SemaDeclCXX.cpp revision 6fd3557615e8e6e33456e147d060296282bfe7f1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
129                                                     "in default argument");
130  if (DefaultArgPtr != DefaultArg.get()) {
131    DefaultArg.take();
132    DefaultArg.reset(DefaultArgPtr);
133  }
134  if (DefaultInitFailed) {
135    return;
136  }
137
138  // Check that the default argument is well-formed
139  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
140  if (DefaultArgChecker.Visit(DefaultArg.get())) {
141    Param->setInvalidDecl();
142    return;
143  }
144
145  // Okay: add the default argument to the parameter
146  Param->setDefaultArg(DefaultArg.take());
147}
148
149/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
150/// the default argument for the parameter param failed.
151void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
152  ((ParmVarDecl*)param)->setInvalidDecl();
153}
154
155/// CheckExtraCXXDefaultArguments - Check for any extra default
156/// arguments in the declarator, which is not a function declaration
157/// or definition and therefore is not permitted to have default
158/// arguments. This routine should be invoked for every declarator
159/// that is not a function declaration or definition.
160void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
161  // C++ [dcl.fct.default]p3
162  //   A default argument expression shall be specified only in the
163  //   parameter-declaration-clause of a function declaration or in a
164  //   template-parameter (14.1). It shall not be specified for a
165  //   parameter pack. If it is specified in a
166  //   parameter-declaration-clause, it shall not occur within a
167  //   declarator or abstract-declarator of a parameter-declaration.
168  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
169    DeclaratorChunk &chunk = D.getTypeObject(i);
170    if (chunk.Kind == DeclaratorChunk::Function) {
171      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
172        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
173        if (Param->getDefaultArg()) {
174          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
175            << Param->getDefaultArg()->getSourceRange();
176          Param->setDefaultArg(0);
177        } else if (CachedTokens *Toks
178                     = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens) {
179          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
180            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
181          delete Toks;
182          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
183        }
184      }
185    }
186  }
187}
188
189// MergeCXXFunctionDecl - Merge two declarations of the same C++
190// function, once we already know that they have the same
191// type. Subroutine of MergeFunctionDecl.
192FunctionDecl *
193Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
194  // C++ [dcl.fct.default]p4:
195  //
196  //   For non-template functions, default arguments can be added in
197  //   later declarations of a function in the same
198  //   scope. Declarations in different scopes have completely
199  //   distinct sets of default arguments. That is, declarations in
200  //   inner scopes do not acquire default arguments from
201  //   declarations in outer scopes, and vice versa. In a given
202  //   function declaration, all parameters subsequent to a
203  //   parameter with a default argument shall have default
204  //   arguments supplied in this or previous declarations. A
205  //   default argument shall not be redefined by a later
206  //   declaration (not even to the same value).
207  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
208    ParmVarDecl *OldParam = Old->getParamDecl(p);
209    ParmVarDecl *NewParam = New->getParamDecl(p);
210
211    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
212      Diag(NewParam->getLocation(),
213           diag::err_param_default_argument_redefinition)
214        << NewParam->getDefaultArg()->getSourceRange();
215      Diag(OldParam->getLocation(), diag::note_previous_definition);
216    } else if (OldParam->getDefaultArg()) {
217      // Merge the old default argument into the new parameter
218      NewParam->setDefaultArg(OldParam->getDefaultArg());
219    }
220  }
221
222  return New;
223}
224
225/// CheckCXXDefaultArguments - Verify that the default arguments for a
226/// function declaration are well-formed according to C++
227/// [dcl.fct.default].
228void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
229  unsigned NumParams = FD->getNumParams();
230  unsigned p;
231
232  // Find first parameter with a default argument
233  for (p = 0; p < NumParams; ++p) {
234    ParmVarDecl *Param = FD->getParamDecl(p);
235    if (Param->getDefaultArg())
236      break;
237  }
238
239  // C++ [dcl.fct.default]p4:
240  //   In a given function declaration, all parameters
241  //   subsequent to a parameter with a default argument shall
242  //   have default arguments supplied in this or previous
243  //   declarations. A default argument shall not be redefined
244  //   by a later declaration (not even to the same value).
245  unsigned LastMissingDefaultArg = 0;
246  for(; p < NumParams; ++p) {
247    ParmVarDecl *Param = FD->getParamDecl(p);
248    if (!Param->getDefaultArg()) {
249      if (Param->isInvalidDecl())
250        /* We already complained about this parameter. */;
251      else if (Param->getIdentifier())
252        Diag(Param->getLocation(),
253             diag::err_param_default_argument_missing_name)
254          << Param->getIdentifier();
255      else
256        Diag(Param->getLocation(),
257             diag::err_param_default_argument_missing);
258
259      LastMissingDefaultArg = p;
260    }
261  }
262
263  if (LastMissingDefaultArg > 0) {
264    // Some default arguments were missing. Clear out all of the
265    // default arguments up to (and including) the last missing
266    // default argument, so that we leave the function parameters
267    // in a semantically valid state.
268    for (p = 0; p <= LastMissingDefaultArg; ++p) {
269      ParmVarDecl *Param = FD->getParamDecl(p);
270      if (Param->getDefaultArg()) {
271        delete Param->getDefaultArg();
272        Param->setDefaultArg(0);
273      }
274    }
275  }
276}
277
278/// isCurrentClassName - Determine whether the identifier II is the
279/// name of the class type currently being defined. In the case of
280/// nested classes, this will only return true if II is the name of
281/// the innermost class.
282bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
283                              const CXXScopeSpec *SS) {
284  CXXRecordDecl *CurDecl;
285  if (SS) {
286    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
287    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
288  } else
289    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
290
291  if (CurDecl)
292    return &II == CurDecl->getIdentifier();
293  else
294    return false;
295}
296
297/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
298/// one entry in the base class list of a class specifier, for
299/// example:
300///    class foo : public bar, virtual private baz {
301/// 'public bar' and 'virtual private baz' are each base-specifiers.
302Sema::BaseResult
303Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
304                         bool Virtual, AccessSpecifier Access,
305                         TypeTy *basetype, SourceLocation BaseLoc) {
306  RecordDecl *Decl = (RecordDecl*)classdecl;
307  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
308
309  // Base specifiers must be record types.
310  if (!BaseType->isRecordType())
311    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
312
313  // C++ [class.union]p1:
314  //   A union shall not be used as a base class.
315  if (BaseType->isUnionType())
316    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
317
318  // C++ [class.union]p1:
319  //   A union shall not have base classes.
320  if (Decl->isUnion())
321    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
322              << SpecifierRange;
323
324  // C++ [class.derived]p2:
325  //   The class-name in a base-specifier shall not be an incompletely
326  //   defined class.
327  if (BaseType->isIncompleteType())
328    return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
329
330  // If the base class is polymorphic, the new one is, too.
331  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
332  assert(BaseDecl && "Record type has no declaration");
333  BaseDecl = BaseDecl->getDefinition(Context);
334  assert(BaseDecl && "Base type is not incomplete, but has no definition");
335  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
336    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
337
338  // Create the base specifier.
339  return new CXXBaseSpecifier(SpecifierRange, Virtual,
340                              BaseType->isClassType(), Access, BaseType);
341}
342
343/// ActOnBaseSpecifiers - Attach the given base specifiers to the
344/// class, after checking whether there are any duplicate base
345/// classes.
346void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
347                               unsigned NumBases) {
348  if (NumBases == 0)
349    return;
350
351  // Used to keep track of which base types we have already seen, so
352  // that we can properly diagnose redundant direct base types. Note
353  // that the key is always the unqualified canonical type of the base
354  // class.
355  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
356
357  // Copy non-redundant base specifiers into permanent storage.
358  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
359  unsigned NumGoodBases = 0;
360  for (unsigned idx = 0; idx < NumBases; ++idx) {
361    QualType NewBaseType
362      = Context.getCanonicalType(BaseSpecs[idx]->getType());
363    NewBaseType = NewBaseType.getUnqualifiedType();
364
365    if (KnownBaseTypes[NewBaseType]) {
366      // C++ [class.mi]p3:
367      //   A class shall not be specified as a direct base class of a
368      //   derived class more than once.
369      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
370           diag::err_duplicate_base_class)
371        << KnownBaseTypes[NewBaseType]->getType()
372        << BaseSpecs[idx]->getSourceRange();
373
374      // Delete the duplicate base class specifier; we're going to
375      // overwrite its pointer later.
376      delete BaseSpecs[idx];
377    } else {
378      // Okay, add this new base class.
379      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
380      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
381    }
382  }
383
384  // Attach the remaining base class specifiers to the derived class.
385  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
386  Decl->setBases(BaseSpecs, NumGoodBases);
387
388  // Delete the remaining (good) base class specifiers, since their
389  // data has been copied into the CXXRecordDecl.
390  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
391    delete BaseSpecs[idx];
392}
393
394//===----------------------------------------------------------------------===//
395// C++ class member Handling
396//===----------------------------------------------------------------------===//
397
398/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
399/// definition, when on C++.
400void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
401  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
402  PushDeclContext(S, Dcl);
403  FieldCollector->StartClass();
404
405  if (Dcl->getIdentifier()) {
406    // C++ [class]p2:
407    //   [...] The class-name is also inserted into the scope of the
408    //   class itself; this is known as the injected-class-name. For
409    //   purposes of access checking, the injected-class-name is treated
410    //   as if it were a public member name.
411    PushOnScopeChains(CXXRecordDecl::Create(Context, Dcl->getTagKind(),
412                                            CurContext, Dcl->getLocation(),
413                                            Dcl->getIdentifier(), Dcl), S);
414  }
415}
416
417/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
418/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
419/// bitfield width if there is one and 'InitExpr' specifies the initializer if
420/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
421/// declarators on it.
422///
423/// FIXME: The note below is out-of-date.
424/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
425/// an instance field is declared, a new CXXFieldDecl is created but the method
426/// does *not* return it; it returns LastInGroup instead. The other C++ members
427/// (which are all ScopedDecls) are returned after appending them to
428/// LastInGroup.
429Sema::DeclTy *
430Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
431                               ExprTy *BW, ExprTy *InitExpr,
432                               DeclTy *LastInGroup) {
433  const DeclSpec &DS = D.getDeclSpec();
434  DeclarationName Name = GetNameForDeclarator(D);
435  Expr *BitWidth = static_cast<Expr*>(BW);
436  Expr *Init = static_cast<Expr*>(InitExpr);
437  SourceLocation Loc = D.getIdentifierLoc();
438
439  bool isFunc = D.isFunctionDeclarator();
440
441  // C++ 9.2p6: A member shall not be declared to have automatic storage
442  // duration (auto, register) or with the extern storage-class-specifier.
443  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
444  // data members and cannot be applied to names declared const or static,
445  // and cannot be applied to reference members.
446  switch (DS.getStorageClassSpec()) {
447    case DeclSpec::SCS_unspecified:
448    case DeclSpec::SCS_typedef:
449    case DeclSpec::SCS_static:
450      // FALL THROUGH.
451      break;
452    case DeclSpec::SCS_mutable:
453      if (isFunc) {
454        if (DS.getStorageClassSpecLoc().isValid())
455          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
456        else
457          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
458
459        // FIXME: It would be nicer if the keyword was ignored only for this
460        // declarator. Otherwise we could get follow-up errors.
461        D.getMutableDeclSpec().ClearStorageClassSpecs();
462      } else {
463        QualType T = GetTypeForDeclarator(D, S);
464        diag::kind err = static_cast<diag::kind>(0);
465        if (T->isReferenceType())
466          err = diag::err_mutable_reference;
467        else if (T.isConstQualified())
468          err = diag::err_mutable_const;
469        if (err != 0) {
470          if (DS.getStorageClassSpecLoc().isValid())
471            Diag(DS.getStorageClassSpecLoc(), err);
472          else
473            Diag(DS.getThreadSpecLoc(), err);
474          // FIXME: It would be nicer if the keyword was ignored only for this
475          // declarator. Otherwise we could get follow-up errors.
476          D.getMutableDeclSpec().ClearStorageClassSpecs();
477        }
478      }
479      break;
480    default:
481      if (DS.getStorageClassSpecLoc().isValid())
482        Diag(DS.getStorageClassSpecLoc(),
483             diag::err_storageclass_invalid_for_member);
484      else
485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
486      D.getMutableDeclSpec().ClearStorageClassSpecs();
487  }
488
489  if (!isFunc &&
490      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
491      D.getNumTypeObjects() == 0) {
492    // Check also for this case:
493    //
494    // typedef int f();
495    // f a;
496    //
497    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
498    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
499  }
500
501  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
502                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
503                      !isFunc);
504
505  Decl *Member;
506  bool InvalidDecl = false;
507
508  if (isInstField)
509    Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
510                                           Loc, D, BitWidth));
511  else
512    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
513
514  if (!Member) return LastInGroup;
515
516  assert((Name || isInstField) && "No identifier for non-field ?");
517
518  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
519  // specific methods. Use a wrapper class that can be used with all C++ class
520  // member decls.
521  CXXClassMemberWrapper(Member).setAccess(AS);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is an array or a class (clause 9) with [...] no
525  //   private or protected non-static data members (clause 11).
526  if (isInstField && (AS == AS_private || AS == AS_protected))
527    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
528
529  if (DS.isVirtualSpecified()) {
530    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
531      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
532      InvalidDecl = true;
533    } else {
534      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
535      CurClass->setAggregate(false);
536      CurClass->setPolymorphic(true);
537    }
538  }
539
540  if (BitWidth) {
541    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
542    // constant-expression be a value equal to zero.
543    // FIXME: Check this.
544
545    if (D.isFunctionDeclarator()) {
546      // FIXME: Emit diagnostic about only constructors taking base initializers
547      // or something similar, when constructor support is in place.
548      Diag(Loc, diag::err_not_bitfield_type)
549        << Name << BitWidth->getSourceRange();
550      InvalidDecl = true;
551
552    } else if (isInstField) {
553      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
554      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
555        Diag(Loc, diag::err_not_integral_type_bitfield)
556          << Name << BitWidth->getSourceRange();
557        InvalidDecl = true;
558      }
559
560    } else if (isa<FunctionDecl>(Member)) {
561      // A function typedef ("typedef int f(); f a;").
562      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
563      Diag(Loc, diag::err_not_integral_type_bitfield)
564        << Name << BitWidth->getSourceRange();
565      InvalidDecl = true;
566
567    } else if (isa<TypedefDecl>(Member)) {
568      // "cannot declare 'A' to be a bit-field type"
569      Diag(Loc, diag::err_not_bitfield_type)
570        << Name << BitWidth->getSourceRange();
571      InvalidDecl = true;
572
573    } else {
574      assert(isa<CXXClassVarDecl>(Member) &&
575             "Didn't we cover all member kinds?");
576      // C++ 9.6p3: A bit-field shall not be a static member.
577      // "static member 'A' cannot be a bit-field"
578      Diag(Loc, diag::err_static_not_bitfield)
579        << Name << BitWidth->getSourceRange();
580      InvalidDecl = true;
581    }
582  }
583
584  if (Init) {
585    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
586    // if it declares a static member of const integral or const enumeration
587    // type.
588    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
589      // ...static member of...
590      CVD->setInit(Init);
591      // ...const integral or const enumeration type.
592      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
593          CVD->getType()->isIntegralType()) {
594        // constant-initializer
595        if (CheckForConstantInitializer(Init, CVD->getType()))
596          InvalidDecl = true;
597
598      } else {
599        // not const integral.
600        Diag(Loc, diag::err_member_initialization)
601          << Name << Init->getSourceRange();
602        InvalidDecl = true;
603      }
604
605    } else {
606      // not static member.
607      Diag(Loc, diag::err_member_initialization)
608        << Name << Init->getSourceRange();
609      InvalidDecl = true;
610    }
611  }
612
613  if (InvalidDecl)
614    Member->setInvalidDecl();
615
616  if (isInstField) {
617    FieldCollector->Add(cast<FieldDecl>(Member));
618    return LastInGroup;
619  }
620  return Member;
621}
622
623/// ActOnMemInitializer - Handle a C++ member initializer.
624Sema::MemInitResult
625Sema::ActOnMemInitializer(DeclTy *ConstructorD,
626                          Scope *S,
627                          IdentifierInfo *MemberOrBase,
628                          SourceLocation IdLoc,
629                          SourceLocation LParenLoc,
630                          ExprTy **Args, unsigned NumArgs,
631                          SourceLocation *CommaLocs,
632                          SourceLocation RParenLoc) {
633  CXXConstructorDecl *Constructor
634    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
635  if (!Constructor) {
636    // The user wrote a constructor initializer on a function that is
637    // not a C++ constructor. Ignore the error for now, because we may
638    // have more member initializers coming; we'll diagnose it just
639    // once in ActOnMemInitializers.
640    return true;
641  }
642
643  CXXRecordDecl *ClassDecl = Constructor->getParent();
644
645  // C++ [class.base.init]p2:
646  //   Names in a mem-initializer-id are looked up in the scope of the
647  //   constructor’s class and, if not found in that scope, are looked
648  //   up in the scope containing the constructor’s
649  //   definition. [Note: if the constructor’s class contains a member
650  //   with the same name as a direct or virtual base class of the
651  //   class, a mem-initializer-id naming the member or base class and
652  //   composed of a single identifier refers to the class member. A
653  //   mem-initializer-id for the hidden base class may be specified
654  //   using a qualified name. ]
655  // Look for a member, first.
656  FieldDecl *Member = 0;
657  DeclContext::lookup_result Result = ClassDecl->lookup(Context, MemberOrBase);
658  if (Result.first != Result.second)
659    Member = dyn_cast<FieldDecl>(*Result.first);
660
661  // FIXME: Handle members of an anonymous union.
662
663  if (Member) {
664    // FIXME: Perform direct initialization of the member.
665    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
666  }
667
668  // It didn't name a member, so see if it names a class.
669  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
670  if (!BaseTy)
671    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
672      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
673
674  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
675  if (!BaseType->isRecordType())
676    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
677      << BaseType << SourceRange(IdLoc, RParenLoc);
678
679  // C++ [class.base.init]p2:
680  //   [...] Unless the mem-initializer-id names a nonstatic data
681  //   member of the constructor’s class or a direct or virtual base
682  //   of that class, the mem-initializer is ill-formed. A
683  //   mem-initializer-list can initialize a base class using any
684  //   name that denotes that base class type.
685
686  // First, check for a direct base class.
687  const CXXBaseSpecifier *DirectBaseSpec = 0;
688  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
689       Base != ClassDecl->bases_end(); ++Base) {
690    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
691        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
692      // We found a direct base of this type. That's what we're
693      // initializing.
694      DirectBaseSpec = &*Base;
695      break;
696    }
697  }
698
699  // Check for a virtual base class.
700  // FIXME: We might be able to short-circuit this if we know in
701  // advance that there are no virtual bases.
702  const CXXBaseSpecifier *VirtualBaseSpec = 0;
703  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
704    // We haven't found a base yet; search the class hierarchy for a
705    // virtual base class.
706    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
707                    /*DetectVirtual=*/false);
708    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
709      for (BasePaths::paths_iterator Path = Paths.begin();
710           Path != Paths.end(); ++Path) {
711        if (Path->back().Base->isVirtual()) {
712          VirtualBaseSpec = Path->back().Base;
713          break;
714        }
715      }
716    }
717  }
718
719  // C++ [base.class.init]p2:
720  //   If a mem-initializer-id is ambiguous because it designates both
721  //   a direct non-virtual base class and an inherited virtual base
722  //   class, the mem-initializer is ill-formed.
723  if (DirectBaseSpec && VirtualBaseSpec)
724    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
725      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
726
727  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
728}
729
730
731void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
732                                             DeclTy *TagDecl,
733                                             SourceLocation LBrac,
734                                             SourceLocation RBrac) {
735  ActOnFields(S, RLoc, TagDecl,
736              (DeclTy**)FieldCollector->getCurFields(),
737              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
738}
739
740/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
741/// special functions, such as the default constructor, copy
742/// constructor, or destructor, to the given C++ class (C++
743/// [special]p1).  This routine can only be executed just before the
744/// definition of the class is complete.
745void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
746  QualType ClassType = Context.getTypeDeclType(ClassDecl);
747  ClassType = Context.getCanonicalType(ClassType);
748
749  if (!ClassDecl->hasUserDeclaredConstructor()) {
750    // C++ [class.ctor]p5:
751    //   A default constructor for a class X is a constructor of class X
752    //   that can be called without an argument. If there is no
753    //   user-declared constructor for class X, a default constructor is
754    //   implicitly declared. An implicitly-declared default constructor
755    //   is an inline public member of its class.
756    DeclarationName Name
757      = Context.DeclarationNames.getCXXConstructorName(ClassType);
758    CXXConstructorDecl *DefaultCon =
759      CXXConstructorDecl::Create(Context, ClassDecl,
760                                 ClassDecl->getLocation(), Name,
761                                 Context.getFunctionType(Context.VoidTy,
762                                                         0, 0, false, 0),
763                                 /*isExplicit=*/false,
764                                 /*isInline=*/true,
765                                 /*isImplicitlyDeclared=*/true);
766    DefaultCon->setAccess(AS_public);
767    ClassDecl->addDecl(Context, DefaultCon);
768
769    // Notify the class that we've added a constructor.
770    ClassDecl->addedConstructor(Context, DefaultCon);
771  }
772
773  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
774    // C++ [class.copy]p4:
775    //   If the class definition does not explicitly declare a copy
776    //   constructor, one is declared implicitly.
777
778    // C++ [class.copy]p5:
779    //   The implicitly-declared copy constructor for a class X will
780    //   have the form
781    //
782    //       X::X(const X&)
783    //
784    //   if
785    bool HasConstCopyConstructor = true;
786
787    //     -- each direct or virtual base class B of X has a copy
788    //        constructor whose first parameter is of type const B& or
789    //        const volatile B&, and
790    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
791         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
792      const CXXRecordDecl *BaseClassDecl
793        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
794      HasConstCopyConstructor
795        = BaseClassDecl->hasConstCopyConstructor(Context);
796    }
797
798    //     -- for all the nonstatic data members of X that are of a
799    //        class type M (or array thereof), each such class type
800    //        has a copy constructor whose first parameter is of type
801    //        const M& or const volatile M&.
802    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
803         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
804      QualType FieldType = (*Field)->getType();
805      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
806        FieldType = Array->getElementType();
807      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
808        const CXXRecordDecl *FieldClassDecl
809          = cast<CXXRecordDecl>(FieldClassType->getDecl());
810        HasConstCopyConstructor
811          = FieldClassDecl->hasConstCopyConstructor(Context);
812      }
813    }
814
815    //  Otherwise, the implicitly declared copy constructor will have
816    //  the form
817    //
818    //       X::X(X&)
819    QualType ArgType = Context.getTypeDeclType(ClassDecl);
820    if (HasConstCopyConstructor)
821      ArgType = ArgType.withConst();
822    ArgType = Context.getReferenceType(ArgType);
823
824    //  An implicitly-declared copy constructor is an inline public
825    //  member of its class.
826    DeclarationName Name
827      = Context.DeclarationNames.getCXXConstructorName(ClassType);
828    CXXConstructorDecl *CopyConstructor
829      = CXXConstructorDecl::Create(Context, ClassDecl,
830                                   ClassDecl->getLocation(), Name,
831                                   Context.getFunctionType(Context.VoidTy,
832                                                           &ArgType, 1,
833                                                           false, 0),
834                                   /*isExplicit=*/false,
835                                   /*isInline=*/true,
836                                   /*isImplicitlyDeclared=*/true);
837    CopyConstructor->setAccess(AS_public);
838
839    // Add the parameter to the constructor.
840    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
841                                                 ClassDecl->getLocation(),
842                                                 /*IdentifierInfo=*/0,
843                                                 ArgType, VarDecl::None, 0, 0);
844    CopyConstructor->setParams(&FromParam, 1);
845
846    ClassDecl->addedConstructor(Context, CopyConstructor);
847    DeclContext::lookup_result Lookup = ClassDecl->lookup(Context, Name);
848    if (Lookup.first == Lookup.second
849        || (!isa<CXXConstructorDecl>(*Lookup.first) &&
850            !isa<OverloadedFunctionDecl>(*Lookup.first)))
851      ClassDecl->addDecl(Context, CopyConstructor);
852    else {
853      OverloadedFunctionDecl *Ovl
854        = dyn_cast<OverloadedFunctionDecl>(*Lookup.first);
855      if (!Ovl) {
856        Ovl = OverloadedFunctionDecl::Create(Context, ClassDecl, Name);
857        Ovl->addOverload(cast<CXXConstructorDecl>(*Lookup.first));
858        ClassDecl->insert(Context, Ovl);
859      }
860
861      Ovl->addOverload(CopyConstructor);
862      ClassDecl->addDecl(Context, CopyConstructor, false);
863    }
864  }
865
866  if (!ClassDecl->hasUserDeclaredDestructor()) {
867    // C++ [class.dtor]p2:
868    //   If a class has no user-declared destructor, a destructor is
869    //   declared implicitly. An implicitly-declared destructor is an
870    //   inline public member of its class.
871    DeclarationName Name
872      = Context.DeclarationNames.getCXXDestructorName(ClassType);
873    CXXDestructorDecl *Destructor
874      = CXXDestructorDecl::Create(Context, ClassDecl,
875                                  ClassDecl->getLocation(), Name,
876                                  Context.getFunctionType(Context.VoidTy,
877                                                          0, 0, false, 0),
878                                  /*isInline=*/true,
879                                  /*isImplicitlyDeclared=*/true);
880    Destructor->setAccess(AS_public);
881    ClassDecl->addDecl(Context, Destructor);
882  }
883
884  // FIXME: Implicit copy assignment operator
885}
886
887void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
888  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
889  FieldCollector->FinishClass();
890  AddImplicitlyDeclaredMembersToClass(Rec);
891  PopDeclContext();
892
893  // Everything, including inline method definitions, have been parsed.
894  // Let the consumer know of the new TagDecl definition.
895  Consumer.HandleTagDeclDefinition(Rec);
896}
897
898/// ActOnStartDelayedCXXMethodDeclaration - We have completed
899/// parsing a top-level (non-nested) C++ class, and we are now
900/// parsing those parts of the given Method declaration that could
901/// not be parsed earlier (C++ [class.mem]p2), such as default
902/// arguments. This action should enter the scope of the given
903/// Method declaration as if we had just parsed the qualified method
904/// name. However, it should not bring the parameters into scope;
905/// that will be performed by ActOnDelayedCXXMethodParameter.
906void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
907  CXXScopeSpec SS;
908  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
909  ActOnCXXEnterDeclaratorScope(S, SS);
910}
911
912/// ActOnDelayedCXXMethodParameter - We've already started a delayed
913/// C++ method declaration. We're (re-)introducing the given
914/// function parameter into scope for use in parsing later parts of
915/// the method declaration. For example, we could see an
916/// ActOnParamDefaultArgument event for this parameter.
917void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
918  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
919  S->AddDecl(Param);
920  if (Param->getDeclName())
921    IdResolver.AddDecl(Param);
922}
923
924/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
925/// processing the delayed method declaration for Method. The method
926/// declaration is now considered finished. There may be a separate
927/// ActOnStartOfFunctionDef action later (not necessarily
928/// immediately!) for this method, if it was also defined inside the
929/// class body.
930void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
931  FunctionDecl *Method = (FunctionDecl*)MethodD;
932  CXXScopeSpec SS;
933  SS.setScopeRep(Method->getDeclContext());
934  ActOnCXXExitDeclaratorScope(S, SS);
935
936  // Now that we have our default arguments, check the constructor
937  // again. It could produce additional diagnostics or affect whether
938  // the class has implicitly-declared destructors, among other
939  // things.
940  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
941    if (CheckConstructor(Constructor))
942      Constructor->setInvalidDecl();
943  }
944
945  // Check the default arguments, which we may have added.
946  if (!Method->isInvalidDecl())
947    CheckCXXDefaultArguments(Method);
948}
949
950/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
951/// the well-formedness of the constructor declarator @p D with type @p
952/// R. If there are any errors in the declarator, this routine will
953/// emit diagnostics and return true. Otherwise, it will return
954/// false. Either way, the type @p R will be updated to reflect a
955/// well-formed type for the constructor.
956bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
957                                      FunctionDecl::StorageClass& SC) {
958  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
959  bool isInvalid = false;
960
961  // C++ [class.ctor]p3:
962  //   A constructor shall not be virtual (10.3) or static (9.4). A
963  //   constructor can be invoked for a const, volatile or const
964  //   volatile object. A constructor shall not be declared const,
965  //   volatile, or const volatile (9.3.2).
966  if (isVirtual) {
967    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
968      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
969      << SourceRange(D.getIdentifierLoc());
970    isInvalid = true;
971  }
972  if (SC == FunctionDecl::Static) {
973    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
974      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
975      << SourceRange(D.getIdentifierLoc());
976    isInvalid = true;
977    SC = FunctionDecl::None;
978  }
979  if (D.getDeclSpec().hasTypeSpecifier()) {
980    // Constructors don't have return types, but the parser will
981    // happily parse something like:
982    //
983    //   class X {
984    //     float X(float);
985    //   };
986    //
987    // The return type will be eliminated later.
988    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
989      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
990      << SourceRange(D.getIdentifierLoc());
991  }
992  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
993    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
994    if (FTI.TypeQuals & QualType::Const)
995      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
996        << "const" << SourceRange(D.getIdentifierLoc());
997    if (FTI.TypeQuals & QualType::Volatile)
998      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
999        << "volatile" << SourceRange(D.getIdentifierLoc());
1000    if (FTI.TypeQuals & QualType::Restrict)
1001      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1002        << "restrict" << SourceRange(D.getIdentifierLoc());
1003  }
1004
1005  // Rebuild the function type "R" without any type qualifiers (in
1006  // case any of the errors above fired) and with "void" as the
1007  // return type, since constructors don't have return types. We
1008  // *always* have to do this, because GetTypeForDeclarator will
1009  // put in a result type of "int" when none was specified.
1010  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
1011  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1012                              Proto->getNumArgs(),
1013                              Proto->isVariadic(),
1014                              0);
1015
1016  return isInvalid;
1017}
1018
1019/// CheckConstructor - Checks a fully-formed constructor for
1020/// well-formedness, issuing any diagnostics required. Returns true if
1021/// the constructor declarator is invalid.
1022bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1023  if (Constructor->isInvalidDecl())
1024    return true;
1025
1026  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1027  bool Invalid = false;
1028
1029  // C++ [class.copy]p3:
1030  //   A declaration of a constructor for a class X is ill-formed if
1031  //   its first parameter is of type (optionally cv-qualified) X and
1032  //   either there are no other parameters or else all other
1033  //   parameters have default arguments.
1034  if ((Constructor->getNumParams() == 1) ||
1035      (Constructor->getNumParams() > 1 &&
1036       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1037    QualType ParamType = Constructor->getParamDecl(0)->getType();
1038    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1039    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1040      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1041        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1042      Invalid = true;
1043    }
1044  }
1045
1046  // Notify the class that we've added a constructor.
1047  ClassDecl->addedConstructor(Context, Constructor);
1048
1049  return Invalid;
1050}
1051
1052/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1053/// the well-formednes of the destructor declarator @p D with type @p
1054/// R. If there are any errors in the declarator, this routine will
1055/// emit diagnostics and return true. Otherwise, it will return
1056/// false. Either way, the type @p R will be updated to reflect a
1057/// well-formed type for the destructor.
1058bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1059                                     FunctionDecl::StorageClass& SC) {
1060  bool isInvalid = false;
1061
1062  // C++ [class.dtor]p1:
1063  //   [...] A typedef-name that names a class is a class-name
1064  //   (7.1.3); however, a typedef-name that names a class shall not
1065  //   be used as the identifier in the declarator for a destructor
1066  //   declaration.
1067  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
1068  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
1069    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1070      << TypedefD->getDeclName();
1071    isInvalid = true;
1072  }
1073
1074  // C++ [class.dtor]p2:
1075  //   A destructor is used to destroy objects of its class type. A
1076  //   destructor takes no parameters, and no return type can be
1077  //   specified for it (not even void). The address of a destructor
1078  //   shall not be taken. A destructor shall not be static. A
1079  //   destructor can be invoked for a const, volatile or const
1080  //   volatile object. A destructor shall not be declared const,
1081  //   volatile or const volatile (9.3.2).
1082  if (SC == FunctionDecl::Static) {
1083    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1084      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1085      << SourceRange(D.getIdentifierLoc());
1086    isInvalid = true;
1087    SC = FunctionDecl::None;
1088  }
1089  if (D.getDeclSpec().hasTypeSpecifier()) {
1090    // Destructors don't have return types, but the parser will
1091    // happily parse something like:
1092    //
1093    //   class X {
1094    //     float ~X();
1095    //   };
1096    //
1097    // The return type will be eliminated later.
1098    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1099      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1100      << SourceRange(D.getIdentifierLoc());
1101  }
1102  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
1103    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1104    if (FTI.TypeQuals & QualType::Const)
1105      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1106        << "const" << SourceRange(D.getIdentifierLoc());
1107    if (FTI.TypeQuals & QualType::Volatile)
1108      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1109        << "volatile" << SourceRange(D.getIdentifierLoc());
1110    if (FTI.TypeQuals & QualType::Restrict)
1111      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1112        << "restrict" << SourceRange(D.getIdentifierLoc());
1113  }
1114
1115  // Make sure we don't have any parameters.
1116  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1117    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1118
1119    // Delete the parameters.
1120    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1121    if (FTI.NumArgs) {
1122      delete [] FTI.ArgInfo;
1123      FTI.NumArgs = 0;
1124      FTI.ArgInfo = 0;
1125    }
1126  }
1127
1128  // Make sure the destructor isn't variadic.
1129  if (R->getAsFunctionTypeProto()->isVariadic())
1130    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1131
1132  // Rebuild the function type "R" without any type qualifiers or
1133  // parameters (in case any of the errors above fired) and with
1134  // "void" as the return type, since destructors don't have return
1135  // types. We *always* have to do this, because GetTypeForDeclarator
1136  // will put in a result type of "int" when none was specified.
1137  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1138
1139  return isInvalid;
1140}
1141
1142/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1143/// well-formednes of the conversion function declarator @p D with
1144/// type @p R. If there are any errors in the declarator, this routine
1145/// will emit diagnostics and return true. Otherwise, it will return
1146/// false. Either way, the type @p R will be updated to reflect a
1147/// well-formed type for the conversion operator.
1148bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1149                                     FunctionDecl::StorageClass& SC) {
1150  bool isInvalid = false;
1151
1152  // C++ [class.conv.fct]p1:
1153  //   Neither parameter types nor return type can be specified. The
1154  //   type of a conversion function (8.3.5) is “function taking no
1155  //   parameter returning conversion-type-id.”
1156  if (SC == FunctionDecl::Static) {
1157    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1158      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1159      << SourceRange(D.getIdentifierLoc());
1160    isInvalid = true;
1161    SC = FunctionDecl::None;
1162  }
1163  if (D.getDeclSpec().hasTypeSpecifier()) {
1164    // Conversion functions don't have return types, but the parser will
1165    // happily parse something like:
1166    //
1167    //   class X {
1168    //     float operator bool();
1169    //   };
1170    //
1171    // The return type will be changed later anyway.
1172    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1173      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1174      << SourceRange(D.getIdentifierLoc());
1175  }
1176
1177  // Make sure we don't have any parameters.
1178  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1179    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1180
1181    // Delete the parameters.
1182    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1183    if (FTI.NumArgs) {
1184      delete [] FTI.ArgInfo;
1185      FTI.NumArgs = 0;
1186      FTI.ArgInfo = 0;
1187    }
1188  }
1189
1190  // Make sure the conversion function isn't variadic.
1191  if (R->getAsFunctionTypeProto()->isVariadic())
1192    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1193
1194  // C++ [class.conv.fct]p4:
1195  //   The conversion-type-id shall not represent a function type nor
1196  //   an array type.
1197  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1198  if (ConvType->isArrayType()) {
1199    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1200    ConvType = Context.getPointerType(ConvType);
1201  } else if (ConvType->isFunctionType()) {
1202    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1203    ConvType = Context.getPointerType(ConvType);
1204  }
1205
1206  // Rebuild the function type "R" without any parameters (in case any
1207  // of the errors above fired) and with the conversion type as the
1208  // return type.
1209  R = Context.getFunctionType(ConvType, 0, 0, false,
1210                              R->getAsFunctionTypeProto()->getTypeQuals());
1211
1212  return isInvalid;
1213}
1214
1215/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1216/// the declaration of the given C++ conversion function. This routine
1217/// is responsible for recording the conversion function in the C++
1218/// class, if possible.
1219Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1220  assert(Conversion && "Expected to receive a conversion function declaration");
1221
1222  // Set the lexical context of this conversion function
1223  Conversion->setLexicalDeclContext(CurContext);
1224
1225  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1226
1227  // Make sure we aren't redeclaring the conversion function.
1228  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1229  OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1230  for (OverloadedFunctionDecl::function_iterator Func
1231         = Conversions->function_begin();
1232       Func != Conversions->function_end(); ++Func) {
1233    CXXConversionDecl *OtherConv = cast<CXXConversionDecl>(*Func);
1234    if (ConvType == Context.getCanonicalType(OtherConv->getConversionType())) {
1235      Diag(Conversion->getLocation(), diag::err_conv_function_redeclared);
1236      Diag(OtherConv->getLocation(),
1237           OtherConv->isThisDeclarationADefinition()?
1238              diag::note_previous_definition
1239            : diag::note_previous_declaration);
1240      Conversion->setInvalidDecl();
1241      return (DeclTy *)Conversion;
1242    }
1243  }
1244
1245  // C++ [class.conv.fct]p1:
1246  //   [...] A conversion function is never used to convert a
1247  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1248  //   same object type (or a reference to it), to a (possibly
1249  //   cv-qualified) base class of that type (or a reference to it),
1250  //   or to (possibly cv-qualified) void.
1251  // FIXME: Suppress this warning if the conversion function ends up
1252  // being a virtual function that overrides a virtual function in a
1253  // base class.
1254  QualType ClassType
1255    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1256  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1257    ConvType = ConvTypeRef->getPointeeType();
1258  if (ConvType->isRecordType()) {
1259    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1260    if (ConvType == ClassType)
1261      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1262        << ClassType;
1263    else if (IsDerivedFrom(ClassType, ConvType))
1264      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1265        <<  ClassType << ConvType;
1266  } else if (ConvType->isVoidType()) {
1267    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1268      << ClassType << ConvType;
1269  }
1270
1271  ClassDecl->addConversionFunction(Context, Conversion);
1272
1273  return (DeclTy *)Conversion;
1274}
1275
1276//===----------------------------------------------------------------------===//
1277// Namespace Handling
1278//===----------------------------------------------------------------------===//
1279
1280/// ActOnStartNamespaceDef - This is called at the start of a namespace
1281/// definition.
1282Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1283                                           SourceLocation IdentLoc,
1284                                           IdentifierInfo *II,
1285                                           SourceLocation LBrace) {
1286  NamespaceDecl *Namespc =
1287      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1288  Namespc->setLBracLoc(LBrace);
1289
1290  Scope *DeclRegionScope = NamespcScope->getParent();
1291
1292  if (II) {
1293    // C++ [namespace.def]p2:
1294    // The identifier in an original-namespace-definition shall not have been
1295    // previously defined in the declarative region in which the
1296    // original-namespace-definition appears. The identifier in an
1297    // original-namespace-definition is the name of the namespace. Subsequently
1298    // in that declarative region, it is treated as an original-namespace-name.
1299
1300    Decl *PrevDecl =
1301      LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1302                /*enableLazyBuiltinCreation=*/false,
1303                /*LookupInParent=*/false);
1304
1305    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1306      // This is an extended namespace definition.
1307      // Attach this namespace decl to the chain of extended namespace
1308      // definitions.
1309      OrigNS->setNextNamespace(Namespc);
1310      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1311
1312      // Remove the previous declaration from the scope.
1313      if (DeclRegionScope->isDeclScope(OrigNS)) {
1314        IdResolver.RemoveDecl(OrigNS);
1315        DeclRegionScope->RemoveDecl(OrigNS);
1316      }
1317    } else if (PrevDecl) {
1318      // This is an invalid name redefinition.
1319      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1320       << Namespc->getDeclName();
1321      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1322      Namespc->setInvalidDecl();
1323      // Continue on to push Namespc as current DeclContext and return it.
1324    }
1325
1326    PushOnScopeChains(Namespc, DeclRegionScope);
1327  } else {
1328    // FIXME: Handle anonymous namespaces
1329  }
1330
1331  // Although we could have an invalid decl (i.e. the namespace name is a
1332  // redefinition), push it as current DeclContext and try to continue parsing.
1333  // FIXME: We should be able to push Namespc here, so that the
1334  // each DeclContext for the namespace has the declarations
1335  // that showed up in that particular namespace definition.
1336  PushDeclContext(NamespcScope, Namespc);
1337  return Namespc;
1338}
1339
1340/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1341/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1342void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1343  Decl *Dcl = static_cast<Decl *>(D);
1344  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1345  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1346  Namespc->setRBracLoc(RBrace);
1347  PopDeclContext();
1348}
1349
1350
1351/// AddCXXDirectInitializerToDecl - This action is called immediately after
1352/// ActOnDeclarator, when a C++ direct initializer is present.
1353/// e.g: "int x(1);"
1354void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1355                                         ExprTy **ExprTys, unsigned NumExprs,
1356                                         SourceLocation *CommaLocs,
1357                                         SourceLocation RParenLoc) {
1358  assert(NumExprs != 0 && ExprTys && "missing expressions");
1359  Decl *RealDecl = static_cast<Decl *>(Dcl);
1360
1361  // If there is no declaration, there was an error parsing it.  Just ignore
1362  // the initializer.
1363  if (RealDecl == 0) {
1364    for (unsigned i = 0; i != NumExprs; ++i)
1365      delete static_cast<Expr *>(ExprTys[i]);
1366    return;
1367  }
1368
1369  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1370  if (!VDecl) {
1371    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1372    RealDecl->setInvalidDecl();
1373    return;
1374  }
1375
1376  // We will treat direct-initialization as a copy-initialization:
1377  //    int x(1);  -as-> int x = 1;
1378  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1379  //
1380  // Clients that want to distinguish between the two forms, can check for
1381  // direct initializer using VarDecl::hasCXXDirectInitializer().
1382  // A major benefit is that clients that don't particularly care about which
1383  // exactly form was it (like the CodeGen) can handle both cases without
1384  // special case code.
1385
1386  // C++ 8.5p11:
1387  // The form of initialization (using parentheses or '=') is generally
1388  // insignificant, but does matter when the entity being initialized has a
1389  // class type.
1390  QualType DeclInitType = VDecl->getType();
1391  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1392    DeclInitType = Array->getElementType();
1393
1394  if (VDecl->getType()->isRecordType()) {
1395    CXXConstructorDecl *Constructor
1396      = PerformInitializationByConstructor(DeclInitType,
1397                                           (Expr **)ExprTys, NumExprs,
1398                                           VDecl->getLocation(),
1399                                           SourceRange(VDecl->getLocation(),
1400                                                       RParenLoc),
1401                                           VDecl->getDeclName(),
1402                                           IK_Direct);
1403    if (!Constructor) {
1404      RealDecl->setInvalidDecl();
1405    }
1406
1407    // Let clients know that initialization was done with a direct
1408    // initializer.
1409    VDecl->setCXXDirectInitializer(true);
1410
1411    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1412    // the initializer.
1413    return;
1414  }
1415
1416  if (NumExprs > 1) {
1417    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1418      << SourceRange(VDecl->getLocation(), RParenLoc);
1419    RealDecl->setInvalidDecl();
1420    return;
1421  }
1422
1423  // Let clients know that initialization was done with a direct initializer.
1424  VDecl->setCXXDirectInitializer(true);
1425
1426  assert(NumExprs == 1 && "Expected 1 expression");
1427  // Set the init expression, handles conversions.
1428  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]));
1429}
1430
1431/// PerformInitializationByConstructor - Perform initialization by
1432/// constructor (C++ [dcl.init]p14), which may occur as part of
1433/// direct-initialization or copy-initialization. We are initializing
1434/// an object of type @p ClassType with the given arguments @p
1435/// Args. @p Loc is the location in the source code where the
1436/// initializer occurs (e.g., a declaration, member initializer,
1437/// functional cast, etc.) while @p Range covers the whole
1438/// initialization. @p InitEntity is the entity being initialized,
1439/// which may by the name of a declaration or a type. @p Kind is the
1440/// kind of initialization we're performing, which affects whether
1441/// explicit constructors will be considered. When successful, returns
1442/// the constructor that will be used to perform the initialization;
1443/// when the initialization fails, emits a diagnostic and returns
1444/// null.
1445CXXConstructorDecl *
1446Sema::PerformInitializationByConstructor(QualType ClassType,
1447                                         Expr **Args, unsigned NumArgs,
1448                                         SourceLocation Loc, SourceRange Range,
1449                                         DeclarationName InitEntity,
1450                                         InitializationKind Kind) {
1451  const RecordType *ClassRec = ClassType->getAsRecordType();
1452  assert(ClassRec && "Can only initialize a class type here");
1453
1454  // C++ [dcl.init]p14:
1455  //
1456  //   If the initialization is direct-initialization, or if it is
1457  //   copy-initialization where the cv-unqualified version of the
1458  //   source type is the same class as, or a derived class of, the
1459  //   class of the destination, constructors are considered. The
1460  //   applicable constructors are enumerated (13.3.1.3), and the
1461  //   best one is chosen through overload resolution (13.3). The
1462  //   constructor so selected is called to initialize the object,
1463  //   with the initializer expression(s) as its argument(s). If no
1464  //   constructor applies, or the overload resolution is ambiguous,
1465  //   the initialization is ill-formed.
1466  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1467  OverloadCandidateSet CandidateSet;
1468
1469  // Add constructors to the overload set.
1470  DeclarationName ConstructorName
1471    = Context.DeclarationNames.getCXXConstructorName(
1472                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1473  DeclContext::lookup_const_result Lookup
1474    = ClassDecl->lookup(Context, ConstructorName);
1475  if (Lookup.first == Lookup.second)
1476    /* No constructors */;
1477  else if (OverloadedFunctionDecl *Constructors
1478             = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
1479    for (OverloadedFunctionDecl::function_iterator Con
1480           = Constructors->function_begin();
1481         Con != Constructors->function_end(); ++Con) {
1482      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1483      if ((Kind == IK_Direct) ||
1484          (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1485          (Kind == IK_Default && Constructor->isDefaultConstructor()))
1486        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1487    }
1488  } else if (CXXConstructorDecl *Constructor
1489               = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
1490    if ((Kind == IK_Direct) ||
1491        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1492        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1493      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1494  }
1495
1496  // FIXME: When we decide not to synthesize the implicitly-declared
1497  // constructors, we'll need to make them appear here.
1498
1499  OverloadCandidateSet::iterator Best;
1500  switch (BestViableFunction(CandidateSet, Best)) {
1501  case OR_Success:
1502    // We found a constructor. Return it.
1503    return cast<CXXConstructorDecl>(Best->Function);
1504
1505  case OR_No_Viable_Function:
1506    Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1507      << InitEntity << (unsigned)CandidateSet.size() << Range;
1508    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1509    return 0;
1510
1511  case OR_Ambiguous:
1512    Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1513    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1514    return 0;
1515  }
1516
1517  return 0;
1518}
1519
1520/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1521/// determine whether they are reference-related,
1522/// reference-compatible, reference-compatible with added
1523/// qualification, or incompatible, for use in C++ initialization by
1524/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1525/// type, and the first type (T1) is the pointee type of the reference
1526/// type being initialized.
1527Sema::ReferenceCompareResult
1528Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1529                                   bool& DerivedToBase) {
1530  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1531  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1532
1533  T1 = Context.getCanonicalType(T1);
1534  T2 = Context.getCanonicalType(T2);
1535  QualType UnqualT1 = T1.getUnqualifiedType();
1536  QualType UnqualT2 = T2.getUnqualifiedType();
1537
1538  // C++ [dcl.init.ref]p4:
1539  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1540  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1541  //   T1 is a base class of T2.
1542  if (UnqualT1 == UnqualT2)
1543    DerivedToBase = false;
1544  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1545    DerivedToBase = true;
1546  else
1547    return Ref_Incompatible;
1548
1549  // At this point, we know that T1 and T2 are reference-related (at
1550  // least).
1551
1552  // C++ [dcl.init.ref]p4:
1553  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1554  //   reference-related to T2 and cv1 is the same cv-qualification
1555  //   as, or greater cv-qualification than, cv2. For purposes of
1556  //   overload resolution, cases for which cv1 is greater
1557  //   cv-qualification than cv2 are identified as
1558  //   reference-compatible with added qualification (see 13.3.3.2).
1559  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1560    return Ref_Compatible;
1561  else if (T1.isMoreQualifiedThan(T2))
1562    return Ref_Compatible_With_Added_Qualification;
1563  else
1564    return Ref_Related;
1565}
1566
1567/// CheckReferenceInit - Check the initialization of a reference
1568/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1569/// the initializer (either a simple initializer or an initializer
1570/// list), and DeclType is the type of the declaration. When ICS is
1571/// non-null, this routine will compute the implicit conversion
1572/// sequence according to C++ [over.ics.ref] and will not produce any
1573/// diagnostics; when ICS is null, it will emit diagnostics when any
1574/// errors are found. Either way, a return value of true indicates
1575/// that there was a failure, a return value of false indicates that
1576/// the reference initialization succeeded.
1577///
1578/// When @p SuppressUserConversions, user-defined conversions are
1579/// suppressed.
1580bool
1581Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1582                         ImplicitConversionSequence *ICS,
1583                         bool SuppressUserConversions) {
1584  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1585
1586  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1587  QualType T2 = Init->getType();
1588
1589  // If the initializer is the address of an overloaded function, try
1590  // to resolve the overloaded function. If all goes well, T2 is the
1591  // type of the resulting function.
1592  if (T2->isOverloadType()) {
1593    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1594                                                          ICS != 0);
1595    if (Fn) {
1596      // Since we're performing this reference-initialization for
1597      // real, update the initializer with the resulting function.
1598      if (!ICS)
1599        FixOverloadedFunctionReference(Init, Fn);
1600
1601      T2 = Fn->getType();
1602    }
1603  }
1604
1605  // Compute some basic properties of the types and the initializer.
1606  bool DerivedToBase = false;
1607  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1608  ReferenceCompareResult RefRelationship
1609    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1610
1611  // Most paths end in a failed conversion.
1612  if (ICS)
1613    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1614
1615  // C++ [dcl.init.ref]p5:
1616  //   A reference to type “cv1 T1” is initialized by an expression
1617  //   of type “cv2 T2” as follows:
1618
1619  //     -- If the initializer expression
1620
1621  bool BindsDirectly = false;
1622  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1623  //          reference-compatible with “cv2 T2,” or
1624  //
1625  // Note that the bit-field check is skipped if we are just computing
1626  // the implicit conversion sequence (C++ [over.best.ics]p2).
1627  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1628      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1629    BindsDirectly = true;
1630
1631    if (ICS) {
1632      // C++ [over.ics.ref]p1:
1633      //   When a parameter of reference type binds directly (8.5.3)
1634      //   to an argument expression, the implicit conversion sequence
1635      //   is the identity conversion, unless the argument expression
1636      //   has a type that is a derived class of the parameter type,
1637      //   in which case the implicit conversion sequence is a
1638      //   derived-to-base Conversion (13.3.3.1).
1639      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1640      ICS->Standard.First = ICK_Identity;
1641      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1642      ICS->Standard.Third = ICK_Identity;
1643      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1644      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1645      ICS->Standard.ReferenceBinding = true;
1646      ICS->Standard.DirectBinding = true;
1647
1648      // Nothing more to do: the inaccessibility/ambiguity check for
1649      // derived-to-base conversions is suppressed when we're
1650      // computing the implicit conversion sequence (C++
1651      // [over.best.ics]p2).
1652      return false;
1653    } else {
1654      // Perform the conversion.
1655      // FIXME: Binding to a subobject of the lvalue is going to require
1656      // more AST annotation than this.
1657      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1658    }
1659  }
1660
1661  //       -- has a class type (i.e., T2 is a class type) and can be
1662  //          implicitly converted to an lvalue of type “cv3 T3,”
1663  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1664  //          92) (this conversion is selected by enumerating the
1665  //          applicable conversion functions (13.3.1.6) and choosing
1666  //          the best one through overload resolution (13.3)),
1667  if (!SuppressUserConversions && T2->isRecordType()) {
1668    // FIXME: Look for conversions in base classes!
1669    CXXRecordDecl *T2RecordDecl
1670      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1671
1672    OverloadCandidateSet CandidateSet;
1673    OverloadedFunctionDecl *Conversions
1674      = T2RecordDecl->getConversionFunctions();
1675    for (OverloadedFunctionDecl::function_iterator Func
1676           = Conversions->function_begin();
1677         Func != Conversions->function_end(); ++Func) {
1678      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1679
1680      // If the conversion function doesn't return a reference type,
1681      // it can't be considered for this conversion.
1682      // FIXME: This will change when we support rvalue references.
1683      if (Conv->getConversionType()->isReferenceType())
1684        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1685    }
1686
1687    OverloadCandidateSet::iterator Best;
1688    switch (BestViableFunction(CandidateSet, Best)) {
1689    case OR_Success:
1690      // This is a direct binding.
1691      BindsDirectly = true;
1692
1693      if (ICS) {
1694        // C++ [over.ics.ref]p1:
1695        //
1696        //   [...] If the parameter binds directly to the result of
1697        //   applying a conversion function to the argument
1698        //   expression, the implicit conversion sequence is a
1699        //   user-defined conversion sequence (13.3.3.1.2), with the
1700        //   second standard conversion sequence either an identity
1701        //   conversion or, if the conversion function returns an
1702        //   entity of a type that is a derived class of the parameter
1703        //   type, a derived-to-base Conversion.
1704        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1705        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1706        ICS->UserDefined.After = Best->FinalConversion;
1707        ICS->UserDefined.ConversionFunction = Best->Function;
1708        assert(ICS->UserDefined.After.ReferenceBinding &&
1709               ICS->UserDefined.After.DirectBinding &&
1710               "Expected a direct reference binding!");
1711        return false;
1712      } else {
1713        // Perform the conversion.
1714        // FIXME: Binding to a subobject of the lvalue is going to require
1715        // more AST annotation than this.
1716        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1717      }
1718      break;
1719
1720    case OR_Ambiguous:
1721      assert(false && "Ambiguous reference binding conversions not implemented.");
1722      return true;
1723
1724    case OR_No_Viable_Function:
1725      // There was no suitable conversion; continue with other checks.
1726      break;
1727    }
1728  }
1729
1730  if (BindsDirectly) {
1731    // C++ [dcl.init.ref]p4:
1732    //   [...] In all cases where the reference-related or
1733    //   reference-compatible relationship of two types is used to
1734    //   establish the validity of a reference binding, and T1 is a
1735    //   base class of T2, a program that necessitates such a binding
1736    //   is ill-formed if T1 is an inaccessible (clause 11) or
1737    //   ambiguous (10.2) base class of T2.
1738    //
1739    // Note that we only check this condition when we're allowed to
1740    // complain about errors, because we should not be checking for
1741    // ambiguity (or inaccessibility) unless the reference binding
1742    // actually happens.
1743    if (DerivedToBase)
1744      return CheckDerivedToBaseConversion(T2, T1,
1745                                          Init->getSourceRange().getBegin(),
1746                                          Init->getSourceRange());
1747    else
1748      return false;
1749  }
1750
1751  //     -- Otherwise, the reference shall be to a non-volatile const
1752  //        type (i.e., cv1 shall be const).
1753  if (T1.getCVRQualifiers() != QualType::Const) {
1754    if (!ICS)
1755      Diag(Init->getSourceRange().getBegin(),
1756           diag::err_not_reference_to_const_init)
1757        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1758        << T2 << Init->getSourceRange();
1759    return true;
1760  }
1761
1762  //       -- If the initializer expression is an rvalue, with T2 a
1763  //          class type, and “cv1 T1” is reference-compatible with
1764  //          “cv2 T2,” the reference is bound in one of the
1765  //          following ways (the choice is implementation-defined):
1766  //
1767  //          -- The reference is bound to the object represented by
1768  //             the rvalue (see 3.10) or to a sub-object within that
1769  //             object.
1770  //
1771  //          -- A temporary of type “cv1 T2” [sic] is created, and
1772  //             a constructor is called to copy the entire rvalue
1773  //             object into the temporary. The reference is bound to
1774  //             the temporary or to a sub-object within the
1775  //             temporary.
1776  //
1777  //
1778  //          The constructor that would be used to make the copy
1779  //          shall be callable whether or not the copy is actually
1780  //          done.
1781  //
1782  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1783  // freedom, so we will always take the first option and never build
1784  // a temporary in this case. FIXME: We will, however, have to check
1785  // for the presence of a copy constructor in C++98/03 mode.
1786  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1787      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1788    if (ICS) {
1789      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1790      ICS->Standard.First = ICK_Identity;
1791      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1792      ICS->Standard.Third = ICK_Identity;
1793      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1794      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1795      ICS->Standard.ReferenceBinding = true;
1796      ICS->Standard.DirectBinding = false;
1797    } else {
1798      // FIXME: Binding to a subobject of the rvalue is going to require
1799      // more AST annotation than this.
1800      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1801    }
1802    return false;
1803  }
1804
1805  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1806  //          initialized from the initializer expression using the
1807  //          rules for a non-reference copy initialization (8.5). The
1808  //          reference is then bound to the temporary. If T1 is
1809  //          reference-related to T2, cv1 must be the same
1810  //          cv-qualification as, or greater cv-qualification than,
1811  //          cv2; otherwise, the program is ill-formed.
1812  if (RefRelationship == Ref_Related) {
1813    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1814    // we would be reference-compatible or reference-compatible with
1815    // added qualification. But that wasn't the case, so the reference
1816    // initialization fails.
1817    if (!ICS)
1818      Diag(Init->getSourceRange().getBegin(),
1819           diag::err_reference_init_drops_quals)
1820        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1821        << T2 << Init->getSourceRange();
1822    return true;
1823  }
1824
1825  // Actually try to convert the initializer to T1.
1826  if (ICS) {
1827    /// C++ [over.ics.ref]p2:
1828    ///
1829    ///   When a parameter of reference type is not bound directly to
1830    ///   an argument expression, the conversion sequence is the one
1831    ///   required to convert the argument expression to the
1832    ///   underlying type of the reference according to
1833    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1834    ///   to copy-initializing a temporary of the underlying type with
1835    ///   the argument expression. Any difference in top-level
1836    ///   cv-qualification is subsumed by the initialization itself
1837    ///   and does not constitute a conversion.
1838    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1839    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1840  } else {
1841    return PerformImplicitConversion(Init, T1, "initializing");
1842  }
1843}
1844
1845/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1846/// of this overloaded operator is well-formed. If so, returns false;
1847/// otherwise, emits appropriate diagnostics and returns true.
1848bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1849  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1850         "Expected an overloaded operator declaration");
1851
1852  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1853
1854  // C++ [over.oper]p5:
1855  //   The allocation and deallocation functions, operator new,
1856  //   operator new[], operator delete and operator delete[], are
1857  //   described completely in 3.7.3. The attributes and restrictions
1858  //   found in the rest of this subclause do not apply to them unless
1859  //   explicitly stated in 3.7.3.
1860  // FIXME: Write a separate routine for checking this. For now, just
1861  // allow it.
1862  if (Op == OO_New || Op == OO_Array_New ||
1863      Op == OO_Delete || Op == OO_Array_Delete)
1864    return false;
1865
1866  // C++ [over.oper]p6:
1867  //   An operator function shall either be a non-static member
1868  //   function or be a non-member function and have at least one
1869  //   parameter whose type is a class, a reference to a class, an
1870  //   enumeration, or a reference to an enumeration.
1871  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1872    if (MethodDecl->isStatic())
1873      return Diag(FnDecl->getLocation(),
1874                  diag::err_operator_overload_static) << FnDecl->getDeclName();
1875  } else {
1876    bool ClassOrEnumParam = false;
1877    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
1878                                   ParamEnd = FnDecl->param_end();
1879         Param != ParamEnd; ++Param) {
1880      QualType ParamType = (*Param)->getType().getNonReferenceType();
1881      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1882        ClassOrEnumParam = true;
1883        break;
1884      }
1885    }
1886
1887    if (!ClassOrEnumParam)
1888      return Diag(FnDecl->getLocation(),
1889                  diag::err_operator_overload_needs_class_or_enum)
1890        << FnDecl->getDeclName();
1891  }
1892
1893  // C++ [over.oper]p8:
1894  //   An operator function cannot have default arguments (8.3.6),
1895  //   except where explicitly stated below.
1896  //
1897  // Only the function-call operator allows default arguments
1898  // (C++ [over.call]p1).
1899  if (Op != OO_Call) {
1900    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1901         Param != FnDecl->param_end(); ++Param) {
1902      if (Expr *DefArg = (*Param)->getDefaultArg())
1903        return Diag((*Param)->getLocation(),
1904                    diag::err_operator_overload_default_arg)
1905          << FnDecl->getDeclName() << DefArg->getSourceRange();
1906    }
1907  }
1908
1909  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
1910    { false, false, false }
1911#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1912    , { Unary, Binary, MemberOnly }
1913#include "clang/Basic/OperatorKinds.def"
1914  };
1915
1916  bool CanBeUnaryOperator = OperatorUses[Op][0];
1917  bool CanBeBinaryOperator = OperatorUses[Op][1];
1918  bool MustBeMemberOperator = OperatorUses[Op][2];
1919
1920  // C++ [over.oper]p8:
1921  //   [...] Operator functions cannot have more or fewer parameters
1922  //   than the number required for the corresponding operator, as
1923  //   described in the rest of this subclause.
1924  unsigned NumParams = FnDecl->getNumParams()
1925                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
1926  if (Op != OO_Call &&
1927      ((NumParams == 1 && !CanBeUnaryOperator) ||
1928       (NumParams == 2 && !CanBeBinaryOperator) ||
1929       (NumParams < 1) || (NumParams > 2))) {
1930    // We have the wrong number of parameters.
1931    unsigned ErrorKind;
1932    if (CanBeUnaryOperator && CanBeBinaryOperator) {
1933      ErrorKind = 2;  // 2 -> unary or binary.
1934    } else if (CanBeUnaryOperator) {
1935      ErrorKind = 0;  // 0 -> unary
1936    } else {
1937      assert(CanBeBinaryOperator &&
1938             "All non-call overloaded operators are unary or binary!");
1939      ErrorKind = 1;  // 1 -> binary
1940    }
1941
1942    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
1943      << FnDecl->getDeclName() << NumParams << ErrorKind;
1944  }
1945
1946  // Overloaded operators other than operator() cannot be variadic.
1947  if (Op != OO_Call &&
1948      FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1949    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
1950      << FnDecl->getDeclName();
1951  }
1952
1953  // Some operators must be non-static member functions.
1954  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
1955    return Diag(FnDecl->getLocation(),
1956                diag::err_operator_overload_must_be_member)
1957      << FnDecl->getDeclName();
1958  }
1959
1960  // C++ [over.inc]p1:
1961  //   The user-defined function called operator++ implements the
1962  //   prefix and postfix ++ operator. If this function is a member
1963  //   function with no parameters, or a non-member function with one
1964  //   parameter of class or enumeration type, it defines the prefix
1965  //   increment operator ++ for objects of that type. If the function
1966  //   is a member function with one parameter (which shall be of type
1967  //   int) or a non-member function with two parameters (the second
1968  //   of which shall be of type int), it defines the postfix
1969  //   increment operator ++ for objects of that type.
1970  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1971    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1972    bool ParamIsInt = false;
1973    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1974      ParamIsInt = BT->getKind() == BuiltinType::Int;
1975
1976    if (!ParamIsInt)
1977      return Diag(LastParam->getLocation(),
1978                  diag::err_operator_overload_post_incdec_must_be_int)
1979        << LastParam->getType() << (Op == OO_MinusMinus);
1980  }
1981
1982  return false;
1983}
1984
1985/// ActOnLinkageSpec - Parsed a C++ linkage-specification that
1986/// contained braces. Lang/StrSize contains the language string that
1987/// was parsed at location Loc. Decls/NumDecls provides the
1988/// declarations parsed inside the linkage specification.
1989Sema::DeclTy *Sema::ActOnLinkageSpec(SourceLocation Loc,
1990                                     SourceLocation LBrace,
1991                                     SourceLocation RBrace,
1992                                     const char *Lang,
1993                                     unsigned StrSize,
1994                                     DeclTy **Decls, unsigned NumDecls) {
1995  LinkageSpecDecl::LanguageIDs Language;
1996  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1997    Language = LinkageSpecDecl::lang_c;
1998  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1999    Language = LinkageSpecDecl::lang_cxx;
2000  else {
2001    Diag(Loc, diag::err_bad_language);
2002    return 0;
2003  }
2004
2005  // FIXME: Add all the various semantics of linkage specifications
2006
2007  return LinkageSpecDecl::Create(Context, Loc, Language,
2008                                 (Decl **)Decls, NumDecls);
2009}
2010
2011Sema::DeclTy *Sema::ActOnLinkageSpec(SourceLocation Loc,
2012                                     const char *Lang, unsigned StrSize,
2013                                     DeclTy *D) {
2014  LinkageSpecDecl::LanguageIDs Language;
2015  Decl *dcl = static_cast<Decl *>(D);
2016  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2017    Language = LinkageSpecDecl::lang_c;
2018  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2019    Language = LinkageSpecDecl::lang_cxx;
2020  else {
2021    Diag(Loc, diag::err_bad_language);
2022    return 0;
2023  }
2024
2025  // FIXME: Add all the various semantics of linkage specifications
2026  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2027}
2028
2029