SemaDeclCXX.cpp revision 6a95cd170db65882a76c4abec0b8377951fd3bb6
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  if (Virtual) {
373    // C++ [class.ctor]p5:
374    //   A constructor is trivial if its class has no virtual base classes.
375    Class->setHasTrivialConstructor(false);
376  } else {
377    // C++ [class.ctor]p5:
378    //   A constructor is trivial if all the direct base classes of its
379    //   class have trivial constructors.
380    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
381                                    hasTrivialConstructor());
382  }
383
384  // C++ [class.ctor]p3:
385  //   A destructor is trivial if all the direct base classes of its class
386  //   have trivial destructors.
387  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
388                                 hasTrivialDestructor());
389
390  // Create the base specifier.
391  // FIXME: Allocate via ASTContext?
392  return new CXXBaseSpecifier(SpecifierRange, Virtual,
393                              Class->getTagKind() == RecordDecl::TK_class,
394                              Access, BaseType);
395}
396
397/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
398/// one entry in the base class list of a class specifier, for
399/// example:
400///    class foo : public bar, virtual private baz {
401/// 'public bar' and 'virtual private baz' are each base-specifiers.
402Sema::BaseResult
403Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
404                         bool Virtual, AccessSpecifier Access,
405                         TypeTy *basetype, SourceLocation BaseLoc) {
406  AdjustDeclIfTemplate(classdecl);
407  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
408  QualType BaseType = QualType::getFromOpaquePtr(basetype);
409  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
410                                                      Virtual, Access,
411                                                      BaseType, BaseLoc))
412    return BaseSpec;
413
414  return true;
415}
416
417/// \brief Performs the actual work of attaching the given base class
418/// specifiers to a C++ class.
419bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
420                                unsigned NumBases) {
421 if (NumBases == 0)
422    return false;
423
424  // Used to keep track of which base types we have already seen, so
425  // that we can properly diagnose redundant direct base types. Note
426  // that the key is always the unqualified canonical type of the base
427  // class.
428  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
429
430  // Copy non-redundant base specifiers into permanent storage.
431  unsigned NumGoodBases = 0;
432  bool Invalid = false;
433  for (unsigned idx = 0; idx < NumBases; ++idx) {
434    QualType NewBaseType
435      = Context.getCanonicalType(Bases[idx]->getType());
436    NewBaseType = NewBaseType.getUnqualifiedType();
437
438    if (KnownBaseTypes[NewBaseType]) {
439      // C++ [class.mi]p3:
440      //   A class shall not be specified as a direct base class of a
441      //   derived class more than once.
442      Diag(Bases[idx]->getSourceRange().getBegin(),
443           diag::err_duplicate_base_class)
444        << KnownBaseTypes[NewBaseType]->getType()
445        << Bases[idx]->getSourceRange();
446
447      // Delete the duplicate base class specifier; we're going to
448      // overwrite its pointer later.
449      delete Bases[idx];
450
451      Invalid = true;
452    } else {
453      // Okay, add this new base class.
454      KnownBaseTypes[NewBaseType] = Bases[idx];
455      Bases[NumGoodBases++] = Bases[idx];
456    }
457  }
458
459  // Attach the remaining base class specifiers to the derived class.
460  Class->setBases(Bases, NumGoodBases);
461
462  // Delete the remaining (good) base class specifiers, since their
463  // data has been copied into the CXXRecordDecl.
464  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
465    delete Bases[idx];
466
467  return Invalid;
468}
469
470/// ActOnBaseSpecifiers - Attach the given base specifiers to the
471/// class, after checking whether there are any duplicate base
472/// classes.
473void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
474                               unsigned NumBases) {
475  if (!ClassDecl || !Bases || !NumBases)
476    return;
477
478  AdjustDeclIfTemplate(ClassDecl);
479  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
480                       (CXXBaseSpecifier**)(Bases), NumBases);
481}
482
483//===----------------------------------------------------------------------===//
484// C++ class member Handling
485//===----------------------------------------------------------------------===//
486
487/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
488/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
489/// bitfield width if there is one and 'InitExpr' specifies the initializer if
490/// any.
491Sema::DeclPtrTy
492Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
493                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
494  const DeclSpec &DS = D.getDeclSpec();
495  DeclarationName Name = GetNameForDeclarator(D);
496  Expr *BitWidth = static_cast<Expr*>(BW);
497  Expr *Init = static_cast<Expr*>(InitExpr);
498  SourceLocation Loc = D.getIdentifierLoc();
499
500  bool isFunc = D.isFunctionDeclarator();
501
502  // C++ 9.2p6: A member shall not be declared to have automatic storage
503  // duration (auto, register) or with the extern storage-class-specifier.
504  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
505  // data members and cannot be applied to names declared const or static,
506  // and cannot be applied to reference members.
507  switch (DS.getStorageClassSpec()) {
508    case DeclSpec::SCS_unspecified:
509    case DeclSpec::SCS_typedef:
510    case DeclSpec::SCS_static:
511      // FALL THROUGH.
512      break;
513    case DeclSpec::SCS_mutable:
514      if (isFunc) {
515        if (DS.getStorageClassSpecLoc().isValid())
516          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
517        else
518          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
519
520        // FIXME: It would be nicer if the keyword was ignored only for this
521        // declarator. Otherwise we could get follow-up errors.
522        D.getMutableDeclSpec().ClearStorageClassSpecs();
523      } else {
524        QualType T = GetTypeForDeclarator(D, S);
525        diag::kind err = static_cast<diag::kind>(0);
526        if (T->isReferenceType())
527          err = diag::err_mutable_reference;
528        else if (T.isConstQualified())
529          err = diag::err_mutable_const;
530        if (err != 0) {
531          if (DS.getStorageClassSpecLoc().isValid())
532            Diag(DS.getStorageClassSpecLoc(), err);
533          else
534            Diag(DS.getThreadSpecLoc(), err);
535          // FIXME: It would be nicer if the keyword was ignored only for this
536          // declarator. Otherwise we could get follow-up errors.
537          D.getMutableDeclSpec().ClearStorageClassSpecs();
538        }
539      }
540      break;
541    default:
542      if (DS.getStorageClassSpecLoc().isValid())
543        Diag(DS.getStorageClassSpecLoc(),
544             diag::err_storageclass_invalid_for_member);
545      else
546        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
547      D.getMutableDeclSpec().ClearStorageClassSpecs();
548  }
549
550  if (!isFunc &&
551      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
552      D.getNumTypeObjects() == 0) {
553    // Check also for this case:
554    //
555    // typedef int f();
556    // f a;
557    //
558    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
559    isFunc = TDType->isFunctionType();
560  }
561
562  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
563                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
564                      !isFunc);
565
566  Decl *Member;
567  if (isInstField) {
568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
569                         AS);
570    assert(Member && "HandleField never returns null");
571  } else {
572    Member = ActOnDeclarator(S, D).getAs<Decl>();
573    if (!Member) {
574      if (BitWidth) DeleteExpr(BitWidth);
575      return DeclPtrTy();
576    }
577
578    // Non-instance-fields can't have a bitfield.
579    if (BitWidth) {
580      if (Member->isInvalidDecl()) {
581        // don't emit another diagnostic.
582      } else if (isa<VarDecl>(Member)) {
583        // C++ 9.6p3: A bit-field shall not be a static member.
584        // "static member 'A' cannot be a bit-field"
585        Diag(Loc, diag::err_static_not_bitfield)
586          << Name << BitWidth->getSourceRange();
587      } else if (isa<TypedefDecl>(Member)) {
588        // "typedef member 'x' cannot be a bit-field"
589        Diag(Loc, diag::err_typedef_not_bitfield)
590          << Name << BitWidth->getSourceRange();
591      } else {
592        // A function typedef ("typedef int f(); f a;").
593        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
594        Diag(Loc, diag::err_not_integral_type_bitfield)
595          << Name << cast<ValueDecl>(Member)->getType()
596          << BitWidth->getSourceRange();
597      }
598
599      DeleteExpr(BitWidth);
600      BitWidth = 0;
601      Member->setInvalidDecl();
602    }
603
604    Member->setAccess(AS);
605  }
606
607  assert((Name || isInstField) && "No identifier for non-field ?");
608
609  if (Init)
610    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
611  if (Deleted) // FIXME: Source location is not very good.
612    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
613
614  if (isInstField) {
615    FieldCollector->Add(cast<FieldDecl>(Member));
616    return DeclPtrTy();
617  }
618  return DeclPtrTy::make(Member);
619}
620
621/// ActOnMemInitializer - Handle a C++ member initializer.
622Sema::MemInitResult
623Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
624                          Scope *S,
625                          IdentifierInfo *MemberOrBase,
626                          SourceLocation IdLoc,
627                          SourceLocation LParenLoc,
628                          ExprTy **Args, unsigned NumArgs,
629                          SourceLocation *CommaLocs,
630                          SourceLocation RParenLoc) {
631  CXXConstructorDecl *Constructor
632    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
633  if (!Constructor) {
634    // The user wrote a constructor initializer on a function that is
635    // not a C++ constructor. Ignore the error for now, because we may
636    // have more member initializers coming; we'll diagnose it just
637    // once in ActOnMemInitializers.
638    return true;
639  }
640
641  CXXRecordDecl *ClassDecl = Constructor->getParent();
642
643  // C++ [class.base.init]p2:
644  //   Names in a mem-initializer-id are looked up in the scope of the
645  //   constructor’s class and, if not found in that scope, are looked
646  //   up in the scope containing the constructor’s
647  //   definition. [Note: if the constructor’s class contains a member
648  //   with the same name as a direct or virtual base class of the
649  //   class, a mem-initializer-id naming the member or base class and
650  //   composed of a single identifier refers to the class member. A
651  //   mem-initializer-id for the hidden base class may be specified
652  //   using a qualified name. ]
653  // Look for a member, first.
654  FieldDecl *Member = 0;
655  DeclContext::lookup_result Result
656    = ClassDecl->lookup(Context, MemberOrBase);
657  if (Result.first != Result.second)
658    Member = dyn_cast<FieldDecl>(*Result.first);
659
660  // FIXME: Handle members of an anonymous union.
661
662  if (Member) {
663    // FIXME: Perform direct initialization of the member.
664    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
665  }
666
667  // It didn't name a member, so see if it names a class.
668  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
669  if (!BaseTy)
670    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
671      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
672
673  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
674  if (!BaseType->isRecordType())
675    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
676      << BaseType << SourceRange(IdLoc, RParenLoc);
677
678  // C++ [class.base.init]p2:
679  //   [...] Unless the mem-initializer-id names a nonstatic data
680  //   member of the constructor’s class or a direct or virtual base
681  //   of that class, the mem-initializer is ill-formed. A
682  //   mem-initializer-list can initialize a base class using any
683  //   name that denotes that base class type.
684
685  // First, check for a direct base class.
686  const CXXBaseSpecifier *DirectBaseSpec = 0;
687  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
688       Base != ClassDecl->bases_end(); ++Base) {
689    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
690        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
691      // We found a direct base of this type. That's what we're
692      // initializing.
693      DirectBaseSpec = &*Base;
694      break;
695    }
696  }
697
698  // Check for a virtual base class.
699  // FIXME: We might be able to short-circuit this if we know in
700  // advance that there are no virtual bases.
701  const CXXBaseSpecifier *VirtualBaseSpec = 0;
702  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
703    // We haven't found a base yet; search the class hierarchy for a
704    // virtual base class.
705    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
706                    /*DetectVirtual=*/false);
707    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
708      for (BasePaths::paths_iterator Path = Paths.begin();
709           Path != Paths.end(); ++Path) {
710        if (Path->back().Base->isVirtual()) {
711          VirtualBaseSpec = Path->back().Base;
712          break;
713        }
714      }
715    }
716  }
717
718  // C++ [base.class.init]p2:
719  //   If a mem-initializer-id is ambiguous because it designates both
720  //   a direct non-virtual base class and an inherited virtual base
721  //   class, the mem-initializer is ill-formed.
722  if (DirectBaseSpec && VirtualBaseSpec)
723    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
724      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
725
726  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
727}
728
729void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
730                                SourceLocation ColonLoc,
731                                MemInitTy **MemInits, unsigned NumMemInits) {
732  CXXConstructorDecl *Constructor =
733  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
734
735  if (!Constructor) {
736    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
737    return;
738  }
739}
740
741namespace {
742  /// PureVirtualMethodCollector - traverses a class and its superclasses
743  /// and determines if it has any pure virtual methods.
744  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
745    ASTContext &Context;
746
747  public:
748    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
749
750  private:
751    MethodList Methods;
752
753    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
754
755  public:
756    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
757      : Context(Ctx) {
758
759      MethodList List;
760      Collect(RD, List);
761
762      // Copy the temporary list to methods, and make sure to ignore any
763      // null entries.
764      for (size_t i = 0, e = List.size(); i != e; ++i) {
765        if (List[i])
766          Methods.push_back(List[i]);
767      }
768    }
769
770    bool empty() const { return Methods.empty(); }
771
772    MethodList::const_iterator methods_begin() { return Methods.begin(); }
773    MethodList::const_iterator methods_end() { return Methods.end(); }
774  };
775
776  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
777                                           MethodList& Methods) {
778    // First, collect the pure virtual methods for the base classes.
779    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
780         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
781      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
782        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
783        if (BaseDecl && BaseDecl->isAbstract())
784          Collect(BaseDecl, Methods);
785      }
786    }
787
788    // Next, zero out any pure virtual methods that this class overrides.
789    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
790      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
791      if (!VMD)
792        continue;
793
794      DeclContext::lookup_const_iterator I, E;
795      for (llvm::tie(I, E) = RD->lookup(Context, VMD->getDeclName());
796           I != E; ++I) {
797        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
798          if (Context.getCanonicalType(MD->getType()) ==
799              Context.getCanonicalType(VMD->getType())) {
800            // We did find a matching method, which means that this is not a
801            // pure virtual method in the current class. Zero it out.
802            Methods[i] = 0;
803          }
804        }
805      }
806    }
807
808    // Finally, add pure virtual methods from this class.
809    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
810                                   e = RD->decls_end(Context);
811         i != e; ++i) {
812      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
813        if (MD->isPure())
814          Methods.push_back(MD);
815      }
816    }
817  }
818}
819
820bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
821                                  unsigned DiagID, AbstractDiagSelID SelID,
822                                  const CXXRecordDecl *CurrentRD) {
823
824  if (!getLangOptions().CPlusPlus)
825    return false;
826
827  if (const ArrayType *AT = Context.getAsArrayType(T))
828    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
829                                  CurrentRD);
830
831  if (const PointerType *PT = T->getAsPointerType()) {
832    // Find the innermost pointer type.
833    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
834      PT = T;
835
836    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
837      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
838                                    CurrentRD);
839  }
840
841  const RecordType *RT = T->getAsRecordType();
842  if (!RT)
843    return false;
844
845  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
846  if (!RD)
847    return false;
848
849  if (CurrentRD && CurrentRD != RD)
850    return false;
851
852  if (!RD->isAbstract())
853    return false;
854
855  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
856
857  // Check if we've already emitted the list of pure virtual functions for this
858  // class.
859  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
860    return true;
861
862  PureVirtualMethodCollector Collector(Context, RD);
863
864  for (PureVirtualMethodCollector::MethodList::const_iterator I =
865       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
866    const CXXMethodDecl *MD = *I;
867
868    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
869      MD->getDeclName();
870  }
871
872  if (!PureVirtualClassDiagSet)
873    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
874  PureVirtualClassDiagSet->insert(RD);
875
876  return true;
877}
878
879namespace {
880  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
881    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
882    Sema &SemaRef;
883    CXXRecordDecl *AbstractClass;
884
885    bool VisitDeclContext(const DeclContext *DC) {
886      bool Invalid = false;
887
888      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
889           E = DC->decls_end(SemaRef.Context); I != E; ++I)
890        Invalid |= Visit(*I);
891
892      return Invalid;
893    }
894
895  public:
896    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
897      : SemaRef(SemaRef), AbstractClass(ac) {
898        Visit(SemaRef.Context.getTranslationUnitDecl());
899    }
900
901    bool VisitFunctionDecl(const FunctionDecl *FD) {
902      if (FD->isThisDeclarationADefinition()) {
903        // No need to do the check if we're in a definition, because it requires
904        // that the return/param types are complete.
905        // because that requires
906        return VisitDeclContext(FD);
907      }
908
909      // Check the return type.
910      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
911      bool Invalid =
912        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
913                                       diag::err_abstract_type_in_decl,
914                                       Sema::AbstractReturnType,
915                                       AbstractClass);
916
917      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
918           E = FD->param_end(); I != E; ++I) {
919        const ParmVarDecl *VD = *I;
920        Invalid |=
921          SemaRef.RequireNonAbstractType(VD->getLocation(),
922                                         VD->getOriginalType(),
923                                         diag::err_abstract_type_in_decl,
924                                         Sema::AbstractParamType,
925                                         AbstractClass);
926      }
927
928      return Invalid;
929    }
930
931    bool VisitDecl(const Decl* D) {
932      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
933        return VisitDeclContext(DC);
934
935      return false;
936    }
937  };
938}
939
940void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
941                                             DeclPtrTy TagDecl,
942                                             SourceLocation LBrac,
943                                             SourceLocation RBrac) {
944  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
945  ActOnFields(S, RLoc, TagDecl,
946              (DeclPtrTy*)FieldCollector->getCurFields(),
947              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
948
949  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
950  if (!RD->isAbstract()) {
951    // Collect all the pure virtual methods and see if this is an abstract
952    // class after all.
953    PureVirtualMethodCollector Collector(Context, RD);
954    if (!Collector.empty())
955      RD->setAbstract(true);
956  }
957
958  if (RD->isAbstract())
959    AbstractClassUsageDiagnoser(*this, RD);
960
961  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
962    for (RecordDecl::field_iterator i = RD->field_begin(Context),
963         e = RD->field_end(Context); i != e; ++i) {
964      // All the nonstatic data members must have trivial constructors.
965      QualType FTy = i->getType();
966      while (const ArrayType *AT = Context.getAsArrayType(FTy))
967        FTy = AT->getElementType();
968
969      if (const RecordType *RT = FTy->getAsRecordType()) {
970        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
971
972        if (!FieldRD->hasTrivialConstructor())
973          RD->setHasTrivialConstructor(false);
974        if (!FieldRD->hasTrivialDestructor())
975          RD->setHasTrivialDestructor(false);
976
977        // If RD has neither a trivial constructor nor a trivial destructor
978        // we don't need to continue checking.
979        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
980          break;
981      }
982    }
983  }
984
985  if (!Template)
986    AddImplicitlyDeclaredMembersToClass(RD);
987}
988
989/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
990/// special functions, such as the default constructor, copy
991/// constructor, or destructor, to the given C++ class (C++
992/// [special]p1).  This routine can only be executed just before the
993/// definition of the class is complete.
994void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
995  QualType ClassType = Context.getTypeDeclType(ClassDecl);
996  ClassType = Context.getCanonicalType(ClassType);
997
998  if (!ClassDecl->hasUserDeclaredConstructor()) {
999    // C++ [class.ctor]p5:
1000    //   A default constructor for a class X is a constructor of class X
1001    //   that can be called without an argument. If there is no
1002    //   user-declared constructor for class X, a default constructor is
1003    //   implicitly declared. An implicitly-declared default constructor
1004    //   is an inline public member of its class.
1005    DeclarationName Name
1006      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1007    CXXConstructorDecl *DefaultCon =
1008      CXXConstructorDecl::Create(Context, ClassDecl,
1009                                 ClassDecl->getLocation(), Name,
1010                                 Context.getFunctionType(Context.VoidTy,
1011                                                         0, 0, false, 0),
1012                                 /*isExplicit=*/false,
1013                                 /*isInline=*/true,
1014                                 /*isImplicitlyDeclared=*/true);
1015    DefaultCon->setAccess(AS_public);
1016    DefaultCon->setImplicit();
1017    ClassDecl->addDecl(Context, DefaultCon);
1018
1019    // Notify the class that we've added a constructor.
1020    ClassDecl->addedConstructor(Context, DefaultCon);
1021  }
1022
1023  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1024    // C++ [class.copy]p4:
1025    //   If the class definition does not explicitly declare a copy
1026    //   constructor, one is declared implicitly.
1027
1028    // C++ [class.copy]p5:
1029    //   The implicitly-declared copy constructor for a class X will
1030    //   have the form
1031    //
1032    //       X::X(const X&)
1033    //
1034    //   if
1035    bool HasConstCopyConstructor = true;
1036
1037    //     -- each direct or virtual base class B of X has a copy
1038    //        constructor whose first parameter is of type const B& or
1039    //        const volatile B&, and
1040    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1041         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1042      const CXXRecordDecl *BaseClassDecl
1043        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1044      HasConstCopyConstructor
1045        = BaseClassDecl->hasConstCopyConstructor(Context);
1046    }
1047
1048    //     -- for all the nonstatic data members of X that are of a
1049    //        class type M (or array thereof), each such class type
1050    //        has a copy constructor whose first parameter is of type
1051    //        const M& or const volatile M&.
1052    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1053         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1054         ++Field) {
1055      QualType FieldType = (*Field)->getType();
1056      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1057        FieldType = Array->getElementType();
1058      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1059        const CXXRecordDecl *FieldClassDecl
1060          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1061        HasConstCopyConstructor
1062          = FieldClassDecl->hasConstCopyConstructor(Context);
1063      }
1064    }
1065
1066    //   Otherwise, the implicitly declared copy constructor will have
1067    //   the form
1068    //
1069    //       X::X(X&)
1070    QualType ArgType = ClassType;
1071    if (HasConstCopyConstructor)
1072      ArgType = ArgType.withConst();
1073    ArgType = Context.getLValueReferenceType(ArgType);
1074
1075    //   An implicitly-declared copy constructor is an inline public
1076    //   member of its class.
1077    DeclarationName Name
1078      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1079    CXXConstructorDecl *CopyConstructor
1080      = CXXConstructorDecl::Create(Context, ClassDecl,
1081                                   ClassDecl->getLocation(), Name,
1082                                   Context.getFunctionType(Context.VoidTy,
1083                                                           &ArgType, 1,
1084                                                           false, 0),
1085                                   /*isExplicit=*/false,
1086                                   /*isInline=*/true,
1087                                   /*isImplicitlyDeclared=*/true);
1088    CopyConstructor->setAccess(AS_public);
1089    CopyConstructor->setImplicit();
1090
1091    // Add the parameter to the constructor.
1092    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1093                                                 ClassDecl->getLocation(),
1094                                                 /*IdentifierInfo=*/0,
1095                                                 ArgType, VarDecl::None, 0);
1096    CopyConstructor->setParams(Context, &FromParam, 1);
1097
1098    ClassDecl->addedConstructor(Context, CopyConstructor);
1099    ClassDecl->addDecl(Context, CopyConstructor);
1100  }
1101
1102  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1103    // Note: The following rules are largely analoguous to the copy
1104    // constructor rules. Note that virtual bases are not taken into account
1105    // for determining the argument type of the operator. Note also that
1106    // operators taking an object instead of a reference are allowed.
1107    //
1108    // C++ [class.copy]p10:
1109    //   If the class definition does not explicitly declare a copy
1110    //   assignment operator, one is declared implicitly.
1111    //   The implicitly-defined copy assignment operator for a class X
1112    //   will have the form
1113    //
1114    //       X& X::operator=(const X&)
1115    //
1116    //   if
1117    bool HasConstCopyAssignment = true;
1118
1119    //       -- each direct base class B of X has a copy assignment operator
1120    //          whose parameter is of type const B&, const volatile B& or B,
1121    //          and
1122    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1123         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1124      const CXXRecordDecl *BaseClassDecl
1125        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1126      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1127    }
1128
1129    //       -- for all the nonstatic data members of X that are of a class
1130    //          type M (or array thereof), each such class type has a copy
1131    //          assignment operator whose parameter is of type const M&,
1132    //          const volatile M& or M.
1133    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1134         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1135         ++Field) {
1136      QualType FieldType = (*Field)->getType();
1137      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1138        FieldType = Array->getElementType();
1139      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1140        const CXXRecordDecl *FieldClassDecl
1141          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1142        HasConstCopyAssignment
1143          = FieldClassDecl->hasConstCopyAssignment(Context);
1144      }
1145    }
1146
1147    //   Otherwise, the implicitly declared copy assignment operator will
1148    //   have the form
1149    //
1150    //       X& X::operator=(X&)
1151    QualType ArgType = ClassType;
1152    QualType RetType = Context.getLValueReferenceType(ArgType);
1153    if (HasConstCopyAssignment)
1154      ArgType = ArgType.withConst();
1155    ArgType = Context.getLValueReferenceType(ArgType);
1156
1157    //   An implicitly-declared copy assignment operator is an inline public
1158    //   member of its class.
1159    DeclarationName Name =
1160      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1161    CXXMethodDecl *CopyAssignment =
1162      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1163                            Context.getFunctionType(RetType, &ArgType, 1,
1164                                                    false, 0),
1165                            /*isStatic=*/false, /*isInline=*/true);
1166    CopyAssignment->setAccess(AS_public);
1167    CopyAssignment->setImplicit();
1168
1169    // Add the parameter to the operator.
1170    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1171                                                 ClassDecl->getLocation(),
1172                                                 /*IdentifierInfo=*/0,
1173                                                 ArgType, VarDecl::None, 0);
1174    CopyAssignment->setParams(Context, &FromParam, 1);
1175
1176    // Don't call addedAssignmentOperator. There is no way to distinguish an
1177    // implicit from an explicit assignment operator.
1178    ClassDecl->addDecl(Context, CopyAssignment);
1179  }
1180
1181  if (!ClassDecl->hasUserDeclaredDestructor()) {
1182    // C++ [class.dtor]p2:
1183    //   If a class has no user-declared destructor, a destructor is
1184    //   declared implicitly. An implicitly-declared destructor is an
1185    //   inline public member of its class.
1186    DeclarationName Name
1187      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1188    CXXDestructorDecl *Destructor
1189      = CXXDestructorDecl::Create(Context, ClassDecl,
1190                                  ClassDecl->getLocation(), Name,
1191                                  Context.getFunctionType(Context.VoidTy,
1192                                                          0, 0, false, 0),
1193                                  /*isInline=*/true,
1194                                  /*isImplicitlyDeclared=*/true);
1195    Destructor->setAccess(AS_public);
1196    Destructor->setImplicit();
1197    ClassDecl->addDecl(Context, Destructor);
1198  }
1199}
1200
1201/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1202/// parsing a top-level (non-nested) C++ class, and we are now
1203/// parsing those parts of the given Method declaration that could
1204/// not be parsed earlier (C++ [class.mem]p2), such as default
1205/// arguments. This action should enter the scope of the given
1206/// Method declaration as if we had just parsed the qualified method
1207/// name. However, it should not bring the parameters into scope;
1208/// that will be performed by ActOnDelayedCXXMethodParameter.
1209void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1210  CXXScopeSpec SS;
1211  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1212  QualType ClassTy
1213    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1214  SS.setScopeRep(
1215    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1216  ActOnCXXEnterDeclaratorScope(S, SS);
1217}
1218
1219/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1220/// C++ method declaration. We're (re-)introducing the given
1221/// function parameter into scope for use in parsing later parts of
1222/// the method declaration. For example, we could see an
1223/// ActOnParamDefaultArgument event for this parameter.
1224void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1225  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1226
1227  // If this parameter has an unparsed default argument, clear it out
1228  // to make way for the parsed default argument.
1229  if (Param->hasUnparsedDefaultArg())
1230    Param->setDefaultArg(0);
1231
1232  S->AddDecl(DeclPtrTy::make(Param));
1233  if (Param->getDeclName())
1234    IdResolver.AddDecl(Param);
1235}
1236
1237/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1238/// processing the delayed method declaration for Method. The method
1239/// declaration is now considered finished. There may be a separate
1240/// ActOnStartOfFunctionDef action later (not necessarily
1241/// immediately!) for this method, if it was also defined inside the
1242/// class body.
1243void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1244  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1245  CXXScopeSpec SS;
1246  QualType ClassTy
1247    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1248  SS.setScopeRep(
1249    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1250  ActOnCXXExitDeclaratorScope(S, SS);
1251
1252  // Now that we have our default arguments, check the constructor
1253  // again. It could produce additional diagnostics or affect whether
1254  // the class has implicitly-declared destructors, among other
1255  // things.
1256  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1257    if (CheckConstructor(Constructor))
1258      Constructor->setInvalidDecl();
1259  }
1260
1261  // Check the default arguments, which we may have added.
1262  if (!Method->isInvalidDecl())
1263    CheckCXXDefaultArguments(Method);
1264}
1265
1266/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1267/// the well-formedness of the constructor declarator @p D with type @p
1268/// R. If there are any errors in the declarator, this routine will
1269/// emit diagnostics and return true. Otherwise, it will return
1270/// false. Either way, the type @p R will be updated to reflect a
1271/// well-formed type for the constructor.
1272bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1273                                      FunctionDecl::StorageClass& SC) {
1274  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1275  bool isInvalid = false;
1276
1277  // C++ [class.ctor]p3:
1278  //   A constructor shall not be virtual (10.3) or static (9.4). A
1279  //   constructor can be invoked for a const, volatile or const
1280  //   volatile object. A constructor shall not be declared const,
1281  //   volatile, or const volatile (9.3.2).
1282  if (isVirtual) {
1283    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1284      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1285      << SourceRange(D.getIdentifierLoc());
1286    isInvalid = true;
1287  }
1288  if (SC == FunctionDecl::Static) {
1289    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1290      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1291      << SourceRange(D.getIdentifierLoc());
1292    isInvalid = true;
1293    SC = FunctionDecl::None;
1294  }
1295  if (D.getDeclSpec().hasTypeSpecifier()) {
1296    // Constructors don't have return types, but the parser will
1297    // happily parse something like:
1298    //
1299    //   class X {
1300    //     float X(float);
1301    //   };
1302    //
1303    // The return type will be eliminated later.
1304    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1305      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1306      << SourceRange(D.getIdentifierLoc());
1307  }
1308  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1309    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1310    if (FTI.TypeQuals & QualType::Const)
1311      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1312        << "const" << SourceRange(D.getIdentifierLoc());
1313    if (FTI.TypeQuals & QualType::Volatile)
1314      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1315        << "volatile" << SourceRange(D.getIdentifierLoc());
1316    if (FTI.TypeQuals & QualType::Restrict)
1317      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1318        << "restrict" << SourceRange(D.getIdentifierLoc());
1319  }
1320
1321  // Rebuild the function type "R" without any type qualifiers (in
1322  // case any of the errors above fired) and with "void" as the
1323  // return type, since constructors don't have return types. We
1324  // *always* have to do this, because GetTypeForDeclarator will
1325  // put in a result type of "int" when none was specified.
1326  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1327  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1328                              Proto->getNumArgs(),
1329                              Proto->isVariadic(),
1330                              0);
1331
1332  return isInvalid;
1333}
1334
1335/// CheckConstructor - Checks a fully-formed constructor for
1336/// well-formedness, issuing any diagnostics required. Returns true if
1337/// the constructor declarator is invalid.
1338bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1339  CXXRecordDecl *ClassDecl
1340    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1341  if (!ClassDecl)
1342    return true;
1343
1344  bool Invalid = Constructor->isInvalidDecl();
1345
1346  // C++ [class.copy]p3:
1347  //   A declaration of a constructor for a class X is ill-formed if
1348  //   its first parameter is of type (optionally cv-qualified) X and
1349  //   either there are no other parameters or else all other
1350  //   parameters have default arguments.
1351  if (!Constructor->isInvalidDecl() &&
1352      ((Constructor->getNumParams() == 1) ||
1353       (Constructor->getNumParams() > 1 &&
1354        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1355    QualType ParamType = Constructor->getParamDecl(0)->getType();
1356    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1357    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1358      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1359      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1360        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1361      Invalid = true;
1362    }
1363  }
1364
1365  // Notify the class that we've added a constructor.
1366  ClassDecl->addedConstructor(Context, Constructor);
1367
1368  return Invalid;
1369}
1370
1371/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1372/// the well-formednes of the destructor declarator @p D with type @p
1373/// R. If there are any errors in the declarator, this routine will
1374/// emit diagnostics and return true. Otherwise, it will return
1375/// false. Either way, the type @p R will be updated to reflect a
1376/// well-formed type for the destructor.
1377bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1378                                     FunctionDecl::StorageClass& SC) {
1379  bool isInvalid = false;
1380
1381  // C++ [class.dtor]p1:
1382  //   [...] A typedef-name that names a class is a class-name
1383  //   (7.1.3); however, a typedef-name that names a class shall not
1384  //   be used as the identifier in the declarator for a destructor
1385  //   declaration.
1386  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1387  if (DeclaratorType->getAsTypedefType()) {
1388    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1389      << DeclaratorType;
1390    isInvalid = true;
1391  }
1392
1393  // C++ [class.dtor]p2:
1394  //   A destructor is used to destroy objects of its class type. A
1395  //   destructor takes no parameters, and no return type can be
1396  //   specified for it (not even void). The address of a destructor
1397  //   shall not be taken. A destructor shall not be static. A
1398  //   destructor can be invoked for a const, volatile or const
1399  //   volatile object. A destructor shall not be declared const,
1400  //   volatile or const volatile (9.3.2).
1401  if (SC == FunctionDecl::Static) {
1402    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1403      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1404      << SourceRange(D.getIdentifierLoc());
1405    isInvalid = true;
1406    SC = FunctionDecl::None;
1407  }
1408  if (D.getDeclSpec().hasTypeSpecifier()) {
1409    // Destructors don't have return types, but the parser will
1410    // happily parse something like:
1411    //
1412    //   class X {
1413    //     float ~X();
1414    //   };
1415    //
1416    // The return type will be eliminated later.
1417    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1418      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1419      << SourceRange(D.getIdentifierLoc());
1420  }
1421  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1422    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1423    if (FTI.TypeQuals & QualType::Const)
1424      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1425        << "const" << SourceRange(D.getIdentifierLoc());
1426    if (FTI.TypeQuals & QualType::Volatile)
1427      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1428        << "volatile" << SourceRange(D.getIdentifierLoc());
1429    if (FTI.TypeQuals & QualType::Restrict)
1430      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1431        << "restrict" << SourceRange(D.getIdentifierLoc());
1432  }
1433
1434  // Make sure we don't have any parameters.
1435  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1436    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1437
1438    // Delete the parameters.
1439    D.getTypeObject(0).Fun.freeArgs();
1440  }
1441
1442  // Make sure the destructor isn't variadic.
1443  if (R->getAsFunctionProtoType()->isVariadic())
1444    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1445
1446  // Rebuild the function type "R" without any type qualifiers or
1447  // parameters (in case any of the errors above fired) and with
1448  // "void" as the return type, since destructors don't have return
1449  // types. We *always* have to do this, because GetTypeForDeclarator
1450  // will put in a result type of "int" when none was specified.
1451  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1452
1453  return isInvalid;
1454}
1455
1456/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1457/// well-formednes of the conversion function declarator @p D with
1458/// type @p R. If there are any errors in the declarator, this routine
1459/// will emit diagnostics and return true. Otherwise, it will return
1460/// false. Either way, the type @p R will be updated to reflect a
1461/// well-formed type for the conversion operator.
1462bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1463                                     FunctionDecl::StorageClass& SC) {
1464  bool isInvalid = false;
1465
1466  // C++ [class.conv.fct]p1:
1467  //   Neither parameter types nor return type can be specified. The
1468  //   type of a conversion function (8.3.5) is “function taking no
1469  //   parameter returning conversion-type-id.”
1470  if (SC == FunctionDecl::Static) {
1471    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1472      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1473      << SourceRange(D.getIdentifierLoc());
1474    isInvalid = true;
1475    SC = FunctionDecl::None;
1476  }
1477  if (D.getDeclSpec().hasTypeSpecifier()) {
1478    // Conversion functions don't have return types, but the parser will
1479    // happily parse something like:
1480    //
1481    //   class X {
1482    //     float operator bool();
1483    //   };
1484    //
1485    // The return type will be changed later anyway.
1486    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1487      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1488      << SourceRange(D.getIdentifierLoc());
1489  }
1490
1491  // Make sure we don't have any parameters.
1492  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1493    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1494
1495    // Delete the parameters.
1496    D.getTypeObject(0).Fun.freeArgs();
1497  }
1498
1499  // Make sure the conversion function isn't variadic.
1500  if (R->getAsFunctionProtoType()->isVariadic())
1501    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1502
1503  // C++ [class.conv.fct]p4:
1504  //   The conversion-type-id shall not represent a function type nor
1505  //   an array type.
1506  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1507  if (ConvType->isArrayType()) {
1508    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1509    ConvType = Context.getPointerType(ConvType);
1510  } else if (ConvType->isFunctionType()) {
1511    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1512    ConvType = Context.getPointerType(ConvType);
1513  }
1514
1515  // Rebuild the function type "R" without any parameters (in case any
1516  // of the errors above fired) and with the conversion type as the
1517  // return type.
1518  R = Context.getFunctionType(ConvType, 0, 0, false,
1519                              R->getAsFunctionProtoType()->getTypeQuals());
1520
1521  // C++0x explicit conversion operators.
1522  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1523    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1524         diag::warn_explicit_conversion_functions)
1525      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1526
1527  return isInvalid;
1528}
1529
1530/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1531/// the declaration of the given C++ conversion function. This routine
1532/// is responsible for recording the conversion function in the C++
1533/// class, if possible.
1534Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1535  assert(Conversion && "Expected to receive a conversion function declaration");
1536
1537  // Set the lexical context of this conversion function
1538  Conversion->setLexicalDeclContext(CurContext);
1539
1540  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1541
1542  // Make sure we aren't redeclaring the conversion function.
1543  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1544
1545  // C++ [class.conv.fct]p1:
1546  //   [...] A conversion function is never used to convert a
1547  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1548  //   same object type (or a reference to it), to a (possibly
1549  //   cv-qualified) base class of that type (or a reference to it),
1550  //   or to (possibly cv-qualified) void.
1551  // FIXME: Suppress this warning if the conversion function ends up
1552  // being a virtual function that overrides a virtual function in a
1553  // base class.
1554  QualType ClassType
1555    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1556  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1557    ConvType = ConvTypeRef->getPointeeType();
1558  if (ConvType->isRecordType()) {
1559    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1560    if (ConvType == ClassType)
1561      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1562        << ClassType;
1563    else if (IsDerivedFrom(ClassType, ConvType))
1564      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1565        <<  ClassType << ConvType;
1566  } else if (ConvType->isVoidType()) {
1567    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1568      << ClassType << ConvType;
1569  }
1570
1571  if (Conversion->getPreviousDeclaration()) {
1572    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1573    for (OverloadedFunctionDecl::function_iterator
1574           Conv = Conversions->function_begin(),
1575           ConvEnd = Conversions->function_end();
1576         Conv != ConvEnd; ++Conv) {
1577      if (*Conv == Conversion->getPreviousDeclaration()) {
1578        *Conv = Conversion;
1579        return DeclPtrTy::make(Conversion);
1580      }
1581    }
1582    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1583  } else
1584    ClassDecl->addConversionFunction(Context, Conversion);
1585
1586  return DeclPtrTy::make(Conversion);
1587}
1588
1589//===----------------------------------------------------------------------===//
1590// Namespace Handling
1591//===----------------------------------------------------------------------===//
1592
1593/// ActOnStartNamespaceDef - This is called at the start of a namespace
1594/// definition.
1595Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1596                                             SourceLocation IdentLoc,
1597                                             IdentifierInfo *II,
1598                                             SourceLocation LBrace) {
1599  NamespaceDecl *Namespc =
1600      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1601  Namespc->setLBracLoc(LBrace);
1602
1603  Scope *DeclRegionScope = NamespcScope->getParent();
1604
1605  if (II) {
1606    // C++ [namespace.def]p2:
1607    // The identifier in an original-namespace-definition shall not have been
1608    // previously defined in the declarative region in which the
1609    // original-namespace-definition appears. The identifier in an
1610    // original-namespace-definition is the name of the namespace. Subsequently
1611    // in that declarative region, it is treated as an original-namespace-name.
1612
1613    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1614                                     true);
1615
1616    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1617      // This is an extended namespace definition.
1618      // Attach this namespace decl to the chain of extended namespace
1619      // definitions.
1620      OrigNS->setNextNamespace(Namespc);
1621      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1622
1623      // Remove the previous declaration from the scope.
1624      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1625        IdResolver.RemoveDecl(OrigNS);
1626        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1627      }
1628    } else if (PrevDecl) {
1629      // This is an invalid name redefinition.
1630      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1631       << Namespc->getDeclName();
1632      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1633      Namespc->setInvalidDecl();
1634      // Continue on to push Namespc as current DeclContext and return it.
1635    }
1636
1637    PushOnScopeChains(Namespc, DeclRegionScope);
1638  } else {
1639    // FIXME: Handle anonymous namespaces
1640  }
1641
1642  // Although we could have an invalid decl (i.e. the namespace name is a
1643  // redefinition), push it as current DeclContext and try to continue parsing.
1644  // FIXME: We should be able to push Namespc here, so that the
1645  // each DeclContext for the namespace has the declarations
1646  // that showed up in that particular namespace definition.
1647  PushDeclContext(NamespcScope, Namespc);
1648  return DeclPtrTy::make(Namespc);
1649}
1650
1651/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1652/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1653void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1654  Decl *Dcl = D.getAs<Decl>();
1655  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1656  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1657  Namespc->setRBracLoc(RBrace);
1658  PopDeclContext();
1659}
1660
1661Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1662                                          SourceLocation UsingLoc,
1663                                          SourceLocation NamespcLoc,
1664                                          const CXXScopeSpec &SS,
1665                                          SourceLocation IdentLoc,
1666                                          IdentifierInfo *NamespcName,
1667                                          AttributeList *AttrList) {
1668  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1669  assert(NamespcName && "Invalid NamespcName.");
1670  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1671  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1672
1673  UsingDirectiveDecl *UDir = 0;
1674
1675  // Lookup namespace name.
1676  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1677                                    LookupNamespaceName, false);
1678  if (R.isAmbiguous()) {
1679    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1680    return DeclPtrTy();
1681  }
1682  if (NamedDecl *NS = R) {
1683    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1684    // C++ [namespace.udir]p1:
1685    //   A using-directive specifies that the names in the nominated
1686    //   namespace can be used in the scope in which the
1687    //   using-directive appears after the using-directive. During
1688    //   unqualified name lookup (3.4.1), the names appear as if they
1689    //   were declared in the nearest enclosing namespace which
1690    //   contains both the using-directive and the nominated
1691    //   namespace. [Note: in this context, “contains” means “contains
1692    //   directly or indirectly”. ]
1693
1694    // Find enclosing context containing both using-directive and
1695    // nominated namespace.
1696    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1697    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1698      CommonAncestor = CommonAncestor->getParent();
1699
1700    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1701                                      NamespcLoc, IdentLoc,
1702                                      cast<NamespaceDecl>(NS),
1703                                      CommonAncestor);
1704    PushUsingDirective(S, UDir);
1705  } else {
1706    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1707  }
1708
1709  // FIXME: We ignore attributes for now.
1710  delete AttrList;
1711  return DeclPtrTy::make(UDir);
1712}
1713
1714void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1715  // If scope has associated entity, then using directive is at namespace
1716  // or translation unit scope. We add UsingDirectiveDecls, into
1717  // it's lookup structure.
1718  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1719    Ctx->addDecl(Context, UDir);
1720  else
1721    // Otherwise it is block-sope. using-directives will affect lookup
1722    // only to the end of scope.
1723    S->PushUsingDirective(DeclPtrTy::make(UDir));
1724}
1725
1726/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1727/// is a namespace alias, returns the namespace it points to.
1728static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1729  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1730    return AD->getNamespace();
1731  return dyn_cast_or_null<NamespaceDecl>(D);
1732}
1733
1734Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1735                                             SourceLocation NamespaceLoc,
1736                                             SourceLocation AliasLoc,
1737                                             IdentifierInfo *Alias,
1738                                             const CXXScopeSpec &SS,
1739                                             SourceLocation IdentLoc,
1740                                             IdentifierInfo *Ident) {
1741
1742  // Lookup the namespace name.
1743  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1744
1745  // Check if we have a previous declaration with the same name.
1746  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1747    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1748      // We already have an alias with the same name that points to the same
1749      // namespace, so don't create a new one.
1750      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1751        return DeclPtrTy();
1752    }
1753
1754    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1755      diag::err_redefinition_different_kind;
1756    Diag(AliasLoc, DiagID) << Alias;
1757    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1758    return DeclPtrTy();
1759  }
1760
1761  if (R.isAmbiguous()) {
1762    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1763    return DeclPtrTy();
1764  }
1765
1766  if (!R) {
1767    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1768    return DeclPtrTy();
1769  }
1770
1771  NamespaceAliasDecl *AliasDecl =
1772    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1773                               IdentLoc, R);
1774
1775  CurContext->addDecl(Context, AliasDecl);
1776  return DeclPtrTy::make(AliasDecl);
1777}
1778
1779void Sema::InitializeVarWithConstructor(VarDecl *VD,
1780                                        CXXConstructorDecl *Constructor,
1781                                        QualType DeclInitType,
1782                                        Expr **Exprs, unsigned NumExprs) {
1783  Expr *Temp = CXXConstructExpr::Create(Context, VD, DeclInitType, Constructor,
1784                                        false, Exprs, NumExprs);
1785  VD->setInit(Temp);
1786}
1787
1788/// AddCXXDirectInitializerToDecl - This action is called immediately after
1789/// ActOnDeclarator, when a C++ direct initializer is present.
1790/// e.g: "int x(1);"
1791void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1792                                         SourceLocation LParenLoc,
1793                                         MultiExprArg Exprs,
1794                                         SourceLocation *CommaLocs,
1795                                         SourceLocation RParenLoc) {
1796  unsigned NumExprs = Exprs.size();
1797  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1798  Decl *RealDecl = Dcl.getAs<Decl>();
1799
1800  // If there is no declaration, there was an error parsing it.  Just ignore
1801  // the initializer.
1802  if (RealDecl == 0)
1803    return;
1804
1805  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1806  if (!VDecl) {
1807    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1808    RealDecl->setInvalidDecl();
1809    return;
1810  }
1811
1812  // FIXME: Need to handle dependent types and expressions here.
1813
1814  // We will treat direct-initialization as a copy-initialization:
1815  //    int x(1);  -as-> int x = 1;
1816  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1817  //
1818  // Clients that want to distinguish between the two forms, can check for
1819  // direct initializer using VarDecl::hasCXXDirectInitializer().
1820  // A major benefit is that clients that don't particularly care about which
1821  // exactly form was it (like the CodeGen) can handle both cases without
1822  // special case code.
1823
1824  // C++ 8.5p11:
1825  // The form of initialization (using parentheses or '=') is generally
1826  // insignificant, but does matter when the entity being initialized has a
1827  // class type.
1828  QualType DeclInitType = VDecl->getType();
1829  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1830    DeclInitType = Array->getElementType();
1831
1832  // FIXME: This isn't the right place to complete the type.
1833  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1834                          diag::err_typecheck_decl_incomplete_type)) {
1835    VDecl->setInvalidDecl();
1836    return;
1837  }
1838
1839  if (VDecl->getType()->isRecordType()) {
1840    CXXConstructorDecl *Constructor
1841      = PerformInitializationByConstructor(DeclInitType,
1842                                           (Expr **)Exprs.get(), NumExprs,
1843                                           VDecl->getLocation(),
1844                                           SourceRange(VDecl->getLocation(),
1845                                                       RParenLoc),
1846                                           VDecl->getDeclName(),
1847                                           IK_Direct);
1848    if (!Constructor)
1849      RealDecl->setInvalidDecl();
1850    else {
1851      VDecl->setCXXDirectInitializer(true);
1852      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
1853                                   (Expr**)Exprs.release(), NumExprs);
1854    }
1855    return;
1856  }
1857
1858  if (NumExprs > 1) {
1859    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1860      << SourceRange(VDecl->getLocation(), RParenLoc);
1861    RealDecl->setInvalidDecl();
1862    return;
1863  }
1864
1865  // Let clients know that initialization was done with a direct initializer.
1866  VDecl->setCXXDirectInitializer(true);
1867
1868  assert(NumExprs == 1 && "Expected 1 expression");
1869  // Set the init expression, handles conversions.
1870  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1871                       /*DirectInit=*/true);
1872}
1873
1874/// PerformInitializationByConstructor - Perform initialization by
1875/// constructor (C++ [dcl.init]p14), which may occur as part of
1876/// direct-initialization or copy-initialization. We are initializing
1877/// an object of type @p ClassType with the given arguments @p
1878/// Args. @p Loc is the location in the source code where the
1879/// initializer occurs (e.g., a declaration, member initializer,
1880/// functional cast, etc.) while @p Range covers the whole
1881/// initialization. @p InitEntity is the entity being initialized,
1882/// which may by the name of a declaration or a type. @p Kind is the
1883/// kind of initialization we're performing, which affects whether
1884/// explicit constructors will be considered. When successful, returns
1885/// the constructor that will be used to perform the initialization;
1886/// when the initialization fails, emits a diagnostic and returns
1887/// null.
1888CXXConstructorDecl *
1889Sema::PerformInitializationByConstructor(QualType ClassType,
1890                                         Expr **Args, unsigned NumArgs,
1891                                         SourceLocation Loc, SourceRange Range,
1892                                         DeclarationName InitEntity,
1893                                         InitializationKind Kind) {
1894  const RecordType *ClassRec = ClassType->getAsRecordType();
1895  assert(ClassRec && "Can only initialize a class type here");
1896
1897  // C++ [dcl.init]p14:
1898  //
1899  //   If the initialization is direct-initialization, or if it is
1900  //   copy-initialization where the cv-unqualified version of the
1901  //   source type is the same class as, or a derived class of, the
1902  //   class of the destination, constructors are considered. The
1903  //   applicable constructors are enumerated (13.3.1.3), and the
1904  //   best one is chosen through overload resolution (13.3). The
1905  //   constructor so selected is called to initialize the object,
1906  //   with the initializer expression(s) as its argument(s). If no
1907  //   constructor applies, or the overload resolution is ambiguous,
1908  //   the initialization is ill-formed.
1909  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1910  OverloadCandidateSet CandidateSet;
1911
1912  // Add constructors to the overload set.
1913  DeclarationName ConstructorName
1914    = Context.DeclarationNames.getCXXConstructorName(
1915                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1916  DeclContext::lookup_const_iterator Con, ConEnd;
1917  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1918       Con != ConEnd; ++Con) {
1919    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1920    if ((Kind == IK_Direct) ||
1921        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1922        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1923      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1924  }
1925
1926  // FIXME: When we decide not to synthesize the implicitly-declared
1927  // constructors, we'll need to make them appear here.
1928
1929  OverloadCandidateSet::iterator Best;
1930  switch (BestViableFunction(CandidateSet, Best)) {
1931  case OR_Success:
1932    // We found a constructor. Return it.
1933    return cast<CXXConstructorDecl>(Best->Function);
1934
1935  case OR_No_Viable_Function:
1936    if (InitEntity)
1937      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1938        << InitEntity << Range;
1939    else
1940      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1941        << ClassType << Range;
1942    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1943    return 0;
1944
1945  case OR_Ambiguous:
1946    if (InitEntity)
1947      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1948    else
1949      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1950    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1951    return 0;
1952
1953  case OR_Deleted:
1954    if (InitEntity)
1955      Diag(Loc, diag::err_ovl_deleted_init)
1956        << Best->Function->isDeleted()
1957        << InitEntity << Range;
1958    else
1959      Diag(Loc, diag::err_ovl_deleted_init)
1960        << Best->Function->isDeleted()
1961        << InitEntity << Range;
1962    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1963    return 0;
1964  }
1965
1966  return 0;
1967}
1968
1969/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1970/// determine whether they are reference-related,
1971/// reference-compatible, reference-compatible with added
1972/// qualification, or incompatible, for use in C++ initialization by
1973/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1974/// type, and the first type (T1) is the pointee type of the reference
1975/// type being initialized.
1976Sema::ReferenceCompareResult
1977Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1978                                   bool& DerivedToBase) {
1979  assert(!T1->isReferenceType() &&
1980    "T1 must be the pointee type of the reference type");
1981  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1982
1983  T1 = Context.getCanonicalType(T1);
1984  T2 = Context.getCanonicalType(T2);
1985  QualType UnqualT1 = T1.getUnqualifiedType();
1986  QualType UnqualT2 = T2.getUnqualifiedType();
1987
1988  // C++ [dcl.init.ref]p4:
1989  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1990  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1991  //   T1 is a base class of T2.
1992  if (UnqualT1 == UnqualT2)
1993    DerivedToBase = false;
1994  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1995    DerivedToBase = true;
1996  else
1997    return Ref_Incompatible;
1998
1999  // At this point, we know that T1 and T2 are reference-related (at
2000  // least).
2001
2002  // C++ [dcl.init.ref]p4:
2003  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2004  //   reference-related to T2 and cv1 is the same cv-qualification
2005  //   as, or greater cv-qualification than, cv2. For purposes of
2006  //   overload resolution, cases for which cv1 is greater
2007  //   cv-qualification than cv2 are identified as
2008  //   reference-compatible with added qualification (see 13.3.3.2).
2009  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2010    return Ref_Compatible;
2011  else if (T1.isMoreQualifiedThan(T2))
2012    return Ref_Compatible_With_Added_Qualification;
2013  else
2014    return Ref_Related;
2015}
2016
2017/// CheckReferenceInit - Check the initialization of a reference
2018/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2019/// the initializer (either a simple initializer or an initializer
2020/// list), and DeclType is the type of the declaration. When ICS is
2021/// non-null, this routine will compute the implicit conversion
2022/// sequence according to C++ [over.ics.ref] and will not produce any
2023/// diagnostics; when ICS is null, it will emit diagnostics when any
2024/// errors are found. Either way, a return value of true indicates
2025/// that there was a failure, a return value of false indicates that
2026/// the reference initialization succeeded.
2027///
2028/// When @p SuppressUserConversions, user-defined conversions are
2029/// suppressed.
2030/// When @p AllowExplicit, we also permit explicit user-defined
2031/// conversion functions.
2032/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2033bool
2034Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2035                         ImplicitConversionSequence *ICS,
2036                         bool SuppressUserConversions,
2037                         bool AllowExplicit, bool ForceRValue) {
2038  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2039
2040  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2041  QualType T2 = Init->getType();
2042
2043  // If the initializer is the address of an overloaded function, try
2044  // to resolve the overloaded function. If all goes well, T2 is the
2045  // type of the resulting function.
2046  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2047    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2048                                                          ICS != 0);
2049    if (Fn) {
2050      // Since we're performing this reference-initialization for
2051      // real, update the initializer with the resulting function.
2052      if (!ICS) {
2053        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2054          return true;
2055
2056        FixOverloadedFunctionReference(Init, Fn);
2057      }
2058
2059      T2 = Fn->getType();
2060    }
2061  }
2062
2063  // Compute some basic properties of the types and the initializer.
2064  bool isRValRef = DeclType->isRValueReferenceType();
2065  bool DerivedToBase = false;
2066  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2067                                                  Init->isLvalue(Context);
2068  ReferenceCompareResult RefRelationship
2069    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2070
2071  // Most paths end in a failed conversion.
2072  if (ICS)
2073    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2074
2075  // C++ [dcl.init.ref]p5:
2076  //   A reference to type “cv1 T1” is initialized by an expression
2077  //   of type “cv2 T2” as follows:
2078
2079  //     -- If the initializer expression
2080
2081  // Rvalue references cannot bind to lvalues (N2812).
2082  // There is absolutely no situation where they can. In particular, note that
2083  // this is ill-formed, even if B has a user-defined conversion to A&&:
2084  //   B b;
2085  //   A&& r = b;
2086  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2087    if (!ICS)
2088      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2089        << Init->getSourceRange();
2090    return true;
2091  }
2092
2093  bool BindsDirectly = false;
2094  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2095  //          reference-compatible with “cv2 T2,” or
2096  //
2097  // Note that the bit-field check is skipped if we are just computing
2098  // the implicit conversion sequence (C++ [over.best.ics]p2).
2099  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2100      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2101    BindsDirectly = true;
2102
2103    if (ICS) {
2104      // C++ [over.ics.ref]p1:
2105      //   When a parameter of reference type binds directly (8.5.3)
2106      //   to an argument expression, the implicit conversion sequence
2107      //   is the identity conversion, unless the argument expression
2108      //   has a type that is a derived class of the parameter type,
2109      //   in which case the implicit conversion sequence is a
2110      //   derived-to-base Conversion (13.3.3.1).
2111      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2112      ICS->Standard.First = ICK_Identity;
2113      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2114      ICS->Standard.Third = ICK_Identity;
2115      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2116      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2117      ICS->Standard.ReferenceBinding = true;
2118      ICS->Standard.DirectBinding = true;
2119      ICS->Standard.RRefBinding = false;
2120      ICS->Standard.CopyConstructor = 0;
2121
2122      // Nothing more to do: the inaccessibility/ambiguity check for
2123      // derived-to-base conversions is suppressed when we're
2124      // computing the implicit conversion sequence (C++
2125      // [over.best.ics]p2).
2126      return false;
2127    } else {
2128      // Perform the conversion.
2129      // FIXME: Binding to a subobject of the lvalue is going to require
2130      // more AST annotation than this.
2131      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2132    }
2133  }
2134
2135  //       -- has a class type (i.e., T2 is a class type) and can be
2136  //          implicitly converted to an lvalue of type “cv3 T3,”
2137  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2138  //          92) (this conversion is selected by enumerating the
2139  //          applicable conversion functions (13.3.1.6) and choosing
2140  //          the best one through overload resolution (13.3)),
2141  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2142    // FIXME: Look for conversions in base classes!
2143    CXXRecordDecl *T2RecordDecl
2144      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2145
2146    OverloadCandidateSet CandidateSet;
2147    OverloadedFunctionDecl *Conversions
2148      = T2RecordDecl->getConversionFunctions();
2149    for (OverloadedFunctionDecl::function_iterator Func
2150           = Conversions->function_begin();
2151         Func != Conversions->function_end(); ++Func) {
2152      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2153
2154      // If the conversion function doesn't return a reference type,
2155      // it can't be considered for this conversion.
2156      if (Conv->getConversionType()->isLValueReferenceType() &&
2157          (AllowExplicit || !Conv->isExplicit()))
2158        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2159    }
2160
2161    OverloadCandidateSet::iterator Best;
2162    switch (BestViableFunction(CandidateSet, Best)) {
2163    case OR_Success:
2164      // This is a direct binding.
2165      BindsDirectly = true;
2166
2167      if (ICS) {
2168        // C++ [over.ics.ref]p1:
2169        //
2170        //   [...] If the parameter binds directly to the result of
2171        //   applying a conversion function to the argument
2172        //   expression, the implicit conversion sequence is a
2173        //   user-defined conversion sequence (13.3.3.1.2), with the
2174        //   second standard conversion sequence either an identity
2175        //   conversion or, if the conversion function returns an
2176        //   entity of a type that is a derived class of the parameter
2177        //   type, a derived-to-base Conversion.
2178        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2179        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2180        ICS->UserDefined.After = Best->FinalConversion;
2181        ICS->UserDefined.ConversionFunction = Best->Function;
2182        assert(ICS->UserDefined.After.ReferenceBinding &&
2183               ICS->UserDefined.After.DirectBinding &&
2184               "Expected a direct reference binding!");
2185        return false;
2186      } else {
2187        // Perform the conversion.
2188        // FIXME: Binding to a subobject of the lvalue is going to require
2189        // more AST annotation than this.
2190        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2191      }
2192      break;
2193
2194    case OR_Ambiguous:
2195      assert(false && "Ambiguous reference binding conversions not implemented.");
2196      return true;
2197
2198    case OR_No_Viable_Function:
2199    case OR_Deleted:
2200      // There was no suitable conversion, or we found a deleted
2201      // conversion; continue with other checks.
2202      break;
2203    }
2204  }
2205
2206  if (BindsDirectly) {
2207    // C++ [dcl.init.ref]p4:
2208    //   [...] In all cases where the reference-related or
2209    //   reference-compatible relationship of two types is used to
2210    //   establish the validity of a reference binding, and T1 is a
2211    //   base class of T2, a program that necessitates such a binding
2212    //   is ill-formed if T1 is an inaccessible (clause 11) or
2213    //   ambiguous (10.2) base class of T2.
2214    //
2215    // Note that we only check this condition when we're allowed to
2216    // complain about errors, because we should not be checking for
2217    // ambiguity (or inaccessibility) unless the reference binding
2218    // actually happens.
2219    if (DerivedToBase)
2220      return CheckDerivedToBaseConversion(T2, T1,
2221                                          Init->getSourceRange().getBegin(),
2222                                          Init->getSourceRange());
2223    else
2224      return false;
2225  }
2226
2227  //     -- Otherwise, the reference shall be to a non-volatile const
2228  //        type (i.e., cv1 shall be const), or the reference shall be an
2229  //        rvalue reference and the initializer expression shall be an rvalue.
2230  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2231    if (!ICS)
2232      Diag(Init->getSourceRange().getBegin(),
2233           diag::err_not_reference_to_const_init)
2234        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2235        << T2 << Init->getSourceRange();
2236    return true;
2237  }
2238
2239  //       -- If the initializer expression is an rvalue, with T2 a
2240  //          class type, and “cv1 T1” is reference-compatible with
2241  //          “cv2 T2,” the reference is bound in one of the
2242  //          following ways (the choice is implementation-defined):
2243  //
2244  //          -- The reference is bound to the object represented by
2245  //             the rvalue (see 3.10) or to a sub-object within that
2246  //             object.
2247  //
2248  //          -- A temporary of type “cv1 T2” [sic] is created, and
2249  //             a constructor is called to copy the entire rvalue
2250  //             object into the temporary. The reference is bound to
2251  //             the temporary or to a sub-object within the
2252  //             temporary.
2253  //
2254  //          The constructor that would be used to make the copy
2255  //          shall be callable whether or not the copy is actually
2256  //          done.
2257  //
2258  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2259  // freedom, so we will always take the first option and never build
2260  // a temporary in this case. FIXME: We will, however, have to check
2261  // for the presence of a copy constructor in C++98/03 mode.
2262  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2263      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2264    if (ICS) {
2265      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2266      ICS->Standard.First = ICK_Identity;
2267      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2268      ICS->Standard.Third = ICK_Identity;
2269      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2270      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2271      ICS->Standard.ReferenceBinding = true;
2272      ICS->Standard.DirectBinding = false;
2273      ICS->Standard.RRefBinding = isRValRef;
2274      ICS->Standard.CopyConstructor = 0;
2275    } else {
2276      // FIXME: Binding to a subobject of the rvalue is going to require
2277      // more AST annotation than this.
2278      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2279    }
2280    return false;
2281  }
2282
2283  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2284  //          initialized from the initializer expression using the
2285  //          rules for a non-reference copy initialization (8.5). The
2286  //          reference is then bound to the temporary. If T1 is
2287  //          reference-related to T2, cv1 must be the same
2288  //          cv-qualification as, or greater cv-qualification than,
2289  //          cv2; otherwise, the program is ill-formed.
2290  if (RefRelationship == Ref_Related) {
2291    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2292    // we would be reference-compatible or reference-compatible with
2293    // added qualification. But that wasn't the case, so the reference
2294    // initialization fails.
2295    if (!ICS)
2296      Diag(Init->getSourceRange().getBegin(),
2297           diag::err_reference_init_drops_quals)
2298        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2299        << T2 << Init->getSourceRange();
2300    return true;
2301  }
2302
2303  // If at least one of the types is a class type, the types are not
2304  // related, and we aren't allowed any user conversions, the
2305  // reference binding fails. This case is important for breaking
2306  // recursion, since TryImplicitConversion below will attempt to
2307  // create a temporary through the use of a copy constructor.
2308  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2309      (T1->isRecordType() || T2->isRecordType())) {
2310    if (!ICS)
2311      Diag(Init->getSourceRange().getBegin(),
2312           diag::err_typecheck_convert_incompatible)
2313        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2314    return true;
2315  }
2316
2317  // Actually try to convert the initializer to T1.
2318  if (ICS) {
2319    // C++ [over.ics.ref]p2:
2320    //
2321    //   When a parameter of reference type is not bound directly to
2322    //   an argument expression, the conversion sequence is the one
2323    //   required to convert the argument expression to the
2324    //   underlying type of the reference according to
2325    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2326    //   to copy-initializing a temporary of the underlying type with
2327    //   the argument expression. Any difference in top-level
2328    //   cv-qualification is subsumed by the initialization itself
2329    //   and does not constitute a conversion.
2330    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2331    // Of course, that's still a reference binding.
2332    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2333      ICS->Standard.ReferenceBinding = true;
2334      ICS->Standard.RRefBinding = isRValRef;
2335    } else if(ICS->ConversionKind ==
2336              ImplicitConversionSequence::UserDefinedConversion) {
2337      ICS->UserDefined.After.ReferenceBinding = true;
2338      ICS->UserDefined.After.RRefBinding = isRValRef;
2339    }
2340    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2341  } else {
2342    return PerformImplicitConversion(Init, T1, "initializing");
2343  }
2344}
2345
2346/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2347/// of this overloaded operator is well-formed. If so, returns false;
2348/// otherwise, emits appropriate diagnostics and returns true.
2349bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2350  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2351         "Expected an overloaded operator declaration");
2352
2353  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2354
2355  // C++ [over.oper]p5:
2356  //   The allocation and deallocation functions, operator new,
2357  //   operator new[], operator delete and operator delete[], are
2358  //   described completely in 3.7.3. The attributes and restrictions
2359  //   found in the rest of this subclause do not apply to them unless
2360  //   explicitly stated in 3.7.3.
2361  // FIXME: Write a separate routine for checking this. For now, just
2362  // allow it.
2363  if (Op == OO_New || Op == OO_Array_New ||
2364      Op == OO_Delete || Op == OO_Array_Delete)
2365    return false;
2366
2367  // C++ [over.oper]p6:
2368  //   An operator function shall either be a non-static member
2369  //   function or be a non-member function and have at least one
2370  //   parameter whose type is a class, a reference to a class, an
2371  //   enumeration, or a reference to an enumeration.
2372  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2373    if (MethodDecl->isStatic())
2374      return Diag(FnDecl->getLocation(),
2375                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2376  } else {
2377    bool ClassOrEnumParam = false;
2378    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2379                                   ParamEnd = FnDecl->param_end();
2380         Param != ParamEnd; ++Param) {
2381      QualType ParamType = (*Param)->getType().getNonReferenceType();
2382      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2383        ClassOrEnumParam = true;
2384        break;
2385      }
2386    }
2387
2388    if (!ClassOrEnumParam)
2389      return Diag(FnDecl->getLocation(),
2390                  diag::err_operator_overload_needs_class_or_enum)
2391        << FnDecl->getDeclName();
2392  }
2393
2394  // C++ [over.oper]p8:
2395  //   An operator function cannot have default arguments (8.3.6),
2396  //   except where explicitly stated below.
2397  //
2398  // Only the function-call operator allows default arguments
2399  // (C++ [over.call]p1).
2400  if (Op != OO_Call) {
2401    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2402         Param != FnDecl->param_end(); ++Param) {
2403      if ((*Param)->hasUnparsedDefaultArg())
2404        return Diag((*Param)->getLocation(),
2405                    diag::err_operator_overload_default_arg)
2406          << FnDecl->getDeclName();
2407      else if (Expr *DefArg = (*Param)->getDefaultArg())
2408        return Diag((*Param)->getLocation(),
2409                    diag::err_operator_overload_default_arg)
2410          << FnDecl->getDeclName() << DefArg->getSourceRange();
2411    }
2412  }
2413
2414  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2415    { false, false, false }
2416#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2417    , { Unary, Binary, MemberOnly }
2418#include "clang/Basic/OperatorKinds.def"
2419  };
2420
2421  bool CanBeUnaryOperator = OperatorUses[Op][0];
2422  bool CanBeBinaryOperator = OperatorUses[Op][1];
2423  bool MustBeMemberOperator = OperatorUses[Op][2];
2424
2425  // C++ [over.oper]p8:
2426  //   [...] Operator functions cannot have more or fewer parameters
2427  //   than the number required for the corresponding operator, as
2428  //   described in the rest of this subclause.
2429  unsigned NumParams = FnDecl->getNumParams()
2430                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2431  if (Op != OO_Call &&
2432      ((NumParams == 1 && !CanBeUnaryOperator) ||
2433       (NumParams == 2 && !CanBeBinaryOperator) ||
2434       (NumParams < 1) || (NumParams > 2))) {
2435    // We have the wrong number of parameters.
2436    unsigned ErrorKind;
2437    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2438      ErrorKind = 2;  // 2 -> unary or binary.
2439    } else if (CanBeUnaryOperator) {
2440      ErrorKind = 0;  // 0 -> unary
2441    } else {
2442      assert(CanBeBinaryOperator &&
2443             "All non-call overloaded operators are unary or binary!");
2444      ErrorKind = 1;  // 1 -> binary
2445    }
2446
2447    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2448      << FnDecl->getDeclName() << NumParams << ErrorKind;
2449  }
2450
2451  // Overloaded operators other than operator() cannot be variadic.
2452  if (Op != OO_Call &&
2453      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2454    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2455      << FnDecl->getDeclName();
2456  }
2457
2458  // Some operators must be non-static member functions.
2459  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2460    return Diag(FnDecl->getLocation(),
2461                diag::err_operator_overload_must_be_member)
2462      << FnDecl->getDeclName();
2463  }
2464
2465  // C++ [over.inc]p1:
2466  //   The user-defined function called operator++ implements the
2467  //   prefix and postfix ++ operator. If this function is a member
2468  //   function with no parameters, or a non-member function with one
2469  //   parameter of class or enumeration type, it defines the prefix
2470  //   increment operator ++ for objects of that type. If the function
2471  //   is a member function with one parameter (which shall be of type
2472  //   int) or a non-member function with two parameters (the second
2473  //   of which shall be of type int), it defines the postfix
2474  //   increment operator ++ for objects of that type.
2475  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2476    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2477    bool ParamIsInt = false;
2478    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2479      ParamIsInt = BT->getKind() == BuiltinType::Int;
2480
2481    if (!ParamIsInt)
2482      return Diag(LastParam->getLocation(),
2483                  diag::err_operator_overload_post_incdec_must_be_int)
2484        << LastParam->getType() << (Op == OO_MinusMinus);
2485  }
2486
2487  // Notify the class if it got an assignment operator.
2488  if (Op == OO_Equal) {
2489    // Would have returned earlier otherwise.
2490    assert(isa<CXXMethodDecl>(FnDecl) &&
2491      "Overloaded = not member, but not filtered.");
2492    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2493    Method->getParent()->addedAssignmentOperator(Context, Method);
2494  }
2495
2496  return false;
2497}
2498
2499/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2500/// linkage specification, including the language and (if present)
2501/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2502/// the location of the language string literal, which is provided
2503/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2504/// the '{' brace. Otherwise, this linkage specification does not
2505/// have any braces.
2506Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2507                                                     SourceLocation ExternLoc,
2508                                                     SourceLocation LangLoc,
2509                                                     const char *Lang,
2510                                                     unsigned StrSize,
2511                                                     SourceLocation LBraceLoc) {
2512  LinkageSpecDecl::LanguageIDs Language;
2513  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2514    Language = LinkageSpecDecl::lang_c;
2515  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2516    Language = LinkageSpecDecl::lang_cxx;
2517  else {
2518    Diag(LangLoc, diag::err_bad_language);
2519    return DeclPtrTy();
2520  }
2521
2522  // FIXME: Add all the various semantics of linkage specifications
2523
2524  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2525                                               LangLoc, Language,
2526                                               LBraceLoc.isValid());
2527  CurContext->addDecl(Context, D);
2528  PushDeclContext(S, D);
2529  return DeclPtrTy::make(D);
2530}
2531
2532/// ActOnFinishLinkageSpecification - Completely the definition of
2533/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2534/// valid, it's the position of the closing '}' brace in a linkage
2535/// specification that uses braces.
2536Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2537                                                      DeclPtrTy LinkageSpec,
2538                                                      SourceLocation RBraceLoc) {
2539  if (LinkageSpec)
2540    PopDeclContext();
2541  return LinkageSpec;
2542}
2543
2544/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2545/// handler.
2546Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2547  QualType ExDeclType = GetTypeForDeclarator(D, S);
2548  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2549
2550  bool Invalid = false;
2551
2552  // Arrays and functions decay.
2553  if (ExDeclType->isArrayType())
2554    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2555  else if (ExDeclType->isFunctionType())
2556    ExDeclType = Context.getPointerType(ExDeclType);
2557
2558  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2559  // The exception-declaration shall not denote a pointer or reference to an
2560  // incomplete type, other than [cv] void*.
2561  // N2844 forbids rvalue references.
2562  if(ExDeclType->isRValueReferenceType()) {
2563    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2564    Invalid = true;
2565  }
2566  QualType BaseType = ExDeclType;
2567  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2568  unsigned DK = diag::err_catch_incomplete;
2569  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2570    BaseType = Ptr->getPointeeType();
2571    Mode = 1;
2572    DK = diag::err_catch_incomplete_ptr;
2573  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2574    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2575    BaseType = Ref->getPointeeType();
2576    Mode = 2;
2577    DK = diag::err_catch_incomplete_ref;
2578  }
2579  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2580      RequireCompleteType(Begin, BaseType, DK))
2581    Invalid = true;
2582
2583  // FIXME: Need to test for ability to copy-construct and destroy the
2584  // exception variable.
2585  // FIXME: Need to check for abstract classes.
2586
2587  IdentifierInfo *II = D.getIdentifier();
2588  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2589    // The scope should be freshly made just for us. There is just no way
2590    // it contains any previous declaration.
2591    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2592    if (PrevDecl->isTemplateParameter()) {
2593      // Maybe we will complain about the shadowed template parameter.
2594      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2595    }
2596  }
2597
2598  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2599                                    II, ExDeclType, VarDecl::None, Begin);
2600  if (D.getInvalidType() || Invalid)
2601    ExDecl->setInvalidDecl();
2602
2603  if (D.getCXXScopeSpec().isSet()) {
2604    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2605      << D.getCXXScopeSpec().getRange();
2606    ExDecl->setInvalidDecl();
2607  }
2608
2609  // Add the exception declaration into this scope.
2610  S->AddDecl(DeclPtrTy::make(ExDecl));
2611  if (II)
2612    IdResolver.AddDecl(ExDecl);
2613
2614  ProcessDeclAttributes(ExDecl, D);
2615  return DeclPtrTy::make(ExDecl);
2616}
2617
2618Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2619                                                   ExprArg assertexpr,
2620                                                   ExprArg assertmessageexpr) {
2621  Expr *AssertExpr = (Expr *)assertexpr.get();
2622  StringLiteral *AssertMessage =
2623    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2624
2625  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2626    llvm::APSInt Value(32);
2627    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2628      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2629        AssertExpr->getSourceRange();
2630      return DeclPtrTy();
2631    }
2632
2633    if (Value == 0) {
2634      std::string str(AssertMessage->getStrData(),
2635                      AssertMessage->getByteLength());
2636      Diag(AssertLoc, diag::err_static_assert_failed)
2637        << str << AssertExpr->getSourceRange();
2638    }
2639  }
2640
2641  assertexpr.release();
2642  assertmessageexpr.release();
2643  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2644                                        AssertExpr, AssertMessage);
2645
2646  CurContext->addDecl(Context, Decl);
2647  return DeclPtrTy::make(Decl);
2648}
2649
2650void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2651  Decl *Dcl = dcl.getAs<Decl>();
2652  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2653  if (!Fn) {
2654    Diag(DelLoc, diag::err_deleted_non_function);
2655    return;
2656  }
2657  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2658    Diag(DelLoc, diag::err_deleted_decl_not_first);
2659    Diag(Prev->getLocation(), diag::note_previous_declaration);
2660    // If the declaration wasn't the first, we delete the function anyway for
2661    // recovery.
2662  }
2663  Fn->setDeleted();
2664}
2665