SemaDeclCXX.cpp revision 6a26e2e54aa2a8cc6c977081befd8e80e7573ca4
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           diag::err_constexpr_non_literal_return))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(&*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, &*I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if (I->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, &*I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          diag::err_incomplete_base_class, SpecifierRange)) {
1059    Class->setInvalidDecl();
1060    return 0;
1061  }
1062
1063  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1064  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1065  assert(BaseDecl && "Record type has no declaration");
1066  BaseDecl = BaseDecl->getDefinition();
1067  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1068  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1069  assert(CXXBaseDecl && "Base type is not a C++ type");
1070
1071  // C++ [class]p3:
1072  //   If a class is marked final and it appears as a base-type-specifier in
1073  //   base-clause, the program is ill-formed.
1074  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1075    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1076      << CXXBaseDecl->getDeclName();
1077    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1078      << CXXBaseDecl->getDeclName();
1079    return 0;
1080  }
1081
1082  if (BaseDecl->isInvalidDecl())
1083    Class->setInvalidDecl();
1084
1085  // Create the base specifier.
1086  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1087                                        Class->getTagKind() == TTK_Class,
1088                                        Access, TInfo, EllipsisLoc);
1089}
1090
1091/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1092/// one entry in the base class list of a class specifier, for
1093/// example:
1094///    class foo : public bar, virtual private baz {
1095/// 'public bar' and 'virtual private baz' are each base-specifiers.
1096BaseResult
1097Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1098                         bool Virtual, AccessSpecifier Access,
1099                         ParsedType basetype, SourceLocation BaseLoc,
1100                         SourceLocation EllipsisLoc) {
1101  if (!classdecl)
1102    return true;
1103
1104  AdjustDeclIfTemplate(classdecl);
1105  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1106  if (!Class)
1107    return true;
1108
1109  TypeSourceInfo *TInfo = 0;
1110  GetTypeFromParser(basetype, &TInfo);
1111
1112  if (EllipsisLoc.isInvalid() &&
1113      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1114                                      UPPC_BaseType))
1115    return true;
1116
1117  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1118                                                      Virtual, Access, TInfo,
1119                                                      EllipsisLoc))
1120    return BaseSpec;
1121
1122  return true;
1123}
1124
1125/// \brief Performs the actual work of attaching the given base class
1126/// specifiers to a C++ class.
1127bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1128                                unsigned NumBases) {
1129 if (NumBases == 0)
1130    return false;
1131
1132  // Used to keep track of which base types we have already seen, so
1133  // that we can properly diagnose redundant direct base types. Note
1134  // that the key is always the unqualified canonical type of the base
1135  // class.
1136  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1137
1138  // Copy non-redundant base specifiers into permanent storage.
1139  unsigned NumGoodBases = 0;
1140  bool Invalid = false;
1141  for (unsigned idx = 0; idx < NumBases; ++idx) {
1142    QualType NewBaseType
1143      = Context.getCanonicalType(Bases[idx]->getType());
1144    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1145
1146    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1147    if (KnownBase) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getLocStart(),
1152           diag::err_duplicate_base_class)
1153        << KnownBase->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBase = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOpts().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOpts().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1443/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1444/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1445/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1446/// present but parsing it has been deferred.
1447Decl *
1448Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1449                               MultiTemplateParamsArg TemplateParameterLists,
1450                               Expr *BW, const VirtSpecifiers &VS,
1451                               bool HasDeferredInit) {
1452  const DeclSpec &DS = D.getDeclSpec();
1453  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1454  DeclarationName Name = NameInfo.getName();
1455  SourceLocation Loc = NameInfo.getLoc();
1456
1457  // For anonymous bitfields, the location should point to the type.
1458  if (Loc.isInvalid())
1459    Loc = D.getLocStart();
1460
1461  Expr *BitWidth = static_cast<Expr*>(BW);
1462
1463  assert(isa<CXXRecordDecl>(CurContext));
1464  assert(!DS.isFriendSpecified());
1465
1466  bool isFunc = D.isDeclarationOfFunction();
1467
1468  // C++ 9.2p6: A member shall not be declared to have automatic storage
1469  // duration (auto, register) or with the extern storage-class-specifier.
1470  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1471  // data members and cannot be applied to names declared const or static,
1472  // and cannot be applied to reference members.
1473  switch (DS.getStorageClassSpec()) {
1474    case DeclSpec::SCS_unspecified:
1475    case DeclSpec::SCS_typedef:
1476    case DeclSpec::SCS_static:
1477      // FALL THROUGH.
1478      break;
1479    case DeclSpec::SCS_mutable:
1480      if (isFunc) {
1481        if (DS.getStorageClassSpecLoc().isValid())
1482          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1483        else
1484          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1485
1486        // FIXME: It would be nicer if the keyword was ignored only for this
1487        // declarator. Otherwise we could get follow-up errors.
1488        D.getMutableDeclSpec().ClearStorageClassSpecs();
1489      }
1490      break;
1491    default:
1492      if (DS.getStorageClassSpecLoc().isValid())
1493        Diag(DS.getStorageClassSpecLoc(),
1494             diag::err_storageclass_invalid_for_member);
1495      else
1496        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1497      D.getMutableDeclSpec().ClearStorageClassSpecs();
1498  }
1499
1500  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1501                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1502                      !isFunc);
1503
1504  Decl *Member;
1505  if (isInstField) {
1506    CXXScopeSpec &SS = D.getCXXScopeSpec();
1507
1508    // Data members must have identifiers for names.
1509    if (Name.getNameKind() != DeclarationName::Identifier) {
1510      Diag(Loc, diag::err_bad_variable_name)
1511        << Name;
1512      return 0;
1513    }
1514
1515    IdentifierInfo *II = Name.getAsIdentifierInfo();
1516
1517    // Member field could not be with "template" keyword.
1518    // So TemplateParameterLists should be empty in this case.
1519    if (TemplateParameterLists.size()) {
1520      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1521      if (TemplateParams->size()) {
1522        // There is no such thing as a member field template.
1523        Diag(D.getIdentifierLoc(), diag::err_template_member)
1524            << II
1525            << SourceRange(TemplateParams->getTemplateLoc(),
1526                TemplateParams->getRAngleLoc());
1527      } else {
1528        // There is an extraneous 'template<>' for this member.
1529        Diag(TemplateParams->getTemplateLoc(),
1530            diag::err_template_member_noparams)
1531            << II
1532            << SourceRange(TemplateParams->getTemplateLoc(),
1533                TemplateParams->getRAngleLoc());
1534      }
1535      return 0;
1536    }
1537
1538    if (SS.isSet() && !SS.isInvalid()) {
1539      // The user provided a superfluous scope specifier inside a class
1540      // definition:
1541      //
1542      // class X {
1543      //   int X::member;
1544      // };
1545      if (DeclContext *DC = computeDeclContext(SS, false))
1546        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1547      else
1548        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1549          << Name << SS.getRange();
1550
1551      SS.clear();
1552    }
1553
1554    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1555                         HasDeferredInit, AS);
1556    assert(Member && "HandleField never returns null");
1557  } else {
1558    assert(!HasDeferredInit);
1559
1560    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1561    if (!Member) {
1562      return 0;
1563    }
1564
1565    // Non-instance-fields can't have a bitfield.
1566    if (BitWidth) {
1567      if (Member->isInvalidDecl()) {
1568        // don't emit another diagnostic.
1569      } else if (isa<VarDecl>(Member)) {
1570        // C++ 9.6p3: A bit-field shall not be a static member.
1571        // "static member 'A' cannot be a bit-field"
1572        Diag(Loc, diag::err_static_not_bitfield)
1573          << Name << BitWidth->getSourceRange();
1574      } else if (isa<TypedefDecl>(Member)) {
1575        // "typedef member 'x' cannot be a bit-field"
1576        Diag(Loc, diag::err_typedef_not_bitfield)
1577          << Name << BitWidth->getSourceRange();
1578      } else {
1579        // A function typedef ("typedef int f(); f a;").
1580        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1581        Diag(Loc, diag::err_not_integral_type_bitfield)
1582          << Name << cast<ValueDecl>(Member)->getType()
1583          << BitWidth->getSourceRange();
1584      }
1585
1586      BitWidth = 0;
1587      Member->setInvalidDecl();
1588    }
1589
1590    Member->setAccess(AS);
1591
1592    // If we have declared a member function template, set the access of the
1593    // templated declaration as well.
1594    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1595      FunTmpl->getTemplatedDecl()->setAccess(AS);
1596  }
1597
1598  if (VS.isOverrideSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1604    } else
1605      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1606  }
1607  if (VS.isFinalSpecified()) {
1608    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1609    if (!MD || !MD->isVirtual()) {
1610      Diag(Member->getLocStart(),
1611           diag::override_keyword_only_allowed_on_virtual_member_functions)
1612      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1613    } else
1614      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1615  }
1616
1617  if (VS.getLastLocation().isValid()) {
1618    // Update the end location of a method that has a virt-specifiers.
1619    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1620      MD->setRangeEnd(VS.getLastLocation());
1621  }
1622
1623  CheckOverrideControl(Member);
1624
1625  assert((Name || isInstField) && "No identifier for non-field ?");
1626
1627  if (isInstField)
1628    FieldCollector->Add(cast<FieldDecl>(Member));
1629  return Member;
1630}
1631
1632/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1633/// in-class initializer for a non-static C++ class member, and after
1634/// instantiating an in-class initializer in a class template. Such actions
1635/// are deferred until the class is complete.
1636void
1637Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1638                                       Expr *InitExpr) {
1639  FieldDecl *FD = cast<FieldDecl>(D);
1640
1641  if (!InitExpr) {
1642    FD->setInvalidDecl();
1643    FD->removeInClassInitializer();
1644    return;
1645  }
1646
1647  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1648    FD->setInvalidDecl();
1649    FD->removeInClassInitializer();
1650    return;
1651  }
1652
1653  ExprResult Init = InitExpr;
1654  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1655    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1656      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1657        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1658    }
1659    Expr **Inits = &InitExpr;
1660    unsigned NumInits = 1;
1661    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1662    InitializationKind Kind = EqualLoc.isInvalid()
1663        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1664        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1665    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1666    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1667    if (Init.isInvalid()) {
1668      FD->setInvalidDecl();
1669      return;
1670    }
1671
1672    CheckImplicitConversions(Init.get(), EqualLoc);
1673  }
1674
1675  // C++0x [class.base.init]p7:
1676  //   The initialization of each base and member constitutes a
1677  //   full-expression.
1678  Init = MaybeCreateExprWithCleanups(Init);
1679  if (Init.isInvalid()) {
1680    FD->setInvalidDecl();
1681    return;
1682  }
1683
1684  InitExpr = Init.release();
1685
1686  FD->setInClassInitializer(InitExpr);
1687}
1688
1689/// \brief Find the direct and/or virtual base specifiers that
1690/// correspond to the given base type, for use in base initialization
1691/// within a constructor.
1692static bool FindBaseInitializer(Sema &SemaRef,
1693                                CXXRecordDecl *ClassDecl,
1694                                QualType BaseType,
1695                                const CXXBaseSpecifier *&DirectBaseSpec,
1696                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1697  // First, check for a direct base class.
1698  DirectBaseSpec = 0;
1699  for (CXXRecordDecl::base_class_const_iterator Base
1700         = ClassDecl->bases_begin();
1701       Base != ClassDecl->bases_end(); ++Base) {
1702    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1703      // We found a direct base of this type. That's what we're
1704      // initializing.
1705      DirectBaseSpec = &*Base;
1706      break;
1707    }
1708  }
1709
1710  // Check for a virtual base class.
1711  // FIXME: We might be able to short-circuit this if we know in advance that
1712  // there are no virtual bases.
1713  VirtualBaseSpec = 0;
1714  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1715    // We haven't found a base yet; search the class hierarchy for a
1716    // virtual base class.
1717    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1718                       /*DetectVirtual=*/false);
1719    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1720                              BaseType, Paths)) {
1721      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1722           Path != Paths.end(); ++Path) {
1723        if (Path->back().Base->isVirtual()) {
1724          VirtualBaseSpec = Path->back().Base;
1725          break;
1726        }
1727      }
1728    }
1729  }
1730
1731  return DirectBaseSpec || VirtualBaseSpec;
1732}
1733
1734/// \brief Handle a C++ member initializer using braced-init-list syntax.
1735MemInitResult
1736Sema::ActOnMemInitializer(Decl *ConstructorD,
1737                          Scope *S,
1738                          CXXScopeSpec &SS,
1739                          IdentifierInfo *MemberOrBase,
1740                          ParsedType TemplateTypeTy,
1741                          const DeclSpec &DS,
1742                          SourceLocation IdLoc,
1743                          Expr *InitList,
1744                          SourceLocation EllipsisLoc) {
1745  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1746                             DS, IdLoc, InitList,
1747                             EllipsisLoc);
1748}
1749
1750/// \brief Handle a C++ member initializer using parentheses syntax.
1751MemInitResult
1752Sema::ActOnMemInitializer(Decl *ConstructorD,
1753                          Scope *S,
1754                          CXXScopeSpec &SS,
1755                          IdentifierInfo *MemberOrBase,
1756                          ParsedType TemplateTypeTy,
1757                          const DeclSpec &DS,
1758                          SourceLocation IdLoc,
1759                          SourceLocation LParenLoc,
1760                          Expr **Args, unsigned NumArgs,
1761                          SourceLocation RParenLoc,
1762                          SourceLocation EllipsisLoc) {
1763  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1764                                           RParenLoc);
1765  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1766                             DS, IdLoc, List, EllipsisLoc);
1767}
1768
1769namespace {
1770
1771// Callback to only accept typo corrections that can be a valid C++ member
1772// intializer: either a non-static field member or a base class.
1773class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1774 public:
1775  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1776      : ClassDecl(ClassDecl) {}
1777
1778  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1779    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1780      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1781        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1782      else
1783        return isa<TypeDecl>(ND);
1784    }
1785    return false;
1786  }
1787
1788 private:
1789  CXXRecordDecl *ClassDecl;
1790};
1791
1792}
1793
1794/// \brief Handle a C++ member initializer.
1795MemInitResult
1796Sema::BuildMemInitializer(Decl *ConstructorD,
1797                          Scope *S,
1798                          CXXScopeSpec &SS,
1799                          IdentifierInfo *MemberOrBase,
1800                          ParsedType TemplateTypeTy,
1801                          const DeclSpec &DS,
1802                          SourceLocation IdLoc,
1803                          Expr *Init,
1804                          SourceLocation EllipsisLoc) {
1805  if (!ConstructorD)
1806    return true;
1807
1808  AdjustDeclIfTemplate(ConstructorD);
1809
1810  CXXConstructorDecl *Constructor
1811    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1812  if (!Constructor) {
1813    // The user wrote a constructor initializer on a function that is
1814    // not a C++ constructor. Ignore the error for now, because we may
1815    // have more member initializers coming; we'll diagnose it just
1816    // once in ActOnMemInitializers.
1817    return true;
1818  }
1819
1820  CXXRecordDecl *ClassDecl = Constructor->getParent();
1821
1822  // C++ [class.base.init]p2:
1823  //   Names in a mem-initializer-id are looked up in the scope of the
1824  //   constructor's class and, if not found in that scope, are looked
1825  //   up in the scope containing the constructor's definition.
1826  //   [Note: if the constructor's class contains a member with the
1827  //   same name as a direct or virtual base class of the class, a
1828  //   mem-initializer-id naming the member or base class and composed
1829  //   of a single identifier refers to the class member. A
1830  //   mem-initializer-id for the hidden base class may be specified
1831  //   using a qualified name. ]
1832  if (!SS.getScopeRep() && !TemplateTypeTy) {
1833    // Look for a member, first.
1834    DeclContext::lookup_result Result
1835      = ClassDecl->lookup(MemberOrBase);
1836    if (Result.first != Result.second) {
1837      ValueDecl *Member;
1838      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1839          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1840        if (EllipsisLoc.isValid())
1841          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1842            << MemberOrBase
1843            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1844
1845        return BuildMemberInitializer(Member, Init, IdLoc);
1846      }
1847    }
1848  }
1849  // It didn't name a member, so see if it names a class.
1850  QualType BaseType;
1851  TypeSourceInfo *TInfo = 0;
1852
1853  if (TemplateTypeTy) {
1854    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1855  } else if (DS.getTypeSpecType() == TST_decltype) {
1856    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1857  } else {
1858    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1859    LookupParsedName(R, S, &SS);
1860
1861    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1862    if (!TyD) {
1863      if (R.isAmbiguous()) return true;
1864
1865      // We don't want access-control diagnostics here.
1866      R.suppressDiagnostics();
1867
1868      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1869        bool NotUnknownSpecialization = false;
1870        DeclContext *DC = computeDeclContext(SS, false);
1871        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1872          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1873
1874        if (!NotUnknownSpecialization) {
1875          // When the scope specifier can refer to a member of an unknown
1876          // specialization, we take it as a type name.
1877          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1878                                       SS.getWithLocInContext(Context),
1879                                       *MemberOrBase, IdLoc);
1880          if (BaseType.isNull())
1881            return true;
1882
1883          R.clear();
1884          R.setLookupName(MemberOrBase);
1885        }
1886      }
1887
1888      // If no results were found, try to correct typos.
1889      TypoCorrection Corr;
1890      MemInitializerValidatorCCC Validator(ClassDecl);
1891      if (R.empty() && BaseType.isNull() &&
1892          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1893                              Validator, ClassDecl))) {
1894        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1895        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1896        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1897          // We have found a non-static data member with a similar
1898          // name to what was typed; complain and initialize that
1899          // member.
1900          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1901            << MemberOrBase << true << CorrectedQuotedStr
1902            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1903          Diag(Member->getLocation(), diag::note_previous_decl)
1904            << CorrectedQuotedStr;
1905
1906          return BuildMemberInitializer(Member, Init, IdLoc);
1907        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1908          const CXXBaseSpecifier *DirectBaseSpec;
1909          const CXXBaseSpecifier *VirtualBaseSpec;
1910          if (FindBaseInitializer(*this, ClassDecl,
1911                                  Context.getTypeDeclType(Type),
1912                                  DirectBaseSpec, VirtualBaseSpec)) {
1913            // We have found a direct or virtual base class with a
1914            // similar name to what was typed; complain and initialize
1915            // that base class.
1916            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1917              << MemberOrBase << false << CorrectedQuotedStr
1918              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1919
1920            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1921                                                             : VirtualBaseSpec;
1922            Diag(BaseSpec->getLocStart(),
1923                 diag::note_base_class_specified_here)
1924              << BaseSpec->getType()
1925              << BaseSpec->getSourceRange();
1926
1927            TyD = Type;
1928          }
1929        }
1930      }
1931
1932      if (!TyD && BaseType.isNull()) {
1933        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1934          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1935        return true;
1936      }
1937    }
1938
1939    if (BaseType.isNull()) {
1940      BaseType = Context.getTypeDeclType(TyD);
1941      if (SS.isSet()) {
1942        NestedNameSpecifier *Qualifier =
1943          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1944
1945        // FIXME: preserve source range information
1946        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1947      }
1948    }
1949  }
1950
1951  if (!TInfo)
1952    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1953
1954  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1955}
1956
1957/// Checks a member initializer expression for cases where reference (or
1958/// pointer) members are bound to by-value parameters (or their addresses).
1959static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1960                                               Expr *Init,
1961                                               SourceLocation IdLoc) {
1962  QualType MemberTy = Member->getType();
1963
1964  // We only handle pointers and references currently.
1965  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1966  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1967    return;
1968
1969  const bool IsPointer = MemberTy->isPointerType();
1970  if (IsPointer) {
1971    if (const UnaryOperator *Op
1972          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1973      // The only case we're worried about with pointers requires taking the
1974      // address.
1975      if (Op->getOpcode() != UO_AddrOf)
1976        return;
1977
1978      Init = Op->getSubExpr();
1979    } else {
1980      // We only handle address-of expression initializers for pointers.
1981      return;
1982    }
1983  }
1984
1985  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1986    // Taking the address of a temporary will be diagnosed as a hard error.
1987    if (IsPointer)
1988      return;
1989
1990    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1991      << Member << Init->getSourceRange();
1992  } else if (const DeclRefExpr *DRE
1993               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1994    // We only warn when referring to a non-reference parameter declaration.
1995    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1996    if (!Parameter || Parameter->getType()->isReferenceType())
1997      return;
1998
1999    S.Diag(Init->getExprLoc(),
2000           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2001                     : diag::warn_bind_ref_member_to_parameter)
2002      << Member << Parameter << Init->getSourceRange();
2003  } else {
2004    // Other initializers are fine.
2005    return;
2006  }
2007
2008  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2009    << (unsigned)IsPointer;
2010}
2011
2012/// Checks an initializer expression for use of uninitialized fields, such as
2013/// containing the field that is being initialized. Returns true if there is an
2014/// uninitialized field was used an updates the SourceLocation parameter; false
2015/// otherwise.
2016static bool InitExprContainsUninitializedFields(const Stmt *S,
2017                                                const ValueDecl *LhsField,
2018                                                SourceLocation *L) {
2019  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2020
2021  if (isa<CallExpr>(S)) {
2022    // Do not descend into function calls or constructors, as the use
2023    // of an uninitialized field may be valid. One would have to inspect
2024    // the contents of the function/ctor to determine if it is safe or not.
2025    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2026    // may be safe, depending on what the function/ctor does.
2027    return false;
2028  }
2029  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2030    const NamedDecl *RhsField = ME->getMemberDecl();
2031
2032    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2033      // The member expression points to a static data member.
2034      assert(VD->isStaticDataMember() &&
2035             "Member points to non-static data member!");
2036      (void)VD;
2037      return false;
2038    }
2039
2040    if (isa<EnumConstantDecl>(RhsField)) {
2041      // The member expression points to an enum.
2042      return false;
2043    }
2044
2045    if (RhsField == LhsField) {
2046      // Initializing a field with itself. Throw a warning.
2047      // But wait; there are exceptions!
2048      // Exception #1:  The field may not belong to this record.
2049      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2050      const Expr *base = ME->getBase();
2051      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2052        // Even though the field matches, it does not belong to this record.
2053        return false;
2054      }
2055      // None of the exceptions triggered; return true to indicate an
2056      // uninitialized field was used.
2057      *L = ME->getMemberLoc();
2058      return true;
2059    }
2060  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2061    // sizeof/alignof doesn't reference contents, do not warn.
2062    return false;
2063  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2064    // address-of doesn't reference contents (the pointer may be dereferenced
2065    // in the same expression but it would be rare; and weird).
2066    if (UOE->getOpcode() == UO_AddrOf)
2067      return false;
2068  }
2069  for (Stmt::const_child_range it = S->children(); it; ++it) {
2070    if (!*it) {
2071      // An expression such as 'member(arg ?: "")' may trigger this.
2072      continue;
2073    }
2074    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2075      return true;
2076  }
2077  return false;
2078}
2079
2080MemInitResult
2081Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2082                             SourceLocation IdLoc) {
2083  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2084  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2085  assert((DirectMember || IndirectMember) &&
2086         "Member must be a FieldDecl or IndirectFieldDecl");
2087
2088  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2089    return true;
2090
2091  if (Member->isInvalidDecl())
2092    return true;
2093
2094  // Diagnose value-uses of fields to initialize themselves, e.g.
2095  //   foo(foo)
2096  // where foo is not also a parameter to the constructor.
2097  // TODO: implement -Wuninitialized and fold this into that framework.
2098  Expr **Args;
2099  unsigned NumArgs;
2100  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2101    Args = ParenList->getExprs();
2102    NumArgs = ParenList->getNumExprs();
2103  } else {
2104    InitListExpr *InitList = cast<InitListExpr>(Init);
2105    Args = InitList->getInits();
2106    NumArgs = InitList->getNumInits();
2107  }
2108  for (unsigned i = 0; i < NumArgs; ++i) {
2109    SourceLocation L;
2110    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2111      // FIXME: Return true in the case when other fields are used before being
2112      // uninitialized. For example, let this field be the i'th field. When
2113      // initializing the i'th field, throw a warning if any of the >= i'th
2114      // fields are used, as they are not yet initialized.
2115      // Right now we are only handling the case where the i'th field uses
2116      // itself in its initializer.
2117      Diag(L, diag::warn_field_is_uninit);
2118    }
2119  }
2120
2121  SourceRange InitRange = Init->getSourceRange();
2122
2123  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2124    // Can't check initialization for a member of dependent type or when
2125    // any of the arguments are type-dependent expressions.
2126    DiscardCleanupsInEvaluationContext();
2127  } else {
2128    bool InitList = false;
2129    if (isa<InitListExpr>(Init)) {
2130      InitList = true;
2131      Args = &Init;
2132      NumArgs = 1;
2133
2134      if (isStdInitializerList(Member->getType(), 0)) {
2135        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2136            << /*at end of ctor*/1 << InitRange;
2137      }
2138    }
2139
2140    // Initialize the member.
2141    InitializedEntity MemberEntity =
2142      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2143                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2144    InitializationKind Kind =
2145      InitList ? InitializationKind::CreateDirectList(IdLoc)
2146               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2147                                                  InitRange.getEnd());
2148
2149    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2150    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2151                                            MultiExprArg(*this, Args, NumArgs),
2152                                            0);
2153    if (MemberInit.isInvalid())
2154      return true;
2155
2156    CheckImplicitConversions(MemberInit.get(),
2157                             InitRange.getBegin());
2158
2159    // C++0x [class.base.init]p7:
2160    //   The initialization of each base and member constitutes a
2161    //   full-expression.
2162    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2163    if (MemberInit.isInvalid())
2164      return true;
2165
2166    // If we are in a dependent context, template instantiation will
2167    // perform this type-checking again. Just save the arguments that we
2168    // received.
2169    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2170    // of the information that we have about the member
2171    // initializer. However, deconstructing the ASTs is a dicey process,
2172    // and this approach is far more likely to get the corner cases right.
2173    if (CurContext->isDependentContext()) {
2174      // The existing Init will do fine.
2175    } else {
2176      Init = MemberInit.get();
2177      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2178    }
2179  }
2180
2181  if (DirectMember) {
2182    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2183                                            InitRange.getBegin(), Init,
2184                                            InitRange.getEnd());
2185  } else {
2186    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2187                                            InitRange.getBegin(), Init,
2188                                            InitRange.getEnd());
2189  }
2190}
2191
2192MemInitResult
2193Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2194                                 CXXRecordDecl *ClassDecl) {
2195  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2196  if (!LangOpts.CPlusPlus0x)
2197    return Diag(NameLoc, diag::err_delegating_ctor)
2198      << TInfo->getTypeLoc().getLocalSourceRange();
2199  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2200
2201  bool InitList = true;
2202  Expr **Args = &Init;
2203  unsigned NumArgs = 1;
2204  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2205    InitList = false;
2206    Args = ParenList->getExprs();
2207    NumArgs = ParenList->getNumExprs();
2208  }
2209
2210  SourceRange InitRange = Init->getSourceRange();
2211  // Initialize the object.
2212  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2213                                     QualType(ClassDecl->getTypeForDecl(), 0));
2214  InitializationKind Kind =
2215    InitList ? InitializationKind::CreateDirectList(NameLoc)
2216             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2217                                                InitRange.getEnd());
2218  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2219  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2220                                              MultiExprArg(*this, Args,NumArgs),
2221                                              0);
2222  if (DelegationInit.isInvalid())
2223    return true;
2224
2225  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2226         "Delegating constructor with no target?");
2227
2228  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2229
2230  // C++0x [class.base.init]p7:
2231  //   The initialization of each base and member constitutes a
2232  //   full-expression.
2233  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2234  if (DelegationInit.isInvalid())
2235    return true;
2236
2237  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2238                                          DelegationInit.takeAs<Expr>(),
2239                                          InitRange.getEnd());
2240}
2241
2242MemInitResult
2243Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2244                           Expr *Init, CXXRecordDecl *ClassDecl,
2245                           SourceLocation EllipsisLoc) {
2246  SourceLocation BaseLoc
2247    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2248
2249  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2250    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2251             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2252
2253  // C++ [class.base.init]p2:
2254  //   [...] Unless the mem-initializer-id names a nonstatic data
2255  //   member of the constructor's class or a direct or virtual base
2256  //   of that class, the mem-initializer is ill-formed. A
2257  //   mem-initializer-list can initialize a base class using any
2258  //   name that denotes that base class type.
2259  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2260
2261  SourceRange InitRange = Init->getSourceRange();
2262  if (EllipsisLoc.isValid()) {
2263    // This is a pack expansion.
2264    if (!BaseType->containsUnexpandedParameterPack())  {
2265      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2266        << SourceRange(BaseLoc, InitRange.getEnd());
2267
2268      EllipsisLoc = SourceLocation();
2269    }
2270  } else {
2271    // Check for any unexpanded parameter packs.
2272    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2273      return true;
2274
2275    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2276      return true;
2277  }
2278
2279  // Check for direct and virtual base classes.
2280  const CXXBaseSpecifier *DirectBaseSpec = 0;
2281  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2282  if (!Dependent) {
2283    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2284                                       BaseType))
2285      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2286
2287    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2288                        VirtualBaseSpec);
2289
2290    // C++ [base.class.init]p2:
2291    // Unless the mem-initializer-id names a nonstatic data member of the
2292    // constructor's class or a direct or virtual base of that class, the
2293    // mem-initializer is ill-formed.
2294    if (!DirectBaseSpec && !VirtualBaseSpec) {
2295      // If the class has any dependent bases, then it's possible that
2296      // one of those types will resolve to the same type as
2297      // BaseType. Therefore, just treat this as a dependent base
2298      // class initialization.  FIXME: Should we try to check the
2299      // initialization anyway? It seems odd.
2300      if (ClassDecl->hasAnyDependentBases())
2301        Dependent = true;
2302      else
2303        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2304          << BaseType << Context.getTypeDeclType(ClassDecl)
2305          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2306    }
2307  }
2308
2309  if (Dependent) {
2310    DiscardCleanupsInEvaluationContext();
2311
2312    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2313                                            /*IsVirtual=*/false,
2314                                            InitRange.getBegin(), Init,
2315                                            InitRange.getEnd(), EllipsisLoc);
2316  }
2317
2318  // C++ [base.class.init]p2:
2319  //   If a mem-initializer-id is ambiguous because it designates both
2320  //   a direct non-virtual base class and an inherited virtual base
2321  //   class, the mem-initializer is ill-formed.
2322  if (DirectBaseSpec && VirtualBaseSpec)
2323    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2324      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2325
2326  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2327  if (!BaseSpec)
2328    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2329
2330  // Initialize the base.
2331  bool InitList = true;
2332  Expr **Args = &Init;
2333  unsigned NumArgs = 1;
2334  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2335    InitList = false;
2336    Args = ParenList->getExprs();
2337    NumArgs = ParenList->getNumExprs();
2338  }
2339
2340  InitializedEntity BaseEntity =
2341    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2342  InitializationKind Kind =
2343    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2344             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2345                                                InitRange.getEnd());
2346  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2347  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2348                                          MultiExprArg(*this, Args, NumArgs),
2349                                          0);
2350  if (BaseInit.isInvalid())
2351    return true;
2352
2353  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2354
2355  // C++0x [class.base.init]p7:
2356  //   The initialization of each base and member constitutes a
2357  //   full-expression.
2358  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2359  if (BaseInit.isInvalid())
2360    return true;
2361
2362  // If we are in a dependent context, template instantiation will
2363  // perform this type-checking again. Just save the arguments that we
2364  // received in a ParenListExpr.
2365  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2366  // of the information that we have about the base
2367  // initializer. However, deconstructing the ASTs is a dicey process,
2368  // and this approach is far more likely to get the corner cases right.
2369  if (CurContext->isDependentContext())
2370    BaseInit = Owned(Init);
2371
2372  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2373                                          BaseSpec->isVirtual(),
2374                                          InitRange.getBegin(),
2375                                          BaseInit.takeAs<Expr>(),
2376                                          InitRange.getEnd(), EllipsisLoc);
2377}
2378
2379// Create a static_cast\<T&&>(expr).
2380static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2381  QualType ExprType = E->getType();
2382  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2383  SourceLocation ExprLoc = E->getLocStart();
2384  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2385      TargetType, ExprLoc);
2386
2387  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2388                                   SourceRange(ExprLoc, ExprLoc),
2389                                   E->getSourceRange()).take();
2390}
2391
2392/// ImplicitInitializerKind - How an implicit base or member initializer should
2393/// initialize its base or member.
2394enum ImplicitInitializerKind {
2395  IIK_Default,
2396  IIK_Copy,
2397  IIK_Move
2398};
2399
2400static bool
2401BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2402                             ImplicitInitializerKind ImplicitInitKind,
2403                             CXXBaseSpecifier *BaseSpec,
2404                             bool IsInheritedVirtualBase,
2405                             CXXCtorInitializer *&CXXBaseInit) {
2406  InitializedEntity InitEntity
2407    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2408                                        IsInheritedVirtualBase);
2409
2410  ExprResult BaseInit;
2411
2412  switch (ImplicitInitKind) {
2413  case IIK_Default: {
2414    InitializationKind InitKind
2415      = InitializationKind::CreateDefault(Constructor->getLocation());
2416    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2417    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2418                               MultiExprArg(SemaRef, 0, 0));
2419    break;
2420  }
2421
2422  case IIK_Move:
2423  case IIK_Copy: {
2424    bool Moving = ImplicitInitKind == IIK_Move;
2425    ParmVarDecl *Param = Constructor->getParamDecl(0);
2426    QualType ParamType = Param->getType().getNonReferenceType();
2427
2428    Expr *CopyCtorArg =
2429      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2430                          SourceLocation(), Param, false,
2431                          Constructor->getLocation(), ParamType,
2432                          VK_LValue, 0);
2433
2434    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2435
2436    // Cast to the base class to avoid ambiguities.
2437    QualType ArgTy =
2438      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2439                                       ParamType.getQualifiers());
2440
2441    if (Moving) {
2442      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2443    }
2444
2445    CXXCastPath BasePath;
2446    BasePath.push_back(BaseSpec);
2447    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2448                                            CK_UncheckedDerivedToBase,
2449                                            Moving ? VK_XValue : VK_LValue,
2450                                            &BasePath).take();
2451
2452    InitializationKind InitKind
2453      = InitializationKind::CreateDirect(Constructor->getLocation(),
2454                                         SourceLocation(), SourceLocation());
2455    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2456                                   &CopyCtorArg, 1);
2457    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2458                               MultiExprArg(&CopyCtorArg, 1));
2459    break;
2460  }
2461  }
2462
2463  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2464  if (BaseInit.isInvalid())
2465    return true;
2466
2467  CXXBaseInit =
2468    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2469               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2470                                                        SourceLocation()),
2471                                             BaseSpec->isVirtual(),
2472                                             SourceLocation(),
2473                                             BaseInit.takeAs<Expr>(),
2474                                             SourceLocation(),
2475                                             SourceLocation());
2476
2477  return false;
2478}
2479
2480static bool RefersToRValueRef(Expr *MemRef) {
2481  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2482  return Referenced->getType()->isRValueReferenceType();
2483}
2484
2485static bool
2486BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2487                               ImplicitInitializerKind ImplicitInitKind,
2488                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2489                               CXXCtorInitializer *&CXXMemberInit) {
2490  if (Field->isInvalidDecl())
2491    return true;
2492
2493  SourceLocation Loc = Constructor->getLocation();
2494
2495  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2496    bool Moving = ImplicitInitKind == IIK_Move;
2497    ParmVarDecl *Param = Constructor->getParamDecl(0);
2498    QualType ParamType = Param->getType().getNonReferenceType();
2499
2500    // Suppress copying zero-width bitfields.
2501    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2502      return false;
2503
2504    Expr *MemberExprBase =
2505      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2506                          SourceLocation(), Param, false,
2507                          Loc, ParamType, VK_LValue, 0);
2508
2509    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2510
2511    if (Moving) {
2512      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2513    }
2514
2515    // Build a reference to this field within the parameter.
2516    CXXScopeSpec SS;
2517    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2518                              Sema::LookupMemberName);
2519    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2520                                  : cast<ValueDecl>(Field), AS_public);
2521    MemberLookup.resolveKind();
2522    ExprResult CtorArg
2523      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2524                                         ParamType, Loc,
2525                                         /*IsArrow=*/false,
2526                                         SS,
2527                                         /*TemplateKWLoc=*/SourceLocation(),
2528                                         /*FirstQualifierInScope=*/0,
2529                                         MemberLookup,
2530                                         /*TemplateArgs=*/0);
2531    if (CtorArg.isInvalid())
2532      return true;
2533
2534    // C++11 [class.copy]p15:
2535    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2536    //     with static_cast<T&&>(x.m);
2537    if (RefersToRValueRef(CtorArg.get())) {
2538      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2539    }
2540
2541    // When the field we are copying is an array, create index variables for
2542    // each dimension of the array. We use these index variables to subscript
2543    // the source array, and other clients (e.g., CodeGen) will perform the
2544    // necessary iteration with these index variables.
2545    SmallVector<VarDecl *, 4> IndexVariables;
2546    QualType BaseType = Field->getType();
2547    QualType SizeType = SemaRef.Context.getSizeType();
2548    bool InitializingArray = false;
2549    while (const ConstantArrayType *Array
2550                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2551      InitializingArray = true;
2552      // Create the iteration variable for this array index.
2553      IdentifierInfo *IterationVarName = 0;
2554      {
2555        SmallString<8> Str;
2556        llvm::raw_svector_ostream OS(Str);
2557        OS << "__i" << IndexVariables.size();
2558        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2559      }
2560      VarDecl *IterationVar
2561        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2562                          IterationVarName, SizeType,
2563                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2564                          SC_None, SC_None);
2565      IndexVariables.push_back(IterationVar);
2566
2567      // Create a reference to the iteration variable.
2568      ExprResult IterationVarRef
2569        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2570      assert(!IterationVarRef.isInvalid() &&
2571             "Reference to invented variable cannot fail!");
2572      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2573      assert(!IterationVarRef.isInvalid() &&
2574             "Conversion of invented variable cannot fail!");
2575
2576      // Subscript the array with this iteration variable.
2577      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2578                                                        IterationVarRef.take(),
2579                                                        Loc);
2580      if (CtorArg.isInvalid())
2581        return true;
2582
2583      BaseType = Array->getElementType();
2584    }
2585
2586    // The array subscript expression is an lvalue, which is wrong for moving.
2587    if (Moving && InitializingArray)
2588      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2589
2590    // Construct the entity that we will be initializing. For an array, this
2591    // will be first element in the array, which may require several levels
2592    // of array-subscript entities.
2593    SmallVector<InitializedEntity, 4> Entities;
2594    Entities.reserve(1 + IndexVariables.size());
2595    if (Indirect)
2596      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2597    else
2598      Entities.push_back(InitializedEntity::InitializeMember(Field));
2599    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2600      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2601                                                              0,
2602                                                              Entities.back()));
2603
2604    // Direct-initialize to use the copy constructor.
2605    InitializationKind InitKind =
2606      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2607
2608    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2609    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2610                                   &CtorArgE, 1);
2611
2612    ExprResult MemberInit
2613      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2614                        MultiExprArg(&CtorArgE, 1));
2615    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2616    if (MemberInit.isInvalid())
2617      return true;
2618
2619    if (Indirect) {
2620      assert(IndexVariables.size() == 0 &&
2621             "Indirect field improperly initialized");
2622      CXXMemberInit
2623        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2624                                                   Loc, Loc,
2625                                                   MemberInit.takeAs<Expr>(),
2626                                                   Loc);
2627    } else
2628      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2629                                                 Loc, MemberInit.takeAs<Expr>(),
2630                                                 Loc,
2631                                                 IndexVariables.data(),
2632                                                 IndexVariables.size());
2633    return false;
2634  }
2635
2636  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2637
2638  QualType FieldBaseElementType =
2639    SemaRef.Context.getBaseElementType(Field->getType());
2640
2641  if (FieldBaseElementType->isRecordType()) {
2642    InitializedEntity InitEntity
2643      = Indirect? InitializedEntity::InitializeMember(Indirect)
2644                : InitializedEntity::InitializeMember(Field);
2645    InitializationKind InitKind =
2646      InitializationKind::CreateDefault(Loc);
2647
2648    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2649    ExprResult MemberInit =
2650      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2651
2652    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2653    if (MemberInit.isInvalid())
2654      return true;
2655
2656    if (Indirect)
2657      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2658                                                               Indirect, Loc,
2659                                                               Loc,
2660                                                               MemberInit.get(),
2661                                                               Loc);
2662    else
2663      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2664                                                               Field, Loc, Loc,
2665                                                               MemberInit.get(),
2666                                                               Loc);
2667    return false;
2668  }
2669
2670  if (!Field->getParent()->isUnion()) {
2671    if (FieldBaseElementType->isReferenceType()) {
2672      SemaRef.Diag(Constructor->getLocation(),
2673                   diag::err_uninitialized_member_in_ctor)
2674      << (int)Constructor->isImplicit()
2675      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2676      << 0 << Field->getDeclName();
2677      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2678      return true;
2679    }
2680
2681    if (FieldBaseElementType.isConstQualified()) {
2682      SemaRef.Diag(Constructor->getLocation(),
2683                   diag::err_uninitialized_member_in_ctor)
2684      << (int)Constructor->isImplicit()
2685      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2686      << 1 << Field->getDeclName();
2687      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2688      return true;
2689    }
2690  }
2691
2692  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2693      FieldBaseElementType->isObjCRetainableType() &&
2694      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2695      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2696    // Instant objects:
2697    //   Default-initialize Objective-C pointers to NULL.
2698    CXXMemberInit
2699      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2700                                                 Loc, Loc,
2701                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2702                                                 Loc);
2703    return false;
2704  }
2705
2706  // Nothing to initialize.
2707  CXXMemberInit = 0;
2708  return false;
2709}
2710
2711namespace {
2712struct BaseAndFieldInfo {
2713  Sema &S;
2714  CXXConstructorDecl *Ctor;
2715  bool AnyErrorsInInits;
2716  ImplicitInitializerKind IIK;
2717  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2718  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2719
2720  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2721    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2722    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2723    if (Generated && Ctor->isCopyConstructor())
2724      IIK = IIK_Copy;
2725    else if (Generated && Ctor->isMoveConstructor())
2726      IIK = IIK_Move;
2727    else
2728      IIK = IIK_Default;
2729  }
2730
2731  bool isImplicitCopyOrMove() const {
2732    switch (IIK) {
2733    case IIK_Copy:
2734    case IIK_Move:
2735      return true;
2736
2737    case IIK_Default:
2738      return false;
2739    }
2740
2741    llvm_unreachable("Invalid ImplicitInitializerKind!");
2742  }
2743};
2744}
2745
2746/// \brief Determine whether the given indirect field declaration is somewhere
2747/// within an anonymous union.
2748static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2749  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2750                                      CEnd = F->chain_end();
2751       C != CEnd; ++C)
2752    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2753      if (Record->isUnion())
2754        return true;
2755
2756  return false;
2757}
2758
2759/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2760/// array type.
2761static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2762  if (T->isIncompleteArrayType())
2763    return true;
2764
2765  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2766    if (!ArrayT->getSize())
2767      return true;
2768
2769    T = ArrayT->getElementType();
2770  }
2771
2772  return false;
2773}
2774
2775static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2776                                    FieldDecl *Field,
2777                                    IndirectFieldDecl *Indirect = 0) {
2778
2779  // Overwhelmingly common case: we have a direct initializer for this field.
2780  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2781    Info.AllToInit.push_back(Init);
2782    return false;
2783  }
2784
2785  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2786  // has a brace-or-equal-initializer, the entity is initialized as specified
2787  // in [dcl.init].
2788  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2789    CXXCtorInitializer *Init;
2790    if (Indirect)
2791      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2792                                                      SourceLocation(),
2793                                                      SourceLocation(), 0,
2794                                                      SourceLocation());
2795    else
2796      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2797                                                      SourceLocation(),
2798                                                      SourceLocation(), 0,
2799                                                      SourceLocation());
2800    Info.AllToInit.push_back(Init);
2801    return false;
2802  }
2803
2804  // Don't build an implicit initializer for union members if none was
2805  // explicitly specified.
2806  if (Field->getParent()->isUnion() ||
2807      (Indirect && isWithinAnonymousUnion(Indirect)))
2808    return false;
2809
2810  // Don't initialize incomplete or zero-length arrays.
2811  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2812    return false;
2813
2814  // Don't try to build an implicit initializer if there were semantic
2815  // errors in any of the initializers (and therefore we might be
2816  // missing some that the user actually wrote).
2817  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2818    return false;
2819
2820  CXXCtorInitializer *Init = 0;
2821  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2822                                     Indirect, Init))
2823    return true;
2824
2825  if (Init)
2826    Info.AllToInit.push_back(Init);
2827
2828  return false;
2829}
2830
2831bool
2832Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2833                               CXXCtorInitializer *Initializer) {
2834  assert(Initializer->isDelegatingInitializer());
2835  Constructor->setNumCtorInitializers(1);
2836  CXXCtorInitializer **initializer =
2837    new (Context) CXXCtorInitializer*[1];
2838  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2839  Constructor->setCtorInitializers(initializer);
2840
2841  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2842    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2843    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2844  }
2845
2846  DelegatingCtorDecls.push_back(Constructor);
2847
2848  return false;
2849}
2850
2851bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2852                               CXXCtorInitializer **Initializers,
2853                               unsigned NumInitializers,
2854                               bool AnyErrors) {
2855  if (Constructor->isDependentContext()) {
2856    // Just store the initializers as written, they will be checked during
2857    // instantiation.
2858    if (NumInitializers > 0) {
2859      Constructor->setNumCtorInitializers(NumInitializers);
2860      CXXCtorInitializer **baseOrMemberInitializers =
2861        new (Context) CXXCtorInitializer*[NumInitializers];
2862      memcpy(baseOrMemberInitializers, Initializers,
2863             NumInitializers * sizeof(CXXCtorInitializer*));
2864      Constructor->setCtorInitializers(baseOrMemberInitializers);
2865    }
2866
2867    return false;
2868  }
2869
2870  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2871
2872  // We need to build the initializer AST according to order of construction
2873  // and not what user specified in the Initializers list.
2874  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2875  if (!ClassDecl)
2876    return true;
2877
2878  bool HadError = false;
2879
2880  for (unsigned i = 0; i < NumInitializers; i++) {
2881    CXXCtorInitializer *Member = Initializers[i];
2882
2883    if (Member->isBaseInitializer())
2884      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2885    else
2886      Info.AllBaseFields[Member->getAnyMember()] = Member;
2887  }
2888
2889  // Keep track of the direct virtual bases.
2890  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2891  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2892       E = ClassDecl->bases_end(); I != E; ++I) {
2893    if (I->isVirtual())
2894      DirectVBases.insert(I);
2895  }
2896
2897  // Push virtual bases before others.
2898  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2899       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2900
2901    if (CXXCtorInitializer *Value
2902        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2903      Info.AllToInit.push_back(Value);
2904    } else if (!AnyErrors) {
2905      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2906      CXXCtorInitializer *CXXBaseInit;
2907      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2908                                       VBase, IsInheritedVirtualBase,
2909                                       CXXBaseInit)) {
2910        HadError = true;
2911        continue;
2912      }
2913
2914      Info.AllToInit.push_back(CXXBaseInit);
2915    }
2916  }
2917
2918  // Non-virtual bases.
2919  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2920       E = ClassDecl->bases_end(); Base != E; ++Base) {
2921    // Virtuals are in the virtual base list and already constructed.
2922    if (Base->isVirtual())
2923      continue;
2924
2925    if (CXXCtorInitializer *Value
2926          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2927      Info.AllToInit.push_back(Value);
2928    } else if (!AnyErrors) {
2929      CXXCtorInitializer *CXXBaseInit;
2930      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2931                                       Base, /*IsInheritedVirtualBase=*/false,
2932                                       CXXBaseInit)) {
2933        HadError = true;
2934        continue;
2935      }
2936
2937      Info.AllToInit.push_back(CXXBaseInit);
2938    }
2939  }
2940
2941  // Fields.
2942  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2943                               MemEnd = ClassDecl->decls_end();
2944       Mem != MemEnd; ++Mem) {
2945    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2946      // C++ [class.bit]p2:
2947      //   A declaration for a bit-field that omits the identifier declares an
2948      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2949      //   initialized.
2950      if (F->isUnnamedBitfield())
2951        continue;
2952
2953      // If we're not generating the implicit copy/move constructor, then we'll
2954      // handle anonymous struct/union fields based on their individual
2955      // indirect fields.
2956      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2957        continue;
2958
2959      if (CollectFieldInitializer(*this, Info, F))
2960        HadError = true;
2961      continue;
2962    }
2963
2964    // Beyond this point, we only consider default initialization.
2965    if (Info.IIK != IIK_Default)
2966      continue;
2967
2968    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2969      if (F->getType()->isIncompleteArrayType()) {
2970        assert(ClassDecl->hasFlexibleArrayMember() &&
2971               "Incomplete array type is not valid");
2972        continue;
2973      }
2974
2975      // Initialize each field of an anonymous struct individually.
2976      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2977        HadError = true;
2978
2979      continue;
2980    }
2981  }
2982
2983  NumInitializers = Info.AllToInit.size();
2984  if (NumInitializers > 0) {
2985    Constructor->setNumCtorInitializers(NumInitializers);
2986    CXXCtorInitializer **baseOrMemberInitializers =
2987      new (Context) CXXCtorInitializer*[NumInitializers];
2988    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2989           NumInitializers * sizeof(CXXCtorInitializer*));
2990    Constructor->setCtorInitializers(baseOrMemberInitializers);
2991
2992    // Constructors implicitly reference the base and member
2993    // destructors.
2994    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2995                                           Constructor->getParent());
2996  }
2997
2998  return HadError;
2999}
3000
3001static void *GetKeyForTopLevelField(FieldDecl *Field) {
3002  // For anonymous unions, use the class declaration as the key.
3003  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3004    if (RT->getDecl()->isAnonymousStructOrUnion())
3005      return static_cast<void *>(RT->getDecl());
3006  }
3007  return static_cast<void *>(Field);
3008}
3009
3010static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3011  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3012}
3013
3014static void *GetKeyForMember(ASTContext &Context,
3015                             CXXCtorInitializer *Member) {
3016  if (!Member->isAnyMemberInitializer())
3017    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3018
3019  // For fields injected into the class via declaration of an anonymous union,
3020  // use its anonymous union class declaration as the unique key.
3021  FieldDecl *Field = Member->getAnyMember();
3022
3023  // If the field is a member of an anonymous struct or union, our key
3024  // is the anonymous record decl that's a direct child of the class.
3025  RecordDecl *RD = Field->getParent();
3026  if (RD->isAnonymousStructOrUnion()) {
3027    while (true) {
3028      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3029      if (Parent->isAnonymousStructOrUnion())
3030        RD = Parent;
3031      else
3032        break;
3033    }
3034
3035    return static_cast<void *>(RD);
3036  }
3037
3038  return static_cast<void *>(Field);
3039}
3040
3041static void
3042DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3043                                  const CXXConstructorDecl *Constructor,
3044                                  CXXCtorInitializer **Inits,
3045                                  unsigned NumInits) {
3046  if (Constructor->getDeclContext()->isDependentContext())
3047    return;
3048
3049  // Don't check initializers order unless the warning is enabled at the
3050  // location of at least one initializer.
3051  bool ShouldCheckOrder = false;
3052  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3053    CXXCtorInitializer *Init = Inits[InitIndex];
3054    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3055                                         Init->getSourceLocation())
3056          != DiagnosticsEngine::Ignored) {
3057      ShouldCheckOrder = true;
3058      break;
3059    }
3060  }
3061  if (!ShouldCheckOrder)
3062    return;
3063
3064  // Build the list of bases and members in the order that they'll
3065  // actually be initialized.  The explicit initializers should be in
3066  // this same order but may be missing things.
3067  SmallVector<const void*, 32> IdealInitKeys;
3068
3069  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3070
3071  // 1. Virtual bases.
3072  for (CXXRecordDecl::base_class_const_iterator VBase =
3073       ClassDecl->vbases_begin(),
3074       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3075    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3076
3077  // 2. Non-virtual bases.
3078  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3079       E = ClassDecl->bases_end(); Base != E; ++Base) {
3080    if (Base->isVirtual())
3081      continue;
3082    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3083  }
3084
3085  // 3. Direct fields.
3086  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3087       E = ClassDecl->field_end(); Field != E; ++Field) {
3088    if (Field->isUnnamedBitfield())
3089      continue;
3090
3091    IdealInitKeys.push_back(GetKeyForTopLevelField(&*Field));
3092  }
3093
3094  unsigned NumIdealInits = IdealInitKeys.size();
3095  unsigned IdealIndex = 0;
3096
3097  CXXCtorInitializer *PrevInit = 0;
3098  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3099    CXXCtorInitializer *Init = Inits[InitIndex];
3100    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3101
3102    // Scan forward to try to find this initializer in the idealized
3103    // initializers list.
3104    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3105      if (InitKey == IdealInitKeys[IdealIndex])
3106        break;
3107
3108    // If we didn't find this initializer, it must be because we
3109    // scanned past it on a previous iteration.  That can only
3110    // happen if we're out of order;  emit a warning.
3111    if (IdealIndex == NumIdealInits && PrevInit) {
3112      Sema::SemaDiagnosticBuilder D =
3113        SemaRef.Diag(PrevInit->getSourceLocation(),
3114                     diag::warn_initializer_out_of_order);
3115
3116      if (PrevInit->isAnyMemberInitializer())
3117        D << 0 << PrevInit->getAnyMember()->getDeclName();
3118      else
3119        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3120
3121      if (Init->isAnyMemberInitializer())
3122        D << 0 << Init->getAnyMember()->getDeclName();
3123      else
3124        D << 1 << Init->getTypeSourceInfo()->getType();
3125
3126      // Move back to the initializer's location in the ideal list.
3127      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3128        if (InitKey == IdealInitKeys[IdealIndex])
3129          break;
3130
3131      assert(IdealIndex != NumIdealInits &&
3132             "initializer not found in initializer list");
3133    }
3134
3135    PrevInit = Init;
3136  }
3137}
3138
3139namespace {
3140bool CheckRedundantInit(Sema &S,
3141                        CXXCtorInitializer *Init,
3142                        CXXCtorInitializer *&PrevInit) {
3143  if (!PrevInit) {
3144    PrevInit = Init;
3145    return false;
3146  }
3147
3148  if (FieldDecl *Field = Init->getMember())
3149    S.Diag(Init->getSourceLocation(),
3150           diag::err_multiple_mem_initialization)
3151      << Field->getDeclName()
3152      << Init->getSourceRange();
3153  else {
3154    const Type *BaseClass = Init->getBaseClass();
3155    assert(BaseClass && "neither field nor base");
3156    S.Diag(Init->getSourceLocation(),
3157           diag::err_multiple_base_initialization)
3158      << QualType(BaseClass, 0)
3159      << Init->getSourceRange();
3160  }
3161  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3162    << 0 << PrevInit->getSourceRange();
3163
3164  return true;
3165}
3166
3167typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3168typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3169
3170bool CheckRedundantUnionInit(Sema &S,
3171                             CXXCtorInitializer *Init,
3172                             RedundantUnionMap &Unions) {
3173  FieldDecl *Field = Init->getAnyMember();
3174  RecordDecl *Parent = Field->getParent();
3175  NamedDecl *Child = Field;
3176
3177  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3178    if (Parent->isUnion()) {
3179      UnionEntry &En = Unions[Parent];
3180      if (En.first && En.first != Child) {
3181        S.Diag(Init->getSourceLocation(),
3182               diag::err_multiple_mem_union_initialization)
3183          << Field->getDeclName()
3184          << Init->getSourceRange();
3185        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3186          << 0 << En.second->getSourceRange();
3187        return true;
3188      }
3189      if (!En.first) {
3190        En.first = Child;
3191        En.second = Init;
3192      }
3193      if (!Parent->isAnonymousStructOrUnion())
3194        return false;
3195    }
3196
3197    Child = Parent;
3198    Parent = cast<RecordDecl>(Parent->getDeclContext());
3199  }
3200
3201  return false;
3202}
3203}
3204
3205/// ActOnMemInitializers - Handle the member initializers for a constructor.
3206void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3207                                SourceLocation ColonLoc,
3208                                CXXCtorInitializer **meminits,
3209                                unsigned NumMemInits,
3210                                bool AnyErrors) {
3211  if (!ConstructorDecl)
3212    return;
3213
3214  AdjustDeclIfTemplate(ConstructorDecl);
3215
3216  CXXConstructorDecl *Constructor
3217    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3218
3219  if (!Constructor) {
3220    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3221    return;
3222  }
3223
3224  CXXCtorInitializer **MemInits =
3225    reinterpret_cast<CXXCtorInitializer **>(meminits);
3226
3227  // Mapping for the duplicate initializers check.
3228  // For member initializers, this is keyed with a FieldDecl*.
3229  // For base initializers, this is keyed with a Type*.
3230  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3231
3232  // Mapping for the inconsistent anonymous-union initializers check.
3233  RedundantUnionMap MemberUnions;
3234
3235  bool HadError = false;
3236  for (unsigned i = 0; i < NumMemInits; i++) {
3237    CXXCtorInitializer *Init = MemInits[i];
3238
3239    // Set the source order index.
3240    Init->setSourceOrder(i);
3241
3242    if (Init->isAnyMemberInitializer()) {
3243      FieldDecl *Field = Init->getAnyMember();
3244      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3245          CheckRedundantUnionInit(*this, Init, MemberUnions))
3246        HadError = true;
3247    } else if (Init->isBaseInitializer()) {
3248      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3249      if (CheckRedundantInit(*this, Init, Members[Key]))
3250        HadError = true;
3251    } else {
3252      assert(Init->isDelegatingInitializer());
3253      // This must be the only initializer
3254      if (i != 0 || NumMemInits > 1) {
3255        Diag(MemInits[0]->getSourceLocation(),
3256             diag::err_delegating_initializer_alone)
3257          << MemInits[0]->getSourceRange();
3258        HadError = true;
3259        // We will treat this as being the only initializer.
3260      }
3261      SetDelegatingInitializer(Constructor, MemInits[i]);
3262      // Return immediately as the initializer is set.
3263      return;
3264    }
3265  }
3266
3267  if (HadError)
3268    return;
3269
3270  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3271
3272  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3273}
3274
3275void
3276Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3277                                             CXXRecordDecl *ClassDecl) {
3278  // Ignore dependent contexts. Also ignore unions, since their members never
3279  // have destructors implicitly called.
3280  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3281    return;
3282
3283  // FIXME: all the access-control diagnostics are positioned on the
3284  // field/base declaration.  That's probably good; that said, the
3285  // user might reasonably want to know why the destructor is being
3286  // emitted, and we currently don't say.
3287
3288  // Non-static data members.
3289  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3290       E = ClassDecl->field_end(); I != E; ++I) {
3291    FieldDecl *Field = &*I;
3292    if (Field->isInvalidDecl())
3293      continue;
3294
3295    // Don't destroy incomplete or zero-length arrays.
3296    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3297      continue;
3298
3299    QualType FieldType = Context.getBaseElementType(Field->getType());
3300
3301    const RecordType* RT = FieldType->getAs<RecordType>();
3302    if (!RT)
3303      continue;
3304
3305    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3306    if (FieldClassDecl->isInvalidDecl())
3307      continue;
3308    if (FieldClassDecl->hasIrrelevantDestructor())
3309      continue;
3310    // The destructor for an implicit anonymous union member is never invoked.
3311    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3312      continue;
3313
3314    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3315    assert(Dtor && "No dtor found for FieldClassDecl!");
3316    CheckDestructorAccess(Field->getLocation(), Dtor,
3317                          PDiag(diag::err_access_dtor_field)
3318                            << Field->getDeclName()
3319                            << FieldType);
3320
3321    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3322    DiagnoseUseOfDecl(Dtor, Location);
3323  }
3324
3325  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3326
3327  // Bases.
3328  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3329       E = ClassDecl->bases_end(); Base != E; ++Base) {
3330    // Bases are always records in a well-formed non-dependent class.
3331    const RecordType *RT = Base->getType()->getAs<RecordType>();
3332
3333    // Remember direct virtual bases.
3334    if (Base->isVirtual())
3335      DirectVirtualBases.insert(RT);
3336
3337    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3338    // If our base class is invalid, we probably can't get its dtor anyway.
3339    if (BaseClassDecl->isInvalidDecl())
3340      continue;
3341    if (BaseClassDecl->hasIrrelevantDestructor())
3342      continue;
3343
3344    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3345    assert(Dtor && "No dtor found for BaseClassDecl!");
3346
3347    // FIXME: caret should be on the start of the class name
3348    CheckDestructorAccess(Base->getLocStart(), Dtor,
3349                          PDiag(diag::err_access_dtor_base)
3350                            << Base->getType()
3351                            << Base->getSourceRange(),
3352                          Context.getTypeDeclType(ClassDecl));
3353
3354    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3355    DiagnoseUseOfDecl(Dtor, Location);
3356  }
3357
3358  // Virtual bases.
3359  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3360       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3361
3362    // Bases are always records in a well-formed non-dependent class.
3363    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3364
3365    // Ignore direct virtual bases.
3366    if (DirectVirtualBases.count(RT))
3367      continue;
3368
3369    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3370    // If our base class is invalid, we probably can't get its dtor anyway.
3371    if (BaseClassDecl->isInvalidDecl())
3372      continue;
3373    if (BaseClassDecl->hasIrrelevantDestructor())
3374      continue;
3375
3376    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3377    assert(Dtor && "No dtor found for BaseClassDecl!");
3378    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3379                          PDiag(diag::err_access_dtor_vbase)
3380                            << VBase->getType(),
3381                          Context.getTypeDeclType(ClassDecl));
3382
3383    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3384    DiagnoseUseOfDecl(Dtor, Location);
3385  }
3386}
3387
3388void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3389  if (!CDtorDecl)
3390    return;
3391
3392  if (CXXConstructorDecl *Constructor
3393      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3394    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3395}
3396
3397bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3398                                  unsigned DiagID, AbstractDiagSelID SelID) {
3399  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3400    unsigned DiagID;
3401    AbstractDiagSelID SelID;
3402
3403  public:
3404    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3405      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3406
3407    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3408      if (SelID == -1)
3409        S.Diag(Loc, DiagID) << T;
3410      else
3411        S.Diag(Loc, DiagID) << SelID << T;
3412    }
3413  } Diagnoser(DiagID, SelID);
3414
3415  return RequireNonAbstractType(Loc, T, Diagnoser);
3416}
3417
3418bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3419                                  TypeDiagnoser &Diagnoser) {
3420  if (!getLangOpts().CPlusPlus)
3421    return false;
3422
3423  if (const ArrayType *AT = Context.getAsArrayType(T))
3424    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3425
3426  if (const PointerType *PT = T->getAs<PointerType>()) {
3427    // Find the innermost pointer type.
3428    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3429      PT = T;
3430
3431    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3432      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3433  }
3434
3435  const RecordType *RT = T->getAs<RecordType>();
3436  if (!RT)
3437    return false;
3438
3439  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3440
3441  // We can't answer whether something is abstract until it has a
3442  // definition.  If it's currently being defined, we'll walk back
3443  // over all the declarations when we have a full definition.
3444  const CXXRecordDecl *Def = RD->getDefinition();
3445  if (!Def || Def->isBeingDefined())
3446    return false;
3447
3448  if (!RD->isAbstract())
3449    return false;
3450
3451  Diagnoser.diagnose(*this, Loc, T);
3452  DiagnoseAbstractType(RD);
3453
3454  return true;
3455}
3456
3457void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3458  // Check if we've already emitted the list of pure virtual functions
3459  // for this class.
3460  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3461    return;
3462
3463  CXXFinalOverriderMap FinalOverriders;
3464  RD->getFinalOverriders(FinalOverriders);
3465
3466  // Keep a set of seen pure methods so we won't diagnose the same method
3467  // more than once.
3468  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3469
3470  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3471                                   MEnd = FinalOverriders.end();
3472       M != MEnd;
3473       ++M) {
3474    for (OverridingMethods::iterator SO = M->second.begin(),
3475                                  SOEnd = M->second.end();
3476         SO != SOEnd; ++SO) {
3477      // C++ [class.abstract]p4:
3478      //   A class is abstract if it contains or inherits at least one
3479      //   pure virtual function for which the final overrider is pure
3480      //   virtual.
3481
3482      //
3483      if (SO->second.size() != 1)
3484        continue;
3485
3486      if (!SO->second.front().Method->isPure())
3487        continue;
3488
3489      if (!SeenPureMethods.insert(SO->second.front().Method))
3490        continue;
3491
3492      Diag(SO->second.front().Method->getLocation(),
3493           diag::note_pure_virtual_function)
3494        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3495    }
3496  }
3497
3498  if (!PureVirtualClassDiagSet)
3499    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3500  PureVirtualClassDiagSet->insert(RD);
3501}
3502
3503namespace {
3504struct AbstractUsageInfo {
3505  Sema &S;
3506  CXXRecordDecl *Record;
3507  CanQualType AbstractType;
3508  bool Invalid;
3509
3510  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3511    : S(S), Record(Record),
3512      AbstractType(S.Context.getCanonicalType(
3513                   S.Context.getTypeDeclType(Record))),
3514      Invalid(false) {}
3515
3516  void DiagnoseAbstractType() {
3517    if (Invalid) return;
3518    S.DiagnoseAbstractType(Record);
3519    Invalid = true;
3520  }
3521
3522  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3523};
3524
3525struct CheckAbstractUsage {
3526  AbstractUsageInfo &Info;
3527  const NamedDecl *Ctx;
3528
3529  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3530    : Info(Info), Ctx(Ctx) {}
3531
3532  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3533    switch (TL.getTypeLocClass()) {
3534#define ABSTRACT_TYPELOC(CLASS, PARENT)
3535#define TYPELOC(CLASS, PARENT) \
3536    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3537#include "clang/AST/TypeLocNodes.def"
3538    }
3539  }
3540
3541  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3542    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3543    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3544      if (!TL.getArg(I))
3545        continue;
3546
3547      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3548      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3549    }
3550  }
3551
3552  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3553    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3554  }
3555
3556  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3557    // Visit the type parameters from a permissive context.
3558    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3559      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3560      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3561        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3562          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3563      // TODO: other template argument types?
3564    }
3565  }
3566
3567  // Visit pointee types from a permissive context.
3568#define CheckPolymorphic(Type) \
3569  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3570    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3571  }
3572  CheckPolymorphic(PointerTypeLoc)
3573  CheckPolymorphic(ReferenceTypeLoc)
3574  CheckPolymorphic(MemberPointerTypeLoc)
3575  CheckPolymorphic(BlockPointerTypeLoc)
3576  CheckPolymorphic(AtomicTypeLoc)
3577
3578  /// Handle all the types we haven't given a more specific
3579  /// implementation for above.
3580  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3581    // Every other kind of type that we haven't called out already
3582    // that has an inner type is either (1) sugar or (2) contains that
3583    // inner type in some way as a subobject.
3584    if (TypeLoc Next = TL.getNextTypeLoc())
3585      return Visit(Next, Sel);
3586
3587    // If there's no inner type and we're in a permissive context,
3588    // don't diagnose.
3589    if (Sel == Sema::AbstractNone) return;
3590
3591    // Check whether the type matches the abstract type.
3592    QualType T = TL.getType();
3593    if (T->isArrayType()) {
3594      Sel = Sema::AbstractArrayType;
3595      T = Info.S.Context.getBaseElementType(T);
3596    }
3597    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3598    if (CT != Info.AbstractType) return;
3599
3600    // It matched; do some magic.
3601    if (Sel == Sema::AbstractArrayType) {
3602      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3603        << T << TL.getSourceRange();
3604    } else {
3605      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3606        << Sel << T << TL.getSourceRange();
3607    }
3608    Info.DiagnoseAbstractType();
3609  }
3610};
3611
3612void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3613                                  Sema::AbstractDiagSelID Sel) {
3614  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3615}
3616
3617}
3618
3619/// Check for invalid uses of an abstract type in a method declaration.
3620static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3621                                    CXXMethodDecl *MD) {
3622  // No need to do the check on definitions, which require that
3623  // the return/param types be complete.
3624  if (MD->doesThisDeclarationHaveABody())
3625    return;
3626
3627  // For safety's sake, just ignore it if we don't have type source
3628  // information.  This should never happen for non-implicit methods,
3629  // but...
3630  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3631    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3632}
3633
3634/// Check for invalid uses of an abstract type within a class definition.
3635static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3636                                    CXXRecordDecl *RD) {
3637  for (CXXRecordDecl::decl_iterator
3638         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3639    Decl *D = *I;
3640    if (D->isImplicit()) continue;
3641
3642    // Methods and method templates.
3643    if (isa<CXXMethodDecl>(D)) {
3644      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3645    } else if (isa<FunctionTemplateDecl>(D)) {
3646      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3647      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3648
3649    // Fields and static variables.
3650    } else if (isa<FieldDecl>(D)) {
3651      FieldDecl *FD = cast<FieldDecl>(D);
3652      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3653        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3654    } else if (isa<VarDecl>(D)) {
3655      VarDecl *VD = cast<VarDecl>(D);
3656      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3657        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3658
3659    // Nested classes and class templates.
3660    } else if (isa<CXXRecordDecl>(D)) {
3661      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3662    } else if (isa<ClassTemplateDecl>(D)) {
3663      CheckAbstractClassUsage(Info,
3664                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3665    }
3666  }
3667}
3668
3669/// \brief Perform semantic checks on a class definition that has been
3670/// completing, introducing implicitly-declared members, checking for
3671/// abstract types, etc.
3672void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3673  if (!Record)
3674    return;
3675
3676  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3677    AbstractUsageInfo Info(*this, Record);
3678    CheckAbstractClassUsage(Info, Record);
3679  }
3680
3681  // If this is not an aggregate type and has no user-declared constructor,
3682  // complain about any non-static data members of reference or const scalar
3683  // type, since they will never get initializers.
3684  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3685      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3686      !Record->isLambda()) {
3687    bool Complained = false;
3688    for (RecordDecl::field_iterator F = Record->field_begin(),
3689                                 FEnd = Record->field_end();
3690         F != FEnd; ++F) {
3691      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3692        continue;
3693
3694      if (F->getType()->isReferenceType() ||
3695          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3696        if (!Complained) {
3697          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3698            << Record->getTagKind() << Record;
3699          Complained = true;
3700        }
3701
3702        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3703          << F->getType()->isReferenceType()
3704          << F->getDeclName();
3705      }
3706    }
3707  }
3708
3709  if (Record->isDynamicClass() && !Record->isDependentType())
3710    DynamicClasses.push_back(Record);
3711
3712  if (Record->getIdentifier()) {
3713    // C++ [class.mem]p13:
3714    //   If T is the name of a class, then each of the following shall have a
3715    //   name different from T:
3716    //     - every member of every anonymous union that is a member of class T.
3717    //
3718    // C++ [class.mem]p14:
3719    //   In addition, if class T has a user-declared constructor (12.1), every
3720    //   non-static data member of class T shall have a name different from T.
3721    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3722         R.first != R.second; ++R.first) {
3723      NamedDecl *D = *R.first;
3724      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3725          isa<IndirectFieldDecl>(D)) {
3726        Diag(D->getLocation(), diag::err_member_name_of_class)
3727          << D->getDeclName();
3728        break;
3729      }
3730    }
3731  }
3732
3733  // Warn if the class has virtual methods but non-virtual public destructor.
3734  if (Record->isPolymorphic() && !Record->isDependentType()) {
3735    CXXDestructorDecl *dtor = Record->getDestructor();
3736    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3737      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3738           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3739  }
3740
3741  // See if a method overloads virtual methods in a base
3742  /// class without overriding any.
3743  if (!Record->isDependentType()) {
3744    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3745                                     MEnd = Record->method_end();
3746         M != MEnd; ++M) {
3747      if (!M->isStatic())
3748        DiagnoseHiddenVirtualMethods(Record, &*M);
3749    }
3750  }
3751
3752  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3753  // function that is not a constructor declares that member function to be
3754  // const. [...] The class of which that function is a member shall be
3755  // a literal type.
3756  //
3757  // If the class has virtual bases, any constexpr members will already have
3758  // been diagnosed by the checks performed on the member declaration, so
3759  // suppress this (less useful) diagnostic.
3760  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3761      !Record->isLiteral() && !Record->getNumVBases()) {
3762    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3763                                     MEnd = Record->method_end();
3764         M != MEnd; ++M) {
3765      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3766        switch (Record->getTemplateSpecializationKind()) {
3767        case TSK_ImplicitInstantiation:
3768        case TSK_ExplicitInstantiationDeclaration:
3769        case TSK_ExplicitInstantiationDefinition:
3770          // If a template instantiates to a non-literal type, but its members
3771          // instantiate to constexpr functions, the template is technically
3772          // ill-formed, but we allow it for sanity.
3773          continue;
3774
3775        case TSK_Undeclared:
3776        case TSK_ExplicitSpecialization:
3777          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3778                             diag::err_constexpr_method_non_literal);
3779          break;
3780        }
3781
3782        // Only produce one error per class.
3783        break;
3784      }
3785    }
3786  }
3787
3788  // Declare inherited constructors. We do this eagerly here because:
3789  // - The standard requires an eager diagnostic for conflicting inherited
3790  //   constructors from different classes.
3791  // - The lazy declaration of the other implicit constructors is so as to not
3792  //   waste space and performance on classes that are not meant to be
3793  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3794  //   have inherited constructors.
3795  DeclareInheritedConstructors(Record);
3796
3797  if (!Record->isDependentType())
3798    CheckExplicitlyDefaultedMethods(Record);
3799}
3800
3801void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3802  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3803                                      ME = Record->method_end();
3804       MI != ME; ++MI) {
3805    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3806      switch (getSpecialMember(&*MI)) {
3807      case CXXDefaultConstructor:
3808        CheckExplicitlyDefaultedDefaultConstructor(
3809                                                cast<CXXConstructorDecl>(&*MI));
3810        break;
3811
3812      case CXXDestructor:
3813        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(&*MI));
3814        break;
3815
3816      case CXXCopyConstructor:
3817        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(&*MI));
3818        break;
3819
3820      case CXXCopyAssignment:
3821        CheckExplicitlyDefaultedCopyAssignment(&*MI);
3822        break;
3823
3824      case CXXMoveConstructor:
3825        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(&*MI));
3826        break;
3827
3828      case CXXMoveAssignment:
3829        CheckExplicitlyDefaultedMoveAssignment(&*MI);
3830        break;
3831
3832      case CXXInvalid:
3833        llvm_unreachable("non-special member explicitly defaulted!");
3834      }
3835    }
3836  }
3837
3838}
3839
3840void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3841  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3842
3843  // Whether this was the first-declared instance of the constructor.
3844  // This affects whether we implicitly add an exception spec (and, eventually,
3845  // constexpr). It is also ill-formed to explicitly default a constructor such
3846  // that it would be deleted. (C++0x [decl.fct.def.default])
3847  bool First = CD == CD->getCanonicalDecl();
3848
3849  bool HadError = false;
3850  if (CD->getNumParams() != 0) {
3851    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3852      << CD->getSourceRange();
3853    HadError = true;
3854  }
3855
3856  ImplicitExceptionSpecification Spec
3857    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3858  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3859  if (EPI.ExceptionSpecType == EST_Delayed) {
3860    // Exception specification depends on some deferred part of the class. We'll
3861    // try again when the class's definition has been fully processed.
3862    return;
3863  }
3864  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3865                          *ExceptionType = Context.getFunctionType(
3866                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3867
3868  // C++11 [dcl.fct.def.default]p2:
3869  //   An explicitly-defaulted function may be declared constexpr only if it
3870  //   would have been implicitly declared as constexpr,
3871  // Do not apply this rule to templates, since core issue 1358 makes such
3872  // functions always instantiate to constexpr functions.
3873  if (CD->isConstexpr() &&
3874      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3875    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3876      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3877        << CXXDefaultConstructor;
3878      HadError = true;
3879    }
3880  }
3881  //   and may have an explicit exception-specification only if it is compatible
3882  //   with the exception-specification on the implicit declaration.
3883  if (CtorType->hasExceptionSpec()) {
3884    if (CheckEquivalentExceptionSpec(
3885          PDiag(diag::err_incorrect_defaulted_exception_spec)
3886            << CXXDefaultConstructor,
3887          PDiag(),
3888          ExceptionType, SourceLocation(),
3889          CtorType, CD->getLocation())) {
3890      HadError = true;
3891    }
3892  }
3893
3894  //   If a function is explicitly defaulted on its first declaration,
3895  if (First) {
3896    //  -- it is implicitly considered to be constexpr if the implicit
3897    //     definition would be,
3898    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3899
3900    //  -- it is implicitly considered to have the same
3901    //     exception-specification as if it had been implicitly declared
3902    //
3903    // FIXME: a compatible, but different, explicit exception specification
3904    // will be silently overridden. We should issue a warning if this happens.
3905    EPI.ExtInfo = CtorType->getExtInfo();
3906
3907    // Such a function is also trivial if the implicitly-declared function
3908    // would have been.
3909    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3910  }
3911
3912  if (HadError) {
3913    CD->setInvalidDecl();
3914    return;
3915  }
3916
3917  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3918    if (First) {
3919      CD->setDeletedAsWritten();
3920    } else {
3921      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3922        << CXXDefaultConstructor;
3923      CD->setInvalidDecl();
3924    }
3925  }
3926}
3927
3928void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3929  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3930
3931  // Whether this was the first-declared instance of the constructor.
3932  bool First = CD == CD->getCanonicalDecl();
3933
3934  bool HadError = false;
3935  if (CD->getNumParams() != 1) {
3936    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3937      << CD->getSourceRange();
3938    HadError = true;
3939  }
3940
3941  ImplicitExceptionSpecification Spec(*this);
3942  bool Const;
3943  llvm::tie(Spec, Const) =
3944    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3945
3946  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3947  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3948                          *ExceptionType = Context.getFunctionType(
3949                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3950
3951  // Check for parameter type matching.
3952  // This is a copy ctor so we know it's a cv-qualified reference to T.
3953  QualType ArgType = CtorType->getArgType(0);
3954  if (ArgType->getPointeeType().isVolatileQualified()) {
3955    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3956    HadError = true;
3957  }
3958  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3959    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3960    HadError = true;
3961  }
3962
3963  // C++11 [dcl.fct.def.default]p2:
3964  //   An explicitly-defaulted function may be declared constexpr only if it
3965  //   would have been implicitly declared as constexpr,
3966  // Do not apply this rule to templates, since core issue 1358 makes such
3967  // functions always instantiate to constexpr functions.
3968  if (CD->isConstexpr() &&
3969      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3970    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3971      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3972        << CXXCopyConstructor;
3973      HadError = true;
3974    }
3975  }
3976  //   and may have an explicit exception-specification only if it is compatible
3977  //   with the exception-specification on the implicit declaration.
3978  if (CtorType->hasExceptionSpec()) {
3979    if (CheckEquivalentExceptionSpec(
3980          PDiag(diag::err_incorrect_defaulted_exception_spec)
3981            << CXXCopyConstructor,
3982          PDiag(),
3983          ExceptionType, SourceLocation(),
3984          CtorType, CD->getLocation())) {
3985      HadError = true;
3986    }
3987  }
3988
3989  //   If a function is explicitly defaulted on its first declaration,
3990  if (First) {
3991    //  -- it is implicitly considered to be constexpr if the implicit
3992    //     definition would be,
3993    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3994
3995    //  -- it is implicitly considered to have the same
3996    //     exception-specification as if it had been implicitly declared, and
3997    //
3998    // FIXME: a compatible, but different, explicit exception specification
3999    // will be silently overridden. We should issue a warning if this happens.
4000    EPI.ExtInfo = CtorType->getExtInfo();
4001
4002    //  -- [...] it shall have the same parameter type as if it had been
4003    //     implicitly declared.
4004    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4005
4006    // Such a function is also trivial if the implicitly-declared function
4007    // would have been.
4008    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
4009  }
4010
4011  if (HadError) {
4012    CD->setInvalidDecl();
4013    return;
4014  }
4015
4016  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4017    if (First) {
4018      CD->setDeletedAsWritten();
4019    } else {
4020      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4021        << CXXCopyConstructor;
4022      CD->setInvalidDecl();
4023    }
4024  }
4025}
4026
4027void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4028  assert(MD->isExplicitlyDefaulted());
4029
4030  // Whether this was the first-declared instance of the operator
4031  bool First = MD == MD->getCanonicalDecl();
4032
4033  bool HadError = false;
4034  if (MD->getNumParams() != 1) {
4035    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4036      << MD->getSourceRange();
4037    HadError = true;
4038  }
4039
4040  QualType ReturnType =
4041    MD->getType()->getAs<FunctionType>()->getResultType();
4042  if (!ReturnType->isLValueReferenceType() ||
4043      !Context.hasSameType(
4044        Context.getCanonicalType(ReturnType->getPointeeType()),
4045        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4046    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4047    HadError = true;
4048  }
4049
4050  ImplicitExceptionSpecification Spec(*this);
4051  bool Const;
4052  llvm::tie(Spec, Const) =
4053    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4054
4055  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4056  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4057                          *ExceptionType = Context.getFunctionType(
4058                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4059
4060  QualType ArgType = OperType->getArgType(0);
4061  if (!ArgType->isLValueReferenceType()) {
4062    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4063    HadError = true;
4064  } else {
4065    if (ArgType->getPointeeType().isVolatileQualified()) {
4066      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4067      HadError = true;
4068    }
4069    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4070      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4071      HadError = true;
4072    }
4073  }
4074
4075  if (OperType->getTypeQuals()) {
4076    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4077    HadError = true;
4078  }
4079
4080  if (OperType->hasExceptionSpec()) {
4081    if (CheckEquivalentExceptionSpec(
4082          PDiag(diag::err_incorrect_defaulted_exception_spec)
4083            << CXXCopyAssignment,
4084          PDiag(),
4085          ExceptionType, SourceLocation(),
4086          OperType, MD->getLocation())) {
4087      HadError = true;
4088    }
4089  }
4090  if (First) {
4091    // We set the declaration to have the computed exception spec here.
4092    // We duplicate the one parameter type.
4093    EPI.RefQualifier = OperType->getRefQualifier();
4094    EPI.ExtInfo = OperType->getExtInfo();
4095    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4096
4097    // Such a function is also trivial if the implicitly-declared function
4098    // would have been.
4099    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4100  }
4101
4102  if (HadError) {
4103    MD->setInvalidDecl();
4104    return;
4105  }
4106
4107  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4108    if (First) {
4109      MD->setDeletedAsWritten();
4110    } else {
4111      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4112        << CXXCopyAssignment;
4113      MD->setInvalidDecl();
4114    }
4115  }
4116}
4117
4118void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4119  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4120
4121  // Whether this was the first-declared instance of the constructor.
4122  bool First = CD == CD->getCanonicalDecl();
4123
4124  bool HadError = false;
4125  if (CD->getNumParams() != 1) {
4126    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4127      << CD->getSourceRange();
4128    HadError = true;
4129  }
4130
4131  ImplicitExceptionSpecification Spec(
4132      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4133
4134  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4135  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4136                          *ExceptionType = Context.getFunctionType(
4137                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4138
4139  // Check for parameter type matching.
4140  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4141  QualType ArgType = CtorType->getArgType(0);
4142  if (ArgType->getPointeeType().isVolatileQualified()) {
4143    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4144    HadError = true;
4145  }
4146  if (ArgType->getPointeeType().isConstQualified()) {
4147    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4148    HadError = true;
4149  }
4150
4151  // C++11 [dcl.fct.def.default]p2:
4152  //   An explicitly-defaulted function may be declared constexpr only if it
4153  //   would have been implicitly declared as constexpr,
4154  // Do not apply this rule to templates, since core issue 1358 makes such
4155  // functions always instantiate to constexpr functions.
4156  if (CD->isConstexpr() &&
4157      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4158    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4159      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4160        << CXXMoveConstructor;
4161      HadError = true;
4162    }
4163  }
4164  //   and may have an explicit exception-specification only if it is compatible
4165  //   with the exception-specification on the implicit declaration.
4166  if (CtorType->hasExceptionSpec()) {
4167    if (CheckEquivalentExceptionSpec(
4168          PDiag(diag::err_incorrect_defaulted_exception_spec)
4169            << CXXMoveConstructor,
4170          PDiag(),
4171          ExceptionType, SourceLocation(),
4172          CtorType, CD->getLocation())) {
4173      HadError = true;
4174    }
4175  }
4176
4177  //   If a function is explicitly defaulted on its first declaration,
4178  if (First) {
4179    //  -- it is implicitly considered to be constexpr if the implicit
4180    //     definition would be,
4181    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4182
4183    //  -- it is implicitly considered to have the same
4184    //     exception-specification as if it had been implicitly declared, and
4185    //
4186    // FIXME: a compatible, but different, explicit exception specification
4187    // will be silently overridden. We should issue a warning if this happens.
4188    EPI.ExtInfo = CtorType->getExtInfo();
4189
4190    //  -- [...] it shall have the same parameter type as if it had been
4191    //     implicitly declared.
4192    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4193
4194    // Such a function is also trivial if the implicitly-declared function
4195    // would have been.
4196    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4197  }
4198
4199  if (HadError) {
4200    CD->setInvalidDecl();
4201    return;
4202  }
4203
4204  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4205    if (First) {
4206      CD->setDeletedAsWritten();
4207    } else {
4208      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4209        << CXXMoveConstructor;
4210      CD->setInvalidDecl();
4211    }
4212  }
4213}
4214
4215void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4216  assert(MD->isExplicitlyDefaulted());
4217
4218  // Whether this was the first-declared instance of the operator
4219  bool First = MD == MD->getCanonicalDecl();
4220
4221  bool HadError = false;
4222  if (MD->getNumParams() != 1) {
4223    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4224      << MD->getSourceRange();
4225    HadError = true;
4226  }
4227
4228  QualType ReturnType =
4229    MD->getType()->getAs<FunctionType>()->getResultType();
4230  if (!ReturnType->isLValueReferenceType() ||
4231      !Context.hasSameType(
4232        Context.getCanonicalType(ReturnType->getPointeeType()),
4233        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4234    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4235    HadError = true;
4236  }
4237
4238  ImplicitExceptionSpecification Spec(
4239      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4240
4241  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4242  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4243                          *ExceptionType = Context.getFunctionType(
4244                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4245
4246  QualType ArgType = OperType->getArgType(0);
4247  if (!ArgType->isRValueReferenceType()) {
4248    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4249    HadError = true;
4250  } else {
4251    if (ArgType->getPointeeType().isVolatileQualified()) {
4252      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4253      HadError = true;
4254    }
4255    if (ArgType->getPointeeType().isConstQualified()) {
4256      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4257      HadError = true;
4258    }
4259  }
4260
4261  if (OperType->getTypeQuals()) {
4262    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4263    HadError = true;
4264  }
4265
4266  if (OperType->hasExceptionSpec()) {
4267    if (CheckEquivalentExceptionSpec(
4268          PDiag(diag::err_incorrect_defaulted_exception_spec)
4269            << CXXMoveAssignment,
4270          PDiag(),
4271          ExceptionType, SourceLocation(),
4272          OperType, MD->getLocation())) {
4273      HadError = true;
4274    }
4275  }
4276  if (First) {
4277    // We set the declaration to have the computed exception spec here.
4278    // We duplicate the one parameter type.
4279    EPI.RefQualifier = OperType->getRefQualifier();
4280    EPI.ExtInfo = OperType->getExtInfo();
4281    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4282
4283    // Such a function is also trivial if the implicitly-declared function
4284    // would have been.
4285    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4286  }
4287
4288  if (HadError) {
4289    MD->setInvalidDecl();
4290    return;
4291  }
4292
4293  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4294    if (First) {
4295      MD->setDeletedAsWritten();
4296    } else {
4297      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4298        << CXXMoveAssignment;
4299      MD->setInvalidDecl();
4300    }
4301  }
4302}
4303
4304void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4305  assert(DD->isExplicitlyDefaulted());
4306
4307  // Whether this was the first-declared instance of the destructor.
4308  bool First = DD == DD->getCanonicalDecl();
4309
4310  ImplicitExceptionSpecification Spec
4311    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4312  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4313  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4314                          *ExceptionType = Context.getFunctionType(
4315                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4316
4317  if (DtorType->hasExceptionSpec()) {
4318    if (CheckEquivalentExceptionSpec(
4319          PDiag(diag::err_incorrect_defaulted_exception_spec)
4320            << CXXDestructor,
4321          PDiag(),
4322          ExceptionType, SourceLocation(),
4323          DtorType, DD->getLocation())) {
4324      DD->setInvalidDecl();
4325      return;
4326    }
4327  }
4328  if (First) {
4329    // We set the declaration to have the computed exception spec here.
4330    // There are no parameters.
4331    EPI.ExtInfo = DtorType->getExtInfo();
4332    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4333
4334    // Such a function is also trivial if the implicitly-declared function
4335    // would have been.
4336    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4337  }
4338
4339  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4340    if (First) {
4341      DD->setDeletedAsWritten();
4342    } else {
4343      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4344        << CXXDestructor;
4345      DD->setInvalidDecl();
4346    }
4347  }
4348}
4349
4350namespace {
4351struct SpecialMemberDeletionInfo {
4352  Sema &S;
4353  CXXMethodDecl *MD;
4354  Sema::CXXSpecialMember CSM;
4355  bool Diagnose;
4356
4357  // Properties of the special member, computed for convenience.
4358  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4359  SourceLocation Loc;
4360
4361  bool AllFieldsAreConst;
4362
4363  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4364                            Sema::CXXSpecialMember CSM, bool Diagnose)
4365    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4366      IsConstructor(false), IsAssignment(false), IsMove(false),
4367      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4368      AllFieldsAreConst(true) {
4369    switch (CSM) {
4370      case Sema::CXXDefaultConstructor:
4371      case Sema::CXXCopyConstructor:
4372        IsConstructor = true;
4373        break;
4374      case Sema::CXXMoveConstructor:
4375        IsConstructor = true;
4376        IsMove = true;
4377        break;
4378      case Sema::CXXCopyAssignment:
4379        IsAssignment = true;
4380        break;
4381      case Sema::CXXMoveAssignment:
4382        IsAssignment = true;
4383        IsMove = true;
4384        break;
4385      case Sema::CXXDestructor:
4386        break;
4387      case Sema::CXXInvalid:
4388        llvm_unreachable("invalid special member kind");
4389    }
4390
4391    if (MD->getNumParams()) {
4392      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4393      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4394    }
4395  }
4396
4397  bool inUnion() const { return MD->getParent()->isUnion(); }
4398
4399  /// Look up the corresponding special member in the given class.
4400  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4401    unsigned TQ = MD->getTypeQualifiers();
4402    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4403                                 MD->getRefQualifier() == RQ_RValue,
4404                                 TQ & Qualifiers::Const,
4405                                 TQ & Qualifiers::Volatile);
4406  }
4407
4408  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4409
4410  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4411  bool shouldDeleteForField(FieldDecl *FD);
4412  bool shouldDeleteForAllConstMembers();
4413
4414  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4415  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4416                                    Sema::SpecialMemberOverloadResult *SMOR,
4417                                    bool IsDtorCallInCtor);
4418
4419  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4420};
4421}
4422
4423/// Is the given special member inaccessible when used on the given
4424/// sub-object.
4425bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4426                                             CXXMethodDecl *target) {
4427  /// If we're operating on a base class, the object type is the
4428  /// type of this special member.
4429  QualType objectTy;
4430  AccessSpecifier access = target->getAccess();;
4431  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4432    objectTy = S.Context.getTypeDeclType(MD->getParent());
4433    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4434
4435  // If we're operating on a field, the object type is the type of the field.
4436  } else {
4437    objectTy = S.Context.getTypeDeclType(target->getParent());
4438  }
4439
4440  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4441}
4442
4443/// Check whether we should delete a special member due to the implicit
4444/// definition containing a call to a special member of a subobject.
4445bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4446    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4447    bool IsDtorCallInCtor) {
4448  CXXMethodDecl *Decl = SMOR->getMethod();
4449  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4450
4451  int DiagKind = -1;
4452
4453  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4454    DiagKind = !Decl ? 0 : 1;
4455  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4456    DiagKind = 2;
4457  else if (!isAccessible(Subobj, Decl))
4458    DiagKind = 3;
4459  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4460           !Decl->isTrivial()) {
4461    // A member of a union must have a trivial corresponding special member.
4462    // As a weird special case, a destructor call from a union's constructor
4463    // must be accessible and non-deleted, but need not be trivial. Such a
4464    // destructor is never actually called, but is semantically checked as
4465    // if it were.
4466    DiagKind = 4;
4467  }
4468
4469  if (DiagKind == -1)
4470    return false;
4471
4472  if (Diagnose) {
4473    if (Field) {
4474      S.Diag(Field->getLocation(),
4475             diag::note_deleted_special_member_class_subobject)
4476        << CSM << MD->getParent() << /*IsField*/true
4477        << Field << DiagKind << IsDtorCallInCtor;
4478    } else {
4479      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4480      S.Diag(Base->getLocStart(),
4481             diag::note_deleted_special_member_class_subobject)
4482        << CSM << MD->getParent() << /*IsField*/false
4483        << Base->getType() << DiagKind << IsDtorCallInCtor;
4484    }
4485
4486    if (DiagKind == 1)
4487      S.NoteDeletedFunction(Decl);
4488    // FIXME: Explain inaccessibility if DiagKind == 3.
4489  }
4490
4491  return true;
4492}
4493
4494/// Check whether we should delete a special member function due to having a
4495/// direct or virtual base class or static data member of class type M.
4496bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4497    CXXRecordDecl *Class, Subobject Subobj) {
4498  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4499
4500  // C++11 [class.ctor]p5:
4501  // -- any direct or virtual base class, or non-static data member with no
4502  //    brace-or-equal-initializer, has class type M (or array thereof) and
4503  //    either M has no default constructor or overload resolution as applied
4504  //    to M's default constructor results in an ambiguity or in a function
4505  //    that is deleted or inaccessible
4506  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4507  // -- a direct or virtual base class B that cannot be copied/moved because
4508  //    overload resolution, as applied to B's corresponding special member,
4509  //    results in an ambiguity or a function that is deleted or inaccessible
4510  //    from the defaulted special member
4511  // C++11 [class.dtor]p5:
4512  // -- any direct or virtual base class [...] has a type with a destructor
4513  //    that is deleted or inaccessible
4514  if (!(CSM == Sema::CXXDefaultConstructor &&
4515        Field && Field->hasInClassInitializer()) &&
4516      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4517    return true;
4518
4519  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4520  // -- any direct or virtual base class or non-static data member has a
4521  //    type with a destructor that is deleted or inaccessible
4522  if (IsConstructor) {
4523    Sema::SpecialMemberOverloadResult *SMOR =
4524        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4525                              false, false, false, false, false);
4526    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4527      return true;
4528  }
4529
4530  return false;
4531}
4532
4533/// Check whether we should delete a special member function due to the class
4534/// having a particular direct or virtual base class.
4535bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4536  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4537  return shouldDeleteForClassSubobject(BaseClass, Base);
4538}
4539
4540/// Check whether we should delete a special member function due to the class
4541/// having a particular non-static data member.
4542bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4543  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4544  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4545
4546  if (CSM == Sema::CXXDefaultConstructor) {
4547    // For a default constructor, all references must be initialized in-class
4548    // and, if a union, it must have a non-const member.
4549    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4550      if (Diagnose)
4551        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4552          << MD->getParent() << FD << FieldType << /*Reference*/0;
4553      return true;
4554    }
4555    // C++11 [class.ctor]p5: any non-variant non-static data member of
4556    // const-qualified type (or array thereof) with no
4557    // brace-or-equal-initializer does not have a user-provided default
4558    // constructor.
4559    if (!inUnion() && FieldType.isConstQualified() &&
4560        !FD->hasInClassInitializer() &&
4561        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4562      if (Diagnose)
4563        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4564          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4565      return true;
4566    }
4567
4568    if (inUnion() && !FieldType.isConstQualified())
4569      AllFieldsAreConst = false;
4570  } else if (CSM == Sema::CXXCopyConstructor) {
4571    // For a copy constructor, data members must not be of rvalue reference
4572    // type.
4573    if (FieldType->isRValueReferenceType()) {
4574      if (Diagnose)
4575        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4576          << MD->getParent() << FD << FieldType;
4577      return true;
4578    }
4579  } else if (IsAssignment) {
4580    // For an assignment operator, data members must not be of reference type.
4581    if (FieldType->isReferenceType()) {
4582      if (Diagnose)
4583        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4584          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4585      return true;
4586    }
4587    if (!FieldRecord && FieldType.isConstQualified()) {
4588      // C++11 [class.copy]p23:
4589      // -- a non-static data member of const non-class type (or array thereof)
4590      if (Diagnose)
4591        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4592          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4593      return true;
4594    }
4595  }
4596
4597  if (FieldRecord) {
4598    // Some additional restrictions exist on the variant members.
4599    if (!inUnion() && FieldRecord->isUnion() &&
4600        FieldRecord->isAnonymousStructOrUnion()) {
4601      bool AllVariantFieldsAreConst = true;
4602
4603      // FIXME: Handle anonymous unions declared within anonymous unions.
4604      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4605                                         UE = FieldRecord->field_end();
4606           UI != UE; ++UI) {
4607        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4608
4609        if (!UnionFieldType.isConstQualified())
4610          AllVariantFieldsAreConst = false;
4611
4612        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4613        if (UnionFieldRecord &&
4614            shouldDeleteForClassSubobject(UnionFieldRecord, &*UI))
4615          return true;
4616      }
4617
4618      // At least one member in each anonymous union must be non-const
4619      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4620          FieldRecord->field_begin() != FieldRecord->field_end()) {
4621        if (Diagnose)
4622          S.Diag(FieldRecord->getLocation(),
4623                 diag::note_deleted_default_ctor_all_const)
4624            << MD->getParent() << /*anonymous union*/1;
4625        return true;
4626      }
4627
4628      // Don't check the implicit member of the anonymous union type.
4629      // This is technically non-conformant, but sanity demands it.
4630      return false;
4631    }
4632
4633    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4634      return true;
4635  }
4636
4637  return false;
4638}
4639
4640/// C++11 [class.ctor] p5:
4641///   A defaulted default constructor for a class X is defined as deleted if
4642/// X is a union and all of its variant members are of const-qualified type.
4643bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4644  // This is a silly definition, because it gives an empty union a deleted
4645  // default constructor. Don't do that.
4646  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4647      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4648    if (Diagnose)
4649      S.Diag(MD->getParent()->getLocation(),
4650             diag::note_deleted_default_ctor_all_const)
4651        << MD->getParent() << /*not anonymous union*/0;
4652    return true;
4653  }
4654  return false;
4655}
4656
4657/// Determine whether a defaulted special member function should be defined as
4658/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4659/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4660bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4661                                     bool Diagnose) {
4662  assert(!MD->isInvalidDecl());
4663  CXXRecordDecl *RD = MD->getParent();
4664  assert(!RD->isDependentType() && "do deletion after instantiation");
4665  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4666    return false;
4667
4668  // C++11 [expr.lambda.prim]p19:
4669  //   The closure type associated with a lambda-expression has a
4670  //   deleted (8.4.3) default constructor and a deleted copy
4671  //   assignment operator.
4672  if (RD->isLambda() &&
4673      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4674    if (Diagnose)
4675      Diag(RD->getLocation(), diag::note_lambda_decl);
4676    return true;
4677  }
4678
4679  // For an anonymous struct or union, the copy and assignment special members
4680  // will never be used, so skip the check. For an anonymous union declared at
4681  // namespace scope, the constructor and destructor are used.
4682  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4683      RD->isAnonymousStructOrUnion())
4684    return false;
4685
4686  // C++11 [class.copy]p7, p18:
4687  //   If the class definition declares a move constructor or move assignment
4688  //   operator, an implicitly declared copy constructor or copy assignment
4689  //   operator is defined as deleted.
4690  if (MD->isImplicit() &&
4691      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4692    CXXMethodDecl *UserDeclaredMove = 0;
4693
4694    // In Microsoft mode, a user-declared move only causes the deletion of the
4695    // corresponding copy operation, not both copy operations.
4696    if (RD->hasUserDeclaredMoveConstructor() &&
4697        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4698      if (!Diagnose) return true;
4699      UserDeclaredMove = RD->getMoveConstructor();
4700      assert(UserDeclaredMove);
4701    } else if (RD->hasUserDeclaredMoveAssignment() &&
4702               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4703      if (!Diagnose) return true;
4704      UserDeclaredMove = RD->getMoveAssignmentOperator();
4705      assert(UserDeclaredMove);
4706    }
4707
4708    if (UserDeclaredMove) {
4709      Diag(UserDeclaredMove->getLocation(),
4710           diag::note_deleted_copy_user_declared_move)
4711        << (CSM == CXXCopyAssignment) << RD
4712        << UserDeclaredMove->isMoveAssignmentOperator();
4713      return true;
4714    }
4715  }
4716
4717  // Do access control from the special member function
4718  ContextRAII MethodContext(*this, MD);
4719
4720  // C++11 [class.dtor]p5:
4721  // -- for a virtual destructor, lookup of the non-array deallocation function
4722  //    results in an ambiguity or in a function that is deleted or inaccessible
4723  if (CSM == CXXDestructor && MD->isVirtual()) {
4724    FunctionDecl *OperatorDelete = 0;
4725    DeclarationName Name =
4726      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4727    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4728                                 OperatorDelete, false)) {
4729      if (Diagnose)
4730        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4731      return true;
4732    }
4733  }
4734
4735  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4736
4737  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4738                                          BE = RD->bases_end(); BI != BE; ++BI)
4739    if (!BI->isVirtual() &&
4740        SMI.shouldDeleteForBase(BI))
4741      return true;
4742
4743  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4744                                          BE = RD->vbases_end(); BI != BE; ++BI)
4745    if (SMI.shouldDeleteForBase(BI))
4746      return true;
4747
4748  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4749                                     FE = RD->field_end(); FI != FE; ++FI)
4750    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4751        SMI.shouldDeleteForField(&*FI))
4752      return true;
4753
4754  if (SMI.shouldDeleteForAllConstMembers())
4755    return true;
4756
4757  return false;
4758}
4759
4760/// \brief Data used with FindHiddenVirtualMethod
4761namespace {
4762  struct FindHiddenVirtualMethodData {
4763    Sema *S;
4764    CXXMethodDecl *Method;
4765    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4766    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4767  };
4768}
4769
4770/// \brief Member lookup function that determines whether a given C++
4771/// method overloads virtual methods in a base class without overriding any,
4772/// to be used with CXXRecordDecl::lookupInBases().
4773static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4774                                    CXXBasePath &Path,
4775                                    void *UserData) {
4776  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4777
4778  FindHiddenVirtualMethodData &Data
4779    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4780
4781  DeclarationName Name = Data.Method->getDeclName();
4782  assert(Name.getNameKind() == DeclarationName::Identifier);
4783
4784  bool foundSameNameMethod = false;
4785  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4786  for (Path.Decls = BaseRecord->lookup(Name);
4787       Path.Decls.first != Path.Decls.second;
4788       ++Path.Decls.first) {
4789    NamedDecl *D = *Path.Decls.first;
4790    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4791      MD = MD->getCanonicalDecl();
4792      foundSameNameMethod = true;
4793      // Interested only in hidden virtual methods.
4794      if (!MD->isVirtual())
4795        continue;
4796      // If the method we are checking overrides a method from its base
4797      // don't warn about the other overloaded methods.
4798      if (!Data.S->IsOverload(Data.Method, MD, false))
4799        return true;
4800      // Collect the overload only if its hidden.
4801      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4802        overloadedMethods.push_back(MD);
4803    }
4804  }
4805
4806  if (foundSameNameMethod)
4807    Data.OverloadedMethods.append(overloadedMethods.begin(),
4808                                   overloadedMethods.end());
4809  return foundSameNameMethod;
4810}
4811
4812/// \brief See if a method overloads virtual methods in a base class without
4813/// overriding any.
4814void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4815  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4816                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4817    return;
4818  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4819    return;
4820
4821  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4822                     /*bool RecordPaths=*/false,
4823                     /*bool DetectVirtual=*/false);
4824  FindHiddenVirtualMethodData Data;
4825  Data.Method = MD;
4826  Data.S = this;
4827
4828  // Keep the base methods that were overriden or introduced in the subclass
4829  // by 'using' in a set. A base method not in this set is hidden.
4830  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4831       res.first != res.second; ++res.first) {
4832    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4833      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4834                                          E = MD->end_overridden_methods();
4835           I != E; ++I)
4836        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4837    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4838      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4839        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4840  }
4841
4842  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4843      !Data.OverloadedMethods.empty()) {
4844    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4845      << MD << (Data.OverloadedMethods.size() > 1);
4846
4847    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4848      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4849      Diag(overloadedMD->getLocation(),
4850           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4851    }
4852  }
4853}
4854
4855void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4856                                             Decl *TagDecl,
4857                                             SourceLocation LBrac,
4858                                             SourceLocation RBrac,
4859                                             AttributeList *AttrList) {
4860  if (!TagDecl)
4861    return;
4862
4863  AdjustDeclIfTemplate(TagDecl);
4864
4865  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4866              // strict aliasing violation!
4867              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4868              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4869
4870  CheckCompletedCXXClass(
4871                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4872}
4873
4874/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4875/// special functions, such as the default constructor, copy
4876/// constructor, or destructor, to the given C++ class (C++
4877/// [special]p1).  This routine can only be executed just before the
4878/// definition of the class is complete.
4879void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4880  if (!ClassDecl->hasUserDeclaredConstructor())
4881    ++ASTContext::NumImplicitDefaultConstructors;
4882
4883  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4884    ++ASTContext::NumImplicitCopyConstructors;
4885
4886  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4887    ++ASTContext::NumImplicitMoveConstructors;
4888
4889  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4890    ++ASTContext::NumImplicitCopyAssignmentOperators;
4891
4892    // If we have a dynamic class, then the copy assignment operator may be
4893    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4894    // it shows up in the right place in the vtable and that we diagnose
4895    // problems with the implicit exception specification.
4896    if (ClassDecl->isDynamicClass())
4897      DeclareImplicitCopyAssignment(ClassDecl);
4898  }
4899
4900  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4901    ++ASTContext::NumImplicitMoveAssignmentOperators;
4902
4903    // Likewise for the move assignment operator.
4904    if (ClassDecl->isDynamicClass())
4905      DeclareImplicitMoveAssignment(ClassDecl);
4906  }
4907
4908  if (!ClassDecl->hasUserDeclaredDestructor()) {
4909    ++ASTContext::NumImplicitDestructors;
4910
4911    // If we have a dynamic class, then the destructor may be virtual, so we
4912    // have to declare the destructor immediately. This ensures that, e.g., it
4913    // shows up in the right place in the vtable and that we diagnose problems
4914    // with the implicit exception specification.
4915    if (ClassDecl->isDynamicClass())
4916      DeclareImplicitDestructor(ClassDecl);
4917  }
4918}
4919
4920void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4921  if (!D)
4922    return;
4923
4924  int NumParamList = D->getNumTemplateParameterLists();
4925  for (int i = 0; i < NumParamList; i++) {
4926    TemplateParameterList* Params = D->getTemplateParameterList(i);
4927    for (TemplateParameterList::iterator Param = Params->begin(),
4928                                      ParamEnd = Params->end();
4929          Param != ParamEnd; ++Param) {
4930      NamedDecl *Named = cast<NamedDecl>(*Param);
4931      if (Named->getDeclName()) {
4932        S->AddDecl(Named);
4933        IdResolver.AddDecl(Named);
4934      }
4935    }
4936  }
4937}
4938
4939void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4940  if (!D)
4941    return;
4942
4943  TemplateParameterList *Params = 0;
4944  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4945    Params = Template->getTemplateParameters();
4946  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4947           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4948    Params = PartialSpec->getTemplateParameters();
4949  else
4950    return;
4951
4952  for (TemplateParameterList::iterator Param = Params->begin(),
4953                                    ParamEnd = Params->end();
4954       Param != ParamEnd; ++Param) {
4955    NamedDecl *Named = cast<NamedDecl>(*Param);
4956    if (Named->getDeclName()) {
4957      S->AddDecl(Named);
4958      IdResolver.AddDecl(Named);
4959    }
4960  }
4961}
4962
4963void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4964  if (!RecordD) return;
4965  AdjustDeclIfTemplate(RecordD);
4966  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4967  PushDeclContext(S, Record);
4968}
4969
4970void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4971  if (!RecordD) return;
4972  PopDeclContext();
4973}
4974
4975/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4976/// parsing a top-level (non-nested) C++ class, and we are now
4977/// parsing those parts of the given Method declaration that could
4978/// not be parsed earlier (C++ [class.mem]p2), such as default
4979/// arguments. This action should enter the scope of the given
4980/// Method declaration as if we had just parsed the qualified method
4981/// name. However, it should not bring the parameters into scope;
4982/// that will be performed by ActOnDelayedCXXMethodParameter.
4983void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4984}
4985
4986/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4987/// C++ method declaration. We're (re-)introducing the given
4988/// function parameter into scope for use in parsing later parts of
4989/// the method declaration. For example, we could see an
4990/// ActOnParamDefaultArgument event for this parameter.
4991void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4992  if (!ParamD)
4993    return;
4994
4995  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4996
4997  // If this parameter has an unparsed default argument, clear it out
4998  // to make way for the parsed default argument.
4999  if (Param->hasUnparsedDefaultArg())
5000    Param->setDefaultArg(0);
5001
5002  S->AddDecl(Param);
5003  if (Param->getDeclName())
5004    IdResolver.AddDecl(Param);
5005}
5006
5007/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5008/// processing the delayed method declaration for Method. The method
5009/// declaration is now considered finished. There may be a separate
5010/// ActOnStartOfFunctionDef action later (not necessarily
5011/// immediately!) for this method, if it was also defined inside the
5012/// class body.
5013void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5014  if (!MethodD)
5015    return;
5016
5017  AdjustDeclIfTemplate(MethodD);
5018
5019  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5020
5021  // Now that we have our default arguments, check the constructor
5022  // again. It could produce additional diagnostics or affect whether
5023  // the class has implicitly-declared destructors, among other
5024  // things.
5025  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5026    CheckConstructor(Constructor);
5027
5028  // Check the default arguments, which we may have added.
5029  if (!Method->isInvalidDecl())
5030    CheckCXXDefaultArguments(Method);
5031}
5032
5033/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5034/// the well-formedness of the constructor declarator @p D with type @p
5035/// R. If there are any errors in the declarator, this routine will
5036/// emit diagnostics and set the invalid bit to true.  In any case, the type
5037/// will be updated to reflect a well-formed type for the constructor and
5038/// returned.
5039QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5040                                          StorageClass &SC) {
5041  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5042
5043  // C++ [class.ctor]p3:
5044  //   A constructor shall not be virtual (10.3) or static (9.4). A
5045  //   constructor can be invoked for a const, volatile or const
5046  //   volatile object. A constructor shall not be declared const,
5047  //   volatile, or const volatile (9.3.2).
5048  if (isVirtual) {
5049    if (!D.isInvalidType())
5050      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5051        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5052        << SourceRange(D.getIdentifierLoc());
5053    D.setInvalidType();
5054  }
5055  if (SC == SC_Static) {
5056    if (!D.isInvalidType())
5057      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5058        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5059        << SourceRange(D.getIdentifierLoc());
5060    D.setInvalidType();
5061    SC = SC_None;
5062  }
5063
5064  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5065  if (FTI.TypeQuals != 0) {
5066    if (FTI.TypeQuals & Qualifiers::Const)
5067      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5068        << "const" << SourceRange(D.getIdentifierLoc());
5069    if (FTI.TypeQuals & Qualifiers::Volatile)
5070      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5071        << "volatile" << SourceRange(D.getIdentifierLoc());
5072    if (FTI.TypeQuals & Qualifiers::Restrict)
5073      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5074        << "restrict" << SourceRange(D.getIdentifierLoc());
5075    D.setInvalidType();
5076  }
5077
5078  // C++0x [class.ctor]p4:
5079  //   A constructor shall not be declared with a ref-qualifier.
5080  if (FTI.hasRefQualifier()) {
5081    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5082      << FTI.RefQualifierIsLValueRef
5083      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5084    D.setInvalidType();
5085  }
5086
5087  // Rebuild the function type "R" without any type qualifiers (in
5088  // case any of the errors above fired) and with "void" as the
5089  // return type, since constructors don't have return types.
5090  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5091  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5092    return R;
5093
5094  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5095  EPI.TypeQuals = 0;
5096  EPI.RefQualifier = RQ_None;
5097
5098  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5099                                 Proto->getNumArgs(), EPI);
5100}
5101
5102/// CheckConstructor - Checks a fully-formed constructor for
5103/// well-formedness, issuing any diagnostics required. Returns true if
5104/// the constructor declarator is invalid.
5105void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5106  CXXRecordDecl *ClassDecl
5107    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5108  if (!ClassDecl)
5109    return Constructor->setInvalidDecl();
5110
5111  // C++ [class.copy]p3:
5112  //   A declaration of a constructor for a class X is ill-formed if
5113  //   its first parameter is of type (optionally cv-qualified) X and
5114  //   either there are no other parameters or else all other
5115  //   parameters have default arguments.
5116  if (!Constructor->isInvalidDecl() &&
5117      ((Constructor->getNumParams() == 1) ||
5118       (Constructor->getNumParams() > 1 &&
5119        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5120      Constructor->getTemplateSpecializationKind()
5121                                              != TSK_ImplicitInstantiation) {
5122    QualType ParamType = Constructor->getParamDecl(0)->getType();
5123    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5124    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5125      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5126      const char *ConstRef
5127        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5128                                                        : " const &";
5129      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5130        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5131
5132      // FIXME: Rather that making the constructor invalid, we should endeavor
5133      // to fix the type.
5134      Constructor->setInvalidDecl();
5135    }
5136  }
5137}
5138
5139/// CheckDestructor - Checks a fully-formed destructor definition for
5140/// well-formedness, issuing any diagnostics required.  Returns true
5141/// on error.
5142bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5143  CXXRecordDecl *RD = Destructor->getParent();
5144
5145  if (Destructor->isVirtual()) {
5146    SourceLocation Loc;
5147
5148    if (!Destructor->isImplicit())
5149      Loc = Destructor->getLocation();
5150    else
5151      Loc = RD->getLocation();
5152
5153    // If we have a virtual destructor, look up the deallocation function
5154    FunctionDecl *OperatorDelete = 0;
5155    DeclarationName Name =
5156    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5157    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5158      return true;
5159
5160    MarkFunctionReferenced(Loc, OperatorDelete);
5161
5162    Destructor->setOperatorDelete(OperatorDelete);
5163  }
5164
5165  return false;
5166}
5167
5168static inline bool
5169FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5170  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5171          FTI.ArgInfo[0].Param &&
5172          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5173}
5174
5175/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5176/// the well-formednes of the destructor declarator @p D with type @p
5177/// R. If there are any errors in the declarator, this routine will
5178/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5179/// will be updated to reflect a well-formed type for the destructor and
5180/// returned.
5181QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5182                                         StorageClass& SC) {
5183  // C++ [class.dtor]p1:
5184  //   [...] A typedef-name that names a class is a class-name
5185  //   (7.1.3); however, a typedef-name that names a class shall not
5186  //   be used as the identifier in the declarator for a destructor
5187  //   declaration.
5188  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5189  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5190    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5191      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5192  else if (const TemplateSpecializationType *TST =
5193             DeclaratorType->getAs<TemplateSpecializationType>())
5194    if (TST->isTypeAlias())
5195      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5196        << DeclaratorType << 1;
5197
5198  // C++ [class.dtor]p2:
5199  //   A destructor is used to destroy objects of its class type. A
5200  //   destructor takes no parameters, and no return type can be
5201  //   specified for it (not even void). The address of a destructor
5202  //   shall not be taken. A destructor shall not be static. A
5203  //   destructor can be invoked for a const, volatile or const
5204  //   volatile object. A destructor shall not be declared const,
5205  //   volatile or const volatile (9.3.2).
5206  if (SC == SC_Static) {
5207    if (!D.isInvalidType())
5208      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5209        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5210        << SourceRange(D.getIdentifierLoc())
5211        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5212
5213    SC = SC_None;
5214  }
5215  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5216    // Destructors don't have return types, but the parser will
5217    // happily parse something like:
5218    //
5219    //   class X {
5220    //     float ~X();
5221    //   };
5222    //
5223    // The return type will be eliminated later.
5224    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5225      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5226      << SourceRange(D.getIdentifierLoc());
5227  }
5228
5229  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5230  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5231    if (FTI.TypeQuals & Qualifiers::Const)
5232      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5233        << "const" << SourceRange(D.getIdentifierLoc());
5234    if (FTI.TypeQuals & Qualifiers::Volatile)
5235      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5236        << "volatile" << SourceRange(D.getIdentifierLoc());
5237    if (FTI.TypeQuals & Qualifiers::Restrict)
5238      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5239        << "restrict" << SourceRange(D.getIdentifierLoc());
5240    D.setInvalidType();
5241  }
5242
5243  // C++0x [class.dtor]p2:
5244  //   A destructor shall not be declared with a ref-qualifier.
5245  if (FTI.hasRefQualifier()) {
5246    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5247      << FTI.RefQualifierIsLValueRef
5248      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5249    D.setInvalidType();
5250  }
5251
5252  // Make sure we don't have any parameters.
5253  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5254    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5255
5256    // Delete the parameters.
5257    FTI.freeArgs();
5258    D.setInvalidType();
5259  }
5260
5261  // Make sure the destructor isn't variadic.
5262  if (FTI.isVariadic) {
5263    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5264    D.setInvalidType();
5265  }
5266
5267  // Rebuild the function type "R" without any type qualifiers or
5268  // parameters (in case any of the errors above fired) and with
5269  // "void" as the return type, since destructors don't have return
5270  // types.
5271  if (!D.isInvalidType())
5272    return R;
5273
5274  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5275  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5276  EPI.Variadic = false;
5277  EPI.TypeQuals = 0;
5278  EPI.RefQualifier = RQ_None;
5279  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5280}
5281
5282/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5283/// well-formednes of the conversion function declarator @p D with
5284/// type @p R. If there are any errors in the declarator, this routine
5285/// will emit diagnostics and return true. Otherwise, it will return
5286/// false. Either way, the type @p R will be updated to reflect a
5287/// well-formed type for the conversion operator.
5288void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5289                                     StorageClass& SC) {
5290  // C++ [class.conv.fct]p1:
5291  //   Neither parameter types nor return type can be specified. The
5292  //   type of a conversion function (8.3.5) is "function taking no
5293  //   parameter returning conversion-type-id."
5294  if (SC == SC_Static) {
5295    if (!D.isInvalidType())
5296      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5297        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5298        << SourceRange(D.getIdentifierLoc());
5299    D.setInvalidType();
5300    SC = SC_None;
5301  }
5302
5303  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5304
5305  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5306    // Conversion functions don't have return types, but the parser will
5307    // happily parse something like:
5308    //
5309    //   class X {
5310    //     float operator bool();
5311    //   };
5312    //
5313    // The return type will be changed later anyway.
5314    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5315      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5316      << SourceRange(D.getIdentifierLoc());
5317    D.setInvalidType();
5318  }
5319
5320  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5321
5322  // Make sure we don't have any parameters.
5323  if (Proto->getNumArgs() > 0) {
5324    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5325
5326    // Delete the parameters.
5327    D.getFunctionTypeInfo().freeArgs();
5328    D.setInvalidType();
5329  } else if (Proto->isVariadic()) {
5330    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5331    D.setInvalidType();
5332  }
5333
5334  // Diagnose "&operator bool()" and other such nonsense.  This
5335  // is actually a gcc extension which we don't support.
5336  if (Proto->getResultType() != ConvType) {
5337    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5338      << Proto->getResultType();
5339    D.setInvalidType();
5340    ConvType = Proto->getResultType();
5341  }
5342
5343  // C++ [class.conv.fct]p4:
5344  //   The conversion-type-id shall not represent a function type nor
5345  //   an array type.
5346  if (ConvType->isArrayType()) {
5347    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5348    ConvType = Context.getPointerType(ConvType);
5349    D.setInvalidType();
5350  } else if (ConvType->isFunctionType()) {
5351    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5352    ConvType = Context.getPointerType(ConvType);
5353    D.setInvalidType();
5354  }
5355
5356  // Rebuild the function type "R" without any parameters (in case any
5357  // of the errors above fired) and with the conversion type as the
5358  // return type.
5359  if (D.isInvalidType())
5360    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5361
5362  // C++0x explicit conversion operators.
5363  if (D.getDeclSpec().isExplicitSpecified())
5364    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5365         getLangOpts().CPlusPlus0x ?
5366           diag::warn_cxx98_compat_explicit_conversion_functions :
5367           diag::ext_explicit_conversion_functions)
5368      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5369}
5370
5371/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5372/// the declaration of the given C++ conversion function. This routine
5373/// is responsible for recording the conversion function in the C++
5374/// class, if possible.
5375Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5376  assert(Conversion && "Expected to receive a conversion function declaration");
5377
5378  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5379
5380  // Make sure we aren't redeclaring the conversion function.
5381  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5382
5383  // C++ [class.conv.fct]p1:
5384  //   [...] A conversion function is never used to convert a
5385  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5386  //   same object type (or a reference to it), to a (possibly
5387  //   cv-qualified) base class of that type (or a reference to it),
5388  //   or to (possibly cv-qualified) void.
5389  // FIXME: Suppress this warning if the conversion function ends up being a
5390  // virtual function that overrides a virtual function in a base class.
5391  QualType ClassType
5392    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5393  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5394    ConvType = ConvTypeRef->getPointeeType();
5395  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5396      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5397    /* Suppress diagnostics for instantiations. */;
5398  else if (ConvType->isRecordType()) {
5399    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5400    if (ConvType == ClassType)
5401      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5402        << ClassType;
5403    else if (IsDerivedFrom(ClassType, ConvType))
5404      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5405        <<  ClassType << ConvType;
5406  } else if (ConvType->isVoidType()) {
5407    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5408      << ClassType << ConvType;
5409  }
5410
5411  if (FunctionTemplateDecl *ConversionTemplate
5412                                = Conversion->getDescribedFunctionTemplate())
5413    return ConversionTemplate;
5414
5415  return Conversion;
5416}
5417
5418//===----------------------------------------------------------------------===//
5419// Namespace Handling
5420//===----------------------------------------------------------------------===//
5421
5422
5423
5424/// ActOnStartNamespaceDef - This is called at the start of a namespace
5425/// definition.
5426Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5427                                   SourceLocation InlineLoc,
5428                                   SourceLocation NamespaceLoc,
5429                                   SourceLocation IdentLoc,
5430                                   IdentifierInfo *II,
5431                                   SourceLocation LBrace,
5432                                   AttributeList *AttrList) {
5433  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5434  // For anonymous namespace, take the location of the left brace.
5435  SourceLocation Loc = II ? IdentLoc : LBrace;
5436  bool IsInline = InlineLoc.isValid();
5437  bool IsInvalid = false;
5438  bool IsStd = false;
5439  bool AddToKnown = false;
5440  Scope *DeclRegionScope = NamespcScope->getParent();
5441
5442  NamespaceDecl *PrevNS = 0;
5443  if (II) {
5444    // C++ [namespace.def]p2:
5445    //   The identifier in an original-namespace-definition shall not
5446    //   have been previously defined in the declarative region in
5447    //   which the original-namespace-definition appears. The
5448    //   identifier in an original-namespace-definition is the name of
5449    //   the namespace. Subsequently in that declarative region, it is
5450    //   treated as an original-namespace-name.
5451    //
5452    // Since namespace names are unique in their scope, and we don't
5453    // look through using directives, just look for any ordinary names.
5454
5455    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5456    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5457    Decl::IDNS_Namespace;
5458    NamedDecl *PrevDecl = 0;
5459    for (DeclContext::lookup_result R
5460         = CurContext->getRedeclContext()->lookup(II);
5461         R.first != R.second; ++R.first) {
5462      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5463        PrevDecl = *R.first;
5464        break;
5465      }
5466    }
5467
5468    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5469
5470    if (PrevNS) {
5471      // This is an extended namespace definition.
5472      if (IsInline != PrevNS->isInline()) {
5473        // inline-ness must match
5474        if (PrevNS->isInline()) {
5475          // The user probably just forgot the 'inline', so suggest that it
5476          // be added back.
5477          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5478            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5479        } else {
5480          Diag(Loc, diag::err_inline_namespace_mismatch)
5481            << IsInline;
5482        }
5483        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5484
5485        IsInline = PrevNS->isInline();
5486      }
5487    } else if (PrevDecl) {
5488      // This is an invalid name redefinition.
5489      Diag(Loc, diag::err_redefinition_different_kind)
5490        << II;
5491      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5492      IsInvalid = true;
5493      // Continue on to push Namespc as current DeclContext and return it.
5494    } else if (II->isStr("std") &&
5495               CurContext->getRedeclContext()->isTranslationUnit()) {
5496      // This is the first "real" definition of the namespace "std", so update
5497      // our cache of the "std" namespace to point at this definition.
5498      PrevNS = getStdNamespace();
5499      IsStd = true;
5500      AddToKnown = !IsInline;
5501    } else {
5502      // We've seen this namespace for the first time.
5503      AddToKnown = !IsInline;
5504    }
5505  } else {
5506    // Anonymous namespaces.
5507
5508    // Determine whether the parent already has an anonymous namespace.
5509    DeclContext *Parent = CurContext->getRedeclContext();
5510    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5511      PrevNS = TU->getAnonymousNamespace();
5512    } else {
5513      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5514      PrevNS = ND->getAnonymousNamespace();
5515    }
5516
5517    if (PrevNS && IsInline != PrevNS->isInline()) {
5518      // inline-ness must match
5519      Diag(Loc, diag::err_inline_namespace_mismatch)
5520        << IsInline;
5521      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5522
5523      // Recover by ignoring the new namespace's inline status.
5524      IsInline = PrevNS->isInline();
5525    }
5526  }
5527
5528  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5529                                                 StartLoc, Loc, II, PrevNS);
5530  if (IsInvalid)
5531    Namespc->setInvalidDecl();
5532
5533  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5534
5535  // FIXME: Should we be merging attributes?
5536  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5537    PushNamespaceVisibilityAttr(Attr, Loc);
5538
5539  if (IsStd)
5540    StdNamespace = Namespc;
5541  if (AddToKnown)
5542    KnownNamespaces[Namespc] = false;
5543
5544  if (II) {
5545    PushOnScopeChains(Namespc, DeclRegionScope);
5546  } else {
5547    // Link the anonymous namespace into its parent.
5548    DeclContext *Parent = CurContext->getRedeclContext();
5549    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5550      TU->setAnonymousNamespace(Namespc);
5551    } else {
5552      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5553    }
5554
5555    CurContext->addDecl(Namespc);
5556
5557    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5558    //   behaves as if it were replaced by
5559    //     namespace unique { /* empty body */ }
5560    //     using namespace unique;
5561    //     namespace unique { namespace-body }
5562    //   where all occurrences of 'unique' in a translation unit are
5563    //   replaced by the same identifier and this identifier differs
5564    //   from all other identifiers in the entire program.
5565
5566    // We just create the namespace with an empty name and then add an
5567    // implicit using declaration, just like the standard suggests.
5568    //
5569    // CodeGen enforces the "universally unique" aspect by giving all
5570    // declarations semantically contained within an anonymous
5571    // namespace internal linkage.
5572
5573    if (!PrevNS) {
5574      UsingDirectiveDecl* UD
5575        = UsingDirectiveDecl::Create(Context, CurContext,
5576                                     /* 'using' */ LBrace,
5577                                     /* 'namespace' */ SourceLocation(),
5578                                     /* qualifier */ NestedNameSpecifierLoc(),
5579                                     /* identifier */ SourceLocation(),
5580                                     Namespc,
5581                                     /* Ancestor */ CurContext);
5582      UD->setImplicit();
5583      CurContext->addDecl(UD);
5584    }
5585  }
5586
5587  // Although we could have an invalid decl (i.e. the namespace name is a
5588  // redefinition), push it as current DeclContext and try to continue parsing.
5589  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5590  // for the namespace has the declarations that showed up in that particular
5591  // namespace definition.
5592  PushDeclContext(NamespcScope, Namespc);
5593  return Namespc;
5594}
5595
5596/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5597/// is a namespace alias, returns the namespace it points to.
5598static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5599  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5600    return AD->getNamespace();
5601  return dyn_cast_or_null<NamespaceDecl>(D);
5602}
5603
5604/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5605/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5606void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5607  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5608  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5609  Namespc->setRBraceLoc(RBrace);
5610  PopDeclContext();
5611  if (Namespc->hasAttr<VisibilityAttr>())
5612    PopPragmaVisibility(true, RBrace);
5613}
5614
5615CXXRecordDecl *Sema::getStdBadAlloc() const {
5616  return cast_or_null<CXXRecordDecl>(
5617                                  StdBadAlloc.get(Context.getExternalSource()));
5618}
5619
5620NamespaceDecl *Sema::getStdNamespace() const {
5621  return cast_or_null<NamespaceDecl>(
5622                                 StdNamespace.get(Context.getExternalSource()));
5623}
5624
5625/// \brief Retrieve the special "std" namespace, which may require us to
5626/// implicitly define the namespace.
5627NamespaceDecl *Sema::getOrCreateStdNamespace() {
5628  if (!StdNamespace) {
5629    // The "std" namespace has not yet been defined, so build one implicitly.
5630    StdNamespace = NamespaceDecl::Create(Context,
5631                                         Context.getTranslationUnitDecl(),
5632                                         /*Inline=*/false,
5633                                         SourceLocation(), SourceLocation(),
5634                                         &PP.getIdentifierTable().get("std"),
5635                                         /*PrevDecl=*/0);
5636    getStdNamespace()->setImplicit(true);
5637  }
5638
5639  return getStdNamespace();
5640}
5641
5642bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5643  assert(getLangOpts().CPlusPlus &&
5644         "Looking for std::initializer_list outside of C++.");
5645
5646  // We're looking for implicit instantiations of
5647  // template <typename E> class std::initializer_list.
5648
5649  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5650    return false;
5651
5652  ClassTemplateDecl *Template = 0;
5653  const TemplateArgument *Arguments = 0;
5654
5655  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5656
5657    ClassTemplateSpecializationDecl *Specialization =
5658        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5659    if (!Specialization)
5660      return false;
5661
5662    Template = Specialization->getSpecializedTemplate();
5663    Arguments = Specialization->getTemplateArgs().data();
5664  } else if (const TemplateSpecializationType *TST =
5665                 Ty->getAs<TemplateSpecializationType>()) {
5666    Template = dyn_cast_or_null<ClassTemplateDecl>(
5667        TST->getTemplateName().getAsTemplateDecl());
5668    Arguments = TST->getArgs();
5669  }
5670  if (!Template)
5671    return false;
5672
5673  if (!StdInitializerList) {
5674    // Haven't recognized std::initializer_list yet, maybe this is it.
5675    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5676    if (TemplateClass->getIdentifier() !=
5677            &PP.getIdentifierTable().get("initializer_list") ||
5678        !getStdNamespace()->InEnclosingNamespaceSetOf(
5679            TemplateClass->getDeclContext()))
5680      return false;
5681    // This is a template called std::initializer_list, but is it the right
5682    // template?
5683    TemplateParameterList *Params = Template->getTemplateParameters();
5684    if (Params->getMinRequiredArguments() != 1)
5685      return false;
5686    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5687      return false;
5688
5689    // It's the right template.
5690    StdInitializerList = Template;
5691  }
5692
5693  if (Template != StdInitializerList)
5694    return false;
5695
5696  // This is an instance of std::initializer_list. Find the argument type.
5697  if (Element)
5698    *Element = Arguments[0].getAsType();
5699  return true;
5700}
5701
5702static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5703  NamespaceDecl *Std = S.getStdNamespace();
5704  if (!Std) {
5705    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5706    return 0;
5707  }
5708
5709  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5710                      Loc, Sema::LookupOrdinaryName);
5711  if (!S.LookupQualifiedName(Result, Std)) {
5712    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5713    return 0;
5714  }
5715  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5716  if (!Template) {
5717    Result.suppressDiagnostics();
5718    // We found something weird. Complain about the first thing we found.
5719    NamedDecl *Found = *Result.begin();
5720    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5721    return 0;
5722  }
5723
5724  // We found some template called std::initializer_list. Now verify that it's
5725  // correct.
5726  TemplateParameterList *Params = Template->getTemplateParameters();
5727  if (Params->getMinRequiredArguments() != 1 ||
5728      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5729    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5730    return 0;
5731  }
5732
5733  return Template;
5734}
5735
5736QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5737  if (!StdInitializerList) {
5738    StdInitializerList = LookupStdInitializerList(*this, Loc);
5739    if (!StdInitializerList)
5740      return QualType();
5741  }
5742
5743  TemplateArgumentListInfo Args(Loc, Loc);
5744  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5745                                       Context.getTrivialTypeSourceInfo(Element,
5746                                                                        Loc)));
5747  return Context.getCanonicalType(
5748      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5749}
5750
5751bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5752  // C++ [dcl.init.list]p2:
5753  //   A constructor is an initializer-list constructor if its first parameter
5754  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5755  //   std::initializer_list<E> for some type E, and either there are no other
5756  //   parameters or else all other parameters have default arguments.
5757  if (Ctor->getNumParams() < 1 ||
5758      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5759    return false;
5760
5761  QualType ArgType = Ctor->getParamDecl(0)->getType();
5762  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5763    ArgType = RT->getPointeeType().getUnqualifiedType();
5764
5765  return isStdInitializerList(ArgType, 0);
5766}
5767
5768/// \brief Determine whether a using statement is in a context where it will be
5769/// apply in all contexts.
5770static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5771  switch (CurContext->getDeclKind()) {
5772    case Decl::TranslationUnit:
5773      return true;
5774    case Decl::LinkageSpec:
5775      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5776    default:
5777      return false;
5778  }
5779}
5780
5781namespace {
5782
5783// Callback to only accept typo corrections that are namespaces.
5784class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5785 public:
5786  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5787    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5788      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5789    }
5790    return false;
5791  }
5792};
5793
5794}
5795
5796static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5797                                       CXXScopeSpec &SS,
5798                                       SourceLocation IdentLoc,
5799                                       IdentifierInfo *Ident) {
5800  NamespaceValidatorCCC Validator;
5801  R.clear();
5802  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5803                                               R.getLookupKind(), Sc, &SS,
5804                                               Validator)) {
5805    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5806    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5807    if (DeclContext *DC = S.computeDeclContext(SS, false))
5808      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5809        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5810        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5811    else
5812      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5813        << Ident << CorrectedQuotedStr
5814        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5815
5816    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5817         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5818
5819    R.addDecl(Corrected.getCorrectionDecl());
5820    return true;
5821  }
5822  return false;
5823}
5824
5825Decl *Sema::ActOnUsingDirective(Scope *S,
5826                                          SourceLocation UsingLoc,
5827                                          SourceLocation NamespcLoc,
5828                                          CXXScopeSpec &SS,
5829                                          SourceLocation IdentLoc,
5830                                          IdentifierInfo *NamespcName,
5831                                          AttributeList *AttrList) {
5832  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5833  assert(NamespcName && "Invalid NamespcName.");
5834  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5835
5836  // This can only happen along a recovery path.
5837  while (S->getFlags() & Scope::TemplateParamScope)
5838    S = S->getParent();
5839  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5840
5841  UsingDirectiveDecl *UDir = 0;
5842  NestedNameSpecifier *Qualifier = 0;
5843  if (SS.isSet())
5844    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5845
5846  // Lookup namespace name.
5847  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5848  LookupParsedName(R, S, &SS);
5849  if (R.isAmbiguous())
5850    return 0;
5851
5852  if (R.empty()) {
5853    R.clear();
5854    // Allow "using namespace std;" or "using namespace ::std;" even if
5855    // "std" hasn't been defined yet, for GCC compatibility.
5856    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5857        NamespcName->isStr("std")) {
5858      Diag(IdentLoc, diag::ext_using_undefined_std);
5859      R.addDecl(getOrCreateStdNamespace());
5860      R.resolveKind();
5861    }
5862    // Otherwise, attempt typo correction.
5863    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5864  }
5865
5866  if (!R.empty()) {
5867    NamedDecl *Named = R.getFoundDecl();
5868    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5869        && "expected namespace decl");
5870    // C++ [namespace.udir]p1:
5871    //   A using-directive specifies that the names in the nominated
5872    //   namespace can be used in the scope in which the
5873    //   using-directive appears after the using-directive. During
5874    //   unqualified name lookup (3.4.1), the names appear as if they
5875    //   were declared in the nearest enclosing namespace which
5876    //   contains both the using-directive and the nominated
5877    //   namespace. [Note: in this context, "contains" means "contains
5878    //   directly or indirectly". ]
5879
5880    // Find enclosing context containing both using-directive and
5881    // nominated namespace.
5882    NamespaceDecl *NS = getNamespaceDecl(Named);
5883    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5884    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5885      CommonAncestor = CommonAncestor->getParent();
5886
5887    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5888                                      SS.getWithLocInContext(Context),
5889                                      IdentLoc, Named, CommonAncestor);
5890
5891    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5892        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5893      Diag(IdentLoc, diag::warn_using_directive_in_header);
5894    }
5895
5896    PushUsingDirective(S, UDir);
5897  } else {
5898    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5899  }
5900
5901  // FIXME: We ignore attributes for now.
5902  return UDir;
5903}
5904
5905void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5906  // If the scope has an associated entity and the using directive is at
5907  // namespace or translation unit scope, add the UsingDirectiveDecl into
5908  // its lookup structure so qualified name lookup can find it.
5909  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5910  if (Ctx && !Ctx->isFunctionOrMethod())
5911    Ctx->addDecl(UDir);
5912  else
5913    // Otherwise, it is at block sope. The using-directives will affect lookup
5914    // only to the end of the scope.
5915    S->PushUsingDirective(UDir);
5916}
5917
5918
5919Decl *Sema::ActOnUsingDeclaration(Scope *S,
5920                                  AccessSpecifier AS,
5921                                  bool HasUsingKeyword,
5922                                  SourceLocation UsingLoc,
5923                                  CXXScopeSpec &SS,
5924                                  UnqualifiedId &Name,
5925                                  AttributeList *AttrList,
5926                                  bool IsTypeName,
5927                                  SourceLocation TypenameLoc) {
5928  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5929
5930  switch (Name.getKind()) {
5931  case UnqualifiedId::IK_ImplicitSelfParam:
5932  case UnqualifiedId::IK_Identifier:
5933  case UnqualifiedId::IK_OperatorFunctionId:
5934  case UnqualifiedId::IK_LiteralOperatorId:
5935  case UnqualifiedId::IK_ConversionFunctionId:
5936    break;
5937
5938  case UnqualifiedId::IK_ConstructorName:
5939  case UnqualifiedId::IK_ConstructorTemplateId:
5940    // C++11 inheriting constructors.
5941    Diag(Name.getLocStart(),
5942         getLangOpts().CPlusPlus0x ?
5943           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5944           //        instead once inheriting constructors work.
5945           diag::err_using_decl_constructor_unsupported :
5946           diag::err_using_decl_constructor)
5947      << SS.getRange();
5948
5949    if (getLangOpts().CPlusPlus0x) break;
5950
5951    return 0;
5952
5953  case UnqualifiedId::IK_DestructorName:
5954    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5955      << SS.getRange();
5956    return 0;
5957
5958  case UnqualifiedId::IK_TemplateId:
5959    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5960      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5961    return 0;
5962  }
5963
5964  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5965  DeclarationName TargetName = TargetNameInfo.getName();
5966  if (!TargetName)
5967    return 0;
5968
5969  // Warn about using declarations.
5970  // TODO: store that the declaration was written without 'using' and
5971  // talk about access decls instead of using decls in the
5972  // diagnostics.
5973  if (!HasUsingKeyword) {
5974    UsingLoc = Name.getLocStart();
5975
5976    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5977      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5978  }
5979
5980  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5981      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5982    return 0;
5983
5984  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5985                                        TargetNameInfo, AttrList,
5986                                        /* IsInstantiation */ false,
5987                                        IsTypeName, TypenameLoc);
5988  if (UD)
5989    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5990
5991  return UD;
5992}
5993
5994/// \brief Determine whether a using declaration considers the given
5995/// declarations as "equivalent", e.g., if they are redeclarations of
5996/// the same entity or are both typedefs of the same type.
5997static bool
5998IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5999                         bool &SuppressRedeclaration) {
6000  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6001    SuppressRedeclaration = false;
6002    return true;
6003  }
6004
6005  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6006    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6007      SuppressRedeclaration = true;
6008      return Context.hasSameType(TD1->getUnderlyingType(),
6009                                 TD2->getUnderlyingType());
6010    }
6011
6012  return false;
6013}
6014
6015
6016/// Determines whether to create a using shadow decl for a particular
6017/// decl, given the set of decls existing prior to this using lookup.
6018bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6019                                const LookupResult &Previous) {
6020  // Diagnose finding a decl which is not from a base class of the
6021  // current class.  We do this now because there are cases where this
6022  // function will silently decide not to build a shadow decl, which
6023  // will pre-empt further diagnostics.
6024  //
6025  // We don't need to do this in C++0x because we do the check once on
6026  // the qualifier.
6027  //
6028  // FIXME: diagnose the following if we care enough:
6029  //   struct A { int foo; };
6030  //   struct B : A { using A::foo; };
6031  //   template <class T> struct C : A {};
6032  //   template <class T> struct D : C<T> { using B::foo; } // <---
6033  // This is invalid (during instantiation) in C++03 because B::foo
6034  // resolves to the using decl in B, which is not a base class of D<T>.
6035  // We can't diagnose it immediately because C<T> is an unknown
6036  // specialization.  The UsingShadowDecl in D<T> then points directly
6037  // to A::foo, which will look well-formed when we instantiate.
6038  // The right solution is to not collapse the shadow-decl chain.
6039  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6040    DeclContext *OrigDC = Orig->getDeclContext();
6041
6042    // Handle enums and anonymous structs.
6043    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6044    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6045    while (OrigRec->isAnonymousStructOrUnion())
6046      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6047
6048    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6049      if (OrigDC == CurContext) {
6050        Diag(Using->getLocation(),
6051             diag::err_using_decl_nested_name_specifier_is_current_class)
6052          << Using->getQualifierLoc().getSourceRange();
6053        Diag(Orig->getLocation(), diag::note_using_decl_target);
6054        return true;
6055      }
6056
6057      Diag(Using->getQualifierLoc().getBeginLoc(),
6058           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6059        << Using->getQualifier()
6060        << cast<CXXRecordDecl>(CurContext)
6061        << Using->getQualifierLoc().getSourceRange();
6062      Diag(Orig->getLocation(), diag::note_using_decl_target);
6063      return true;
6064    }
6065  }
6066
6067  if (Previous.empty()) return false;
6068
6069  NamedDecl *Target = Orig;
6070  if (isa<UsingShadowDecl>(Target))
6071    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6072
6073  // If the target happens to be one of the previous declarations, we
6074  // don't have a conflict.
6075  //
6076  // FIXME: but we might be increasing its access, in which case we
6077  // should redeclare it.
6078  NamedDecl *NonTag = 0, *Tag = 0;
6079  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6080         I != E; ++I) {
6081    NamedDecl *D = (*I)->getUnderlyingDecl();
6082    bool Result;
6083    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6084      return Result;
6085
6086    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6087  }
6088
6089  if (Target->isFunctionOrFunctionTemplate()) {
6090    FunctionDecl *FD;
6091    if (isa<FunctionTemplateDecl>(Target))
6092      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6093    else
6094      FD = cast<FunctionDecl>(Target);
6095
6096    NamedDecl *OldDecl = 0;
6097    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6098    case Ovl_Overload:
6099      return false;
6100
6101    case Ovl_NonFunction:
6102      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6103      break;
6104
6105    // We found a decl with the exact signature.
6106    case Ovl_Match:
6107      // If we're in a record, we want to hide the target, so we
6108      // return true (without a diagnostic) to tell the caller not to
6109      // build a shadow decl.
6110      if (CurContext->isRecord())
6111        return true;
6112
6113      // If we're not in a record, this is an error.
6114      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6115      break;
6116    }
6117
6118    Diag(Target->getLocation(), diag::note_using_decl_target);
6119    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6120    return true;
6121  }
6122
6123  // Target is not a function.
6124
6125  if (isa<TagDecl>(Target)) {
6126    // No conflict between a tag and a non-tag.
6127    if (!Tag) return false;
6128
6129    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6130    Diag(Target->getLocation(), diag::note_using_decl_target);
6131    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6132    return true;
6133  }
6134
6135  // No conflict between a tag and a non-tag.
6136  if (!NonTag) return false;
6137
6138  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6139  Diag(Target->getLocation(), diag::note_using_decl_target);
6140  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6141  return true;
6142}
6143
6144/// Builds a shadow declaration corresponding to a 'using' declaration.
6145UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6146                                            UsingDecl *UD,
6147                                            NamedDecl *Orig) {
6148
6149  // If we resolved to another shadow declaration, just coalesce them.
6150  NamedDecl *Target = Orig;
6151  if (isa<UsingShadowDecl>(Target)) {
6152    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6153    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6154  }
6155
6156  UsingShadowDecl *Shadow
6157    = UsingShadowDecl::Create(Context, CurContext,
6158                              UD->getLocation(), UD, Target);
6159  UD->addShadowDecl(Shadow);
6160
6161  Shadow->setAccess(UD->getAccess());
6162  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6163    Shadow->setInvalidDecl();
6164
6165  if (S)
6166    PushOnScopeChains(Shadow, S);
6167  else
6168    CurContext->addDecl(Shadow);
6169
6170
6171  return Shadow;
6172}
6173
6174/// Hides a using shadow declaration.  This is required by the current
6175/// using-decl implementation when a resolvable using declaration in a
6176/// class is followed by a declaration which would hide or override
6177/// one or more of the using decl's targets; for example:
6178///
6179///   struct Base { void foo(int); };
6180///   struct Derived : Base {
6181///     using Base::foo;
6182///     void foo(int);
6183///   };
6184///
6185/// The governing language is C++03 [namespace.udecl]p12:
6186///
6187///   When a using-declaration brings names from a base class into a
6188///   derived class scope, member functions in the derived class
6189///   override and/or hide member functions with the same name and
6190///   parameter types in a base class (rather than conflicting).
6191///
6192/// There are two ways to implement this:
6193///   (1) optimistically create shadow decls when they're not hidden
6194///       by existing declarations, or
6195///   (2) don't create any shadow decls (or at least don't make them
6196///       visible) until we've fully parsed/instantiated the class.
6197/// The problem with (1) is that we might have to retroactively remove
6198/// a shadow decl, which requires several O(n) operations because the
6199/// decl structures are (very reasonably) not designed for removal.
6200/// (2) avoids this but is very fiddly and phase-dependent.
6201void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6202  if (Shadow->getDeclName().getNameKind() ==
6203        DeclarationName::CXXConversionFunctionName)
6204    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6205
6206  // Remove it from the DeclContext...
6207  Shadow->getDeclContext()->removeDecl(Shadow);
6208
6209  // ...and the scope, if applicable...
6210  if (S) {
6211    S->RemoveDecl(Shadow);
6212    IdResolver.RemoveDecl(Shadow);
6213  }
6214
6215  // ...and the using decl.
6216  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6217
6218  // TODO: complain somehow if Shadow was used.  It shouldn't
6219  // be possible for this to happen, because...?
6220}
6221
6222/// Builds a using declaration.
6223///
6224/// \param IsInstantiation - Whether this call arises from an
6225///   instantiation of an unresolved using declaration.  We treat
6226///   the lookup differently for these declarations.
6227NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6228                                       SourceLocation UsingLoc,
6229                                       CXXScopeSpec &SS,
6230                                       const DeclarationNameInfo &NameInfo,
6231                                       AttributeList *AttrList,
6232                                       bool IsInstantiation,
6233                                       bool IsTypeName,
6234                                       SourceLocation TypenameLoc) {
6235  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6236  SourceLocation IdentLoc = NameInfo.getLoc();
6237  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6238
6239  // FIXME: We ignore attributes for now.
6240
6241  if (SS.isEmpty()) {
6242    Diag(IdentLoc, diag::err_using_requires_qualname);
6243    return 0;
6244  }
6245
6246  // Do the redeclaration lookup in the current scope.
6247  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6248                        ForRedeclaration);
6249  Previous.setHideTags(false);
6250  if (S) {
6251    LookupName(Previous, S);
6252
6253    // It is really dumb that we have to do this.
6254    LookupResult::Filter F = Previous.makeFilter();
6255    while (F.hasNext()) {
6256      NamedDecl *D = F.next();
6257      if (!isDeclInScope(D, CurContext, S))
6258        F.erase();
6259    }
6260    F.done();
6261  } else {
6262    assert(IsInstantiation && "no scope in non-instantiation");
6263    assert(CurContext->isRecord() && "scope not record in instantiation");
6264    LookupQualifiedName(Previous, CurContext);
6265  }
6266
6267  // Check for invalid redeclarations.
6268  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6269    return 0;
6270
6271  // Check for bad qualifiers.
6272  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6273    return 0;
6274
6275  DeclContext *LookupContext = computeDeclContext(SS);
6276  NamedDecl *D;
6277  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6278  if (!LookupContext) {
6279    if (IsTypeName) {
6280      // FIXME: not all declaration name kinds are legal here
6281      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6282                                              UsingLoc, TypenameLoc,
6283                                              QualifierLoc,
6284                                              IdentLoc, NameInfo.getName());
6285    } else {
6286      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6287                                           QualifierLoc, NameInfo);
6288    }
6289  } else {
6290    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6291                          NameInfo, IsTypeName);
6292  }
6293  D->setAccess(AS);
6294  CurContext->addDecl(D);
6295
6296  if (!LookupContext) return D;
6297  UsingDecl *UD = cast<UsingDecl>(D);
6298
6299  if (RequireCompleteDeclContext(SS, LookupContext)) {
6300    UD->setInvalidDecl();
6301    return UD;
6302  }
6303
6304  // The normal rules do not apply to inheriting constructor declarations.
6305  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6306    if (CheckInheritingConstructorUsingDecl(UD))
6307      UD->setInvalidDecl();
6308    return UD;
6309  }
6310
6311  // Otherwise, look up the target name.
6312
6313  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6314
6315  // Unlike most lookups, we don't always want to hide tag
6316  // declarations: tag names are visible through the using declaration
6317  // even if hidden by ordinary names, *except* in a dependent context
6318  // where it's important for the sanity of two-phase lookup.
6319  if (!IsInstantiation)
6320    R.setHideTags(false);
6321
6322  // For the purposes of this lookup, we have a base object type
6323  // equal to that of the current context.
6324  if (CurContext->isRecord()) {
6325    R.setBaseObjectType(
6326                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6327  }
6328
6329  LookupQualifiedName(R, LookupContext);
6330
6331  if (R.empty()) {
6332    Diag(IdentLoc, diag::err_no_member)
6333      << NameInfo.getName() << LookupContext << SS.getRange();
6334    UD->setInvalidDecl();
6335    return UD;
6336  }
6337
6338  if (R.isAmbiguous()) {
6339    UD->setInvalidDecl();
6340    return UD;
6341  }
6342
6343  if (IsTypeName) {
6344    // If we asked for a typename and got a non-type decl, error out.
6345    if (!R.getAsSingle<TypeDecl>()) {
6346      Diag(IdentLoc, diag::err_using_typename_non_type);
6347      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6348        Diag((*I)->getUnderlyingDecl()->getLocation(),
6349             diag::note_using_decl_target);
6350      UD->setInvalidDecl();
6351      return UD;
6352    }
6353  } else {
6354    // If we asked for a non-typename and we got a type, error out,
6355    // but only if this is an instantiation of an unresolved using
6356    // decl.  Otherwise just silently find the type name.
6357    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6358      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6359      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6360      UD->setInvalidDecl();
6361      return UD;
6362    }
6363  }
6364
6365  // C++0x N2914 [namespace.udecl]p6:
6366  // A using-declaration shall not name a namespace.
6367  if (R.getAsSingle<NamespaceDecl>()) {
6368    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6369      << SS.getRange();
6370    UD->setInvalidDecl();
6371    return UD;
6372  }
6373
6374  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6375    if (!CheckUsingShadowDecl(UD, *I, Previous))
6376      BuildUsingShadowDecl(S, UD, *I);
6377  }
6378
6379  return UD;
6380}
6381
6382/// Additional checks for a using declaration referring to a constructor name.
6383bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6384  assert(!UD->isTypeName() && "expecting a constructor name");
6385
6386  const Type *SourceType = UD->getQualifier()->getAsType();
6387  assert(SourceType &&
6388         "Using decl naming constructor doesn't have type in scope spec.");
6389  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6390
6391  // Check whether the named type is a direct base class.
6392  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6393  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6394  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6395       BaseIt != BaseE; ++BaseIt) {
6396    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6397    if (CanonicalSourceType == BaseType)
6398      break;
6399    if (BaseIt->getType()->isDependentType())
6400      break;
6401  }
6402
6403  if (BaseIt == BaseE) {
6404    // Did not find SourceType in the bases.
6405    Diag(UD->getUsingLocation(),
6406         diag::err_using_decl_constructor_not_in_direct_base)
6407      << UD->getNameInfo().getSourceRange()
6408      << QualType(SourceType, 0) << TargetClass;
6409    return true;
6410  }
6411
6412  if (!CurContext->isDependentContext())
6413    BaseIt->setInheritConstructors();
6414
6415  return false;
6416}
6417
6418/// Checks that the given using declaration is not an invalid
6419/// redeclaration.  Note that this is checking only for the using decl
6420/// itself, not for any ill-formedness among the UsingShadowDecls.
6421bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6422                                       bool isTypeName,
6423                                       const CXXScopeSpec &SS,
6424                                       SourceLocation NameLoc,
6425                                       const LookupResult &Prev) {
6426  // C++03 [namespace.udecl]p8:
6427  // C++0x [namespace.udecl]p10:
6428  //   A using-declaration is a declaration and can therefore be used
6429  //   repeatedly where (and only where) multiple declarations are
6430  //   allowed.
6431  //
6432  // That's in non-member contexts.
6433  if (!CurContext->getRedeclContext()->isRecord())
6434    return false;
6435
6436  NestedNameSpecifier *Qual
6437    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6438
6439  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6440    NamedDecl *D = *I;
6441
6442    bool DTypename;
6443    NestedNameSpecifier *DQual;
6444    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6445      DTypename = UD->isTypeName();
6446      DQual = UD->getQualifier();
6447    } else if (UnresolvedUsingValueDecl *UD
6448                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6449      DTypename = false;
6450      DQual = UD->getQualifier();
6451    } else if (UnresolvedUsingTypenameDecl *UD
6452                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6453      DTypename = true;
6454      DQual = UD->getQualifier();
6455    } else continue;
6456
6457    // using decls differ if one says 'typename' and the other doesn't.
6458    // FIXME: non-dependent using decls?
6459    if (isTypeName != DTypename) continue;
6460
6461    // using decls differ if they name different scopes (but note that
6462    // template instantiation can cause this check to trigger when it
6463    // didn't before instantiation).
6464    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6465        Context.getCanonicalNestedNameSpecifier(DQual))
6466      continue;
6467
6468    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6469    Diag(D->getLocation(), diag::note_using_decl) << 1;
6470    return true;
6471  }
6472
6473  return false;
6474}
6475
6476
6477/// Checks that the given nested-name qualifier used in a using decl
6478/// in the current context is appropriately related to the current
6479/// scope.  If an error is found, diagnoses it and returns true.
6480bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6481                                   const CXXScopeSpec &SS,
6482                                   SourceLocation NameLoc) {
6483  DeclContext *NamedContext = computeDeclContext(SS);
6484
6485  if (!CurContext->isRecord()) {
6486    // C++03 [namespace.udecl]p3:
6487    // C++0x [namespace.udecl]p8:
6488    //   A using-declaration for a class member shall be a member-declaration.
6489
6490    // If we weren't able to compute a valid scope, it must be a
6491    // dependent class scope.
6492    if (!NamedContext || NamedContext->isRecord()) {
6493      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6494        << SS.getRange();
6495      return true;
6496    }
6497
6498    // Otherwise, everything is known to be fine.
6499    return false;
6500  }
6501
6502  // The current scope is a record.
6503
6504  // If the named context is dependent, we can't decide much.
6505  if (!NamedContext) {
6506    // FIXME: in C++0x, we can diagnose if we can prove that the
6507    // nested-name-specifier does not refer to a base class, which is
6508    // still possible in some cases.
6509
6510    // Otherwise we have to conservatively report that things might be
6511    // okay.
6512    return false;
6513  }
6514
6515  if (!NamedContext->isRecord()) {
6516    // Ideally this would point at the last name in the specifier,
6517    // but we don't have that level of source info.
6518    Diag(SS.getRange().getBegin(),
6519         diag::err_using_decl_nested_name_specifier_is_not_class)
6520      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6521    return true;
6522  }
6523
6524  if (!NamedContext->isDependentContext() &&
6525      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6526    return true;
6527
6528  if (getLangOpts().CPlusPlus0x) {
6529    // C++0x [namespace.udecl]p3:
6530    //   In a using-declaration used as a member-declaration, the
6531    //   nested-name-specifier shall name a base class of the class
6532    //   being defined.
6533
6534    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6535                                 cast<CXXRecordDecl>(NamedContext))) {
6536      if (CurContext == NamedContext) {
6537        Diag(NameLoc,
6538             diag::err_using_decl_nested_name_specifier_is_current_class)
6539          << SS.getRange();
6540        return true;
6541      }
6542
6543      Diag(SS.getRange().getBegin(),
6544           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6545        << (NestedNameSpecifier*) SS.getScopeRep()
6546        << cast<CXXRecordDecl>(CurContext)
6547        << SS.getRange();
6548      return true;
6549    }
6550
6551    return false;
6552  }
6553
6554  // C++03 [namespace.udecl]p4:
6555  //   A using-declaration used as a member-declaration shall refer
6556  //   to a member of a base class of the class being defined [etc.].
6557
6558  // Salient point: SS doesn't have to name a base class as long as
6559  // lookup only finds members from base classes.  Therefore we can
6560  // diagnose here only if we can prove that that can't happen,
6561  // i.e. if the class hierarchies provably don't intersect.
6562
6563  // TODO: it would be nice if "definitely valid" results were cached
6564  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6565  // need to be repeated.
6566
6567  struct UserData {
6568    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6569
6570    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6571      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6572      Data->Bases.insert(Base);
6573      return true;
6574    }
6575
6576    bool hasDependentBases(const CXXRecordDecl *Class) {
6577      return !Class->forallBases(collect, this);
6578    }
6579
6580    /// Returns true if the base is dependent or is one of the
6581    /// accumulated base classes.
6582    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6583      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6584      return !Data->Bases.count(Base);
6585    }
6586
6587    bool mightShareBases(const CXXRecordDecl *Class) {
6588      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6589    }
6590  };
6591
6592  UserData Data;
6593
6594  // Returns false if we find a dependent base.
6595  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6596    return false;
6597
6598  // Returns false if the class has a dependent base or if it or one
6599  // of its bases is present in the base set of the current context.
6600  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6601    return false;
6602
6603  Diag(SS.getRange().getBegin(),
6604       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6605    << (NestedNameSpecifier*) SS.getScopeRep()
6606    << cast<CXXRecordDecl>(CurContext)
6607    << SS.getRange();
6608
6609  return true;
6610}
6611
6612Decl *Sema::ActOnAliasDeclaration(Scope *S,
6613                                  AccessSpecifier AS,
6614                                  MultiTemplateParamsArg TemplateParamLists,
6615                                  SourceLocation UsingLoc,
6616                                  UnqualifiedId &Name,
6617                                  TypeResult Type) {
6618  // Skip up to the relevant declaration scope.
6619  while (S->getFlags() & Scope::TemplateParamScope)
6620    S = S->getParent();
6621  assert((S->getFlags() & Scope::DeclScope) &&
6622         "got alias-declaration outside of declaration scope");
6623
6624  if (Type.isInvalid())
6625    return 0;
6626
6627  bool Invalid = false;
6628  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6629  TypeSourceInfo *TInfo = 0;
6630  GetTypeFromParser(Type.get(), &TInfo);
6631
6632  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6633    return 0;
6634
6635  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6636                                      UPPC_DeclarationType)) {
6637    Invalid = true;
6638    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6639                                             TInfo->getTypeLoc().getBeginLoc());
6640  }
6641
6642  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6643  LookupName(Previous, S);
6644
6645  // Warn about shadowing the name of a template parameter.
6646  if (Previous.isSingleResult() &&
6647      Previous.getFoundDecl()->isTemplateParameter()) {
6648    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6649    Previous.clear();
6650  }
6651
6652  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6653         "name in alias declaration must be an identifier");
6654  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6655                                               Name.StartLocation,
6656                                               Name.Identifier, TInfo);
6657
6658  NewTD->setAccess(AS);
6659
6660  if (Invalid)
6661    NewTD->setInvalidDecl();
6662
6663  CheckTypedefForVariablyModifiedType(S, NewTD);
6664  Invalid |= NewTD->isInvalidDecl();
6665
6666  bool Redeclaration = false;
6667
6668  NamedDecl *NewND;
6669  if (TemplateParamLists.size()) {
6670    TypeAliasTemplateDecl *OldDecl = 0;
6671    TemplateParameterList *OldTemplateParams = 0;
6672
6673    if (TemplateParamLists.size() != 1) {
6674      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6675        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6676         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6677    }
6678    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6679
6680    // Only consider previous declarations in the same scope.
6681    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6682                         /*ExplicitInstantiationOrSpecialization*/false);
6683    if (!Previous.empty()) {
6684      Redeclaration = true;
6685
6686      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6687      if (!OldDecl && !Invalid) {
6688        Diag(UsingLoc, diag::err_redefinition_different_kind)
6689          << Name.Identifier;
6690
6691        NamedDecl *OldD = Previous.getRepresentativeDecl();
6692        if (OldD->getLocation().isValid())
6693          Diag(OldD->getLocation(), diag::note_previous_definition);
6694
6695        Invalid = true;
6696      }
6697
6698      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6699        if (TemplateParameterListsAreEqual(TemplateParams,
6700                                           OldDecl->getTemplateParameters(),
6701                                           /*Complain=*/true,
6702                                           TPL_TemplateMatch))
6703          OldTemplateParams = OldDecl->getTemplateParameters();
6704        else
6705          Invalid = true;
6706
6707        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6708        if (!Invalid &&
6709            !Context.hasSameType(OldTD->getUnderlyingType(),
6710                                 NewTD->getUnderlyingType())) {
6711          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6712          // but we can't reasonably accept it.
6713          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6714            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6715          if (OldTD->getLocation().isValid())
6716            Diag(OldTD->getLocation(), diag::note_previous_definition);
6717          Invalid = true;
6718        }
6719      }
6720    }
6721
6722    // Merge any previous default template arguments into our parameters,
6723    // and check the parameter list.
6724    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6725                                   TPC_TypeAliasTemplate))
6726      return 0;
6727
6728    TypeAliasTemplateDecl *NewDecl =
6729      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6730                                    Name.Identifier, TemplateParams,
6731                                    NewTD);
6732
6733    NewDecl->setAccess(AS);
6734
6735    if (Invalid)
6736      NewDecl->setInvalidDecl();
6737    else if (OldDecl)
6738      NewDecl->setPreviousDeclaration(OldDecl);
6739
6740    NewND = NewDecl;
6741  } else {
6742    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6743    NewND = NewTD;
6744  }
6745
6746  if (!Redeclaration)
6747    PushOnScopeChains(NewND, S);
6748
6749  return NewND;
6750}
6751
6752Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6753                                             SourceLocation NamespaceLoc,
6754                                             SourceLocation AliasLoc,
6755                                             IdentifierInfo *Alias,
6756                                             CXXScopeSpec &SS,
6757                                             SourceLocation IdentLoc,
6758                                             IdentifierInfo *Ident) {
6759
6760  // Lookup the namespace name.
6761  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6762  LookupParsedName(R, S, &SS);
6763
6764  // Check if we have a previous declaration with the same name.
6765  NamedDecl *PrevDecl
6766    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6767                       ForRedeclaration);
6768  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6769    PrevDecl = 0;
6770
6771  if (PrevDecl) {
6772    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6773      // We already have an alias with the same name that points to the same
6774      // namespace, so don't create a new one.
6775      // FIXME: At some point, we'll want to create the (redundant)
6776      // declaration to maintain better source information.
6777      if (!R.isAmbiguous() && !R.empty() &&
6778          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6779        return 0;
6780    }
6781
6782    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6783      diag::err_redefinition_different_kind;
6784    Diag(AliasLoc, DiagID) << Alias;
6785    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6786    return 0;
6787  }
6788
6789  if (R.isAmbiguous())
6790    return 0;
6791
6792  if (R.empty()) {
6793    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6794      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6795      return 0;
6796    }
6797  }
6798
6799  NamespaceAliasDecl *AliasDecl =
6800    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6801                               Alias, SS.getWithLocInContext(Context),
6802                               IdentLoc, R.getFoundDecl());
6803
6804  PushOnScopeChains(AliasDecl, S);
6805  return AliasDecl;
6806}
6807
6808namespace {
6809  /// \brief Scoped object used to handle the state changes required in Sema
6810  /// to implicitly define the body of a C++ member function;
6811  class ImplicitlyDefinedFunctionScope {
6812    Sema &S;
6813    Sema::ContextRAII SavedContext;
6814
6815  public:
6816    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6817      : S(S), SavedContext(S, Method)
6818    {
6819      S.PushFunctionScope();
6820      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6821    }
6822
6823    ~ImplicitlyDefinedFunctionScope() {
6824      S.PopExpressionEvaluationContext();
6825      S.PopFunctionScopeInfo();
6826    }
6827  };
6828}
6829
6830Sema::ImplicitExceptionSpecification
6831Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6832  // C++ [except.spec]p14:
6833  //   An implicitly declared special member function (Clause 12) shall have an
6834  //   exception-specification. [...]
6835  ImplicitExceptionSpecification ExceptSpec(*this);
6836  if (ClassDecl->isInvalidDecl())
6837    return ExceptSpec;
6838
6839  // Direct base-class constructors.
6840  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6841                                       BEnd = ClassDecl->bases_end();
6842       B != BEnd; ++B) {
6843    if (B->isVirtual()) // Handled below.
6844      continue;
6845
6846    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6847      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6848      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6849      // If this is a deleted function, add it anyway. This might be conformant
6850      // with the standard. This might not. I'm not sure. It might not matter.
6851      if (Constructor)
6852        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6853    }
6854  }
6855
6856  // Virtual base-class constructors.
6857  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6858                                       BEnd = ClassDecl->vbases_end();
6859       B != BEnd; ++B) {
6860    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6861      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6862      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6863      // If this is a deleted function, add it anyway. This might be conformant
6864      // with the standard. This might not. I'm not sure. It might not matter.
6865      if (Constructor)
6866        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6867    }
6868  }
6869
6870  // Field constructors.
6871  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6872                               FEnd = ClassDecl->field_end();
6873       F != FEnd; ++F) {
6874    if (F->hasInClassInitializer()) {
6875      if (Expr *E = F->getInClassInitializer())
6876        ExceptSpec.CalledExpr(E);
6877      else if (!F->isInvalidDecl())
6878        ExceptSpec.SetDelayed();
6879    } else if (const RecordType *RecordTy
6880              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6881      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6882      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6883      // If this is a deleted function, add it anyway. This might be conformant
6884      // with the standard. This might not. I'm not sure. It might not matter.
6885      // In particular, the problem is that this function never gets called. It
6886      // might just be ill-formed because this function attempts to refer to
6887      // a deleted function here.
6888      if (Constructor)
6889        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6890    }
6891  }
6892
6893  return ExceptSpec;
6894}
6895
6896CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6897                                                     CXXRecordDecl *ClassDecl) {
6898  // C++ [class.ctor]p5:
6899  //   A default constructor for a class X is a constructor of class X
6900  //   that can be called without an argument. If there is no
6901  //   user-declared constructor for class X, a default constructor is
6902  //   implicitly declared. An implicitly-declared default constructor
6903  //   is an inline public member of its class.
6904  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6905         "Should not build implicit default constructor!");
6906
6907  ImplicitExceptionSpecification Spec =
6908    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6909  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6910
6911  // Create the actual constructor declaration.
6912  CanQualType ClassType
6913    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6914  SourceLocation ClassLoc = ClassDecl->getLocation();
6915  DeclarationName Name
6916    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6917  DeclarationNameInfo NameInfo(Name, ClassLoc);
6918  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6919      Context, ClassDecl, ClassLoc, NameInfo,
6920      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6921      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6922      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6923        getLangOpts().CPlusPlus0x);
6924  DefaultCon->setAccess(AS_public);
6925  DefaultCon->setDefaulted();
6926  DefaultCon->setImplicit();
6927  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6928
6929  // Note that we have declared this constructor.
6930  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6931
6932  if (Scope *S = getScopeForContext(ClassDecl))
6933    PushOnScopeChains(DefaultCon, S, false);
6934  ClassDecl->addDecl(DefaultCon);
6935
6936  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6937    DefaultCon->setDeletedAsWritten();
6938
6939  return DefaultCon;
6940}
6941
6942void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6943                                            CXXConstructorDecl *Constructor) {
6944  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6945          !Constructor->doesThisDeclarationHaveABody() &&
6946          !Constructor->isDeleted()) &&
6947    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6948
6949  CXXRecordDecl *ClassDecl = Constructor->getParent();
6950  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6951
6952  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6953  DiagnosticErrorTrap Trap(Diags);
6954  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6955      Trap.hasErrorOccurred()) {
6956    Diag(CurrentLocation, diag::note_member_synthesized_at)
6957      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6958    Constructor->setInvalidDecl();
6959    return;
6960  }
6961
6962  SourceLocation Loc = Constructor->getLocation();
6963  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6964
6965  Constructor->setUsed();
6966  MarkVTableUsed(CurrentLocation, ClassDecl);
6967
6968  if (ASTMutationListener *L = getASTMutationListener()) {
6969    L->CompletedImplicitDefinition(Constructor);
6970  }
6971}
6972
6973/// Get any existing defaulted default constructor for the given class. Do not
6974/// implicitly define one if it does not exist.
6975static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6976                                                             CXXRecordDecl *D) {
6977  ASTContext &Context = Self.Context;
6978  QualType ClassType = Context.getTypeDeclType(D);
6979  DeclarationName ConstructorName
6980    = Context.DeclarationNames.getCXXConstructorName(
6981                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6982
6983  DeclContext::lookup_const_iterator Con, ConEnd;
6984  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6985       Con != ConEnd; ++Con) {
6986    // A function template cannot be defaulted.
6987    if (isa<FunctionTemplateDecl>(*Con))
6988      continue;
6989
6990    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6991    if (Constructor->isDefaultConstructor())
6992      return Constructor->isDefaulted() ? Constructor : 0;
6993  }
6994  return 0;
6995}
6996
6997void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6998  if (!D) return;
6999  AdjustDeclIfTemplate(D);
7000
7001  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7002  CXXConstructorDecl *CtorDecl
7003    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7004
7005  if (!CtorDecl) return;
7006
7007  // Compute the exception specification for the default constructor.
7008  const FunctionProtoType *CtorTy =
7009    CtorDecl->getType()->castAs<FunctionProtoType>();
7010  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7011    // FIXME: Don't do this unless the exception spec is needed.
7012    ImplicitExceptionSpecification Spec =
7013      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7014    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7015    assert(EPI.ExceptionSpecType != EST_Delayed);
7016
7017    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7018  }
7019
7020  // If the default constructor is explicitly defaulted, checking the exception
7021  // specification is deferred until now.
7022  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7023      !ClassDecl->isDependentType())
7024    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7025}
7026
7027void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7028  // We start with an initial pass over the base classes to collect those that
7029  // inherit constructors from. If there are none, we can forgo all further
7030  // processing.
7031  typedef SmallVector<const RecordType *, 4> BasesVector;
7032  BasesVector BasesToInheritFrom;
7033  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7034                                          BaseE = ClassDecl->bases_end();
7035         BaseIt != BaseE; ++BaseIt) {
7036    if (BaseIt->getInheritConstructors()) {
7037      QualType Base = BaseIt->getType();
7038      if (Base->isDependentType()) {
7039        // If we inherit constructors from anything that is dependent, just
7040        // abort processing altogether. We'll get another chance for the
7041        // instantiations.
7042        return;
7043      }
7044      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7045    }
7046  }
7047  if (BasesToInheritFrom.empty())
7048    return;
7049
7050  // Now collect the constructors that we already have in the current class.
7051  // Those take precedence over inherited constructors.
7052  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7053  //   unless there is a user-declared constructor with the same signature in
7054  //   the class where the using-declaration appears.
7055  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7056  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7057                                    CtorE = ClassDecl->ctor_end();
7058       CtorIt != CtorE; ++CtorIt) {
7059    ExistingConstructors.insert(
7060        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7061  }
7062
7063  DeclarationName CreatedCtorName =
7064      Context.DeclarationNames.getCXXConstructorName(
7065          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7066
7067  // Now comes the true work.
7068  // First, we keep a map from constructor types to the base that introduced
7069  // them. Needed for finding conflicting constructors. We also keep the
7070  // actually inserted declarations in there, for pretty diagnostics.
7071  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7072  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7073  ConstructorToSourceMap InheritedConstructors;
7074  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7075                             BaseE = BasesToInheritFrom.end();
7076       BaseIt != BaseE; ++BaseIt) {
7077    const RecordType *Base = *BaseIt;
7078    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7079    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7080    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7081                                      CtorE = BaseDecl->ctor_end();
7082         CtorIt != CtorE; ++CtorIt) {
7083      // Find the using declaration for inheriting this base's constructors.
7084      // FIXME: Don't perform name lookup just to obtain a source location!
7085      DeclarationName Name =
7086          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7087      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7088      LookupQualifiedName(Result, CurContext);
7089      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7090      SourceLocation UsingLoc = UD ? UD->getLocation() :
7091                                     ClassDecl->getLocation();
7092
7093      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7094      //   from the class X named in the using-declaration consists of actual
7095      //   constructors and notional constructors that result from the
7096      //   transformation of defaulted parameters as follows:
7097      //   - all non-template default constructors of X, and
7098      //   - for each non-template constructor of X that has at least one
7099      //     parameter with a default argument, the set of constructors that
7100      //     results from omitting any ellipsis parameter specification and
7101      //     successively omitting parameters with a default argument from the
7102      //     end of the parameter-type-list.
7103      CXXConstructorDecl *BaseCtor = &*CtorIt;
7104      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7105      const FunctionProtoType *BaseCtorType =
7106          BaseCtor->getType()->getAs<FunctionProtoType>();
7107
7108      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7109                    maxParams = BaseCtor->getNumParams();
7110           params <= maxParams; ++params) {
7111        // Skip default constructors. They're never inherited.
7112        if (params == 0)
7113          continue;
7114        // Skip copy and move constructors for the same reason.
7115        if (CanBeCopyOrMove && params == 1)
7116          continue;
7117
7118        // Build up a function type for this particular constructor.
7119        // FIXME: The working paper does not consider that the exception spec
7120        // for the inheriting constructor might be larger than that of the
7121        // source. This code doesn't yet, either. When it does, this code will
7122        // need to be delayed until after exception specifications and in-class
7123        // member initializers are attached.
7124        const Type *NewCtorType;
7125        if (params == maxParams)
7126          NewCtorType = BaseCtorType;
7127        else {
7128          SmallVector<QualType, 16> Args;
7129          for (unsigned i = 0; i < params; ++i) {
7130            Args.push_back(BaseCtorType->getArgType(i));
7131          }
7132          FunctionProtoType::ExtProtoInfo ExtInfo =
7133              BaseCtorType->getExtProtoInfo();
7134          ExtInfo.Variadic = false;
7135          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7136                                                Args.data(), params, ExtInfo)
7137                       .getTypePtr();
7138        }
7139        const Type *CanonicalNewCtorType =
7140            Context.getCanonicalType(NewCtorType);
7141
7142        // Now that we have the type, first check if the class already has a
7143        // constructor with this signature.
7144        if (ExistingConstructors.count(CanonicalNewCtorType))
7145          continue;
7146
7147        // Then we check if we have already declared an inherited constructor
7148        // with this signature.
7149        std::pair<ConstructorToSourceMap::iterator, bool> result =
7150            InheritedConstructors.insert(std::make_pair(
7151                CanonicalNewCtorType,
7152                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7153        if (!result.second) {
7154          // Already in the map. If it came from a different class, that's an
7155          // error. Not if it's from the same.
7156          CanQualType PreviousBase = result.first->second.first;
7157          if (CanonicalBase != PreviousBase) {
7158            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7159            const CXXConstructorDecl *PrevBaseCtor =
7160                PrevCtor->getInheritedConstructor();
7161            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7162
7163            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7164            Diag(BaseCtor->getLocation(),
7165                 diag::note_using_decl_constructor_conflict_current_ctor);
7166            Diag(PrevBaseCtor->getLocation(),
7167                 diag::note_using_decl_constructor_conflict_previous_ctor);
7168            Diag(PrevCtor->getLocation(),
7169                 diag::note_using_decl_constructor_conflict_previous_using);
7170          }
7171          continue;
7172        }
7173
7174        // OK, we're there, now add the constructor.
7175        // C++0x [class.inhctor]p8: [...] that would be performed by a
7176        //   user-written inline constructor [...]
7177        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7178        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7179            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7180            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7181            /*ImplicitlyDeclared=*/true,
7182            // FIXME: Due to a defect in the standard, we treat inherited
7183            // constructors as constexpr even if that makes them ill-formed.
7184            /*Constexpr=*/BaseCtor->isConstexpr());
7185        NewCtor->setAccess(BaseCtor->getAccess());
7186
7187        // Build up the parameter decls and add them.
7188        SmallVector<ParmVarDecl *, 16> ParamDecls;
7189        for (unsigned i = 0; i < params; ++i) {
7190          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7191                                                   UsingLoc, UsingLoc,
7192                                                   /*IdentifierInfo=*/0,
7193                                                   BaseCtorType->getArgType(i),
7194                                                   /*TInfo=*/0, SC_None,
7195                                                   SC_None, /*DefaultArg=*/0));
7196        }
7197        NewCtor->setParams(ParamDecls);
7198        NewCtor->setInheritedConstructor(BaseCtor);
7199
7200        ClassDecl->addDecl(NewCtor);
7201        result.first->second.second = NewCtor;
7202      }
7203    }
7204  }
7205}
7206
7207Sema::ImplicitExceptionSpecification
7208Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7209  // C++ [except.spec]p14:
7210  //   An implicitly declared special member function (Clause 12) shall have
7211  //   an exception-specification.
7212  ImplicitExceptionSpecification ExceptSpec(*this);
7213  if (ClassDecl->isInvalidDecl())
7214    return ExceptSpec;
7215
7216  // Direct base-class destructors.
7217  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7218                                       BEnd = ClassDecl->bases_end();
7219       B != BEnd; ++B) {
7220    if (B->isVirtual()) // Handled below.
7221      continue;
7222
7223    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7224      ExceptSpec.CalledDecl(B->getLocStart(),
7225                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7226  }
7227
7228  // Virtual base-class destructors.
7229  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7230                                       BEnd = ClassDecl->vbases_end();
7231       B != BEnd; ++B) {
7232    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7233      ExceptSpec.CalledDecl(B->getLocStart(),
7234                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7235  }
7236
7237  // Field destructors.
7238  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7239                               FEnd = ClassDecl->field_end();
7240       F != FEnd; ++F) {
7241    if (const RecordType *RecordTy
7242        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7243      ExceptSpec.CalledDecl(F->getLocation(),
7244                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7245  }
7246
7247  return ExceptSpec;
7248}
7249
7250CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7251  // C++ [class.dtor]p2:
7252  //   If a class has no user-declared destructor, a destructor is
7253  //   declared implicitly. An implicitly-declared destructor is an
7254  //   inline public member of its class.
7255
7256  ImplicitExceptionSpecification Spec =
7257      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7258  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7259
7260  // Create the actual destructor declaration.
7261  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7262
7263  CanQualType ClassType
7264    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7265  SourceLocation ClassLoc = ClassDecl->getLocation();
7266  DeclarationName Name
7267    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7268  DeclarationNameInfo NameInfo(Name, ClassLoc);
7269  CXXDestructorDecl *Destructor
7270      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7271                                  /*isInline=*/true,
7272                                  /*isImplicitlyDeclared=*/true);
7273  Destructor->setAccess(AS_public);
7274  Destructor->setDefaulted();
7275  Destructor->setImplicit();
7276  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7277
7278  // Note that we have declared this destructor.
7279  ++ASTContext::NumImplicitDestructorsDeclared;
7280
7281  // Introduce this destructor into its scope.
7282  if (Scope *S = getScopeForContext(ClassDecl))
7283    PushOnScopeChains(Destructor, S, false);
7284  ClassDecl->addDecl(Destructor);
7285
7286  // This could be uniqued if it ever proves significant.
7287  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7288
7289  AddOverriddenMethods(ClassDecl, Destructor);
7290
7291  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7292    Destructor->setDeletedAsWritten();
7293
7294  return Destructor;
7295}
7296
7297void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7298                                    CXXDestructorDecl *Destructor) {
7299  assert((Destructor->isDefaulted() &&
7300          !Destructor->doesThisDeclarationHaveABody() &&
7301          !Destructor->isDeleted()) &&
7302         "DefineImplicitDestructor - call it for implicit default dtor");
7303  CXXRecordDecl *ClassDecl = Destructor->getParent();
7304  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7305
7306  if (Destructor->isInvalidDecl())
7307    return;
7308
7309  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7310
7311  DiagnosticErrorTrap Trap(Diags);
7312  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7313                                         Destructor->getParent());
7314
7315  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7316    Diag(CurrentLocation, diag::note_member_synthesized_at)
7317      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7318
7319    Destructor->setInvalidDecl();
7320    return;
7321  }
7322
7323  SourceLocation Loc = Destructor->getLocation();
7324  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7325  Destructor->setImplicitlyDefined(true);
7326  Destructor->setUsed();
7327  MarkVTableUsed(CurrentLocation, ClassDecl);
7328
7329  if (ASTMutationListener *L = getASTMutationListener()) {
7330    L->CompletedImplicitDefinition(Destructor);
7331  }
7332}
7333
7334/// \brief Perform any semantic analysis which needs to be delayed until all
7335/// pending class member declarations have been parsed.
7336void Sema::ActOnFinishCXXMemberDecls() {
7337  // Now we have parsed all exception specifications, determine the implicit
7338  // exception specifications for destructors.
7339  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7340       i != e; ++i) {
7341    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7342    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7343  }
7344  DelayedDestructorExceptionSpecs.clear();
7345
7346  // Perform any deferred checking of exception specifications for virtual
7347  // destructors.
7348  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7349       i != e; ++i) {
7350    const CXXDestructorDecl *Dtor =
7351        DelayedDestructorExceptionSpecChecks[i].first;
7352    assert(!Dtor->getParent()->isDependentType() &&
7353           "Should not ever add destructors of templates into the list.");
7354    CheckOverridingFunctionExceptionSpec(Dtor,
7355        DelayedDestructorExceptionSpecChecks[i].second);
7356  }
7357  DelayedDestructorExceptionSpecChecks.clear();
7358}
7359
7360void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7361                                         CXXDestructorDecl *destructor,
7362                                         bool WasDelayed) {
7363  // C++11 [class.dtor]p3:
7364  //   A declaration of a destructor that does not have an exception-
7365  //   specification is implicitly considered to have the same exception-
7366  //   specification as an implicit declaration.
7367  const FunctionProtoType *dtorType = destructor->getType()->
7368                                        getAs<FunctionProtoType>();
7369  if (!WasDelayed && dtorType->hasExceptionSpec())
7370    return;
7371
7372  ImplicitExceptionSpecification exceptSpec =
7373      ComputeDefaultedDtorExceptionSpec(classDecl);
7374
7375  // Replace the destructor's type, building off the existing one. Fortunately,
7376  // the only thing of interest in the destructor type is its extended info.
7377  // The return and arguments are fixed.
7378  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7379  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7380  epi.NumExceptions = exceptSpec.size();
7381  epi.Exceptions = exceptSpec.data();
7382  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7383
7384  destructor->setType(ty);
7385
7386  // If we can't compute the exception specification for this destructor yet
7387  // (because it depends on an exception specification which we have not parsed
7388  // yet), make a note that we need to try again when the class is complete.
7389  if (epi.ExceptionSpecType == EST_Delayed) {
7390    assert(!WasDelayed && "couldn't compute destructor exception spec");
7391    DelayedDestructorExceptionSpecs.push_back(destructor);
7392  }
7393
7394  // FIXME: If the destructor has a body that could throw, and the newly created
7395  // spec doesn't allow exceptions, we should emit a warning, because this
7396  // change in behavior can break conforming C++03 programs at runtime.
7397  // However, we don't have a body yet, so it needs to be done somewhere else.
7398}
7399
7400/// \brief Builds a statement that copies/moves the given entity from \p From to
7401/// \c To.
7402///
7403/// This routine is used to copy/move the members of a class with an
7404/// implicitly-declared copy/move assignment operator. When the entities being
7405/// copied are arrays, this routine builds for loops to copy them.
7406///
7407/// \param S The Sema object used for type-checking.
7408///
7409/// \param Loc The location where the implicit copy/move is being generated.
7410///
7411/// \param T The type of the expressions being copied/moved. Both expressions
7412/// must have this type.
7413///
7414/// \param To The expression we are copying/moving to.
7415///
7416/// \param From The expression we are copying/moving from.
7417///
7418/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7419/// Otherwise, it's a non-static member subobject.
7420///
7421/// \param Copying Whether we're copying or moving.
7422///
7423/// \param Depth Internal parameter recording the depth of the recursion.
7424///
7425/// \returns A statement or a loop that copies the expressions.
7426static StmtResult
7427BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7428                      Expr *To, Expr *From,
7429                      bool CopyingBaseSubobject, bool Copying,
7430                      unsigned Depth = 0) {
7431  // C++0x [class.copy]p28:
7432  //   Each subobject is assigned in the manner appropriate to its type:
7433  //
7434  //     - if the subobject is of class type, as if by a call to operator= with
7435  //       the subobject as the object expression and the corresponding
7436  //       subobject of x as a single function argument (as if by explicit
7437  //       qualification; that is, ignoring any possible virtual overriding
7438  //       functions in more derived classes);
7439  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7440    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7441
7442    // Look for operator=.
7443    DeclarationName Name
7444      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7445    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7446    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7447
7448    // Filter out any result that isn't a copy/move-assignment operator.
7449    LookupResult::Filter F = OpLookup.makeFilter();
7450    while (F.hasNext()) {
7451      NamedDecl *D = F.next();
7452      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7453        if (Method->isCopyAssignmentOperator() ||
7454            (!Copying && Method->isMoveAssignmentOperator()))
7455          continue;
7456
7457      F.erase();
7458    }
7459    F.done();
7460
7461    // Suppress the protected check (C++ [class.protected]) for each of the
7462    // assignment operators we found. This strange dance is required when
7463    // we're assigning via a base classes's copy-assignment operator. To
7464    // ensure that we're getting the right base class subobject (without
7465    // ambiguities), we need to cast "this" to that subobject type; to
7466    // ensure that we don't go through the virtual call mechanism, we need
7467    // to qualify the operator= name with the base class (see below). However,
7468    // this means that if the base class has a protected copy assignment
7469    // operator, the protected member access check will fail. So, we
7470    // rewrite "protected" access to "public" access in this case, since we
7471    // know by construction that we're calling from a derived class.
7472    if (CopyingBaseSubobject) {
7473      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7474           L != LEnd; ++L) {
7475        if (L.getAccess() == AS_protected)
7476          L.setAccess(AS_public);
7477      }
7478    }
7479
7480    // Create the nested-name-specifier that will be used to qualify the
7481    // reference to operator=; this is required to suppress the virtual
7482    // call mechanism.
7483    CXXScopeSpec SS;
7484    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7485    SS.MakeTrivial(S.Context,
7486                   NestedNameSpecifier::Create(S.Context, 0, false,
7487                                               CanonicalT),
7488                   Loc);
7489
7490    // Create the reference to operator=.
7491    ExprResult OpEqualRef
7492      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7493                                   /*TemplateKWLoc=*/SourceLocation(),
7494                                   /*FirstQualifierInScope=*/0,
7495                                   OpLookup,
7496                                   /*TemplateArgs=*/0,
7497                                   /*SuppressQualifierCheck=*/true);
7498    if (OpEqualRef.isInvalid())
7499      return StmtError();
7500
7501    // Build the call to the assignment operator.
7502
7503    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7504                                                  OpEqualRef.takeAs<Expr>(),
7505                                                  Loc, &From, 1, Loc);
7506    if (Call.isInvalid())
7507      return StmtError();
7508
7509    return S.Owned(Call.takeAs<Stmt>());
7510  }
7511
7512  //     - if the subobject is of scalar type, the built-in assignment
7513  //       operator is used.
7514  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7515  if (!ArrayTy) {
7516    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7517    if (Assignment.isInvalid())
7518      return StmtError();
7519
7520    return S.Owned(Assignment.takeAs<Stmt>());
7521  }
7522
7523  //     - if the subobject is an array, each element is assigned, in the
7524  //       manner appropriate to the element type;
7525
7526  // Construct a loop over the array bounds, e.g.,
7527  //
7528  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7529  //
7530  // that will copy each of the array elements.
7531  QualType SizeType = S.Context.getSizeType();
7532
7533  // Create the iteration variable.
7534  IdentifierInfo *IterationVarName = 0;
7535  {
7536    SmallString<8> Str;
7537    llvm::raw_svector_ostream OS(Str);
7538    OS << "__i" << Depth;
7539    IterationVarName = &S.Context.Idents.get(OS.str());
7540  }
7541  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7542                                          IterationVarName, SizeType,
7543                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7544                                          SC_None, SC_None);
7545
7546  // Initialize the iteration variable to zero.
7547  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7548  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7549
7550  // Create a reference to the iteration variable; we'll use this several
7551  // times throughout.
7552  Expr *IterationVarRef
7553    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7554  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7555  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7556  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7557
7558  // Create the DeclStmt that holds the iteration variable.
7559  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7560
7561  // Create the comparison against the array bound.
7562  llvm::APInt Upper
7563    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7564  Expr *Comparison
7565    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7566                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7567                                     BO_NE, S.Context.BoolTy,
7568                                     VK_RValue, OK_Ordinary, Loc);
7569
7570  // Create the pre-increment of the iteration variable.
7571  Expr *Increment
7572    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7573                                    VK_LValue, OK_Ordinary, Loc);
7574
7575  // Subscript the "from" and "to" expressions with the iteration variable.
7576  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7577                                                         IterationVarRefRVal,
7578                                                         Loc));
7579  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7580                                                       IterationVarRefRVal,
7581                                                       Loc));
7582  if (!Copying) // Cast to rvalue
7583    From = CastForMoving(S, From);
7584
7585  // Build the copy/move for an individual element of the array.
7586  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7587                                          To, From, CopyingBaseSubobject,
7588                                          Copying, Depth + 1);
7589  if (Copy.isInvalid())
7590    return StmtError();
7591
7592  // Construct the loop that copies all elements of this array.
7593  return S.ActOnForStmt(Loc, Loc, InitStmt,
7594                        S.MakeFullExpr(Comparison),
7595                        0, S.MakeFullExpr(Increment),
7596                        Loc, Copy.take());
7597}
7598
7599std::pair<Sema::ImplicitExceptionSpecification, bool>
7600Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7601                                                   CXXRecordDecl *ClassDecl) {
7602  if (ClassDecl->isInvalidDecl())
7603    return std::make_pair(ImplicitExceptionSpecification(*this), false);
7604
7605  // C++ [class.copy]p10:
7606  //   If the class definition does not explicitly declare a copy
7607  //   assignment operator, one is declared implicitly.
7608  //   The implicitly-defined copy assignment operator for a class X
7609  //   will have the form
7610  //
7611  //       X& X::operator=(const X&)
7612  //
7613  //   if
7614  bool HasConstCopyAssignment = true;
7615
7616  //       -- each direct base class B of X has a copy assignment operator
7617  //          whose parameter is of type const B&, const volatile B& or B,
7618  //          and
7619  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7620                                       BaseEnd = ClassDecl->bases_end();
7621       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7622    // We'll handle this below
7623    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7624      continue;
7625
7626    assert(!Base->getType()->isDependentType() &&
7627           "Cannot generate implicit members for class with dependent bases.");
7628    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7629    HasConstCopyAssignment &=
7630      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7631                                    false, 0);
7632  }
7633
7634  // In C++11, the above citation has "or virtual" added
7635  if (LangOpts.CPlusPlus0x) {
7636    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7637                                         BaseEnd = ClassDecl->vbases_end();
7638         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7639      assert(!Base->getType()->isDependentType() &&
7640             "Cannot generate implicit members for class with dependent bases.");
7641      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7642      HasConstCopyAssignment &=
7643        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7644                                      false, 0);
7645    }
7646  }
7647
7648  //       -- for all the nonstatic data members of X that are of a class
7649  //          type M (or array thereof), each such class type has a copy
7650  //          assignment operator whose parameter is of type const M&,
7651  //          const volatile M& or M.
7652  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7653                                  FieldEnd = ClassDecl->field_end();
7654       HasConstCopyAssignment && Field != FieldEnd;
7655       ++Field) {
7656    QualType FieldType = Context.getBaseElementType(Field->getType());
7657    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7658      HasConstCopyAssignment &=
7659        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7660                                      false, 0);
7661    }
7662  }
7663
7664  //   Otherwise, the implicitly declared copy assignment operator will
7665  //   have the form
7666  //
7667  //       X& X::operator=(X&)
7668
7669  // C++ [except.spec]p14:
7670  //   An implicitly declared special member function (Clause 12) shall have an
7671  //   exception-specification. [...]
7672
7673  // It is unspecified whether or not an implicit copy assignment operator
7674  // attempts to deduplicate calls to assignment operators of virtual bases are
7675  // made. As such, this exception specification is effectively unspecified.
7676  // Based on a similar decision made for constness in C++0x, we're erring on
7677  // the side of assuming such calls to be made regardless of whether they
7678  // actually happen.
7679  ImplicitExceptionSpecification ExceptSpec(*this);
7680  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7681  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7682                                       BaseEnd = ClassDecl->bases_end();
7683       Base != BaseEnd; ++Base) {
7684    if (Base->isVirtual())
7685      continue;
7686
7687    CXXRecordDecl *BaseClassDecl
7688      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7689    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7690                                                            ArgQuals, false, 0))
7691      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7692  }
7693
7694  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7695                                       BaseEnd = ClassDecl->vbases_end();
7696       Base != BaseEnd; ++Base) {
7697    CXXRecordDecl *BaseClassDecl
7698      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7699    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7700                                                            ArgQuals, false, 0))
7701      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7702  }
7703
7704  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7705                                  FieldEnd = ClassDecl->field_end();
7706       Field != FieldEnd;
7707       ++Field) {
7708    QualType FieldType = Context.getBaseElementType(Field->getType());
7709    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7710      if (CXXMethodDecl *CopyAssign =
7711          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7712        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7713    }
7714  }
7715
7716  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7717}
7718
7719CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7720  // Note: The following rules are largely analoguous to the copy
7721  // constructor rules. Note that virtual bases are not taken into account
7722  // for determining the argument type of the operator. Note also that
7723  // operators taking an object instead of a reference are allowed.
7724
7725  ImplicitExceptionSpecification Spec(*this);
7726  bool Const;
7727  llvm::tie(Spec, Const) =
7728    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7729
7730  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7731  QualType RetType = Context.getLValueReferenceType(ArgType);
7732  if (Const)
7733    ArgType = ArgType.withConst();
7734  ArgType = Context.getLValueReferenceType(ArgType);
7735
7736  //   An implicitly-declared copy assignment operator is an inline public
7737  //   member of its class.
7738  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7739  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7740  SourceLocation ClassLoc = ClassDecl->getLocation();
7741  DeclarationNameInfo NameInfo(Name, ClassLoc);
7742  CXXMethodDecl *CopyAssignment
7743    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7744                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7745                            /*TInfo=*/0, /*isStatic=*/false,
7746                            /*StorageClassAsWritten=*/SC_None,
7747                            /*isInline=*/true, /*isConstexpr=*/false,
7748                            SourceLocation());
7749  CopyAssignment->setAccess(AS_public);
7750  CopyAssignment->setDefaulted();
7751  CopyAssignment->setImplicit();
7752  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7753
7754  // Add the parameter to the operator.
7755  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7756                                               ClassLoc, ClassLoc, /*Id=*/0,
7757                                               ArgType, /*TInfo=*/0,
7758                                               SC_None,
7759                                               SC_None, 0);
7760  CopyAssignment->setParams(FromParam);
7761
7762  // Note that we have added this copy-assignment operator.
7763  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7764
7765  if (Scope *S = getScopeForContext(ClassDecl))
7766    PushOnScopeChains(CopyAssignment, S, false);
7767  ClassDecl->addDecl(CopyAssignment);
7768
7769  // C++0x [class.copy]p19:
7770  //   ....  If the class definition does not explicitly declare a copy
7771  //   assignment operator, there is no user-declared move constructor, and
7772  //   there is no user-declared move assignment operator, a copy assignment
7773  //   operator is implicitly declared as defaulted.
7774  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7775    CopyAssignment->setDeletedAsWritten();
7776
7777  AddOverriddenMethods(ClassDecl, CopyAssignment);
7778  return CopyAssignment;
7779}
7780
7781void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7782                                        CXXMethodDecl *CopyAssignOperator) {
7783  assert((CopyAssignOperator->isDefaulted() &&
7784          CopyAssignOperator->isOverloadedOperator() &&
7785          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7786          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7787          !CopyAssignOperator->isDeleted()) &&
7788         "DefineImplicitCopyAssignment called for wrong function");
7789
7790  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7791
7792  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7793    CopyAssignOperator->setInvalidDecl();
7794    return;
7795  }
7796
7797  CopyAssignOperator->setUsed();
7798
7799  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7800  DiagnosticErrorTrap Trap(Diags);
7801
7802  // C++0x [class.copy]p30:
7803  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7804  //   for a non-union class X performs memberwise copy assignment of its
7805  //   subobjects. The direct base classes of X are assigned first, in the
7806  //   order of their declaration in the base-specifier-list, and then the
7807  //   immediate non-static data members of X are assigned, in the order in
7808  //   which they were declared in the class definition.
7809
7810  // The statements that form the synthesized function body.
7811  ASTOwningVector<Stmt*> Statements(*this);
7812
7813  // The parameter for the "other" object, which we are copying from.
7814  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7815  Qualifiers OtherQuals = Other->getType().getQualifiers();
7816  QualType OtherRefType = Other->getType();
7817  if (const LValueReferenceType *OtherRef
7818                                = OtherRefType->getAs<LValueReferenceType>()) {
7819    OtherRefType = OtherRef->getPointeeType();
7820    OtherQuals = OtherRefType.getQualifiers();
7821  }
7822
7823  // Our location for everything implicitly-generated.
7824  SourceLocation Loc = CopyAssignOperator->getLocation();
7825
7826  // Construct a reference to the "other" object. We'll be using this
7827  // throughout the generated ASTs.
7828  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7829  assert(OtherRef && "Reference to parameter cannot fail!");
7830
7831  // Construct the "this" pointer. We'll be using this throughout the generated
7832  // ASTs.
7833  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7834  assert(This && "Reference to this cannot fail!");
7835
7836  // Assign base classes.
7837  bool Invalid = false;
7838  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7839       E = ClassDecl->bases_end(); Base != E; ++Base) {
7840    // Form the assignment:
7841    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7842    QualType BaseType = Base->getType().getUnqualifiedType();
7843    if (!BaseType->isRecordType()) {
7844      Invalid = true;
7845      continue;
7846    }
7847
7848    CXXCastPath BasePath;
7849    BasePath.push_back(Base);
7850
7851    // Construct the "from" expression, which is an implicit cast to the
7852    // appropriately-qualified base type.
7853    Expr *From = OtherRef;
7854    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7855                             CK_UncheckedDerivedToBase,
7856                             VK_LValue, &BasePath).take();
7857
7858    // Dereference "this".
7859    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7860
7861    // Implicitly cast "this" to the appropriately-qualified base type.
7862    To = ImpCastExprToType(To.take(),
7863                           Context.getCVRQualifiedType(BaseType,
7864                                     CopyAssignOperator->getTypeQualifiers()),
7865                           CK_UncheckedDerivedToBase,
7866                           VK_LValue, &BasePath);
7867
7868    // Build the copy.
7869    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7870                                            To.get(), From,
7871                                            /*CopyingBaseSubobject=*/true,
7872                                            /*Copying=*/true);
7873    if (Copy.isInvalid()) {
7874      Diag(CurrentLocation, diag::note_member_synthesized_at)
7875        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7876      CopyAssignOperator->setInvalidDecl();
7877      return;
7878    }
7879
7880    // Success! Record the copy.
7881    Statements.push_back(Copy.takeAs<Expr>());
7882  }
7883
7884  // \brief Reference to the __builtin_memcpy function.
7885  Expr *BuiltinMemCpyRef = 0;
7886  // \brief Reference to the __builtin_objc_memmove_collectable function.
7887  Expr *CollectableMemCpyRef = 0;
7888
7889  // Assign non-static members.
7890  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7891                                  FieldEnd = ClassDecl->field_end();
7892       Field != FieldEnd; ++Field) {
7893    if (Field->isUnnamedBitfield())
7894      continue;
7895
7896    // Check for members of reference type; we can't copy those.
7897    if (Field->getType()->isReferenceType()) {
7898      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7899        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7900      Diag(Field->getLocation(), diag::note_declared_at);
7901      Diag(CurrentLocation, diag::note_member_synthesized_at)
7902        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7903      Invalid = true;
7904      continue;
7905    }
7906
7907    // Check for members of const-qualified, non-class type.
7908    QualType BaseType = Context.getBaseElementType(Field->getType());
7909    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7910      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7911        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7912      Diag(Field->getLocation(), diag::note_declared_at);
7913      Diag(CurrentLocation, diag::note_member_synthesized_at)
7914        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7915      Invalid = true;
7916      continue;
7917    }
7918
7919    // Suppress assigning zero-width bitfields.
7920    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7921      continue;
7922
7923    QualType FieldType = Field->getType().getNonReferenceType();
7924    if (FieldType->isIncompleteArrayType()) {
7925      assert(ClassDecl->hasFlexibleArrayMember() &&
7926             "Incomplete array type is not valid");
7927      continue;
7928    }
7929
7930    // Build references to the field in the object we're copying from and to.
7931    CXXScopeSpec SS; // Intentionally empty
7932    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7933                              LookupMemberName);
7934    MemberLookup.addDecl(&*Field);
7935    MemberLookup.resolveKind();
7936    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7937                                               Loc, /*IsArrow=*/false,
7938                                               SS, SourceLocation(), 0,
7939                                               MemberLookup, 0);
7940    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7941                                             Loc, /*IsArrow=*/true,
7942                                             SS, SourceLocation(), 0,
7943                                             MemberLookup, 0);
7944    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7945    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7946
7947    // If the field should be copied with __builtin_memcpy rather than via
7948    // explicit assignments, do so. This optimization only applies for arrays
7949    // of scalars and arrays of class type with trivial copy-assignment
7950    // operators.
7951    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7952        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7953      // Compute the size of the memory buffer to be copied.
7954      QualType SizeType = Context.getSizeType();
7955      llvm::APInt Size(Context.getTypeSize(SizeType),
7956                       Context.getTypeSizeInChars(BaseType).getQuantity());
7957      for (const ConstantArrayType *Array
7958              = Context.getAsConstantArrayType(FieldType);
7959           Array;
7960           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7961        llvm::APInt ArraySize
7962          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7963        Size *= ArraySize;
7964      }
7965
7966      // Take the address of the field references for "from" and "to".
7967      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7968      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7969
7970      bool NeedsCollectableMemCpy =
7971          (BaseType->isRecordType() &&
7972           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7973
7974      if (NeedsCollectableMemCpy) {
7975        if (!CollectableMemCpyRef) {
7976          // Create a reference to the __builtin_objc_memmove_collectable function.
7977          LookupResult R(*this,
7978                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7979                         Loc, LookupOrdinaryName);
7980          LookupName(R, TUScope, true);
7981
7982          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7983          if (!CollectableMemCpy) {
7984            // Something went horribly wrong earlier, and we will have
7985            // complained about it.
7986            Invalid = true;
7987            continue;
7988          }
7989
7990          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7991                                                  CollectableMemCpy->getType(),
7992                                                  VK_LValue, Loc, 0).take();
7993          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7994        }
7995      }
7996      // Create a reference to the __builtin_memcpy builtin function.
7997      else if (!BuiltinMemCpyRef) {
7998        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7999                       LookupOrdinaryName);
8000        LookupName(R, TUScope, true);
8001
8002        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8003        if (!BuiltinMemCpy) {
8004          // Something went horribly wrong earlier, and we will have complained
8005          // about it.
8006          Invalid = true;
8007          continue;
8008        }
8009
8010        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8011                                            BuiltinMemCpy->getType(),
8012                                            VK_LValue, Loc, 0).take();
8013        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8014      }
8015
8016      ASTOwningVector<Expr*> CallArgs(*this);
8017      CallArgs.push_back(To.takeAs<Expr>());
8018      CallArgs.push_back(From.takeAs<Expr>());
8019      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8020      ExprResult Call = ExprError();
8021      if (NeedsCollectableMemCpy)
8022        Call = ActOnCallExpr(/*Scope=*/0,
8023                             CollectableMemCpyRef,
8024                             Loc, move_arg(CallArgs),
8025                             Loc);
8026      else
8027        Call = ActOnCallExpr(/*Scope=*/0,
8028                             BuiltinMemCpyRef,
8029                             Loc, move_arg(CallArgs),
8030                             Loc);
8031
8032      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8033      Statements.push_back(Call.takeAs<Expr>());
8034      continue;
8035    }
8036
8037    // Build the copy of this field.
8038    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8039                                            To.get(), From.get(),
8040                                            /*CopyingBaseSubobject=*/false,
8041                                            /*Copying=*/true);
8042    if (Copy.isInvalid()) {
8043      Diag(CurrentLocation, diag::note_member_synthesized_at)
8044        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8045      CopyAssignOperator->setInvalidDecl();
8046      return;
8047    }
8048
8049    // Success! Record the copy.
8050    Statements.push_back(Copy.takeAs<Stmt>());
8051  }
8052
8053  if (!Invalid) {
8054    // Add a "return *this;"
8055    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8056
8057    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8058    if (Return.isInvalid())
8059      Invalid = true;
8060    else {
8061      Statements.push_back(Return.takeAs<Stmt>());
8062
8063      if (Trap.hasErrorOccurred()) {
8064        Diag(CurrentLocation, diag::note_member_synthesized_at)
8065          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8066        Invalid = true;
8067      }
8068    }
8069  }
8070
8071  if (Invalid) {
8072    CopyAssignOperator->setInvalidDecl();
8073    return;
8074  }
8075
8076  StmtResult Body;
8077  {
8078    CompoundScopeRAII CompoundScope(*this);
8079    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8080                             /*isStmtExpr=*/false);
8081    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8082  }
8083  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8084
8085  if (ASTMutationListener *L = getASTMutationListener()) {
8086    L->CompletedImplicitDefinition(CopyAssignOperator);
8087  }
8088}
8089
8090Sema::ImplicitExceptionSpecification
8091Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8092  ImplicitExceptionSpecification ExceptSpec(*this);
8093
8094  if (ClassDecl->isInvalidDecl())
8095    return ExceptSpec;
8096
8097  // C++0x [except.spec]p14:
8098  //   An implicitly declared special member function (Clause 12) shall have an
8099  //   exception-specification. [...]
8100
8101  // It is unspecified whether or not an implicit move assignment operator
8102  // attempts to deduplicate calls to assignment operators of virtual bases are
8103  // made. As such, this exception specification is effectively unspecified.
8104  // Based on a similar decision made for constness in C++0x, we're erring on
8105  // the side of assuming such calls to be made regardless of whether they
8106  // actually happen.
8107  // Note that a move constructor is not implicitly declared when there are
8108  // virtual bases, but it can still be user-declared and explicitly defaulted.
8109  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8110                                       BaseEnd = ClassDecl->bases_end();
8111       Base != BaseEnd; ++Base) {
8112    if (Base->isVirtual())
8113      continue;
8114
8115    CXXRecordDecl *BaseClassDecl
8116      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8117    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8118                                                           false, 0))
8119      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8120  }
8121
8122  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8123                                       BaseEnd = ClassDecl->vbases_end();
8124       Base != BaseEnd; ++Base) {
8125    CXXRecordDecl *BaseClassDecl
8126      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8127    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8128                                                           false, 0))
8129      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8130  }
8131
8132  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8133                                  FieldEnd = ClassDecl->field_end();
8134       Field != FieldEnd;
8135       ++Field) {
8136    QualType FieldType = Context.getBaseElementType(Field->getType());
8137    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8138      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8139                                                             false, 0))
8140        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8141    }
8142  }
8143
8144  return ExceptSpec;
8145}
8146
8147/// Determine whether the class type has any direct or indirect virtual base
8148/// classes which have a non-trivial move assignment operator.
8149static bool
8150hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8151  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8152                                          BaseEnd = ClassDecl->vbases_end();
8153       Base != BaseEnd; ++Base) {
8154    CXXRecordDecl *BaseClass =
8155        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8156
8157    // Try to declare the move assignment. If it would be deleted, then the
8158    // class does not have a non-trivial move assignment.
8159    if (BaseClass->needsImplicitMoveAssignment())
8160      S.DeclareImplicitMoveAssignment(BaseClass);
8161
8162    // If the class has both a trivial move assignment and a non-trivial move
8163    // assignment, hasTrivialMoveAssignment() is false.
8164    if (BaseClass->hasDeclaredMoveAssignment() &&
8165        !BaseClass->hasTrivialMoveAssignment())
8166      return true;
8167  }
8168
8169  return false;
8170}
8171
8172/// Determine whether the given type either has a move constructor or is
8173/// trivially copyable.
8174static bool
8175hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8176  Type = S.Context.getBaseElementType(Type);
8177
8178  // FIXME: Technically, non-trivially-copyable non-class types, such as
8179  // reference types, are supposed to return false here, but that appears
8180  // to be a standard defect.
8181  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8182  if (!ClassDecl || !ClassDecl->getDefinition())
8183    return true;
8184
8185  if (Type.isTriviallyCopyableType(S.Context))
8186    return true;
8187
8188  if (IsConstructor) {
8189    if (ClassDecl->needsImplicitMoveConstructor())
8190      S.DeclareImplicitMoveConstructor(ClassDecl);
8191    return ClassDecl->hasDeclaredMoveConstructor();
8192  }
8193
8194  if (ClassDecl->needsImplicitMoveAssignment())
8195    S.DeclareImplicitMoveAssignment(ClassDecl);
8196  return ClassDecl->hasDeclaredMoveAssignment();
8197}
8198
8199/// Determine whether all non-static data members and direct or virtual bases
8200/// of class \p ClassDecl have either a move operation, or are trivially
8201/// copyable.
8202static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8203                                            bool IsConstructor) {
8204  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8205                                          BaseEnd = ClassDecl->bases_end();
8206       Base != BaseEnd; ++Base) {
8207    if (Base->isVirtual())
8208      continue;
8209
8210    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8211      return false;
8212  }
8213
8214  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8215                                          BaseEnd = ClassDecl->vbases_end();
8216       Base != BaseEnd; ++Base) {
8217    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8218      return false;
8219  }
8220
8221  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8222                                     FieldEnd = ClassDecl->field_end();
8223       Field != FieldEnd; ++Field) {
8224    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8225      return false;
8226  }
8227
8228  return true;
8229}
8230
8231CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8232  // C++11 [class.copy]p20:
8233  //   If the definition of a class X does not explicitly declare a move
8234  //   assignment operator, one will be implicitly declared as defaulted
8235  //   if and only if:
8236  //
8237  //   - [first 4 bullets]
8238  assert(ClassDecl->needsImplicitMoveAssignment());
8239
8240  // [Checked after we build the declaration]
8241  //   - the move assignment operator would not be implicitly defined as
8242  //     deleted,
8243
8244  // [DR1402]:
8245  //   - X has no direct or indirect virtual base class with a non-trivial
8246  //     move assignment operator, and
8247  //   - each of X's non-static data members and direct or virtual base classes
8248  //     has a type that either has a move assignment operator or is trivially
8249  //     copyable.
8250  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8251      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8252    ClassDecl->setFailedImplicitMoveAssignment();
8253    return 0;
8254  }
8255
8256  // Note: The following rules are largely analoguous to the move
8257  // constructor rules.
8258
8259  ImplicitExceptionSpecification Spec(
8260      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8261
8262  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8263  QualType RetType = Context.getLValueReferenceType(ArgType);
8264  ArgType = Context.getRValueReferenceType(ArgType);
8265
8266  //   An implicitly-declared move assignment operator is an inline public
8267  //   member of its class.
8268  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8269  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8270  SourceLocation ClassLoc = ClassDecl->getLocation();
8271  DeclarationNameInfo NameInfo(Name, ClassLoc);
8272  CXXMethodDecl *MoveAssignment
8273    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8274                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8275                            /*TInfo=*/0, /*isStatic=*/false,
8276                            /*StorageClassAsWritten=*/SC_None,
8277                            /*isInline=*/true,
8278                            /*isConstexpr=*/false,
8279                            SourceLocation());
8280  MoveAssignment->setAccess(AS_public);
8281  MoveAssignment->setDefaulted();
8282  MoveAssignment->setImplicit();
8283  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8284
8285  // Add the parameter to the operator.
8286  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8287                                               ClassLoc, ClassLoc, /*Id=*/0,
8288                                               ArgType, /*TInfo=*/0,
8289                                               SC_None,
8290                                               SC_None, 0);
8291  MoveAssignment->setParams(FromParam);
8292
8293  // Note that we have added this copy-assignment operator.
8294  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8295
8296  // C++0x [class.copy]p9:
8297  //   If the definition of a class X does not explicitly declare a move
8298  //   assignment operator, one will be implicitly declared as defaulted if and
8299  //   only if:
8300  //   [...]
8301  //   - the move assignment operator would not be implicitly defined as
8302  //     deleted.
8303  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8304    // Cache this result so that we don't try to generate this over and over
8305    // on every lookup, leaking memory and wasting time.
8306    ClassDecl->setFailedImplicitMoveAssignment();
8307    return 0;
8308  }
8309
8310  if (Scope *S = getScopeForContext(ClassDecl))
8311    PushOnScopeChains(MoveAssignment, S, false);
8312  ClassDecl->addDecl(MoveAssignment);
8313
8314  AddOverriddenMethods(ClassDecl, MoveAssignment);
8315  return MoveAssignment;
8316}
8317
8318void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8319                                        CXXMethodDecl *MoveAssignOperator) {
8320  assert((MoveAssignOperator->isDefaulted() &&
8321          MoveAssignOperator->isOverloadedOperator() &&
8322          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8323          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8324          !MoveAssignOperator->isDeleted()) &&
8325         "DefineImplicitMoveAssignment called for wrong function");
8326
8327  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8328
8329  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8330    MoveAssignOperator->setInvalidDecl();
8331    return;
8332  }
8333
8334  MoveAssignOperator->setUsed();
8335
8336  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8337  DiagnosticErrorTrap Trap(Diags);
8338
8339  // C++0x [class.copy]p28:
8340  //   The implicitly-defined or move assignment operator for a non-union class
8341  //   X performs memberwise move assignment of its subobjects. The direct base
8342  //   classes of X are assigned first, in the order of their declaration in the
8343  //   base-specifier-list, and then the immediate non-static data members of X
8344  //   are assigned, in the order in which they were declared in the class
8345  //   definition.
8346
8347  // The statements that form the synthesized function body.
8348  ASTOwningVector<Stmt*> Statements(*this);
8349
8350  // The parameter for the "other" object, which we are move from.
8351  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8352  QualType OtherRefType = Other->getType()->
8353      getAs<RValueReferenceType>()->getPointeeType();
8354  assert(OtherRefType.getQualifiers() == 0 &&
8355         "Bad argument type of defaulted move assignment");
8356
8357  // Our location for everything implicitly-generated.
8358  SourceLocation Loc = MoveAssignOperator->getLocation();
8359
8360  // Construct a reference to the "other" object. We'll be using this
8361  // throughout the generated ASTs.
8362  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8363  assert(OtherRef && "Reference to parameter cannot fail!");
8364  // Cast to rvalue.
8365  OtherRef = CastForMoving(*this, OtherRef);
8366
8367  // Construct the "this" pointer. We'll be using this throughout the generated
8368  // ASTs.
8369  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8370  assert(This && "Reference to this cannot fail!");
8371
8372  // Assign base classes.
8373  bool Invalid = false;
8374  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8375       E = ClassDecl->bases_end(); Base != E; ++Base) {
8376    // Form the assignment:
8377    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8378    QualType BaseType = Base->getType().getUnqualifiedType();
8379    if (!BaseType->isRecordType()) {
8380      Invalid = true;
8381      continue;
8382    }
8383
8384    CXXCastPath BasePath;
8385    BasePath.push_back(Base);
8386
8387    // Construct the "from" expression, which is an implicit cast to the
8388    // appropriately-qualified base type.
8389    Expr *From = OtherRef;
8390    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8391                             VK_XValue, &BasePath).take();
8392
8393    // Dereference "this".
8394    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8395
8396    // Implicitly cast "this" to the appropriately-qualified base type.
8397    To = ImpCastExprToType(To.take(),
8398                           Context.getCVRQualifiedType(BaseType,
8399                                     MoveAssignOperator->getTypeQualifiers()),
8400                           CK_UncheckedDerivedToBase,
8401                           VK_LValue, &BasePath);
8402
8403    // Build the move.
8404    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8405                                            To.get(), From,
8406                                            /*CopyingBaseSubobject=*/true,
8407                                            /*Copying=*/false);
8408    if (Move.isInvalid()) {
8409      Diag(CurrentLocation, diag::note_member_synthesized_at)
8410        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8411      MoveAssignOperator->setInvalidDecl();
8412      return;
8413    }
8414
8415    // Success! Record the move.
8416    Statements.push_back(Move.takeAs<Expr>());
8417  }
8418
8419  // \brief Reference to the __builtin_memcpy function.
8420  Expr *BuiltinMemCpyRef = 0;
8421  // \brief Reference to the __builtin_objc_memmove_collectable function.
8422  Expr *CollectableMemCpyRef = 0;
8423
8424  // Assign non-static members.
8425  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8426                                  FieldEnd = ClassDecl->field_end();
8427       Field != FieldEnd; ++Field) {
8428    if (Field->isUnnamedBitfield())
8429      continue;
8430
8431    // Check for members of reference type; we can't move those.
8432    if (Field->getType()->isReferenceType()) {
8433      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8434        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8435      Diag(Field->getLocation(), diag::note_declared_at);
8436      Diag(CurrentLocation, diag::note_member_synthesized_at)
8437        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8438      Invalid = true;
8439      continue;
8440    }
8441
8442    // Check for members of const-qualified, non-class type.
8443    QualType BaseType = Context.getBaseElementType(Field->getType());
8444    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8445      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8446        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8447      Diag(Field->getLocation(), diag::note_declared_at);
8448      Diag(CurrentLocation, diag::note_member_synthesized_at)
8449        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8450      Invalid = true;
8451      continue;
8452    }
8453
8454    // Suppress assigning zero-width bitfields.
8455    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8456      continue;
8457
8458    QualType FieldType = Field->getType().getNonReferenceType();
8459    if (FieldType->isIncompleteArrayType()) {
8460      assert(ClassDecl->hasFlexibleArrayMember() &&
8461             "Incomplete array type is not valid");
8462      continue;
8463    }
8464
8465    // Build references to the field in the object we're copying from and to.
8466    CXXScopeSpec SS; // Intentionally empty
8467    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8468                              LookupMemberName);
8469    MemberLookup.addDecl(&*Field);
8470    MemberLookup.resolveKind();
8471    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8472                                               Loc, /*IsArrow=*/false,
8473                                               SS, SourceLocation(), 0,
8474                                               MemberLookup, 0);
8475    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8476                                             Loc, /*IsArrow=*/true,
8477                                             SS, SourceLocation(), 0,
8478                                             MemberLookup, 0);
8479    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8480    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8481
8482    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8483        "Member reference with rvalue base must be rvalue except for reference "
8484        "members, which aren't allowed for move assignment.");
8485
8486    // If the field should be copied with __builtin_memcpy rather than via
8487    // explicit assignments, do so. This optimization only applies for arrays
8488    // of scalars and arrays of class type with trivial move-assignment
8489    // operators.
8490    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8491        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8492      // Compute the size of the memory buffer to be copied.
8493      QualType SizeType = Context.getSizeType();
8494      llvm::APInt Size(Context.getTypeSize(SizeType),
8495                       Context.getTypeSizeInChars(BaseType).getQuantity());
8496      for (const ConstantArrayType *Array
8497              = Context.getAsConstantArrayType(FieldType);
8498           Array;
8499           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8500        llvm::APInt ArraySize
8501          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8502        Size *= ArraySize;
8503      }
8504
8505      // Take the address of the field references for "from" and "to". We
8506      // directly construct UnaryOperators here because semantic analysis
8507      // does not permit us to take the address of an xvalue.
8508      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8509                             Context.getPointerType(From.get()->getType()),
8510                             VK_RValue, OK_Ordinary, Loc);
8511      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8512                           Context.getPointerType(To.get()->getType()),
8513                           VK_RValue, OK_Ordinary, Loc);
8514
8515      bool NeedsCollectableMemCpy =
8516          (BaseType->isRecordType() &&
8517           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8518
8519      if (NeedsCollectableMemCpy) {
8520        if (!CollectableMemCpyRef) {
8521          // Create a reference to the __builtin_objc_memmove_collectable function.
8522          LookupResult R(*this,
8523                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8524                         Loc, LookupOrdinaryName);
8525          LookupName(R, TUScope, true);
8526
8527          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8528          if (!CollectableMemCpy) {
8529            // Something went horribly wrong earlier, and we will have
8530            // complained about it.
8531            Invalid = true;
8532            continue;
8533          }
8534
8535          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8536                                                  CollectableMemCpy->getType(),
8537                                                  VK_LValue, Loc, 0).take();
8538          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8539        }
8540      }
8541      // Create a reference to the __builtin_memcpy builtin function.
8542      else if (!BuiltinMemCpyRef) {
8543        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8544                       LookupOrdinaryName);
8545        LookupName(R, TUScope, true);
8546
8547        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8548        if (!BuiltinMemCpy) {
8549          // Something went horribly wrong earlier, and we will have complained
8550          // about it.
8551          Invalid = true;
8552          continue;
8553        }
8554
8555        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8556                                            BuiltinMemCpy->getType(),
8557                                            VK_LValue, Loc, 0).take();
8558        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8559      }
8560
8561      ASTOwningVector<Expr*> CallArgs(*this);
8562      CallArgs.push_back(To.takeAs<Expr>());
8563      CallArgs.push_back(From.takeAs<Expr>());
8564      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8565      ExprResult Call = ExprError();
8566      if (NeedsCollectableMemCpy)
8567        Call = ActOnCallExpr(/*Scope=*/0,
8568                             CollectableMemCpyRef,
8569                             Loc, move_arg(CallArgs),
8570                             Loc);
8571      else
8572        Call = ActOnCallExpr(/*Scope=*/0,
8573                             BuiltinMemCpyRef,
8574                             Loc, move_arg(CallArgs),
8575                             Loc);
8576
8577      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8578      Statements.push_back(Call.takeAs<Expr>());
8579      continue;
8580    }
8581
8582    // Build the move of this field.
8583    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8584                                            To.get(), From.get(),
8585                                            /*CopyingBaseSubobject=*/false,
8586                                            /*Copying=*/false);
8587    if (Move.isInvalid()) {
8588      Diag(CurrentLocation, diag::note_member_synthesized_at)
8589        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8590      MoveAssignOperator->setInvalidDecl();
8591      return;
8592    }
8593
8594    // Success! Record the copy.
8595    Statements.push_back(Move.takeAs<Stmt>());
8596  }
8597
8598  if (!Invalid) {
8599    // Add a "return *this;"
8600    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8601
8602    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8603    if (Return.isInvalid())
8604      Invalid = true;
8605    else {
8606      Statements.push_back(Return.takeAs<Stmt>());
8607
8608      if (Trap.hasErrorOccurred()) {
8609        Diag(CurrentLocation, diag::note_member_synthesized_at)
8610          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8611        Invalid = true;
8612      }
8613    }
8614  }
8615
8616  if (Invalid) {
8617    MoveAssignOperator->setInvalidDecl();
8618    return;
8619  }
8620
8621  StmtResult Body;
8622  {
8623    CompoundScopeRAII CompoundScope(*this);
8624    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8625                             /*isStmtExpr=*/false);
8626    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8627  }
8628  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8629
8630  if (ASTMutationListener *L = getASTMutationListener()) {
8631    L->CompletedImplicitDefinition(MoveAssignOperator);
8632  }
8633}
8634
8635std::pair<Sema::ImplicitExceptionSpecification, bool>
8636Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8637  if (ClassDecl->isInvalidDecl())
8638    return std::make_pair(ImplicitExceptionSpecification(*this), false);
8639
8640  // C++ [class.copy]p5:
8641  //   The implicitly-declared copy constructor for a class X will
8642  //   have the form
8643  //
8644  //       X::X(const X&)
8645  //
8646  //   if
8647  // FIXME: It ought to be possible to store this on the record.
8648  bool HasConstCopyConstructor = true;
8649
8650  //     -- each direct or virtual base class B of X has a copy
8651  //        constructor whose first parameter is of type const B& or
8652  //        const volatile B&, and
8653  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8654                                       BaseEnd = ClassDecl->bases_end();
8655       HasConstCopyConstructor && Base != BaseEnd;
8656       ++Base) {
8657    // Virtual bases are handled below.
8658    if (Base->isVirtual())
8659      continue;
8660
8661    CXXRecordDecl *BaseClassDecl
8662      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8663    HasConstCopyConstructor &=
8664      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8665  }
8666
8667  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8668                                       BaseEnd = ClassDecl->vbases_end();
8669       HasConstCopyConstructor && Base != BaseEnd;
8670       ++Base) {
8671    CXXRecordDecl *BaseClassDecl
8672      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8673    HasConstCopyConstructor &=
8674      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8675  }
8676
8677  //     -- for all the nonstatic data members of X that are of a
8678  //        class type M (or array thereof), each such class type
8679  //        has a copy constructor whose first parameter is of type
8680  //        const M& or const volatile M&.
8681  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8682                                  FieldEnd = ClassDecl->field_end();
8683       HasConstCopyConstructor && Field != FieldEnd;
8684       ++Field) {
8685    QualType FieldType = Context.getBaseElementType(Field->getType());
8686    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8687      HasConstCopyConstructor &=
8688        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8689    }
8690  }
8691  //   Otherwise, the implicitly declared copy constructor will have
8692  //   the form
8693  //
8694  //       X::X(X&)
8695
8696  // C++ [except.spec]p14:
8697  //   An implicitly declared special member function (Clause 12) shall have an
8698  //   exception-specification. [...]
8699  ImplicitExceptionSpecification ExceptSpec(*this);
8700  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8701  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8702                                       BaseEnd = ClassDecl->bases_end();
8703       Base != BaseEnd;
8704       ++Base) {
8705    // Virtual bases are handled below.
8706    if (Base->isVirtual())
8707      continue;
8708
8709    CXXRecordDecl *BaseClassDecl
8710      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8711    if (CXXConstructorDecl *CopyConstructor =
8712          LookupCopyingConstructor(BaseClassDecl, Quals))
8713      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8714  }
8715  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8716                                       BaseEnd = ClassDecl->vbases_end();
8717       Base != BaseEnd;
8718       ++Base) {
8719    CXXRecordDecl *BaseClassDecl
8720      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8721    if (CXXConstructorDecl *CopyConstructor =
8722          LookupCopyingConstructor(BaseClassDecl, Quals))
8723      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8724  }
8725  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8726                                  FieldEnd = ClassDecl->field_end();
8727       Field != FieldEnd;
8728       ++Field) {
8729    QualType FieldType = Context.getBaseElementType(Field->getType());
8730    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8731      if (CXXConstructorDecl *CopyConstructor =
8732        LookupCopyingConstructor(FieldClassDecl, Quals))
8733      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8734    }
8735  }
8736
8737  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8738}
8739
8740CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8741                                                    CXXRecordDecl *ClassDecl) {
8742  // C++ [class.copy]p4:
8743  //   If the class definition does not explicitly declare a copy
8744  //   constructor, one is declared implicitly.
8745
8746  ImplicitExceptionSpecification Spec(*this);
8747  bool Const;
8748  llvm::tie(Spec, Const) =
8749    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8750
8751  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8752  QualType ArgType = ClassType;
8753  if (Const)
8754    ArgType = ArgType.withConst();
8755  ArgType = Context.getLValueReferenceType(ArgType);
8756
8757  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8758
8759  DeclarationName Name
8760    = Context.DeclarationNames.getCXXConstructorName(
8761                                           Context.getCanonicalType(ClassType));
8762  SourceLocation ClassLoc = ClassDecl->getLocation();
8763  DeclarationNameInfo NameInfo(Name, ClassLoc);
8764
8765  //   An implicitly-declared copy constructor is an inline public
8766  //   member of its class.
8767  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8768      Context, ClassDecl, ClassLoc, NameInfo,
8769      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8770      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8771      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8772        getLangOpts().CPlusPlus0x);
8773  CopyConstructor->setAccess(AS_public);
8774  CopyConstructor->setDefaulted();
8775  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8776
8777  // Note that we have declared this constructor.
8778  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8779
8780  // Add the parameter to the constructor.
8781  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8782                                               ClassLoc, ClassLoc,
8783                                               /*IdentifierInfo=*/0,
8784                                               ArgType, /*TInfo=*/0,
8785                                               SC_None,
8786                                               SC_None, 0);
8787  CopyConstructor->setParams(FromParam);
8788
8789  if (Scope *S = getScopeForContext(ClassDecl))
8790    PushOnScopeChains(CopyConstructor, S, false);
8791  ClassDecl->addDecl(CopyConstructor);
8792
8793  // C++11 [class.copy]p8:
8794  //   ... If the class definition does not explicitly declare a copy
8795  //   constructor, there is no user-declared move constructor, and there is no
8796  //   user-declared move assignment operator, a copy constructor is implicitly
8797  //   declared as defaulted.
8798  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8799    CopyConstructor->setDeletedAsWritten();
8800
8801  return CopyConstructor;
8802}
8803
8804void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8805                                   CXXConstructorDecl *CopyConstructor) {
8806  assert((CopyConstructor->isDefaulted() &&
8807          CopyConstructor->isCopyConstructor() &&
8808          !CopyConstructor->doesThisDeclarationHaveABody() &&
8809          !CopyConstructor->isDeleted()) &&
8810         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8811
8812  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8813  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8814
8815  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8816  DiagnosticErrorTrap Trap(Diags);
8817
8818  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8819      Trap.hasErrorOccurred()) {
8820    Diag(CurrentLocation, diag::note_member_synthesized_at)
8821      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8822    CopyConstructor->setInvalidDecl();
8823  }  else {
8824    Sema::CompoundScopeRAII CompoundScope(*this);
8825    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8826                                               CopyConstructor->getLocation(),
8827                                               MultiStmtArg(*this, 0, 0),
8828                                               /*isStmtExpr=*/false)
8829                                                              .takeAs<Stmt>());
8830    CopyConstructor->setImplicitlyDefined(true);
8831  }
8832
8833  CopyConstructor->setUsed();
8834  if (ASTMutationListener *L = getASTMutationListener()) {
8835    L->CompletedImplicitDefinition(CopyConstructor);
8836  }
8837}
8838
8839Sema::ImplicitExceptionSpecification
8840Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8841  // C++ [except.spec]p14:
8842  //   An implicitly declared special member function (Clause 12) shall have an
8843  //   exception-specification. [...]
8844  ImplicitExceptionSpecification ExceptSpec(*this);
8845  if (ClassDecl->isInvalidDecl())
8846    return ExceptSpec;
8847
8848  // Direct base-class constructors.
8849  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8850                                       BEnd = ClassDecl->bases_end();
8851       B != BEnd; ++B) {
8852    if (B->isVirtual()) // Handled below.
8853      continue;
8854
8855    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8856      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8857      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8858      // If this is a deleted function, add it anyway. This might be conformant
8859      // with the standard. This might not. I'm not sure. It might not matter.
8860      if (Constructor)
8861        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8862    }
8863  }
8864
8865  // Virtual base-class constructors.
8866  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8867                                       BEnd = ClassDecl->vbases_end();
8868       B != BEnd; ++B) {
8869    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8870      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8871      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8872      // If this is a deleted function, add it anyway. This might be conformant
8873      // with the standard. This might not. I'm not sure. It might not matter.
8874      if (Constructor)
8875        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8876    }
8877  }
8878
8879  // Field constructors.
8880  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8881                               FEnd = ClassDecl->field_end();
8882       F != FEnd; ++F) {
8883    if (const RecordType *RecordTy
8884              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8885      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8886      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8887      // If this is a deleted function, add it anyway. This might be conformant
8888      // with the standard. This might not. I'm not sure. It might not matter.
8889      // In particular, the problem is that this function never gets called. It
8890      // might just be ill-formed because this function attempts to refer to
8891      // a deleted function here.
8892      if (Constructor)
8893        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8894    }
8895  }
8896
8897  return ExceptSpec;
8898}
8899
8900CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8901                                                    CXXRecordDecl *ClassDecl) {
8902  // C++11 [class.copy]p9:
8903  //   If the definition of a class X does not explicitly declare a move
8904  //   constructor, one will be implicitly declared as defaulted if and only if:
8905  //
8906  //   - [first 4 bullets]
8907  assert(ClassDecl->needsImplicitMoveConstructor());
8908
8909  // [Checked after we build the declaration]
8910  //   - the move assignment operator would not be implicitly defined as
8911  //     deleted,
8912
8913  // [DR1402]:
8914  //   - each of X's non-static data members and direct or virtual base classes
8915  //     has a type that either has a move constructor or is trivially copyable.
8916  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8917    ClassDecl->setFailedImplicitMoveConstructor();
8918    return 0;
8919  }
8920
8921  ImplicitExceptionSpecification Spec(
8922      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8923
8924  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8925  QualType ArgType = Context.getRValueReferenceType(ClassType);
8926
8927  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8928
8929  DeclarationName Name
8930    = Context.DeclarationNames.getCXXConstructorName(
8931                                           Context.getCanonicalType(ClassType));
8932  SourceLocation ClassLoc = ClassDecl->getLocation();
8933  DeclarationNameInfo NameInfo(Name, ClassLoc);
8934
8935  // C++0x [class.copy]p11:
8936  //   An implicitly-declared copy/move constructor is an inline public
8937  //   member of its class.
8938  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8939      Context, ClassDecl, ClassLoc, NameInfo,
8940      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8941      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8942      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8943        getLangOpts().CPlusPlus0x);
8944  MoveConstructor->setAccess(AS_public);
8945  MoveConstructor->setDefaulted();
8946  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8947
8948  // Add the parameter to the constructor.
8949  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8950                                               ClassLoc, ClassLoc,
8951                                               /*IdentifierInfo=*/0,
8952                                               ArgType, /*TInfo=*/0,
8953                                               SC_None,
8954                                               SC_None, 0);
8955  MoveConstructor->setParams(FromParam);
8956
8957  // C++0x [class.copy]p9:
8958  //   If the definition of a class X does not explicitly declare a move
8959  //   constructor, one will be implicitly declared as defaulted if and only if:
8960  //   [...]
8961  //   - the move constructor would not be implicitly defined as deleted.
8962  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8963    // Cache this result so that we don't try to generate this over and over
8964    // on every lookup, leaking memory and wasting time.
8965    ClassDecl->setFailedImplicitMoveConstructor();
8966    return 0;
8967  }
8968
8969  // Note that we have declared this constructor.
8970  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8971
8972  if (Scope *S = getScopeForContext(ClassDecl))
8973    PushOnScopeChains(MoveConstructor, S, false);
8974  ClassDecl->addDecl(MoveConstructor);
8975
8976  return MoveConstructor;
8977}
8978
8979void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8980                                   CXXConstructorDecl *MoveConstructor) {
8981  assert((MoveConstructor->isDefaulted() &&
8982          MoveConstructor->isMoveConstructor() &&
8983          !MoveConstructor->doesThisDeclarationHaveABody() &&
8984          !MoveConstructor->isDeleted()) &&
8985         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8986
8987  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8988  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8989
8990  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8991  DiagnosticErrorTrap Trap(Diags);
8992
8993  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8994      Trap.hasErrorOccurred()) {
8995    Diag(CurrentLocation, diag::note_member_synthesized_at)
8996      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8997    MoveConstructor->setInvalidDecl();
8998  }  else {
8999    Sema::CompoundScopeRAII CompoundScope(*this);
9000    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9001                                               MoveConstructor->getLocation(),
9002                                               MultiStmtArg(*this, 0, 0),
9003                                               /*isStmtExpr=*/false)
9004                                                              .takeAs<Stmt>());
9005    MoveConstructor->setImplicitlyDefined(true);
9006  }
9007
9008  MoveConstructor->setUsed();
9009
9010  if (ASTMutationListener *L = getASTMutationListener()) {
9011    L->CompletedImplicitDefinition(MoveConstructor);
9012  }
9013}
9014
9015bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9016  return FD->isDeleted() &&
9017         (FD->isDefaulted() || FD->isImplicit()) &&
9018         isa<CXXMethodDecl>(FD);
9019}
9020
9021/// \brief Mark the call operator of the given lambda closure type as "used".
9022static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9023  CXXMethodDecl *CallOperator
9024    = cast<CXXMethodDecl>(
9025        *Lambda->lookup(
9026          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
9027  CallOperator->setReferenced();
9028  CallOperator->setUsed();
9029}
9030
9031void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9032       SourceLocation CurrentLocation,
9033       CXXConversionDecl *Conv)
9034{
9035  CXXRecordDecl *Lambda = Conv->getParent();
9036
9037  // Make sure that the lambda call operator is marked used.
9038  markLambdaCallOperatorUsed(*this, Lambda);
9039
9040  Conv->setUsed();
9041
9042  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9043  DiagnosticErrorTrap Trap(Diags);
9044
9045  // Return the address of the __invoke function.
9046  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9047  CXXMethodDecl *Invoke
9048    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9049  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9050                                       VK_LValue, Conv->getLocation()).take();
9051  assert(FunctionRef && "Can't refer to __invoke function?");
9052  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9053  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9054                                           Conv->getLocation(),
9055                                           Conv->getLocation()));
9056
9057  // Fill in the __invoke function with a dummy implementation. IR generation
9058  // will fill in the actual details.
9059  Invoke->setUsed();
9060  Invoke->setReferenced();
9061  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9062                                             Conv->getLocation()));
9063
9064  if (ASTMutationListener *L = getASTMutationListener()) {
9065    L->CompletedImplicitDefinition(Conv);
9066    L->CompletedImplicitDefinition(Invoke);
9067  }
9068}
9069
9070void Sema::DefineImplicitLambdaToBlockPointerConversion(
9071       SourceLocation CurrentLocation,
9072       CXXConversionDecl *Conv)
9073{
9074  Conv->setUsed();
9075
9076  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9077  DiagnosticErrorTrap Trap(Diags);
9078
9079  // Copy-initialize the lambda object as needed to capture it.
9080  Expr *This = ActOnCXXThis(CurrentLocation).take();
9081  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9082
9083  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9084                                                        Conv->getLocation(),
9085                                                        Conv, DerefThis);
9086
9087  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9088  // behavior.  Note that only the general conversion function does this
9089  // (since it's unusable otherwise); in the case where we inline the
9090  // block literal, it has block literal lifetime semantics.
9091  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9092    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9093                                          CK_CopyAndAutoreleaseBlockObject,
9094                                          BuildBlock.get(), 0, VK_RValue);
9095
9096  if (BuildBlock.isInvalid()) {
9097    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9098    Conv->setInvalidDecl();
9099    return;
9100  }
9101
9102  // Create the return statement that returns the block from the conversion
9103  // function.
9104  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9105  if (Return.isInvalid()) {
9106    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9107    Conv->setInvalidDecl();
9108    return;
9109  }
9110
9111  // Set the body of the conversion function.
9112  Stmt *ReturnS = Return.take();
9113  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9114                                           Conv->getLocation(),
9115                                           Conv->getLocation()));
9116
9117  // We're done; notify the mutation listener, if any.
9118  if (ASTMutationListener *L = getASTMutationListener()) {
9119    L->CompletedImplicitDefinition(Conv);
9120  }
9121}
9122
9123/// \brief Determine whether the given list arguments contains exactly one
9124/// "real" (non-default) argument.
9125static bool hasOneRealArgument(MultiExprArg Args) {
9126  switch (Args.size()) {
9127  case 0:
9128    return false;
9129
9130  default:
9131    if (!Args.get()[1]->isDefaultArgument())
9132      return false;
9133
9134    // fall through
9135  case 1:
9136    return !Args.get()[0]->isDefaultArgument();
9137  }
9138
9139  return false;
9140}
9141
9142ExprResult
9143Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9144                            CXXConstructorDecl *Constructor,
9145                            MultiExprArg ExprArgs,
9146                            bool HadMultipleCandidates,
9147                            bool RequiresZeroInit,
9148                            unsigned ConstructKind,
9149                            SourceRange ParenRange) {
9150  bool Elidable = false;
9151
9152  // C++0x [class.copy]p34:
9153  //   When certain criteria are met, an implementation is allowed to
9154  //   omit the copy/move construction of a class object, even if the
9155  //   copy/move constructor and/or destructor for the object have
9156  //   side effects. [...]
9157  //     - when a temporary class object that has not been bound to a
9158  //       reference (12.2) would be copied/moved to a class object
9159  //       with the same cv-unqualified type, the copy/move operation
9160  //       can be omitted by constructing the temporary object
9161  //       directly into the target of the omitted copy/move
9162  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9163      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9164    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9165    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9166  }
9167
9168  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9169                               Elidable, move(ExprArgs), HadMultipleCandidates,
9170                               RequiresZeroInit, ConstructKind, ParenRange);
9171}
9172
9173/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9174/// including handling of its default argument expressions.
9175ExprResult
9176Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9177                            CXXConstructorDecl *Constructor, bool Elidable,
9178                            MultiExprArg ExprArgs,
9179                            bool HadMultipleCandidates,
9180                            bool RequiresZeroInit,
9181                            unsigned ConstructKind,
9182                            SourceRange ParenRange) {
9183  unsigned NumExprs = ExprArgs.size();
9184  Expr **Exprs = (Expr **)ExprArgs.release();
9185
9186  for (specific_attr_iterator<NonNullAttr>
9187           i = Constructor->specific_attr_begin<NonNullAttr>(),
9188           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9189    const NonNullAttr *NonNull = *i;
9190    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9191  }
9192
9193  MarkFunctionReferenced(ConstructLoc, Constructor);
9194  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9195                                        Constructor, Elidable, Exprs, NumExprs,
9196                                        HadMultipleCandidates, /*FIXME*/false,
9197                                        RequiresZeroInit,
9198              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9199                                        ParenRange));
9200}
9201
9202bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9203                                        CXXConstructorDecl *Constructor,
9204                                        MultiExprArg Exprs,
9205                                        bool HadMultipleCandidates) {
9206  // FIXME: Provide the correct paren SourceRange when available.
9207  ExprResult TempResult =
9208    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9209                          move(Exprs), HadMultipleCandidates, false,
9210                          CXXConstructExpr::CK_Complete, SourceRange());
9211  if (TempResult.isInvalid())
9212    return true;
9213
9214  Expr *Temp = TempResult.takeAs<Expr>();
9215  CheckImplicitConversions(Temp, VD->getLocation());
9216  MarkFunctionReferenced(VD->getLocation(), Constructor);
9217  Temp = MaybeCreateExprWithCleanups(Temp);
9218  VD->setInit(Temp);
9219
9220  return false;
9221}
9222
9223void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9224  if (VD->isInvalidDecl()) return;
9225
9226  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9227  if (ClassDecl->isInvalidDecl()) return;
9228  if (ClassDecl->hasIrrelevantDestructor()) return;
9229  if (ClassDecl->isDependentContext()) return;
9230
9231  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9232  MarkFunctionReferenced(VD->getLocation(), Destructor);
9233  CheckDestructorAccess(VD->getLocation(), Destructor,
9234                        PDiag(diag::err_access_dtor_var)
9235                        << VD->getDeclName()
9236                        << VD->getType());
9237  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9238
9239  if (!VD->hasGlobalStorage()) return;
9240
9241  // Emit warning for non-trivial dtor in global scope (a real global,
9242  // class-static, function-static).
9243  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9244
9245  // TODO: this should be re-enabled for static locals by !CXAAtExit
9246  if (!VD->isStaticLocal())
9247    Diag(VD->getLocation(), diag::warn_global_destructor);
9248}
9249
9250/// \brief Given a constructor and the set of arguments provided for the
9251/// constructor, convert the arguments and add any required default arguments
9252/// to form a proper call to this constructor.
9253///
9254/// \returns true if an error occurred, false otherwise.
9255bool
9256Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9257                              MultiExprArg ArgsPtr,
9258                              SourceLocation Loc,
9259                              ASTOwningVector<Expr*> &ConvertedArgs,
9260                              bool AllowExplicit) {
9261  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9262  unsigned NumArgs = ArgsPtr.size();
9263  Expr **Args = (Expr **)ArgsPtr.get();
9264
9265  const FunctionProtoType *Proto
9266    = Constructor->getType()->getAs<FunctionProtoType>();
9267  assert(Proto && "Constructor without a prototype?");
9268  unsigned NumArgsInProto = Proto->getNumArgs();
9269
9270  // If too few arguments are available, we'll fill in the rest with defaults.
9271  if (NumArgs < NumArgsInProto)
9272    ConvertedArgs.reserve(NumArgsInProto);
9273  else
9274    ConvertedArgs.reserve(NumArgs);
9275
9276  VariadicCallType CallType =
9277    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9278  SmallVector<Expr *, 8> AllArgs;
9279  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9280                                        Proto, 0, Args, NumArgs, AllArgs,
9281                                        CallType, AllowExplicit);
9282  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9283
9284  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9285
9286  // FIXME: Missing call to CheckFunctionCall or equivalent
9287
9288  return Invalid;
9289}
9290
9291static inline bool
9292CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9293                                       const FunctionDecl *FnDecl) {
9294  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9295  if (isa<NamespaceDecl>(DC)) {
9296    return SemaRef.Diag(FnDecl->getLocation(),
9297                        diag::err_operator_new_delete_declared_in_namespace)
9298      << FnDecl->getDeclName();
9299  }
9300
9301  if (isa<TranslationUnitDecl>(DC) &&
9302      FnDecl->getStorageClass() == SC_Static) {
9303    return SemaRef.Diag(FnDecl->getLocation(),
9304                        diag::err_operator_new_delete_declared_static)
9305      << FnDecl->getDeclName();
9306  }
9307
9308  return false;
9309}
9310
9311static inline bool
9312CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9313                            CanQualType ExpectedResultType,
9314                            CanQualType ExpectedFirstParamType,
9315                            unsigned DependentParamTypeDiag,
9316                            unsigned InvalidParamTypeDiag) {
9317  QualType ResultType =
9318    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9319
9320  // Check that the result type is not dependent.
9321  if (ResultType->isDependentType())
9322    return SemaRef.Diag(FnDecl->getLocation(),
9323                        diag::err_operator_new_delete_dependent_result_type)
9324    << FnDecl->getDeclName() << ExpectedResultType;
9325
9326  // Check that the result type is what we expect.
9327  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9328    return SemaRef.Diag(FnDecl->getLocation(),
9329                        diag::err_operator_new_delete_invalid_result_type)
9330    << FnDecl->getDeclName() << ExpectedResultType;
9331
9332  // A function template must have at least 2 parameters.
9333  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9334    return SemaRef.Diag(FnDecl->getLocation(),
9335                      diag::err_operator_new_delete_template_too_few_parameters)
9336        << FnDecl->getDeclName();
9337
9338  // The function decl must have at least 1 parameter.
9339  if (FnDecl->getNumParams() == 0)
9340    return SemaRef.Diag(FnDecl->getLocation(),
9341                        diag::err_operator_new_delete_too_few_parameters)
9342      << FnDecl->getDeclName();
9343
9344  // Check the the first parameter type is not dependent.
9345  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9346  if (FirstParamType->isDependentType())
9347    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9348      << FnDecl->getDeclName() << ExpectedFirstParamType;
9349
9350  // Check that the first parameter type is what we expect.
9351  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9352      ExpectedFirstParamType)
9353    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9354    << FnDecl->getDeclName() << ExpectedFirstParamType;
9355
9356  return false;
9357}
9358
9359static bool
9360CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9361  // C++ [basic.stc.dynamic.allocation]p1:
9362  //   A program is ill-formed if an allocation function is declared in a
9363  //   namespace scope other than global scope or declared static in global
9364  //   scope.
9365  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9366    return true;
9367
9368  CanQualType SizeTy =
9369    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9370
9371  // C++ [basic.stc.dynamic.allocation]p1:
9372  //  The return type shall be void*. The first parameter shall have type
9373  //  std::size_t.
9374  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9375                                  SizeTy,
9376                                  diag::err_operator_new_dependent_param_type,
9377                                  diag::err_operator_new_param_type))
9378    return true;
9379
9380  // C++ [basic.stc.dynamic.allocation]p1:
9381  //  The first parameter shall not have an associated default argument.
9382  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9383    return SemaRef.Diag(FnDecl->getLocation(),
9384                        diag::err_operator_new_default_arg)
9385      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9386
9387  return false;
9388}
9389
9390static bool
9391CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9392  // C++ [basic.stc.dynamic.deallocation]p1:
9393  //   A program is ill-formed if deallocation functions are declared in a
9394  //   namespace scope other than global scope or declared static in global
9395  //   scope.
9396  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9397    return true;
9398
9399  // C++ [basic.stc.dynamic.deallocation]p2:
9400  //   Each deallocation function shall return void and its first parameter
9401  //   shall be void*.
9402  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9403                                  SemaRef.Context.VoidPtrTy,
9404                                 diag::err_operator_delete_dependent_param_type,
9405                                 diag::err_operator_delete_param_type))
9406    return true;
9407
9408  return false;
9409}
9410
9411/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9412/// of this overloaded operator is well-formed. If so, returns false;
9413/// otherwise, emits appropriate diagnostics and returns true.
9414bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9415  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9416         "Expected an overloaded operator declaration");
9417
9418  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9419
9420  // C++ [over.oper]p5:
9421  //   The allocation and deallocation functions, operator new,
9422  //   operator new[], operator delete and operator delete[], are
9423  //   described completely in 3.7.3. The attributes and restrictions
9424  //   found in the rest of this subclause do not apply to them unless
9425  //   explicitly stated in 3.7.3.
9426  if (Op == OO_Delete || Op == OO_Array_Delete)
9427    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9428
9429  if (Op == OO_New || Op == OO_Array_New)
9430    return CheckOperatorNewDeclaration(*this, FnDecl);
9431
9432  // C++ [over.oper]p6:
9433  //   An operator function shall either be a non-static member
9434  //   function or be a non-member function and have at least one
9435  //   parameter whose type is a class, a reference to a class, an
9436  //   enumeration, or a reference to an enumeration.
9437  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9438    if (MethodDecl->isStatic())
9439      return Diag(FnDecl->getLocation(),
9440                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9441  } else {
9442    bool ClassOrEnumParam = false;
9443    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9444                                   ParamEnd = FnDecl->param_end();
9445         Param != ParamEnd; ++Param) {
9446      QualType ParamType = (*Param)->getType().getNonReferenceType();
9447      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9448          ParamType->isEnumeralType()) {
9449        ClassOrEnumParam = true;
9450        break;
9451      }
9452    }
9453
9454    if (!ClassOrEnumParam)
9455      return Diag(FnDecl->getLocation(),
9456                  diag::err_operator_overload_needs_class_or_enum)
9457        << FnDecl->getDeclName();
9458  }
9459
9460  // C++ [over.oper]p8:
9461  //   An operator function cannot have default arguments (8.3.6),
9462  //   except where explicitly stated below.
9463  //
9464  // Only the function-call operator allows default arguments
9465  // (C++ [over.call]p1).
9466  if (Op != OO_Call) {
9467    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9468         Param != FnDecl->param_end(); ++Param) {
9469      if ((*Param)->hasDefaultArg())
9470        return Diag((*Param)->getLocation(),
9471                    diag::err_operator_overload_default_arg)
9472          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9473    }
9474  }
9475
9476  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9477    { false, false, false }
9478#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9479    , { Unary, Binary, MemberOnly }
9480#include "clang/Basic/OperatorKinds.def"
9481  };
9482
9483  bool CanBeUnaryOperator = OperatorUses[Op][0];
9484  bool CanBeBinaryOperator = OperatorUses[Op][1];
9485  bool MustBeMemberOperator = OperatorUses[Op][2];
9486
9487  // C++ [over.oper]p8:
9488  //   [...] Operator functions cannot have more or fewer parameters
9489  //   than the number required for the corresponding operator, as
9490  //   described in the rest of this subclause.
9491  unsigned NumParams = FnDecl->getNumParams()
9492                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9493  if (Op != OO_Call &&
9494      ((NumParams == 1 && !CanBeUnaryOperator) ||
9495       (NumParams == 2 && !CanBeBinaryOperator) ||
9496       (NumParams < 1) || (NumParams > 2))) {
9497    // We have the wrong number of parameters.
9498    unsigned ErrorKind;
9499    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9500      ErrorKind = 2;  // 2 -> unary or binary.
9501    } else if (CanBeUnaryOperator) {
9502      ErrorKind = 0;  // 0 -> unary
9503    } else {
9504      assert(CanBeBinaryOperator &&
9505             "All non-call overloaded operators are unary or binary!");
9506      ErrorKind = 1;  // 1 -> binary
9507    }
9508
9509    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9510      << FnDecl->getDeclName() << NumParams << ErrorKind;
9511  }
9512
9513  // Overloaded operators other than operator() cannot be variadic.
9514  if (Op != OO_Call &&
9515      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9516    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9517      << FnDecl->getDeclName();
9518  }
9519
9520  // Some operators must be non-static member functions.
9521  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9522    return Diag(FnDecl->getLocation(),
9523                diag::err_operator_overload_must_be_member)
9524      << FnDecl->getDeclName();
9525  }
9526
9527  // C++ [over.inc]p1:
9528  //   The user-defined function called operator++ implements the
9529  //   prefix and postfix ++ operator. If this function is a member
9530  //   function with no parameters, or a non-member function with one
9531  //   parameter of class or enumeration type, it defines the prefix
9532  //   increment operator ++ for objects of that type. If the function
9533  //   is a member function with one parameter (which shall be of type
9534  //   int) or a non-member function with two parameters (the second
9535  //   of which shall be of type int), it defines the postfix
9536  //   increment operator ++ for objects of that type.
9537  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9538    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9539    bool ParamIsInt = false;
9540    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9541      ParamIsInt = BT->getKind() == BuiltinType::Int;
9542
9543    if (!ParamIsInt)
9544      return Diag(LastParam->getLocation(),
9545                  diag::err_operator_overload_post_incdec_must_be_int)
9546        << LastParam->getType() << (Op == OO_MinusMinus);
9547  }
9548
9549  return false;
9550}
9551
9552/// CheckLiteralOperatorDeclaration - Check whether the declaration
9553/// of this literal operator function is well-formed. If so, returns
9554/// false; otherwise, emits appropriate diagnostics and returns true.
9555bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9556  if (isa<CXXMethodDecl>(FnDecl)) {
9557    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9558      << FnDecl->getDeclName();
9559    return true;
9560  }
9561
9562  if (FnDecl->isExternC()) {
9563    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9564    return true;
9565  }
9566
9567  bool Valid = false;
9568
9569  // This might be the definition of a literal operator template.
9570  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9571  // This might be a specialization of a literal operator template.
9572  if (!TpDecl)
9573    TpDecl = FnDecl->getPrimaryTemplate();
9574
9575  // template <char...> type operator "" name() is the only valid template
9576  // signature, and the only valid signature with no parameters.
9577  if (TpDecl) {
9578    if (FnDecl->param_size() == 0) {
9579      // Must have only one template parameter
9580      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9581      if (Params->size() == 1) {
9582        NonTypeTemplateParmDecl *PmDecl =
9583          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9584
9585        // The template parameter must be a char parameter pack.
9586        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9587            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9588          Valid = true;
9589      }
9590    }
9591  } else if (FnDecl->param_size()) {
9592    // Check the first parameter
9593    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9594
9595    QualType T = (*Param)->getType().getUnqualifiedType();
9596
9597    // unsigned long long int, long double, and any character type are allowed
9598    // as the only parameters.
9599    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9600        Context.hasSameType(T, Context.LongDoubleTy) ||
9601        Context.hasSameType(T, Context.CharTy) ||
9602        Context.hasSameType(T, Context.WCharTy) ||
9603        Context.hasSameType(T, Context.Char16Ty) ||
9604        Context.hasSameType(T, Context.Char32Ty)) {
9605      if (++Param == FnDecl->param_end())
9606        Valid = true;
9607      goto FinishedParams;
9608    }
9609
9610    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9611    const PointerType *PT = T->getAs<PointerType>();
9612    if (!PT)
9613      goto FinishedParams;
9614    T = PT->getPointeeType();
9615    if (!T.isConstQualified() || T.isVolatileQualified())
9616      goto FinishedParams;
9617    T = T.getUnqualifiedType();
9618
9619    // Move on to the second parameter;
9620    ++Param;
9621
9622    // If there is no second parameter, the first must be a const char *
9623    if (Param == FnDecl->param_end()) {
9624      if (Context.hasSameType(T, Context.CharTy))
9625        Valid = true;
9626      goto FinishedParams;
9627    }
9628
9629    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9630    // are allowed as the first parameter to a two-parameter function
9631    if (!(Context.hasSameType(T, Context.CharTy) ||
9632          Context.hasSameType(T, Context.WCharTy) ||
9633          Context.hasSameType(T, Context.Char16Ty) ||
9634          Context.hasSameType(T, Context.Char32Ty)))
9635      goto FinishedParams;
9636
9637    // The second and final parameter must be an std::size_t
9638    T = (*Param)->getType().getUnqualifiedType();
9639    if (Context.hasSameType(T, Context.getSizeType()) &&
9640        ++Param == FnDecl->param_end())
9641      Valid = true;
9642  }
9643
9644  // FIXME: This diagnostic is absolutely terrible.
9645FinishedParams:
9646  if (!Valid) {
9647    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9648      << FnDecl->getDeclName();
9649    return true;
9650  }
9651
9652  // A parameter-declaration-clause containing a default argument is not
9653  // equivalent to any of the permitted forms.
9654  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9655                                    ParamEnd = FnDecl->param_end();
9656       Param != ParamEnd; ++Param) {
9657    if ((*Param)->hasDefaultArg()) {
9658      Diag((*Param)->getDefaultArgRange().getBegin(),
9659           diag::err_literal_operator_default_argument)
9660        << (*Param)->getDefaultArgRange();
9661      break;
9662    }
9663  }
9664
9665  StringRef LiteralName
9666    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9667  if (LiteralName[0] != '_') {
9668    // C++11 [usrlit.suffix]p1:
9669    //   Literal suffix identifiers that do not start with an underscore
9670    //   are reserved for future standardization.
9671    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9672  }
9673
9674  return false;
9675}
9676
9677/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9678/// linkage specification, including the language and (if present)
9679/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9680/// the location of the language string literal, which is provided
9681/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9682/// the '{' brace. Otherwise, this linkage specification does not
9683/// have any braces.
9684Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9685                                           SourceLocation LangLoc,
9686                                           StringRef Lang,
9687                                           SourceLocation LBraceLoc) {
9688  LinkageSpecDecl::LanguageIDs Language;
9689  if (Lang == "\"C\"")
9690    Language = LinkageSpecDecl::lang_c;
9691  else if (Lang == "\"C++\"")
9692    Language = LinkageSpecDecl::lang_cxx;
9693  else {
9694    Diag(LangLoc, diag::err_bad_language);
9695    return 0;
9696  }
9697
9698  // FIXME: Add all the various semantics of linkage specifications
9699
9700  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9701                                               ExternLoc, LangLoc, Language);
9702  CurContext->addDecl(D);
9703  PushDeclContext(S, D);
9704  return D;
9705}
9706
9707/// ActOnFinishLinkageSpecification - Complete the definition of
9708/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9709/// valid, it's the position of the closing '}' brace in a linkage
9710/// specification that uses braces.
9711Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9712                                            Decl *LinkageSpec,
9713                                            SourceLocation RBraceLoc) {
9714  if (LinkageSpec) {
9715    if (RBraceLoc.isValid()) {
9716      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9717      LSDecl->setRBraceLoc(RBraceLoc);
9718    }
9719    PopDeclContext();
9720  }
9721  return LinkageSpec;
9722}
9723
9724/// \brief Perform semantic analysis for the variable declaration that
9725/// occurs within a C++ catch clause, returning the newly-created
9726/// variable.
9727VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9728                                         TypeSourceInfo *TInfo,
9729                                         SourceLocation StartLoc,
9730                                         SourceLocation Loc,
9731                                         IdentifierInfo *Name) {
9732  bool Invalid = false;
9733  QualType ExDeclType = TInfo->getType();
9734
9735  // Arrays and functions decay.
9736  if (ExDeclType->isArrayType())
9737    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9738  else if (ExDeclType->isFunctionType())
9739    ExDeclType = Context.getPointerType(ExDeclType);
9740
9741  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9742  // The exception-declaration shall not denote a pointer or reference to an
9743  // incomplete type, other than [cv] void*.
9744  // N2844 forbids rvalue references.
9745  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9746    Diag(Loc, diag::err_catch_rvalue_ref);
9747    Invalid = true;
9748  }
9749
9750  QualType BaseType = ExDeclType;
9751  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9752  unsigned DK = diag::err_catch_incomplete;
9753  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9754    BaseType = Ptr->getPointeeType();
9755    Mode = 1;
9756    DK = diag::err_catch_incomplete_ptr;
9757  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9758    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9759    BaseType = Ref->getPointeeType();
9760    Mode = 2;
9761    DK = diag::err_catch_incomplete_ref;
9762  }
9763  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9764      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9765    Invalid = true;
9766
9767  if (!Invalid && !ExDeclType->isDependentType() &&
9768      RequireNonAbstractType(Loc, ExDeclType,
9769                             diag::err_abstract_type_in_decl,
9770                             AbstractVariableType))
9771    Invalid = true;
9772
9773  // Only the non-fragile NeXT runtime currently supports C++ catches
9774  // of ObjC types, and no runtime supports catching ObjC types by value.
9775  if (!Invalid && getLangOpts().ObjC1) {
9776    QualType T = ExDeclType;
9777    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9778      T = RT->getPointeeType();
9779
9780    if (T->isObjCObjectType()) {
9781      Diag(Loc, diag::err_objc_object_catch);
9782      Invalid = true;
9783    } else if (T->isObjCObjectPointerType()) {
9784      if (!getLangOpts().ObjCNonFragileABI)
9785        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9786    }
9787  }
9788
9789  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9790                                    ExDeclType, TInfo, SC_None, SC_None);
9791  ExDecl->setExceptionVariable(true);
9792
9793  // In ARC, infer 'retaining' for variables of retainable type.
9794  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9795    Invalid = true;
9796
9797  if (!Invalid && !ExDeclType->isDependentType()) {
9798    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9799      // C++ [except.handle]p16:
9800      //   The object declared in an exception-declaration or, if the
9801      //   exception-declaration does not specify a name, a temporary (12.2) is
9802      //   copy-initialized (8.5) from the exception object. [...]
9803      //   The object is destroyed when the handler exits, after the destruction
9804      //   of any automatic objects initialized within the handler.
9805      //
9806      // We just pretend to initialize the object with itself, then make sure
9807      // it can be destroyed later.
9808      QualType initType = ExDeclType;
9809
9810      InitializedEntity entity =
9811        InitializedEntity::InitializeVariable(ExDecl);
9812      InitializationKind initKind =
9813        InitializationKind::CreateCopy(Loc, SourceLocation());
9814
9815      Expr *opaqueValue =
9816        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9817      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9818      ExprResult result = sequence.Perform(*this, entity, initKind,
9819                                           MultiExprArg(&opaqueValue, 1));
9820      if (result.isInvalid())
9821        Invalid = true;
9822      else {
9823        // If the constructor used was non-trivial, set this as the
9824        // "initializer".
9825        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9826        if (!construct->getConstructor()->isTrivial()) {
9827          Expr *init = MaybeCreateExprWithCleanups(construct);
9828          ExDecl->setInit(init);
9829        }
9830
9831        // And make sure it's destructable.
9832        FinalizeVarWithDestructor(ExDecl, recordType);
9833      }
9834    }
9835  }
9836
9837  if (Invalid)
9838    ExDecl->setInvalidDecl();
9839
9840  return ExDecl;
9841}
9842
9843/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9844/// handler.
9845Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9846  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9847  bool Invalid = D.isInvalidType();
9848
9849  // Check for unexpanded parameter packs.
9850  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9851                                               UPPC_ExceptionType)) {
9852    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9853                                             D.getIdentifierLoc());
9854    Invalid = true;
9855  }
9856
9857  IdentifierInfo *II = D.getIdentifier();
9858  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9859                                             LookupOrdinaryName,
9860                                             ForRedeclaration)) {
9861    // The scope should be freshly made just for us. There is just no way
9862    // it contains any previous declaration.
9863    assert(!S->isDeclScope(PrevDecl));
9864    if (PrevDecl->isTemplateParameter()) {
9865      // Maybe we will complain about the shadowed template parameter.
9866      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9867      PrevDecl = 0;
9868    }
9869  }
9870
9871  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9872    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9873      << D.getCXXScopeSpec().getRange();
9874    Invalid = true;
9875  }
9876
9877  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9878                                              D.getLocStart(),
9879                                              D.getIdentifierLoc(),
9880                                              D.getIdentifier());
9881  if (Invalid)
9882    ExDecl->setInvalidDecl();
9883
9884  // Add the exception declaration into this scope.
9885  if (II)
9886    PushOnScopeChains(ExDecl, S);
9887  else
9888    CurContext->addDecl(ExDecl);
9889
9890  ProcessDeclAttributes(S, ExDecl, D);
9891  return ExDecl;
9892}
9893
9894Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9895                                         Expr *AssertExpr,
9896                                         Expr *AssertMessageExpr_,
9897                                         SourceLocation RParenLoc) {
9898  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9899
9900  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9901    // In a static_assert-declaration, the constant-expression shall be a
9902    // constant expression that can be contextually converted to bool.
9903    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9904    if (Converted.isInvalid())
9905      return 0;
9906
9907    llvm::APSInt Cond;
9908    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9909          PDiag(diag::err_static_assert_expression_is_not_constant),
9910          /*AllowFold=*/false).isInvalid())
9911      return 0;
9912
9913    if (!Cond) {
9914      llvm::SmallString<256> MsgBuffer;
9915      llvm::raw_svector_ostream Msg(MsgBuffer);
9916      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9917      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9918        << Msg.str() << AssertExpr->getSourceRange();
9919    }
9920  }
9921
9922  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9923    return 0;
9924
9925  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9926                                        AssertExpr, AssertMessage, RParenLoc);
9927
9928  CurContext->addDecl(Decl);
9929  return Decl;
9930}
9931
9932/// \brief Perform semantic analysis of the given friend type declaration.
9933///
9934/// \returns A friend declaration that.
9935FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9936                                      SourceLocation FriendLoc,
9937                                      TypeSourceInfo *TSInfo) {
9938  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9939
9940  QualType T = TSInfo->getType();
9941  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9942
9943  // C++03 [class.friend]p2:
9944  //   An elaborated-type-specifier shall be used in a friend declaration
9945  //   for a class.*
9946  //
9947  //   * The class-key of the elaborated-type-specifier is required.
9948  if (!ActiveTemplateInstantiations.empty()) {
9949    // Do not complain about the form of friend template types during
9950    // template instantiation; we will already have complained when the
9951    // template was declared.
9952  } else if (!T->isElaboratedTypeSpecifier()) {
9953    // If we evaluated the type to a record type, suggest putting
9954    // a tag in front.
9955    if (const RecordType *RT = T->getAs<RecordType>()) {
9956      RecordDecl *RD = RT->getDecl();
9957
9958      std::string InsertionText = std::string(" ") + RD->getKindName();
9959
9960      Diag(TypeRange.getBegin(),
9961           getLangOpts().CPlusPlus0x ?
9962             diag::warn_cxx98_compat_unelaborated_friend_type :
9963             diag::ext_unelaborated_friend_type)
9964        << (unsigned) RD->getTagKind()
9965        << T
9966        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9967                                      InsertionText);
9968    } else {
9969      Diag(FriendLoc,
9970           getLangOpts().CPlusPlus0x ?
9971             diag::warn_cxx98_compat_nonclass_type_friend :
9972             diag::ext_nonclass_type_friend)
9973        << T
9974        << SourceRange(FriendLoc, TypeRange.getEnd());
9975    }
9976  } else if (T->getAs<EnumType>()) {
9977    Diag(FriendLoc,
9978         getLangOpts().CPlusPlus0x ?
9979           diag::warn_cxx98_compat_enum_friend :
9980           diag::ext_enum_friend)
9981      << T
9982      << SourceRange(FriendLoc, TypeRange.getEnd());
9983  }
9984
9985  // C++0x [class.friend]p3:
9986  //   If the type specifier in a friend declaration designates a (possibly
9987  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9988  //   the friend declaration is ignored.
9989
9990  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9991  // in [class.friend]p3 that we do not implement.
9992
9993  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9994}
9995
9996/// Handle a friend tag declaration where the scope specifier was
9997/// templated.
9998Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9999                                    unsigned TagSpec, SourceLocation TagLoc,
10000                                    CXXScopeSpec &SS,
10001                                    IdentifierInfo *Name, SourceLocation NameLoc,
10002                                    AttributeList *Attr,
10003                                    MultiTemplateParamsArg TempParamLists) {
10004  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10005
10006  bool isExplicitSpecialization = false;
10007  bool Invalid = false;
10008
10009  if (TemplateParameterList *TemplateParams
10010        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10011                                                  TempParamLists.get(),
10012                                                  TempParamLists.size(),
10013                                                  /*friend*/ true,
10014                                                  isExplicitSpecialization,
10015                                                  Invalid)) {
10016    if (TemplateParams->size() > 0) {
10017      // This is a declaration of a class template.
10018      if (Invalid)
10019        return 0;
10020
10021      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10022                                SS, Name, NameLoc, Attr,
10023                                TemplateParams, AS_public,
10024                                /*ModulePrivateLoc=*/SourceLocation(),
10025                                TempParamLists.size() - 1,
10026                   (TemplateParameterList**) TempParamLists.release()).take();
10027    } else {
10028      // The "template<>" header is extraneous.
10029      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10030        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10031      isExplicitSpecialization = true;
10032    }
10033  }
10034
10035  if (Invalid) return 0;
10036
10037  bool isAllExplicitSpecializations = true;
10038  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10039    if (TempParamLists.get()[I]->size()) {
10040      isAllExplicitSpecializations = false;
10041      break;
10042    }
10043  }
10044
10045  // FIXME: don't ignore attributes.
10046
10047  // If it's explicit specializations all the way down, just forget
10048  // about the template header and build an appropriate non-templated
10049  // friend.  TODO: for source fidelity, remember the headers.
10050  if (isAllExplicitSpecializations) {
10051    if (SS.isEmpty()) {
10052      bool Owned = false;
10053      bool IsDependent = false;
10054      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10055                      Attr, AS_public,
10056                      /*ModulePrivateLoc=*/SourceLocation(),
10057                      MultiTemplateParamsArg(), Owned, IsDependent,
10058                      /*ScopedEnumKWLoc=*/SourceLocation(),
10059                      /*ScopedEnumUsesClassTag=*/false,
10060                      /*UnderlyingType=*/TypeResult());
10061    }
10062
10063    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10064    ElaboratedTypeKeyword Keyword
10065      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10066    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10067                                   *Name, NameLoc);
10068    if (T.isNull())
10069      return 0;
10070
10071    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10072    if (isa<DependentNameType>(T)) {
10073      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10074      TL.setElaboratedKeywordLoc(TagLoc);
10075      TL.setQualifierLoc(QualifierLoc);
10076      TL.setNameLoc(NameLoc);
10077    } else {
10078      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10079      TL.setElaboratedKeywordLoc(TagLoc);
10080      TL.setQualifierLoc(QualifierLoc);
10081      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10082    }
10083
10084    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10085                                            TSI, FriendLoc);
10086    Friend->setAccess(AS_public);
10087    CurContext->addDecl(Friend);
10088    return Friend;
10089  }
10090
10091  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10092
10093
10094
10095  // Handle the case of a templated-scope friend class.  e.g.
10096  //   template <class T> class A<T>::B;
10097  // FIXME: we don't support these right now.
10098  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10099  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10100  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10101  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10102  TL.setElaboratedKeywordLoc(TagLoc);
10103  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10104  TL.setNameLoc(NameLoc);
10105
10106  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10107                                          TSI, FriendLoc);
10108  Friend->setAccess(AS_public);
10109  Friend->setUnsupportedFriend(true);
10110  CurContext->addDecl(Friend);
10111  return Friend;
10112}
10113
10114
10115/// Handle a friend type declaration.  This works in tandem with
10116/// ActOnTag.
10117///
10118/// Notes on friend class templates:
10119///
10120/// We generally treat friend class declarations as if they were
10121/// declaring a class.  So, for example, the elaborated type specifier
10122/// in a friend declaration is required to obey the restrictions of a
10123/// class-head (i.e. no typedefs in the scope chain), template
10124/// parameters are required to match up with simple template-ids, &c.
10125/// However, unlike when declaring a template specialization, it's
10126/// okay to refer to a template specialization without an empty
10127/// template parameter declaration, e.g.
10128///   friend class A<T>::B<unsigned>;
10129/// We permit this as a special case; if there are any template
10130/// parameters present at all, require proper matching, i.e.
10131///   template <> template <class T> friend class A<int>::B;
10132Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10133                                MultiTemplateParamsArg TempParams) {
10134  SourceLocation Loc = DS.getLocStart();
10135
10136  assert(DS.isFriendSpecified());
10137  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10138
10139  // Try to convert the decl specifier to a type.  This works for
10140  // friend templates because ActOnTag never produces a ClassTemplateDecl
10141  // for a TUK_Friend.
10142  Declarator TheDeclarator(DS, Declarator::MemberContext);
10143  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10144  QualType T = TSI->getType();
10145  if (TheDeclarator.isInvalidType())
10146    return 0;
10147
10148  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10149    return 0;
10150
10151  // This is definitely an error in C++98.  It's probably meant to
10152  // be forbidden in C++0x, too, but the specification is just
10153  // poorly written.
10154  //
10155  // The problem is with declarations like the following:
10156  //   template <T> friend A<T>::foo;
10157  // where deciding whether a class C is a friend or not now hinges
10158  // on whether there exists an instantiation of A that causes
10159  // 'foo' to equal C.  There are restrictions on class-heads
10160  // (which we declare (by fiat) elaborated friend declarations to
10161  // be) that makes this tractable.
10162  //
10163  // FIXME: handle "template <> friend class A<T>;", which
10164  // is possibly well-formed?  Who even knows?
10165  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10166    Diag(Loc, diag::err_tagless_friend_type_template)
10167      << DS.getSourceRange();
10168    return 0;
10169  }
10170
10171  // C++98 [class.friend]p1: A friend of a class is a function
10172  //   or class that is not a member of the class . . .
10173  // This is fixed in DR77, which just barely didn't make the C++03
10174  // deadline.  It's also a very silly restriction that seriously
10175  // affects inner classes and which nobody else seems to implement;
10176  // thus we never diagnose it, not even in -pedantic.
10177  //
10178  // But note that we could warn about it: it's always useless to
10179  // friend one of your own members (it's not, however, worthless to
10180  // friend a member of an arbitrary specialization of your template).
10181
10182  Decl *D;
10183  if (unsigned NumTempParamLists = TempParams.size())
10184    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10185                                   NumTempParamLists,
10186                                   TempParams.release(),
10187                                   TSI,
10188                                   DS.getFriendSpecLoc());
10189  else
10190    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10191
10192  if (!D)
10193    return 0;
10194
10195  D->setAccess(AS_public);
10196  CurContext->addDecl(D);
10197
10198  return D;
10199}
10200
10201Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10202                                    MultiTemplateParamsArg TemplateParams) {
10203  const DeclSpec &DS = D.getDeclSpec();
10204
10205  assert(DS.isFriendSpecified());
10206  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10207
10208  SourceLocation Loc = D.getIdentifierLoc();
10209  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10210
10211  // C++ [class.friend]p1
10212  //   A friend of a class is a function or class....
10213  // Note that this sees through typedefs, which is intended.
10214  // It *doesn't* see through dependent types, which is correct
10215  // according to [temp.arg.type]p3:
10216  //   If a declaration acquires a function type through a
10217  //   type dependent on a template-parameter and this causes
10218  //   a declaration that does not use the syntactic form of a
10219  //   function declarator to have a function type, the program
10220  //   is ill-formed.
10221  if (!TInfo->getType()->isFunctionType()) {
10222    Diag(Loc, diag::err_unexpected_friend);
10223
10224    // It might be worthwhile to try to recover by creating an
10225    // appropriate declaration.
10226    return 0;
10227  }
10228
10229  // C++ [namespace.memdef]p3
10230  //  - If a friend declaration in a non-local class first declares a
10231  //    class or function, the friend class or function is a member
10232  //    of the innermost enclosing namespace.
10233  //  - The name of the friend is not found by simple name lookup
10234  //    until a matching declaration is provided in that namespace
10235  //    scope (either before or after the class declaration granting
10236  //    friendship).
10237  //  - If a friend function is called, its name may be found by the
10238  //    name lookup that considers functions from namespaces and
10239  //    classes associated with the types of the function arguments.
10240  //  - When looking for a prior declaration of a class or a function
10241  //    declared as a friend, scopes outside the innermost enclosing
10242  //    namespace scope are not considered.
10243
10244  CXXScopeSpec &SS = D.getCXXScopeSpec();
10245  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10246  DeclarationName Name = NameInfo.getName();
10247  assert(Name);
10248
10249  // Check for unexpanded parameter packs.
10250  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10251      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10252      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10253    return 0;
10254
10255  // The context we found the declaration in, or in which we should
10256  // create the declaration.
10257  DeclContext *DC;
10258  Scope *DCScope = S;
10259  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10260                        ForRedeclaration);
10261
10262  // FIXME: there are different rules in local classes
10263
10264  // There are four cases here.
10265  //   - There's no scope specifier, in which case we just go to the
10266  //     appropriate scope and look for a function or function template
10267  //     there as appropriate.
10268  // Recover from invalid scope qualifiers as if they just weren't there.
10269  if (SS.isInvalid() || !SS.isSet()) {
10270    // C++0x [namespace.memdef]p3:
10271    //   If the name in a friend declaration is neither qualified nor
10272    //   a template-id and the declaration is a function or an
10273    //   elaborated-type-specifier, the lookup to determine whether
10274    //   the entity has been previously declared shall not consider
10275    //   any scopes outside the innermost enclosing namespace.
10276    // C++0x [class.friend]p11:
10277    //   If a friend declaration appears in a local class and the name
10278    //   specified is an unqualified name, a prior declaration is
10279    //   looked up without considering scopes that are outside the
10280    //   innermost enclosing non-class scope. For a friend function
10281    //   declaration, if there is no prior declaration, the program is
10282    //   ill-formed.
10283    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10284    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10285
10286    // Find the appropriate context according to the above.
10287    DC = CurContext;
10288    while (true) {
10289      // Skip class contexts.  If someone can cite chapter and verse
10290      // for this behavior, that would be nice --- it's what GCC and
10291      // EDG do, and it seems like a reasonable intent, but the spec
10292      // really only says that checks for unqualified existing
10293      // declarations should stop at the nearest enclosing namespace,
10294      // not that they should only consider the nearest enclosing
10295      // namespace.
10296      while (DC->isRecord() || DC->isTransparentContext())
10297        DC = DC->getParent();
10298
10299      LookupQualifiedName(Previous, DC);
10300
10301      // TODO: decide what we think about using declarations.
10302      if (isLocal || !Previous.empty())
10303        break;
10304
10305      if (isTemplateId) {
10306        if (isa<TranslationUnitDecl>(DC)) break;
10307      } else {
10308        if (DC->isFileContext()) break;
10309      }
10310      DC = DC->getParent();
10311    }
10312
10313    // C++ [class.friend]p1: A friend of a class is a function or
10314    //   class that is not a member of the class . . .
10315    // C++11 changes this for both friend types and functions.
10316    // Most C++ 98 compilers do seem to give an error here, so
10317    // we do, too.
10318    if (!Previous.empty() && DC->Equals(CurContext))
10319      Diag(DS.getFriendSpecLoc(),
10320           getLangOpts().CPlusPlus0x ?
10321             diag::warn_cxx98_compat_friend_is_member :
10322             diag::err_friend_is_member);
10323
10324    DCScope = getScopeForDeclContext(S, DC);
10325
10326    // C++ [class.friend]p6:
10327    //   A function can be defined in a friend declaration of a class if and
10328    //   only if the class is a non-local class (9.8), the function name is
10329    //   unqualified, and the function has namespace scope.
10330    if (isLocal && D.isFunctionDefinition()) {
10331      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10332    }
10333
10334  //   - There's a non-dependent scope specifier, in which case we
10335  //     compute it and do a previous lookup there for a function
10336  //     or function template.
10337  } else if (!SS.getScopeRep()->isDependent()) {
10338    DC = computeDeclContext(SS);
10339    if (!DC) return 0;
10340
10341    if (RequireCompleteDeclContext(SS, DC)) return 0;
10342
10343    LookupQualifiedName(Previous, DC);
10344
10345    // Ignore things found implicitly in the wrong scope.
10346    // TODO: better diagnostics for this case.  Suggesting the right
10347    // qualified scope would be nice...
10348    LookupResult::Filter F = Previous.makeFilter();
10349    while (F.hasNext()) {
10350      NamedDecl *D = F.next();
10351      if (!DC->InEnclosingNamespaceSetOf(
10352              D->getDeclContext()->getRedeclContext()))
10353        F.erase();
10354    }
10355    F.done();
10356
10357    if (Previous.empty()) {
10358      D.setInvalidType();
10359      Diag(Loc, diag::err_qualified_friend_not_found)
10360          << Name << TInfo->getType();
10361      return 0;
10362    }
10363
10364    // C++ [class.friend]p1: A friend of a class is a function or
10365    //   class that is not a member of the class . . .
10366    if (DC->Equals(CurContext))
10367      Diag(DS.getFriendSpecLoc(),
10368           getLangOpts().CPlusPlus0x ?
10369             diag::warn_cxx98_compat_friend_is_member :
10370             diag::err_friend_is_member);
10371
10372    if (D.isFunctionDefinition()) {
10373      // C++ [class.friend]p6:
10374      //   A function can be defined in a friend declaration of a class if and
10375      //   only if the class is a non-local class (9.8), the function name is
10376      //   unqualified, and the function has namespace scope.
10377      SemaDiagnosticBuilder DB
10378        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10379
10380      DB << SS.getScopeRep();
10381      if (DC->isFileContext())
10382        DB << FixItHint::CreateRemoval(SS.getRange());
10383      SS.clear();
10384    }
10385
10386  //   - There's a scope specifier that does not match any template
10387  //     parameter lists, in which case we use some arbitrary context,
10388  //     create a method or method template, and wait for instantiation.
10389  //   - There's a scope specifier that does match some template
10390  //     parameter lists, which we don't handle right now.
10391  } else {
10392    if (D.isFunctionDefinition()) {
10393      // C++ [class.friend]p6:
10394      //   A function can be defined in a friend declaration of a class if and
10395      //   only if the class is a non-local class (9.8), the function name is
10396      //   unqualified, and the function has namespace scope.
10397      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10398        << SS.getScopeRep();
10399    }
10400
10401    DC = CurContext;
10402    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10403  }
10404
10405  if (!DC->isRecord()) {
10406    // This implies that it has to be an operator or function.
10407    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10408        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10409        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10410      Diag(Loc, diag::err_introducing_special_friend) <<
10411        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10412         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10413      return 0;
10414    }
10415  }
10416
10417  // FIXME: This is an egregious hack to cope with cases where the scope stack
10418  // does not contain the declaration context, i.e., in an out-of-line
10419  // definition of a class.
10420  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10421  if (!DCScope) {
10422    FakeDCScope.setEntity(DC);
10423    DCScope = &FakeDCScope;
10424  }
10425
10426  bool AddToScope = true;
10427  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10428                                          move(TemplateParams), AddToScope);
10429  if (!ND) return 0;
10430
10431  assert(ND->getDeclContext() == DC);
10432  assert(ND->getLexicalDeclContext() == CurContext);
10433
10434  // Add the function declaration to the appropriate lookup tables,
10435  // adjusting the redeclarations list as necessary.  We don't
10436  // want to do this yet if the friending class is dependent.
10437  //
10438  // Also update the scope-based lookup if the target context's
10439  // lookup context is in lexical scope.
10440  if (!CurContext->isDependentContext()) {
10441    DC = DC->getRedeclContext();
10442    DC->makeDeclVisibleInContext(ND);
10443    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10444      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10445  }
10446
10447  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10448                                       D.getIdentifierLoc(), ND,
10449                                       DS.getFriendSpecLoc());
10450  FrD->setAccess(AS_public);
10451  CurContext->addDecl(FrD);
10452
10453  if (ND->isInvalidDecl())
10454    FrD->setInvalidDecl();
10455  else {
10456    FunctionDecl *FD;
10457    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10458      FD = FTD->getTemplatedDecl();
10459    else
10460      FD = cast<FunctionDecl>(ND);
10461
10462    // Mark templated-scope function declarations as unsupported.
10463    if (FD->getNumTemplateParameterLists())
10464      FrD->setUnsupportedFriend(true);
10465  }
10466
10467  return ND;
10468}
10469
10470void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10471  AdjustDeclIfTemplate(Dcl);
10472
10473  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10474  if (!Fn) {
10475    Diag(DelLoc, diag::err_deleted_non_function);
10476    return;
10477  }
10478  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10479    Diag(DelLoc, diag::err_deleted_decl_not_first);
10480    Diag(Prev->getLocation(), diag::note_previous_declaration);
10481    // If the declaration wasn't the first, we delete the function anyway for
10482    // recovery.
10483  }
10484  Fn->setDeletedAsWritten();
10485
10486  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10487  if (!MD)
10488    return;
10489
10490  // A deleted special member function is trivial if the corresponding
10491  // implicitly-declared function would have been.
10492  switch (getSpecialMember(MD)) {
10493  case CXXInvalid:
10494    break;
10495  case CXXDefaultConstructor:
10496    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10497    break;
10498  case CXXCopyConstructor:
10499    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10500    break;
10501  case CXXMoveConstructor:
10502    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10503    break;
10504  case CXXCopyAssignment:
10505    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10506    break;
10507  case CXXMoveAssignment:
10508    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10509    break;
10510  case CXXDestructor:
10511    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10512    break;
10513  }
10514}
10515
10516void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10517  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10518
10519  if (MD) {
10520    if (MD->getParent()->isDependentType()) {
10521      MD->setDefaulted();
10522      MD->setExplicitlyDefaulted();
10523      return;
10524    }
10525
10526    CXXSpecialMember Member = getSpecialMember(MD);
10527    if (Member == CXXInvalid) {
10528      Diag(DefaultLoc, diag::err_default_special_members);
10529      return;
10530    }
10531
10532    MD->setDefaulted();
10533    MD->setExplicitlyDefaulted();
10534
10535    // If this definition appears within the record, do the checking when
10536    // the record is complete.
10537    const FunctionDecl *Primary = MD;
10538    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10539      // Find the uninstantiated declaration that actually had the '= default'
10540      // on it.
10541      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10542
10543    if (Primary == Primary->getCanonicalDecl())
10544      return;
10545
10546    switch (Member) {
10547    case CXXDefaultConstructor: {
10548      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10549      CheckExplicitlyDefaultedDefaultConstructor(CD);
10550      if (!CD->isInvalidDecl())
10551        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10552      break;
10553    }
10554
10555    case CXXCopyConstructor: {
10556      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10557      CheckExplicitlyDefaultedCopyConstructor(CD);
10558      if (!CD->isInvalidDecl())
10559        DefineImplicitCopyConstructor(DefaultLoc, CD);
10560      break;
10561    }
10562
10563    case CXXCopyAssignment: {
10564      CheckExplicitlyDefaultedCopyAssignment(MD);
10565      if (!MD->isInvalidDecl())
10566        DefineImplicitCopyAssignment(DefaultLoc, MD);
10567      break;
10568    }
10569
10570    case CXXDestructor: {
10571      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10572      CheckExplicitlyDefaultedDestructor(DD);
10573      if (!DD->isInvalidDecl())
10574        DefineImplicitDestructor(DefaultLoc, DD);
10575      break;
10576    }
10577
10578    case CXXMoveConstructor: {
10579      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10580      CheckExplicitlyDefaultedMoveConstructor(CD);
10581      if (!CD->isInvalidDecl())
10582        DefineImplicitMoveConstructor(DefaultLoc, CD);
10583      break;
10584    }
10585
10586    case CXXMoveAssignment: {
10587      CheckExplicitlyDefaultedMoveAssignment(MD);
10588      if (!MD->isInvalidDecl())
10589        DefineImplicitMoveAssignment(DefaultLoc, MD);
10590      break;
10591    }
10592
10593    case CXXInvalid:
10594      llvm_unreachable("Invalid special member.");
10595    }
10596  } else {
10597    Diag(DefaultLoc, diag::err_default_special_members);
10598  }
10599}
10600
10601static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10602  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10603    Stmt *SubStmt = *CI;
10604    if (!SubStmt)
10605      continue;
10606    if (isa<ReturnStmt>(SubStmt))
10607      Self.Diag(SubStmt->getLocStart(),
10608           diag::err_return_in_constructor_handler);
10609    if (!isa<Expr>(SubStmt))
10610      SearchForReturnInStmt(Self, SubStmt);
10611  }
10612}
10613
10614void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10615  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10616    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10617    SearchForReturnInStmt(*this, Handler);
10618  }
10619}
10620
10621bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10622                                             const CXXMethodDecl *Old) {
10623  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10624  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10625
10626  if (Context.hasSameType(NewTy, OldTy) ||
10627      NewTy->isDependentType() || OldTy->isDependentType())
10628    return false;
10629
10630  // Check if the return types are covariant
10631  QualType NewClassTy, OldClassTy;
10632
10633  /// Both types must be pointers or references to classes.
10634  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10635    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10636      NewClassTy = NewPT->getPointeeType();
10637      OldClassTy = OldPT->getPointeeType();
10638    }
10639  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10640    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10641      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10642        NewClassTy = NewRT->getPointeeType();
10643        OldClassTy = OldRT->getPointeeType();
10644      }
10645    }
10646  }
10647
10648  // The return types aren't either both pointers or references to a class type.
10649  if (NewClassTy.isNull()) {
10650    Diag(New->getLocation(),
10651         diag::err_different_return_type_for_overriding_virtual_function)
10652      << New->getDeclName() << NewTy << OldTy;
10653    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10654
10655    return true;
10656  }
10657
10658  // C++ [class.virtual]p6:
10659  //   If the return type of D::f differs from the return type of B::f, the
10660  //   class type in the return type of D::f shall be complete at the point of
10661  //   declaration of D::f or shall be the class type D.
10662  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10663    if (!RT->isBeingDefined() &&
10664        RequireCompleteType(New->getLocation(), NewClassTy,
10665                            diag::err_covariant_return_incomplete,
10666                            New->getDeclName()))
10667    return true;
10668  }
10669
10670  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10671    // Check if the new class derives from the old class.
10672    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10673      Diag(New->getLocation(),
10674           diag::err_covariant_return_not_derived)
10675      << New->getDeclName() << NewTy << OldTy;
10676      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10677      return true;
10678    }
10679
10680    // Check if we the conversion from derived to base is valid.
10681    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10682                    diag::err_covariant_return_inaccessible_base,
10683                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10684                    // FIXME: Should this point to the return type?
10685                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10686      // FIXME: this note won't trigger for delayed access control
10687      // diagnostics, and it's impossible to get an undelayed error
10688      // here from access control during the original parse because
10689      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10690      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10691      return true;
10692    }
10693  }
10694
10695  // The qualifiers of the return types must be the same.
10696  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10697    Diag(New->getLocation(),
10698         diag::err_covariant_return_type_different_qualifications)
10699    << New->getDeclName() << NewTy << OldTy;
10700    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10701    return true;
10702  };
10703
10704
10705  // The new class type must have the same or less qualifiers as the old type.
10706  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10707    Diag(New->getLocation(),
10708         diag::err_covariant_return_type_class_type_more_qualified)
10709    << New->getDeclName() << NewTy << OldTy;
10710    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10711    return true;
10712  };
10713
10714  return false;
10715}
10716
10717/// \brief Mark the given method pure.
10718///
10719/// \param Method the method to be marked pure.
10720///
10721/// \param InitRange the source range that covers the "0" initializer.
10722bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10723  SourceLocation EndLoc = InitRange.getEnd();
10724  if (EndLoc.isValid())
10725    Method->setRangeEnd(EndLoc);
10726
10727  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10728    Method->setPure();
10729    return false;
10730  }
10731
10732  if (!Method->isInvalidDecl())
10733    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10734      << Method->getDeclName() << InitRange;
10735  return true;
10736}
10737
10738/// \brief Determine whether the given declaration is a static data member.
10739static bool isStaticDataMember(Decl *D) {
10740  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10741  if (!Var)
10742    return false;
10743
10744  return Var->isStaticDataMember();
10745}
10746/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10747/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10748/// is a fresh scope pushed for just this purpose.
10749///
10750/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10751/// static data member of class X, names should be looked up in the scope of
10752/// class X.
10753void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10754  // If there is no declaration, there was an error parsing it.
10755  if (D == 0 || D->isInvalidDecl()) return;
10756
10757  // We should only get called for declarations with scope specifiers, like:
10758  //   int foo::bar;
10759  assert(D->isOutOfLine());
10760  EnterDeclaratorContext(S, D->getDeclContext());
10761
10762  // If we are parsing the initializer for a static data member, push a
10763  // new expression evaluation context that is associated with this static
10764  // data member.
10765  if (isStaticDataMember(D))
10766    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10767}
10768
10769/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10770/// initializer for the out-of-line declaration 'D'.
10771void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10772  // If there is no declaration, there was an error parsing it.
10773  if (D == 0 || D->isInvalidDecl()) return;
10774
10775  if (isStaticDataMember(D))
10776    PopExpressionEvaluationContext();
10777
10778  assert(D->isOutOfLine());
10779  ExitDeclaratorContext(S);
10780}
10781
10782/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10783/// C++ if/switch/while/for statement.
10784/// e.g: "if (int x = f()) {...}"
10785DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10786  // C++ 6.4p2:
10787  // The declarator shall not specify a function or an array.
10788  // The type-specifier-seq shall not contain typedef and shall not declare a
10789  // new class or enumeration.
10790  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10791         "Parser allowed 'typedef' as storage class of condition decl.");
10792
10793  Decl *Dcl = ActOnDeclarator(S, D);
10794  if (!Dcl)
10795    return true;
10796
10797  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10798    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10799      << D.getSourceRange();
10800    return true;
10801  }
10802
10803  return Dcl;
10804}
10805
10806void Sema::LoadExternalVTableUses() {
10807  if (!ExternalSource)
10808    return;
10809
10810  SmallVector<ExternalVTableUse, 4> VTables;
10811  ExternalSource->ReadUsedVTables(VTables);
10812  SmallVector<VTableUse, 4> NewUses;
10813  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10814    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10815      = VTablesUsed.find(VTables[I].Record);
10816    // Even if a definition wasn't required before, it may be required now.
10817    if (Pos != VTablesUsed.end()) {
10818      if (!Pos->second && VTables[I].DefinitionRequired)
10819        Pos->second = true;
10820      continue;
10821    }
10822
10823    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10824    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10825  }
10826
10827  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10828}
10829
10830void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10831                          bool DefinitionRequired) {
10832  // Ignore any vtable uses in unevaluated operands or for classes that do
10833  // not have a vtable.
10834  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10835      CurContext->isDependentContext() ||
10836      ExprEvalContexts.back().Context == Unevaluated)
10837    return;
10838
10839  // Try to insert this class into the map.
10840  LoadExternalVTableUses();
10841  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10842  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10843    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10844  if (!Pos.second) {
10845    // If we already had an entry, check to see if we are promoting this vtable
10846    // to required a definition. If so, we need to reappend to the VTableUses
10847    // list, since we may have already processed the first entry.
10848    if (DefinitionRequired && !Pos.first->second) {
10849      Pos.first->second = true;
10850    } else {
10851      // Otherwise, we can early exit.
10852      return;
10853    }
10854  }
10855
10856  // Local classes need to have their virtual members marked
10857  // immediately. For all other classes, we mark their virtual members
10858  // at the end of the translation unit.
10859  if (Class->isLocalClass())
10860    MarkVirtualMembersReferenced(Loc, Class);
10861  else
10862    VTableUses.push_back(std::make_pair(Class, Loc));
10863}
10864
10865bool Sema::DefineUsedVTables() {
10866  LoadExternalVTableUses();
10867  if (VTableUses.empty())
10868    return false;
10869
10870  // Note: The VTableUses vector could grow as a result of marking
10871  // the members of a class as "used", so we check the size each
10872  // time through the loop and prefer indices (with are stable) to
10873  // iterators (which are not).
10874  bool DefinedAnything = false;
10875  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10876    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10877    if (!Class)
10878      continue;
10879
10880    SourceLocation Loc = VTableUses[I].second;
10881
10882    // If this class has a key function, but that key function is
10883    // defined in another translation unit, we don't need to emit the
10884    // vtable even though we're using it.
10885    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10886    if (KeyFunction && !KeyFunction->hasBody()) {
10887      switch (KeyFunction->getTemplateSpecializationKind()) {
10888      case TSK_Undeclared:
10889      case TSK_ExplicitSpecialization:
10890      case TSK_ExplicitInstantiationDeclaration:
10891        // The key function is in another translation unit.
10892        continue;
10893
10894      case TSK_ExplicitInstantiationDefinition:
10895      case TSK_ImplicitInstantiation:
10896        // We will be instantiating the key function.
10897        break;
10898      }
10899    } else if (!KeyFunction) {
10900      // If we have a class with no key function that is the subject
10901      // of an explicit instantiation declaration, suppress the
10902      // vtable; it will live with the explicit instantiation
10903      // definition.
10904      bool IsExplicitInstantiationDeclaration
10905        = Class->getTemplateSpecializationKind()
10906                                      == TSK_ExplicitInstantiationDeclaration;
10907      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10908                                 REnd = Class->redecls_end();
10909           R != REnd; ++R) {
10910        TemplateSpecializationKind TSK
10911          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10912        if (TSK == TSK_ExplicitInstantiationDeclaration)
10913          IsExplicitInstantiationDeclaration = true;
10914        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10915          IsExplicitInstantiationDeclaration = false;
10916          break;
10917        }
10918      }
10919
10920      if (IsExplicitInstantiationDeclaration)
10921        continue;
10922    }
10923
10924    // Mark all of the virtual members of this class as referenced, so
10925    // that we can build a vtable. Then, tell the AST consumer that a
10926    // vtable for this class is required.
10927    DefinedAnything = true;
10928    MarkVirtualMembersReferenced(Loc, Class);
10929    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10930    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10931
10932    // Optionally warn if we're emitting a weak vtable.
10933    if (Class->getLinkage() == ExternalLinkage &&
10934        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10935      const FunctionDecl *KeyFunctionDef = 0;
10936      if (!KeyFunction ||
10937          (KeyFunction->hasBody(KeyFunctionDef) &&
10938           KeyFunctionDef->isInlined()))
10939        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10940             TSK_ExplicitInstantiationDefinition
10941             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10942          << Class;
10943    }
10944  }
10945  VTableUses.clear();
10946
10947  return DefinedAnything;
10948}
10949
10950void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10951                                        const CXXRecordDecl *RD) {
10952  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10953       e = RD->method_end(); i != e; ++i) {
10954    CXXMethodDecl *MD = &*i;
10955
10956    // C++ [basic.def.odr]p2:
10957    //   [...] A virtual member function is used if it is not pure. [...]
10958    if (MD->isVirtual() && !MD->isPure())
10959      MarkFunctionReferenced(Loc, MD);
10960  }
10961
10962  // Only classes that have virtual bases need a VTT.
10963  if (RD->getNumVBases() == 0)
10964    return;
10965
10966  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10967           e = RD->bases_end(); i != e; ++i) {
10968    const CXXRecordDecl *Base =
10969        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10970    if (Base->getNumVBases() == 0)
10971      continue;
10972    MarkVirtualMembersReferenced(Loc, Base);
10973  }
10974}
10975
10976/// SetIvarInitializers - This routine builds initialization ASTs for the
10977/// Objective-C implementation whose ivars need be initialized.
10978void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10979  if (!getLangOpts().CPlusPlus)
10980    return;
10981  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10982    SmallVector<ObjCIvarDecl*, 8> ivars;
10983    CollectIvarsToConstructOrDestruct(OID, ivars);
10984    if (ivars.empty())
10985      return;
10986    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10987    for (unsigned i = 0; i < ivars.size(); i++) {
10988      FieldDecl *Field = ivars[i];
10989      if (Field->isInvalidDecl())
10990        continue;
10991
10992      CXXCtorInitializer *Member;
10993      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10994      InitializationKind InitKind =
10995        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10996
10997      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10998      ExprResult MemberInit =
10999        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11000      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11001      // Note, MemberInit could actually come back empty if no initialization
11002      // is required (e.g., because it would call a trivial default constructor)
11003      if (!MemberInit.get() || MemberInit.isInvalid())
11004        continue;
11005
11006      Member =
11007        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11008                                         SourceLocation(),
11009                                         MemberInit.takeAs<Expr>(),
11010                                         SourceLocation());
11011      AllToInit.push_back(Member);
11012
11013      // Be sure that the destructor is accessible and is marked as referenced.
11014      if (const RecordType *RecordTy
11015                  = Context.getBaseElementType(Field->getType())
11016                                                        ->getAs<RecordType>()) {
11017                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11018        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11019          MarkFunctionReferenced(Field->getLocation(), Destructor);
11020          CheckDestructorAccess(Field->getLocation(), Destructor,
11021                            PDiag(diag::err_access_dtor_ivar)
11022                              << Context.getBaseElementType(Field->getType()));
11023        }
11024      }
11025    }
11026    ObjCImplementation->setIvarInitializers(Context,
11027                                            AllToInit.data(), AllToInit.size());
11028  }
11029}
11030
11031static
11032void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11033                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11034                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11035                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11036                           Sema &S) {
11037  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11038                                                   CE = Current.end();
11039  if (Ctor->isInvalidDecl())
11040    return;
11041
11042  const FunctionDecl *FNTarget = 0;
11043  CXXConstructorDecl *Target;
11044
11045  // We ignore the result here since if we don't have a body, Target will be
11046  // null below.
11047  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11048  Target
11049= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11050
11051  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11052                     // Avoid dereferencing a null pointer here.
11053                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11054
11055  if (!Current.insert(Canonical))
11056    return;
11057
11058  // We know that beyond here, we aren't chaining into a cycle.
11059  if (!Target || !Target->isDelegatingConstructor() ||
11060      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11061    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11062      Valid.insert(*CI);
11063    Current.clear();
11064  // We've hit a cycle.
11065  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11066             Current.count(TCanonical)) {
11067    // If we haven't diagnosed this cycle yet, do so now.
11068    if (!Invalid.count(TCanonical)) {
11069      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11070             diag::warn_delegating_ctor_cycle)
11071        << Ctor;
11072
11073      // Don't add a note for a function delegating directo to itself.
11074      if (TCanonical != Canonical)
11075        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11076
11077      CXXConstructorDecl *C = Target;
11078      while (C->getCanonicalDecl() != Canonical) {
11079        (void)C->getTargetConstructor()->hasBody(FNTarget);
11080        assert(FNTarget && "Ctor cycle through bodiless function");
11081
11082        C
11083       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11084        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11085      }
11086    }
11087
11088    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11089      Invalid.insert(*CI);
11090    Current.clear();
11091  } else {
11092    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11093  }
11094}
11095
11096
11097void Sema::CheckDelegatingCtorCycles() {
11098  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11099
11100  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11101                                                   CE = Current.end();
11102
11103  for (DelegatingCtorDeclsType::iterator
11104         I = DelegatingCtorDecls.begin(ExternalSource),
11105         E = DelegatingCtorDecls.end();
11106       I != E; ++I) {
11107   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11108  }
11109
11110  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11111    (*CI)->setInvalidDecl();
11112}
11113
11114namespace {
11115  /// \brief AST visitor that finds references to the 'this' expression.
11116  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11117    Sema &S;
11118
11119  public:
11120    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11121
11122    bool VisitCXXThisExpr(CXXThisExpr *E) {
11123      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11124        << E->isImplicit();
11125      return false;
11126    }
11127  };
11128}
11129
11130bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11131  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11132  if (!TSInfo)
11133    return false;
11134
11135  TypeLoc TL = TSInfo->getTypeLoc();
11136  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11137  if (!ProtoTL)
11138    return false;
11139
11140  // C++11 [expr.prim.general]p3:
11141  //   [The expression this] shall not appear before the optional
11142  //   cv-qualifier-seq and it shall not appear within the declaration of a
11143  //   static member function (although its type and value category are defined
11144  //   within a static member function as they are within a non-static member
11145  //   function). [ Note: this is because declaration matching does not occur
11146  //  until the complete declarator is known. - end note ]
11147  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11148  FindCXXThisExpr Finder(*this);
11149
11150  // If the return type came after the cv-qualifier-seq, check it now.
11151  if (Proto->hasTrailingReturn() &&
11152      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11153    return true;
11154
11155  // Check the exception specification.
11156  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11157    return true;
11158
11159  return checkThisInStaticMemberFunctionAttributes(Method);
11160}
11161
11162bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11163  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11164  if (!TSInfo)
11165    return false;
11166
11167  TypeLoc TL = TSInfo->getTypeLoc();
11168  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11169  if (!ProtoTL)
11170    return false;
11171
11172  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11173  FindCXXThisExpr Finder(*this);
11174
11175  switch (Proto->getExceptionSpecType()) {
11176  case EST_Uninstantiated:
11177  case EST_BasicNoexcept:
11178  case EST_Delayed:
11179  case EST_DynamicNone:
11180  case EST_MSAny:
11181  case EST_None:
11182    break;
11183
11184  case EST_ComputedNoexcept:
11185    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11186      return true;
11187
11188  case EST_Dynamic:
11189    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11190         EEnd = Proto->exception_end();
11191         E != EEnd; ++E) {
11192      if (!Finder.TraverseType(*E))
11193        return true;
11194    }
11195    break;
11196  }
11197
11198  return false;
11199}
11200
11201bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11202  FindCXXThisExpr Finder(*this);
11203
11204  // Check attributes.
11205  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11206       A != AEnd; ++A) {
11207    // FIXME: This should be emitted by tblgen.
11208    Expr *Arg = 0;
11209    ArrayRef<Expr *> Args;
11210    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11211      Arg = G->getArg();
11212    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11213      Arg = G->getArg();
11214    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11215      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11216    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11217      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11218    else if (ExclusiveLockFunctionAttr *ELF
11219               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11220      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11221    else if (SharedLockFunctionAttr *SLF
11222               = dyn_cast<SharedLockFunctionAttr>(*A))
11223      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11224    else if (ExclusiveTrylockFunctionAttr *ETLF
11225               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11226      Arg = ETLF->getSuccessValue();
11227      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11228    } else if (SharedTrylockFunctionAttr *STLF
11229                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11230      Arg = STLF->getSuccessValue();
11231      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11232    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11233      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11234    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11235      Arg = LR->getArg();
11236    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11237      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11238    else if (ExclusiveLocksRequiredAttr *ELR
11239               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11240      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11241    else if (SharedLocksRequiredAttr *SLR
11242               = dyn_cast<SharedLocksRequiredAttr>(*A))
11243      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11244
11245    if (Arg && !Finder.TraverseStmt(Arg))
11246      return true;
11247
11248    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11249      if (!Finder.TraverseStmt(Args[I]))
11250        return true;
11251    }
11252  }
11253
11254  return false;
11255}
11256
11257void
11258Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11259                                  ArrayRef<ParsedType> DynamicExceptions,
11260                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11261                                  Expr *NoexceptExpr,
11262                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11263                                  FunctionProtoType::ExtProtoInfo &EPI) {
11264  Exceptions.clear();
11265  EPI.ExceptionSpecType = EST;
11266  if (EST == EST_Dynamic) {
11267    Exceptions.reserve(DynamicExceptions.size());
11268    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11269      // FIXME: Preserve type source info.
11270      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11271
11272      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11273      collectUnexpandedParameterPacks(ET, Unexpanded);
11274      if (!Unexpanded.empty()) {
11275        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11276                                         UPPC_ExceptionType,
11277                                         Unexpanded);
11278        continue;
11279      }
11280
11281      // Check that the type is valid for an exception spec, and
11282      // drop it if not.
11283      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11284        Exceptions.push_back(ET);
11285    }
11286    EPI.NumExceptions = Exceptions.size();
11287    EPI.Exceptions = Exceptions.data();
11288    return;
11289  }
11290
11291  if (EST == EST_ComputedNoexcept) {
11292    // If an error occurred, there's no expression here.
11293    if (NoexceptExpr) {
11294      assert((NoexceptExpr->isTypeDependent() ||
11295              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11296              Context.BoolTy) &&
11297             "Parser should have made sure that the expression is boolean");
11298      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11299        EPI.ExceptionSpecType = EST_BasicNoexcept;
11300        return;
11301      }
11302
11303      if (!NoexceptExpr->isValueDependent())
11304        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11305                         PDiag(diag::err_noexcept_needs_constant_expression),
11306                         /*AllowFold*/ false).take();
11307      EPI.NoexceptExpr = NoexceptExpr;
11308    }
11309    return;
11310  }
11311}
11312
11313/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11314Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11315  // Implicitly declared functions (e.g. copy constructors) are
11316  // __host__ __device__
11317  if (D->isImplicit())
11318    return CFT_HostDevice;
11319
11320  if (D->hasAttr<CUDAGlobalAttr>())
11321    return CFT_Global;
11322
11323  if (D->hasAttr<CUDADeviceAttr>()) {
11324    if (D->hasAttr<CUDAHostAttr>())
11325      return CFT_HostDevice;
11326    else
11327      return CFT_Device;
11328  }
11329
11330  return CFT_Host;
11331}
11332
11333bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11334                           CUDAFunctionTarget CalleeTarget) {
11335  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11336  // Callable from the device only."
11337  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11338    return true;
11339
11340  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11341  // Callable from the host only."
11342  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11343  // Callable from the host only."
11344  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11345      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11346    return true;
11347
11348  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11349    return true;
11350
11351  return false;
11352}
11353