SemaDeclCXX.cpp revision 66f85713bd0d22f867efa8e9fb0037befdd6b151
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 CXXRecordDecl *ClassDecl) {
2129  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2130  if (!LangOpts.CPlusPlus0x)
2131    return Diag(NameLoc, diag::err_delegating_ctor)
2132      << TInfo->getTypeLoc().getLocalSourceRange();
2133  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2134
2135  // Initialize the object.
2136  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2137                                     QualType(ClassDecl->getTypeForDecl(), 0));
2138  InitializationKind Kind =
2139    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2140                                     Args.getEndLoc());
2141
2142  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2143  if (DelegationInit.isInvalid())
2144    return true;
2145
2146  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2147         "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2159                                          DelegationInit.takeAs<Expr>(),
2160                                          Args.getEndLoc());
2161}
2162
2163MemInitResult
2164Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2165                           const MultiInitializer &Args,
2166                           CXXRecordDecl *ClassDecl,
2167                           SourceLocation EllipsisLoc) {
2168  bool HasDependentArg = Args.isTypeDependent();
2169
2170  SourceLocation BaseLoc
2171    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2172
2173  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2174    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2175             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2176
2177  // C++ [class.base.init]p2:
2178  //   [...] Unless the mem-initializer-id names a nonstatic data
2179  //   member of the constructor's class or a direct or virtual base
2180  //   of that class, the mem-initializer is ill-formed. A
2181  //   mem-initializer-list can initialize a base class using any
2182  //   name that denotes that base class type.
2183  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2184
2185  if (EllipsisLoc.isValid()) {
2186    // This is a pack expansion.
2187    if (!BaseType->containsUnexpandedParameterPack())  {
2188      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2189        << SourceRange(BaseLoc, Args.getEndLoc());
2190
2191      EllipsisLoc = SourceLocation();
2192    }
2193  } else {
2194    // Check for any unexpanded parameter packs.
2195    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2196      return true;
2197
2198    if (Args.DiagnoseUnexpandedParameterPack(*this))
2199      return true;
2200  }
2201
2202  // Check for direct and virtual base classes.
2203  const CXXBaseSpecifier *DirectBaseSpec = 0;
2204  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2205  if (!Dependent) {
2206    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2207                                       BaseType))
2208      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2209
2210    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2211                        VirtualBaseSpec);
2212
2213    // C++ [base.class.init]p2:
2214    // Unless the mem-initializer-id names a nonstatic data member of the
2215    // constructor's class or a direct or virtual base of that class, the
2216    // mem-initializer is ill-formed.
2217    if (!DirectBaseSpec && !VirtualBaseSpec) {
2218      // If the class has any dependent bases, then it's possible that
2219      // one of those types will resolve to the same type as
2220      // BaseType. Therefore, just treat this as a dependent base
2221      // class initialization.  FIXME: Should we try to check the
2222      // initialization anyway? It seems odd.
2223      if (ClassDecl->hasAnyDependentBases())
2224        Dependent = true;
2225      else
2226        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2227          << BaseType << Context.getTypeDeclType(ClassDecl)
2228          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2229    }
2230  }
2231
2232  if (Dependent) {
2233    // Can't check initialization for a base of dependent type or when
2234    // any of the arguments are type-dependent expressions.
2235    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2236
2237    DiscardCleanupsInEvaluationContext();
2238
2239    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2240                                            /*IsVirtual=*/false,
2241                                            Args.getStartLoc(), BaseInit,
2242                                            Args.getEndLoc(), EllipsisLoc);
2243  }
2244
2245  // C++ [base.class.init]p2:
2246  //   If a mem-initializer-id is ambiguous because it designates both
2247  //   a direct non-virtual base class and an inherited virtual base
2248  //   class, the mem-initializer is ill-formed.
2249  if (DirectBaseSpec && VirtualBaseSpec)
2250    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2251      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  CXXBaseSpecifier *BaseSpec
2254    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2255  if (!BaseSpec)
2256    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2257
2258  // Initialize the base.
2259  InitializedEntity BaseEntity =
2260    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2261  InitializationKind Kind =
2262    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2263                                     Args.getEndLoc());
2264
2265  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2266  if (BaseInit.isInvalid())
2267    return true;
2268
2269  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2270
2271  // C++0x [class.base.init]p7:
2272  //   The initialization of each base and member constitutes a
2273  //   full-expression.
2274  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2275  if (BaseInit.isInvalid())
2276    return true;
2277
2278  // If we are in a dependent context, template instantiation will
2279  // perform this type-checking again. Just save the arguments that we
2280  // received in a ParenListExpr.
2281  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2282  // of the information that we have about the base
2283  // initializer. However, deconstructing the ASTs is a dicey process,
2284  // and this approach is far more likely to get the corner cases right.
2285  if (CurContext->isDependentContext())
2286    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2287
2288  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2289                                          BaseSpec->isVirtual(),
2290                                          Args.getStartLoc(),
2291                                          BaseInit.takeAs<Expr>(),
2292                                          Args.getEndLoc(), EllipsisLoc);
2293}
2294
2295// Create a static_cast\<T&&>(expr).
2296static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2297  QualType ExprType = E->getType();
2298  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2299  SourceLocation ExprLoc = E->getLocStart();
2300  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2301      TargetType, ExprLoc);
2302
2303  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2304                                   SourceRange(ExprLoc, ExprLoc),
2305                                   E->getSourceRange()).take();
2306}
2307
2308/// ImplicitInitializerKind - How an implicit base or member initializer should
2309/// initialize its base or member.
2310enum ImplicitInitializerKind {
2311  IIK_Default,
2312  IIK_Copy,
2313  IIK_Move
2314};
2315
2316static bool
2317BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2318                             ImplicitInitializerKind ImplicitInitKind,
2319                             CXXBaseSpecifier *BaseSpec,
2320                             bool IsInheritedVirtualBase,
2321                             CXXCtorInitializer *&CXXBaseInit) {
2322  InitializedEntity InitEntity
2323    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2324                                        IsInheritedVirtualBase);
2325
2326  ExprResult BaseInit;
2327
2328  switch (ImplicitInitKind) {
2329  case IIK_Default: {
2330    InitializationKind InitKind
2331      = InitializationKind::CreateDefault(Constructor->getLocation());
2332    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2333    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2334                               MultiExprArg(SemaRef, 0, 0));
2335    break;
2336  }
2337
2338  case IIK_Move:
2339  case IIK_Copy: {
2340    bool Moving = ImplicitInitKind == IIK_Move;
2341    ParmVarDecl *Param = Constructor->getParamDecl(0);
2342    QualType ParamType = Param->getType().getNonReferenceType();
2343
2344    Expr *CopyCtorArg =
2345      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2346                          Constructor->getLocation(), ParamType,
2347                          VK_LValue, 0);
2348
2349    // Cast to the base class to avoid ambiguities.
2350    QualType ArgTy =
2351      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2352                                       ParamType.getQualifiers());
2353
2354    if (Moving) {
2355      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2356    }
2357
2358    CXXCastPath BasePath;
2359    BasePath.push_back(BaseSpec);
2360    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2361                                            CK_UncheckedDerivedToBase,
2362                                            Moving ? VK_XValue : VK_LValue,
2363                                            &BasePath).take();
2364
2365    InitializationKind InitKind
2366      = InitializationKind::CreateDirect(Constructor->getLocation(),
2367                                         SourceLocation(), SourceLocation());
2368    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2369                                   &CopyCtorArg, 1);
2370    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2371                               MultiExprArg(&CopyCtorArg, 1));
2372    break;
2373  }
2374  }
2375
2376  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2377  if (BaseInit.isInvalid())
2378    return true;
2379
2380  CXXBaseInit =
2381    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2382               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2383                                                        SourceLocation()),
2384                                             BaseSpec->isVirtual(),
2385                                             SourceLocation(),
2386                                             BaseInit.takeAs<Expr>(),
2387                                             SourceLocation(),
2388                                             SourceLocation());
2389
2390  return false;
2391}
2392
2393static bool RefersToRValueRef(Expr *MemRef) {
2394  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2395  return Referenced->getType()->isRValueReferenceType();
2396}
2397
2398static bool
2399BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                               ImplicitInitializerKind ImplicitInitKind,
2401                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2402                               CXXCtorInitializer *&CXXMemberInit) {
2403  if (Field->isInvalidDecl())
2404    return true;
2405
2406  SourceLocation Loc = Constructor->getLocation();
2407
2408  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2409    bool Moving = ImplicitInitKind == IIK_Move;
2410    ParmVarDecl *Param = Constructor->getParamDecl(0);
2411    QualType ParamType = Param->getType().getNonReferenceType();
2412
2413    // Suppress copying zero-width bitfields.
2414    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2415      return false;
2416
2417    Expr *MemberExprBase =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2419                          Loc, ParamType, VK_LValue, 0);
2420
2421    if (Moving) {
2422      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2423    }
2424
2425    // Build a reference to this field within the parameter.
2426    CXXScopeSpec SS;
2427    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2428                              Sema::LookupMemberName);
2429    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2430                                  : cast<ValueDecl>(Field), AS_public);
2431    MemberLookup.resolveKind();
2432    ExprResult CtorArg
2433      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2434                                         ParamType, Loc,
2435                                         /*IsArrow=*/false,
2436                                         SS,
2437                                         /*FirstQualifierInScope=*/0,
2438                                         MemberLookup,
2439                                         /*TemplateArgs=*/0);
2440    if (CtorArg.isInvalid())
2441      return true;
2442
2443    // C++11 [class.copy]p15:
2444    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2445    //     with static_cast<T&&>(x.m);
2446    if (RefersToRValueRef(CtorArg.get())) {
2447      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2448    }
2449
2450    // When the field we are copying is an array, create index variables for
2451    // each dimension of the array. We use these index variables to subscript
2452    // the source array, and other clients (e.g., CodeGen) will perform the
2453    // necessary iteration with these index variables.
2454    SmallVector<VarDecl *, 4> IndexVariables;
2455    QualType BaseType = Field->getType();
2456    QualType SizeType = SemaRef.Context.getSizeType();
2457    bool InitializingArray = false;
2458    while (const ConstantArrayType *Array
2459                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2460      InitializingArray = true;
2461      // Create the iteration variable for this array index.
2462      IdentifierInfo *IterationVarName = 0;
2463      {
2464        llvm::SmallString<8> Str;
2465        llvm::raw_svector_ostream OS(Str);
2466        OS << "__i" << IndexVariables.size();
2467        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2468      }
2469      VarDecl *IterationVar
2470        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2471                          IterationVarName, SizeType,
2472                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2473                          SC_None, SC_None);
2474      IndexVariables.push_back(IterationVar);
2475
2476      // Create a reference to the iteration variable.
2477      ExprResult IterationVarRef
2478        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2479      assert(!IterationVarRef.isInvalid() &&
2480             "Reference to invented variable cannot fail!");
2481
2482      // Subscript the array with this iteration variable.
2483      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2484                                                        IterationVarRef.take(),
2485                                                        Loc);
2486      if (CtorArg.isInvalid())
2487        return true;
2488
2489      BaseType = Array->getElementType();
2490    }
2491
2492    // The array subscript expression is an lvalue, which is wrong for moving.
2493    if (Moving && InitializingArray)
2494      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2495
2496    // Construct the entity that we will be initializing. For an array, this
2497    // will be first element in the array, which may require several levels
2498    // of array-subscript entities.
2499    SmallVector<InitializedEntity, 4> Entities;
2500    Entities.reserve(1 + IndexVariables.size());
2501    if (Indirect)
2502      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2503    else
2504      Entities.push_back(InitializedEntity::InitializeMember(Field));
2505    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2506      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2507                                                              0,
2508                                                              Entities.back()));
2509
2510    // Direct-initialize to use the copy constructor.
2511    InitializationKind InitKind =
2512      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2513
2514    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2515    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2516                                   &CtorArgE, 1);
2517
2518    ExprResult MemberInit
2519      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2520                        MultiExprArg(&CtorArgE, 1));
2521    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2522    if (MemberInit.isInvalid())
2523      return true;
2524
2525    if (Indirect) {
2526      assert(IndexVariables.size() == 0 &&
2527             "Indirect field improperly initialized");
2528      CXXMemberInit
2529        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2530                                                   Loc, Loc,
2531                                                   MemberInit.takeAs<Expr>(),
2532                                                   Loc);
2533    } else
2534      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2535                                                 Loc, MemberInit.takeAs<Expr>(),
2536                                                 Loc,
2537                                                 IndexVariables.data(),
2538                                                 IndexVariables.size());
2539    return false;
2540  }
2541
2542  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2543
2544  QualType FieldBaseElementType =
2545    SemaRef.Context.getBaseElementType(Field->getType());
2546
2547  if (FieldBaseElementType->isRecordType()) {
2548    InitializedEntity InitEntity
2549      = Indirect? InitializedEntity::InitializeMember(Indirect)
2550                : InitializedEntity::InitializeMember(Field);
2551    InitializationKind InitKind =
2552      InitializationKind::CreateDefault(Loc);
2553
2554    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2555    ExprResult MemberInit =
2556      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2557
2558    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2559    if (MemberInit.isInvalid())
2560      return true;
2561
2562    if (Indirect)
2563      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2564                                                               Indirect, Loc,
2565                                                               Loc,
2566                                                               MemberInit.get(),
2567                                                               Loc);
2568    else
2569      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2570                                                               Field, Loc, Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    return false;
2574  }
2575
2576  if (!Field->getParent()->isUnion()) {
2577    if (FieldBaseElementType->isReferenceType()) {
2578      SemaRef.Diag(Constructor->getLocation(),
2579                   diag::err_uninitialized_member_in_ctor)
2580      << (int)Constructor->isImplicit()
2581      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2582      << 0 << Field->getDeclName();
2583      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2584      return true;
2585    }
2586
2587    if (FieldBaseElementType.isConstQualified()) {
2588      SemaRef.Diag(Constructor->getLocation(),
2589                   diag::err_uninitialized_member_in_ctor)
2590      << (int)Constructor->isImplicit()
2591      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2592      << 1 << Field->getDeclName();
2593      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2594      return true;
2595    }
2596  }
2597
2598  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2599      FieldBaseElementType->isObjCRetainableType() &&
2600      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2601      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2602    // Instant objects:
2603    //   Default-initialize Objective-C pointers to NULL.
2604    CXXMemberInit
2605      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2606                                                 Loc, Loc,
2607                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2608                                                 Loc);
2609    return false;
2610  }
2611
2612  // Nothing to initialize.
2613  CXXMemberInit = 0;
2614  return false;
2615}
2616
2617namespace {
2618struct BaseAndFieldInfo {
2619  Sema &S;
2620  CXXConstructorDecl *Ctor;
2621  bool AnyErrorsInInits;
2622  ImplicitInitializerKind IIK;
2623  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2624  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2625
2626  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2627    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2628    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2629    if (Generated && Ctor->isCopyConstructor())
2630      IIK = IIK_Copy;
2631    else if (Generated && Ctor->isMoveConstructor())
2632      IIK = IIK_Move;
2633    else
2634      IIK = IIK_Default;
2635  }
2636};
2637}
2638
2639/// \brief Determine whether the given indirect field declaration is somewhere
2640/// within an anonymous union.
2641static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2642  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2643                                      CEnd = F->chain_end();
2644       C != CEnd; ++C)
2645    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2646      if (Record->isUnion())
2647        return true;
2648
2649  return false;
2650}
2651
2652/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2653/// array type.
2654static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2655  if (T->isIncompleteArrayType())
2656    return true;
2657
2658  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2659    if (!ArrayT->getSize())
2660      return true;
2661
2662    T = ArrayT->getElementType();
2663  }
2664
2665  return false;
2666}
2667
2668static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2669                                    FieldDecl *Field,
2670                                    IndirectFieldDecl *Indirect = 0) {
2671
2672  // Overwhelmingly common case: we have a direct initializer for this field.
2673  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2674    Info.AllToInit.push_back(Init);
2675    return false;
2676  }
2677
2678  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2679  // has a brace-or-equal-initializer, the entity is initialized as specified
2680  // in [dcl.init].
2681  if (Field->hasInClassInitializer()) {
2682    CXXCtorInitializer *Init;
2683    if (Indirect)
2684      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2685                                                      SourceLocation(),
2686                                                      SourceLocation(), 0,
2687                                                      SourceLocation());
2688    else
2689      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2690                                                      SourceLocation(),
2691                                                      SourceLocation(), 0,
2692                                                      SourceLocation());
2693    Info.AllToInit.push_back(Init);
2694    return false;
2695  }
2696
2697  // Don't build an implicit initializer for union members if none was
2698  // explicitly specified.
2699  if (Field->getParent()->isUnion() ||
2700      (Indirect && isWithinAnonymousUnion(Indirect)))
2701    return false;
2702
2703  // Don't initialize incomplete or zero-length arrays.
2704  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2705    return false;
2706
2707  // Don't try to build an implicit initializer if there were semantic
2708  // errors in any of the initializers (and therefore we might be
2709  // missing some that the user actually wrote).
2710  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2711    return false;
2712
2713  CXXCtorInitializer *Init = 0;
2714  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2715                                     Indirect, Init))
2716    return true;
2717
2718  if (Init)
2719    Info.AllToInit.push_back(Init);
2720
2721  return false;
2722}
2723
2724bool
2725Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2726                               CXXCtorInitializer *Initializer) {
2727  assert(Initializer->isDelegatingInitializer());
2728  Constructor->setNumCtorInitializers(1);
2729  CXXCtorInitializer **initializer =
2730    new (Context) CXXCtorInitializer*[1];
2731  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2732  Constructor->setCtorInitializers(initializer);
2733
2734  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2735    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2736    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2737  }
2738
2739  DelegatingCtorDecls.push_back(Constructor);
2740
2741  return false;
2742}
2743
2744bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2745                               CXXCtorInitializer **Initializers,
2746                               unsigned NumInitializers,
2747                               bool AnyErrors) {
2748  if (Constructor->isDependentContext()) {
2749    // Just store the initializers as written, they will be checked during
2750    // instantiation.
2751    if (NumInitializers > 0) {
2752      Constructor->setNumCtorInitializers(NumInitializers);
2753      CXXCtorInitializer **baseOrMemberInitializers =
2754        new (Context) CXXCtorInitializer*[NumInitializers];
2755      memcpy(baseOrMemberInitializers, Initializers,
2756             NumInitializers * sizeof(CXXCtorInitializer*));
2757      Constructor->setCtorInitializers(baseOrMemberInitializers);
2758    }
2759
2760    return false;
2761  }
2762
2763  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2764
2765  // We need to build the initializer AST according to order of construction
2766  // and not what user specified in the Initializers list.
2767  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2768  if (!ClassDecl)
2769    return true;
2770
2771  bool HadError = false;
2772
2773  for (unsigned i = 0; i < NumInitializers; i++) {
2774    CXXCtorInitializer *Member = Initializers[i];
2775
2776    if (Member->isBaseInitializer())
2777      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2778    else
2779      Info.AllBaseFields[Member->getAnyMember()] = Member;
2780  }
2781
2782  // Keep track of the direct virtual bases.
2783  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2784  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2785       E = ClassDecl->bases_end(); I != E; ++I) {
2786    if (I->isVirtual())
2787      DirectVBases.insert(I);
2788  }
2789
2790  // Push virtual bases before others.
2791  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2792       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2793
2794    if (CXXCtorInitializer *Value
2795        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2796      Info.AllToInit.push_back(Value);
2797    } else if (!AnyErrors) {
2798      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2799      CXXCtorInitializer *CXXBaseInit;
2800      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2801                                       VBase, IsInheritedVirtualBase,
2802                                       CXXBaseInit)) {
2803        HadError = true;
2804        continue;
2805      }
2806
2807      Info.AllToInit.push_back(CXXBaseInit);
2808    }
2809  }
2810
2811  // Non-virtual bases.
2812  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2813       E = ClassDecl->bases_end(); Base != E; ++Base) {
2814    // Virtuals are in the virtual base list and already constructed.
2815    if (Base->isVirtual())
2816      continue;
2817
2818    if (CXXCtorInitializer *Value
2819          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2820      Info.AllToInit.push_back(Value);
2821    } else if (!AnyErrors) {
2822      CXXCtorInitializer *CXXBaseInit;
2823      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2824                                       Base, /*IsInheritedVirtualBase=*/false,
2825                                       CXXBaseInit)) {
2826        HadError = true;
2827        continue;
2828      }
2829
2830      Info.AllToInit.push_back(CXXBaseInit);
2831    }
2832  }
2833
2834  // Fields.
2835  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2836                               MemEnd = ClassDecl->decls_end();
2837       Mem != MemEnd; ++Mem) {
2838    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2839      // C++ [class.bit]p2:
2840      //   A declaration for a bit-field that omits the identifier declares an
2841      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2842      //   initialized.
2843      if (F->isUnnamedBitfield())
2844        continue;
2845
2846      // If we're not generating the implicit copy/move constructor, then we'll
2847      // handle anonymous struct/union fields based on their individual
2848      // indirect fields.
2849      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2850        continue;
2851
2852      if (CollectFieldInitializer(*this, Info, F))
2853        HadError = true;
2854      continue;
2855    }
2856
2857    // Beyond this point, we only consider default initialization.
2858    if (Info.IIK != IIK_Default)
2859      continue;
2860
2861    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2862      if (F->getType()->isIncompleteArrayType()) {
2863        assert(ClassDecl->hasFlexibleArrayMember() &&
2864               "Incomplete array type is not valid");
2865        continue;
2866      }
2867
2868      // Initialize each field of an anonymous struct individually.
2869      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2870        HadError = true;
2871
2872      continue;
2873    }
2874  }
2875
2876  NumInitializers = Info.AllToInit.size();
2877  if (NumInitializers > 0) {
2878    Constructor->setNumCtorInitializers(NumInitializers);
2879    CXXCtorInitializer **baseOrMemberInitializers =
2880      new (Context) CXXCtorInitializer*[NumInitializers];
2881    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2882           NumInitializers * sizeof(CXXCtorInitializer*));
2883    Constructor->setCtorInitializers(baseOrMemberInitializers);
2884
2885    // Constructors implicitly reference the base and member
2886    // destructors.
2887    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2888                                           Constructor->getParent());
2889  }
2890
2891  return HadError;
2892}
2893
2894static void *GetKeyForTopLevelField(FieldDecl *Field) {
2895  // For anonymous unions, use the class declaration as the key.
2896  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2897    if (RT->getDecl()->isAnonymousStructOrUnion())
2898      return static_cast<void *>(RT->getDecl());
2899  }
2900  return static_cast<void *>(Field);
2901}
2902
2903static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2904  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2905}
2906
2907static void *GetKeyForMember(ASTContext &Context,
2908                             CXXCtorInitializer *Member) {
2909  if (!Member->isAnyMemberInitializer())
2910    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2911
2912  // For fields injected into the class via declaration of an anonymous union,
2913  // use its anonymous union class declaration as the unique key.
2914  FieldDecl *Field = Member->getAnyMember();
2915
2916  // If the field is a member of an anonymous struct or union, our key
2917  // is the anonymous record decl that's a direct child of the class.
2918  RecordDecl *RD = Field->getParent();
2919  if (RD->isAnonymousStructOrUnion()) {
2920    while (true) {
2921      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2922      if (Parent->isAnonymousStructOrUnion())
2923        RD = Parent;
2924      else
2925        break;
2926    }
2927
2928    return static_cast<void *>(RD);
2929  }
2930
2931  return static_cast<void *>(Field);
2932}
2933
2934static void
2935DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2936                                  const CXXConstructorDecl *Constructor,
2937                                  CXXCtorInitializer **Inits,
2938                                  unsigned NumInits) {
2939  if (Constructor->getDeclContext()->isDependentContext())
2940    return;
2941
2942  // Don't check initializers order unless the warning is enabled at the
2943  // location of at least one initializer.
2944  bool ShouldCheckOrder = false;
2945  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2946    CXXCtorInitializer *Init = Inits[InitIndex];
2947    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2948                                         Init->getSourceLocation())
2949          != DiagnosticsEngine::Ignored) {
2950      ShouldCheckOrder = true;
2951      break;
2952    }
2953  }
2954  if (!ShouldCheckOrder)
2955    return;
2956
2957  // Build the list of bases and members in the order that they'll
2958  // actually be initialized.  The explicit initializers should be in
2959  // this same order but may be missing things.
2960  SmallVector<const void*, 32> IdealInitKeys;
2961
2962  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2963
2964  // 1. Virtual bases.
2965  for (CXXRecordDecl::base_class_const_iterator VBase =
2966       ClassDecl->vbases_begin(),
2967       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2968    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2969
2970  // 2. Non-virtual bases.
2971  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2972       E = ClassDecl->bases_end(); Base != E; ++Base) {
2973    if (Base->isVirtual())
2974      continue;
2975    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2976  }
2977
2978  // 3. Direct fields.
2979  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2980       E = ClassDecl->field_end(); Field != E; ++Field) {
2981    if (Field->isUnnamedBitfield())
2982      continue;
2983
2984    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2985  }
2986
2987  unsigned NumIdealInits = IdealInitKeys.size();
2988  unsigned IdealIndex = 0;
2989
2990  CXXCtorInitializer *PrevInit = 0;
2991  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2992    CXXCtorInitializer *Init = Inits[InitIndex];
2993    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2994
2995    // Scan forward to try to find this initializer in the idealized
2996    // initializers list.
2997    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2998      if (InitKey == IdealInitKeys[IdealIndex])
2999        break;
3000
3001    // If we didn't find this initializer, it must be because we
3002    // scanned past it on a previous iteration.  That can only
3003    // happen if we're out of order;  emit a warning.
3004    if (IdealIndex == NumIdealInits && PrevInit) {
3005      Sema::SemaDiagnosticBuilder D =
3006        SemaRef.Diag(PrevInit->getSourceLocation(),
3007                     diag::warn_initializer_out_of_order);
3008
3009      if (PrevInit->isAnyMemberInitializer())
3010        D << 0 << PrevInit->getAnyMember()->getDeclName();
3011      else
3012        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3013
3014      if (Init->isAnyMemberInitializer())
3015        D << 0 << Init->getAnyMember()->getDeclName();
3016      else
3017        D << 1 << Init->getTypeSourceInfo()->getType();
3018
3019      // Move back to the initializer's location in the ideal list.
3020      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3021        if (InitKey == IdealInitKeys[IdealIndex])
3022          break;
3023
3024      assert(IdealIndex != NumIdealInits &&
3025             "initializer not found in initializer list");
3026    }
3027
3028    PrevInit = Init;
3029  }
3030}
3031
3032namespace {
3033bool CheckRedundantInit(Sema &S,
3034                        CXXCtorInitializer *Init,
3035                        CXXCtorInitializer *&PrevInit) {
3036  if (!PrevInit) {
3037    PrevInit = Init;
3038    return false;
3039  }
3040
3041  if (FieldDecl *Field = Init->getMember())
3042    S.Diag(Init->getSourceLocation(),
3043           diag::err_multiple_mem_initialization)
3044      << Field->getDeclName()
3045      << Init->getSourceRange();
3046  else {
3047    const Type *BaseClass = Init->getBaseClass();
3048    assert(BaseClass && "neither field nor base");
3049    S.Diag(Init->getSourceLocation(),
3050           diag::err_multiple_base_initialization)
3051      << QualType(BaseClass, 0)
3052      << Init->getSourceRange();
3053  }
3054  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3055    << 0 << PrevInit->getSourceRange();
3056
3057  return true;
3058}
3059
3060typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3061typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3062
3063bool CheckRedundantUnionInit(Sema &S,
3064                             CXXCtorInitializer *Init,
3065                             RedundantUnionMap &Unions) {
3066  FieldDecl *Field = Init->getAnyMember();
3067  RecordDecl *Parent = Field->getParent();
3068  if (!Parent->isAnonymousStructOrUnion())
3069    return false;
3070
3071  NamedDecl *Child = Field;
3072  do {
3073    if (Parent->isUnion()) {
3074      UnionEntry &En = Unions[Parent];
3075      if (En.first && En.first != Child) {
3076        S.Diag(Init->getSourceLocation(),
3077               diag::err_multiple_mem_union_initialization)
3078          << Field->getDeclName()
3079          << Init->getSourceRange();
3080        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3081          << 0 << En.second->getSourceRange();
3082        return true;
3083      } else if (!En.first) {
3084        En.first = Child;
3085        En.second = Init;
3086      }
3087    }
3088
3089    Child = Parent;
3090    Parent = cast<RecordDecl>(Parent->getDeclContext());
3091  } while (Parent->isAnonymousStructOrUnion());
3092
3093  return false;
3094}
3095}
3096
3097/// ActOnMemInitializers - Handle the member initializers for a constructor.
3098void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3099                                SourceLocation ColonLoc,
3100                                CXXCtorInitializer **meminits,
3101                                unsigned NumMemInits,
3102                                bool AnyErrors) {
3103  if (!ConstructorDecl)
3104    return;
3105
3106  AdjustDeclIfTemplate(ConstructorDecl);
3107
3108  CXXConstructorDecl *Constructor
3109    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3110
3111  if (!Constructor) {
3112    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3113    return;
3114  }
3115
3116  CXXCtorInitializer **MemInits =
3117    reinterpret_cast<CXXCtorInitializer **>(meminits);
3118
3119  // Mapping for the duplicate initializers check.
3120  // For member initializers, this is keyed with a FieldDecl*.
3121  // For base initializers, this is keyed with a Type*.
3122  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3123
3124  // Mapping for the inconsistent anonymous-union initializers check.
3125  RedundantUnionMap MemberUnions;
3126
3127  bool HadError = false;
3128  for (unsigned i = 0; i < NumMemInits; i++) {
3129    CXXCtorInitializer *Init = MemInits[i];
3130
3131    // Set the source order index.
3132    Init->setSourceOrder(i);
3133
3134    if (Init->isAnyMemberInitializer()) {
3135      FieldDecl *Field = Init->getAnyMember();
3136      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3137          CheckRedundantUnionInit(*this, Init, MemberUnions))
3138        HadError = true;
3139    } else if (Init->isBaseInitializer()) {
3140      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3141      if (CheckRedundantInit(*this, Init, Members[Key]))
3142        HadError = true;
3143    } else {
3144      assert(Init->isDelegatingInitializer());
3145      // This must be the only initializer
3146      if (i != 0 || NumMemInits > 1) {
3147        Diag(MemInits[0]->getSourceLocation(),
3148             diag::err_delegating_initializer_alone)
3149          << MemInits[0]->getSourceRange();
3150        HadError = true;
3151        // We will treat this as being the only initializer.
3152      }
3153      SetDelegatingInitializer(Constructor, MemInits[i]);
3154      // Return immediately as the initializer is set.
3155      return;
3156    }
3157  }
3158
3159  if (HadError)
3160    return;
3161
3162  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3163
3164  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3165}
3166
3167void
3168Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3169                                             CXXRecordDecl *ClassDecl) {
3170  // Ignore dependent contexts. Also ignore unions, since their members never
3171  // have destructors implicitly called.
3172  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3173    return;
3174
3175  // FIXME: all the access-control diagnostics are positioned on the
3176  // field/base declaration.  That's probably good; that said, the
3177  // user might reasonably want to know why the destructor is being
3178  // emitted, and we currently don't say.
3179
3180  // Non-static data members.
3181  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3182       E = ClassDecl->field_end(); I != E; ++I) {
3183    FieldDecl *Field = *I;
3184    if (Field->isInvalidDecl())
3185      continue;
3186
3187    // Don't destroy incomplete or zero-length arrays.
3188    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3189      continue;
3190
3191    QualType FieldType = Context.getBaseElementType(Field->getType());
3192
3193    const RecordType* RT = FieldType->getAs<RecordType>();
3194    if (!RT)
3195      continue;
3196
3197    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3198    if (FieldClassDecl->isInvalidDecl())
3199      continue;
3200    if (FieldClassDecl->hasTrivialDestructor())
3201      continue;
3202
3203    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3204    assert(Dtor && "No dtor found for FieldClassDecl!");
3205    CheckDestructorAccess(Field->getLocation(), Dtor,
3206                          PDiag(diag::err_access_dtor_field)
3207                            << Field->getDeclName()
3208                            << FieldType);
3209
3210    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3211  }
3212
3213  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3214
3215  // Bases.
3216  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3217       E = ClassDecl->bases_end(); Base != E; ++Base) {
3218    // Bases are always records in a well-formed non-dependent class.
3219    const RecordType *RT = Base->getType()->getAs<RecordType>();
3220
3221    // Remember direct virtual bases.
3222    if (Base->isVirtual())
3223      DirectVirtualBases.insert(RT);
3224
3225    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3226    // If our base class is invalid, we probably can't get its dtor anyway.
3227    if (BaseClassDecl->isInvalidDecl())
3228      continue;
3229    // Ignore trivial destructors.
3230    if (BaseClassDecl->hasTrivialDestructor())
3231      continue;
3232
3233    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3234    assert(Dtor && "No dtor found for BaseClassDecl!");
3235
3236    // FIXME: caret should be on the start of the class name
3237    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3238                          PDiag(diag::err_access_dtor_base)
3239                            << Base->getType()
3240                            << Base->getSourceRange());
3241
3242    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3243  }
3244
3245  // Virtual bases.
3246  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3247       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3248
3249    // Bases are always records in a well-formed non-dependent class.
3250    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3251
3252    // Ignore direct virtual bases.
3253    if (DirectVirtualBases.count(RT))
3254      continue;
3255
3256    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3257    // If our base class is invalid, we probably can't get its dtor anyway.
3258    if (BaseClassDecl->isInvalidDecl())
3259      continue;
3260    // Ignore trivial destructors.
3261    if (BaseClassDecl->hasTrivialDestructor())
3262      continue;
3263
3264    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3265    assert(Dtor && "No dtor found for BaseClassDecl!");
3266    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3267                          PDiag(diag::err_access_dtor_vbase)
3268                            << VBase->getType());
3269
3270    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3271  }
3272}
3273
3274void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3275  if (!CDtorDecl)
3276    return;
3277
3278  if (CXXConstructorDecl *Constructor
3279      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3280    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3281}
3282
3283bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3284                                  unsigned DiagID, AbstractDiagSelID SelID) {
3285  if (SelID == -1)
3286    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3287  else
3288    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3289}
3290
3291bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3292                                  const PartialDiagnostic &PD) {
3293  if (!getLangOptions().CPlusPlus)
3294    return false;
3295
3296  if (const ArrayType *AT = Context.getAsArrayType(T))
3297    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3298
3299  if (const PointerType *PT = T->getAs<PointerType>()) {
3300    // Find the innermost pointer type.
3301    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3302      PT = T;
3303
3304    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3305      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3306  }
3307
3308  const RecordType *RT = T->getAs<RecordType>();
3309  if (!RT)
3310    return false;
3311
3312  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3313
3314  // We can't answer whether something is abstract until it has a
3315  // definition.  If it's currently being defined, we'll walk back
3316  // over all the declarations when we have a full definition.
3317  const CXXRecordDecl *Def = RD->getDefinition();
3318  if (!Def || Def->isBeingDefined())
3319    return false;
3320
3321  if (!RD->isAbstract())
3322    return false;
3323
3324  Diag(Loc, PD) << RD->getDeclName();
3325  DiagnoseAbstractType(RD);
3326
3327  return true;
3328}
3329
3330void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3331  // Check if we've already emitted the list of pure virtual functions
3332  // for this class.
3333  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3334    return;
3335
3336  CXXFinalOverriderMap FinalOverriders;
3337  RD->getFinalOverriders(FinalOverriders);
3338
3339  // Keep a set of seen pure methods so we won't diagnose the same method
3340  // more than once.
3341  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3342
3343  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3344                                   MEnd = FinalOverriders.end();
3345       M != MEnd;
3346       ++M) {
3347    for (OverridingMethods::iterator SO = M->second.begin(),
3348                                  SOEnd = M->second.end();
3349         SO != SOEnd; ++SO) {
3350      // C++ [class.abstract]p4:
3351      //   A class is abstract if it contains or inherits at least one
3352      //   pure virtual function for which the final overrider is pure
3353      //   virtual.
3354
3355      //
3356      if (SO->second.size() != 1)
3357        continue;
3358
3359      if (!SO->second.front().Method->isPure())
3360        continue;
3361
3362      if (!SeenPureMethods.insert(SO->second.front().Method))
3363        continue;
3364
3365      Diag(SO->second.front().Method->getLocation(),
3366           diag::note_pure_virtual_function)
3367        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3368    }
3369  }
3370
3371  if (!PureVirtualClassDiagSet)
3372    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3373  PureVirtualClassDiagSet->insert(RD);
3374}
3375
3376namespace {
3377struct AbstractUsageInfo {
3378  Sema &S;
3379  CXXRecordDecl *Record;
3380  CanQualType AbstractType;
3381  bool Invalid;
3382
3383  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3384    : S(S), Record(Record),
3385      AbstractType(S.Context.getCanonicalType(
3386                   S.Context.getTypeDeclType(Record))),
3387      Invalid(false) {}
3388
3389  void DiagnoseAbstractType() {
3390    if (Invalid) return;
3391    S.DiagnoseAbstractType(Record);
3392    Invalid = true;
3393  }
3394
3395  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3396};
3397
3398struct CheckAbstractUsage {
3399  AbstractUsageInfo &Info;
3400  const NamedDecl *Ctx;
3401
3402  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3403    : Info(Info), Ctx(Ctx) {}
3404
3405  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3406    switch (TL.getTypeLocClass()) {
3407#define ABSTRACT_TYPELOC(CLASS, PARENT)
3408#define TYPELOC(CLASS, PARENT) \
3409    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3410#include "clang/AST/TypeLocNodes.def"
3411    }
3412  }
3413
3414  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3415    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3416    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3417      if (!TL.getArg(I))
3418        continue;
3419
3420      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3421      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3422    }
3423  }
3424
3425  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3426    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3427  }
3428
3429  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3430    // Visit the type parameters from a permissive context.
3431    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3432      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3433      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3434        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3435          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3436      // TODO: other template argument types?
3437    }
3438  }
3439
3440  // Visit pointee types from a permissive context.
3441#define CheckPolymorphic(Type) \
3442  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3443    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3444  }
3445  CheckPolymorphic(PointerTypeLoc)
3446  CheckPolymorphic(ReferenceTypeLoc)
3447  CheckPolymorphic(MemberPointerTypeLoc)
3448  CheckPolymorphic(BlockPointerTypeLoc)
3449  CheckPolymorphic(AtomicTypeLoc)
3450
3451  /// Handle all the types we haven't given a more specific
3452  /// implementation for above.
3453  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3454    // Every other kind of type that we haven't called out already
3455    // that has an inner type is either (1) sugar or (2) contains that
3456    // inner type in some way as a subobject.
3457    if (TypeLoc Next = TL.getNextTypeLoc())
3458      return Visit(Next, Sel);
3459
3460    // If there's no inner type and we're in a permissive context,
3461    // don't diagnose.
3462    if (Sel == Sema::AbstractNone) return;
3463
3464    // Check whether the type matches the abstract type.
3465    QualType T = TL.getType();
3466    if (T->isArrayType()) {
3467      Sel = Sema::AbstractArrayType;
3468      T = Info.S.Context.getBaseElementType(T);
3469    }
3470    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3471    if (CT != Info.AbstractType) return;
3472
3473    // It matched; do some magic.
3474    if (Sel == Sema::AbstractArrayType) {
3475      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3476        << T << TL.getSourceRange();
3477    } else {
3478      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3479        << Sel << T << TL.getSourceRange();
3480    }
3481    Info.DiagnoseAbstractType();
3482  }
3483};
3484
3485void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3486                                  Sema::AbstractDiagSelID Sel) {
3487  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3488}
3489
3490}
3491
3492/// Check for invalid uses of an abstract type in a method declaration.
3493static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3494                                    CXXMethodDecl *MD) {
3495  // No need to do the check on definitions, which require that
3496  // the return/param types be complete.
3497  if (MD->doesThisDeclarationHaveABody())
3498    return;
3499
3500  // For safety's sake, just ignore it if we don't have type source
3501  // information.  This should never happen for non-implicit methods,
3502  // but...
3503  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3504    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3505}
3506
3507/// Check for invalid uses of an abstract type within a class definition.
3508static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3509                                    CXXRecordDecl *RD) {
3510  for (CXXRecordDecl::decl_iterator
3511         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3512    Decl *D = *I;
3513    if (D->isImplicit()) continue;
3514
3515    // Methods and method templates.
3516    if (isa<CXXMethodDecl>(D)) {
3517      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3518    } else if (isa<FunctionTemplateDecl>(D)) {
3519      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3520      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3521
3522    // Fields and static variables.
3523    } else if (isa<FieldDecl>(D)) {
3524      FieldDecl *FD = cast<FieldDecl>(D);
3525      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3526        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3527    } else if (isa<VarDecl>(D)) {
3528      VarDecl *VD = cast<VarDecl>(D);
3529      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3530        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3531
3532    // Nested classes and class templates.
3533    } else if (isa<CXXRecordDecl>(D)) {
3534      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3535    } else if (isa<ClassTemplateDecl>(D)) {
3536      CheckAbstractClassUsage(Info,
3537                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3538    }
3539  }
3540}
3541
3542/// \brief Perform semantic checks on a class definition that has been
3543/// completing, introducing implicitly-declared members, checking for
3544/// abstract types, etc.
3545void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3546  if (!Record)
3547    return;
3548
3549  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3550    AbstractUsageInfo Info(*this, Record);
3551    CheckAbstractClassUsage(Info, Record);
3552  }
3553
3554  // If this is not an aggregate type and has no user-declared constructor,
3555  // complain about any non-static data members of reference or const scalar
3556  // type, since they will never get initializers.
3557  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3558      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3559    bool Complained = false;
3560    for (RecordDecl::field_iterator F = Record->field_begin(),
3561                                 FEnd = Record->field_end();
3562         F != FEnd; ++F) {
3563      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3564        continue;
3565
3566      if (F->getType()->isReferenceType() ||
3567          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3568        if (!Complained) {
3569          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3570            << Record->getTagKind() << Record;
3571          Complained = true;
3572        }
3573
3574        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3575          << F->getType()->isReferenceType()
3576          << F->getDeclName();
3577      }
3578    }
3579  }
3580
3581  if (Record->isDynamicClass() && !Record->isDependentType())
3582    DynamicClasses.push_back(Record);
3583
3584  if (Record->getIdentifier()) {
3585    // C++ [class.mem]p13:
3586    //   If T is the name of a class, then each of the following shall have a
3587    //   name different from T:
3588    //     - every member of every anonymous union that is a member of class T.
3589    //
3590    // C++ [class.mem]p14:
3591    //   In addition, if class T has a user-declared constructor (12.1), every
3592    //   non-static data member of class T shall have a name different from T.
3593    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3594         R.first != R.second; ++R.first) {
3595      NamedDecl *D = *R.first;
3596      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3597          isa<IndirectFieldDecl>(D)) {
3598        Diag(D->getLocation(), diag::err_member_name_of_class)
3599          << D->getDeclName();
3600        break;
3601      }
3602    }
3603  }
3604
3605  // Warn if the class has virtual methods but non-virtual public destructor.
3606  if (Record->isPolymorphic() && !Record->isDependentType()) {
3607    CXXDestructorDecl *dtor = Record->getDestructor();
3608    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3609      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3610           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3611  }
3612
3613  // See if a method overloads virtual methods in a base
3614  /// class without overriding any.
3615  if (!Record->isDependentType()) {
3616    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3617                                     MEnd = Record->method_end();
3618         M != MEnd; ++M) {
3619      if (!(*M)->isStatic())
3620        DiagnoseHiddenVirtualMethods(Record, *M);
3621    }
3622  }
3623
3624  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3625  // function that is not a constructor declares that member function to be
3626  // const. [...] The class of which that function is a member shall be
3627  // a literal type.
3628  //
3629  // It's fine to diagnose constructors here too: such constructors cannot
3630  // produce a constant expression, so are ill-formed (no diagnostic required).
3631  //
3632  // If the class has virtual bases, any constexpr members will already have
3633  // been diagnosed by the checks performed on the member declaration, so
3634  // suppress this (less useful) diagnostic.
3635  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3636      !Record->isLiteral() && !Record->getNumVBases()) {
3637    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3638                                     MEnd = Record->method_end();
3639         M != MEnd; ++M) {
3640      if ((*M)->isConstexpr()) {
3641        switch (Record->getTemplateSpecializationKind()) {
3642        case TSK_ImplicitInstantiation:
3643        case TSK_ExplicitInstantiationDeclaration:
3644        case TSK_ExplicitInstantiationDefinition:
3645          // If a template instantiates to a non-literal type, but its members
3646          // instantiate to constexpr functions, the template is technically
3647          // ill-formed, but we allow it for sanity. Such members are treated as
3648          // non-constexpr.
3649          (*M)->setConstexpr(false);
3650          continue;
3651
3652        case TSK_Undeclared:
3653        case TSK_ExplicitSpecialization:
3654          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3655                             PDiag(diag::err_constexpr_method_non_literal));
3656          break;
3657        }
3658
3659        // Only produce one error per class.
3660        break;
3661      }
3662    }
3663  }
3664
3665  // Declare inherited constructors. We do this eagerly here because:
3666  // - The standard requires an eager diagnostic for conflicting inherited
3667  //   constructors from different classes.
3668  // - The lazy declaration of the other implicit constructors is so as to not
3669  //   waste space and performance on classes that are not meant to be
3670  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3671  //   have inherited constructors.
3672  DeclareInheritedConstructors(Record);
3673
3674  if (!Record->isDependentType())
3675    CheckExplicitlyDefaultedMethods(Record);
3676}
3677
3678void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3679  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3680                                      ME = Record->method_end();
3681       MI != ME; ++MI) {
3682    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3683      switch (getSpecialMember(*MI)) {
3684      case CXXDefaultConstructor:
3685        CheckExplicitlyDefaultedDefaultConstructor(
3686                                                  cast<CXXConstructorDecl>(*MI));
3687        break;
3688
3689      case CXXDestructor:
3690        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3691        break;
3692
3693      case CXXCopyConstructor:
3694        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3695        break;
3696
3697      case CXXCopyAssignment:
3698        CheckExplicitlyDefaultedCopyAssignment(*MI);
3699        break;
3700
3701      case CXXMoveConstructor:
3702        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3703        break;
3704
3705      case CXXMoveAssignment:
3706        CheckExplicitlyDefaultedMoveAssignment(*MI);
3707        break;
3708
3709      case CXXInvalid:
3710        llvm_unreachable("non-special member explicitly defaulted!");
3711      }
3712    }
3713  }
3714
3715}
3716
3717void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3718  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3719
3720  // Whether this was the first-declared instance of the constructor.
3721  // This affects whether we implicitly add an exception spec (and, eventually,
3722  // constexpr). It is also ill-formed to explicitly default a constructor such
3723  // that it would be deleted. (C++0x [decl.fct.def.default])
3724  bool First = CD == CD->getCanonicalDecl();
3725
3726  bool HadError = false;
3727  if (CD->getNumParams() != 0) {
3728    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3729      << CD->getSourceRange();
3730    HadError = true;
3731  }
3732
3733  ImplicitExceptionSpecification Spec
3734    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3735  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3736  if (EPI.ExceptionSpecType == EST_Delayed) {
3737    // Exception specification depends on some deferred part of the class. We'll
3738    // try again when the class's definition has been fully processed.
3739    return;
3740  }
3741  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3742                          *ExceptionType = Context.getFunctionType(
3743                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3744
3745  if (CtorType->hasExceptionSpec()) {
3746    if (CheckEquivalentExceptionSpec(
3747          PDiag(diag::err_incorrect_defaulted_exception_spec)
3748            << CXXDefaultConstructor,
3749          PDiag(),
3750          ExceptionType, SourceLocation(),
3751          CtorType, CD->getLocation())) {
3752      HadError = true;
3753    }
3754  } else if (First) {
3755    // We set the declaration to have the computed exception spec here.
3756    // We know there are no parameters.
3757    EPI.ExtInfo = CtorType->getExtInfo();
3758    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3759  }
3760
3761  if (HadError) {
3762    CD->setInvalidDecl();
3763    return;
3764  }
3765
3766  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3767    if (First) {
3768      CD->setDeletedAsWritten();
3769    } else {
3770      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3771        << CXXDefaultConstructor;
3772      CD->setInvalidDecl();
3773    }
3774  }
3775}
3776
3777void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3778  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3779
3780  // Whether this was the first-declared instance of the constructor.
3781  bool First = CD == CD->getCanonicalDecl();
3782
3783  bool HadError = false;
3784  if (CD->getNumParams() != 1) {
3785    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3786      << CD->getSourceRange();
3787    HadError = true;
3788  }
3789
3790  ImplicitExceptionSpecification Spec(Context);
3791  bool Const;
3792  llvm::tie(Spec, Const) =
3793    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3794
3795  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3796  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3797                          *ExceptionType = Context.getFunctionType(
3798                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3799
3800  // Check for parameter type matching.
3801  // This is a copy ctor so we know it's a cv-qualified reference to T.
3802  QualType ArgType = CtorType->getArgType(0);
3803  if (ArgType->getPointeeType().isVolatileQualified()) {
3804    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3805    HadError = true;
3806  }
3807  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3808    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3809    HadError = true;
3810  }
3811
3812  if (CtorType->hasExceptionSpec()) {
3813    if (CheckEquivalentExceptionSpec(
3814          PDiag(diag::err_incorrect_defaulted_exception_spec)
3815            << CXXCopyConstructor,
3816          PDiag(),
3817          ExceptionType, SourceLocation(),
3818          CtorType, CD->getLocation())) {
3819      HadError = true;
3820    }
3821  } else if (First) {
3822    // We set the declaration to have the computed exception spec here.
3823    // We duplicate the one parameter type.
3824    EPI.ExtInfo = CtorType->getExtInfo();
3825    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3826  }
3827
3828  if (HadError) {
3829    CD->setInvalidDecl();
3830    return;
3831  }
3832
3833  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3834    if (First) {
3835      CD->setDeletedAsWritten();
3836    } else {
3837      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3838        << CXXCopyConstructor;
3839      CD->setInvalidDecl();
3840    }
3841  }
3842}
3843
3844void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3845  assert(MD->isExplicitlyDefaulted());
3846
3847  // Whether this was the first-declared instance of the operator
3848  bool First = MD == MD->getCanonicalDecl();
3849
3850  bool HadError = false;
3851  if (MD->getNumParams() != 1) {
3852    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3853      << MD->getSourceRange();
3854    HadError = true;
3855  }
3856
3857  QualType ReturnType =
3858    MD->getType()->getAs<FunctionType>()->getResultType();
3859  if (!ReturnType->isLValueReferenceType() ||
3860      !Context.hasSameType(
3861        Context.getCanonicalType(ReturnType->getPointeeType()),
3862        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3863    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3864    HadError = true;
3865  }
3866
3867  ImplicitExceptionSpecification Spec(Context);
3868  bool Const;
3869  llvm::tie(Spec, Const) =
3870    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3871
3872  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3873  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3874                          *ExceptionType = Context.getFunctionType(
3875                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3876
3877  QualType ArgType = OperType->getArgType(0);
3878  if (!ArgType->isLValueReferenceType()) {
3879    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3880    HadError = true;
3881  } else {
3882    if (ArgType->getPointeeType().isVolatileQualified()) {
3883      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3884      HadError = true;
3885    }
3886    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3887      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3888      HadError = true;
3889    }
3890  }
3891
3892  if (OperType->getTypeQuals()) {
3893    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3894    HadError = true;
3895  }
3896
3897  if (OperType->hasExceptionSpec()) {
3898    if (CheckEquivalentExceptionSpec(
3899          PDiag(diag::err_incorrect_defaulted_exception_spec)
3900            << CXXCopyAssignment,
3901          PDiag(),
3902          ExceptionType, SourceLocation(),
3903          OperType, MD->getLocation())) {
3904      HadError = true;
3905    }
3906  } else if (First) {
3907    // We set the declaration to have the computed exception spec here.
3908    // We duplicate the one parameter type.
3909    EPI.RefQualifier = OperType->getRefQualifier();
3910    EPI.ExtInfo = OperType->getExtInfo();
3911    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3912  }
3913
3914  if (HadError) {
3915    MD->setInvalidDecl();
3916    return;
3917  }
3918
3919  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3920    if (First) {
3921      MD->setDeletedAsWritten();
3922    } else {
3923      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3924        << CXXCopyAssignment;
3925      MD->setInvalidDecl();
3926    }
3927  }
3928}
3929
3930void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3931  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3932
3933  // Whether this was the first-declared instance of the constructor.
3934  bool First = CD == CD->getCanonicalDecl();
3935
3936  bool HadError = false;
3937  if (CD->getNumParams() != 1) {
3938    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3939      << CD->getSourceRange();
3940    HadError = true;
3941  }
3942
3943  ImplicitExceptionSpecification Spec(
3944      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3945
3946  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3947  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3948                          *ExceptionType = Context.getFunctionType(
3949                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3950
3951  // Check for parameter type matching.
3952  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3953  QualType ArgType = CtorType->getArgType(0);
3954  if (ArgType->getPointeeType().isVolatileQualified()) {
3955    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3956    HadError = true;
3957  }
3958  if (ArgType->getPointeeType().isConstQualified()) {
3959    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3960    HadError = true;
3961  }
3962
3963  if (CtorType->hasExceptionSpec()) {
3964    if (CheckEquivalentExceptionSpec(
3965          PDiag(diag::err_incorrect_defaulted_exception_spec)
3966            << CXXMoveConstructor,
3967          PDiag(),
3968          ExceptionType, SourceLocation(),
3969          CtorType, CD->getLocation())) {
3970      HadError = true;
3971    }
3972  } else if (First) {
3973    // We set the declaration to have the computed exception spec here.
3974    // We duplicate the one parameter type.
3975    EPI.ExtInfo = CtorType->getExtInfo();
3976    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3977  }
3978
3979  if (HadError) {
3980    CD->setInvalidDecl();
3981    return;
3982  }
3983
3984  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3985    if (First) {
3986      CD->setDeletedAsWritten();
3987    } else {
3988      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3989        << CXXMoveConstructor;
3990      CD->setInvalidDecl();
3991    }
3992  }
3993}
3994
3995void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3996  assert(MD->isExplicitlyDefaulted());
3997
3998  // Whether this was the first-declared instance of the operator
3999  bool First = MD == MD->getCanonicalDecl();
4000
4001  bool HadError = false;
4002  if (MD->getNumParams() != 1) {
4003    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4004      << MD->getSourceRange();
4005    HadError = true;
4006  }
4007
4008  QualType ReturnType =
4009    MD->getType()->getAs<FunctionType>()->getResultType();
4010  if (!ReturnType->isLValueReferenceType() ||
4011      !Context.hasSameType(
4012        Context.getCanonicalType(ReturnType->getPointeeType()),
4013        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4014    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4015    HadError = true;
4016  }
4017
4018  ImplicitExceptionSpecification Spec(
4019      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4020
4021  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4022  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4023                          *ExceptionType = Context.getFunctionType(
4024                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4025
4026  QualType ArgType = OperType->getArgType(0);
4027  if (!ArgType->isRValueReferenceType()) {
4028    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4029    HadError = true;
4030  } else {
4031    if (ArgType->getPointeeType().isVolatileQualified()) {
4032      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4033      HadError = true;
4034    }
4035    if (ArgType->getPointeeType().isConstQualified()) {
4036      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4037      HadError = true;
4038    }
4039  }
4040
4041  if (OperType->getTypeQuals()) {
4042    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4043    HadError = true;
4044  }
4045
4046  if (OperType->hasExceptionSpec()) {
4047    if (CheckEquivalentExceptionSpec(
4048          PDiag(diag::err_incorrect_defaulted_exception_spec)
4049            << CXXMoveAssignment,
4050          PDiag(),
4051          ExceptionType, SourceLocation(),
4052          OperType, MD->getLocation())) {
4053      HadError = true;
4054    }
4055  } else if (First) {
4056    // We set the declaration to have the computed exception spec here.
4057    // We duplicate the one parameter type.
4058    EPI.RefQualifier = OperType->getRefQualifier();
4059    EPI.ExtInfo = OperType->getExtInfo();
4060    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4061  }
4062
4063  if (HadError) {
4064    MD->setInvalidDecl();
4065    return;
4066  }
4067
4068  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4069    if (First) {
4070      MD->setDeletedAsWritten();
4071    } else {
4072      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4073        << CXXMoveAssignment;
4074      MD->setInvalidDecl();
4075    }
4076  }
4077}
4078
4079void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4080  assert(DD->isExplicitlyDefaulted());
4081
4082  // Whether this was the first-declared instance of the destructor.
4083  bool First = DD == DD->getCanonicalDecl();
4084
4085  ImplicitExceptionSpecification Spec
4086    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4087  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4088  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4089                          *ExceptionType = Context.getFunctionType(
4090                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4091
4092  if (DtorType->hasExceptionSpec()) {
4093    if (CheckEquivalentExceptionSpec(
4094          PDiag(diag::err_incorrect_defaulted_exception_spec)
4095            << CXXDestructor,
4096          PDiag(),
4097          ExceptionType, SourceLocation(),
4098          DtorType, DD->getLocation())) {
4099      DD->setInvalidDecl();
4100      return;
4101    }
4102  } else if (First) {
4103    // We set the declaration to have the computed exception spec here.
4104    // There are no parameters.
4105    EPI.ExtInfo = DtorType->getExtInfo();
4106    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4107  }
4108
4109  if (ShouldDeleteDestructor(DD)) {
4110    if (First) {
4111      DD->setDeletedAsWritten();
4112    } else {
4113      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4114        << CXXDestructor;
4115      DD->setInvalidDecl();
4116    }
4117  }
4118}
4119
4120/// This function implements the following C++0x paragraphs:
4121///  - [class.ctor]/5
4122///  - [class.copy]/11
4123bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4124  assert(!MD->isInvalidDecl());
4125  CXXRecordDecl *RD = MD->getParent();
4126  assert(!RD->isDependentType() && "do deletion after instantiation");
4127  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4128    return false;
4129
4130  bool IsUnion = RD->isUnion();
4131  bool IsConstructor = false;
4132  bool IsAssignment = false;
4133  bool IsMove = false;
4134
4135  bool ConstArg = false;
4136
4137  switch (CSM) {
4138  case CXXDefaultConstructor:
4139    IsConstructor = true;
4140    break;
4141  case CXXCopyConstructor:
4142    IsConstructor = true;
4143    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4144    break;
4145  case CXXMoveConstructor:
4146    IsConstructor = true;
4147    IsMove = true;
4148    break;
4149  default:
4150    llvm_unreachable("function only currently implemented for default ctors");
4151  }
4152
4153  SourceLocation Loc = MD->getLocation();
4154
4155  // Do access control from the special member function
4156  ContextRAII MethodContext(*this, MD);
4157
4158  bool AllConst = true;
4159
4160  // We do this because we should never actually use an anonymous
4161  // union's constructor.
4162  if (IsUnion && RD->isAnonymousStructOrUnion())
4163    return false;
4164
4165  // FIXME: We should put some diagnostic logic right into this function.
4166
4167  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4168                                          BE = RD->bases_end();
4169       BI != BE; ++BI) {
4170    // We'll handle this one later
4171    if (BI->isVirtual())
4172      continue;
4173
4174    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4175    assert(BaseDecl && "base isn't a CXXRecordDecl");
4176
4177    // Unless we have an assignment operator, the base's destructor must
4178    // be accessible and not deleted.
4179    if (!IsAssignment) {
4180      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4181      if (BaseDtor->isDeleted())
4182        return true;
4183      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4184          AR_accessible)
4185        return true;
4186    }
4187
4188    // Finding the corresponding member in the base should lead to a
4189    // unique, accessible, non-deleted function. If we are doing
4190    // a destructor, we have already checked this case.
4191    if (CSM != CXXDestructor) {
4192      SpecialMemberOverloadResult *SMOR =
4193        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4194                            false);
4195      if (!SMOR->hasSuccess())
4196        return true;
4197      CXXMethodDecl *BaseMember = SMOR->getMethod();
4198      if (IsConstructor) {
4199        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4200        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4201                                   PDiag()) != AR_accessible)
4202          return true;
4203
4204        // For a move operation, the corresponding operation must actually
4205        // be a move operation (and not a copy selected by overload
4206        // resolution) unless we are working on a trivially copyable class.
4207        if (IsMove && !BaseCtor->isMoveConstructor() &&
4208            !BaseDecl->isTriviallyCopyable())
4209          return true;
4210      }
4211    }
4212  }
4213
4214  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4215                                          BE = RD->vbases_end();
4216       BI != BE; ++BI) {
4217    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4218    assert(BaseDecl && "base isn't a CXXRecordDecl");
4219
4220    // Unless we have an assignment operator, the base's destructor must
4221    // be accessible and not deleted.
4222    if (!IsAssignment) {
4223      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4224      if (BaseDtor->isDeleted())
4225        return true;
4226      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4227          AR_accessible)
4228        return true;
4229    }
4230
4231    // Finding the corresponding member in the base should lead to a
4232    // unique, accessible, non-deleted function.
4233    if (CSM != CXXDestructor) {
4234      SpecialMemberOverloadResult *SMOR =
4235        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4236                            false);
4237      if (!SMOR->hasSuccess())
4238        return true;
4239      CXXMethodDecl *BaseMember = SMOR->getMethod();
4240      if (IsConstructor) {
4241        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4242        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4243                                   PDiag()) != AR_accessible)
4244          return true;
4245
4246        // For a move operation, the corresponding operation must actually
4247        // be a move operation (and not a copy selected by overload
4248        // resolution) unless we are working on a trivially copyable class.
4249        if (IsMove && !BaseCtor->isMoveConstructor() &&
4250            !BaseDecl->isTriviallyCopyable())
4251          return true;
4252      }
4253    }
4254  }
4255
4256  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4257                                     FE = RD->field_end();
4258       FI != FE; ++FI) {
4259    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4260      continue;
4261
4262    QualType FieldType = Context.getBaseElementType(FI->getType());
4263    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4264
4265    // For a default constructor, all references must be initialized in-class
4266    // and, if a union, it must have a non-const member.
4267    if (CSM == CXXDefaultConstructor) {
4268      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4269        return true;
4270
4271      if (IsUnion && !FieldType.isConstQualified())
4272        AllConst = false;
4273    // For a copy constructor, data members must not be of rvalue reference
4274    // type.
4275    } else if (CSM == CXXCopyConstructor) {
4276      if (FieldType->isRValueReferenceType())
4277        return true;
4278    }
4279
4280    if (FieldRecord) {
4281      // For a default constructor, a const member must have a user-provided
4282      // default constructor or else be explicitly initialized.
4283      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4284          !FI->hasInClassInitializer() &&
4285          !FieldRecord->hasUserProvidedDefaultConstructor())
4286        return true;
4287
4288      // Some additional restrictions exist on the variant members.
4289      if (!IsUnion && FieldRecord->isUnion() &&
4290          FieldRecord->isAnonymousStructOrUnion()) {
4291        // We're okay to reuse AllConst here since we only care about the
4292        // value otherwise if we're in a union.
4293        AllConst = true;
4294
4295        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4296                                           UE = FieldRecord->field_end();
4297             UI != UE; ++UI) {
4298          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4299          CXXRecordDecl *UnionFieldRecord =
4300            UnionFieldType->getAsCXXRecordDecl();
4301
4302          if (!UnionFieldType.isConstQualified())
4303            AllConst = false;
4304
4305          if (UnionFieldRecord) {
4306            // FIXME: Checking for accessibility and validity of this
4307            //        destructor is technically going beyond the
4308            //        standard, but this is believed to be a defect.
4309            if (!IsAssignment) {
4310              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4311              if (FieldDtor->isDeleted())
4312                return true;
4313              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4314                  AR_accessible)
4315                return true;
4316              if (!FieldDtor->isTrivial())
4317                return true;
4318            }
4319
4320            if (CSM != CXXDestructor) {
4321              SpecialMemberOverloadResult *SMOR =
4322                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4323                                    false, false, false);
4324              // FIXME: Checking for accessibility and validity of this
4325              //        corresponding member is technically going beyond the
4326              //        standard, but this is believed to be a defect.
4327              if (!SMOR->hasSuccess())
4328                return true;
4329
4330              CXXMethodDecl *FieldMember = SMOR->getMethod();
4331              // A member of a union must have a trivial corresponding
4332              // constructor.
4333              if (!FieldMember->isTrivial())
4334                return true;
4335
4336              if (IsConstructor) {
4337                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4338                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4339                                           PDiag()) != AR_accessible)
4340                return true;
4341              }
4342            }
4343          }
4344        }
4345
4346        // At least one member in each anonymous union must be non-const
4347        if (CSM == CXXDefaultConstructor && AllConst)
4348          return true;
4349
4350        // Don't try to initialize the anonymous union
4351        // This is technically non-conformant, but sanity demands it.
4352        continue;
4353      }
4354
4355      // Unless we're doing assignment, the field's destructor must be
4356      // accessible and not deleted.
4357      if (!IsAssignment) {
4358        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4359        if (FieldDtor->isDeleted())
4360          return true;
4361        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4362            AR_accessible)
4363          return true;
4364      }
4365
4366      // Check that the corresponding member of the field is accessible,
4367      // unique, and non-deleted. We don't do this if it has an explicit
4368      // initialization when default-constructing.
4369      if (CSM != CXXDestructor &&
4370          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4371        SpecialMemberOverloadResult *SMOR =
4372          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4373                              false);
4374        if (!SMOR->hasSuccess())
4375          return true;
4376
4377        CXXMethodDecl *FieldMember = SMOR->getMethod();
4378        if (IsConstructor) {
4379          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4380          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4381                                     PDiag()) != AR_accessible)
4382          return true;
4383
4384          // For a move operation, the corresponding operation must actually
4385          // be a move operation (and not a copy selected by overload
4386          // resolution) unless we are working on a trivially copyable class.
4387          if (IsMove && !FieldCtor->isMoveConstructor() &&
4388              !FieldRecord->isTriviallyCopyable())
4389            return true;
4390        }
4391
4392        // We need the corresponding member of a union to be trivial so that
4393        // we can safely copy them all simultaneously.
4394        // FIXME: Note that performing the check here (where we rely on the lack
4395        // of an in-class initializer) is technically ill-formed. However, this
4396        // seems most obviously to be a bug in the standard.
4397        if (IsUnion && !FieldMember->isTrivial())
4398          return true;
4399      }
4400    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4401               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4402      // We can't initialize a const member of non-class type to any value.
4403      return true;
4404    }
4405  }
4406
4407  // We can't have all const members in a union when default-constructing,
4408  // or else they're all nonsensical garbage values that can't be changed.
4409  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4410    return true;
4411
4412  return false;
4413}
4414
4415bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4416  CXXRecordDecl *RD = MD->getParent();
4417  assert(!RD->isDependentType() && "do deletion after instantiation");
4418  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4419    return false;
4420
4421  SourceLocation Loc = MD->getLocation();
4422
4423  // Do access control from the constructor
4424  ContextRAII MethodContext(*this, MD);
4425
4426  bool Union = RD->isUnion();
4427
4428  unsigned ArgQuals =
4429    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4430      Qualifiers::Const : 0;
4431
4432  // We do this because we should never actually use an anonymous
4433  // union's constructor.
4434  if (Union && RD->isAnonymousStructOrUnion())
4435    return false;
4436
4437  // FIXME: We should put some diagnostic logic right into this function.
4438
4439  // C++0x [class.copy]/20
4440  //    A defaulted [copy] assignment operator for class X is defined as deleted
4441  //    if X has:
4442
4443  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4444                                          BE = RD->bases_end();
4445       BI != BE; ++BI) {
4446    // We'll handle this one later
4447    if (BI->isVirtual())
4448      continue;
4449
4450    QualType BaseType = BI->getType();
4451    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4452    assert(BaseDecl && "base isn't a CXXRecordDecl");
4453
4454    // -- a [direct base class] B that cannot be [copied] because overload
4455    //    resolution, as applied to B's [copy] assignment operator, results in
4456    //    an ambiguity or a function that is deleted or inaccessible from the
4457    //    assignment operator
4458    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4459                                                      0);
4460    if (!CopyOper || CopyOper->isDeleted())
4461      return true;
4462    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4463      return true;
4464  }
4465
4466  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4467                                          BE = RD->vbases_end();
4468       BI != BE; ++BI) {
4469    QualType BaseType = BI->getType();
4470    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4471    assert(BaseDecl && "base isn't a CXXRecordDecl");
4472
4473    // -- a [virtual base class] B that cannot be [copied] because overload
4474    //    resolution, as applied to B's [copy] assignment operator, results in
4475    //    an ambiguity or a function that is deleted or inaccessible from the
4476    //    assignment operator
4477    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4478                                                      0);
4479    if (!CopyOper || CopyOper->isDeleted())
4480      return true;
4481    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4482      return true;
4483  }
4484
4485  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4486                                     FE = RD->field_end();
4487       FI != FE; ++FI) {
4488    if (FI->isUnnamedBitfield())
4489      continue;
4490
4491    QualType FieldType = Context.getBaseElementType(FI->getType());
4492
4493    // -- a non-static data member of reference type
4494    if (FieldType->isReferenceType())
4495      return true;
4496
4497    // -- a non-static data member of const non-class type (or array thereof)
4498    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4499      return true;
4500
4501    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4502
4503    if (FieldRecord) {
4504      // This is an anonymous union
4505      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4506        // Anonymous unions inside unions do not variant members create
4507        if (!Union) {
4508          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4509                                             UE = FieldRecord->field_end();
4510               UI != UE; ++UI) {
4511            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4512            CXXRecordDecl *UnionFieldRecord =
4513              UnionFieldType->getAsCXXRecordDecl();
4514
4515            // -- a variant member with a non-trivial [copy] assignment operator
4516            //    and X is a union-like class
4517            if (UnionFieldRecord &&
4518                !UnionFieldRecord->hasTrivialCopyAssignment())
4519              return true;
4520          }
4521        }
4522
4523        // Don't try to initalize an anonymous union
4524        continue;
4525      // -- a variant member with a non-trivial [copy] assignment operator
4526      //    and X is a union-like class
4527      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4528          return true;
4529      }
4530
4531      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4532                                                        false, 0);
4533      if (!CopyOper || CopyOper->isDeleted())
4534        return true;
4535      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4536        return true;
4537    }
4538  }
4539
4540  return false;
4541}
4542
4543bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4544  CXXRecordDecl *RD = MD->getParent();
4545  assert(!RD->isDependentType() && "do deletion after instantiation");
4546  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4547    return false;
4548
4549  SourceLocation Loc = MD->getLocation();
4550
4551  // Do access control from the constructor
4552  ContextRAII MethodContext(*this, MD);
4553
4554  bool Union = RD->isUnion();
4555
4556  // We do this because we should never actually use an anonymous
4557  // union's constructor.
4558  if (Union && RD->isAnonymousStructOrUnion())
4559    return false;
4560
4561  // C++0x [class.copy]/20
4562  //    A defaulted [move] assignment operator for class X is defined as deleted
4563  //    if X has:
4564
4565  //    -- for the move constructor, [...] any direct or indirect virtual base
4566  //       class.
4567  if (RD->getNumVBases() != 0)
4568    return true;
4569
4570  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4571                                          BE = RD->bases_end();
4572       BI != BE; ++BI) {
4573
4574    QualType BaseType = BI->getType();
4575    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4576    assert(BaseDecl && "base isn't a CXXRecordDecl");
4577
4578    // -- a [direct base class] B that cannot be [moved] because overload
4579    //    resolution, as applied to B's [move] assignment operator, results in
4580    //    an ambiguity or a function that is deleted or inaccessible from the
4581    //    assignment operator
4582    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4583    if (!MoveOper || MoveOper->isDeleted())
4584      return true;
4585    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4586      return true;
4587
4588    // -- for the move assignment operator, a [direct base class] with a type
4589    //    that does not have a move assignment operator and is not trivially
4590    //    copyable.
4591    if (!MoveOper->isMoveAssignmentOperator() &&
4592        !BaseDecl->isTriviallyCopyable())
4593      return true;
4594  }
4595
4596  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4597                                     FE = RD->field_end();
4598       FI != FE; ++FI) {
4599    if (FI->isUnnamedBitfield())
4600      continue;
4601
4602    QualType FieldType = Context.getBaseElementType(FI->getType());
4603
4604    // -- a non-static data member of reference type
4605    if (FieldType->isReferenceType())
4606      return true;
4607
4608    // -- a non-static data member of const non-class type (or array thereof)
4609    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4610      return true;
4611
4612    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4613
4614    if (FieldRecord) {
4615      // This is an anonymous union
4616      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4617        // Anonymous unions inside unions do not variant members create
4618        if (!Union) {
4619          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4620                                             UE = FieldRecord->field_end();
4621               UI != UE; ++UI) {
4622            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4623            CXXRecordDecl *UnionFieldRecord =
4624              UnionFieldType->getAsCXXRecordDecl();
4625
4626            // -- a variant member with a non-trivial [move] assignment operator
4627            //    and X is a union-like class
4628            if (UnionFieldRecord &&
4629                !UnionFieldRecord->hasTrivialMoveAssignment())
4630              return true;
4631          }
4632        }
4633
4634        // Don't try to initalize an anonymous union
4635        continue;
4636      // -- a variant member with a non-trivial [move] assignment operator
4637      //    and X is a union-like class
4638      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4639          return true;
4640      }
4641
4642      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4643      if (!MoveOper || MoveOper->isDeleted())
4644        return true;
4645      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4646        return true;
4647
4648      // -- for the move assignment operator, a [non-static data member] with a
4649      //    type that does not have a move assignment operator and is not
4650      //    trivially copyable.
4651      if (!MoveOper->isMoveAssignmentOperator() &&
4652          !FieldRecord->isTriviallyCopyable())
4653        return true;
4654    }
4655  }
4656
4657  return false;
4658}
4659
4660bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4661  CXXRecordDecl *RD = DD->getParent();
4662  assert(!RD->isDependentType() && "do deletion after instantiation");
4663  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4664    return false;
4665
4666  SourceLocation Loc = DD->getLocation();
4667
4668  // Do access control from the destructor
4669  ContextRAII CtorContext(*this, DD);
4670
4671  bool Union = RD->isUnion();
4672
4673  // We do this because we should never actually use an anonymous
4674  // union's destructor.
4675  if (Union && RD->isAnonymousStructOrUnion())
4676    return false;
4677
4678  // C++0x [class.dtor]p5
4679  //    A defaulted destructor for a class X is defined as deleted if:
4680  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4681                                          BE = RD->bases_end();
4682       BI != BE; ++BI) {
4683    // We'll handle this one later
4684    if (BI->isVirtual())
4685      continue;
4686
4687    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4688    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4689    assert(BaseDtor && "base has no destructor");
4690
4691    // -- any direct or virtual base class has a deleted destructor or
4692    //    a destructor that is inaccessible from the defaulted destructor
4693    if (BaseDtor->isDeleted())
4694      return true;
4695    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4696        AR_accessible)
4697      return true;
4698  }
4699
4700  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4701                                          BE = RD->vbases_end();
4702       BI != BE; ++BI) {
4703    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4704    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4705    assert(BaseDtor && "base has no destructor");
4706
4707    // -- any direct or virtual base class has a deleted destructor or
4708    //    a destructor that is inaccessible from the defaulted destructor
4709    if (BaseDtor->isDeleted())
4710      return true;
4711    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4712        AR_accessible)
4713      return true;
4714  }
4715
4716  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4717                                     FE = RD->field_end();
4718       FI != FE; ++FI) {
4719    QualType FieldType = Context.getBaseElementType(FI->getType());
4720    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4721    if (FieldRecord) {
4722      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4723         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4724                                            UE = FieldRecord->field_end();
4725              UI != UE; ++UI) {
4726           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4727           CXXRecordDecl *UnionFieldRecord =
4728             UnionFieldType->getAsCXXRecordDecl();
4729
4730           // -- X is a union-like class that has a variant member with a non-
4731           //    trivial destructor.
4732           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4733             return true;
4734         }
4735      // Technically we are supposed to do this next check unconditionally.
4736      // But that makes absolutely no sense.
4737      } else {
4738        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4739
4740        // -- any of the non-static data members has class type M (or array
4741        //    thereof) and M has a deleted destructor or a destructor that is
4742        //    inaccessible from the defaulted destructor
4743        if (FieldDtor->isDeleted())
4744          return true;
4745        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4746          AR_accessible)
4747        return true;
4748
4749        // -- X is a union-like class that has a variant member with a non-
4750        //    trivial destructor.
4751        if (Union && !FieldDtor->isTrivial())
4752          return true;
4753      }
4754    }
4755  }
4756
4757  if (DD->isVirtual()) {
4758    FunctionDecl *OperatorDelete = 0;
4759    DeclarationName Name =
4760      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4761    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4762          false))
4763      return true;
4764  }
4765
4766
4767  return false;
4768}
4769
4770/// \brief Data used with FindHiddenVirtualMethod
4771namespace {
4772  struct FindHiddenVirtualMethodData {
4773    Sema *S;
4774    CXXMethodDecl *Method;
4775    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4776    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4777  };
4778}
4779
4780/// \brief Member lookup function that determines whether a given C++
4781/// method overloads virtual methods in a base class without overriding any,
4782/// to be used with CXXRecordDecl::lookupInBases().
4783static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4784                                    CXXBasePath &Path,
4785                                    void *UserData) {
4786  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4787
4788  FindHiddenVirtualMethodData &Data
4789    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4790
4791  DeclarationName Name = Data.Method->getDeclName();
4792  assert(Name.getNameKind() == DeclarationName::Identifier);
4793
4794  bool foundSameNameMethod = false;
4795  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4796  for (Path.Decls = BaseRecord->lookup(Name);
4797       Path.Decls.first != Path.Decls.second;
4798       ++Path.Decls.first) {
4799    NamedDecl *D = *Path.Decls.first;
4800    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4801      MD = MD->getCanonicalDecl();
4802      foundSameNameMethod = true;
4803      // Interested only in hidden virtual methods.
4804      if (!MD->isVirtual())
4805        continue;
4806      // If the method we are checking overrides a method from its base
4807      // don't warn about the other overloaded methods.
4808      if (!Data.S->IsOverload(Data.Method, MD, false))
4809        return true;
4810      // Collect the overload only if its hidden.
4811      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4812        overloadedMethods.push_back(MD);
4813    }
4814  }
4815
4816  if (foundSameNameMethod)
4817    Data.OverloadedMethods.append(overloadedMethods.begin(),
4818                                   overloadedMethods.end());
4819  return foundSameNameMethod;
4820}
4821
4822/// \brief See if a method overloads virtual methods in a base class without
4823/// overriding any.
4824void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4825  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4826                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4827    return;
4828  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4829    return;
4830
4831  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4832                     /*bool RecordPaths=*/false,
4833                     /*bool DetectVirtual=*/false);
4834  FindHiddenVirtualMethodData Data;
4835  Data.Method = MD;
4836  Data.S = this;
4837
4838  // Keep the base methods that were overriden or introduced in the subclass
4839  // by 'using' in a set. A base method not in this set is hidden.
4840  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4841       res.first != res.second; ++res.first) {
4842    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4843      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4844                                          E = MD->end_overridden_methods();
4845           I != E; ++I)
4846        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4847    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4848      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4849        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4850  }
4851
4852  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4853      !Data.OverloadedMethods.empty()) {
4854    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4855      << MD << (Data.OverloadedMethods.size() > 1);
4856
4857    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4858      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4859      Diag(overloadedMD->getLocation(),
4860           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4861    }
4862  }
4863}
4864
4865void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4866                                             Decl *TagDecl,
4867                                             SourceLocation LBrac,
4868                                             SourceLocation RBrac,
4869                                             AttributeList *AttrList) {
4870  if (!TagDecl)
4871    return;
4872
4873  AdjustDeclIfTemplate(TagDecl);
4874
4875  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4876              // strict aliasing violation!
4877              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4878              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4879
4880  CheckCompletedCXXClass(
4881                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4882}
4883
4884/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4885/// special functions, such as the default constructor, copy
4886/// constructor, or destructor, to the given C++ class (C++
4887/// [special]p1).  This routine can only be executed just before the
4888/// definition of the class is complete.
4889void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4890  if (!ClassDecl->hasUserDeclaredConstructor())
4891    ++ASTContext::NumImplicitDefaultConstructors;
4892
4893  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4894    ++ASTContext::NumImplicitCopyConstructors;
4895
4896  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4897    ++ASTContext::NumImplicitCopyAssignmentOperators;
4898
4899    // If we have a dynamic class, then the copy assignment operator may be
4900    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4901    // it shows up in the right place in the vtable and that we diagnose
4902    // problems with the implicit exception specification.
4903    if (ClassDecl->isDynamicClass())
4904      DeclareImplicitCopyAssignment(ClassDecl);
4905  }
4906
4907  if (!ClassDecl->hasUserDeclaredDestructor()) {
4908    ++ASTContext::NumImplicitDestructors;
4909
4910    // If we have a dynamic class, then the destructor may be virtual, so we
4911    // have to declare the destructor immediately. This ensures that, e.g., it
4912    // shows up in the right place in the vtable and that we diagnose problems
4913    // with the implicit exception specification.
4914    if (ClassDecl->isDynamicClass())
4915      DeclareImplicitDestructor(ClassDecl);
4916  }
4917}
4918
4919void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4920  if (!D)
4921    return;
4922
4923  int NumParamList = D->getNumTemplateParameterLists();
4924  for (int i = 0; i < NumParamList; i++) {
4925    TemplateParameterList* Params = D->getTemplateParameterList(i);
4926    for (TemplateParameterList::iterator Param = Params->begin(),
4927                                      ParamEnd = Params->end();
4928          Param != ParamEnd; ++Param) {
4929      NamedDecl *Named = cast<NamedDecl>(*Param);
4930      if (Named->getDeclName()) {
4931        S->AddDecl(Named);
4932        IdResolver.AddDecl(Named);
4933      }
4934    }
4935  }
4936}
4937
4938void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4939  if (!D)
4940    return;
4941
4942  TemplateParameterList *Params = 0;
4943  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4944    Params = Template->getTemplateParameters();
4945  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4946           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4947    Params = PartialSpec->getTemplateParameters();
4948  else
4949    return;
4950
4951  for (TemplateParameterList::iterator Param = Params->begin(),
4952                                    ParamEnd = Params->end();
4953       Param != ParamEnd; ++Param) {
4954    NamedDecl *Named = cast<NamedDecl>(*Param);
4955    if (Named->getDeclName()) {
4956      S->AddDecl(Named);
4957      IdResolver.AddDecl(Named);
4958    }
4959  }
4960}
4961
4962void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4963  if (!RecordD) return;
4964  AdjustDeclIfTemplate(RecordD);
4965  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4966  PushDeclContext(S, Record);
4967}
4968
4969void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4970  if (!RecordD) return;
4971  PopDeclContext();
4972}
4973
4974/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4975/// parsing a top-level (non-nested) C++ class, and we are now
4976/// parsing those parts of the given Method declaration that could
4977/// not be parsed earlier (C++ [class.mem]p2), such as default
4978/// arguments. This action should enter the scope of the given
4979/// Method declaration as if we had just parsed the qualified method
4980/// name. However, it should not bring the parameters into scope;
4981/// that will be performed by ActOnDelayedCXXMethodParameter.
4982void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4983}
4984
4985/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4986/// C++ method declaration. We're (re-)introducing the given
4987/// function parameter into scope for use in parsing later parts of
4988/// the method declaration. For example, we could see an
4989/// ActOnParamDefaultArgument event for this parameter.
4990void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4991  if (!ParamD)
4992    return;
4993
4994  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4995
4996  // If this parameter has an unparsed default argument, clear it out
4997  // to make way for the parsed default argument.
4998  if (Param->hasUnparsedDefaultArg())
4999    Param->setDefaultArg(0);
5000
5001  S->AddDecl(Param);
5002  if (Param->getDeclName())
5003    IdResolver.AddDecl(Param);
5004}
5005
5006/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5007/// processing the delayed method declaration for Method. The method
5008/// declaration is now considered finished. There may be a separate
5009/// ActOnStartOfFunctionDef action later (not necessarily
5010/// immediately!) for this method, if it was also defined inside the
5011/// class body.
5012void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5013  if (!MethodD)
5014    return;
5015
5016  AdjustDeclIfTemplate(MethodD);
5017
5018  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5019
5020  // Now that we have our default arguments, check the constructor
5021  // again. It could produce additional diagnostics or affect whether
5022  // the class has implicitly-declared destructors, among other
5023  // things.
5024  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5025    CheckConstructor(Constructor);
5026
5027  // Check the default arguments, which we may have added.
5028  if (!Method->isInvalidDecl())
5029    CheckCXXDefaultArguments(Method);
5030}
5031
5032/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5033/// the well-formedness of the constructor declarator @p D with type @p
5034/// R. If there are any errors in the declarator, this routine will
5035/// emit diagnostics and set the invalid bit to true.  In any case, the type
5036/// will be updated to reflect a well-formed type for the constructor and
5037/// returned.
5038QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5039                                          StorageClass &SC) {
5040  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5041
5042  // C++ [class.ctor]p3:
5043  //   A constructor shall not be virtual (10.3) or static (9.4). A
5044  //   constructor can be invoked for a const, volatile or const
5045  //   volatile object. A constructor shall not be declared const,
5046  //   volatile, or const volatile (9.3.2).
5047  if (isVirtual) {
5048    if (!D.isInvalidType())
5049      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5050        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5051        << SourceRange(D.getIdentifierLoc());
5052    D.setInvalidType();
5053  }
5054  if (SC == SC_Static) {
5055    if (!D.isInvalidType())
5056      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5057        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5058        << SourceRange(D.getIdentifierLoc());
5059    D.setInvalidType();
5060    SC = SC_None;
5061  }
5062
5063  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5064  if (FTI.TypeQuals != 0) {
5065    if (FTI.TypeQuals & Qualifiers::Const)
5066      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5067        << "const" << SourceRange(D.getIdentifierLoc());
5068    if (FTI.TypeQuals & Qualifiers::Volatile)
5069      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5070        << "volatile" << SourceRange(D.getIdentifierLoc());
5071    if (FTI.TypeQuals & Qualifiers::Restrict)
5072      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5073        << "restrict" << SourceRange(D.getIdentifierLoc());
5074    D.setInvalidType();
5075  }
5076
5077  // C++0x [class.ctor]p4:
5078  //   A constructor shall not be declared with a ref-qualifier.
5079  if (FTI.hasRefQualifier()) {
5080    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5081      << FTI.RefQualifierIsLValueRef
5082      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5083    D.setInvalidType();
5084  }
5085
5086  // Rebuild the function type "R" without any type qualifiers (in
5087  // case any of the errors above fired) and with "void" as the
5088  // return type, since constructors don't have return types.
5089  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5090  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5091    return R;
5092
5093  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5094  EPI.TypeQuals = 0;
5095  EPI.RefQualifier = RQ_None;
5096
5097  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5098                                 Proto->getNumArgs(), EPI);
5099}
5100
5101/// CheckConstructor - Checks a fully-formed constructor for
5102/// well-formedness, issuing any diagnostics required. Returns true if
5103/// the constructor declarator is invalid.
5104void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5105  CXXRecordDecl *ClassDecl
5106    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5107  if (!ClassDecl)
5108    return Constructor->setInvalidDecl();
5109
5110  // C++ [class.copy]p3:
5111  //   A declaration of a constructor for a class X is ill-formed if
5112  //   its first parameter is of type (optionally cv-qualified) X and
5113  //   either there are no other parameters or else all other
5114  //   parameters have default arguments.
5115  if (!Constructor->isInvalidDecl() &&
5116      ((Constructor->getNumParams() == 1) ||
5117       (Constructor->getNumParams() > 1 &&
5118        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5119      Constructor->getTemplateSpecializationKind()
5120                                              != TSK_ImplicitInstantiation) {
5121    QualType ParamType = Constructor->getParamDecl(0)->getType();
5122    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5123    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5124      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5125      const char *ConstRef
5126        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5127                                                        : " const &";
5128      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5129        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5130
5131      // FIXME: Rather that making the constructor invalid, we should endeavor
5132      // to fix the type.
5133      Constructor->setInvalidDecl();
5134    }
5135  }
5136}
5137
5138/// CheckDestructor - Checks a fully-formed destructor definition for
5139/// well-formedness, issuing any diagnostics required.  Returns true
5140/// on error.
5141bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5142  CXXRecordDecl *RD = Destructor->getParent();
5143
5144  if (Destructor->isVirtual()) {
5145    SourceLocation Loc;
5146
5147    if (!Destructor->isImplicit())
5148      Loc = Destructor->getLocation();
5149    else
5150      Loc = RD->getLocation();
5151
5152    // If we have a virtual destructor, look up the deallocation function
5153    FunctionDecl *OperatorDelete = 0;
5154    DeclarationName Name =
5155    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5156    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5157      return true;
5158
5159    MarkDeclarationReferenced(Loc, OperatorDelete);
5160
5161    Destructor->setOperatorDelete(OperatorDelete);
5162  }
5163
5164  return false;
5165}
5166
5167static inline bool
5168FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5169  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5170          FTI.ArgInfo[0].Param &&
5171          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5172}
5173
5174/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5175/// the well-formednes of the destructor declarator @p D with type @p
5176/// R. If there are any errors in the declarator, this routine will
5177/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5178/// will be updated to reflect a well-formed type for the destructor and
5179/// returned.
5180QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5181                                         StorageClass& SC) {
5182  // C++ [class.dtor]p1:
5183  //   [...] A typedef-name that names a class is a class-name
5184  //   (7.1.3); however, a typedef-name that names a class shall not
5185  //   be used as the identifier in the declarator for a destructor
5186  //   declaration.
5187  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5188  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5189    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5190      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5191  else if (const TemplateSpecializationType *TST =
5192             DeclaratorType->getAs<TemplateSpecializationType>())
5193    if (TST->isTypeAlias())
5194      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5195        << DeclaratorType << 1;
5196
5197  // C++ [class.dtor]p2:
5198  //   A destructor is used to destroy objects of its class type. A
5199  //   destructor takes no parameters, and no return type can be
5200  //   specified for it (not even void). The address of a destructor
5201  //   shall not be taken. A destructor shall not be static. A
5202  //   destructor can be invoked for a const, volatile or const
5203  //   volatile object. A destructor shall not be declared const,
5204  //   volatile or const volatile (9.3.2).
5205  if (SC == SC_Static) {
5206    if (!D.isInvalidType())
5207      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5208        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5209        << SourceRange(D.getIdentifierLoc())
5210        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5211
5212    SC = SC_None;
5213  }
5214  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5215    // Destructors don't have return types, but the parser will
5216    // happily parse something like:
5217    //
5218    //   class X {
5219    //     float ~X();
5220    //   };
5221    //
5222    // The return type will be eliminated later.
5223    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5224      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5225      << SourceRange(D.getIdentifierLoc());
5226  }
5227
5228  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5229  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5230    if (FTI.TypeQuals & Qualifiers::Const)
5231      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5232        << "const" << SourceRange(D.getIdentifierLoc());
5233    if (FTI.TypeQuals & Qualifiers::Volatile)
5234      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5235        << "volatile" << SourceRange(D.getIdentifierLoc());
5236    if (FTI.TypeQuals & Qualifiers::Restrict)
5237      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5238        << "restrict" << SourceRange(D.getIdentifierLoc());
5239    D.setInvalidType();
5240  }
5241
5242  // C++0x [class.dtor]p2:
5243  //   A destructor shall not be declared with a ref-qualifier.
5244  if (FTI.hasRefQualifier()) {
5245    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5246      << FTI.RefQualifierIsLValueRef
5247      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5248    D.setInvalidType();
5249  }
5250
5251  // Make sure we don't have any parameters.
5252  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5253    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5254
5255    // Delete the parameters.
5256    FTI.freeArgs();
5257    D.setInvalidType();
5258  }
5259
5260  // Make sure the destructor isn't variadic.
5261  if (FTI.isVariadic) {
5262    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5263    D.setInvalidType();
5264  }
5265
5266  // Rebuild the function type "R" without any type qualifiers or
5267  // parameters (in case any of the errors above fired) and with
5268  // "void" as the return type, since destructors don't have return
5269  // types.
5270  if (!D.isInvalidType())
5271    return R;
5272
5273  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5274  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5275  EPI.Variadic = false;
5276  EPI.TypeQuals = 0;
5277  EPI.RefQualifier = RQ_None;
5278  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5279}
5280
5281/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5282/// well-formednes of the conversion function declarator @p D with
5283/// type @p R. If there are any errors in the declarator, this routine
5284/// will emit diagnostics and return true. Otherwise, it will return
5285/// false. Either way, the type @p R will be updated to reflect a
5286/// well-formed type for the conversion operator.
5287void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5288                                     StorageClass& SC) {
5289  // C++ [class.conv.fct]p1:
5290  //   Neither parameter types nor return type can be specified. The
5291  //   type of a conversion function (8.3.5) is "function taking no
5292  //   parameter returning conversion-type-id."
5293  if (SC == SC_Static) {
5294    if (!D.isInvalidType())
5295      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5296        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5297        << SourceRange(D.getIdentifierLoc());
5298    D.setInvalidType();
5299    SC = SC_None;
5300  }
5301
5302  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5303
5304  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5305    // Conversion functions don't have return types, but the parser will
5306    // happily parse something like:
5307    //
5308    //   class X {
5309    //     float operator bool();
5310    //   };
5311    //
5312    // The return type will be changed later anyway.
5313    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5314      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5315      << SourceRange(D.getIdentifierLoc());
5316    D.setInvalidType();
5317  }
5318
5319  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5320
5321  // Make sure we don't have any parameters.
5322  if (Proto->getNumArgs() > 0) {
5323    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5324
5325    // Delete the parameters.
5326    D.getFunctionTypeInfo().freeArgs();
5327    D.setInvalidType();
5328  } else if (Proto->isVariadic()) {
5329    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5330    D.setInvalidType();
5331  }
5332
5333  // Diagnose "&operator bool()" and other such nonsense.  This
5334  // is actually a gcc extension which we don't support.
5335  if (Proto->getResultType() != ConvType) {
5336    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5337      << Proto->getResultType();
5338    D.setInvalidType();
5339    ConvType = Proto->getResultType();
5340  }
5341
5342  // C++ [class.conv.fct]p4:
5343  //   The conversion-type-id shall not represent a function type nor
5344  //   an array type.
5345  if (ConvType->isArrayType()) {
5346    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5347    ConvType = Context.getPointerType(ConvType);
5348    D.setInvalidType();
5349  } else if (ConvType->isFunctionType()) {
5350    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5351    ConvType = Context.getPointerType(ConvType);
5352    D.setInvalidType();
5353  }
5354
5355  // Rebuild the function type "R" without any parameters (in case any
5356  // of the errors above fired) and with the conversion type as the
5357  // return type.
5358  if (D.isInvalidType())
5359    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5360
5361  // C++0x explicit conversion operators.
5362  if (D.getDeclSpec().isExplicitSpecified())
5363    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5364         getLangOptions().CPlusPlus0x ?
5365           diag::warn_cxx98_compat_explicit_conversion_functions :
5366           diag::ext_explicit_conversion_functions)
5367      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5368}
5369
5370/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5371/// the declaration of the given C++ conversion function. This routine
5372/// is responsible for recording the conversion function in the C++
5373/// class, if possible.
5374Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5375  assert(Conversion && "Expected to receive a conversion function declaration");
5376
5377  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5378
5379  // Make sure we aren't redeclaring the conversion function.
5380  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5381
5382  // C++ [class.conv.fct]p1:
5383  //   [...] A conversion function is never used to convert a
5384  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5385  //   same object type (or a reference to it), to a (possibly
5386  //   cv-qualified) base class of that type (or a reference to it),
5387  //   or to (possibly cv-qualified) void.
5388  // FIXME: Suppress this warning if the conversion function ends up being a
5389  // virtual function that overrides a virtual function in a base class.
5390  QualType ClassType
5391    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5392  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5393    ConvType = ConvTypeRef->getPointeeType();
5394  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5395      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5396    /* Suppress diagnostics for instantiations. */;
5397  else if (ConvType->isRecordType()) {
5398    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5399    if (ConvType == ClassType)
5400      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5401        << ClassType;
5402    else if (IsDerivedFrom(ClassType, ConvType))
5403      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5404        <<  ClassType << ConvType;
5405  } else if (ConvType->isVoidType()) {
5406    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5407      << ClassType << ConvType;
5408  }
5409
5410  if (FunctionTemplateDecl *ConversionTemplate
5411                                = Conversion->getDescribedFunctionTemplate())
5412    return ConversionTemplate;
5413
5414  return Conversion;
5415}
5416
5417//===----------------------------------------------------------------------===//
5418// Namespace Handling
5419//===----------------------------------------------------------------------===//
5420
5421
5422
5423/// ActOnStartNamespaceDef - This is called at the start of a namespace
5424/// definition.
5425Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5426                                   SourceLocation InlineLoc,
5427                                   SourceLocation NamespaceLoc,
5428                                   SourceLocation IdentLoc,
5429                                   IdentifierInfo *II,
5430                                   SourceLocation LBrace,
5431                                   AttributeList *AttrList) {
5432  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5433  // For anonymous namespace, take the location of the left brace.
5434  SourceLocation Loc = II ? IdentLoc : LBrace;
5435  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5436                                                 StartLoc, Loc, II);
5437  Namespc->setInline(InlineLoc.isValid());
5438
5439  Scope *DeclRegionScope = NamespcScope->getParent();
5440
5441  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5442
5443  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5444    PushNamespaceVisibilityAttr(Attr);
5445
5446  if (II) {
5447    // C++ [namespace.def]p2:
5448    //   The identifier in an original-namespace-definition shall not
5449    //   have been previously defined in the declarative region in
5450    //   which the original-namespace-definition appears. The
5451    //   identifier in an original-namespace-definition is the name of
5452    //   the namespace. Subsequently in that declarative region, it is
5453    //   treated as an original-namespace-name.
5454    //
5455    // Since namespace names are unique in their scope, and we don't
5456    // look through using directives, just look for any ordinary names.
5457
5458    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5459      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5460      Decl::IDNS_Namespace;
5461    NamedDecl *PrevDecl = 0;
5462    for (DeclContext::lookup_result R
5463            = CurContext->getRedeclContext()->lookup(II);
5464         R.first != R.second; ++R.first) {
5465      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5466        PrevDecl = *R.first;
5467        break;
5468      }
5469    }
5470
5471    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5472      // This is an extended namespace definition.
5473      if (Namespc->isInline() != OrigNS->isInline()) {
5474        // inline-ness must match
5475        if (OrigNS->isInline()) {
5476          // The user probably just forgot the 'inline', so suggest that it
5477          // be added back.
5478          Diag(Namespc->getLocation(),
5479               diag::warn_inline_namespace_reopened_noninline)
5480            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5481        } else {
5482          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5483            << Namespc->isInline();
5484        }
5485        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5486
5487        // Recover by ignoring the new namespace's inline status.
5488        Namespc->setInline(OrigNS->isInline());
5489      }
5490
5491      // Attach this namespace decl to the chain of extended namespace
5492      // definitions.
5493      OrigNS->setNextNamespace(Namespc);
5494      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5495
5496      // Remove the previous declaration from the scope.
5497      if (DeclRegionScope->isDeclScope(OrigNS)) {
5498        IdResolver.RemoveDecl(OrigNS);
5499        DeclRegionScope->RemoveDecl(OrigNS);
5500      }
5501    } else if (PrevDecl) {
5502      // This is an invalid name redefinition.
5503      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5504       << Namespc->getDeclName();
5505      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5506      Namespc->setInvalidDecl();
5507      // Continue on to push Namespc as current DeclContext and return it.
5508    } else if (II->isStr("std") &&
5509               CurContext->getRedeclContext()->isTranslationUnit()) {
5510      // This is the first "real" definition of the namespace "std", so update
5511      // our cache of the "std" namespace to point at this definition.
5512      if (NamespaceDecl *StdNS = getStdNamespace()) {
5513        // We had already defined a dummy namespace "std". Link this new
5514        // namespace definition to the dummy namespace "std".
5515        StdNS->setNextNamespace(Namespc);
5516        StdNS->setLocation(IdentLoc);
5517        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5518      }
5519
5520      // Make our StdNamespace cache point at the first real definition of the
5521      // "std" namespace.
5522      StdNamespace = Namespc;
5523
5524      // Add this instance of "std" to the set of known namespaces
5525      KnownNamespaces[Namespc] = false;
5526    } else if (!Namespc->isInline()) {
5527      // Since this is an "original" namespace, add it to the known set of
5528      // namespaces if it is not an inline namespace.
5529      KnownNamespaces[Namespc] = false;
5530    }
5531
5532    PushOnScopeChains(Namespc, DeclRegionScope);
5533  } else {
5534    // Anonymous namespaces.
5535    assert(Namespc->isAnonymousNamespace());
5536
5537    // Link the anonymous namespace into its parent.
5538    NamespaceDecl *PrevDecl;
5539    DeclContext *Parent = CurContext->getRedeclContext();
5540    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5541      PrevDecl = TU->getAnonymousNamespace();
5542      TU->setAnonymousNamespace(Namespc);
5543    } else {
5544      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5545      PrevDecl = ND->getAnonymousNamespace();
5546      ND->setAnonymousNamespace(Namespc);
5547    }
5548
5549    // Link the anonymous namespace with its previous declaration.
5550    if (PrevDecl) {
5551      assert(PrevDecl->isAnonymousNamespace());
5552      assert(!PrevDecl->getNextNamespace());
5553      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5554      PrevDecl->setNextNamespace(Namespc);
5555
5556      if (Namespc->isInline() != PrevDecl->isInline()) {
5557        // inline-ness must match
5558        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5559          << Namespc->isInline();
5560        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5561        Namespc->setInvalidDecl();
5562        // Recover by ignoring the new namespace's inline status.
5563        Namespc->setInline(PrevDecl->isInline());
5564      }
5565    }
5566
5567    CurContext->addDecl(Namespc);
5568
5569    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5570    //   behaves as if it were replaced by
5571    //     namespace unique { /* empty body */ }
5572    //     using namespace unique;
5573    //     namespace unique { namespace-body }
5574    //   where all occurrences of 'unique' in a translation unit are
5575    //   replaced by the same identifier and this identifier differs
5576    //   from all other identifiers in the entire program.
5577
5578    // We just create the namespace with an empty name and then add an
5579    // implicit using declaration, just like the standard suggests.
5580    //
5581    // CodeGen enforces the "universally unique" aspect by giving all
5582    // declarations semantically contained within an anonymous
5583    // namespace internal linkage.
5584
5585    if (!PrevDecl) {
5586      UsingDirectiveDecl* UD
5587        = UsingDirectiveDecl::Create(Context, CurContext,
5588                                     /* 'using' */ LBrace,
5589                                     /* 'namespace' */ SourceLocation(),
5590                                     /* qualifier */ NestedNameSpecifierLoc(),
5591                                     /* identifier */ SourceLocation(),
5592                                     Namespc,
5593                                     /* Ancestor */ CurContext);
5594      UD->setImplicit();
5595      CurContext->addDecl(UD);
5596    }
5597  }
5598
5599  // Although we could have an invalid decl (i.e. the namespace name is a
5600  // redefinition), push it as current DeclContext and try to continue parsing.
5601  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5602  // for the namespace has the declarations that showed up in that particular
5603  // namespace definition.
5604  PushDeclContext(NamespcScope, Namespc);
5605  return Namespc;
5606}
5607
5608/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5609/// is a namespace alias, returns the namespace it points to.
5610static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5611  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5612    return AD->getNamespace();
5613  return dyn_cast_or_null<NamespaceDecl>(D);
5614}
5615
5616/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5617/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5618void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5619  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5620  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5621  Namespc->setRBraceLoc(RBrace);
5622  PopDeclContext();
5623  if (Namespc->hasAttr<VisibilityAttr>())
5624    PopPragmaVisibility();
5625}
5626
5627CXXRecordDecl *Sema::getStdBadAlloc() const {
5628  return cast_or_null<CXXRecordDecl>(
5629                                  StdBadAlloc.get(Context.getExternalSource()));
5630}
5631
5632NamespaceDecl *Sema::getStdNamespace() const {
5633  return cast_or_null<NamespaceDecl>(
5634                                 StdNamespace.get(Context.getExternalSource()));
5635}
5636
5637/// \brief Retrieve the special "std" namespace, which may require us to
5638/// implicitly define the namespace.
5639NamespaceDecl *Sema::getOrCreateStdNamespace() {
5640  if (!StdNamespace) {
5641    // The "std" namespace has not yet been defined, so build one implicitly.
5642    StdNamespace = NamespaceDecl::Create(Context,
5643                                         Context.getTranslationUnitDecl(),
5644                                         SourceLocation(), SourceLocation(),
5645                                         &PP.getIdentifierTable().get("std"));
5646    getStdNamespace()->setImplicit(true);
5647  }
5648
5649  return getStdNamespace();
5650}
5651
5652/// \brief Determine whether a using statement is in a context where it will be
5653/// apply in all contexts.
5654static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5655  switch (CurContext->getDeclKind()) {
5656    case Decl::TranslationUnit:
5657      return true;
5658    case Decl::LinkageSpec:
5659      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5660    default:
5661      return false;
5662  }
5663}
5664
5665static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5666                                       CXXScopeSpec &SS,
5667                                       SourceLocation IdentLoc,
5668                                       IdentifierInfo *Ident) {
5669  R.clear();
5670  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5671                                               R.getLookupKind(), Sc, &SS, NULL,
5672                                               false, S.CTC_NoKeywords, NULL)) {
5673    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5674        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5675      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5676      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5677      if (DeclContext *DC = S.computeDeclContext(SS, false))
5678        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5679          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5680          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5681      else
5682        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5683          << Ident << CorrectedQuotedStr
5684          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5685
5686      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5687           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5688
5689      Ident = Corrected.getCorrectionAsIdentifierInfo();
5690      R.addDecl(Corrected.getCorrectionDecl());
5691      return true;
5692    }
5693    R.setLookupName(Ident);
5694  }
5695  return false;
5696}
5697
5698Decl *Sema::ActOnUsingDirective(Scope *S,
5699                                          SourceLocation UsingLoc,
5700                                          SourceLocation NamespcLoc,
5701                                          CXXScopeSpec &SS,
5702                                          SourceLocation IdentLoc,
5703                                          IdentifierInfo *NamespcName,
5704                                          AttributeList *AttrList) {
5705  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5706  assert(NamespcName && "Invalid NamespcName.");
5707  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5708
5709  // This can only happen along a recovery path.
5710  while (S->getFlags() & Scope::TemplateParamScope)
5711    S = S->getParent();
5712  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5713
5714  UsingDirectiveDecl *UDir = 0;
5715  NestedNameSpecifier *Qualifier = 0;
5716  if (SS.isSet())
5717    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5718
5719  // Lookup namespace name.
5720  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5721  LookupParsedName(R, S, &SS);
5722  if (R.isAmbiguous())
5723    return 0;
5724
5725  if (R.empty()) {
5726    R.clear();
5727    // Allow "using namespace std;" or "using namespace ::std;" even if
5728    // "std" hasn't been defined yet, for GCC compatibility.
5729    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5730        NamespcName->isStr("std")) {
5731      Diag(IdentLoc, diag::ext_using_undefined_std);
5732      R.addDecl(getOrCreateStdNamespace());
5733      R.resolveKind();
5734    }
5735    // Otherwise, attempt typo correction.
5736    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5737  }
5738
5739  if (!R.empty()) {
5740    NamedDecl *Named = R.getFoundDecl();
5741    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5742        && "expected namespace decl");
5743    // C++ [namespace.udir]p1:
5744    //   A using-directive specifies that the names in the nominated
5745    //   namespace can be used in the scope in which the
5746    //   using-directive appears after the using-directive. During
5747    //   unqualified name lookup (3.4.1), the names appear as if they
5748    //   were declared in the nearest enclosing namespace which
5749    //   contains both the using-directive and the nominated
5750    //   namespace. [Note: in this context, "contains" means "contains
5751    //   directly or indirectly". ]
5752
5753    // Find enclosing context containing both using-directive and
5754    // nominated namespace.
5755    NamespaceDecl *NS = getNamespaceDecl(Named);
5756    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5757    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5758      CommonAncestor = CommonAncestor->getParent();
5759
5760    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5761                                      SS.getWithLocInContext(Context),
5762                                      IdentLoc, Named, CommonAncestor);
5763
5764    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5765        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5766      Diag(IdentLoc, diag::warn_using_directive_in_header);
5767    }
5768
5769    PushUsingDirective(S, UDir);
5770  } else {
5771    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5772  }
5773
5774  // FIXME: We ignore attributes for now.
5775  return UDir;
5776}
5777
5778void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5779  // If scope has associated entity, then using directive is at namespace
5780  // or translation unit scope. We add UsingDirectiveDecls, into
5781  // it's lookup structure.
5782  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5783    Ctx->addDecl(UDir);
5784  else
5785    // Otherwise it is block-sope. using-directives will affect lookup
5786    // only to the end of scope.
5787    S->PushUsingDirective(UDir);
5788}
5789
5790
5791Decl *Sema::ActOnUsingDeclaration(Scope *S,
5792                                  AccessSpecifier AS,
5793                                  bool HasUsingKeyword,
5794                                  SourceLocation UsingLoc,
5795                                  CXXScopeSpec &SS,
5796                                  UnqualifiedId &Name,
5797                                  AttributeList *AttrList,
5798                                  bool IsTypeName,
5799                                  SourceLocation TypenameLoc) {
5800  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5801
5802  switch (Name.getKind()) {
5803  case UnqualifiedId::IK_ImplicitSelfParam:
5804  case UnqualifiedId::IK_Identifier:
5805  case UnqualifiedId::IK_OperatorFunctionId:
5806  case UnqualifiedId::IK_LiteralOperatorId:
5807  case UnqualifiedId::IK_ConversionFunctionId:
5808    break;
5809
5810  case UnqualifiedId::IK_ConstructorName:
5811  case UnqualifiedId::IK_ConstructorTemplateId:
5812    // C++0x inherited constructors.
5813    Diag(Name.getSourceRange().getBegin(),
5814         getLangOptions().CPlusPlus0x ?
5815           diag::warn_cxx98_compat_using_decl_constructor :
5816           diag::err_using_decl_constructor)
5817      << SS.getRange();
5818
5819    if (getLangOptions().CPlusPlus0x) break;
5820
5821    return 0;
5822
5823  case UnqualifiedId::IK_DestructorName:
5824    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5825      << SS.getRange();
5826    return 0;
5827
5828  case UnqualifiedId::IK_TemplateId:
5829    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5830      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5831    return 0;
5832  }
5833
5834  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5835  DeclarationName TargetName = TargetNameInfo.getName();
5836  if (!TargetName)
5837    return 0;
5838
5839  // Warn about using declarations.
5840  // TODO: store that the declaration was written without 'using' and
5841  // talk about access decls instead of using decls in the
5842  // diagnostics.
5843  if (!HasUsingKeyword) {
5844    UsingLoc = Name.getSourceRange().getBegin();
5845
5846    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5847      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5848  }
5849
5850  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5851      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5852    return 0;
5853
5854  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5855                                        TargetNameInfo, AttrList,
5856                                        /* IsInstantiation */ false,
5857                                        IsTypeName, TypenameLoc);
5858  if (UD)
5859    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5860
5861  return UD;
5862}
5863
5864/// \brief Determine whether a using declaration considers the given
5865/// declarations as "equivalent", e.g., if they are redeclarations of
5866/// the same entity or are both typedefs of the same type.
5867static bool
5868IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5869                         bool &SuppressRedeclaration) {
5870  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5871    SuppressRedeclaration = false;
5872    return true;
5873  }
5874
5875  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5876    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5877      SuppressRedeclaration = true;
5878      return Context.hasSameType(TD1->getUnderlyingType(),
5879                                 TD2->getUnderlyingType());
5880    }
5881
5882  return false;
5883}
5884
5885
5886/// Determines whether to create a using shadow decl for a particular
5887/// decl, given the set of decls existing prior to this using lookup.
5888bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5889                                const LookupResult &Previous) {
5890  // Diagnose finding a decl which is not from a base class of the
5891  // current class.  We do this now because there are cases where this
5892  // function will silently decide not to build a shadow decl, which
5893  // will pre-empt further diagnostics.
5894  //
5895  // We don't need to do this in C++0x because we do the check once on
5896  // the qualifier.
5897  //
5898  // FIXME: diagnose the following if we care enough:
5899  //   struct A { int foo; };
5900  //   struct B : A { using A::foo; };
5901  //   template <class T> struct C : A {};
5902  //   template <class T> struct D : C<T> { using B::foo; } // <---
5903  // This is invalid (during instantiation) in C++03 because B::foo
5904  // resolves to the using decl in B, which is not a base class of D<T>.
5905  // We can't diagnose it immediately because C<T> is an unknown
5906  // specialization.  The UsingShadowDecl in D<T> then points directly
5907  // to A::foo, which will look well-formed when we instantiate.
5908  // The right solution is to not collapse the shadow-decl chain.
5909  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5910    DeclContext *OrigDC = Orig->getDeclContext();
5911
5912    // Handle enums and anonymous structs.
5913    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5914    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5915    while (OrigRec->isAnonymousStructOrUnion())
5916      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5917
5918    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5919      if (OrigDC == CurContext) {
5920        Diag(Using->getLocation(),
5921             diag::err_using_decl_nested_name_specifier_is_current_class)
5922          << Using->getQualifierLoc().getSourceRange();
5923        Diag(Orig->getLocation(), diag::note_using_decl_target);
5924        return true;
5925      }
5926
5927      Diag(Using->getQualifierLoc().getBeginLoc(),
5928           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5929        << Using->getQualifier()
5930        << cast<CXXRecordDecl>(CurContext)
5931        << Using->getQualifierLoc().getSourceRange();
5932      Diag(Orig->getLocation(), diag::note_using_decl_target);
5933      return true;
5934    }
5935  }
5936
5937  if (Previous.empty()) return false;
5938
5939  NamedDecl *Target = Orig;
5940  if (isa<UsingShadowDecl>(Target))
5941    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5942
5943  // If the target happens to be one of the previous declarations, we
5944  // don't have a conflict.
5945  //
5946  // FIXME: but we might be increasing its access, in which case we
5947  // should redeclare it.
5948  NamedDecl *NonTag = 0, *Tag = 0;
5949  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5950         I != E; ++I) {
5951    NamedDecl *D = (*I)->getUnderlyingDecl();
5952    bool Result;
5953    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5954      return Result;
5955
5956    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5957  }
5958
5959  if (Target->isFunctionOrFunctionTemplate()) {
5960    FunctionDecl *FD;
5961    if (isa<FunctionTemplateDecl>(Target))
5962      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5963    else
5964      FD = cast<FunctionDecl>(Target);
5965
5966    NamedDecl *OldDecl = 0;
5967    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5968    case Ovl_Overload:
5969      return false;
5970
5971    case Ovl_NonFunction:
5972      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5973      break;
5974
5975    // We found a decl with the exact signature.
5976    case Ovl_Match:
5977      // If we're in a record, we want to hide the target, so we
5978      // return true (without a diagnostic) to tell the caller not to
5979      // build a shadow decl.
5980      if (CurContext->isRecord())
5981        return true;
5982
5983      // If we're not in a record, this is an error.
5984      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5985      break;
5986    }
5987
5988    Diag(Target->getLocation(), diag::note_using_decl_target);
5989    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5990    return true;
5991  }
5992
5993  // Target is not a function.
5994
5995  if (isa<TagDecl>(Target)) {
5996    // No conflict between a tag and a non-tag.
5997    if (!Tag) return false;
5998
5999    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6000    Diag(Target->getLocation(), diag::note_using_decl_target);
6001    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6002    return true;
6003  }
6004
6005  // No conflict between a tag and a non-tag.
6006  if (!NonTag) return false;
6007
6008  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6009  Diag(Target->getLocation(), diag::note_using_decl_target);
6010  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6011  return true;
6012}
6013
6014/// Builds a shadow declaration corresponding to a 'using' declaration.
6015UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6016                                            UsingDecl *UD,
6017                                            NamedDecl *Orig) {
6018
6019  // If we resolved to another shadow declaration, just coalesce them.
6020  NamedDecl *Target = Orig;
6021  if (isa<UsingShadowDecl>(Target)) {
6022    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6023    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6024  }
6025
6026  UsingShadowDecl *Shadow
6027    = UsingShadowDecl::Create(Context, CurContext,
6028                              UD->getLocation(), UD, Target);
6029  UD->addShadowDecl(Shadow);
6030
6031  Shadow->setAccess(UD->getAccess());
6032  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6033    Shadow->setInvalidDecl();
6034
6035  if (S)
6036    PushOnScopeChains(Shadow, S);
6037  else
6038    CurContext->addDecl(Shadow);
6039
6040
6041  return Shadow;
6042}
6043
6044/// Hides a using shadow declaration.  This is required by the current
6045/// using-decl implementation when a resolvable using declaration in a
6046/// class is followed by a declaration which would hide or override
6047/// one or more of the using decl's targets; for example:
6048///
6049///   struct Base { void foo(int); };
6050///   struct Derived : Base {
6051///     using Base::foo;
6052///     void foo(int);
6053///   };
6054///
6055/// The governing language is C++03 [namespace.udecl]p12:
6056///
6057///   When a using-declaration brings names from a base class into a
6058///   derived class scope, member functions in the derived class
6059///   override and/or hide member functions with the same name and
6060///   parameter types in a base class (rather than conflicting).
6061///
6062/// There are two ways to implement this:
6063///   (1) optimistically create shadow decls when they're not hidden
6064///       by existing declarations, or
6065///   (2) don't create any shadow decls (or at least don't make them
6066///       visible) until we've fully parsed/instantiated the class.
6067/// The problem with (1) is that we might have to retroactively remove
6068/// a shadow decl, which requires several O(n) operations because the
6069/// decl structures are (very reasonably) not designed for removal.
6070/// (2) avoids this but is very fiddly and phase-dependent.
6071void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6072  if (Shadow->getDeclName().getNameKind() ==
6073        DeclarationName::CXXConversionFunctionName)
6074    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6075
6076  // Remove it from the DeclContext...
6077  Shadow->getDeclContext()->removeDecl(Shadow);
6078
6079  // ...and the scope, if applicable...
6080  if (S) {
6081    S->RemoveDecl(Shadow);
6082    IdResolver.RemoveDecl(Shadow);
6083  }
6084
6085  // ...and the using decl.
6086  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6087
6088  // TODO: complain somehow if Shadow was used.  It shouldn't
6089  // be possible for this to happen, because...?
6090}
6091
6092/// Builds a using declaration.
6093///
6094/// \param IsInstantiation - Whether this call arises from an
6095///   instantiation of an unresolved using declaration.  We treat
6096///   the lookup differently for these declarations.
6097NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6098                                       SourceLocation UsingLoc,
6099                                       CXXScopeSpec &SS,
6100                                       const DeclarationNameInfo &NameInfo,
6101                                       AttributeList *AttrList,
6102                                       bool IsInstantiation,
6103                                       bool IsTypeName,
6104                                       SourceLocation TypenameLoc) {
6105  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6106  SourceLocation IdentLoc = NameInfo.getLoc();
6107  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6108
6109  // FIXME: We ignore attributes for now.
6110
6111  if (SS.isEmpty()) {
6112    Diag(IdentLoc, diag::err_using_requires_qualname);
6113    return 0;
6114  }
6115
6116  // Do the redeclaration lookup in the current scope.
6117  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6118                        ForRedeclaration);
6119  Previous.setHideTags(false);
6120  if (S) {
6121    LookupName(Previous, S);
6122
6123    // It is really dumb that we have to do this.
6124    LookupResult::Filter F = Previous.makeFilter();
6125    while (F.hasNext()) {
6126      NamedDecl *D = F.next();
6127      if (!isDeclInScope(D, CurContext, S))
6128        F.erase();
6129    }
6130    F.done();
6131  } else {
6132    assert(IsInstantiation && "no scope in non-instantiation");
6133    assert(CurContext->isRecord() && "scope not record in instantiation");
6134    LookupQualifiedName(Previous, CurContext);
6135  }
6136
6137  // Check for invalid redeclarations.
6138  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6139    return 0;
6140
6141  // Check for bad qualifiers.
6142  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6143    return 0;
6144
6145  DeclContext *LookupContext = computeDeclContext(SS);
6146  NamedDecl *D;
6147  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6148  if (!LookupContext) {
6149    if (IsTypeName) {
6150      // FIXME: not all declaration name kinds are legal here
6151      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6152                                              UsingLoc, TypenameLoc,
6153                                              QualifierLoc,
6154                                              IdentLoc, NameInfo.getName());
6155    } else {
6156      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6157                                           QualifierLoc, NameInfo);
6158    }
6159  } else {
6160    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6161                          NameInfo, IsTypeName);
6162  }
6163  D->setAccess(AS);
6164  CurContext->addDecl(D);
6165
6166  if (!LookupContext) return D;
6167  UsingDecl *UD = cast<UsingDecl>(D);
6168
6169  if (RequireCompleteDeclContext(SS, LookupContext)) {
6170    UD->setInvalidDecl();
6171    return UD;
6172  }
6173
6174  // Constructor inheriting using decls get special treatment.
6175  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6176    if (CheckInheritedConstructorUsingDecl(UD))
6177      UD->setInvalidDecl();
6178    return UD;
6179  }
6180
6181  // Otherwise, look up the target name.
6182
6183  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6184
6185  // Unlike most lookups, we don't always want to hide tag
6186  // declarations: tag names are visible through the using declaration
6187  // even if hidden by ordinary names, *except* in a dependent context
6188  // where it's important for the sanity of two-phase lookup.
6189  if (!IsInstantiation)
6190    R.setHideTags(false);
6191
6192  LookupQualifiedName(R, LookupContext);
6193
6194  if (R.empty()) {
6195    Diag(IdentLoc, diag::err_no_member)
6196      << NameInfo.getName() << LookupContext << SS.getRange();
6197    UD->setInvalidDecl();
6198    return UD;
6199  }
6200
6201  if (R.isAmbiguous()) {
6202    UD->setInvalidDecl();
6203    return UD;
6204  }
6205
6206  if (IsTypeName) {
6207    // If we asked for a typename and got a non-type decl, error out.
6208    if (!R.getAsSingle<TypeDecl>()) {
6209      Diag(IdentLoc, diag::err_using_typename_non_type);
6210      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6211        Diag((*I)->getUnderlyingDecl()->getLocation(),
6212             diag::note_using_decl_target);
6213      UD->setInvalidDecl();
6214      return UD;
6215    }
6216  } else {
6217    // If we asked for a non-typename and we got a type, error out,
6218    // but only if this is an instantiation of an unresolved using
6219    // decl.  Otherwise just silently find the type name.
6220    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6221      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6222      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6223      UD->setInvalidDecl();
6224      return UD;
6225    }
6226  }
6227
6228  // C++0x N2914 [namespace.udecl]p6:
6229  // A using-declaration shall not name a namespace.
6230  if (R.getAsSingle<NamespaceDecl>()) {
6231    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6232      << SS.getRange();
6233    UD->setInvalidDecl();
6234    return UD;
6235  }
6236
6237  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6238    if (!CheckUsingShadowDecl(UD, *I, Previous))
6239      BuildUsingShadowDecl(S, UD, *I);
6240  }
6241
6242  return UD;
6243}
6244
6245/// Additional checks for a using declaration referring to a constructor name.
6246bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6247  if (UD->isTypeName()) {
6248    // FIXME: Cannot specify typename when specifying constructor
6249    return true;
6250  }
6251
6252  const Type *SourceType = UD->getQualifier()->getAsType();
6253  assert(SourceType &&
6254         "Using decl naming constructor doesn't have type in scope spec.");
6255  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6256
6257  // Check whether the named type is a direct base class.
6258  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6259  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6260  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6261       BaseIt != BaseE; ++BaseIt) {
6262    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6263    if (CanonicalSourceType == BaseType)
6264      break;
6265  }
6266
6267  if (BaseIt == BaseE) {
6268    // Did not find SourceType in the bases.
6269    Diag(UD->getUsingLocation(),
6270         diag::err_using_decl_constructor_not_in_direct_base)
6271      << UD->getNameInfo().getSourceRange()
6272      << QualType(SourceType, 0) << TargetClass;
6273    return true;
6274  }
6275
6276  BaseIt->setInheritConstructors();
6277
6278  return false;
6279}
6280
6281/// Checks that the given using declaration is not an invalid
6282/// redeclaration.  Note that this is checking only for the using decl
6283/// itself, not for any ill-formedness among the UsingShadowDecls.
6284bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6285                                       bool isTypeName,
6286                                       const CXXScopeSpec &SS,
6287                                       SourceLocation NameLoc,
6288                                       const LookupResult &Prev) {
6289  // C++03 [namespace.udecl]p8:
6290  // C++0x [namespace.udecl]p10:
6291  //   A using-declaration is a declaration and can therefore be used
6292  //   repeatedly where (and only where) multiple declarations are
6293  //   allowed.
6294  //
6295  // That's in non-member contexts.
6296  if (!CurContext->getRedeclContext()->isRecord())
6297    return false;
6298
6299  NestedNameSpecifier *Qual
6300    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6301
6302  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6303    NamedDecl *D = *I;
6304
6305    bool DTypename;
6306    NestedNameSpecifier *DQual;
6307    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6308      DTypename = UD->isTypeName();
6309      DQual = UD->getQualifier();
6310    } else if (UnresolvedUsingValueDecl *UD
6311                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6312      DTypename = false;
6313      DQual = UD->getQualifier();
6314    } else if (UnresolvedUsingTypenameDecl *UD
6315                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6316      DTypename = true;
6317      DQual = UD->getQualifier();
6318    } else continue;
6319
6320    // using decls differ if one says 'typename' and the other doesn't.
6321    // FIXME: non-dependent using decls?
6322    if (isTypeName != DTypename) continue;
6323
6324    // using decls differ if they name different scopes (but note that
6325    // template instantiation can cause this check to trigger when it
6326    // didn't before instantiation).
6327    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6328        Context.getCanonicalNestedNameSpecifier(DQual))
6329      continue;
6330
6331    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6332    Diag(D->getLocation(), diag::note_using_decl) << 1;
6333    return true;
6334  }
6335
6336  return false;
6337}
6338
6339
6340/// Checks that the given nested-name qualifier used in a using decl
6341/// in the current context is appropriately related to the current
6342/// scope.  If an error is found, diagnoses it and returns true.
6343bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6344                                   const CXXScopeSpec &SS,
6345                                   SourceLocation NameLoc) {
6346  DeclContext *NamedContext = computeDeclContext(SS);
6347
6348  if (!CurContext->isRecord()) {
6349    // C++03 [namespace.udecl]p3:
6350    // C++0x [namespace.udecl]p8:
6351    //   A using-declaration for a class member shall be a member-declaration.
6352
6353    // If we weren't able to compute a valid scope, it must be a
6354    // dependent class scope.
6355    if (!NamedContext || NamedContext->isRecord()) {
6356      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6357        << SS.getRange();
6358      return true;
6359    }
6360
6361    // Otherwise, everything is known to be fine.
6362    return false;
6363  }
6364
6365  // The current scope is a record.
6366
6367  // If the named context is dependent, we can't decide much.
6368  if (!NamedContext) {
6369    // FIXME: in C++0x, we can diagnose if we can prove that the
6370    // nested-name-specifier does not refer to a base class, which is
6371    // still possible in some cases.
6372
6373    // Otherwise we have to conservatively report that things might be
6374    // okay.
6375    return false;
6376  }
6377
6378  if (!NamedContext->isRecord()) {
6379    // Ideally this would point at the last name in the specifier,
6380    // but we don't have that level of source info.
6381    Diag(SS.getRange().getBegin(),
6382         diag::err_using_decl_nested_name_specifier_is_not_class)
6383      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6384    return true;
6385  }
6386
6387  if (!NamedContext->isDependentContext() &&
6388      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6389    return true;
6390
6391  if (getLangOptions().CPlusPlus0x) {
6392    // C++0x [namespace.udecl]p3:
6393    //   In a using-declaration used as a member-declaration, the
6394    //   nested-name-specifier shall name a base class of the class
6395    //   being defined.
6396
6397    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6398                                 cast<CXXRecordDecl>(NamedContext))) {
6399      if (CurContext == NamedContext) {
6400        Diag(NameLoc,
6401             diag::err_using_decl_nested_name_specifier_is_current_class)
6402          << SS.getRange();
6403        return true;
6404      }
6405
6406      Diag(SS.getRange().getBegin(),
6407           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6408        << (NestedNameSpecifier*) SS.getScopeRep()
6409        << cast<CXXRecordDecl>(CurContext)
6410        << SS.getRange();
6411      return true;
6412    }
6413
6414    return false;
6415  }
6416
6417  // C++03 [namespace.udecl]p4:
6418  //   A using-declaration used as a member-declaration shall refer
6419  //   to a member of a base class of the class being defined [etc.].
6420
6421  // Salient point: SS doesn't have to name a base class as long as
6422  // lookup only finds members from base classes.  Therefore we can
6423  // diagnose here only if we can prove that that can't happen,
6424  // i.e. if the class hierarchies provably don't intersect.
6425
6426  // TODO: it would be nice if "definitely valid" results were cached
6427  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6428  // need to be repeated.
6429
6430  struct UserData {
6431    llvm::DenseSet<const CXXRecordDecl*> Bases;
6432
6433    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6434      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6435      Data->Bases.insert(Base);
6436      return true;
6437    }
6438
6439    bool hasDependentBases(const CXXRecordDecl *Class) {
6440      return !Class->forallBases(collect, this);
6441    }
6442
6443    /// Returns true if the base is dependent or is one of the
6444    /// accumulated base classes.
6445    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6446      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6447      return !Data->Bases.count(Base);
6448    }
6449
6450    bool mightShareBases(const CXXRecordDecl *Class) {
6451      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6452    }
6453  };
6454
6455  UserData Data;
6456
6457  // Returns false if we find a dependent base.
6458  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6459    return false;
6460
6461  // Returns false if the class has a dependent base or if it or one
6462  // of its bases is present in the base set of the current context.
6463  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6464    return false;
6465
6466  Diag(SS.getRange().getBegin(),
6467       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6468    << (NestedNameSpecifier*) SS.getScopeRep()
6469    << cast<CXXRecordDecl>(CurContext)
6470    << SS.getRange();
6471
6472  return true;
6473}
6474
6475Decl *Sema::ActOnAliasDeclaration(Scope *S,
6476                                  AccessSpecifier AS,
6477                                  MultiTemplateParamsArg TemplateParamLists,
6478                                  SourceLocation UsingLoc,
6479                                  UnqualifiedId &Name,
6480                                  TypeResult Type) {
6481  // Skip up to the relevant declaration scope.
6482  while (S->getFlags() & Scope::TemplateParamScope)
6483    S = S->getParent();
6484  assert((S->getFlags() & Scope::DeclScope) &&
6485         "got alias-declaration outside of declaration scope");
6486
6487  if (Type.isInvalid())
6488    return 0;
6489
6490  bool Invalid = false;
6491  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6492  TypeSourceInfo *TInfo = 0;
6493  GetTypeFromParser(Type.get(), &TInfo);
6494
6495  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6496    return 0;
6497
6498  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6499                                      UPPC_DeclarationType)) {
6500    Invalid = true;
6501    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6502                                             TInfo->getTypeLoc().getBeginLoc());
6503  }
6504
6505  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6506  LookupName(Previous, S);
6507
6508  // Warn about shadowing the name of a template parameter.
6509  if (Previous.isSingleResult() &&
6510      Previous.getFoundDecl()->isTemplateParameter()) {
6511    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6512    Previous.clear();
6513  }
6514
6515  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6516         "name in alias declaration must be an identifier");
6517  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6518                                               Name.StartLocation,
6519                                               Name.Identifier, TInfo);
6520
6521  NewTD->setAccess(AS);
6522
6523  if (Invalid)
6524    NewTD->setInvalidDecl();
6525
6526  CheckTypedefForVariablyModifiedType(S, NewTD);
6527  Invalid |= NewTD->isInvalidDecl();
6528
6529  bool Redeclaration = false;
6530
6531  NamedDecl *NewND;
6532  if (TemplateParamLists.size()) {
6533    TypeAliasTemplateDecl *OldDecl = 0;
6534    TemplateParameterList *OldTemplateParams = 0;
6535
6536    if (TemplateParamLists.size() != 1) {
6537      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6538        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6539         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6540    }
6541    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6542
6543    // Only consider previous declarations in the same scope.
6544    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6545                         /*ExplicitInstantiationOrSpecialization*/false);
6546    if (!Previous.empty()) {
6547      Redeclaration = true;
6548
6549      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6550      if (!OldDecl && !Invalid) {
6551        Diag(UsingLoc, diag::err_redefinition_different_kind)
6552          << Name.Identifier;
6553
6554        NamedDecl *OldD = Previous.getRepresentativeDecl();
6555        if (OldD->getLocation().isValid())
6556          Diag(OldD->getLocation(), diag::note_previous_definition);
6557
6558        Invalid = true;
6559      }
6560
6561      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6562        if (TemplateParameterListsAreEqual(TemplateParams,
6563                                           OldDecl->getTemplateParameters(),
6564                                           /*Complain=*/true,
6565                                           TPL_TemplateMatch))
6566          OldTemplateParams = OldDecl->getTemplateParameters();
6567        else
6568          Invalid = true;
6569
6570        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6571        if (!Invalid &&
6572            !Context.hasSameType(OldTD->getUnderlyingType(),
6573                                 NewTD->getUnderlyingType())) {
6574          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6575          // but we can't reasonably accept it.
6576          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6577            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6578          if (OldTD->getLocation().isValid())
6579            Diag(OldTD->getLocation(), diag::note_previous_definition);
6580          Invalid = true;
6581        }
6582      }
6583    }
6584
6585    // Merge any previous default template arguments into our parameters,
6586    // and check the parameter list.
6587    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6588                                   TPC_TypeAliasTemplate))
6589      return 0;
6590
6591    TypeAliasTemplateDecl *NewDecl =
6592      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6593                                    Name.Identifier, TemplateParams,
6594                                    NewTD);
6595
6596    NewDecl->setAccess(AS);
6597
6598    if (Invalid)
6599      NewDecl->setInvalidDecl();
6600    else if (OldDecl)
6601      NewDecl->setPreviousDeclaration(OldDecl);
6602
6603    NewND = NewDecl;
6604  } else {
6605    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6606    NewND = NewTD;
6607  }
6608
6609  if (!Redeclaration)
6610    PushOnScopeChains(NewND, S);
6611
6612  return NewND;
6613}
6614
6615Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6616                                             SourceLocation NamespaceLoc,
6617                                             SourceLocation AliasLoc,
6618                                             IdentifierInfo *Alias,
6619                                             CXXScopeSpec &SS,
6620                                             SourceLocation IdentLoc,
6621                                             IdentifierInfo *Ident) {
6622
6623  // Lookup the namespace name.
6624  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6625  LookupParsedName(R, S, &SS);
6626
6627  // Check if we have a previous declaration with the same name.
6628  NamedDecl *PrevDecl
6629    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6630                       ForRedeclaration);
6631  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6632    PrevDecl = 0;
6633
6634  if (PrevDecl) {
6635    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6636      // We already have an alias with the same name that points to the same
6637      // namespace, so don't create a new one.
6638      // FIXME: At some point, we'll want to create the (redundant)
6639      // declaration to maintain better source information.
6640      if (!R.isAmbiguous() && !R.empty() &&
6641          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6642        return 0;
6643    }
6644
6645    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6646      diag::err_redefinition_different_kind;
6647    Diag(AliasLoc, DiagID) << Alias;
6648    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6649    return 0;
6650  }
6651
6652  if (R.isAmbiguous())
6653    return 0;
6654
6655  if (R.empty()) {
6656    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6657      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6658      return 0;
6659    }
6660  }
6661
6662  NamespaceAliasDecl *AliasDecl =
6663    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6664                               Alias, SS.getWithLocInContext(Context),
6665                               IdentLoc, R.getFoundDecl());
6666
6667  PushOnScopeChains(AliasDecl, S);
6668  return AliasDecl;
6669}
6670
6671namespace {
6672  /// \brief Scoped object used to handle the state changes required in Sema
6673  /// to implicitly define the body of a C++ member function;
6674  class ImplicitlyDefinedFunctionScope {
6675    Sema &S;
6676    Sema::ContextRAII SavedContext;
6677
6678  public:
6679    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6680      : S(S), SavedContext(S, Method)
6681    {
6682      S.PushFunctionScope();
6683      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6684    }
6685
6686    ~ImplicitlyDefinedFunctionScope() {
6687      S.PopExpressionEvaluationContext();
6688      S.PopFunctionOrBlockScope();
6689    }
6690  };
6691}
6692
6693Sema::ImplicitExceptionSpecification
6694Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6695  // C++ [except.spec]p14:
6696  //   An implicitly declared special member function (Clause 12) shall have an
6697  //   exception-specification. [...]
6698  ImplicitExceptionSpecification ExceptSpec(Context);
6699  if (ClassDecl->isInvalidDecl())
6700    return ExceptSpec;
6701
6702  // Direct base-class constructors.
6703  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6704                                       BEnd = ClassDecl->bases_end();
6705       B != BEnd; ++B) {
6706    if (B->isVirtual()) // Handled below.
6707      continue;
6708
6709    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6710      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6711      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6712      // If this is a deleted function, add it anyway. This might be conformant
6713      // with the standard. This might not. I'm not sure. It might not matter.
6714      if (Constructor)
6715        ExceptSpec.CalledDecl(Constructor);
6716    }
6717  }
6718
6719  // Virtual base-class constructors.
6720  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6721                                       BEnd = ClassDecl->vbases_end();
6722       B != BEnd; ++B) {
6723    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6724      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6725      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6726      // If this is a deleted function, add it anyway. This might be conformant
6727      // with the standard. This might not. I'm not sure. It might not matter.
6728      if (Constructor)
6729        ExceptSpec.CalledDecl(Constructor);
6730    }
6731  }
6732
6733  // Field constructors.
6734  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6735                               FEnd = ClassDecl->field_end();
6736       F != FEnd; ++F) {
6737    if (F->hasInClassInitializer()) {
6738      if (Expr *E = F->getInClassInitializer())
6739        ExceptSpec.CalledExpr(E);
6740      else if (!F->isInvalidDecl())
6741        ExceptSpec.SetDelayed();
6742    } else if (const RecordType *RecordTy
6743              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6744      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6745      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6746      // If this is a deleted function, add it anyway. This might be conformant
6747      // with the standard. This might not. I'm not sure. It might not matter.
6748      // In particular, the problem is that this function never gets called. It
6749      // might just be ill-formed because this function attempts to refer to
6750      // a deleted function here.
6751      if (Constructor)
6752        ExceptSpec.CalledDecl(Constructor);
6753    }
6754  }
6755
6756  return ExceptSpec;
6757}
6758
6759CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6760                                                     CXXRecordDecl *ClassDecl) {
6761  // C++ [class.ctor]p5:
6762  //   A default constructor for a class X is a constructor of class X
6763  //   that can be called without an argument. If there is no
6764  //   user-declared constructor for class X, a default constructor is
6765  //   implicitly declared. An implicitly-declared default constructor
6766  //   is an inline public member of its class.
6767  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6768         "Should not build implicit default constructor!");
6769
6770  ImplicitExceptionSpecification Spec =
6771    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6772  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6773
6774  // Create the actual constructor declaration.
6775  CanQualType ClassType
6776    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6777  SourceLocation ClassLoc = ClassDecl->getLocation();
6778  DeclarationName Name
6779    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6780  DeclarationNameInfo NameInfo(Name, ClassLoc);
6781  CXXConstructorDecl *DefaultCon
6782    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6783                                 Context.getFunctionType(Context.VoidTy,
6784                                                         0, 0, EPI),
6785                                 /*TInfo=*/0,
6786                                 /*isExplicit=*/false,
6787                                 /*isInline=*/true,
6788                                 /*isImplicitlyDeclared=*/true,
6789                                 // FIXME: apply the rules for definitions here
6790                                 /*isConstexpr=*/false);
6791  DefaultCon->setAccess(AS_public);
6792  DefaultCon->setDefaulted();
6793  DefaultCon->setImplicit();
6794  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6795
6796  // Note that we have declared this constructor.
6797  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6798
6799  if (Scope *S = getScopeForContext(ClassDecl))
6800    PushOnScopeChains(DefaultCon, S, false);
6801  ClassDecl->addDecl(DefaultCon);
6802
6803  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6804    DefaultCon->setDeletedAsWritten();
6805
6806  return DefaultCon;
6807}
6808
6809void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6810                                            CXXConstructorDecl *Constructor) {
6811  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6812          !Constructor->doesThisDeclarationHaveABody() &&
6813          !Constructor->isDeleted()) &&
6814    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6815
6816  CXXRecordDecl *ClassDecl = Constructor->getParent();
6817  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6818
6819  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6820  DiagnosticErrorTrap Trap(Diags);
6821  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6822      Trap.hasErrorOccurred()) {
6823    Diag(CurrentLocation, diag::note_member_synthesized_at)
6824      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6825    Constructor->setInvalidDecl();
6826    return;
6827  }
6828
6829  SourceLocation Loc = Constructor->getLocation();
6830  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6831
6832  Constructor->setUsed();
6833  MarkVTableUsed(CurrentLocation, ClassDecl);
6834
6835  if (ASTMutationListener *L = getASTMutationListener()) {
6836    L->CompletedImplicitDefinition(Constructor);
6837  }
6838}
6839
6840/// Get any existing defaulted default constructor for the given class. Do not
6841/// implicitly define one if it does not exist.
6842static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6843                                                             CXXRecordDecl *D) {
6844  ASTContext &Context = Self.Context;
6845  QualType ClassType = Context.getTypeDeclType(D);
6846  DeclarationName ConstructorName
6847    = Context.DeclarationNames.getCXXConstructorName(
6848                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6849
6850  DeclContext::lookup_const_iterator Con, ConEnd;
6851  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6852       Con != ConEnd; ++Con) {
6853    // A function template cannot be defaulted.
6854    if (isa<FunctionTemplateDecl>(*Con))
6855      continue;
6856
6857    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6858    if (Constructor->isDefaultConstructor())
6859      return Constructor->isDefaulted() ? Constructor : 0;
6860  }
6861  return 0;
6862}
6863
6864void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6865  if (!D) return;
6866  AdjustDeclIfTemplate(D);
6867
6868  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6869  CXXConstructorDecl *CtorDecl
6870    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6871
6872  if (!CtorDecl) return;
6873
6874  // Compute the exception specification for the default constructor.
6875  const FunctionProtoType *CtorTy =
6876    CtorDecl->getType()->castAs<FunctionProtoType>();
6877  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6878    ImplicitExceptionSpecification Spec =
6879      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6880    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6881    assert(EPI.ExceptionSpecType != EST_Delayed);
6882
6883    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6884  }
6885
6886  // If the default constructor is explicitly defaulted, checking the exception
6887  // specification is deferred until now.
6888  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6889      !ClassDecl->isDependentType())
6890    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6891}
6892
6893void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6894  // We start with an initial pass over the base classes to collect those that
6895  // inherit constructors from. If there are none, we can forgo all further
6896  // processing.
6897  typedef SmallVector<const RecordType *, 4> BasesVector;
6898  BasesVector BasesToInheritFrom;
6899  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6900                                          BaseE = ClassDecl->bases_end();
6901         BaseIt != BaseE; ++BaseIt) {
6902    if (BaseIt->getInheritConstructors()) {
6903      QualType Base = BaseIt->getType();
6904      if (Base->isDependentType()) {
6905        // If we inherit constructors from anything that is dependent, just
6906        // abort processing altogether. We'll get another chance for the
6907        // instantiations.
6908        return;
6909      }
6910      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6911    }
6912  }
6913  if (BasesToInheritFrom.empty())
6914    return;
6915
6916  // Now collect the constructors that we already have in the current class.
6917  // Those take precedence over inherited constructors.
6918  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6919  //   unless there is a user-declared constructor with the same signature in
6920  //   the class where the using-declaration appears.
6921  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6922  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6923                                    CtorE = ClassDecl->ctor_end();
6924       CtorIt != CtorE; ++CtorIt) {
6925    ExistingConstructors.insert(
6926        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6927  }
6928
6929  Scope *S = getScopeForContext(ClassDecl);
6930  DeclarationName CreatedCtorName =
6931      Context.DeclarationNames.getCXXConstructorName(
6932          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6933
6934  // Now comes the true work.
6935  // First, we keep a map from constructor types to the base that introduced
6936  // them. Needed for finding conflicting constructors. We also keep the
6937  // actually inserted declarations in there, for pretty diagnostics.
6938  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6939  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6940  ConstructorToSourceMap InheritedConstructors;
6941  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6942                             BaseE = BasesToInheritFrom.end();
6943       BaseIt != BaseE; ++BaseIt) {
6944    const RecordType *Base = *BaseIt;
6945    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6946    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6947    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6948                                      CtorE = BaseDecl->ctor_end();
6949         CtorIt != CtorE; ++CtorIt) {
6950      // Find the using declaration for inheriting this base's constructors.
6951      DeclarationName Name =
6952          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6953      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6954          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6955      SourceLocation UsingLoc = UD ? UD->getLocation() :
6956                                     ClassDecl->getLocation();
6957
6958      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6959      //   from the class X named in the using-declaration consists of actual
6960      //   constructors and notional constructors that result from the
6961      //   transformation of defaulted parameters as follows:
6962      //   - all non-template default constructors of X, and
6963      //   - for each non-template constructor of X that has at least one
6964      //     parameter with a default argument, the set of constructors that
6965      //     results from omitting any ellipsis parameter specification and
6966      //     successively omitting parameters with a default argument from the
6967      //     end of the parameter-type-list.
6968      CXXConstructorDecl *BaseCtor = *CtorIt;
6969      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6970      const FunctionProtoType *BaseCtorType =
6971          BaseCtor->getType()->getAs<FunctionProtoType>();
6972
6973      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6974                    maxParams = BaseCtor->getNumParams();
6975           params <= maxParams; ++params) {
6976        // Skip default constructors. They're never inherited.
6977        if (params == 0)
6978          continue;
6979        // Skip copy and move constructors for the same reason.
6980        if (CanBeCopyOrMove && params == 1)
6981          continue;
6982
6983        // Build up a function type for this particular constructor.
6984        // FIXME: The working paper does not consider that the exception spec
6985        // for the inheriting constructor might be larger than that of the
6986        // source. This code doesn't yet, either. When it does, this code will
6987        // need to be delayed until after exception specifications and in-class
6988        // member initializers are attached.
6989        const Type *NewCtorType;
6990        if (params == maxParams)
6991          NewCtorType = BaseCtorType;
6992        else {
6993          SmallVector<QualType, 16> Args;
6994          for (unsigned i = 0; i < params; ++i) {
6995            Args.push_back(BaseCtorType->getArgType(i));
6996          }
6997          FunctionProtoType::ExtProtoInfo ExtInfo =
6998              BaseCtorType->getExtProtoInfo();
6999          ExtInfo.Variadic = false;
7000          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7001                                                Args.data(), params, ExtInfo)
7002                       .getTypePtr();
7003        }
7004        const Type *CanonicalNewCtorType =
7005            Context.getCanonicalType(NewCtorType);
7006
7007        // Now that we have the type, first check if the class already has a
7008        // constructor with this signature.
7009        if (ExistingConstructors.count(CanonicalNewCtorType))
7010          continue;
7011
7012        // Then we check if we have already declared an inherited constructor
7013        // with this signature.
7014        std::pair<ConstructorToSourceMap::iterator, bool> result =
7015            InheritedConstructors.insert(std::make_pair(
7016                CanonicalNewCtorType,
7017                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7018        if (!result.second) {
7019          // Already in the map. If it came from a different class, that's an
7020          // error. Not if it's from the same.
7021          CanQualType PreviousBase = result.first->second.first;
7022          if (CanonicalBase != PreviousBase) {
7023            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7024            const CXXConstructorDecl *PrevBaseCtor =
7025                PrevCtor->getInheritedConstructor();
7026            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7027
7028            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7029            Diag(BaseCtor->getLocation(),
7030                 diag::note_using_decl_constructor_conflict_current_ctor);
7031            Diag(PrevBaseCtor->getLocation(),
7032                 diag::note_using_decl_constructor_conflict_previous_ctor);
7033            Diag(PrevCtor->getLocation(),
7034                 diag::note_using_decl_constructor_conflict_previous_using);
7035          }
7036          continue;
7037        }
7038
7039        // OK, we're there, now add the constructor.
7040        // C++0x [class.inhctor]p8: [...] that would be performed by a
7041        //   user-written inline constructor [...]
7042        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7043        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7044            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7045            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7046            /*ImplicitlyDeclared=*/true,
7047            // FIXME: Due to a defect in the standard, we treat inherited
7048            // constructors as constexpr even if that makes them ill-formed.
7049            /*Constexpr=*/BaseCtor->isConstexpr());
7050        NewCtor->setAccess(BaseCtor->getAccess());
7051
7052        // Build up the parameter decls and add them.
7053        SmallVector<ParmVarDecl *, 16> ParamDecls;
7054        for (unsigned i = 0; i < params; ++i) {
7055          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7056                                                   UsingLoc, UsingLoc,
7057                                                   /*IdentifierInfo=*/0,
7058                                                   BaseCtorType->getArgType(i),
7059                                                   /*TInfo=*/0, SC_None,
7060                                                   SC_None, /*DefaultArg=*/0));
7061        }
7062        NewCtor->setParams(ParamDecls);
7063        NewCtor->setInheritedConstructor(BaseCtor);
7064
7065        PushOnScopeChains(NewCtor, S, false);
7066        ClassDecl->addDecl(NewCtor);
7067        result.first->second.second = NewCtor;
7068      }
7069    }
7070  }
7071}
7072
7073Sema::ImplicitExceptionSpecification
7074Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7075  // C++ [except.spec]p14:
7076  //   An implicitly declared special member function (Clause 12) shall have
7077  //   an exception-specification.
7078  ImplicitExceptionSpecification ExceptSpec(Context);
7079  if (ClassDecl->isInvalidDecl())
7080    return ExceptSpec;
7081
7082  // Direct base-class destructors.
7083  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7084                                       BEnd = ClassDecl->bases_end();
7085       B != BEnd; ++B) {
7086    if (B->isVirtual()) // Handled below.
7087      continue;
7088
7089    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7090      ExceptSpec.CalledDecl(
7091                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7092  }
7093
7094  // Virtual base-class destructors.
7095  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7096                                       BEnd = ClassDecl->vbases_end();
7097       B != BEnd; ++B) {
7098    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7099      ExceptSpec.CalledDecl(
7100                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7101  }
7102
7103  // Field destructors.
7104  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7105                               FEnd = ClassDecl->field_end();
7106       F != FEnd; ++F) {
7107    if (const RecordType *RecordTy
7108        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7109      ExceptSpec.CalledDecl(
7110                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7111  }
7112
7113  return ExceptSpec;
7114}
7115
7116CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7117  // C++ [class.dtor]p2:
7118  //   If a class has no user-declared destructor, a destructor is
7119  //   declared implicitly. An implicitly-declared destructor is an
7120  //   inline public member of its class.
7121
7122  ImplicitExceptionSpecification Spec =
7123      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7124  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7125
7126  // Create the actual destructor declaration.
7127  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7128
7129  CanQualType ClassType
7130    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7131  SourceLocation ClassLoc = ClassDecl->getLocation();
7132  DeclarationName Name
7133    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7134  DeclarationNameInfo NameInfo(Name, ClassLoc);
7135  CXXDestructorDecl *Destructor
7136      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7137                                  /*isInline=*/true,
7138                                  /*isImplicitlyDeclared=*/true);
7139  Destructor->setAccess(AS_public);
7140  Destructor->setDefaulted();
7141  Destructor->setImplicit();
7142  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7143
7144  // Note that we have declared this destructor.
7145  ++ASTContext::NumImplicitDestructorsDeclared;
7146
7147  // Introduce this destructor into its scope.
7148  if (Scope *S = getScopeForContext(ClassDecl))
7149    PushOnScopeChains(Destructor, S, false);
7150  ClassDecl->addDecl(Destructor);
7151
7152  // This could be uniqued if it ever proves significant.
7153  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7154
7155  if (ShouldDeleteDestructor(Destructor))
7156    Destructor->setDeletedAsWritten();
7157
7158  AddOverriddenMethods(ClassDecl, Destructor);
7159
7160  return Destructor;
7161}
7162
7163void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7164                                    CXXDestructorDecl *Destructor) {
7165  assert((Destructor->isDefaulted() &&
7166          !Destructor->doesThisDeclarationHaveABody()) &&
7167         "DefineImplicitDestructor - call it for implicit default dtor");
7168  CXXRecordDecl *ClassDecl = Destructor->getParent();
7169  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7170
7171  if (Destructor->isInvalidDecl())
7172    return;
7173
7174  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7175
7176  DiagnosticErrorTrap Trap(Diags);
7177  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7178                                         Destructor->getParent());
7179
7180  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7181    Diag(CurrentLocation, diag::note_member_synthesized_at)
7182      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7183
7184    Destructor->setInvalidDecl();
7185    return;
7186  }
7187
7188  SourceLocation Loc = Destructor->getLocation();
7189  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7190  Destructor->setImplicitlyDefined(true);
7191  Destructor->setUsed();
7192  MarkVTableUsed(CurrentLocation, ClassDecl);
7193
7194  if (ASTMutationListener *L = getASTMutationListener()) {
7195    L->CompletedImplicitDefinition(Destructor);
7196  }
7197}
7198
7199void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7200                                         CXXDestructorDecl *destructor) {
7201  // C++11 [class.dtor]p3:
7202  //   A declaration of a destructor that does not have an exception-
7203  //   specification is implicitly considered to have the same exception-
7204  //   specification as an implicit declaration.
7205  const FunctionProtoType *dtorType = destructor->getType()->
7206                                        getAs<FunctionProtoType>();
7207  if (dtorType->hasExceptionSpec())
7208    return;
7209
7210  ImplicitExceptionSpecification exceptSpec =
7211      ComputeDefaultedDtorExceptionSpec(classDecl);
7212
7213  // Replace the destructor's type, building off the existing one. Fortunately,
7214  // the only thing of interest in the destructor type is its extended info.
7215  // The return and arguments are fixed.
7216  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7217  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7218  epi.NumExceptions = exceptSpec.size();
7219  epi.Exceptions = exceptSpec.data();
7220  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7221
7222  destructor->setType(ty);
7223
7224  // FIXME: If the destructor has a body that could throw, and the newly created
7225  // spec doesn't allow exceptions, we should emit a warning, because this
7226  // change in behavior can break conforming C++03 programs at runtime.
7227  // However, we don't have a body yet, so it needs to be done somewhere else.
7228}
7229
7230/// \brief Builds a statement that copies/moves the given entity from \p From to
7231/// \c To.
7232///
7233/// This routine is used to copy/move the members of a class with an
7234/// implicitly-declared copy/move assignment operator. When the entities being
7235/// copied are arrays, this routine builds for loops to copy them.
7236///
7237/// \param S The Sema object used for type-checking.
7238///
7239/// \param Loc The location where the implicit copy/move is being generated.
7240///
7241/// \param T The type of the expressions being copied/moved. Both expressions
7242/// must have this type.
7243///
7244/// \param To The expression we are copying/moving to.
7245///
7246/// \param From The expression we are copying/moving from.
7247///
7248/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7249/// Otherwise, it's a non-static member subobject.
7250///
7251/// \param Copying Whether we're copying or moving.
7252///
7253/// \param Depth Internal parameter recording the depth of the recursion.
7254///
7255/// \returns A statement or a loop that copies the expressions.
7256static StmtResult
7257BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7258                      Expr *To, Expr *From,
7259                      bool CopyingBaseSubobject, bool Copying,
7260                      unsigned Depth = 0) {
7261  // C++0x [class.copy]p28:
7262  //   Each subobject is assigned in the manner appropriate to its type:
7263  //
7264  //     - if the subobject is of class type, as if by a call to operator= with
7265  //       the subobject as the object expression and the corresponding
7266  //       subobject of x as a single function argument (as if by explicit
7267  //       qualification; that is, ignoring any possible virtual overriding
7268  //       functions in more derived classes);
7269  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7270    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7271
7272    // Look for operator=.
7273    DeclarationName Name
7274      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7275    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7276    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7277
7278    // Filter out any result that isn't a copy/move-assignment operator.
7279    LookupResult::Filter F = OpLookup.makeFilter();
7280    while (F.hasNext()) {
7281      NamedDecl *D = F.next();
7282      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7283        if (Copying ? Method->isCopyAssignmentOperator() :
7284                      Method->isMoveAssignmentOperator())
7285          continue;
7286
7287      F.erase();
7288    }
7289    F.done();
7290
7291    // Suppress the protected check (C++ [class.protected]) for each of the
7292    // assignment operators we found. This strange dance is required when
7293    // we're assigning via a base classes's copy-assignment operator. To
7294    // ensure that we're getting the right base class subobject (without
7295    // ambiguities), we need to cast "this" to that subobject type; to
7296    // ensure that we don't go through the virtual call mechanism, we need
7297    // to qualify the operator= name with the base class (see below). However,
7298    // this means that if the base class has a protected copy assignment
7299    // operator, the protected member access check will fail. So, we
7300    // rewrite "protected" access to "public" access in this case, since we
7301    // know by construction that we're calling from a derived class.
7302    if (CopyingBaseSubobject) {
7303      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7304           L != LEnd; ++L) {
7305        if (L.getAccess() == AS_protected)
7306          L.setAccess(AS_public);
7307      }
7308    }
7309
7310    // Create the nested-name-specifier that will be used to qualify the
7311    // reference to operator=; this is required to suppress the virtual
7312    // call mechanism.
7313    CXXScopeSpec SS;
7314    SS.MakeTrivial(S.Context,
7315                   NestedNameSpecifier::Create(S.Context, 0, false,
7316                                               T.getTypePtr()),
7317                   Loc);
7318
7319    // Create the reference to operator=.
7320    ExprResult OpEqualRef
7321      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7322                                   /*FirstQualifierInScope=*/0, OpLookup,
7323                                   /*TemplateArgs=*/0,
7324                                   /*SuppressQualifierCheck=*/true);
7325    if (OpEqualRef.isInvalid())
7326      return StmtError();
7327
7328    // Build the call to the assignment operator.
7329
7330    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7331                                                  OpEqualRef.takeAs<Expr>(),
7332                                                  Loc, &From, 1, Loc);
7333    if (Call.isInvalid())
7334      return StmtError();
7335
7336    return S.Owned(Call.takeAs<Stmt>());
7337  }
7338
7339  //     - if the subobject is of scalar type, the built-in assignment
7340  //       operator is used.
7341  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7342  if (!ArrayTy) {
7343    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7344    if (Assignment.isInvalid())
7345      return StmtError();
7346
7347    return S.Owned(Assignment.takeAs<Stmt>());
7348  }
7349
7350  //     - if the subobject is an array, each element is assigned, in the
7351  //       manner appropriate to the element type;
7352
7353  // Construct a loop over the array bounds, e.g.,
7354  //
7355  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7356  //
7357  // that will copy each of the array elements.
7358  QualType SizeType = S.Context.getSizeType();
7359
7360  // Create the iteration variable.
7361  IdentifierInfo *IterationVarName = 0;
7362  {
7363    llvm::SmallString<8> Str;
7364    llvm::raw_svector_ostream OS(Str);
7365    OS << "__i" << Depth;
7366    IterationVarName = &S.Context.Idents.get(OS.str());
7367  }
7368  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7369                                          IterationVarName, SizeType,
7370                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7371                                          SC_None, SC_None);
7372
7373  // Initialize the iteration variable to zero.
7374  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7375  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7376
7377  // Create a reference to the iteration variable; we'll use this several
7378  // times throughout.
7379  Expr *IterationVarRef
7380    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7381  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7382
7383  // Create the DeclStmt that holds the iteration variable.
7384  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7385
7386  // Create the comparison against the array bound.
7387  llvm::APInt Upper
7388    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7389  Expr *Comparison
7390    = new (S.Context) BinaryOperator(IterationVarRef,
7391                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7392                                     BO_NE, S.Context.BoolTy,
7393                                     VK_RValue, OK_Ordinary, Loc);
7394
7395  // Create the pre-increment of the iteration variable.
7396  Expr *Increment
7397    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7398                                    VK_LValue, OK_Ordinary, Loc);
7399
7400  // Subscript the "from" and "to" expressions with the iteration variable.
7401  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7402                                                         IterationVarRef, Loc));
7403  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7404                                                       IterationVarRef, Loc));
7405  if (!Copying) // Cast to rvalue
7406    From = CastForMoving(S, From);
7407
7408  // Build the copy/move for an individual element of the array.
7409  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7410                                          To, From, CopyingBaseSubobject,
7411                                          Copying, Depth + 1);
7412  if (Copy.isInvalid())
7413    return StmtError();
7414
7415  // Construct the loop that copies all elements of this array.
7416  return S.ActOnForStmt(Loc, Loc, InitStmt,
7417                        S.MakeFullExpr(Comparison),
7418                        0, S.MakeFullExpr(Increment),
7419                        Loc, Copy.take());
7420}
7421
7422std::pair<Sema::ImplicitExceptionSpecification, bool>
7423Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7424                                                   CXXRecordDecl *ClassDecl) {
7425  if (ClassDecl->isInvalidDecl())
7426    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7427
7428  // C++ [class.copy]p10:
7429  //   If the class definition does not explicitly declare a copy
7430  //   assignment operator, one is declared implicitly.
7431  //   The implicitly-defined copy assignment operator for a class X
7432  //   will have the form
7433  //
7434  //       X& X::operator=(const X&)
7435  //
7436  //   if
7437  bool HasConstCopyAssignment = true;
7438
7439  //       -- each direct base class B of X has a copy assignment operator
7440  //          whose parameter is of type const B&, const volatile B& or B,
7441  //          and
7442  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7443                                       BaseEnd = ClassDecl->bases_end();
7444       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7445    // We'll handle this below
7446    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7447      continue;
7448
7449    assert(!Base->getType()->isDependentType() &&
7450           "Cannot generate implicit members for class with dependent bases.");
7451    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7452    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7453                            &HasConstCopyAssignment);
7454  }
7455
7456  // In C++11, the above citation has "or virtual" added
7457  if (LangOpts.CPlusPlus0x) {
7458    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7459                                         BaseEnd = ClassDecl->vbases_end();
7460         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7461      assert(!Base->getType()->isDependentType() &&
7462             "Cannot generate implicit members for class with dependent bases.");
7463      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7464      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7465                              &HasConstCopyAssignment);
7466    }
7467  }
7468
7469  //       -- for all the nonstatic data members of X that are of a class
7470  //          type M (or array thereof), each such class type has a copy
7471  //          assignment operator whose parameter is of type const M&,
7472  //          const volatile M& or M.
7473  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7474                                  FieldEnd = ClassDecl->field_end();
7475       HasConstCopyAssignment && Field != FieldEnd;
7476       ++Field) {
7477    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7478    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7479      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7480                              &HasConstCopyAssignment);
7481    }
7482  }
7483
7484  //   Otherwise, the implicitly declared copy assignment operator will
7485  //   have the form
7486  //
7487  //       X& X::operator=(X&)
7488
7489  // C++ [except.spec]p14:
7490  //   An implicitly declared special member function (Clause 12) shall have an
7491  //   exception-specification. [...]
7492
7493  // It is unspecified whether or not an implicit copy assignment operator
7494  // attempts to deduplicate calls to assignment operators of virtual bases are
7495  // made. As such, this exception specification is effectively unspecified.
7496  // Based on a similar decision made for constness in C++0x, we're erring on
7497  // the side of assuming such calls to be made regardless of whether they
7498  // actually happen.
7499  ImplicitExceptionSpecification ExceptSpec(Context);
7500  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7501  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7502                                       BaseEnd = ClassDecl->bases_end();
7503       Base != BaseEnd; ++Base) {
7504    if (Base->isVirtual())
7505      continue;
7506
7507    CXXRecordDecl *BaseClassDecl
7508      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7509    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7510                                                            ArgQuals, false, 0))
7511      ExceptSpec.CalledDecl(CopyAssign);
7512  }
7513
7514  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7515                                       BaseEnd = ClassDecl->vbases_end();
7516       Base != BaseEnd; ++Base) {
7517    CXXRecordDecl *BaseClassDecl
7518      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7519    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7520                                                            ArgQuals, false, 0))
7521      ExceptSpec.CalledDecl(CopyAssign);
7522  }
7523
7524  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7525                                  FieldEnd = ClassDecl->field_end();
7526       Field != FieldEnd;
7527       ++Field) {
7528    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7529    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7530      if (CXXMethodDecl *CopyAssign =
7531          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7532        ExceptSpec.CalledDecl(CopyAssign);
7533    }
7534  }
7535
7536  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7537}
7538
7539CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7540  // Note: The following rules are largely analoguous to the copy
7541  // constructor rules. Note that virtual bases are not taken into account
7542  // for determining the argument type of the operator. Note also that
7543  // operators taking an object instead of a reference are allowed.
7544
7545  ImplicitExceptionSpecification Spec(Context);
7546  bool Const;
7547  llvm::tie(Spec, Const) =
7548    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7549
7550  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7551  QualType RetType = Context.getLValueReferenceType(ArgType);
7552  if (Const)
7553    ArgType = ArgType.withConst();
7554  ArgType = Context.getLValueReferenceType(ArgType);
7555
7556  //   An implicitly-declared copy assignment operator is an inline public
7557  //   member of its class.
7558  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7559  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7560  SourceLocation ClassLoc = ClassDecl->getLocation();
7561  DeclarationNameInfo NameInfo(Name, ClassLoc);
7562  CXXMethodDecl *CopyAssignment
7563    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7564                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7565                            /*TInfo=*/0, /*isStatic=*/false,
7566                            /*StorageClassAsWritten=*/SC_None,
7567                            /*isInline=*/true, /*isConstexpr=*/false,
7568                            SourceLocation());
7569  CopyAssignment->setAccess(AS_public);
7570  CopyAssignment->setDefaulted();
7571  CopyAssignment->setImplicit();
7572  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7573
7574  // Add the parameter to the operator.
7575  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7576                                               ClassLoc, ClassLoc, /*Id=*/0,
7577                                               ArgType, /*TInfo=*/0,
7578                                               SC_None,
7579                                               SC_None, 0);
7580  CopyAssignment->setParams(FromParam);
7581
7582  // Note that we have added this copy-assignment operator.
7583  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7584
7585  if (Scope *S = getScopeForContext(ClassDecl))
7586    PushOnScopeChains(CopyAssignment, S, false);
7587  ClassDecl->addDecl(CopyAssignment);
7588
7589  // C++0x [class.copy]p18:
7590  //   ... If the class definition declares a move constructor or move
7591  //   assignment operator, the implicitly declared copy assignment operator is
7592  //   defined as deleted; ...
7593  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7594      ClassDecl->hasUserDeclaredMoveAssignment() ||
7595      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7596    CopyAssignment->setDeletedAsWritten();
7597
7598  AddOverriddenMethods(ClassDecl, CopyAssignment);
7599  return CopyAssignment;
7600}
7601
7602void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7603                                        CXXMethodDecl *CopyAssignOperator) {
7604  assert((CopyAssignOperator->isDefaulted() &&
7605          CopyAssignOperator->isOverloadedOperator() &&
7606          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7607          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7608         "DefineImplicitCopyAssignment called for wrong function");
7609
7610  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7611
7612  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7613    CopyAssignOperator->setInvalidDecl();
7614    return;
7615  }
7616
7617  CopyAssignOperator->setUsed();
7618
7619  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7620  DiagnosticErrorTrap Trap(Diags);
7621
7622  // C++0x [class.copy]p30:
7623  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7624  //   for a non-union class X performs memberwise copy assignment of its
7625  //   subobjects. The direct base classes of X are assigned first, in the
7626  //   order of their declaration in the base-specifier-list, and then the
7627  //   immediate non-static data members of X are assigned, in the order in
7628  //   which they were declared in the class definition.
7629
7630  // The statements that form the synthesized function body.
7631  ASTOwningVector<Stmt*> Statements(*this);
7632
7633  // The parameter for the "other" object, which we are copying from.
7634  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7635  Qualifiers OtherQuals = Other->getType().getQualifiers();
7636  QualType OtherRefType = Other->getType();
7637  if (const LValueReferenceType *OtherRef
7638                                = OtherRefType->getAs<LValueReferenceType>()) {
7639    OtherRefType = OtherRef->getPointeeType();
7640    OtherQuals = OtherRefType.getQualifiers();
7641  }
7642
7643  // Our location for everything implicitly-generated.
7644  SourceLocation Loc = CopyAssignOperator->getLocation();
7645
7646  // Construct a reference to the "other" object. We'll be using this
7647  // throughout the generated ASTs.
7648  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7649  assert(OtherRef && "Reference to parameter cannot fail!");
7650
7651  // Construct the "this" pointer. We'll be using this throughout the generated
7652  // ASTs.
7653  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7654  assert(This && "Reference to this cannot fail!");
7655
7656  // Assign base classes.
7657  bool Invalid = false;
7658  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7659       E = ClassDecl->bases_end(); Base != E; ++Base) {
7660    // Form the assignment:
7661    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7662    QualType BaseType = Base->getType().getUnqualifiedType();
7663    if (!BaseType->isRecordType()) {
7664      Invalid = true;
7665      continue;
7666    }
7667
7668    CXXCastPath BasePath;
7669    BasePath.push_back(Base);
7670
7671    // Construct the "from" expression, which is an implicit cast to the
7672    // appropriately-qualified base type.
7673    Expr *From = OtherRef;
7674    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7675                             CK_UncheckedDerivedToBase,
7676                             VK_LValue, &BasePath).take();
7677
7678    // Dereference "this".
7679    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7680
7681    // Implicitly cast "this" to the appropriately-qualified base type.
7682    To = ImpCastExprToType(To.take(),
7683                           Context.getCVRQualifiedType(BaseType,
7684                                     CopyAssignOperator->getTypeQualifiers()),
7685                           CK_UncheckedDerivedToBase,
7686                           VK_LValue, &BasePath);
7687
7688    // Build the copy.
7689    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7690                                            To.get(), From,
7691                                            /*CopyingBaseSubobject=*/true,
7692                                            /*Copying=*/true);
7693    if (Copy.isInvalid()) {
7694      Diag(CurrentLocation, diag::note_member_synthesized_at)
7695        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7696      CopyAssignOperator->setInvalidDecl();
7697      return;
7698    }
7699
7700    // Success! Record the copy.
7701    Statements.push_back(Copy.takeAs<Expr>());
7702  }
7703
7704  // \brief Reference to the __builtin_memcpy function.
7705  Expr *BuiltinMemCpyRef = 0;
7706  // \brief Reference to the __builtin_objc_memmove_collectable function.
7707  Expr *CollectableMemCpyRef = 0;
7708
7709  // Assign non-static members.
7710  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7711                                  FieldEnd = ClassDecl->field_end();
7712       Field != FieldEnd; ++Field) {
7713    if (Field->isUnnamedBitfield())
7714      continue;
7715
7716    // Check for members of reference type; we can't copy those.
7717    if (Field->getType()->isReferenceType()) {
7718      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7719        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7720      Diag(Field->getLocation(), diag::note_declared_at);
7721      Diag(CurrentLocation, diag::note_member_synthesized_at)
7722        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7723      Invalid = true;
7724      continue;
7725    }
7726
7727    // Check for members of const-qualified, non-class type.
7728    QualType BaseType = Context.getBaseElementType(Field->getType());
7729    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7730      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7731        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7732      Diag(Field->getLocation(), diag::note_declared_at);
7733      Diag(CurrentLocation, diag::note_member_synthesized_at)
7734        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7735      Invalid = true;
7736      continue;
7737    }
7738
7739    // Suppress assigning zero-width bitfields.
7740    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7741      continue;
7742
7743    QualType FieldType = Field->getType().getNonReferenceType();
7744    if (FieldType->isIncompleteArrayType()) {
7745      assert(ClassDecl->hasFlexibleArrayMember() &&
7746             "Incomplete array type is not valid");
7747      continue;
7748    }
7749
7750    // Build references to the field in the object we're copying from and to.
7751    CXXScopeSpec SS; // Intentionally empty
7752    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7753                              LookupMemberName);
7754    MemberLookup.addDecl(*Field);
7755    MemberLookup.resolveKind();
7756    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7757                                               Loc, /*IsArrow=*/false,
7758                                               SS, 0, MemberLookup, 0);
7759    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7760                                             Loc, /*IsArrow=*/true,
7761                                             SS, 0, MemberLookup, 0);
7762    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7763    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7764
7765    // If the field should be copied with __builtin_memcpy rather than via
7766    // explicit assignments, do so. This optimization only applies for arrays
7767    // of scalars and arrays of class type with trivial copy-assignment
7768    // operators.
7769    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7770        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7771      // Compute the size of the memory buffer to be copied.
7772      QualType SizeType = Context.getSizeType();
7773      llvm::APInt Size(Context.getTypeSize(SizeType),
7774                       Context.getTypeSizeInChars(BaseType).getQuantity());
7775      for (const ConstantArrayType *Array
7776              = Context.getAsConstantArrayType(FieldType);
7777           Array;
7778           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7779        llvm::APInt ArraySize
7780          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7781        Size *= ArraySize;
7782      }
7783
7784      // Take the address of the field references for "from" and "to".
7785      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7786      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7787
7788      bool NeedsCollectableMemCpy =
7789          (BaseType->isRecordType() &&
7790           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7791
7792      if (NeedsCollectableMemCpy) {
7793        if (!CollectableMemCpyRef) {
7794          // Create a reference to the __builtin_objc_memmove_collectable function.
7795          LookupResult R(*this,
7796                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7797                         Loc, LookupOrdinaryName);
7798          LookupName(R, TUScope, true);
7799
7800          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7801          if (!CollectableMemCpy) {
7802            // Something went horribly wrong earlier, and we will have
7803            // complained about it.
7804            Invalid = true;
7805            continue;
7806          }
7807
7808          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7809                                                  CollectableMemCpy->getType(),
7810                                                  VK_LValue, Loc, 0).take();
7811          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7812        }
7813      }
7814      // Create a reference to the __builtin_memcpy builtin function.
7815      else if (!BuiltinMemCpyRef) {
7816        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7817                       LookupOrdinaryName);
7818        LookupName(R, TUScope, true);
7819
7820        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7821        if (!BuiltinMemCpy) {
7822          // Something went horribly wrong earlier, and we will have complained
7823          // about it.
7824          Invalid = true;
7825          continue;
7826        }
7827
7828        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7829                                            BuiltinMemCpy->getType(),
7830                                            VK_LValue, Loc, 0).take();
7831        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7832      }
7833
7834      ASTOwningVector<Expr*> CallArgs(*this);
7835      CallArgs.push_back(To.takeAs<Expr>());
7836      CallArgs.push_back(From.takeAs<Expr>());
7837      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7838      ExprResult Call = ExprError();
7839      if (NeedsCollectableMemCpy)
7840        Call = ActOnCallExpr(/*Scope=*/0,
7841                             CollectableMemCpyRef,
7842                             Loc, move_arg(CallArgs),
7843                             Loc);
7844      else
7845        Call = ActOnCallExpr(/*Scope=*/0,
7846                             BuiltinMemCpyRef,
7847                             Loc, move_arg(CallArgs),
7848                             Loc);
7849
7850      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7851      Statements.push_back(Call.takeAs<Expr>());
7852      continue;
7853    }
7854
7855    // Build the copy of this field.
7856    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7857                                            To.get(), From.get(),
7858                                            /*CopyingBaseSubobject=*/false,
7859                                            /*Copying=*/true);
7860    if (Copy.isInvalid()) {
7861      Diag(CurrentLocation, diag::note_member_synthesized_at)
7862        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7863      CopyAssignOperator->setInvalidDecl();
7864      return;
7865    }
7866
7867    // Success! Record the copy.
7868    Statements.push_back(Copy.takeAs<Stmt>());
7869  }
7870
7871  if (!Invalid) {
7872    // Add a "return *this;"
7873    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7874
7875    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7876    if (Return.isInvalid())
7877      Invalid = true;
7878    else {
7879      Statements.push_back(Return.takeAs<Stmt>());
7880
7881      if (Trap.hasErrorOccurred()) {
7882        Diag(CurrentLocation, diag::note_member_synthesized_at)
7883          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7884        Invalid = true;
7885      }
7886    }
7887  }
7888
7889  if (Invalid) {
7890    CopyAssignOperator->setInvalidDecl();
7891    return;
7892  }
7893
7894  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7895                                            /*isStmtExpr=*/false);
7896  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7897  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7898
7899  if (ASTMutationListener *L = getASTMutationListener()) {
7900    L->CompletedImplicitDefinition(CopyAssignOperator);
7901  }
7902}
7903
7904Sema::ImplicitExceptionSpecification
7905Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7906  ImplicitExceptionSpecification ExceptSpec(Context);
7907
7908  if (ClassDecl->isInvalidDecl())
7909    return ExceptSpec;
7910
7911  // C++0x [except.spec]p14:
7912  //   An implicitly declared special member function (Clause 12) shall have an
7913  //   exception-specification. [...]
7914
7915  // It is unspecified whether or not an implicit move assignment operator
7916  // attempts to deduplicate calls to assignment operators of virtual bases are
7917  // made. As such, this exception specification is effectively unspecified.
7918  // Based on a similar decision made for constness in C++0x, we're erring on
7919  // the side of assuming such calls to be made regardless of whether they
7920  // actually happen.
7921  // Note that a move constructor is not implicitly declared when there are
7922  // virtual bases, but it can still be user-declared and explicitly defaulted.
7923  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7924                                       BaseEnd = ClassDecl->bases_end();
7925       Base != BaseEnd; ++Base) {
7926    if (Base->isVirtual())
7927      continue;
7928
7929    CXXRecordDecl *BaseClassDecl
7930      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7931    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7932                                                           false, 0))
7933      ExceptSpec.CalledDecl(MoveAssign);
7934  }
7935
7936  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7937                                       BaseEnd = ClassDecl->vbases_end();
7938       Base != BaseEnd; ++Base) {
7939    CXXRecordDecl *BaseClassDecl
7940      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7941    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7942                                                           false, 0))
7943      ExceptSpec.CalledDecl(MoveAssign);
7944  }
7945
7946  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7947                                  FieldEnd = ClassDecl->field_end();
7948       Field != FieldEnd;
7949       ++Field) {
7950    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7951    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7952      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7953                                                             false, 0))
7954        ExceptSpec.CalledDecl(MoveAssign);
7955    }
7956  }
7957
7958  return ExceptSpec;
7959}
7960
7961CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7962  // Note: The following rules are largely analoguous to the move
7963  // constructor rules.
7964
7965  ImplicitExceptionSpecification Spec(
7966      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7967
7968  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7969  QualType RetType = Context.getLValueReferenceType(ArgType);
7970  ArgType = Context.getRValueReferenceType(ArgType);
7971
7972  //   An implicitly-declared move assignment operator is an inline public
7973  //   member of its class.
7974  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7975  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7976  SourceLocation ClassLoc = ClassDecl->getLocation();
7977  DeclarationNameInfo NameInfo(Name, ClassLoc);
7978  CXXMethodDecl *MoveAssignment
7979    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7980                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7981                            /*TInfo=*/0, /*isStatic=*/false,
7982                            /*StorageClassAsWritten=*/SC_None,
7983                            /*isInline=*/true,
7984                            /*isConstexpr=*/false,
7985                            SourceLocation());
7986  MoveAssignment->setAccess(AS_public);
7987  MoveAssignment->setDefaulted();
7988  MoveAssignment->setImplicit();
7989  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7990
7991  // Add the parameter to the operator.
7992  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7993                                               ClassLoc, ClassLoc, /*Id=*/0,
7994                                               ArgType, /*TInfo=*/0,
7995                                               SC_None,
7996                                               SC_None, 0);
7997  MoveAssignment->setParams(FromParam);
7998
7999  // Note that we have added this copy-assignment operator.
8000  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8001
8002  // C++0x [class.copy]p9:
8003  //   If the definition of a class X does not explicitly declare a move
8004  //   assignment operator, one will be implicitly declared as defaulted if and
8005  //   only if:
8006  //   [...]
8007  //   - the move assignment operator would not be implicitly defined as
8008  //     deleted.
8009  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8010    // Cache this result so that we don't try to generate this over and over
8011    // on every lookup, leaking memory and wasting time.
8012    ClassDecl->setFailedImplicitMoveAssignment();
8013    return 0;
8014  }
8015
8016  if (Scope *S = getScopeForContext(ClassDecl))
8017    PushOnScopeChains(MoveAssignment, S, false);
8018  ClassDecl->addDecl(MoveAssignment);
8019
8020  AddOverriddenMethods(ClassDecl, MoveAssignment);
8021  return MoveAssignment;
8022}
8023
8024void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8025                                        CXXMethodDecl *MoveAssignOperator) {
8026  assert((MoveAssignOperator->isDefaulted() &&
8027          MoveAssignOperator->isOverloadedOperator() &&
8028          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8029          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8030         "DefineImplicitMoveAssignment called for wrong function");
8031
8032  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8033
8034  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8035    MoveAssignOperator->setInvalidDecl();
8036    return;
8037  }
8038
8039  MoveAssignOperator->setUsed();
8040
8041  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8042  DiagnosticErrorTrap Trap(Diags);
8043
8044  // C++0x [class.copy]p28:
8045  //   The implicitly-defined or move assignment operator for a non-union class
8046  //   X performs memberwise move assignment of its subobjects. The direct base
8047  //   classes of X are assigned first, in the order of their declaration in the
8048  //   base-specifier-list, and then the immediate non-static data members of X
8049  //   are assigned, in the order in which they were declared in the class
8050  //   definition.
8051
8052  // The statements that form the synthesized function body.
8053  ASTOwningVector<Stmt*> Statements(*this);
8054
8055  // The parameter for the "other" object, which we are move from.
8056  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8057  QualType OtherRefType = Other->getType()->
8058      getAs<RValueReferenceType>()->getPointeeType();
8059  assert(OtherRefType.getQualifiers() == 0 &&
8060         "Bad argument type of defaulted move assignment");
8061
8062  // Our location for everything implicitly-generated.
8063  SourceLocation Loc = MoveAssignOperator->getLocation();
8064
8065  // Construct a reference to the "other" object. We'll be using this
8066  // throughout the generated ASTs.
8067  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8068  assert(OtherRef && "Reference to parameter cannot fail!");
8069  // Cast to rvalue.
8070  OtherRef = CastForMoving(*this, OtherRef);
8071
8072  // Construct the "this" pointer. We'll be using this throughout the generated
8073  // ASTs.
8074  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8075  assert(This && "Reference to this cannot fail!");
8076
8077  // Assign base classes.
8078  bool Invalid = false;
8079  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8080       E = ClassDecl->bases_end(); Base != E; ++Base) {
8081    // Form the assignment:
8082    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8083    QualType BaseType = Base->getType().getUnqualifiedType();
8084    if (!BaseType->isRecordType()) {
8085      Invalid = true;
8086      continue;
8087    }
8088
8089    CXXCastPath BasePath;
8090    BasePath.push_back(Base);
8091
8092    // Construct the "from" expression, which is an implicit cast to the
8093    // appropriately-qualified base type.
8094    Expr *From = OtherRef;
8095    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8096                             VK_XValue, &BasePath).take();
8097
8098    // Dereference "this".
8099    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8100
8101    // Implicitly cast "this" to the appropriately-qualified base type.
8102    To = ImpCastExprToType(To.take(),
8103                           Context.getCVRQualifiedType(BaseType,
8104                                     MoveAssignOperator->getTypeQualifiers()),
8105                           CK_UncheckedDerivedToBase,
8106                           VK_LValue, &BasePath);
8107
8108    // Build the move.
8109    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8110                                            To.get(), From,
8111                                            /*CopyingBaseSubobject=*/true,
8112                                            /*Copying=*/false);
8113    if (Move.isInvalid()) {
8114      Diag(CurrentLocation, diag::note_member_synthesized_at)
8115        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8116      MoveAssignOperator->setInvalidDecl();
8117      return;
8118    }
8119
8120    // Success! Record the move.
8121    Statements.push_back(Move.takeAs<Expr>());
8122  }
8123
8124  // \brief Reference to the __builtin_memcpy function.
8125  Expr *BuiltinMemCpyRef = 0;
8126  // \brief Reference to the __builtin_objc_memmove_collectable function.
8127  Expr *CollectableMemCpyRef = 0;
8128
8129  // Assign non-static members.
8130  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8131                                  FieldEnd = ClassDecl->field_end();
8132       Field != FieldEnd; ++Field) {
8133    if (Field->isUnnamedBitfield())
8134      continue;
8135
8136    // Check for members of reference type; we can't move those.
8137    if (Field->getType()->isReferenceType()) {
8138      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8139        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8140      Diag(Field->getLocation(), diag::note_declared_at);
8141      Diag(CurrentLocation, diag::note_member_synthesized_at)
8142        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8143      Invalid = true;
8144      continue;
8145    }
8146
8147    // Check for members of const-qualified, non-class type.
8148    QualType BaseType = Context.getBaseElementType(Field->getType());
8149    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8150      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8151        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8152      Diag(Field->getLocation(), diag::note_declared_at);
8153      Diag(CurrentLocation, diag::note_member_synthesized_at)
8154        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8155      Invalid = true;
8156      continue;
8157    }
8158
8159    // Suppress assigning zero-width bitfields.
8160    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8161      continue;
8162
8163    QualType FieldType = Field->getType().getNonReferenceType();
8164    if (FieldType->isIncompleteArrayType()) {
8165      assert(ClassDecl->hasFlexibleArrayMember() &&
8166             "Incomplete array type is not valid");
8167      continue;
8168    }
8169
8170    // Build references to the field in the object we're copying from and to.
8171    CXXScopeSpec SS; // Intentionally empty
8172    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8173                              LookupMemberName);
8174    MemberLookup.addDecl(*Field);
8175    MemberLookup.resolveKind();
8176    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8177                                               Loc, /*IsArrow=*/false,
8178                                               SS, 0, MemberLookup, 0);
8179    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8180                                             Loc, /*IsArrow=*/true,
8181                                             SS, 0, MemberLookup, 0);
8182    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8183    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8184
8185    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8186        "Member reference with rvalue base must be rvalue except for reference "
8187        "members, which aren't allowed for move assignment.");
8188
8189    // If the field should be copied with __builtin_memcpy rather than via
8190    // explicit assignments, do so. This optimization only applies for arrays
8191    // of scalars and arrays of class type with trivial move-assignment
8192    // operators.
8193    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8194        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8195      // Compute the size of the memory buffer to be copied.
8196      QualType SizeType = Context.getSizeType();
8197      llvm::APInt Size(Context.getTypeSize(SizeType),
8198                       Context.getTypeSizeInChars(BaseType).getQuantity());
8199      for (const ConstantArrayType *Array
8200              = Context.getAsConstantArrayType(FieldType);
8201           Array;
8202           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8203        llvm::APInt ArraySize
8204          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8205        Size *= ArraySize;
8206      }
8207
8208      // Take the address of the field references for "from" and "to". We
8209      // directly construct UnaryOperators here because semantic analysis
8210      // does not permit us to take the address of an xvalue.
8211      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8212                             Context.getPointerType(From.get()->getType()),
8213                             VK_RValue, OK_Ordinary, Loc);
8214      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8215                           Context.getPointerType(To.get()->getType()),
8216                           VK_RValue, OK_Ordinary, Loc);
8217
8218      bool NeedsCollectableMemCpy =
8219          (BaseType->isRecordType() &&
8220           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8221
8222      if (NeedsCollectableMemCpy) {
8223        if (!CollectableMemCpyRef) {
8224          // Create a reference to the __builtin_objc_memmove_collectable function.
8225          LookupResult R(*this,
8226                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8227                         Loc, LookupOrdinaryName);
8228          LookupName(R, TUScope, true);
8229
8230          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8231          if (!CollectableMemCpy) {
8232            // Something went horribly wrong earlier, and we will have
8233            // complained about it.
8234            Invalid = true;
8235            continue;
8236          }
8237
8238          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8239                                                  CollectableMemCpy->getType(),
8240                                                  VK_LValue, Loc, 0).take();
8241          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8242        }
8243      }
8244      // Create a reference to the __builtin_memcpy builtin function.
8245      else if (!BuiltinMemCpyRef) {
8246        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8247                       LookupOrdinaryName);
8248        LookupName(R, TUScope, true);
8249
8250        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8251        if (!BuiltinMemCpy) {
8252          // Something went horribly wrong earlier, and we will have complained
8253          // about it.
8254          Invalid = true;
8255          continue;
8256        }
8257
8258        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8259                                            BuiltinMemCpy->getType(),
8260                                            VK_LValue, Loc, 0).take();
8261        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8262      }
8263
8264      ASTOwningVector<Expr*> CallArgs(*this);
8265      CallArgs.push_back(To.takeAs<Expr>());
8266      CallArgs.push_back(From.takeAs<Expr>());
8267      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8268      ExprResult Call = ExprError();
8269      if (NeedsCollectableMemCpy)
8270        Call = ActOnCallExpr(/*Scope=*/0,
8271                             CollectableMemCpyRef,
8272                             Loc, move_arg(CallArgs),
8273                             Loc);
8274      else
8275        Call = ActOnCallExpr(/*Scope=*/0,
8276                             BuiltinMemCpyRef,
8277                             Loc, move_arg(CallArgs),
8278                             Loc);
8279
8280      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8281      Statements.push_back(Call.takeAs<Expr>());
8282      continue;
8283    }
8284
8285    // Build the move of this field.
8286    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8287                                            To.get(), From.get(),
8288                                            /*CopyingBaseSubobject=*/false,
8289                                            /*Copying=*/false);
8290    if (Move.isInvalid()) {
8291      Diag(CurrentLocation, diag::note_member_synthesized_at)
8292        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8293      MoveAssignOperator->setInvalidDecl();
8294      return;
8295    }
8296
8297    // Success! Record the copy.
8298    Statements.push_back(Move.takeAs<Stmt>());
8299  }
8300
8301  if (!Invalid) {
8302    // Add a "return *this;"
8303    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8304
8305    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8306    if (Return.isInvalid())
8307      Invalid = true;
8308    else {
8309      Statements.push_back(Return.takeAs<Stmt>());
8310
8311      if (Trap.hasErrorOccurred()) {
8312        Diag(CurrentLocation, diag::note_member_synthesized_at)
8313          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8314        Invalid = true;
8315      }
8316    }
8317  }
8318
8319  if (Invalid) {
8320    MoveAssignOperator->setInvalidDecl();
8321    return;
8322  }
8323
8324  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8325                                            /*isStmtExpr=*/false);
8326  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8327  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8328
8329  if (ASTMutationListener *L = getASTMutationListener()) {
8330    L->CompletedImplicitDefinition(MoveAssignOperator);
8331  }
8332}
8333
8334std::pair<Sema::ImplicitExceptionSpecification, bool>
8335Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8336  if (ClassDecl->isInvalidDecl())
8337    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8338
8339  // C++ [class.copy]p5:
8340  //   The implicitly-declared copy constructor for a class X will
8341  //   have the form
8342  //
8343  //       X::X(const X&)
8344  //
8345  //   if
8346  // FIXME: It ought to be possible to store this on the record.
8347  bool HasConstCopyConstructor = true;
8348
8349  //     -- each direct or virtual base class B of X has a copy
8350  //        constructor whose first parameter is of type const B& or
8351  //        const volatile B&, and
8352  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8353                                       BaseEnd = ClassDecl->bases_end();
8354       HasConstCopyConstructor && Base != BaseEnd;
8355       ++Base) {
8356    // Virtual bases are handled below.
8357    if (Base->isVirtual())
8358      continue;
8359
8360    CXXRecordDecl *BaseClassDecl
8361      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8362    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8363                             &HasConstCopyConstructor);
8364  }
8365
8366  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8367                                       BaseEnd = ClassDecl->vbases_end();
8368       HasConstCopyConstructor && Base != BaseEnd;
8369       ++Base) {
8370    CXXRecordDecl *BaseClassDecl
8371      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8372    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8373                             &HasConstCopyConstructor);
8374  }
8375
8376  //     -- for all the nonstatic data members of X that are of a
8377  //        class type M (or array thereof), each such class type
8378  //        has a copy constructor whose first parameter is of type
8379  //        const M& or const volatile M&.
8380  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8381                                  FieldEnd = ClassDecl->field_end();
8382       HasConstCopyConstructor && Field != FieldEnd;
8383       ++Field) {
8384    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8385    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8386      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8387                               &HasConstCopyConstructor);
8388    }
8389  }
8390  //   Otherwise, the implicitly declared copy constructor will have
8391  //   the form
8392  //
8393  //       X::X(X&)
8394
8395  // C++ [except.spec]p14:
8396  //   An implicitly declared special member function (Clause 12) shall have an
8397  //   exception-specification. [...]
8398  ImplicitExceptionSpecification ExceptSpec(Context);
8399  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8400  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8401                                       BaseEnd = ClassDecl->bases_end();
8402       Base != BaseEnd;
8403       ++Base) {
8404    // Virtual bases are handled below.
8405    if (Base->isVirtual())
8406      continue;
8407
8408    CXXRecordDecl *BaseClassDecl
8409      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8410    if (CXXConstructorDecl *CopyConstructor =
8411          LookupCopyingConstructor(BaseClassDecl, Quals))
8412      ExceptSpec.CalledDecl(CopyConstructor);
8413  }
8414  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8415                                       BaseEnd = ClassDecl->vbases_end();
8416       Base != BaseEnd;
8417       ++Base) {
8418    CXXRecordDecl *BaseClassDecl
8419      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8420    if (CXXConstructorDecl *CopyConstructor =
8421          LookupCopyingConstructor(BaseClassDecl, Quals))
8422      ExceptSpec.CalledDecl(CopyConstructor);
8423  }
8424  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8425                                  FieldEnd = ClassDecl->field_end();
8426       Field != FieldEnd;
8427       ++Field) {
8428    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8429    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8430      if (CXXConstructorDecl *CopyConstructor =
8431        LookupCopyingConstructor(FieldClassDecl, Quals))
8432      ExceptSpec.CalledDecl(CopyConstructor);
8433    }
8434  }
8435
8436  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8437}
8438
8439CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8440                                                    CXXRecordDecl *ClassDecl) {
8441  // C++ [class.copy]p4:
8442  //   If the class definition does not explicitly declare a copy
8443  //   constructor, one is declared implicitly.
8444
8445  ImplicitExceptionSpecification Spec(Context);
8446  bool Const;
8447  llvm::tie(Spec, Const) =
8448    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8449
8450  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8451  QualType ArgType = ClassType;
8452  if (Const)
8453    ArgType = ArgType.withConst();
8454  ArgType = Context.getLValueReferenceType(ArgType);
8455
8456  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8457
8458  DeclarationName Name
8459    = Context.DeclarationNames.getCXXConstructorName(
8460                                           Context.getCanonicalType(ClassType));
8461  SourceLocation ClassLoc = ClassDecl->getLocation();
8462  DeclarationNameInfo NameInfo(Name, ClassLoc);
8463
8464  //   An implicitly-declared copy constructor is an inline public
8465  //   member of its class.
8466  CXXConstructorDecl *CopyConstructor
8467    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8468                                 Context.getFunctionType(Context.VoidTy,
8469                                                         &ArgType, 1, EPI),
8470                                 /*TInfo=*/0,
8471                                 /*isExplicit=*/false,
8472                                 /*isInline=*/true,
8473                                 /*isImplicitlyDeclared=*/true,
8474                                 // FIXME: apply the rules for definitions here
8475                                 /*isConstexpr=*/false);
8476  CopyConstructor->setAccess(AS_public);
8477  CopyConstructor->setDefaulted();
8478  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8479
8480  // Note that we have declared this constructor.
8481  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8482
8483  // Add the parameter to the constructor.
8484  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8485                                               ClassLoc, ClassLoc,
8486                                               /*IdentifierInfo=*/0,
8487                                               ArgType, /*TInfo=*/0,
8488                                               SC_None,
8489                                               SC_None, 0);
8490  CopyConstructor->setParams(FromParam);
8491
8492  if (Scope *S = getScopeForContext(ClassDecl))
8493    PushOnScopeChains(CopyConstructor, S, false);
8494  ClassDecl->addDecl(CopyConstructor);
8495
8496  // C++0x [class.copy]p7:
8497  //   ... If the class definition declares a move constructor or move
8498  //   assignment operator, the implicitly declared constructor is defined as
8499  //   deleted; ...
8500  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8501      ClassDecl->hasUserDeclaredMoveAssignment() ||
8502      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8503    CopyConstructor->setDeletedAsWritten();
8504
8505  return CopyConstructor;
8506}
8507
8508void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8509                                   CXXConstructorDecl *CopyConstructor) {
8510  assert((CopyConstructor->isDefaulted() &&
8511          CopyConstructor->isCopyConstructor() &&
8512          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8513         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8514
8515  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8516  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8517
8518  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8519  DiagnosticErrorTrap Trap(Diags);
8520
8521  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8522      Trap.hasErrorOccurred()) {
8523    Diag(CurrentLocation, diag::note_member_synthesized_at)
8524      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8525    CopyConstructor->setInvalidDecl();
8526  }  else {
8527    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8528                                               CopyConstructor->getLocation(),
8529                                               MultiStmtArg(*this, 0, 0),
8530                                               /*isStmtExpr=*/false)
8531                                                              .takeAs<Stmt>());
8532    CopyConstructor->setImplicitlyDefined(true);
8533  }
8534
8535  CopyConstructor->setUsed();
8536  if (ASTMutationListener *L = getASTMutationListener()) {
8537    L->CompletedImplicitDefinition(CopyConstructor);
8538  }
8539}
8540
8541Sema::ImplicitExceptionSpecification
8542Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8543  // C++ [except.spec]p14:
8544  //   An implicitly declared special member function (Clause 12) shall have an
8545  //   exception-specification. [...]
8546  ImplicitExceptionSpecification ExceptSpec(Context);
8547  if (ClassDecl->isInvalidDecl())
8548    return ExceptSpec;
8549
8550  // Direct base-class constructors.
8551  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8552                                       BEnd = ClassDecl->bases_end();
8553       B != BEnd; ++B) {
8554    if (B->isVirtual()) // Handled below.
8555      continue;
8556
8557    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8558      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8559      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8560      // If this is a deleted function, add it anyway. This might be conformant
8561      // with the standard. This might not. I'm not sure. It might not matter.
8562      if (Constructor)
8563        ExceptSpec.CalledDecl(Constructor);
8564    }
8565  }
8566
8567  // Virtual base-class constructors.
8568  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8569                                       BEnd = ClassDecl->vbases_end();
8570       B != BEnd; ++B) {
8571    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8572      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8573      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8574      // If this is a deleted function, add it anyway. This might be conformant
8575      // with the standard. This might not. I'm not sure. It might not matter.
8576      if (Constructor)
8577        ExceptSpec.CalledDecl(Constructor);
8578    }
8579  }
8580
8581  // Field constructors.
8582  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8583                               FEnd = ClassDecl->field_end();
8584       F != FEnd; ++F) {
8585    if (F->hasInClassInitializer()) {
8586      if (Expr *E = F->getInClassInitializer())
8587        ExceptSpec.CalledExpr(E);
8588      else if (!F->isInvalidDecl())
8589        ExceptSpec.SetDelayed();
8590    } else if (const RecordType *RecordTy
8591              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8592      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8593      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8594      // If this is a deleted function, add it anyway. This might be conformant
8595      // with the standard. This might not. I'm not sure. It might not matter.
8596      // In particular, the problem is that this function never gets called. It
8597      // might just be ill-formed because this function attempts to refer to
8598      // a deleted function here.
8599      if (Constructor)
8600        ExceptSpec.CalledDecl(Constructor);
8601    }
8602  }
8603
8604  return ExceptSpec;
8605}
8606
8607CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8608                                                    CXXRecordDecl *ClassDecl) {
8609  ImplicitExceptionSpecification Spec(
8610      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8611
8612  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8613  QualType ArgType = Context.getRValueReferenceType(ClassType);
8614
8615  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8616
8617  DeclarationName Name
8618    = Context.DeclarationNames.getCXXConstructorName(
8619                                           Context.getCanonicalType(ClassType));
8620  SourceLocation ClassLoc = ClassDecl->getLocation();
8621  DeclarationNameInfo NameInfo(Name, ClassLoc);
8622
8623  // C++0x [class.copy]p11:
8624  //   An implicitly-declared copy/move constructor is an inline public
8625  //   member of its class.
8626  CXXConstructorDecl *MoveConstructor
8627    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8628                                 Context.getFunctionType(Context.VoidTy,
8629                                                         &ArgType, 1, EPI),
8630                                 /*TInfo=*/0,
8631                                 /*isExplicit=*/false,
8632                                 /*isInline=*/true,
8633                                 /*isImplicitlyDeclared=*/true,
8634                                 // FIXME: apply the rules for definitions here
8635                                 /*isConstexpr=*/false);
8636  MoveConstructor->setAccess(AS_public);
8637  MoveConstructor->setDefaulted();
8638  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8639
8640  // Add the parameter to the constructor.
8641  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8642                                               ClassLoc, ClassLoc,
8643                                               /*IdentifierInfo=*/0,
8644                                               ArgType, /*TInfo=*/0,
8645                                               SC_None,
8646                                               SC_None, 0);
8647  MoveConstructor->setParams(FromParam);
8648
8649  // C++0x [class.copy]p9:
8650  //   If the definition of a class X does not explicitly declare a move
8651  //   constructor, one will be implicitly declared as defaulted if and only if:
8652  //   [...]
8653  //   - the move constructor would not be implicitly defined as deleted.
8654  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8655    // Cache this result so that we don't try to generate this over and over
8656    // on every lookup, leaking memory and wasting time.
8657    ClassDecl->setFailedImplicitMoveConstructor();
8658    return 0;
8659  }
8660
8661  // Note that we have declared this constructor.
8662  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8663
8664  if (Scope *S = getScopeForContext(ClassDecl))
8665    PushOnScopeChains(MoveConstructor, S, false);
8666  ClassDecl->addDecl(MoveConstructor);
8667
8668  return MoveConstructor;
8669}
8670
8671void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8672                                   CXXConstructorDecl *MoveConstructor) {
8673  assert((MoveConstructor->isDefaulted() &&
8674          MoveConstructor->isMoveConstructor() &&
8675          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8676         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8677
8678  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8679  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8680
8681  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8682  DiagnosticErrorTrap Trap(Diags);
8683
8684  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8685      Trap.hasErrorOccurred()) {
8686    Diag(CurrentLocation, diag::note_member_synthesized_at)
8687      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8688    MoveConstructor->setInvalidDecl();
8689  }  else {
8690    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8691                                               MoveConstructor->getLocation(),
8692                                               MultiStmtArg(*this, 0, 0),
8693                                               /*isStmtExpr=*/false)
8694                                                              .takeAs<Stmt>());
8695    MoveConstructor->setImplicitlyDefined(true);
8696  }
8697
8698  MoveConstructor->setUsed();
8699
8700  if (ASTMutationListener *L = getASTMutationListener()) {
8701    L->CompletedImplicitDefinition(MoveConstructor);
8702  }
8703}
8704
8705ExprResult
8706Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8707                            CXXConstructorDecl *Constructor,
8708                            MultiExprArg ExprArgs,
8709                            bool HadMultipleCandidates,
8710                            bool RequiresZeroInit,
8711                            unsigned ConstructKind,
8712                            SourceRange ParenRange) {
8713  bool Elidable = false;
8714
8715  // C++0x [class.copy]p34:
8716  //   When certain criteria are met, an implementation is allowed to
8717  //   omit the copy/move construction of a class object, even if the
8718  //   copy/move constructor and/or destructor for the object have
8719  //   side effects. [...]
8720  //     - when a temporary class object that has not been bound to a
8721  //       reference (12.2) would be copied/moved to a class object
8722  //       with the same cv-unqualified type, the copy/move operation
8723  //       can be omitted by constructing the temporary object
8724  //       directly into the target of the omitted copy/move
8725  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8726      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8727    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8728    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8729  }
8730
8731  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8732                               Elidable, move(ExprArgs), HadMultipleCandidates,
8733                               RequiresZeroInit, ConstructKind, ParenRange);
8734}
8735
8736/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8737/// including handling of its default argument expressions.
8738ExprResult
8739Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8740                            CXXConstructorDecl *Constructor, bool Elidable,
8741                            MultiExprArg ExprArgs,
8742                            bool HadMultipleCandidates,
8743                            bool RequiresZeroInit,
8744                            unsigned ConstructKind,
8745                            SourceRange ParenRange) {
8746  unsigned NumExprs = ExprArgs.size();
8747  Expr **Exprs = (Expr **)ExprArgs.release();
8748
8749  for (specific_attr_iterator<NonNullAttr>
8750           i = Constructor->specific_attr_begin<NonNullAttr>(),
8751           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8752    const NonNullAttr *NonNull = *i;
8753    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8754  }
8755
8756  MarkDeclarationReferenced(ConstructLoc, Constructor);
8757  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8758                                        Constructor, Elidable, Exprs, NumExprs,
8759                                        HadMultipleCandidates, RequiresZeroInit,
8760              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8761                                        ParenRange));
8762}
8763
8764bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8765                                        CXXConstructorDecl *Constructor,
8766                                        MultiExprArg Exprs,
8767                                        bool HadMultipleCandidates) {
8768  // FIXME: Provide the correct paren SourceRange when available.
8769  ExprResult TempResult =
8770    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8771                          move(Exprs), HadMultipleCandidates, false,
8772                          CXXConstructExpr::CK_Complete, SourceRange());
8773  if (TempResult.isInvalid())
8774    return true;
8775
8776  Expr *Temp = TempResult.takeAs<Expr>();
8777  CheckImplicitConversions(Temp, VD->getLocation());
8778  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8779  Temp = MaybeCreateExprWithCleanups(Temp);
8780  VD->setInit(Temp);
8781
8782  return false;
8783}
8784
8785void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8786  if (VD->isInvalidDecl()) return;
8787
8788  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8789  if (ClassDecl->isInvalidDecl()) return;
8790  if (ClassDecl->hasTrivialDestructor()) return;
8791  if (ClassDecl->isDependentContext()) return;
8792
8793  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8794  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8795  CheckDestructorAccess(VD->getLocation(), Destructor,
8796                        PDiag(diag::err_access_dtor_var)
8797                        << VD->getDeclName()
8798                        << VD->getType());
8799
8800  if (!VD->hasGlobalStorage()) return;
8801
8802  // Emit warning for non-trivial dtor in global scope (a real global,
8803  // class-static, function-static).
8804  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8805
8806  // TODO: this should be re-enabled for static locals by !CXAAtExit
8807  if (!VD->isStaticLocal())
8808    Diag(VD->getLocation(), diag::warn_global_destructor);
8809}
8810
8811/// AddCXXDirectInitializerToDecl - This action is called immediately after
8812/// ActOnDeclarator, when a C++ direct initializer is present.
8813/// e.g: "int x(1);"
8814void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8815                                         SourceLocation LParenLoc,
8816                                         MultiExprArg Exprs,
8817                                         SourceLocation RParenLoc,
8818                                         bool TypeMayContainAuto) {
8819  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8820
8821  // If there is no declaration, there was an error parsing it.  Just ignore
8822  // the initializer.
8823  if (RealDecl == 0)
8824    return;
8825
8826  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8827  if (!VDecl) {
8828    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8829    RealDecl->setInvalidDecl();
8830    return;
8831  }
8832
8833  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8834  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8835    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8836    if (Exprs.size() > 1) {
8837      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8838           diag::err_auto_var_init_multiple_expressions)
8839        << VDecl->getDeclName() << VDecl->getType()
8840        << VDecl->getSourceRange();
8841      RealDecl->setInvalidDecl();
8842      return;
8843    }
8844
8845    Expr *Init = Exprs.get()[0];
8846    TypeSourceInfo *DeducedType = 0;
8847    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8848      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8849        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8850        << Init->getSourceRange();
8851    if (!DeducedType) {
8852      RealDecl->setInvalidDecl();
8853      return;
8854    }
8855    VDecl->setTypeSourceInfo(DeducedType);
8856    VDecl->setType(DeducedType->getType());
8857
8858    // In ARC, infer lifetime.
8859    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8860      VDecl->setInvalidDecl();
8861
8862    // If this is a redeclaration, check that the type we just deduced matches
8863    // the previously declared type.
8864    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8865      MergeVarDeclTypes(VDecl, Old);
8866  }
8867
8868  // We will represent direct-initialization similarly to copy-initialization:
8869  //    int x(1);  -as-> int x = 1;
8870  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8871  //
8872  // Clients that want to distinguish between the two forms, can check for
8873  // direct initializer using VarDecl::hasCXXDirectInitializer().
8874  // A major benefit is that clients that don't particularly care about which
8875  // exactly form was it (like the CodeGen) can handle both cases without
8876  // special case code.
8877
8878  // C++ 8.5p11:
8879  // The form of initialization (using parentheses or '=') is generally
8880  // insignificant, but does matter when the entity being initialized has a
8881  // class type.
8882
8883  if (!VDecl->getType()->isDependentType() &&
8884      !VDecl->getType()->isIncompleteArrayType() &&
8885      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8886                          diag::err_typecheck_decl_incomplete_type)) {
8887    VDecl->setInvalidDecl();
8888    return;
8889  }
8890
8891  // The variable can not have an abstract class type.
8892  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8893                             diag::err_abstract_type_in_decl,
8894                             AbstractVariableType))
8895    VDecl->setInvalidDecl();
8896
8897  const VarDecl *Def;
8898  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8899    Diag(VDecl->getLocation(), diag::err_redefinition)
8900    << VDecl->getDeclName();
8901    Diag(Def->getLocation(), diag::note_previous_definition);
8902    VDecl->setInvalidDecl();
8903    return;
8904  }
8905
8906  // C++ [class.static.data]p4
8907  //   If a static data member is of const integral or const
8908  //   enumeration type, its declaration in the class definition can
8909  //   specify a constant-initializer which shall be an integral
8910  //   constant expression (5.19). In that case, the member can appear
8911  //   in integral constant expressions. The member shall still be
8912  //   defined in a namespace scope if it is used in the program and the
8913  //   namespace scope definition shall not contain an initializer.
8914  //
8915  // We already performed a redefinition check above, but for static
8916  // data members we also need to check whether there was an in-class
8917  // declaration with an initializer.
8918  const VarDecl* PrevInit = 0;
8919  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8920    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8921    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8922    return;
8923  }
8924
8925  bool IsDependent = false;
8926  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8927    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8928      VDecl->setInvalidDecl();
8929      return;
8930    }
8931
8932    if (Exprs.get()[I]->isTypeDependent())
8933      IsDependent = true;
8934  }
8935
8936  // If either the declaration has a dependent type or if any of the
8937  // expressions is type-dependent, we represent the initialization
8938  // via a ParenListExpr for later use during template instantiation.
8939  if (VDecl->getType()->isDependentType() || IsDependent) {
8940    // Let clients know that initialization was done with a direct initializer.
8941    VDecl->setCXXDirectInitializer(true);
8942
8943    // Store the initialization expressions as a ParenListExpr.
8944    unsigned NumExprs = Exprs.size();
8945    VDecl->setInit(new (Context) ParenListExpr(
8946        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8947        VDecl->getType().getNonReferenceType()));
8948    return;
8949  }
8950
8951  // Capture the variable that is being initialized and the style of
8952  // initialization.
8953  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8954
8955  // FIXME: Poor source location information.
8956  InitializationKind Kind
8957    = InitializationKind::CreateDirect(VDecl->getLocation(),
8958                                       LParenLoc, RParenLoc);
8959
8960  QualType T = VDecl->getType();
8961  InitializationSequence InitSeq(*this, Entity, Kind,
8962                                 Exprs.get(), Exprs.size());
8963  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8964  if (Result.isInvalid()) {
8965    VDecl->setInvalidDecl();
8966    return;
8967  } else if (T != VDecl->getType()) {
8968    VDecl->setType(T);
8969    Result.get()->setType(T);
8970  }
8971
8972
8973  Expr *Init = Result.get();
8974  CheckImplicitConversions(Init, LParenLoc);
8975
8976  Init = MaybeCreateExprWithCleanups(Init);
8977  VDecl->setInit(Init);
8978  VDecl->setCXXDirectInitializer(true);
8979
8980  CheckCompleteVariableDeclaration(VDecl);
8981}
8982
8983/// \brief Given a constructor and the set of arguments provided for the
8984/// constructor, convert the arguments and add any required default arguments
8985/// to form a proper call to this constructor.
8986///
8987/// \returns true if an error occurred, false otherwise.
8988bool
8989Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8990                              MultiExprArg ArgsPtr,
8991                              SourceLocation Loc,
8992                              ASTOwningVector<Expr*> &ConvertedArgs) {
8993  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8994  unsigned NumArgs = ArgsPtr.size();
8995  Expr **Args = (Expr **)ArgsPtr.get();
8996
8997  const FunctionProtoType *Proto
8998    = Constructor->getType()->getAs<FunctionProtoType>();
8999  assert(Proto && "Constructor without a prototype?");
9000  unsigned NumArgsInProto = Proto->getNumArgs();
9001
9002  // If too few arguments are available, we'll fill in the rest with defaults.
9003  if (NumArgs < NumArgsInProto)
9004    ConvertedArgs.reserve(NumArgsInProto);
9005  else
9006    ConvertedArgs.reserve(NumArgs);
9007
9008  VariadicCallType CallType =
9009    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9010  SmallVector<Expr *, 8> AllArgs;
9011  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9012                                        Proto, 0, Args, NumArgs, AllArgs,
9013                                        CallType);
9014  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9015    ConvertedArgs.push_back(AllArgs[i]);
9016  return Invalid;
9017}
9018
9019static inline bool
9020CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9021                                       const FunctionDecl *FnDecl) {
9022  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9023  if (isa<NamespaceDecl>(DC)) {
9024    return SemaRef.Diag(FnDecl->getLocation(),
9025                        diag::err_operator_new_delete_declared_in_namespace)
9026      << FnDecl->getDeclName();
9027  }
9028
9029  if (isa<TranslationUnitDecl>(DC) &&
9030      FnDecl->getStorageClass() == SC_Static) {
9031    return SemaRef.Diag(FnDecl->getLocation(),
9032                        diag::err_operator_new_delete_declared_static)
9033      << FnDecl->getDeclName();
9034  }
9035
9036  return false;
9037}
9038
9039static inline bool
9040CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9041                            CanQualType ExpectedResultType,
9042                            CanQualType ExpectedFirstParamType,
9043                            unsigned DependentParamTypeDiag,
9044                            unsigned InvalidParamTypeDiag) {
9045  QualType ResultType =
9046    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9047
9048  // Check that the result type is not dependent.
9049  if (ResultType->isDependentType())
9050    return SemaRef.Diag(FnDecl->getLocation(),
9051                        diag::err_operator_new_delete_dependent_result_type)
9052    << FnDecl->getDeclName() << ExpectedResultType;
9053
9054  // Check that the result type is what we expect.
9055  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9056    return SemaRef.Diag(FnDecl->getLocation(),
9057                        diag::err_operator_new_delete_invalid_result_type)
9058    << FnDecl->getDeclName() << ExpectedResultType;
9059
9060  // A function template must have at least 2 parameters.
9061  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9062    return SemaRef.Diag(FnDecl->getLocation(),
9063                      diag::err_operator_new_delete_template_too_few_parameters)
9064        << FnDecl->getDeclName();
9065
9066  // The function decl must have at least 1 parameter.
9067  if (FnDecl->getNumParams() == 0)
9068    return SemaRef.Diag(FnDecl->getLocation(),
9069                        diag::err_operator_new_delete_too_few_parameters)
9070      << FnDecl->getDeclName();
9071
9072  // Check the the first parameter type is not dependent.
9073  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9074  if (FirstParamType->isDependentType())
9075    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9076      << FnDecl->getDeclName() << ExpectedFirstParamType;
9077
9078  // Check that the first parameter type is what we expect.
9079  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9080      ExpectedFirstParamType)
9081    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9082    << FnDecl->getDeclName() << ExpectedFirstParamType;
9083
9084  return false;
9085}
9086
9087static bool
9088CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9089  // C++ [basic.stc.dynamic.allocation]p1:
9090  //   A program is ill-formed if an allocation function is declared in a
9091  //   namespace scope other than global scope or declared static in global
9092  //   scope.
9093  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9094    return true;
9095
9096  CanQualType SizeTy =
9097    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9098
9099  // C++ [basic.stc.dynamic.allocation]p1:
9100  //  The return type shall be void*. The first parameter shall have type
9101  //  std::size_t.
9102  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9103                                  SizeTy,
9104                                  diag::err_operator_new_dependent_param_type,
9105                                  diag::err_operator_new_param_type))
9106    return true;
9107
9108  // C++ [basic.stc.dynamic.allocation]p1:
9109  //  The first parameter shall not have an associated default argument.
9110  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9111    return SemaRef.Diag(FnDecl->getLocation(),
9112                        diag::err_operator_new_default_arg)
9113      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9114
9115  return false;
9116}
9117
9118static bool
9119CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9120  // C++ [basic.stc.dynamic.deallocation]p1:
9121  //   A program is ill-formed if deallocation functions are declared in a
9122  //   namespace scope other than global scope or declared static in global
9123  //   scope.
9124  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9125    return true;
9126
9127  // C++ [basic.stc.dynamic.deallocation]p2:
9128  //   Each deallocation function shall return void and its first parameter
9129  //   shall be void*.
9130  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9131                                  SemaRef.Context.VoidPtrTy,
9132                                 diag::err_operator_delete_dependent_param_type,
9133                                 diag::err_operator_delete_param_type))
9134    return true;
9135
9136  return false;
9137}
9138
9139/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9140/// of this overloaded operator is well-formed. If so, returns false;
9141/// otherwise, emits appropriate diagnostics and returns true.
9142bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9143  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9144         "Expected an overloaded operator declaration");
9145
9146  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9147
9148  // C++ [over.oper]p5:
9149  //   The allocation and deallocation functions, operator new,
9150  //   operator new[], operator delete and operator delete[], are
9151  //   described completely in 3.7.3. The attributes and restrictions
9152  //   found in the rest of this subclause do not apply to them unless
9153  //   explicitly stated in 3.7.3.
9154  if (Op == OO_Delete || Op == OO_Array_Delete)
9155    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9156
9157  if (Op == OO_New || Op == OO_Array_New)
9158    return CheckOperatorNewDeclaration(*this, FnDecl);
9159
9160  // C++ [over.oper]p6:
9161  //   An operator function shall either be a non-static member
9162  //   function or be a non-member function and have at least one
9163  //   parameter whose type is a class, a reference to a class, an
9164  //   enumeration, or a reference to an enumeration.
9165  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9166    if (MethodDecl->isStatic())
9167      return Diag(FnDecl->getLocation(),
9168                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9169  } else {
9170    bool ClassOrEnumParam = false;
9171    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9172                                   ParamEnd = FnDecl->param_end();
9173         Param != ParamEnd; ++Param) {
9174      QualType ParamType = (*Param)->getType().getNonReferenceType();
9175      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9176          ParamType->isEnumeralType()) {
9177        ClassOrEnumParam = true;
9178        break;
9179      }
9180    }
9181
9182    if (!ClassOrEnumParam)
9183      return Diag(FnDecl->getLocation(),
9184                  diag::err_operator_overload_needs_class_or_enum)
9185        << FnDecl->getDeclName();
9186  }
9187
9188  // C++ [over.oper]p8:
9189  //   An operator function cannot have default arguments (8.3.6),
9190  //   except where explicitly stated below.
9191  //
9192  // Only the function-call operator allows default arguments
9193  // (C++ [over.call]p1).
9194  if (Op != OO_Call) {
9195    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9196         Param != FnDecl->param_end(); ++Param) {
9197      if ((*Param)->hasDefaultArg())
9198        return Diag((*Param)->getLocation(),
9199                    diag::err_operator_overload_default_arg)
9200          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9201    }
9202  }
9203
9204  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9205    { false, false, false }
9206#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9207    , { Unary, Binary, MemberOnly }
9208#include "clang/Basic/OperatorKinds.def"
9209  };
9210
9211  bool CanBeUnaryOperator = OperatorUses[Op][0];
9212  bool CanBeBinaryOperator = OperatorUses[Op][1];
9213  bool MustBeMemberOperator = OperatorUses[Op][2];
9214
9215  // C++ [over.oper]p8:
9216  //   [...] Operator functions cannot have more or fewer parameters
9217  //   than the number required for the corresponding operator, as
9218  //   described in the rest of this subclause.
9219  unsigned NumParams = FnDecl->getNumParams()
9220                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9221  if (Op != OO_Call &&
9222      ((NumParams == 1 && !CanBeUnaryOperator) ||
9223       (NumParams == 2 && !CanBeBinaryOperator) ||
9224       (NumParams < 1) || (NumParams > 2))) {
9225    // We have the wrong number of parameters.
9226    unsigned ErrorKind;
9227    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9228      ErrorKind = 2;  // 2 -> unary or binary.
9229    } else if (CanBeUnaryOperator) {
9230      ErrorKind = 0;  // 0 -> unary
9231    } else {
9232      assert(CanBeBinaryOperator &&
9233             "All non-call overloaded operators are unary or binary!");
9234      ErrorKind = 1;  // 1 -> binary
9235    }
9236
9237    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9238      << FnDecl->getDeclName() << NumParams << ErrorKind;
9239  }
9240
9241  // Overloaded operators other than operator() cannot be variadic.
9242  if (Op != OO_Call &&
9243      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9244    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9245      << FnDecl->getDeclName();
9246  }
9247
9248  // Some operators must be non-static member functions.
9249  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9250    return Diag(FnDecl->getLocation(),
9251                diag::err_operator_overload_must_be_member)
9252      << FnDecl->getDeclName();
9253  }
9254
9255  // C++ [over.inc]p1:
9256  //   The user-defined function called operator++ implements the
9257  //   prefix and postfix ++ operator. If this function is a member
9258  //   function with no parameters, or a non-member function with one
9259  //   parameter of class or enumeration type, it defines the prefix
9260  //   increment operator ++ for objects of that type. If the function
9261  //   is a member function with one parameter (which shall be of type
9262  //   int) or a non-member function with two parameters (the second
9263  //   of which shall be of type int), it defines the postfix
9264  //   increment operator ++ for objects of that type.
9265  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9266    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9267    bool ParamIsInt = false;
9268    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9269      ParamIsInt = BT->getKind() == BuiltinType::Int;
9270
9271    if (!ParamIsInt)
9272      return Diag(LastParam->getLocation(),
9273                  diag::err_operator_overload_post_incdec_must_be_int)
9274        << LastParam->getType() << (Op == OO_MinusMinus);
9275  }
9276
9277  return false;
9278}
9279
9280/// CheckLiteralOperatorDeclaration - Check whether the declaration
9281/// of this literal operator function is well-formed. If so, returns
9282/// false; otherwise, emits appropriate diagnostics and returns true.
9283bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9284  DeclContext *DC = FnDecl->getDeclContext();
9285  Decl::Kind Kind = DC->getDeclKind();
9286  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9287      Kind != Decl::LinkageSpec) {
9288    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9289      << FnDecl->getDeclName();
9290    return true;
9291  }
9292
9293  bool Valid = false;
9294
9295  // template <char...> type operator "" name() is the only valid template
9296  // signature, and the only valid signature with no parameters.
9297  if (FnDecl->param_size() == 0) {
9298    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9299      // Must have only one template parameter
9300      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9301      if (Params->size() == 1) {
9302        NonTypeTemplateParmDecl *PmDecl =
9303          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9304
9305        // The template parameter must be a char parameter pack.
9306        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9307            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9308          Valid = true;
9309      }
9310    }
9311  } else {
9312    // Check the first parameter
9313    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9314
9315    QualType T = (*Param)->getType();
9316
9317    // unsigned long long int, long double, and any character type are allowed
9318    // as the only parameters.
9319    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9320        Context.hasSameType(T, Context.LongDoubleTy) ||
9321        Context.hasSameType(T, Context.CharTy) ||
9322        Context.hasSameType(T, Context.WCharTy) ||
9323        Context.hasSameType(T, Context.Char16Ty) ||
9324        Context.hasSameType(T, Context.Char32Ty)) {
9325      if (++Param == FnDecl->param_end())
9326        Valid = true;
9327      goto FinishedParams;
9328    }
9329
9330    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9331    const PointerType *PT = T->getAs<PointerType>();
9332    if (!PT)
9333      goto FinishedParams;
9334    T = PT->getPointeeType();
9335    if (!T.isConstQualified())
9336      goto FinishedParams;
9337    T = T.getUnqualifiedType();
9338
9339    // Move on to the second parameter;
9340    ++Param;
9341
9342    // If there is no second parameter, the first must be a const char *
9343    if (Param == FnDecl->param_end()) {
9344      if (Context.hasSameType(T, Context.CharTy))
9345        Valid = true;
9346      goto FinishedParams;
9347    }
9348
9349    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9350    // are allowed as the first parameter to a two-parameter function
9351    if (!(Context.hasSameType(T, Context.CharTy) ||
9352          Context.hasSameType(T, Context.WCharTy) ||
9353          Context.hasSameType(T, Context.Char16Ty) ||
9354          Context.hasSameType(T, Context.Char32Ty)))
9355      goto FinishedParams;
9356
9357    // The second and final parameter must be an std::size_t
9358    T = (*Param)->getType().getUnqualifiedType();
9359    if (Context.hasSameType(T, Context.getSizeType()) &&
9360        ++Param == FnDecl->param_end())
9361      Valid = true;
9362  }
9363
9364  // FIXME: This diagnostic is absolutely terrible.
9365FinishedParams:
9366  if (!Valid) {
9367    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9368      << FnDecl->getDeclName();
9369    return true;
9370  }
9371
9372  StringRef LiteralName
9373    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9374  if (LiteralName[0] != '_') {
9375    // C++0x [usrlit.suffix]p1:
9376    //   Literal suffix identifiers that do not start with an underscore are
9377    //   reserved for future standardization.
9378    bool IsHexFloat = true;
9379    if (LiteralName.size() > 1 &&
9380        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9381      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9382        if (!isdigit(LiteralName[I])) {
9383          IsHexFloat = false;
9384          break;
9385        }
9386      }
9387    }
9388
9389    if (IsHexFloat)
9390      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9391        << LiteralName;
9392    else
9393      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9394  }
9395
9396  return false;
9397}
9398
9399/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9400/// linkage specification, including the language and (if present)
9401/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9402/// the location of the language string literal, which is provided
9403/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9404/// the '{' brace. Otherwise, this linkage specification does not
9405/// have any braces.
9406Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9407                                           SourceLocation LangLoc,
9408                                           StringRef Lang,
9409                                           SourceLocation LBraceLoc) {
9410  LinkageSpecDecl::LanguageIDs Language;
9411  if (Lang == "\"C\"")
9412    Language = LinkageSpecDecl::lang_c;
9413  else if (Lang == "\"C++\"")
9414    Language = LinkageSpecDecl::lang_cxx;
9415  else {
9416    Diag(LangLoc, diag::err_bad_language);
9417    return 0;
9418  }
9419
9420  // FIXME: Add all the various semantics of linkage specifications
9421
9422  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9423                                               ExternLoc, LangLoc, Language);
9424  CurContext->addDecl(D);
9425  PushDeclContext(S, D);
9426  return D;
9427}
9428
9429/// ActOnFinishLinkageSpecification - Complete the definition of
9430/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9431/// valid, it's the position of the closing '}' brace in a linkage
9432/// specification that uses braces.
9433Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9434                                            Decl *LinkageSpec,
9435                                            SourceLocation RBraceLoc) {
9436  if (LinkageSpec) {
9437    if (RBraceLoc.isValid()) {
9438      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9439      LSDecl->setRBraceLoc(RBraceLoc);
9440    }
9441    PopDeclContext();
9442  }
9443  return LinkageSpec;
9444}
9445
9446/// \brief Perform semantic analysis for the variable declaration that
9447/// occurs within a C++ catch clause, returning the newly-created
9448/// variable.
9449VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9450                                         TypeSourceInfo *TInfo,
9451                                         SourceLocation StartLoc,
9452                                         SourceLocation Loc,
9453                                         IdentifierInfo *Name) {
9454  bool Invalid = false;
9455  QualType ExDeclType = TInfo->getType();
9456
9457  // Arrays and functions decay.
9458  if (ExDeclType->isArrayType())
9459    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9460  else if (ExDeclType->isFunctionType())
9461    ExDeclType = Context.getPointerType(ExDeclType);
9462
9463  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9464  // The exception-declaration shall not denote a pointer or reference to an
9465  // incomplete type, other than [cv] void*.
9466  // N2844 forbids rvalue references.
9467  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9468    Diag(Loc, diag::err_catch_rvalue_ref);
9469    Invalid = true;
9470  }
9471
9472  // GCC allows catching pointers and references to incomplete types
9473  // as an extension; so do we, but we warn by default.
9474
9475  QualType BaseType = ExDeclType;
9476  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9477  unsigned DK = diag::err_catch_incomplete;
9478  bool IncompleteCatchIsInvalid = true;
9479  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9480    BaseType = Ptr->getPointeeType();
9481    Mode = 1;
9482    DK = diag::ext_catch_incomplete_ptr;
9483    IncompleteCatchIsInvalid = false;
9484  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9485    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9486    BaseType = Ref->getPointeeType();
9487    Mode = 2;
9488    DK = diag::ext_catch_incomplete_ref;
9489    IncompleteCatchIsInvalid = false;
9490  }
9491  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9492      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9493      IncompleteCatchIsInvalid)
9494    Invalid = true;
9495
9496  if (!Invalid && !ExDeclType->isDependentType() &&
9497      RequireNonAbstractType(Loc, ExDeclType,
9498                             diag::err_abstract_type_in_decl,
9499                             AbstractVariableType))
9500    Invalid = true;
9501
9502  // Only the non-fragile NeXT runtime currently supports C++ catches
9503  // of ObjC types, and no runtime supports catching ObjC types by value.
9504  if (!Invalid && getLangOptions().ObjC1) {
9505    QualType T = ExDeclType;
9506    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9507      T = RT->getPointeeType();
9508
9509    if (T->isObjCObjectType()) {
9510      Diag(Loc, diag::err_objc_object_catch);
9511      Invalid = true;
9512    } else if (T->isObjCObjectPointerType()) {
9513      if (!getLangOptions().ObjCNonFragileABI)
9514        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9515    }
9516  }
9517
9518  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9519                                    ExDeclType, TInfo, SC_None, SC_None);
9520  ExDecl->setExceptionVariable(true);
9521
9522  if (!Invalid && !ExDeclType->isDependentType()) {
9523    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9524      // C++ [except.handle]p16:
9525      //   The object declared in an exception-declaration or, if the
9526      //   exception-declaration does not specify a name, a temporary (12.2) is
9527      //   copy-initialized (8.5) from the exception object. [...]
9528      //   The object is destroyed when the handler exits, after the destruction
9529      //   of any automatic objects initialized within the handler.
9530      //
9531      // We just pretend to initialize the object with itself, then make sure
9532      // it can be destroyed later.
9533      QualType initType = ExDeclType;
9534
9535      InitializedEntity entity =
9536        InitializedEntity::InitializeVariable(ExDecl);
9537      InitializationKind initKind =
9538        InitializationKind::CreateCopy(Loc, SourceLocation());
9539
9540      Expr *opaqueValue =
9541        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9542      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9543      ExprResult result = sequence.Perform(*this, entity, initKind,
9544                                           MultiExprArg(&opaqueValue, 1));
9545      if (result.isInvalid())
9546        Invalid = true;
9547      else {
9548        // If the constructor used was non-trivial, set this as the
9549        // "initializer".
9550        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9551        if (!construct->getConstructor()->isTrivial()) {
9552          Expr *init = MaybeCreateExprWithCleanups(construct);
9553          ExDecl->setInit(init);
9554        }
9555
9556        // And make sure it's destructable.
9557        FinalizeVarWithDestructor(ExDecl, recordType);
9558      }
9559    }
9560  }
9561
9562  if (Invalid)
9563    ExDecl->setInvalidDecl();
9564
9565  return ExDecl;
9566}
9567
9568/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9569/// handler.
9570Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9571  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9572  bool Invalid = D.isInvalidType();
9573
9574  // Check for unexpanded parameter packs.
9575  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9576                                               UPPC_ExceptionType)) {
9577    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9578                                             D.getIdentifierLoc());
9579    Invalid = true;
9580  }
9581
9582  IdentifierInfo *II = D.getIdentifier();
9583  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9584                                             LookupOrdinaryName,
9585                                             ForRedeclaration)) {
9586    // The scope should be freshly made just for us. There is just no way
9587    // it contains any previous declaration.
9588    assert(!S->isDeclScope(PrevDecl));
9589    if (PrevDecl->isTemplateParameter()) {
9590      // Maybe we will complain about the shadowed template parameter.
9591      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9592      PrevDecl = 0;
9593    }
9594  }
9595
9596  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9597    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9598      << D.getCXXScopeSpec().getRange();
9599    Invalid = true;
9600  }
9601
9602  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9603                                              D.getSourceRange().getBegin(),
9604                                              D.getIdentifierLoc(),
9605                                              D.getIdentifier());
9606  if (Invalid)
9607    ExDecl->setInvalidDecl();
9608
9609  // Add the exception declaration into this scope.
9610  if (II)
9611    PushOnScopeChains(ExDecl, S);
9612  else
9613    CurContext->addDecl(ExDecl);
9614
9615  ProcessDeclAttributes(S, ExDecl, D);
9616  return ExDecl;
9617}
9618
9619Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9620                                         Expr *AssertExpr,
9621                                         Expr *AssertMessageExpr_,
9622                                         SourceLocation RParenLoc) {
9623  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9624
9625  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9626    llvm::APSInt Value(32);
9627    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9628      Diag(StaticAssertLoc,
9629           diag::err_static_assert_expression_is_not_constant) <<
9630        AssertExpr->getSourceRange();
9631      return 0;
9632    }
9633
9634    if (Value == 0) {
9635      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9636        << AssertMessage->getString() << AssertExpr->getSourceRange();
9637    }
9638  }
9639
9640  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9641    return 0;
9642
9643  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9644                                        AssertExpr, AssertMessage, RParenLoc);
9645
9646  CurContext->addDecl(Decl);
9647  return Decl;
9648}
9649
9650/// \brief Perform semantic analysis of the given friend type declaration.
9651///
9652/// \returns A friend declaration that.
9653FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9654                                      SourceLocation FriendLoc,
9655                                      TypeSourceInfo *TSInfo) {
9656  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9657
9658  QualType T = TSInfo->getType();
9659  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9660
9661  // C++03 [class.friend]p2:
9662  //   An elaborated-type-specifier shall be used in a friend declaration
9663  //   for a class.*
9664  //
9665  //   * The class-key of the elaborated-type-specifier is required.
9666  if (!ActiveTemplateInstantiations.empty()) {
9667    // Do not complain about the form of friend template types during
9668    // template instantiation; we will already have complained when the
9669    // template was declared.
9670  } else if (!T->isElaboratedTypeSpecifier()) {
9671    // If we evaluated the type to a record type, suggest putting
9672    // a tag in front.
9673    if (const RecordType *RT = T->getAs<RecordType>()) {
9674      RecordDecl *RD = RT->getDecl();
9675
9676      std::string InsertionText = std::string(" ") + RD->getKindName();
9677
9678      Diag(TypeRange.getBegin(),
9679           getLangOptions().CPlusPlus0x ?
9680             diag::warn_cxx98_compat_unelaborated_friend_type :
9681             diag::ext_unelaborated_friend_type)
9682        << (unsigned) RD->getTagKind()
9683        << T
9684        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9685                                      InsertionText);
9686    } else {
9687      Diag(FriendLoc,
9688           getLangOptions().CPlusPlus0x ?
9689             diag::warn_cxx98_compat_nonclass_type_friend :
9690             diag::ext_nonclass_type_friend)
9691        << T
9692        << SourceRange(FriendLoc, TypeRange.getEnd());
9693    }
9694  } else if (T->getAs<EnumType>()) {
9695    Diag(FriendLoc,
9696         getLangOptions().CPlusPlus0x ?
9697           diag::warn_cxx98_compat_enum_friend :
9698           diag::ext_enum_friend)
9699      << T
9700      << SourceRange(FriendLoc, TypeRange.getEnd());
9701  }
9702
9703  // C++0x [class.friend]p3:
9704  //   If the type specifier in a friend declaration designates a (possibly
9705  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9706  //   the friend declaration is ignored.
9707
9708  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9709  // in [class.friend]p3 that we do not implement.
9710
9711  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9712}
9713
9714/// Handle a friend tag declaration where the scope specifier was
9715/// templated.
9716Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9717                                    unsigned TagSpec, SourceLocation TagLoc,
9718                                    CXXScopeSpec &SS,
9719                                    IdentifierInfo *Name, SourceLocation NameLoc,
9720                                    AttributeList *Attr,
9721                                    MultiTemplateParamsArg TempParamLists) {
9722  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9723
9724  bool isExplicitSpecialization = false;
9725  bool Invalid = false;
9726
9727  if (TemplateParameterList *TemplateParams
9728        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9729                                                  TempParamLists.get(),
9730                                                  TempParamLists.size(),
9731                                                  /*friend*/ true,
9732                                                  isExplicitSpecialization,
9733                                                  Invalid)) {
9734    if (TemplateParams->size() > 0) {
9735      // This is a declaration of a class template.
9736      if (Invalid)
9737        return 0;
9738
9739      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9740                                SS, Name, NameLoc, Attr,
9741                                TemplateParams, AS_public,
9742                                /*ModulePrivateLoc=*/SourceLocation(),
9743                                TempParamLists.size() - 1,
9744                   (TemplateParameterList**) TempParamLists.release()).take();
9745    } else {
9746      // The "template<>" header is extraneous.
9747      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9748        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9749      isExplicitSpecialization = true;
9750    }
9751  }
9752
9753  if (Invalid) return 0;
9754
9755  bool isAllExplicitSpecializations = true;
9756  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9757    if (TempParamLists.get()[I]->size()) {
9758      isAllExplicitSpecializations = false;
9759      break;
9760    }
9761  }
9762
9763  // FIXME: don't ignore attributes.
9764
9765  // If it's explicit specializations all the way down, just forget
9766  // about the template header and build an appropriate non-templated
9767  // friend.  TODO: for source fidelity, remember the headers.
9768  if (isAllExplicitSpecializations) {
9769    if (SS.isEmpty()) {
9770      bool Owned = false;
9771      bool IsDependent = false;
9772      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9773                      Attr, AS_public,
9774                      /*ModulePrivateLoc=*/SourceLocation(),
9775                      MultiTemplateParamsArg(), Owned, IsDependent,
9776                      /*ScopedEnum=*/false,
9777                      /*ScopedEnumUsesClassTag=*/false,
9778                      /*UnderlyingType=*/TypeResult());
9779    }
9780
9781    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9782    ElaboratedTypeKeyword Keyword
9783      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9784    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9785                                   *Name, NameLoc);
9786    if (T.isNull())
9787      return 0;
9788
9789    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9790    if (isa<DependentNameType>(T)) {
9791      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9792      TL.setKeywordLoc(TagLoc);
9793      TL.setQualifierLoc(QualifierLoc);
9794      TL.setNameLoc(NameLoc);
9795    } else {
9796      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9797      TL.setKeywordLoc(TagLoc);
9798      TL.setQualifierLoc(QualifierLoc);
9799      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9800    }
9801
9802    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9803                                            TSI, FriendLoc);
9804    Friend->setAccess(AS_public);
9805    CurContext->addDecl(Friend);
9806    return Friend;
9807  }
9808
9809  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9810
9811
9812
9813  // Handle the case of a templated-scope friend class.  e.g.
9814  //   template <class T> class A<T>::B;
9815  // FIXME: we don't support these right now.
9816  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9817  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9818  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9819  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9820  TL.setKeywordLoc(TagLoc);
9821  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9822  TL.setNameLoc(NameLoc);
9823
9824  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9825                                          TSI, FriendLoc);
9826  Friend->setAccess(AS_public);
9827  Friend->setUnsupportedFriend(true);
9828  CurContext->addDecl(Friend);
9829  return Friend;
9830}
9831
9832
9833/// Handle a friend type declaration.  This works in tandem with
9834/// ActOnTag.
9835///
9836/// Notes on friend class templates:
9837///
9838/// We generally treat friend class declarations as if they were
9839/// declaring a class.  So, for example, the elaborated type specifier
9840/// in a friend declaration is required to obey the restrictions of a
9841/// class-head (i.e. no typedefs in the scope chain), template
9842/// parameters are required to match up with simple template-ids, &c.
9843/// However, unlike when declaring a template specialization, it's
9844/// okay to refer to a template specialization without an empty
9845/// template parameter declaration, e.g.
9846///   friend class A<T>::B<unsigned>;
9847/// We permit this as a special case; if there are any template
9848/// parameters present at all, require proper matching, i.e.
9849///   template <> template <class T> friend class A<int>::B;
9850Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9851                                MultiTemplateParamsArg TempParams) {
9852  SourceLocation Loc = DS.getSourceRange().getBegin();
9853
9854  assert(DS.isFriendSpecified());
9855  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9856
9857  // Try to convert the decl specifier to a type.  This works for
9858  // friend templates because ActOnTag never produces a ClassTemplateDecl
9859  // for a TUK_Friend.
9860  Declarator TheDeclarator(DS, Declarator::MemberContext);
9861  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9862  QualType T = TSI->getType();
9863  if (TheDeclarator.isInvalidType())
9864    return 0;
9865
9866  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9867    return 0;
9868
9869  // This is definitely an error in C++98.  It's probably meant to
9870  // be forbidden in C++0x, too, but the specification is just
9871  // poorly written.
9872  //
9873  // The problem is with declarations like the following:
9874  //   template <T> friend A<T>::foo;
9875  // where deciding whether a class C is a friend or not now hinges
9876  // on whether there exists an instantiation of A that causes
9877  // 'foo' to equal C.  There are restrictions on class-heads
9878  // (which we declare (by fiat) elaborated friend declarations to
9879  // be) that makes this tractable.
9880  //
9881  // FIXME: handle "template <> friend class A<T>;", which
9882  // is possibly well-formed?  Who even knows?
9883  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9884    Diag(Loc, diag::err_tagless_friend_type_template)
9885      << DS.getSourceRange();
9886    return 0;
9887  }
9888
9889  // C++98 [class.friend]p1: A friend of a class is a function
9890  //   or class that is not a member of the class . . .
9891  // This is fixed in DR77, which just barely didn't make the C++03
9892  // deadline.  It's also a very silly restriction that seriously
9893  // affects inner classes and which nobody else seems to implement;
9894  // thus we never diagnose it, not even in -pedantic.
9895  //
9896  // But note that we could warn about it: it's always useless to
9897  // friend one of your own members (it's not, however, worthless to
9898  // friend a member of an arbitrary specialization of your template).
9899
9900  Decl *D;
9901  if (unsigned NumTempParamLists = TempParams.size())
9902    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9903                                   NumTempParamLists,
9904                                   TempParams.release(),
9905                                   TSI,
9906                                   DS.getFriendSpecLoc());
9907  else
9908    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9909
9910  if (!D)
9911    return 0;
9912
9913  D->setAccess(AS_public);
9914  CurContext->addDecl(D);
9915
9916  return D;
9917}
9918
9919Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9920                                    MultiTemplateParamsArg TemplateParams) {
9921  const DeclSpec &DS = D.getDeclSpec();
9922
9923  assert(DS.isFriendSpecified());
9924  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9925
9926  SourceLocation Loc = D.getIdentifierLoc();
9927  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9928
9929  // C++ [class.friend]p1
9930  //   A friend of a class is a function or class....
9931  // Note that this sees through typedefs, which is intended.
9932  // It *doesn't* see through dependent types, which is correct
9933  // according to [temp.arg.type]p3:
9934  //   If a declaration acquires a function type through a
9935  //   type dependent on a template-parameter and this causes
9936  //   a declaration that does not use the syntactic form of a
9937  //   function declarator to have a function type, the program
9938  //   is ill-formed.
9939  if (!TInfo->getType()->isFunctionType()) {
9940    Diag(Loc, diag::err_unexpected_friend);
9941
9942    // It might be worthwhile to try to recover by creating an
9943    // appropriate declaration.
9944    return 0;
9945  }
9946
9947  // C++ [namespace.memdef]p3
9948  //  - If a friend declaration in a non-local class first declares a
9949  //    class or function, the friend class or function is a member
9950  //    of the innermost enclosing namespace.
9951  //  - The name of the friend is not found by simple name lookup
9952  //    until a matching declaration is provided in that namespace
9953  //    scope (either before or after the class declaration granting
9954  //    friendship).
9955  //  - If a friend function is called, its name may be found by the
9956  //    name lookup that considers functions from namespaces and
9957  //    classes associated with the types of the function arguments.
9958  //  - When looking for a prior declaration of a class or a function
9959  //    declared as a friend, scopes outside the innermost enclosing
9960  //    namespace scope are not considered.
9961
9962  CXXScopeSpec &SS = D.getCXXScopeSpec();
9963  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9964  DeclarationName Name = NameInfo.getName();
9965  assert(Name);
9966
9967  // Check for unexpanded parameter packs.
9968  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9969      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9970      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9971    return 0;
9972
9973  // The context we found the declaration in, or in which we should
9974  // create the declaration.
9975  DeclContext *DC;
9976  Scope *DCScope = S;
9977  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9978                        ForRedeclaration);
9979
9980  // FIXME: there are different rules in local classes
9981
9982  // There are four cases here.
9983  //   - There's no scope specifier, in which case we just go to the
9984  //     appropriate scope and look for a function or function template
9985  //     there as appropriate.
9986  // Recover from invalid scope qualifiers as if they just weren't there.
9987  if (SS.isInvalid() || !SS.isSet()) {
9988    // C++0x [namespace.memdef]p3:
9989    //   If the name in a friend declaration is neither qualified nor
9990    //   a template-id and the declaration is a function or an
9991    //   elaborated-type-specifier, the lookup to determine whether
9992    //   the entity has been previously declared shall not consider
9993    //   any scopes outside the innermost enclosing namespace.
9994    // C++0x [class.friend]p11:
9995    //   If a friend declaration appears in a local class and the name
9996    //   specified is an unqualified name, a prior declaration is
9997    //   looked up without considering scopes that are outside the
9998    //   innermost enclosing non-class scope. For a friend function
9999    //   declaration, if there is no prior declaration, the program is
10000    //   ill-formed.
10001    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10002    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10003
10004    // Find the appropriate context according to the above.
10005    DC = CurContext;
10006    while (true) {
10007      // Skip class contexts.  If someone can cite chapter and verse
10008      // for this behavior, that would be nice --- it's what GCC and
10009      // EDG do, and it seems like a reasonable intent, but the spec
10010      // really only says that checks for unqualified existing
10011      // declarations should stop at the nearest enclosing namespace,
10012      // not that they should only consider the nearest enclosing
10013      // namespace.
10014      while (DC->isRecord())
10015        DC = DC->getParent();
10016
10017      LookupQualifiedName(Previous, DC);
10018
10019      // TODO: decide what we think about using declarations.
10020      if (isLocal || !Previous.empty())
10021        break;
10022
10023      if (isTemplateId) {
10024        if (isa<TranslationUnitDecl>(DC)) break;
10025      } else {
10026        if (DC->isFileContext()) break;
10027      }
10028      DC = DC->getParent();
10029    }
10030
10031    // C++ [class.friend]p1: A friend of a class is a function or
10032    //   class that is not a member of the class . . .
10033    // C++11 changes this for both friend types and functions.
10034    // Most C++ 98 compilers do seem to give an error here, so
10035    // we do, too.
10036    if (!Previous.empty() && DC->Equals(CurContext))
10037      Diag(DS.getFriendSpecLoc(),
10038           getLangOptions().CPlusPlus0x ?
10039             diag::warn_cxx98_compat_friend_is_member :
10040             diag::err_friend_is_member);
10041
10042    DCScope = getScopeForDeclContext(S, DC);
10043
10044    // C++ [class.friend]p6:
10045    //   A function can be defined in a friend declaration of a class if and
10046    //   only if the class is a non-local class (9.8), the function name is
10047    //   unqualified, and the function has namespace scope.
10048    if (isLocal && D.isFunctionDefinition()) {
10049      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10050    }
10051
10052  //   - There's a non-dependent scope specifier, in which case we
10053  //     compute it and do a previous lookup there for a function
10054  //     or function template.
10055  } else if (!SS.getScopeRep()->isDependent()) {
10056    DC = computeDeclContext(SS);
10057    if (!DC) return 0;
10058
10059    if (RequireCompleteDeclContext(SS, DC)) return 0;
10060
10061    LookupQualifiedName(Previous, DC);
10062
10063    // Ignore things found implicitly in the wrong scope.
10064    // TODO: better diagnostics for this case.  Suggesting the right
10065    // qualified scope would be nice...
10066    LookupResult::Filter F = Previous.makeFilter();
10067    while (F.hasNext()) {
10068      NamedDecl *D = F.next();
10069      if (!DC->InEnclosingNamespaceSetOf(
10070              D->getDeclContext()->getRedeclContext()))
10071        F.erase();
10072    }
10073    F.done();
10074
10075    if (Previous.empty()) {
10076      D.setInvalidType();
10077      Diag(Loc, diag::err_qualified_friend_not_found)
10078          << Name << TInfo->getType();
10079      return 0;
10080    }
10081
10082    // C++ [class.friend]p1: A friend of a class is a function or
10083    //   class that is not a member of the class . . .
10084    if (DC->Equals(CurContext))
10085      Diag(DS.getFriendSpecLoc(),
10086           getLangOptions().CPlusPlus0x ?
10087             diag::warn_cxx98_compat_friend_is_member :
10088             diag::err_friend_is_member);
10089
10090    if (D.isFunctionDefinition()) {
10091      // C++ [class.friend]p6:
10092      //   A function can be defined in a friend declaration of a class if and
10093      //   only if the class is a non-local class (9.8), the function name is
10094      //   unqualified, and the function has namespace scope.
10095      SemaDiagnosticBuilder DB
10096        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10097
10098      DB << SS.getScopeRep();
10099      if (DC->isFileContext())
10100        DB << FixItHint::CreateRemoval(SS.getRange());
10101      SS.clear();
10102    }
10103
10104  //   - There's a scope specifier that does not match any template
10105  //     parameter lists, in which case we use some arbitrary context,
10106  //     create a method or method template, and wait for instantiation.
10107  //   - There's a scope specifier that does match some template
10108  //     parameter lists, which we don't handle right now.
10109  } else {
10110    if (D.isFunctionDefinition()) {
10111      // C++ [class.friend]p6:
10112      //   A function can be defined in a friend declaration of a class if and
10113      //   only if the class is a non-local class (9.8), the function name is
10114      //   unqualified, and the function has namespace scope.
10115      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10116        << SS.getScopeRep();
10117    }
10118
10119    DC = CurContext;
10120    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10121  }
10122
10123  if (!DC->isRecord()) {
10124    // This implies that it has to be an operator or function.
10125    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10126        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10127        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10128      Diag(Loc, diag::err_introducing_special_friend) <<
10129        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10130         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10131      return 0;
10132    }
10133  }
10134
10135  // FIXME: This is an egregious hack to cope with cases where the scope stack
10136  // does not contain the declaration context, i.e., in an out-of-line
10137  // definition of a class.
10138  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10139  if (!DCScope) {
10140    FakeDCScope.setEntity(DC);
10141    DCScope = &FakeDCScope;
10142  }
10143
10144  bool AddToScope = true;
10145  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10146                                          move(TemplateParams), AddToScope);
10147  if (!ND) return 0;
10148
10149  assert(ND->getDeclContext() == DC);
10150  assert(ND->getLexicalDeclContext() == CurContext);
10151
10152  // Add the function declaration to the appropriate lookup tables,
10153  // adjusting the redeclarations list as necessary.  We don't
10154  // want to do this yet if the friending class is dependent.
10155  //
10156  // Also update the scope-based lookup if the target context's
10157  // lookup context is in lexical scope.
10158  if (!CurContext->isDependentContext()) {
10159    DC = DC->getRedeclContext();
10160    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10161    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10162      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10163  }
10164
10165  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10166                                       D.getIdentifierLoc(), ND,
10167                                       DS.getFriendSpecLoc());
10168  FrD->setAccess(AS_public);
10169  CurContext->addDecl(FrD);
10170
10171  if (ND->isInvalidDecl())
10172    FrD->setInvalidDecl();
10173  else {
10174    FunctionDecl *FD;
10175    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10176      FD = FTD->getTemplatedDecl();
10177    else
10178      FD = cast<FunctionDecl>(ND);
10179
10180    // Mark templated-scope function declarations as unsupported.
10181    if (FD->getNumTemplateParameterLists())
10182      FrD->setUnsupportedFriend(true);
10183  }
10184
10185  return ND;
10186}
10187
10188void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10189  AdjustDeclIfTemplate(Dcl);
10190
10191  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10192  if (!Fn) {
10193    Diag(DelLoc, diag::err_deleted_non_function);
10194    return;
10195  }
10196  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10197    Diag(DelLoc, diag::err_deleted_decl_not_first);
10198    Diag(Prev->getLocation(), diag::note_previous_declaration);
10199    // If the declaration wasn't the first, we delete the function anyway for
10200    // recovery.
10201  }
10202  Fn->setDeletedAsWritten();
10203}
10204
10205void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10206  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10207
10208  if (MD) {
10209    if (MD->getParent()->isDependentType()) {
10210      MD->setDefaulted();
10211      MD->setExplicitlyDefaulted();
10212      return;
10213    }
10214
10215    CXXSpecialMember Member = getSpecialMember(MD);
10216    if (Member == CXXInvalid) {
10217      Diag(DefaultLoc, diag::err_default_special_members);
10218      return;
10219    }
10220
10221    MD->setDefaulted();
10222    MD->setExplicitlyDefaulted();
10223
10224    // If this definition appears within the record, do the checking when
10225    // the record is complete.
10226    const FunctionDecl *Primary = MD;
10227    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10228      // Find the uninstantiated declaration that actually had the '= default'
10229      // on it.
10230      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10231
10232    if (Primary == Primary->getCanonicalDecl())
10233      return;
10234
10235    switch (Member) {
10236    case CXXDefaultConstructor: {
10237      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10238      CheckExplicitlyDefaultedDefaultConstructor(CD);
10239      if (!CD->isInvalidDecl())
10240        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10241      break;
10242    }
10243
10244    case CXXCopyConstructor: {
10245      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10246      CheckExplicitlyDefaultedCopyConstructor(CD);
10247      if (!CD->isInvalidDecl())
10248        DefineImplicitCopyConstructor(DefaultLoc, CD);
10249      break;
10250    }
10251
10252    case CXXCopyAssignment: {
10253      CheckExplicitlyDefaultedCopyAssignment(MD);
10254      if (!MD->isInvalidDecl())
10255        DefineImplicitCopyAssignment(DefaultLoc, MD);
10256      break;
10257    }
10258
10259    case CXXDestructor: {
10260      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10261      CheckExplicitlyDefaultedDestructor(DD);
10262      if (!DD->isInvalidDecl())
10263        DefineImplicitDestructor(DefaultLoc, DD);
10264      break;
10265    }
10266
10267    case CXXMoveConstructor: {
10268      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10269      CheckExplicitlyDefaultedMoveConstructor(CD);
10270      if (!CD->isInvalidDecl())
10271        DefineImplicitMoveConstructor(DefaultLoc, CD);
10272      break;
10273    }
10274
10275    case CXXMoveAssignment: {
10276      CheckExplicitlyDefaultedMoveAssignment(MD);
10277      if (!MD->isInvalidDecl())
10278        DefineImplicitMoveAssignment(DefaultLoc, MD);
10279      break;
10280    }
10281
10282    case CXXInvalid:
10283      llvm_unreachable("Invalid special member.");
10284    }
10285  } else {
10286    Diag(DefaultLoc, diag::err_default_special_members);
10287  }
10288}
10289
10290static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10291  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10292    Stmt *SubStmt = *CI;
10293    if (!SubStmt)
10294      continue;
10295    if (isa<ReturnStmt>(SubStmt))
10296      Self.Diag(SubStmt->getSourceRange().getBegin(),
10297           diag::err_return_in_constructor_handler);
10298    if (!isa<Expr>(SubStmt))
10299      SearchForReturnInStmt(Self, SubStmt);
10300  }
10301}
10302
10303void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10304  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10305    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10306    SearchForReturnInStmt(*this, Handler);
10307  }
10308}
10309
10310bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10311                                             const CXXMethodDecl *Old) {
10312  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10313  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10314
10315  if (Context.hasSameType(NewTy, OldTy) ||
10316      NewTy->isDependentType() || OldTy->isDependentType())
10317    return false;
10318
10319  // Check if the return types are covariant
10320  QualType NewClassTy, OldClassTy;
10321
10322  /// Both types must be pointers or references to classes.
10323  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10324    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10325      NewClassTy = NewPT->getPointeeType();
10326      OldClassTy = OldPT->getPointeeType();
10327    }
10328  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10329    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10330      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10331        NewClassTy = NewRT->getPointeeType();
10332        OldClassTy = OldRT->getPointeeType();
10333      }
10334    }
10335  }
10336
10337  // The return types aren't either both pointers or references to a class type.
10338  if (NewClassTy.isNull()) {
10339    Diag(New->getLocation(),
10340         diag::err_different_return_type_for_overriding_virtual_function)
10341      << New->getDeclName() << NewTy << OldTy;
10342    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10343
10344    return true;
10345  }
10346
10347  // C++ [class.virtual]p6:
10348  //   If the return type of D::f differs from the return type of B::f, the
10349  //   class type in the return type of D::f shall be complete at the point of
10350  //   declaration of D::f or shall be the class type D.
10351  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10352    if (!RT->isBeingDefined() &&
10353        RequireCompleteType(New->getLocation(), NewClassTy,
10354                            PDiag(diag::err_covariant_return_incomplete)
10355                              << New->getDeclName()))
10356    return true;
10357  }
10358
10359  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10360    // Check if the new class derives from the old class.
10361    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10362      Diag(New->getLocation(),
10363           diag::err_covariant_return_not_derived)
10364      << New->getDeclName() << NewTy << OldTy;
10365      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10366      return true;
10367    }
10368
10369    // Check if we the conversion from derived to base is valid.
10370    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10371                    diag::err_covariant_return_inaccessible_base,
10372                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10373                    // FIXME: Should this point to the return type?
10374                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10375      // FIXME: this note won't trigger for delayed access control
10376      // diagnostics, and it's impossible to get an undelayed error
10377      // here from access control during the original parse because
10378      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10379      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10380      return true;
10381    }
10382  }
10383
10384  // The qualifiers of the return types must be the same.
10385  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10386    Diag(New->getLocation(),
10387         diag::err_covariant_return_type_different_qualifications)
10388    << New->getDeclName() << NewTy << OldTy;
10389    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10390    return true;
10391  };
10392
10393
10394  // The new class type must have the same or less qualifiers as the old type.
10395  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10396    Diag(New->getLocation(),
10397         diag::err_covariant_return_type_class_type_more_qualified)
10398    << New->getDeclName() << NewTy << OldTy;
10399    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10400    return true;
10401  };
10402
10403  return false;
10404}
10405
10406/// \brief Mark the given method pure.
10407///
10408/// \param Method the method to be marked pure.
10409///
10410/// \param InitRange the source range that covers the "0" initializer.
10411bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10412  SourceLocation EndLoc = InitRange.getEnd();
10413  if (EndLoc.isValid())
10414    Method->setRangeEnd(EndLoc);
10415
10416  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10417    Method->setPure();
10418    return false;
10419  }
10420
10421  if (!Method->isInvalidDecl())
10422    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10423      << Method->getDeclName() << InitRange;
10424  return true;
10425}
10426
10427/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10428/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10429/// is a fresh scope pushed for just this purpose.
10430///
10431/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10432/// static data member of class X, names should be looked up in the scope of
10433/// class X.
10434void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10435  // If there is no declaration, there was an error parsing it.
10436  if (D == 0 || D->isInvalidDecl()) return;
10437
10438  // We should only get called for declarations with scope specifiers, like:
10439  //   int foo::bar;
10440  assert(D->isOutOfLine());
10441  EnterDeclaratorContext(S, D->getDeclContext());
10442}
10443
10444/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10445/// initializer for the out-of-line declaration 'D'.
10446void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10447  // If there is no declaration, there was an error parsing it.
10448  if (D == 0 || D->isInvalidDecl()) return;
10449
10450  assert(D->isOutOfLine());
10451  ExitDeclaratorContext(S);
10452}
10453
10454/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10455/// C++ if/switch/while/for statement.
10456/// e.g: "if (int x = f()) {...}"
10457DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10458  // C++ 6.4p2:
10459  // The declarator shall not specify a function or an array.
10460  // The type-specifier-seq shall not contain typedef and shall not declare a
10461  // new class or enumeration.
10462  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10463         "Parser allowed 'typedef' as storage class of condition decl.");
10464
10465  Decl *Dcl = ActOnDeclarator(S, D);
10466  if (!Dcl)
10467    return true;
10468
10469  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10470    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10471      << D.getSourceRange();
10472    return true;
10473  }
10474
10475  return Dcl;
10476}
10477
10478void Sema::LoadExternalVTableUses() {
10479  if (!ExternalSource)
10480    return;
10481
10482  SmallVector<ExternalVTableUse, 4> VTables;
10483  ExternalSource->ReadUsedVTables(VTables);
10484  SmallVector<VTableUse, 4> NewUses;
10485  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10486    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10487      = VTablesUsed.find(VTables[I].Record);
10488    // Even if a definition wasn't required before, it may be required now.
10489    if (Pos != VTablesUsed.end()) {
10490      if (!Pos->second && VTables[I].DefinitionRequired)
10491        Pos->second = true;
10492      continue;
10493    }
10494
10495    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10496    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10497  }
10498
10499  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10500}
10501
10502void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10503                          bool DefinitionRequired) {
10504  // Ignore any vtable uses in unevaluated operands or for classes that do
10505  // not have a vtable.
10506  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10507      CurContext->isDependentContext() ||
10508      ExprEvalContexts.back().Context == Unevaluated)
10509    return;
10510
10511  // Try to insert this class into the map.
10512  LoadExternalVTableUses();
10513  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10514  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10515    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10516  if (!Pos.second) {
10517    // If we already had an entry, check to see if we are promoting this vtable
10518    // to required a definition. If so, we need to reappend to the VTableUses
10519    // list, since we may have already processed the first entry.
10520    if (DefinitionRequired && !Pos.first->second) {
10521      Pos.first->second = true;
10522    } else {
10523      // Otherwise, we can early exit.
10524      return;
10525    }
10526  }
10527
10528  // Local classes need to have their virtual members marked
10529  // immediately. For all other classes, we mark their virtual members
10530  // at the end of the translation unit.
10531  if (Class->isLocalClass())
10532    MarkVirtualMembersReferenced(Loc, Class);
10533  else
10534    VTableUses.push_back(std::make_pair(Class, Loc));
10535}
10536
10537bool Sema::DefineUsedVTables() {
10538  LoadExternalVTableUses();
10539  if (VTableUses.empty())
10540    return false;
10541
10542  // Note: The VTableUses vector could grow as a result of marking
10543  // the members of a class as "used", so we check the size each
10544  // time through the loop and prefer indices (with are stable) to
10545  // iterators (which are not).
10546  bool DefinedAnything = false;
10547  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10548    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10549    if (!Class)
10550      continue;
10551
10552    SourceLocation Loc = VTableUses[I].second;
10553
10554    // If this class has a key function, but that key function is
10555    // defined in another translation unit, we don't need to emit the
10556    // vtable even though we're using it.
10557    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10558    if (KeyFunction && !KeyFunction->hasBody()) {
10559      switch (KeyFunction->getTemplateSpecializationKind()) {
10560      case TSK_Undeclared:
10561      case TSK_ExplicitSpecialization:
10562      case TSK_ExplicitInstantiationDeclaration:
10563        // The key function is in another translation unit.
10564        continue;
10565
10566      case TSK_ExplicitInstantiationDefinition:
10567      case TSK_ImplicitInstantiation:
10568        // We will be instantiating the key function.
10569        break;
10570      }
10571    } else if (!KeyFunction) {
10572      // If we have a class with no key function that is the subject
10573      // of an explicit instantiation declaration, suppress the
10574      // vtable; it will live with the explicit instantiation
10575      // definition.
10576      bool IsExplicitInstantiationDeclaration
10577        = Class->getTemplateSpecializationKind()
10578                                      == TSK_ExplicitInstantiationDeclaration;
10579      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10580                                 REnd = Class->redecls_end();
10581           R != REnd; ++R) {
10582        TemplateSpecializationKind TSK
10583          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10584        if (TSK == TSK_ExplicitInstantiationDeclaration)
10585          IsExplicitInstantiationDeclaration = true;
10586        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10587          IsExplicitInstantiationDeclaration = false;
10588          break;
10589        }
10590      }
10591
10592      if (IsExplicitInstantiationDeclaration)
10593        continue;
10594    }
10595
10596    // Mark all of the virtual members of this class as referenced, so
10597    // that we can build a vtable. Then, tell the AST consumer that a
10598    // vtable for this class is required.
10599    DefinedAnything = true;
10600    MarkVirtualMembersReferenced(Loc, Class);
10601    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10602    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10603
10604    // Optionally warn if we're emitting a weak vtable.
10605    if (Class->getLinkage() == ExternalLinkage &&
10606        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10607      const FunctionDecl *KeyFunctionDef = 0;
10608      if (!KeyFunction ||
10609          (KeyFunction->hasBody(KeyFunctionDef) &&
10610           KeyFunctionDef->isInlined()))
10611        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10612    }
10613  }
10614  VTableUses.clear();
10615
10616  return DefinedAnything;
10617}
10618
10619void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10620                                        const CXXRecordDecl *RD) {
10621  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10622       e = RD->method_end(); i != e; ++i) {
10623    CXXMethodDecl *MD = *i;
10624
10625    // C++ [basic.def.odr]p2:
10626    //   [...] A virtual member function is used if it is not pure. [...]
10627    if (MD->isVirtual() && !MD->isPure())
10628      MarkDeclarationReferenced(Loc, MD);
10629  }
10630
10631  // Only classes that have virtual bases need a VTT.
10632  if (RD->getNumVBases() == 0)
10633    return;
10634
10635  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10636           e = RD->bases_end(); i != e; ++i) {
10637    const CXXRecordDecl *Base =
10638        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10639    if (Base->getNumVBases() == 0)
10640      continue;
10641    MarkVirtualMembersReferenced(Loc, Base);
10642  }
10643}
10644
10645/// SetIvarInitializers - This routine builds initialization ASTs for the
10646/// Objective-C implementation whose ivars need be initialized.
10647void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10648  if (!getLangOptions().CPlusPlus)
10649    return;
10650  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10651    SmallVector<ObjCIvarDecl*, 8> ivars;
10652    CollectIvarsToConstructOrDestruct(OID, ivars);
10653    if (ivars.empty())
10654      return;
10655    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10656    for (unsigned i = 0; i < ivars.size(); i++) {
10657      FieldDecl *Field = ivars[i];
10658      if (Field->isInvalidDecl())
10659        continue;
10660
10661      CXXCtorInitializer *Member;
10662      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10663      InitializationKind InitKind =
10664        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10665
10666      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10667      ExprResult MemberInit =
10668        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10669      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10670      // Note, MemberInit could actually come back empty if no initialization
10671      // is required (e.g., because it would call a trivial default constructor)
10672      if (!MemberInit.get() || MemberInit.isInvalid())
10673        continue;
10674
10675      Member =
10676        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10677                                         SourceLocation(),
10678                                         MemberInit.takeAs<Expr>(),
10679                                         SourceLocation());
10680      AllToInit.push_back(Member);
10681
10682      // Be sure that the destructor is accessible and is marked as referenced.
10683      if (const RecordType *RecordTy
10684                  = Context.getBaseElementType(Field->getType())
10685                                                        ->getAs<RecordType>()) {
10686                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10687        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10688          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10689          CheckDestructorAccess(Field->getLocation(), Destructor,
10690                            PDiag(diag::err_access_dtor_ivar)
10691                              << Context.getBaseElementType(Field->getType()));
10692        }
10693      }
10694    }
10695    ObjCImplementation->setIvarInitializers(Context,
10696                                            AllToInit.data(), AllToInit.size());
10697  }
10698}
10699
10700static
10701void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10702                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10703                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10704                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10705                           Sema &S) {
10706  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10707                                                   CE = Current.end();
10708  if (Ctor->isInvalidDecl())
10709    return;
10710
10711  const FunctionDecl *FNTarget = 0;
10712  CXXConstructorDecl *Target;
10713
10714  // We ignore the result here since if we don't have a body, Target will be
10715  // null below.
10716  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10717  Target
10718= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10719
10720  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10721                     // Avoid dereferencing a null pointer here.
10722                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10723
10724  if (!Current.insert(Canonical))
10725    return;
10726
10727  // We know that beyond here, we aren't chaining into a cycle.
10728  if (!Target || !Target->isDelegatingConstructor() ||
10729      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10730    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10731      Valid.insert(*CI);
10732    Current.clear();
10733  // We've hit a cycle.
10734  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10735             Current.count(TCanonical)) {
10736    // If we haven't diagnosed this cycle yet, do so now.
10737    if (!Invalid.count(TCanonical)) {
10738      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10739             diag::warn_delegating_ctor_cycle)
10740        << Ctor;
10741
10742      // Don't add a note for a function delegating directo to itself.
10743      if (TCanonical != Canonical)
10744        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10745
10746      CXXConstructorDecl *C = Target;
10747      while (C->getCanonicalDecl() != Canonical) {
10748        (void)C->getTargetConstructor()->hasBody(FNTarget);
10749        assert(FNTarget && "Ctor cycle through bodiless function");
10750
10751        C
10752       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10753        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10754      }
10755    }
10756
10757    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10758      Invalid.insert(*CI);
10759    Current.clear();
10760  } else {
10761    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10762  }
10763}
10764
10765
10766void Sema::CheckDelegatingCtorCycles() {
10767  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10768
10769  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10770                                                   CE = Current.end();
10771
10772  for (DelegatingCtorDeclsType::iterator
10773         I = DelegatingCtorDecls.begin(ExternalSource),
10774         E = DelegatingCtorDecls.end();
10775       I != E; ++I) {
10776   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10777  }
10778
10779  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10780    (*CI)->setInvalidDecl();
10781}
10782
10783/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10784Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10785  // Implicitly declared functions (e.g. copy constructors) are
10786  // __host__ __device__
10787  if (D->isImplicit())
10788    return CFT_HostDevice;
10789
10790  if (D->hasAttr<CUDAGlobalAttr>())
10791    return CFT_Global;
10792
10793  if (D->hasAttr<CUDADeviceAttr>()) {
10794    if (D->hasAttr<CUDAHostAttr>())
10795      return CFT_HostDevice;
10796    else
10797      return CFT_Device;
10798  }
10799
10800  return CFT_Host;
10801}
10802
10803bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10804                           CUDAFunctionTarget CalleeTarget) {
10805  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10806  // Callable from the device only."
10807  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10808    return true;
10809
10810  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10811  // Callable from the host only."
10812  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10813  // Callable from the host only."
10814  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10815      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10816    return true;
10817
10818  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10819    return true;
10820
10821  return false;
10822}
10823