field_end();
3166       Field != FieldEnd; ++Field) {
3167    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3168    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3169      FieldType = Array->getElementType();
3170    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3171      CXXRecordDecl *FieldClassDecl
3172        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3173      if (CXXConstructorDecl *FieldCopyCtor =
3174          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3175        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3176    }
3177  }
3178  CopyConstructor->setUsed();
3179}
3180
3181Sema::OwningExprResult
3182Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3183                            CXXConstructorDecl *Constructor,
3184                            MultiExprArg ExprArgs) {
3185  bool Elidable = false;
3186
3187  // C++ [class.copy]p15:
3188  //   Whenever a temporary class object is copied using a copy constructor, and
3189  //   this object and the copy have the same cv-unqualified type, an
3190  //   implementation is permitted to treat the original and the copy as two
3191  //   different ways of referring to the same object and not perform a copy at
3192  //   all, even if the class copy constructor or destructor have side effects.
3193
3194  // FIXME: Is this enough?
3195  if (Constructor->isCopyConstructor(Context)) {
3196    Expr *E = ((Expr **)ExprArgs.get())[0];
3197    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3198      E = BE->getSubExpr();
3199    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3200      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3201        E = ICE->getSubExpr();
3202
3203    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3204      Elidable = true;
3205  }
3206
3207  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3208                               Elidable, move(ExprArgs));
3209}
3210
3211/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3212/// including handling of its default argument expressions.
3213Sema::OwningExprResult
3214Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3215                            CXXConstructorDecl *Constructor, bool Elidable,
3216                            MultiExprArg ExprArgs) {
3217  unsigned NumExprs = ExprArgs.size();
3218  Expr **Exprs = (Expr **)ExprArgs.release();
3219
3220  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3221                                        Elidable, Exprs, NumExprs));
3222}
3223
3224Sema::OwningExprResult
3225Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3226                                  QualType Ty,
3227                                  SourceLocation TyBeginLoc,
3228                                  MultiExprArg Args,
3229                                  SourceLocation RParenLoc) {
3230  unsigned NumExprs = Args.size();
3231  Expr **Exprs = (Expr **)Args.release();
3232
3233  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3234                                                    TyBeginLoc, Exprs,
3235                                                    NumExprs, RParenLoc));
3236}
3237
3238
3239bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3240                                        CXXConstructorDecl *Constructor,
3241                                        MultiExprArg Exprs) {
3242  OwningExprResult TempResult =
3243    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3244                          move(Exprs));
3245  if (TempResult.isInvalid())
3246    return true;
3247
3248  Expr *Temp = TempResult.takeAs<Expr>();
3249  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3250  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3251  VD->setInit(Context, Temp);
3252
3253  return false;
3254}
3255
3256void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3257  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3258                                  DeclInitType->getAs<RecordType>()->getDecl());
3259  if (!ClassDecl->hasTrivialDestructor())
3260    if (CXXDestructorDecl *Destructor =
3261        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3262      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3263}
3264
3265/// AddCXXDirectInitializerToDecl - This action is called immediately after
3266/// ActOnDeclarator, when a C++ direct initializer is present.
3267/// e.g: "int x(1);"
3268void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3269                                         SourceLocation LParenLoc,
3270                                         MultiExprArg Exprs,
3271                                         SourceLocation *CommaLocs,
3272                                         SourceLocation RParenLoc) {
3273  unsigned NumExprs = Exprs.size();
3274  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3275  Decl *RealDecl = Dcl.getAs<Decl>();
3276
3277  // If there is no declaration, there was an error parsing it.  Just ignore
3278  // the initializer.
3279  if (RealDecl == 0)
3280    return;
3281
3282  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3283  if (!VDecl) {
3284    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3285    RealDecl->setInvalidDecl();
3286    return;
3287  }
3288
3289  // We will represent direct-initialization similarly to copy-initialization:
3290  //    int x(1);  -as-> int x = 1;
3291  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3292  //
3293  // Clients that want to distinguish between the two forms, can check for
3294  // direct initializer using VarDecl::hasCXXDirectInitializer().
3295  // A major benefit is that clients that don't particularly care about which
3296  // exactly form was it (like the CodeGen) can handle both cases without
3297  // special case code.
3298
3299  // If either the declaration has a dependent type or if any of the expressions
3300  // is type-dependent, we represent the initialization via a ParenListExpr for
3301  // later use during template instantiation.
3302  if (VDecl->getType()->isDependentType() ||
3303      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3304    // Let clients know that initialization was done with a direct initializer.
3305    VDecl->setCXXDirectInitializer(true);
3306
3307    // Store the initialization expressions as a ParenListExpr.
3308    unsigned NumExprs = Exprs.size();
3309    VDecl->setInit(Context,
3310                   new (Context) ParenListExpr(Context, LParenLoc,
3311                                               (Expr **)Exprs.release(),
3312                                               NumExprs, RParenLoc));
3313    return;
3314  }
3315
3316
3317  // C++ 8.5p11:
3318  // The form of initialization (using parentheses or '=') is generally
3319  // insignificant, but does matter when the entity being initialized has a
3320  // class type.
3321  QualType DeclInitType = VDecl->getType();
3322  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3323    DeclInitType = Context.getBaseElementType(Array);
3324
3325  // FIXME: This isn't the right place to complete the type.
3326  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3327                          diag::err_typecheck_decl_incomplete_type)) {
3328    VDecl->setInvalidDecl();
3329    return;
3330  }
3331
3332  if (VDecl->getType()->isRecordType()) {
3333    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3334
3335    CXXConstructorDecl *Constructor
3336      = PerformInitializationByConstructor(DeclInitType,
3337                                           move(Exprs),
3338                                           VDecl->getLocation(),
3339                                           SourceRange(VDecl->getLocation(),
3340                                                       RParenLoc),
3341                                           VDecl->getDeclName(),
3342                                           IK_Direct,
3343                                           ConstructorArgs);
3344    if (!Constructor)
3345      RealDecl->setInvalidDecl();
3346    else {
3347      VDecl->setCXXDirectInitializer(true);
3348      if (InitializeVarWithConstructor(VDecl, Constructor,
3349                                       move_arg(ConstructorArgs)))
3350        RealDecl->setInvalidDecl();
3351      FinalizeVarWithDestructor(VDecl, DeclInitType);
3352    }
3353    return;
3354  }
3355
3356  if (NumExprs > 1) {
3357    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3358      << SourceRange(VDecl->getLocation(), RParenLoc);
3359    RealDecl->setInvalidDecl();
3360    return;
3361  }
3362
3363  // Let clients know that initialization was done with a direct initializer.
3364  VDecl->setCXXDirectInitializer(true);
3365
3366  assert(NumExprs == 1 && "Expected 1 expression");
3367  // Set the init expression, handles conversions.
3368  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3369                       /*DirectInit=*/true);
3370}
3371
3372/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3373/// may occur as part of direct-initialization or copy-initialization.
3374///
3375/// \param ClassType the type of the object being initialized, which must have
3376/// class type.
3377///
3378/// \param ArgsPtr the arguments provided to initialize the object
3379///
3380/// \param Loc the source location where the initialization occurs
3381///
3382/// \param Range the source range that covers the entire initialization
3383///
3384/// \param InitEntity the name of the entity being initialized, if known
3385///
3386/// \param Kind the type of initialization being performed
3387///
3388/// \param ConvertedArgs a vector that will be filled in with the
3389/// appropriately-converted arguments to the constructor (if initialization
3390/// succeeded).
3391///
3392/// \returns the constructor used to initialize the object, if successful.
3393/// Otherwise, emits a diagnostic and returns NULL.
3394CXXConstructorDecl *
3395Sema::PerformInitializationByConstructor(QualType ClassType,
3396                                         MultiExprArg ArgsPtr,
3397                                         SourceLocation Loc, SourceRange Range,
3398                                         DeclarationName InitEntity,
3399                                         InitializationKind Kind,
3400                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3401  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3402  assert(ClassRec && "Can only initialize a class type here");
3403  Expr **Args = (Expr **)ArgsPtr.get();
3404  unsigned NumArgs = ArgsPtr.size();
3405
3406  // C++ [dcl.init]p14:
3407  //   If the initialization is direct-initialization, or if it is
3408  //   copy-initialization where the cv-unqualified version of the
3409  //   source type is the same class as, or a derived class of, the
3410  //   class of the destination, constructors are considered. The
3411  //   applicable constructors are enumerated (13.3.1.3), and the
3412  //   best one is chosen through overload resolution (13.3). The
3413  //   constructor so selected is called to initialize the object,
3414  //   with the initializer expression(s) as its argument(s). If no
3415  //   constructor applies, or the overload resolution is ambiguous,
3416  //   the initialization is ill-formed.
3417  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3418  OverloadCandidateSet CandidateSet;
3419
3420  // Add constructors to the overload set.
3421  DeclarationName ConstructorName
3422    = Context.DeclarationNames.getCXXConstructorName(
3423                      Context.getCanonicalType(ClassType).getUnqualifiedType());
3424  DeclContext::lookup_const_iterator Con, ConEnd;
3425  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3426       Con != ConEnd; ++Con) {
3427    // Find the constructor (which may be a template).
3428    CXXConstructorDecl *Constructor = 0;
3429    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3430    if (ConstructorTmpl)
3431      Constructor
3432        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3433    else
3434      Constructor = cast<CXXConstructorDecl>(*Con);
3435
3436    if ((Kind == IK_Direct) ||
3437        (Kind == IK_Copy &&
3438         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3439        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3440      if (ConstructorTmpl)
3441        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3442                                     Args, NumArgs, CandidateSet);
3443      else
3444        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3445    }
3446  }
3447
3448  // FIXME: When we decide not to synthesize the implicitly-declared
3449  // constructors, we'll need to make them appear here.
3450
3451  OverloadCandidateSet::iterator Best;
3452  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3453  case OR_Success:
3454    // We found a constructor. Break out so that we can convert the arguments
3455    // appropriately.
3456    break;
3457
3458  case OR_No_Viable_Function:
3459    if (InitEntity)
3460      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3461        << InitEntity << Range;
3462    else
3463      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3464        << ClassType << Range;
3465    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3466    return 0;
3467
3468  case OR_Ambiguous:
3469    if (InitEntity)
3470      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3471    else
3472      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3473    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3474    return 0;
3475
3476  case OR_Deleted:
3477    if (InitEntity)
3478      Diag(Loc, diag::err_ovl_deleted_init)
3479        << Best->Function->isDeleted()
3480        << InitEntity << Range;
3481    else
3482      Diag(Loc, diag::err_ovl_deleted_init)
3483        << Best->Function->isDeleted()
3484        << InitEntity << Range;
3485    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3486    return 0;
3487  }
3488
3489  // Convert the arguments, fill in default arguments, etc.
3490  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3491  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3492    return 0;
3493
3494  return Constructor;
3495}
3496
3497/// \brief Given a constructor and the set of arguments provided for the
3498/// constructor, convert the arguments and add any required default arguments
3499/// to form a proper call to this constructor.
3500///
3501/// \returns true if an error occurred, false otherwise.
3502bool
3503Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3504                              MultiExprArg ArgsPtr,
3505                              SourceLocation Loc,
3506                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3507  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3508  unsigned NumArgs = ArgsPtr.size();
3509  Expr **Args = (Expr **)ArgsPtr.get();
3510
3511  const FunctionProtoType *Proto
3512    = Constructor->getType()->getAs<FunctionProtoType>();
3513  assert(Proto && "Constructor without a prototype?");
3514  unsigned NumArgsInProto = Proto->getNumArgs();
3515  unsigned NumArgsToCheck = NumArgs;
3516
3517  // If too few arguments are available, we'll fill in the rest with defaults.
3518  if (NumArgs < NumArgsInProto) {
3519    NumArgsToCheck = NumArgsInProto;
3520    ConvertedArgs.reserve(NumArgsInProto);
3521  } else {
3522    ConvertedArgs.reserve(NumArgs);
3523    if (NumArgs > NumArgsInProto)
3524      NumArgsToCheck = NumArgsInProto;
3525  }
3526
3527  // Convert arguments
3528  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3529    QualType ProtoArgType = Proto->getArgType(i);
3530
3531    Expr *Arg;
3532    if (i < NumArgs) {
3533      Arg = Args[i];
3534
3535      // Pass the argument.
3536      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3537        return true;
3538
3539      Args[i] = 0;
3540    } else {
3541      ParmVarDecl *Param = Constructor->getParamDecl(i);
3542
3543      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3544      if (DefArg.isInvalid())
3545        return true;
3546
3547      Arg = DefArg.takeAs<Expr>();
3548    }
3549
3550    ConvertedArgs.push_back(Arg);
3551  }
3552
3553  // If this is a variadic call, handle args passed through "...".
3554  if (Proto->isVariadic()) {
3555    // Promote the arguments (C99 6.5.2.2p7).
3556    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3557      Expr *Arg = Args[i];
3558      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3559        return true;
3560
3561      ConvertedArgs.push_back(Arg);
3562      Args[i] = 0;
3563    }
3564  }
3565
3566  return false;
3567}
3568
3569/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3570/// determine whether they are reference-related,
3571/// reference-compatible, reference-compatible with added
3572/// qualification, or incompatible, for use in C++ initialization by
3573/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3574/// type, and the first type (T1) is the pointee type of the reference
3575/// type being initialized.
3576Sema::ReferenceCompareResult
3577Sema::CompareReferenceRelationship(SourceLocation Loc,
3578                                   QualType OrigT1, QualType OrigT2,
3579                                   bool& DerivedToBase) {
3580  assert(!OrigT1->isReferenceType() &&
3581    "T1 must be the pointee type of the reference type");
3582  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3583
3584  QualType T1 = Context.getCanonicalType(OrigT1);
3585  QualType T2 = Context.getCanonicalType(OrigT2);
3586  QualType UnqualT1 = T1.getUnqualifiedType();
3587  QualType UnqualT2 = T2.getUnqualifiedType();
3588
3589  // C++ [dcl.init.ref]p4:
3590  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3591  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3592  //   T1 is a base class of T2.
3593  if (UnqualT1 == UnqualT2)
3594    DerivedToBase = false;
3595  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3596           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3597           IsDerivedFrom(UnqualT2, UnqualT1))
3598    DerivedToBase = true;
3599  else
3600    return Ref_Incompatible;
3601
3602  // At this point, we know that T1 and T2 are reference-related (at
3603  // least).
3604
3605  // C++ [dcl.init.ref]p4:
3606  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3607  //   reference-related to T2 and cv1 is the same cv-qualification
3608  //   as, or greater cv-qualification than, cv2. For purposes of
3609  //   overload resolution, cases for which cv1 is greater
3610  //   cv-qualification than cv2 are identified as
3611  //   reference-compatible with added qualification (see 13.3.3.2).
3612  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3613    return Ref_Compatible;
3614  else if (T1.isMoreQualifiedThan(T2))
3615    return Ref_Compatible_With_Added_Qualification;
3616  else
3617    return Ref_Related;
3618}
3619
3620/// CheckReferenceInit - Check the initialization of a reference
3621/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3622/// the initializer (either a simple initializer or an initializer
3623/// list), and DeclType is the type of the declaration. When ICS is
3624/// non-null, this routine will compute the implicit conversion
3625/// sequence according to C++ [over.ics.ref] and will not produce any
3626/// diagnostics; when ICS is null, it will emit diagnostics when any
3627/// errors are found. Either way, a return value of true indicates
3628/// that there was a failure, a return value of false indicates that
3629/// the reference initialization succeeded.
3630///
3631/// When @p SuppressUserConversions, user-defined conversions are
3632/// suppressed.
3633/// When @p AllowExplicit, we also permit explicit user-defined
3634/// conversion functions.
3635/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3636bool
3637Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3638                         SourceLocation DeclLoc,
3639                         bool SuppressUserConversions,
3640                         bool AllowExplicit, bool ForceRValue,
3641                         ImplicitConversionSequence *ICS) {
3642  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3643
3644  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3645  QualType T2 = Init->getType();
3646
3647  // If the initializer is the address of an overloaded function, try
3648  // to resolve the overloaded function. If all goes well, T2 is the
3649  // type of the resulting function.
3650  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3651    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3652                                                          ICS != 0);
3653    if (Fn) {
3654      // Since we're performing this reference-initialization for
3655      // real, update the initializer with the resulting function.
3656      if (!ICS) {
3657        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3658          return true;
3659
3660        Init = FixOverloadedFunctionReference(Init, Fn);
3661      }
3662
3663      T2 = Fn->getType();
3664    }
3665  }
3666
3667  // Compute some basic properties of the types and the initializer.
3668  bool isRValRef = DeclType->isRValueReferenceType();
3669  bool DerivedToBase = false;
3670  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3671                                                  Init->isLvalue(Context);
3672  ReferenceCompareResult RefRelationship
3673    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3674
3675  // Most paths end in a failed conversion.
3676  if (ICS)
3677    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3678
3679  // C++ [dcl.init.ref]p5:
3680  //   A reference to type "cv1 T1" is initialized by an expression
3681  //   of type "cv2 T2" as follows:
3682
3683  //     -- If the initializer expression
3684
3685  // Rvalue references cannot bind to lvalues (N2812).
3686  // There is absolutely no situation where they can. In particular, note that
3687  // this is ill-formed, even if B has a user-defined conversion to A&&:
3688  //   B b;
3689  //   A&& r = b;
3690  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3691    if (!ICS)
3692      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3693        << Init->getSourceRange();
3694    return true;
3695  }
3696
3697  bool BindsDirectly = false;
3698  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3699  //          reference-compatible with "cv2 T2," or
3700  //
3701  // Note that the bit-field check is skipped if we are just computing
3702  // the implicit conversion sequence (C++ [over.best.ics]p2).
3703  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3704      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3705    BindsDirectly = true;
3706
3707    if (ICS) {
3708      // C++ [over.ics.ref]p1:
3709      //   When a parameter of reference type binds directly (8.5.3)
3710      //   to an argument expression, the implicit conversion sequence
3711      //   is the identity conversion, unless the argument expression
3712      //   has a type that is a derived class of the parameter type,
3713      //   in which case the implicit conversion sequence is a
3714      //   derived-to-base Conversion (13.3.3.1).
3715      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3716      ICS->Standard.First = ICK_Identity;
3717      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3718      ICS->Standard.Third = ICK_Identity;
3719      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3720      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3721      ICS->Standard.ReferenceBinding = true;
3722      ICS->Standard.DirectBinding = true;
3723      ICS->Standard.RRefBinding = false;
3724      ICS->Standard.CopyConstructor = 0;
3725
3726      // Nothing more to do: the inaccessibility/ambiguity check for
3727      // derived-to-base conversions is suppressed when we're
3728      // computing the implicit conversion sequence (C++
3729      // [over.best.ics]p2).
3730      return false;
3731    } else {
3732      // Perform the conversion.
3733      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3734      if (DerivedToBase)
3735        CK = CastExpr::CK_DerivedToBase;
3736      else if(CheckExceptionSpecCompatibility(Init, T1))
3737        return true;
3738      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3739    }
3740  }
3741
3742  //       -- has a class type (i.e., T2 is a class type) and can be
3743  //          implicitly converted to an lvalue of type "cv3 T3,"
3744  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3745  //          92) (this conversion is selected by enumerating the
3746  //          applicable conversion functions (13.3.1.6) and choosing
3747  //          the best one through overload resolution (13.3)),
3748  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3749      !RequireCompleteType(DeclLoc, T2, 0)) {
3750    CXXRecordDecl *T2RecordDecl
3751      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3752
3753    OverloadCandidateSet CandidateSet;
3754    OverloadedFunctionDecl *Conversions
3755      = T2RecordDecl->getVisibleConversionFunctions();
3756    for (OverloadedFunctionDecl::function_iterator Func
3757           = Conversions->function_begin();
3758         Func != Conversions->function_end(); ++Func) {
3759      FunctionTemplateDecl *ConvTemplate
3760        = dyn_cast<FunctionTemplateDecl>(*Func);
3761      CXXConversionDecl *Conv;
3762      if (ConvTemplate)
3763        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3764      else
3765        Conv = cast<CXXConversionDecl>(*Func);
3766
3767      // If the conversion function doesn't return a reference type,
3768      // it can't be considered for this conversion.
3769      if (Conv->getConversionType()->isLValueReferenceType() &&
3770          (AllowExplicit || !Conv->isExplicit())) {
3771        if (ConvTemplate)
3772          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3773                                         CandidateSet);
3774        else
3775          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3776      }
3777    }
3778
3779    OverloadCandidateSet::iterator Best;
3780    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3781    case OR_Success:
3782      // This is a direct binding.
3783      BindsDirectly = true;
3784
3785      if (ICS) {
3786        // C++ [over.ics.ref]p1:
3787        //
3788        //   [...] If the parameter binds directly to the result of
3789        //   applying a conversion function to the argument
3790        //   expression, the implicit conversion sequence is a
3791        //   user-defined conversion sequence (13.3.3.1.2), with the
3792        //   second standard conversion sequence either an identity
3793        //   conversion or, if the conversion function returns an
3794        //   entity of a type that is a derived class of the parameter
3795        //   type, a derived-to-base Conversion.
3796        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3797        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3798        ICS->UserDefined.After = Best->FinalConversion;
3799        ICS->UserDefined.ConversionFunction = Best->Function;
3800        ICS->UserDefined.EllipsisConversion = false;
3801        assert(ICS->UserDefined.After.ReferenceBinding &&
3802               ICS->UserDefined.After.DirectBinding &&
3803               "Expected a direct reference binding!");
3804        return false;
3805      } else {
3806        OwningExprResult InitConversion =
3807          BuildCXXCastArgument(DeclLoc, QualType(),
3808                               CastExpr::CK_UserDefinedConversion,
3809                               cast<CXXMethodDecl>(Best->Function),
3810                               Owned(Init));
3811        Init = InitConversion.takeAs<Expr>();
3812
3813        if (CheckExceptionSpecCompatibility(Init, T1))
3814          return true;
3815        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3816                          /*isLvalue=*/true);
3817      }
3818      break;
3819
3820    case OR_Ambiguous:
3821      if (ICS) {
3822        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3823             Cand != CandidateSet.end(); ++Cand)
3824          if (Cand->Viable)
3825            ICS->ConversionFunctionSet.push_back(Cand->Function);
3826        break;
3827      }
3828      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3829            << Init->getSourceRange();
3830      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3831      return true;
3832
3833    case OR_No_Viable_Function:
3834    case OR_Deleted:
3835      // There was no suitable conversion, or we found a deleted
3836      // conversion; continue with other checks.
3837      break;
3838    }
3839  }
3840
3841  if (BindsDirectly) {
3842    // C++ [dcl.init.ref]p4:
3843    //   [...] In all cases where the reference-related or
3844    //   reference-compatible relationship of two types is used to
3845    //   establish the validity of a reference binding, and T1 is a
3846    //   base class of T2, a program that necessitates such a binding
3847    //   is ill-formed if T1 is an inaccessible (clause 11) or
3848    //   ambiguous (10.2) base class of T2.
3849    //
3850    // Note that we only check this condition when we're allowed to
3851    // complain about errors, because we should not be checking for
3852    // ambiguity (or inaccessibility) unless the reference binding
3853    // actually happens.
3854    if (DerivedToBase)
3855      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3856                                          Init->getSourceRange());
3857    else
3858      return false;
3859  }
3860
3861  //     -- Otherwise, the reference shall be to a non-volatile const
3862  //        type (i.e., cv1 shall be const), or the reference shall be an
3863  //        rvalue reference and the initializer expression shall be an rvalue.
3864  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3865    if (!ICS)
3866      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3867        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3868        << T2 << Init->getSourceRange();
3869    return true;
3870  }
3871
3872  //       -- If the initializer expression is an rvalue, with T2 a
3873  //          class type, and "cv1 T1" is reference-compatible with
3874  //          "cv2 T2," the reference is bound in one of the
3875  //          following ways (the choice is implementation-defined):
3876  //
3877  //          -- The reference is bound to the object represented by
3878  //             the rvalue (see 3.10) or to a sub-object within that
3879  //             object.
3880  //
3881  //          -- A temporary of type "cv1 T2" [sic] is created, and
3882  //             a constructor is called to copy the entire rvalue
3883  //             object into the temporary. The reference is bound to
3884  //             the temporary or to a sub-object within the
3885  //             temporary.
3886  //
3887  //          The constructor that would be used to make the copy
3888  //          shall be callable whether or not the copy is actually
3889  //          done.
3890  //
3891  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3892  // freedom, so we will always take the first option and never build
3893  // a temporary in this case. FIXME: We will, however, have to check
3894  // for the presence of a copy constructor in C++98/03 mode.
3895  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3896      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3897    if (ICS) {
3898      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3899      ICS->Standard.First = ICK_Identity;
3900      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3901      ICS->Standard.Third = ICK_Identity;
3902      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3903      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3904      ICS->Standard.ReferenceBinding = true;
3905      ICS->Standard.DirectBinding = false;
3906      ICS->Standard.RRefBinding = isRValRef;
3907      ICS->Standard.CopyConstructor = 0;
3908    } else {
3909      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3910      if (DerivedToBase)
3911        CK = CastExpr::CK_DerivedToBase;
3912      else if(CheckExceptionSpecCompatibility(Init, T1))
3913        return true;
3914      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3915    }
3916    return false;
3917  }
3918
3919  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3920  //          initialized from the initializer expression using the
3921  //          rules for a non-reference copy initialization (8.5). The
3922  //          reference is then bound to the temporary. If T1 is
3923  //          reference-related to T2, cv1 must be the same
3924  //          cv-qualification as, or greater cv-qualification than,
3925  //          cv2; otherwise, the program is ill-formed.
3926  if (RefRelationship == Ref_Related) {
3927    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3928    // we would be reference-compatible or reference-compatible with
3929    // added qualification. But that wasn't the case, so the reference
3930    // initialization fails.
3931    if (!ICS)
3932      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3933        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3934        << T2 << Init->getSourceRange();
3935    return true;
3936  }
3937
3938  // If at least one of the types is a class type, the types are not
3939  // related, and we aren't allowed any user conversions, the
3940  // reference binding fails. This case is important for breaking
3941  // recursion, since TryImplicitConversion below will attempt to
3942  // create a temporary through the use of a copy constructor.
3943  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3944      (T1->isRecordType() || T2->isRecordType())) {
3945    if (!ICS)
3946      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3947        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3948    return true;
3949  }
3950
3951  // Actually try to convert the initializer to T1.
3952  if (ICS) {
3953    // C++ [over.ics.ref]p2:
3954    //
3955    //   When a parameter of reference type is not bound directly to
3956    //   an argument expression, the conversion sequence is the one
3957    //   required to convert the argument expression to the
3958    //   underlying type of the reference according to
3959    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3960    //   to copy-initializing a temporary of the underlying type with
3961    //   the argument expression. Any difference in top-level
3962    //   cv-qualification is subsumed by the initialization itself
3963    //   and does not constitute a conversion.
3964    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3965                                 /*AllowExplicit=*/false,
3966                                 /*ForceRValue=*/false,
3967                                 /*InOverloadResolution=*/false);
3968
3969    // Of course, that's still a reference binding.
3970    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3971      ICS->Standard.ReferenceBinding = true;
3972      ICS->Standard.RRefBinding = isRValRef;
3973    } else if (ICS->ConversionKind ==
3974              ImplicitConversionSequence::UserDefinedConversion) {
3975      ICS->UserDefined.After.ReferenceBinding = true;
3976      ICS->UserDefined.After.RRefBinding = isRValRef;
3977    }
3978    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3979  } else {
3980    ImplicitConversionSequence Conversions;
3981    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3982                                                   false, false,
3983                                                   Conversions);
3984    if (badConversion) {
3985      if ((Conversions.ConversionKind  ==
3986            ImplicitConversionSequence::BadConversion)
3987          && !Conversions.ConversionFunctionSet.empty()) {
3988        Diag(DeclLoc,
3989             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3990        for (int j = Conversions.ConversionFunctionSet.size()-1;
3991             j >= 0; j--) {
3992          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3993          Diag(Func->getLocation(), diag::err_ovl_candidate);
3994        }
3995      }
3996      else {
3997        if (isRValRef)
3998          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3999            << Init->getSourceRange();
4000        else
4001          Diag(DeclLoc, diag::err_invalid_initialization)
4002            << DeclType << Init->getType() << Init->getSourceRange();
4003      }
4004    }
4005    return badConversion;
4006  }
4007}
4008
4009/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4010/// of this overloaded operator is well-formed. If so, returns false;
4011/// otherwise, emits appropriate diagnostics and returns true.
4012bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4013  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4014         "Expected an overloaded operator declaration");
4015
4016  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4017
4018  // C++ [over.oper]p5:
4019  //   The allocation and deallocation functions, operator new,
4020  //   operator new[], operator delete and operator delete[], are
4021  //   described completely in 3.7.3. The attributes and restrictions
4022  //   found in the rest of this subclause do not apply to them unless
4023  //   explicitly stated in 3.7.3.
4024  // FIXME: Write a separate routine for checking this. For now, just allow it.
4025  if (Op == OO_Delete || Op == OO_Array_Delete)
4026    return false;
4027
4028  if (Op == OO_New || Op == OO_Array_New) {
4029    bool ret = false;
4030    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4031      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4032      QualType T = Context.getCanonicalType((*Param)->getType());
4033      if (!T->isDependentType() && SizeTy != T) {
4034        Diag(FnDecl->getLocation(),
4035             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4036              << SizeTy;
4037        ret = true;
4038      }
4039    }
4040    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4041    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4042      return Diag(FnDecl->getLocation(),
4043                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4044                  << static_cast<QualType>(Context.VoidPtrTy);
4045    return ret;
4046  }
4047
4048  // C++ [over.oper]p6:
4049  //   An operator function shall either be a non-static member
4050  //   function or be a non-member function and have at least one
4051  //   parameter whose type is a class, a reference to a class, an
4052  //   enumeration, or a reference to an enumeration.
4053  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4054    if (MethodDecl->isStatic())
4055      return Diag(FnDecl->getLocation(),
4056                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4057  } else {
4058    bool ClassOrEnumParam = false;
4059    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4060                                   ParamEnd = FnDecl->param_end();
4061         Param != ParamEnd; ++Param) {
4062      QualType ParamType = (*Param)->getType().getNonReferenceType();
4063      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4064          ParamType->isEnumeralType()) {
4065        ClassOrEnumParam = true;
4066        break;
4067      }
4068    }
4069
4070    if (!ClassOrEnumParam)
4071      return Diag(FnDecl->getLocation(),
4072                  diag::err_operator_overload_needs_class_or_enum)
4073        << FnDecl->getDeclName();
4074  }
4075
4076  // C++ [over.oper]p8:
4077  //   An operator function cannot have default arguments (8.3.6),
4078  //   except where explicitly stated below.
4079  //
4080  // Only the function-call operator allows default arguments
4081  // (C++ [over.call]p1).
4082  if (Op != OO_Call) {
4083    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4084         Param != FnDecl->param_end(); ++Param) {
4085      if ((*Param)->hasUnparsedDefaultArg())
4086        return Diag((*Param)->getLocation(),
4087                    diag::err_operator_overload_default_arg)
4088          << FnDecl->getDeclName();
4089      else if (Expr *DefArg = (*Param)->getDefaultArg())
4090        return Diag((*Param)->getLocation(),
4091                    diag::err_operator_overload_default_arg)
4092          << FnDecl->getDeclName() << DefArg->getSourceRange();
4093    }
4094  }
4095
4096  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4097    { false, false, false }
4098#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4099    , { Unary, Binary, MemberOnly }
4100#include "clang/Basic/OperatorKinds.def"
4101  };
4102
4103  bool CanBeUnaryOperator = OperatorUses[Op][0];
4104  bool CanBeBinaryOperator = OperatorUses[Op][1];
4105  bool MustBeMemberOperator = OperatorUses[Op][2];
4106
4107  // C++ [over.oper]p8:
4108  //   [...] Operator functions cannot have more or fewer parameters
4109  //   than the number required for the corresponding operator, as
4110  //   described in the rest of this subclause.
4111  unsigned NumParams = FnDecl->getNumParams()
4112                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4113  if (Op != OO_Call &&
4114      ((NumParams == 1 && !CanBeUnaryOperator) ||
4115       (NumParams == 2 && !CanBeBinaryOperator) ||
4116       (NumParams < 1) || (NumParams > 2))) {
4117    // We have the wrong number of parameters.
4118    unsigned ErrorKind;
4119    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4120      ErrorKind = 2;  // 2 -> unary or binary.
4121    } else if (CanBeUnaryOperator) {
4122      ErrorKind = 0;  // 0 -> unary
4123    } else {
4124      assert(CanBeBinaryOperator &&
4125             "All non-call overloaded operators are unary or binary!");
4126      ErrorKind = 1;  // 1 -> binary
4127    }
4128
4129    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4130      << FnDecl->getDeclName() << NumParams << ErrorKind;
4131  }
4132
4133  // Overloaded operators other than operator() cannot be variadic.
4134  if (Op != OO_Call &&
4135      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4136    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4137      << FnDecl->getDeclName();
4138  }
4139
4140  // Some operators must be non-static member functions.
4141  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4142    return Diag(FnDecl->getLocation(),
4143                diag::err_operator_overload_must_be_member)
4144      << FnDecl->getDeclName();
4145  }
4146
4147  // C++ [over.inc]p1:
4148  //   The user-defined function called operator++ implements the
4149  //   prefix and postfix ++ operator. If this function is a member
4150  //   function with no parameters, or a non-member function with one
4151  //   parameter of class or enumeration type, it defines the prefix
4152  //   increment operator ++ for objects of that type. If the function
4153  //   is a member function with one parameter (which shall be of type
4154  //   int) or a non-member function with two parameters (the second
4155  //   of which shall be of type int), it defines the postfix
4156  //   increment operator ++ for objects of that type.
4157  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4158    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4159    bool ParamIsInt = false;
4160    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4161      ParamIsInt = BT->getKind() == BuiltinType::Int;
4162
4163    if (!ParamIsInt)
4164      return Diag(LastParam->getLocation(),
4165                  diag::err_operator_overload_post_incdec_must_be_int)
4166        << LastParam->getType() << (Op == OO_MinusMinus);
4167  }
4168
4169  // Notify the class if it got an assignment operator.
4170  if (Op == OO_Equal) {
4171    // Would have returned earlier otherwise.
4172    assert(isa<CXXMethodDecl>(FnDecl) &&
4173      "Overloaded = not member, but not filtered.");
4174    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4175    Method->getParent()->addedAssignmentOperator(Context, Method);
4176  }
4177
4178  return false;
4179}
4180
4181/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4182/// linkage specification, including the language and (if present)
4183/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4184/// the location of the language string literal, which is provided
4185/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4186/// the '{' brace. Otherwise, this linkage specification does not
4187/// have any braces.
4188Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4189                                                     SourceLocation ExternLoc,
4190                                                     SourceLocation LangLoc,
4191                                                     const char *Lang,
4192                                                     unsigned StrSize,
4193                                                     SourceLocation LBraceLoc) {
4194  LinkageSpecDecl::LanguageIDs Language;
4195  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4196    Language = LinkageSpecDecl::lang_c;
4197  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4198    Language = LinkageSpecDecl::lang_cxx;
4199  else {
4200    Diag(LangLoc, diag::err_bad_language);
4201    return DeclPtrTy();
4202  }
4203
4204  // FIXME: Add all the various semantics of linkage specifications
4205
4206  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4207                                               LangLoc, Language,
4208                                               LBraceLoc.isValid());
4209  CurContext->addDecl(D);
4210  PushDeclContext(S, D);
4211  return DeclPtrTy::make(D);
4212}
4213
4214/// ActOnFinishLinkageSpecification - Completely the definition of
4215/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4216/// valid, it's the position of the closing '}' brace in a linkage
4217/// specification that uses braces.
4218Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4219                                                      DeclPtrTy LinkageSpec,
4220                                                      SourceLocation RBraceLoc) {
4221  if (LinkageSpec)
4222    PopDeclContext();
4223  return LinkageSpec;
4224}
4225
4226/// \brief Perform semantic analysis for the variable declaration that
4227/// occurs within a C++ catch clause, returning the newly-created
4228/// variable.
4229VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4230                                         DeclaratorInfo *DInfo,
4231                                         IdentifierInfo *Name,
4232                                         SourceLocation Loc,
4233                                         SourceRange Range) {
4234  bool Invalid = false;
4235
4236  // Arrays and functions decay.
4237  if (ExDeclType->isArrayType())
4238    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4239  else if (ExDeclType->isFunctionType())
4240    ExDeclType = Context.getPointerType(ExDeclType);
4241
4242  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4243  // The exception-declaration shall not denote a pointer or reference to an
4244  // incomplete type, other than [cv] void*.
4245  // N2844 forbids rvalue references.
4246  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4247    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4248    Invalid = true;
4249  }
4250
4251  QualType BaseType = ExDeclType;
4252  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4253  unsigned DK = diag::err_catch_incomplete;
4254  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4255    BaseType = Ptr->getPointeeType();
4256    Mode = 1;
4257    DK = diag::err_catch_incomplete_ptr;
4258  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4259    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4260    BaseType = Ref->getPointeeType();
4261    Mode = 2;
4262    DK = diag::err_catch_incomplete_ref;
4263  }
4264  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4265      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4266    Invalid = true;
4267
4268  if (!Invalid && !ExDeclType->isDependentType() &&
4269      RequireNonAbstractType(Loc, ExDeclType,
4270                             diag::err_abstract_type_in_decl,
4271                             AbstractVariableType))
4272    Invalid = true;
4273
4274  // FIXME: Need to test for ability to copy-construct and destroy the
4275  // exception variable.
4276
4277  // FIXME: Need to check for abstract classes.
4278
4279  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4280                                    Name, ExDeclType, DInfo, VarDecl::None);
4281
4282  if (Invalid)
4283    ExDecl->setInvalidDecl();
4284
4285  return ExDecl;
4286}
4287
4288/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4289/// handler.
4290Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4291  DeclaratorInfo *DInfo = 0;
4292  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4293
4294  bool Invalid = D.isInvalidType();
4295  IdentifierInfo *II = D.getIdentifier();
4296  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4297    // The scope should be freshly made just for us. There is just no way
4298    // it contains any previous declaration.
4299    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4300    if (PrevDecl->isTemplateParameter()) {
4301      // Maybe we will complain about the shadowed template parameter.
4302      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4303    }
4304  }
4305
4306  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4307    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4308      << D.getCXXScopeSpec().getRange();
4309    Invalid = true;
4310  }
4311
4312  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4313                                              D.getIdentifier(),
4314                                              D.getIdentifierLoc(),
4315                                            D.getDeclSpec().getSourceRange());
4316
4317  if (Invalid)
4318    ExDecl->setInvalidDecl();
4319
4320  // Add the exception declaration into this scope.
4321  if (II)
4322    PushOnScopeChains(ExDecl, S);
4323  else
4324    CurContext->addDecl(ExDecl);
4325
4326  ProcessDeclAttributes(S, ExDecl, D);
4327  return DeclPtrTy::make(ExDecl);
4328}
4329
4330Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4331                                                   ExprArg assertexpr,
4332                                                   ExprArg assertmessageexpr) {
4333  Expr *AssertExpr = (Expr *)assertexpr.get();
4334  StringLiteral *AssertMessage =
4335    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4336
4337  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4338    llvm::APSInt Value(32);
4339    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4340      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4341        AssertExpr->getSourceRange();
4342      return DeclPtrTy();
4343    }
4344
4345    if (Value == 0) {
4346      std::string str(AssertMessage->getStrData(),
4347                      AssertMessage->getByteLength());
4348      Diag(AssertLoc, diag::err_static_assert_failed)
4349        << str << AssertExpr->getSourceRange();
4350    }
4351  }
4352
4353  assertexpr.release();
4354  assertmessageexpr.release();
4355  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4356                                        AssertExpr, AssertMessage);
4357
4358  CurContext->addDecl(Decl);
4359  return DeclPtrTy::make(Decl);
4360}
4361
4362/// Handle a friend type declaration.  This works in tandem with
4363/// ActOnTag.
4364///
4365/// Notes on friend class templates:
4366///
4367/// We generally treat friend class declarations as if they were
4368/// declaring a class.  So, for example, the elaborated type specifier
4369/// in a friend declaration is required to obey the restrictions of a
4370/// class-head (i.e. no typedefs in the scope chain), template
4371/// parameters are required to match up with simple template-ids, &c.
4372/// However, unlike when declaring a template specialization, it's
4373/// okay to refer to a template specialization without an empty
4374/// template parameter declaration, e.g.
4375///   friend class A<T>::B<unsigned>;
4376/// We permit this as a special case; if there are any template
4377/// parameters present at all, require proper matching, i.e.
4378///   template <> template <class T> friend class A<int>::B;
4379Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4380                                          MultiTemplateParamsArg TempParams) {
4381  SourceLocation Loc = DS.getSourceRange().getBegin();
4382
4383  assert(DS.isFriendSpecified());
4384  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4385
4386  // Try to convert the decl specifier to a type.  This works for
4387  // friend templates because ActOnTag never produces a ClassTemplateDecl
4388  // for a TUK_Friend.
4389  Declarator TheDeclarator(DS, Declarator::MemberContext);
4390  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4391  if (TheDeclarator.isInvalidType())
4392    return DeclPtrTy();
4393
4394  // This is definitely an error in C++98.  It's probably meant to
4395  // be forbidden in C++0x, too, but the specification is just
4396  // poorly written.
4397  //
4398  // The problem is with declarations like the following:
4399  //   template <T> friend A<T>::foo;
4400  // where deciding whether a class C is a friend or not now hinges
4401  // on whether there exists an instantiation of A that causes
4402  // 'foo' to equal C.  There are restrictions on class-heads
4403  // (which we declare (by fiat) elaborated friend declarations to
4404  // be) that makes this tractable.
4405  //
4406  // FIXME: handle "template <> friend class A<T>;", which
4407  // is possibly well-formed?  Who even knows?
4408  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4409    Diag(Loc, diag::err_tagless_friend_type_template)
4410      << DS.getSourceRange();
4411    return DeclPtrTy();
4412  }
4413
4414  // C++ [class.friend]p2:
4415  //   An elaborated-type-specifier shall be used in a friend declaration
4416  //   for a class.*
4417  //   * The class-key of the elaborated-type-specifier is required.
4418  // This is one of the rare places in Clang where it's legitimate to
4419  // ask about the "spelling" of the type.
4420  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4421    // If we evaluated the type to a record type, suggest putting
4422    // a tag in front.
4423    if (const RecordType *RT = T->getAs<RecordType>()) {
4424      RecordDecl *RD = RT->getDecl();
4425
4426      std::string InsertionText = std::string(" ") + RD->getKindName();
4427
4428      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4429        << (unsigned) RD->getTagKind()
4430        << T
4431        << SourceRange(DS.getFriendSpecLoc())
4432        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4433                                                 InsertionText);
4434      return DeclPtrTy();
4435    }else {
4436      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4437          << DS.getSourceRange();
4438      return DeclPtrTy();
4439    }
4440  }
4441
4442  // Enum types cannot be friends.
4443  if (T->getAs<EnumType>()) {
4444    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4445      << SourceRange(DS.getFriendSpecLoc());
4446    return DeclPtrTy();
4447  }
4448
4449  // C++98 [class.friend]p1: A friend of a class is a function
4450  //   or class that is not a member of the class . . .
4451  // But that's a silly restriction which nobody implements for
4452  // inner classes, and C++0x removes it anyway, so we only report
4453  // this (as a warning) if we're being pedantic.
4454  if (!getLangOptions().CPlusPlus0x)
4455    if (const RecordType *RT = T->getAs<RecordType>())
4456      if (RT->getDecl()->getDeclContext() == CurContext)
4457        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4458
4459  Decl *D;
4460  if (TempParams.size())
4461    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4462                                   TempParams.size(),
4463                                 (TemplateParameterList**) TempParams.release(),
4464                                   T.getTypePtr(),
4465                                   DS.getFriendSpecLoc());
4466  else
4467    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4468                           DS.getFriendSpecLoc());
4469  D->setAccess(AS_public);
4470  CurContext->addDecl(D);
4471
4472  return DeclPtrTy::make(D);
4473}
4474
4475Sema::DeclPtrTy
4476Sema::ActOnFriendFunctionDecl(Scope *S,
4477                              Declarator &D,
4478                              bool IsDefinition,
4479                              MultiTemplateParamsArg TemplateParams) {
4480  const DeclSpec &DS = D.getDeclSpec();
4481
4482  assert(DS.isFriendSpecified());
4483  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4484
4485  SourceLocation Loc = D.getIdentifierLoc();
4486  DeclaratorInfo *DInfo = 0;
4487  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4488
4489  // C++ [class.friend]p1
4490  //   A friend of a class is a function or class....
4491  // Note that this sees through typedefs, which is intended.
4492  // It *doesn't* see through dependent types, which is correct
4493  // according to [temp.arg.type]p3:
4494  //   If a declaration acquires a function type through a
4495  //   type dependent on a template-parameter and this causes
4496  //   a declaration that does not use the syntactic form of a
4497  //   function declarator to have a function type, the program
4498  //   is ill-formed.
4499  if (!T->isFunctionType()) {
4500    Diag(Loc, diag::err_unexpected_friend);
4501
4502    // It might be worthwhile to try to recover by creating an
4503    // appropriate declaration.
4504    return DeclPtrTy();
4505  }
4506
4507  // C++ [namespace.memdef]p3
4508  //  - If a friend declaration in a non-local class first declares a
4509  //    class or function, the friend class or function is a member
4510  //    of the innermost enclosing namespace.
4511  //  - The name of the friend is not found by simple name lookup
4512  //    until a matching declaration is provided in that namespace
4513  //    scope (either before or after the class declaration granting
4514  //    friendship).
4515  //  - If a friend function is called, its name may be found by the
4516  //    name lookup that considers functions from namespaces and
4517  //    classes associated with the types of the function arguments.
4518  //  - When looking for a prior declaration of a class or a function
4519  //    declared as a friend, scopes outside the innermost enclosing
4520  //    namespace scope are not considered.
4521
4522  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4523  DeclarationName Name = GetNameForDeclarator(D);
4524  assert(Name);
4525
4526  // The context we found the declaration in, or in which we should
4527  // create the declaration.
4528  DeclContext *DC;
4529
4530  // FIXME: handle local classes
4531
4532  // Recover from invalid scope qualifiers as if they just weren't there.
4533  NamedDecl *PrevDecl = 0;
4534  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4535    // FIXME: RequireCompleteDeclContext
4536    DC = computeDeclContext(ScopeQual);
4537
4538    // FIXME: handle dependent contexts
4539    if (!DC) return DeclPtrTy();
4540
4541    LookupResult R;
4542    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4543    PrevDecl = R.getAsSingleDecl(Context);
4544
4545    // If searching in that context implicitly found a declaration in
4546    // a different context, treat it like it wasn't found at all.
4547    // TODO: better diagnostics for this case.  Suggesting the right
4548    // qualified scope would be nice...
4549    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4550      D.setInvalidType();
4551      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4552      return DeclPtrTy();
4553    }
4554
4555    // C++ [class.friend]p1: A friend of a class is a function or
4556    //   class that is not a member of the class . . .
4557    if (DC->Equals(CurContext))
4558      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4559
4560  // Otherwise walk out to the nearest namespace scope looking for matches.
4561  } else {
4562    // TODO: handle local class contexts.
4563
4564    DC = CurContext;
4565    while (true) {
4566      // Skip class contexts.  If someone can cite chapter and verse
4567      // for this behavior, that would be nice --- it's what GCC and
4568      // EDG do, and it seems like a reasonable intent, but the spec
4569      // really only says that checks for unqualified existing
4570      // declarations should stop at the nearest enclosing namespace,
4571      // not that they should only consider the nearest enclosing
4572      // namespace.
4573      while (DC->isRecord())
4574        DC = DC->getParent();
4575
4576      LookupResult R;
4577      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4578      PrevDecl = R.getAsSingleDecl(Context);
4579
4580      // TODO: decide what we think about using declarations.
4581      if (PrevDecl)
4582        break;
4583
4584      if (DC->isFileContext()) break;
4585      DC = DC->getParent();
4586    }
4587
4588    // C++ [class.friend]p1: A friend of a class is a function or
4589    //   class that is not a member of the class . . .
4590    // C++0x changes this for both friend types and functions.
4591    // Most C++ 98 compilers do seem to give an error here, so
4592    // we do, too.
4593    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4594      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4595  }
4596
4597  if (DC->isFileContext()) {
4598    // This implies that it has to be an operator or function.
4599    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4600        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4601        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4602      Diag(Loc, diag::err_introducing_special_friend) <<
4603        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4604         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4605      return DeclPtrTy();
4606    }
4607  }
4608
4609  bool Redeclaration = false;
4610  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4611                                          move(TemplateParams),
4612                                          IsDefinition,
4613                                          Redeclaration);
4614  if (!ND) return DeclPtrTy();
4615
4616  assert(ND->getDeclContext() == DC);
4617  assert(ND->getLexicalDeclContext() == CurContext);
4618
4619  // Add the function declaration to the appropriate lookup tables,
4620  // adjusting the redeclarations list as necessary.  We don't
4621  // want to do this yet if the friending class is dependent.
4622  //
4623  // Also update the scope-based lookup if the target context's
4624  // lookup context is in lexical scope.
4625  if (!CurContext->isDependentContext()) {
4626    DC = DC->getLookupContext();
4627    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4628    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4629      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4630  }
4631
4632  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4633                                       D.getIdentifierLoc(), ND,
4634                                       DS.getFriendSpecLoc());
4635  FrD->setAccess(AS_public);
4636  CurContext->addDecl(FrD);
4637
4638  return DeclPtrTy::make(ND);
4639}
4640
4641void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4642  AdjustDeclIfTemplate(dcl);
4643
4644  Decl *Dcl = dcl.getAs<Decl>();
4645  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4646  if (!Fn) {
4647    Diag(DelLoc, diag::err_deleted_non_function);
4648    return;
4649  }
4650  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4651    Diag(DelLoc, diag::err_deleted_decl_not_first);
4652    Diag(Prev->getLocation(), diag::note_previous_declaration);
4653    // If the declaration wasn't the first, we delete the function anyway for
4654    // recovery.
4655  }
4656  Fn->setDeleted();
4657}
4658
4659static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4660  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4661       ++CI) {
4662    Stmt *SubStmt = *CI;
4663    if (!SubStmt)
4664      continue;
4665    if (isa<ReturnStmt>(SubStmt))
4666      Self.Diag(SubStmt->getSourceRange().getBegin(),
4667           diag::err_return_in_constructor_handler);
4668    if (!isa<Expr>(SubStmt))
4669      SearchForReturnInStmt(Self, SubStmt);
4670  }
4671}
4672
4673void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4674  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4675    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4676    SearchForReturnInStmt(*this, Handler);
4677  }
4678}
4679
4680bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4681                                             const CXXMethodDecl *Old) {
4682  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4683  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4684
4685  QualType CNewTy = Context.getCanonicalType(NewTy);
4686  QualType COldTy = Context.getCanonicalType(OldTy);
4687
4688  if (CNewTy == COldTy &&
4689      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4690    return false;
4691
4692  // Check if the return types are covariant
4693  QualType NewClassTy, OldClassTy;
4694
4695  /// Both types must be pointers or references to classes.
4696  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4697    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4698      NewClassTy = NewPT->getPointeeType();
4699      OldClassTy = OldPT->getPointeeType();
4700    }
4701  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4702    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4703      NewClassTy = NewRT->getPointeeType();
4704      OldClassTy = OldRT->getPointeeType();
4705    }
4706  }
4707
4708  // The return types aren't either both pointers or references to a class type.
4709  if (NewClassTy.isNull()) {
4710    Diag(New->getLocation(),
4711         diag::err_different_return_type_for_overriding_virtual_function)
4712      << New->getDeclName() << NewTy << OldTy;
4713    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4714
4715    return true;
4716  }
4717
4718  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4719    // Check if the new class derives from the old class.
4720    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4721      Diag(New->getLocation(),
4722           diag::err_covariant_return_not_derived)
4723      << New->getDeclName() << NewTy << OldTy;
4724      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4725      return true;
4726    }
4727
4728    // Check if we the conversion from derived to base is valid.
4729    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4730                      diag::err_covariant_return_inaccessible_base,
4731                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4732                      // FIXME: Should this point to the return type?
4733                      New->getLocation(), SourceRange(), New->getDeclName())) {
4734      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4735      return true;
4736    }
4737  }
4738
4739  // The qualifiers of the return types must be the same.
4740  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4741    Diag(New->getLocation(),
4742         diag::err_covariant_return_type_different_qualifications)
4743    << New->getDeclName() << NewTy << OldTy;
4744    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4745    return true;
4746  };
4747
4748
4749  // The new class type must have the same or less qualifiers as the old type.
4750  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4751    Diag(New->getLocation(),
4752         diag::err_covariant_return_type_class_type_more_qualified)
4753    << New->getDeclName() << NewTy << OldTy;
4754    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4755    return true;
4756  };
4757
4758  return false;
4759}
4760
4761/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4762/// initializer for the declaration 'Dcl'.
4763/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4764/// static data member of class X, names should be looked up in the scope of
4765/// class X.
4766void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4767  AdjustDeclIfTemplate(Dcl);
4768
4769  Decl *D = Dcl.getAs<Decl>();
4770  // If there is no declaration, there was an error parsing it.
4771  if (D == 0)
4772    return;
4773
4774  // Check whether it is a declaration with a nested name specifier like
4775  // int foo::bar;
4776  if (!D->isOutOfLine())
4777    return;
4778
4779  // C++ [basic.lookup.unqual]p13
4780  //
4781  // A name used in the definition of a static data member of class X
4782  // (after the qualified-id of the static member) is looked up as if the name
4783  // was used in a member function of X.
4784
4785  // Change current context into the context of the initializing declaration.
4786  EnterDeclaratorContext(S, D->getDeclContext());
4787}
4788
4789/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4790/// initializer for the declaration 'Dcl'.
4791void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4792  AdjustDeclIfTemplate(Dcl);
4793
4794  Decl *D = Dcl.getAs<Decl>();
4795  // If there is no declaration, there was an error parsing it.
4796  if (D == 0)
4797    return;
4798
4799  // Check whether it is a declaration with a nested name specifier like
4800  // int foo::bar;
4801  if (!D->isOutOfLine())
4802    return;
4803
4804  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4805  ExitDeclaratorContext(S);
4806}
4807