SemaDeclCXX.cpp revision 701c89e02cde6e0fb9673cbe7c97eadc74b50358
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/TypeLoc.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Template.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Lex/Preprocessor.h"
28#include "llvm/ADT/STLExtras.h"
29#include <map>
30#include <set>
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// CheckDefaultArgumentVisitor
36//===----------------------------------------------------------------------===//
37
38namespace {
39  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
40  /// the default argument of a parameter to determine whether it
41  /// contains any ill-formed subexpressions. For example, this will
42  /// diagnose the use of local variables or parameters within the
43  /// default argument expression.
44  class CheckDefaultArgumentVisitor
45    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
46    Expr *DefaultArg;
47    Sema *S;
48
49  public:
50    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
51      : DefaultArg(defarg), S(s) {}
52
53    bool VisitExpr(Expr *Node);
54    bool VisitDeclRefExpr(DeclRefExpr *DRE);
55    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
56  };
57
58  /// VisitExpr - Visit all of the children of this expression.
59  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
60    bool IsInvalid = false;
61    for (Stmt::child_iterator I = Node->child_begin(),
62         E = Node->child_end(); I != E; ++I)
63      IsInvalid |= Visit(*I);
64    return IsInvalid;
65  }
66
67  /// VisitDeclRefExpr - Visit a reference to a declaration, to
68  /// determine whether this declaration can be used in the default
69  /// argument expression.
70  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
71    NamedDecl *Decl = DRE->getDecl();
72    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
73      // C++ [dcl.fct.default]p9
74      //   Default arguments are evaluated each time the function is
75      //   called. The order of evaluation of function arguments is
76      //   unspecified. Consequently, parameters of a function shall not
77      //   be used in default argument expressions, even if they are not
78      //   evaluated. Parameters of a function declared before a default
79      //   argument expression are in scope and can hide namespace and
80      //   class member names.
81      return S->Diag(DRE->getSourceRange().getBegin(),
82                     diag::err_param_default_argument_references_param)
83         << Param->getDeclName() << DefaultArg->getSourceRange();
84    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p7
86      //   Local variables shall not be used in default argument
87      //   expressions.
88      if (VDecl->isBlockVarDecl())
89        return S->Diag(DRE->getSourceRange().getBegin(),
90                       diag::err_param_default_argument_references_local)
91          << VDecl->getDeclName() << DefaultArg->getSourceRange();
92    }
93
94    return false;
95  }
96
97  /// VisitCXXThisExpr - Visit a C++ "this" expression.
98  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
99    // C++ [dcl.fct.default]p8:
100    //   The keyword this shall not be used in a default argument of a
101    //   member function.
102    return S->Diag(ThisE->getSourceRange().getBegin(),
103                   diag::err_param_default_argument_references_this)
104               << ThisE->getSourceRange();
105  }
106}
107
108bool
109Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
110                              SourceLocation EqualLoc) {
111  QualType ParamType = Param->getType();
112
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
128                            Param->getDeclName(), /*DirectInit=*/false))
129    return true;
130
131  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
132
133  // Okay: add the default argument to the parameter
134  Param->setDefaultArg(Arg);
135
136  DefaultArg.release();
137
138  return false;
139}
140
141/// ActOnParamDefaultArgument - Check whether the default argument
142/// provided for a function parameter is well-formed. If so, attach it
143/// to the parameter declaration.
144void
145Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
146                                ExprArg defarg) {
147  if (!param || !defarg.get())
148    return;
149
150  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
151  UnparsedDefaultArgLocs.erase(Param);
152
153  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
154  QualType ParamType = Param->getType();
155
156  // Default arguments are only permitted in C++
157  if (!getLangOptions().CPlusPlus) {
158    Diag(EqualLoc, diag::err_param_default_argument)
159      << DefaultArg->getSourceRange();
160    Param->setInvalidDecl();
161    return;
162  }
163
164  // Check that the default argument is well-formed
165  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
166  if (DefaultArgChecker.Visit(DefaultArg.get())) {
167    Param->setInvalidDecl();
168    return;
169  }
170
171  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
172}
173
174/// ActOnParamUnparsedDefaultArgument - We've seen a default
175/// argument for a function parameter, but we can't parse it yet
176/// because we're inside a class definition. Note that this default
177/// argument will be parsed later.
178void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
179                                             SourceLocation EqualLoc,
180                                             SourceLocation ArgLoc) {
181  if (!param)
182    return;
183
184  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
185  if (Param)
186    Param->setUnparsedDefaultArg();
187
188  UnparsedDefaultArgLocs[Param] = ArgLoc;
189}
190
191/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
192/// the default argument for the parameter param failed.
193void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
194  if (!param)
195    return;
196
197  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
198
199  Param->setInvalidDecl();
200
201  UnparsedDefaultArgLocs.erase(Param);
202}
203
204/// CheckExtraCXXDefaultArguments - Check for any extra default
205/// arguments in the declarator, which is not a function declaration
206/// or definition and therefore is not permitted to have default
207/// arguments. This routine should be invoked for every declarator
208/// that is not a function declaration or definition.
209void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
210  // C++ [dcl.fct.default]p3
211  //   A default argument expression shall be specified only in the
212  //   parameter-declaration-clause of a function declaration or in a
213  //   template-parameter (14.1). It shall not be specified for a
214  //   parameter pack. If it is specified in a
215  //   parameter-declaration-clause, it shall not occur within a
216  //   declarator or abstract-declarator of a parameter-declaration.
217  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
218    DeclaratorChunk &chunk = D.getTypeObject(i);
219    if (chunk.Kind == DeclaratorChunk::Function) {
220      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
221        ParmVarDecl *Param =
222          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
223        if (Param->hasUnparsedDefaultArg()) {
224          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
225          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
226            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
227          delete Toks;
228          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
229        } else if (Param->getDefaultArg()) {
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << Param->getDefaultArg()->getSourceRange();
232          Param->setDefaultArg(0);
233        }
234      }
235    }
236  }
237}
238
239// MergeCXXFunctionDecl - Merge two declarations of the same C++
240// function, once we already know that they have the same
241// type. Subroutine of MergeFunctionDecl. Returns true if there was an
242// error, false otherwise.
243bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
244  bool Invalid = false;
245
246  // C++ [dcl.fct.default]p4:
247  //   For non-template functions, default arguments can be added in
248  //   later declarations of a function in the same
249  //   scope. Declarations in different scopes have completely
250  //   distinct sets of default arguments. That is, declarations in
251  //   inner scopes do not acquire default arguments from
252  //   declarations in outer scopes, and vice versa. In a given
253  //   function declaration, all parameters subsequent to a
254  //   parameter with a default argument shall have default
255  //   arguments supplied in this or previous declarations. A
256  //   default argument shall not be redefined by a later
257  //   declaration (not even to the same value).
258  //
259  // C++ [dcl.fct.default]p6:
260  //   Except for member functions of class templates, the default arguments
261  //   in a member function definition that appears outside of the class
262  //   definition are added to the set of default arguments provided by the
263  //   member function declaration in the class definition.
264  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
265    ParmVarDecl *OldParam = Old->getParamDecl(p);
266    ParmVarDecl *NewParam = New->getParamDecl(p);
267
268    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
269      // FIXME: If the parameter doesn't have an identifier then the location
270      // points to the '=' which means that the fixit hint won't remove any
271      // extra spaces between the type and the '='.
272      SourceLocation Begin = NewParam->getLocation();
273      if (NewParam->getIdentifier())
274        Begin = PP.getLocForEndOfToken(Begin);
275
276      Diag(NewParam->getLocation(),
277           diag::err_param_default_argument_redefinition)
278        << NewParam->getDefaultArgRange()
279        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
280                                                        NewParam->getLocEnd()));
281
282      // Look for the function declaration where the default argument was
283      // actually written, which may be a declaration prior to Old.
284      for (FunctionDecl *Older = Old->getPreviousDeclaration();
285           Older; Older = Older->getPreviousDeclaration()) {
286        if (!Older->getParamDecl(p)->hasDefaultArg())
287          break;
288
289        OldParam = Older->getParamDecl(p);
290      }
291
292      Diag(OldParam->getLocation(), diag::note_previous_definition)
293        << OldParam->getDefaultArgRange();
294      Invalid = true;
295    } else if (OldParam->hasDefaultArg()) {
296      // Merge the old default argument into the new parameter
297      if (OldParam->hasUninstantiatedDefaultArg())
298        NewParam->setUninstantiatedDefaultArg(
299                                      OldParam->getUninstantiatedDefaultArg());
300      else
301        NewParam->setDefaultArg(OldParam->getDefaultArg());
302    } else if (NewParam->hasDefaultArg()) {
303      if (New->getDescribedFunctionTemplate()) {
304        // Paragraph 4, quoted above, only applies to non-template functions.
305        Diag(NewParam->getLocation(),
306             diag::err_param_default_argument_template_redecl)
307          << NewParam->getDefaultArgRange();
308        Diag(Old->getLocation(), diag::note_template_prev_declaration)
309          << false;
310      } else if (New->getTemplateSpecializationKind()
311                   != TSK_ImplicitInstantiation &&
312                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
313        // C++ [temp.expr.spec]p21:
314        //   Default function arguments shall not be specified in a declaration
315        //   or a definition for one of the following explicit specializations:
316        //     - the explicit specialization of a function template;
317        //     - the explicit specialization of a member function template;
318        //     - the explicit specialization of a member function of a class
319        //       template where the class template specialization to which the
320        //       member function specialization belongs is implicitly
321        //       instantiated.
322        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
323          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
324          << New->getDeclName()
325          << NewParam->getDefaultArgRange();
326      } else if (New->getDeclContext()->isDependentContext()) {
327        // C++ [dcl.fct.default]p6 (DR217):
328        //   Default arguments for a member function of a class template shall
329        //   be specified on the initial declaration of the member function
330        //   within the class template.
331        //
332        // Reading the tea leaves a bit in DR217 and its reference to DR205
333        // leads me to the conclusion that one cannot add default function
334        // arguments for an out-of-line definition of a member function of a
335        // dependent type.
336        int WhichKind = 2;
337        if (CXXRecordDecl *Record
338              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
339          if (Record->getDescribedClassTemplate())
340            WhichKind = 0;
341          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
342            WhichKind = 1;
343          else
344            WhichKind = 2;
345        }
346
347        Diag(NewParam->getLocation(),
348             diag::err_param_default_argument_member_template_redecl)
349          << WhichKind
350          << NewParam->getDefaultArgRange();
351      }
352    }
353  }
354
355  if (CheckEquivalentExceptionSpec(
356          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
357          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
358    Invalid = true;
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
492  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
493    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
494    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
495      << BaseType;
496    return 0;
497  }
498
499  // C++ [dcl.init.aggr]p1:
500  //   An aggregate is [...] a class with [...] no base classes [...].
501  Class->setAggregate(false);
502  Class->setPOD(false);
503
504  if (Virtual) {
505    // C++ [class.ctor]p5:
506    //   A constructor is trivial if its class has no virtual base classes.
507    Class->setHasTrivialConstructor(false);
508
509    // C++ [class.copy]p6:
510    //   A copy constructor is trivial if its class has no virtual base classes.
511    Class->setHasTrivialCopyConstructor(false);
512
513    // C++ [class.copy]p11:
514    //   A copy assignment operator is trivial if its class has no virtual
515    //   base classes.
516    Class->setHasTrivialCopyAssignment(false);
517
518    // C++0x [meta.unary.prop] is_empty:
519    //    T is a class type, but not a union type, with ... no virtual base
520    //    classes
521    Class->setEmpty(false);
522  } else {
523    // C++ [class.ctor]p5:
524    //   A constructor is trivial if all the direct base classes of its
525    //   class have trivial constructors.
526    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
527      Class->setHasTrivialConstructor(false);
528
529    // C++ [class.copy]p6:
530    //   A copy constructor is trivial if all the direct base classes of its
531    //   class have trivial copy constructors.
532    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
533      Class->setHasTrivialCopyConstructor(false);
534
535    // C++ [class.copy]p11:
536    //   A copy assignment operator is trivial if all the direct base classes
537    //   of its class have trivial copy assignment operators.
538    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
539      Class->setHasTrivialCopyAssignment(false);
540  }
541
542  // C++ [class.ctor]p3:
543  //   A destructor is trivial if all the direct base classes of its class
544  //   have trivial destructors.
545  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
546    Class->setHasTrivialDestructor(false);
547
548  // Create the base specifier.
549  // FIXME: Allocate via ASTContext?
550  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
551                              Class->getTagKind() == RecordDecl::TK_class,
552                              Access, BaseType);
553}
554
555/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
556/// one entry in the base class list of a class specifier, for
557/// example:
558///    class foo : public bar, virtual private baz {
559/// 'public bar' and 'virtual private baz' are each base-specifiers.
560Sema::BaseResult
561Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
562                         bool Virtual, AccessSpecifier Access,
563                         TypeTy *basetype, SourceLocation BaseLoc) {
564  if (!classdecl)
565    return true;
566
567  AdjustDeclIfTemplate(classdecl);
568  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
569  QualType BaseType = GetTypeFromParser(basetype);
570  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
571                                                      Virtual, Access,
572                                                      BaseType, BaseLoc))
573    return BaseSpec;
574
575  return true;
576}
577
578/// \brief Performs the actual work of attaching the given base class
579/// specifiers to a C++ class.
580bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
581                                unsigned NumBases) {
582 if (NumBases == 0)
583    return false;
584
585  // Used to keep track of which base types we have already seen, so
586  // that we can properly diagnose redundant direct base types. Note
587  // that the key is always the unqualified canonical type of the base
588  // class.
589  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
590
591  // Copy non-redundant base specifiers into permanent storage.
592  unsigned NumGoodBases = 0;
593  bool Invalid = false;
594  for (unsigned idx = 0; idx < NumBases; ++idx) {
595    QualType NewBaseType
596      = Context.getCanonicalType(Bases[idx]->getType());
597    NewBaseType = NewBaseType.getLocalUnqualifiedType();
598
599    if (KnownBaseTypes[NewBaseType]) {
600      // C++ [class.mi]p3:
601      //   A class shall not be specified as a direct base class of a
602      //   derived class more than once.
603      Diag(Bases[idx]->getSourceRange().getBegin(),
604           diag::err_duplicate_base_class)
605        << KnownBaseTypes[NewBaseType]->getType()
606        << Bases[idx]->getSourceRange();
607
608      // Delete the duplicate base class specifier; we're going to
609      // overwrite its pointer later.
610      Context.Deallocate(Bases[idx]);
611
612      Invalid = true;
613    } else {
614      // Okay, add this new base class.
615      KnownBaseTypes[NewBaseType] = Bases[idx];
616      Bases[NumGoodBases++] = Bases[idx];
617    }
618  }
619
620  // Attach the remaining base class specifiers to the derived class.
621  Class->setBases(Context, Bases, NumGoodBases);
622
623  // Delete the remaining (good) base class specifiers, since their
624  // data has been copied into the CXXRecordDecl.
625  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
626    Context.Deallocate(Bases[idx]);
627
628  return Invalid;
629}
630
631/// ActOnBaseSpecifiers - Attach the given base specifiers to the
632/// class, after checking whether there are any duplicate base
633/// classes.
634void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
635                               unsigned NumBases) {
636  if (!ClassDecl || !Bases || !NumBases)
637    return;
638
639  AdjustDeclIfTemplate(ClassDecl);
640  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
641                       (CXXBaseSpecifier**)(Bases), NumBases);
642}
643
644/// \brief Determine whether the type \p Derived is a C++ class that is
645/// derived from the type \p Base.
646bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
647  if (!getLangOptions().CPlusPlus)
648    return false;
649
650  const RecordType *DerivedRT = Derived->getAs<RecordType>();
651  if (!DerivedRT)
652    return false;
653
654  const RecordType *BaseRT = Base->getAs<RecordType>();
655  if (!BaseRT)
656    return false;
657
658  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
659  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
660  return DerivedRD->isDerivedFrom(BaseRD);
661}
662
663/// \brief Determine whether the type \p Derived is a C++ class that is
664/// derived from the type \p Base.
665bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
666  if (!getLangOptions().CPlusPlus)
667    return false;
668
669  const RecordType *DerivedRT = Derived->getAs<RecordType>();
670  if (!DerivedRT)
671    return false;
672
673  const RecordType *BaseRT = Base->getAs<RecordType>();
674  if (!BaseRT)
675    return false;
676
677  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
678  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
679  return DerivedRD->isDerivedFrom(BaseRD, Paths);
680}
681
682/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
683/// conversion (where Derived and Base are class types) is
684/// well-formed, meaning that the conversion is unambiguous (and
685/// that all of the base classes are accessible). Returns true
686/// and emits a diagnostic if the code is ill-formed, returns false
687/// otherwise. Loc is the location where this routine should point to
688/// if there is an error, and Range is the source range to highlight
689/// if there is an error.
690bool
691Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
692                                   unsigned InaccessibleBaseID,
693                                   unsigned AmbigiousBaseConvID,
694                                   SourceLocation Loc, SourceRange Range,
695                                   DeclarationName Name) {
696  // First, determine whether the path from Derived to Base is
697  // ambiguous. This is slightly more expensive than checking whether
698  // the Derived to Base conversion exists, because here we need to
699  // explore multiple paths to determine if there is an ambiguity.
700  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
701                     /*DetectVirtual=*/false);
702  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
703  assert(DerivationOkay &&
704         "Can only be used with a derived-to-base conversion");
705  (void)DerivationOkay;
706
707  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
708    if (InaccessibleBaseID == 0)
709      return false;
710    // Check that the base class can be accessed.
711    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
712                                Name);
713  }
714
715  // We know that the derived-to-base conversion is ambiguous, and
716  // we're going to produce a diagnostic. Perform the derived-to-base
717  // search just one more time to compute all of the possible paths so
718  // that we can print them out. This is more expensive than any of
719  // the previous derived-to-base checks we've done, but at this point
720  // performance isn't as much of an issue.
721  Paths.clear();
722  Paths.setRecordingPaths(true);
723  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
724  assert(StillOkay && "Can only be used with a derived-to-base conversion");
725  (void)StillOkay;
726
727  // Build up a textual representation of the ambiguous paths, e.g.,
728  // D -> B -> A, that will be used to illustrate the ambiguous
729  // conversions in the diagnostic. We only print one of the paths
730  // to each base class subobject.
731  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
732
733  Diag(Loc, AmbigiousBaseConvID)
734  << Derived << Base << PathDisplayStr << Range << Name;
735  return true;
736}
737
738bool
739Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
740                                   SourceLocation Loc, SourceRange Range,
741                                   bool IgnoreAccess) {
742  return CheckDerivedToBaseConversion(Derived, Base,
743                                      IgnoreAccess ? 0 :
744                                        diag::err_conv_to_inaccessible_base,
745                                      diag::err_ambiguous_derived_to_base_conv,
746                                      Loc, Range, DeclarationName());
747}
748
749
750/// @brief Builds a string representing ambiguous paths from a
751/// specific derived class to different subobjects of the same base
752/// class.
753///
754/// This function builds a string that can be used in error messages
755/// to show the different paths that one can take through the
756/// inheritance hierarchy to go from the derived class to different
757/// subobjects of a base class. The result looks something like this:
758/// @code
759/// struct D -> struct B -> struct A
760/// struct D -> struct C -> struct A
761/// @endcode
762std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
763  std::string PathDisplayStr;
764  std::set<unsigned> DisplayedPaths;
765  for (CXXBasePaths::paths_iterator Path = Paths.begin();
766       Path != Paths.end(); ++Path) {
767    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
768      // We haven't displayed a path to this particular base
769      // class subobject yet.
770      PathDisplayStr += "\n    ";
771      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
772      for (CXXBasePath::const_iterator Element = Path->begin();
773           Element != Path->end(); ++Element)
774        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
775    }
776  }
777
778  return PathDisplayStr;
779}
780
781//===----------------------------------------------------------------------===//
782// C++ class member Handling
783//===----------------------------------------------------------------------===//
784
785/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
786/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
787/// bitfield width if there is one and 'InitExpr' specifies the initializer if
788/// any.
789Sema::DeclPtrTy
790Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
791                               MultiTemplateParamsArg TemplateParameterLists,
792                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
793                               bool Deleted) {
794  const DeclSpec &DS = D.getDeclSpec();
795  DeclarationName Name = GetNameForDeclarator(D);
796  Expr *BitWidth = static_cast<Expr*>(BW);
797  Expr *Init = static_cast<Expr*>(InitExpr);
798  SourceLocation Loc = D.getIdentifierLoc();
799
800  bool isFunc = D.isFunctionDeclarator();
801
802  assert(!DS.isFriendSpecified());
803
804  // C++ 9.2p6: A member shall not be declared to have automatic storage
805  // duration (auto, register) or with the extern storage-class-specifier.
806  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
807  // data members and cannot be applied to names declared const or static,
808  // and cannot be applied to reference members.
809  switch (DS.getStorageClassSpec()) {
810    case DeclSpec::SCS_unspecified:
811    case DeclSpec::SCS_typedef:
812    case DeclSpec::SCS_static:
813      // FALL THROUGH.
814      break;
815    case DeclSpec::SCS_mutable:
816      if (isFunc) {
817        if (DS.getStorageClassSpecLoc().isValid())
818          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
819        else
820          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
821
822        // FIXME: It would be nicer if the keyword was ignored only for this
823        // declarator. Otherwise we could get follow-up errors.
824        D.getMutableDeclSpec().ClearStorageClassSpecs();
825      } else {
826        QualType T = GetTypeForDeclarator(D, S);
827        diag::kind err = static_cast<diag::kind>(0);
828        if (T->isReferenceType())
829          err = diag::err_mutable_reference;
830        else if (T.isConstQualified())
831          err = diag::err_mutable_const;
832        if (err != 0) {
833          if (DS.getStorageClassSpecLoc().isValid())
834            Diag(DS.getStorageClassSpecLoc(), err);
835          else
836            Diag(DS.getThreadSpecLoc(), err);
837          // FIXME: It would be nicer if the keyword was ignored only for this
838          // declarator. Otherwise we could get follow-up errors.
839          D.getMutableDeclSpec().ClearStorageClassSpecs();
840        }
841      }
842      break;
843    default:
844      if (DS.getStorageClassSpecLoc().isValid())
845        Diag(DS.getStorageClassSpecLoc(),
846             diag::err_storageclass_invalid_for_member);
847      else
848        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
849      D.getMutableDeclSpec().ClearStorageClassSpecs();
850  }
851
852  if (!isFunc &&
853      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
854      D.getNumTypeObjects() == 0) {
855    // Check also for this case:
856    //
857    // typedef int f();
858    // f a;
859    //
860    QualType TDType = GetTypeFromParser(DS.getTypeRep());
861    isFunc = TDType->isFunctionType();
862  }
863
864  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
865                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
866                      !isFunc);
867
868  Decl *Member;
869  if (isInstField) {
870    // FIXME: Check for template parameters!
871    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
872                         AS);
873    assert(Member && "HandleField never returns null");
874  } else {
875    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
876               .getAs<Decl>();
877    if (!Member) {
878      if (BitWidth) DeleteExpr(BitWidth);
879      return DeclPtrTy();
880    }
881
882    // Non-instance-fields can't have a bitfield.
883    if (BitWidth) {
884      if (Member->isInvalidDecl()) {
885        // don't emit another diagnostic.
886      } else if (isa<VarDecl>(Member)) {
887        // C++ 9.6p3: A bit-field shall not be a static member.
888        // "static member 'A' cannot be a bit-field"
889        Diag(Loc, diag::err_static_not_bitfield)
890          << Name << BitWidth->getSourceRange();
891      } else if (isa<TypedefDecl>(Member)) {
892        // "typedef member 'x' cannot be a bit-field"
893        Diag(Loc, diag::err_typedef_not_bitfield)
894          << Name << BitWidth->getSourceRange();
895      } else {
896        // A function typedef ("typedef int f(); f a;").
897        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
898        Diag(Loc, diag::err_not_integral_type_bitfield)
899          << Name << cast<ValueDecl>(Member)->getType()
900          << BitWidth->getSourceRange();
901      }
902
903      DeleteExpr(BitWidth);
904      BitWidth = 0;
905      Member->setInvalidDecl();
906    }
907
908    Member->setAccess(AS);
909
910    // If we have declared a member function template, set the access of the
911    // templated declaration as well.
912    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
913      FunTmpl->getTemplatedDecl()->setAccess(AS);
914  }
915
916  assert((Name || isInstField) && "No identifier for non-field ?");
917
918  if (Init)
919    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
920  if (Deleted) // FIXME: Source location is not very good.
921    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
922
923  if (isInstField) {
924    FieldCollector->Add(cast<FieldDecl>(Member));
925    return DeclPtrTy();
926  }
927  return DeclPtrTy::make(Member);
928}
929
930/// ActOnMemInitializer - Handle a C++ member initializer.
931Sema::MemInitResult
932Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
933                          Scope *S,
934                          const CXXScopeSpec &SS,
935                          IdentifierInfo *MemberOrBase,
936                          TypeTy *TemplateTypeTy,
937                          SourceLocation IdLoc,
938                          SourceLocation LParenLoc,
939                          ExprTy **Args, unsigned NumArgs,
940                          SourceLocation *CommaLocs,
941                          SourceLocation RParenLoc) {
942  if (!ConstructorD)
943    return true;
944
945  AdjustDeclIfTemplate(ConstructorD);
946
947  CXXConstructorDecl *Constructor
948    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
949  if (!Constructor) {
950    // The user wrote a constructor initializer on a function that is
951    // not a C++ constructor. Ignore the error for now, because we may
952    // have more member initializers coming; we'll diagnose it just
953    // once in ActOnMemInitializers.
954    return true;
955  }
956
957  CXXRecordDecl *ClassDecl = Constructor->getParent();
958
959  // C++ [class.base.init]p2:
960  //   Names in a mem-initializer-id are looked up in the scope of the
961  //   constructor’s class and, if not found in that scope, are looked
962  //   up in the scope containing the constructor’s
963  //   definition. [Note: if the constructor’s class contains a member
964  //   with the same name as a direct or virtual base class of the
965  //   class, a mem-initializer-id naming the member or base class and
966  //   composed of a single identifier refers to the class member. A
967  //   mem-initializer-id for the hidden base class may be specified
968  //   using a qualified name. ]
969  if (!SS.getScopeRep() && !TemplateTypeTy) {
970    // Look for a member, first.
971    FieldDecl *Member = 0;
972    DeclContext::lookup_result Result
973      = ClassDecl->lookup(MemberOrBase);
974    if (Result.first != Result.second)
975      Member = dyn_cast<FieldDecl>(*Result.first);
976
977    // FIXME: Handle members of an anonymous union.
978
979    if (Member)
980      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
981                                    LParenLoc, RParenLoc);
982  }
983  // It didn't name a member, so see if it names a class.
984  QualType BaseType;
985
986  DeclaratorInfo *DInfo = 0;
987  if (TemplateTypeTy)
988    BaseType = GetTypeFromParser(TemplateTypeTy, &DInfo);
989  else
990    BaseType = QualType::getFromOpaquePtr(getTypeName(*MemberOrBase, IdLoc,
991                                                      S, &SS));
992  if (BaseType.isNull())
993    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
994      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
995
996  if (!DInfo)
997    DInfo = Context.getTrivialDeclaratorInfo(BaseType, IdLoc);
998
999  return BuildBaseInitializer(BaseType, DInfo, (Expr **)Args, NumArgs,
1000                              LParenLoc, RParenLoc, ClassDecl);
1001}
1002
1003/// Checks an initializer expression for use of uninitialized fields, such as
1004/// containing the field that is being initialized. Returns true if there is an
1005/// uninitialized field was used an updates the SourceLocation parameter; false
1006/// otherwise.
1007static bool InitExprContainsUninitializedFields(const Stmt* S,
1008                                                const FieldDecl* LhsField,
1009                                                SourceLocation* L) {
1010  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1011  if (ME) {
1012    const NamedDecl* RhsField = ME->getMemberDecl();
1013    if (RhsField == LhsField) {
1014      // Initializing a field with itself. Throw a warning.
1015      // But wait; there are exceptions!
1016      // Exception #1:  The field may not belong to this record.
1017      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1018      const Expr* base = ME->getBase();
1019      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1020        // Even though the field matches, it does not belong to this record.
1021        return false;
1022      }
1023      // None of the exceptions triggered; return true to indicate an
1024      // uninitialized field was used.
1025      *L = ME->getMemberLoc();
1026      return true;
1027    }
1028  }
1029  bool found = false;
1030  for (Stmt::const_child_iterator it = S->child_begin();
1031       it != S->child_end() && found == false;
1032       ++it) {
1033    if (isa<CallExpr>(S)) {
1034      // Do not descend into function calls or constructors, as the use
1035      // of an uninitialized field may be valid. One would have to inspect
1036      // the contents of the function/ctor to determine if it is safe or not.
1037      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1038      // may be safe, depending on what the function/ctor does.
1039      continue;
1040    }
1041    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1042  }
1043  return found;
1044}
1045
1046Sema::MemInitResult
1047Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1048                             unsigned NumArgs, SourceLocation IdLoc,
1049                             SourceLocation LParenLoc,
1050                             SourceLocation RParenLoc) {
1051  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1052  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1053  ExprTemporaries.clear();
1054
1055  // Diagnose value-uses of fields to initialize themselves, e.g.
1056  //   foo(foo)
1057  // where foo is not also a parameter to the constructor.
1058  // TODO: implement -Wuninitialized and fold this into that framework.
1059  for (unsigned i = 0; i < NumArgs; ++i) {
1060    SourceLocation L;
1061    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1062      // FIXME: Return true in the case when other fields are used before being
1063      // uninitialized. For example, let this field be the i'th field. When
1064      // initializing the i'th field, throw a warning if any of the >= i'th
1065      // fields are used, as they are not yet initialized.
1066      // Right now we are only handling the case where the i'th field uses
1067      // itself in its initializer.
1068      Diag(L, diag::warn_field_is_uninit);
1069    }
1070  }
1071
1072  bool HasDependentArg = false;
1073  for (unsigned i = 0; i < NumArgs; i++)
1074    HasDependentArg |= Args[i]->isTypeDependent();
1075
1076  CXXConstructorDecl *C = 0;
1077  QualType FieldType = Member->getType();
1078  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1079    FieldType = Array->getElementType();
1080  if (FieldType->isDependentType()) {
1081    // Can't check init for dependent type.
1082  } else if (FieldType->isRecordType()) {
1083    // Member is a record (struct/union/class), so pass the initializer
1084    // arguments down to the record's constructor.
1085    if (!HasDependentArg) {
1086      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1087
1088      C = PerformInitializationByConstructor(FieldType,
1089                                             MultiExprArg(*this,
1090                                                          (void**)Args,
1091                                                          NumArgs),
1092                                             IdLoc,
1093                                             SourceRange(IdLoc, RParenLoc),
1094                                             Member->getDeclName(), IK_Direct,
1095                                             ConstructorArgs);
1096
1097      if (C) {
1098        // Take over the constructor arguments as our own.
1099        NumArgs = ConstructorArgs.size();
1100        Args = (Expr **)ConstructorArgs.take();
1101      }
1102    }
1103  } else if (NumArgs != 1 && NumArgs != 0) {
1104    // The member type is not a record type (or an array of record
1105    // types), so it can be only be default- or copy-initialized.
1106    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1107                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1108  } else if (!HasDependentArg) {
1109    Expr *NewExp;
1110    if (NumArgs == 0) {
1111      if (FieldType->isReferenceType()) {
1112        Diag(IdLoc, diag::err_null_intialized_reference_member)
1113              << Member->getDeclName();
1114        return Diag(Member->getLocation(), diag::note_declared_at);
1115      }
1116      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1117      NumArgs = 1;
1118    }
1119    else
1120      NewExp = (Expr*)Args[0];
1121    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1122      return true;
1123    Args[0] = NewExp;
1124  }
1125
1126  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1127  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1128  ExprTemporaries.clear();
1129
1130  // FIXME: Perform direct initialization of the member.
1131  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1132                                                  C, LParenLoc, (Expr **)Args,
1133                                                  NumArgs, RParenLoc);
1134}
1135
1136Sema::MemInitResult
1137Sema::BuildBaseInitializer(QualType BaseType, DeclaratorInfo *BaseDInfo,
1138                           Expr **Args, unsigned NumArgs,
1139                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1140                           CXXRecordDecl *ClassDecl) {
1141  bool HasDependentArg = false;
1142  for (unsigned i = 0; i < NumArgs; i++)
1143    HasDependentArg |= Args[i]->isTypeDependent();
1144
1145  SourceLocation BaseLoc = BaseDInfo->getTypeLoc().getSourceRange().getBegin();
1146  if (!BaseType->isDependentType()) {
1147    if (!BaseType->isRecordType())
1148      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1149        << BaseType << BaseDInfo->getTypeLoc().getSourceRange();
1150
1151    // C++ [class.base.init]p2:
1152    //   [...] Unless the mem-initializer-id names a nonstatic data
1153    //   member of the constructor’s class or a direct or virtual base
1154    //   of that class, the mem-initializer is ill-formed. A
1155    //   mem-initializer-list can initialize a base class using any
1156    //   name that denotes that base class type.
1157
1158    // First, check for a direct base class.
1159    const CXXBaseSpecifier *DirectBaseSpec = 0;
1160    for (CXXRecordDecl::base_class_const_iterator Base =
1161         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1162      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1163        // We found a direct base of this type. That's what we're
1164        // initializing.
1165        DirectBaseSpec = &*Base;
1166        break;
1167      }
1168    }
1169
1170    // Check for a virtual base class.
1171    // FIXME: We might be able to short-circuit this if we know in advance that
1172    // there are no virtual bases.
1173    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1174    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1175      // We haven't found a base yet; search the class hierarchy for a
1176      // virtual base class.
1177      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1178                         /*DetectVirtual=*/false);
1179      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1180        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1181             Path != Paths.end(); ++Path) {
1182          if (Path->back().Base->isVirtual()) {
1183            VirtualBaseSpec = Path->back().Base;
1184            break;
1185          }
1186        }
1187      }
1188    }
1189
1190    // C++ [base.class.init]p2:
1191    //   If a mem-initializer-id is ambiguous because it designates both
1192    //   a direct non-virtual base class and an inherited virtual base
1193    //   class, the mem-initializer is ill-formed.
1194    if (DirectBaseSpec && VirtualBaseSpec)
1195      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1196        << BaseType << BaseDInfo->getTypeLoc().getSourceRange();
1197    // C++ [base.class.init]p2:
1198    // Unless the mem-initializer-id names a nonstatic data membeer of the
1199    // constructor's class ot a direst or virtual base of that class, the
1200    // mem-initializer is ill-formed.
1201    if (!DirectBaseSpec && !VirtualBaseSpec)
1202      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1203        << BaseType << ClassDecl->getNameAsCString()
1204        << BaseDInfo->getTypeLoc().getSourceRange();
1205  }
1206
1207  CXXConstructorDecl *C = 0;
1208  if (!BaseType->isDependentType() && !HasDependentArg) {
1209    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1210                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1211    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1212
1213    C = PerformInitializationByConstructor(BaseType,
1214                                           MultiExprArg(*this,
1215                                                        (void**)Args, NumArgs),
1216                                           BaseLoc,
1217                                           SourceRange(BaseLoc, RParenLoc),
1218                                           Name, IK_Direct,
1219                                           ConstructorArgs);
1220    if (C) {
1221      // Take over the constructor arguments as our own.
1222      NumArgs = ConstructorArgs.size();
1223      Args = (Expr **)ConstructorArgs.take();
1224    }
1225  }
1226
1227  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1228  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1229  ExprTemporaries.clear();
1230
1231  return new (Context) CXXBaseOrMemberInitializer(Context, BaseDInfo, C,
1232                                                  LParenLoc, (Expr **)Args,
1233                                                  NumArgs, RParenLoc);
1234}
1235
1236bool
1237Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1238                              CXXBaseOrMemberInitializer **Initializers,
1239                              unsigned NumInitializers,
1240                              bool IsImplicitConstructor) {
1241  // We need to build the initializer AST according to order of construction
1242  // and not what user specified in the Initializers list.
1243  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1244  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1245  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1246  bool HasDependentBaseInit = false;
1247  bool HadError = false;
1248
1249  for (unsigned i = 0; i < NumInitializers; i++) {
1250    CXXBaseOrMemberInitializer *Member = Initializers[i];
1251    if (Member->isBaseInitializer()) {
1252      if (Member->getBaseClass()->isDependentType())
1253        HasDependentBaseInit = true;
1254      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1255    } else {
1256      AllBaseFields[Member->getMember()] = Member;
1257    }
1258  }
1259
1260  if (HasDependentBaseInit) {
1261    // FIXME. This does not preserve the ordering of the initializers.
1262    // Try (with -Wreorder)
1263    // template<class X> struct A {};
1264    // template<class X> struct B : A<X> {
1265    //   B() : x1(10), A<X>() {}
1266    //   int x1;
1267    // };
1268    // B<int> x;
1269    // On seeing one dependent type, we should essentially exit this routine
1270    // while preserving user-declared initializer list. When this routine is
1271    // called during instantiatiation process, this routine will rebuild the
1272    // ordered initializer list correctly.
1273
1274    // If we have a dependent base initialization, we can't determine the
1275    // association between initializers and bases; just dump the known
1276    // initializers into the list, and don't try to deal with other bases.
1277    for (unsigned i = 0; i < NumInitializers; i++) {
1278      CXXBaseOrMemberInitializer *Member = Initializers[i];
1279      if (Member->isBaseInitializer())
1280        AllToInit.push_back(Member);
1281    }
1282  } else {
1283    // Push virtual bases before others.
1284    for (CXXRecordDecl::base_class_iterator VBase =
1285         ClassDecl->vbases_begin(),
1286         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1287      if (VBase->getType()->isDependentType())
1288        continue;
1289      if (CXXBaseOrMemberInitializer *Value
1290            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1291        AllToInit.push_back(Value);
1292      }
1293      else {
1294        CXXRecordDecl *VBaseDecl =
1295          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1296        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1297        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1298        if (!Ctor) {
1299          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1300            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1301            << 0 << VBase->getType();
1302          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1303            << Context.getTagDeclType(VBaseDecl);
1304          HadError = true;
1305          continue;
1306        }
1307
1308        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1309        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1310                                    Constructor->getLocation(), CtorArgs))
1311          continue;
1312
1313        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1314
1315        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1316        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1317        // necessary.
1318        // FIXME: Is there any better source-location information we can give?
1319        ExprTemporaries.clear();
1320        CXXBaseOrMemberInitializer *Member =
1321          new (Context) CXXBaseOrMemberInitializer(Context,
1322                             Context.getTrivialDeclaratorInfo(VBase->getType(),
1323                                                              SourceLocation()),
1324                                                   Ctor,
1325                                                   SourceLocation(),
1326                                                   CtorArgs.takeAs<Expr>(),
1327                                                   CtorArgs.size(),
1328                                                   SourceLocation());
1329        AllToInit.push_back(Member);
1330      }
1331    }
1332
1333    for (CXXRecordDecl::base_class_iterator Base =
1334         ClassDecl->bases_begin(),
1335         E = ClassDecl->bases_end(); Base != E; ++Base) {
1336      // Virtuals are in the virtual base list and already constructed.
1337      if (Base->isVirtual())
1338        continue;
1339      // Skip dependent types.
1340      if (Base->getType()->isDependentType())
1341        continue;
1342      if (CXXBaseOrMemberInitializer *Value
1343            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1344        AllToInit.push_back(Value);
1345      }
1346      else {
1347        CXXRecordDecl *BaseDecl =
1348          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1349        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1350         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1351        if (!Ctor) {
1352          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1353            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1354            << 0 << Base->getType();
1355          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1356            << Context.getTagDeclType(BaseDecl);
1357          HadError = true;
1358          continue;
1359        }
1360
1361        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1362        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1363                                     Constructor->getLocation(), CtorArgs))
1364          continue;
1365
1366        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1367
1368        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1369        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1370        // necessary.
1371        // FIXME: Is there any better source-location information we can give?
1372        ExprTemporaries.clear();
1373        CXXBaseOrMemberInitializer *Member =
1374          new (Context) CXXBaseOrMemberInitializer(Context,
1375                             Context.getTrivialDeclaratorInfo(Base->getType(),
1376                                                              SourceLocation()),
1377                                                   Ctor,
1378                                                   SourceLocation(),
1379                                                   CtorArgs.takeAs<Expr>(),
1380                                                   CtorArgs.size(),
1381                                                   SourceLocation());
1382        AllToInit.push_back(Member);
1383      }
1384    }
1385  }
1386
1387  // non-static data members.
1388  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1389       E = ClassDecl->field_end(); Field != E; ++Field) {
1390    if ((*Field)->isAnonymousStructOrUnion()) {
1391      if (const RecordType *FieldClassType =
1392          Field->getType()->getAs<RecordType>()) {
1393        CXXRecordDecl *FieldClassDecl
1394          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1395        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1396            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1397          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1398            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1399            // set to the anonymous union data member used in the initializer
1400            // list.
1401            Value->setMember(*Field);
1402            Value->setAnonUnionMember(*FA);
1403            AllToInit.push_back(Value);
1404            break;
1405          }
1406        }
1407      }
1408      continue;
1409    }
1410    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1411      AllToInit.push_back(Value);
1412      continue;
1413    }
1414
1415    if ((*Field)->getType()->isDependentType())
1416      continue;
1417
1418    QualType FT = Context.getBaseElementType((*Field)->getType());
1419    if (const RecordType* RT = FT->getAs<RecordType>()) {
1420      CXXConstructorDecl *Ctor =
1421        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1422      if (!Ctor) {
1423        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1424          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1425          << 1 << (*Field)->getDeclName();
1426        Diag(Field->getLocation(), diag::note_field_decl);
1427        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1428          << Context.getTagDeclType(RT->getDecl());
1429        HadError = true;
1430        continue;
1431      }
1432
1433      if (FT.isConstQualified() && Ctor->isTrivial()) {
1434        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1435          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1436          << 1 << (*Field)->getDeclName();
1437        Diag((*Field)->getLocation(), diag::note_declared_at);
1438        HadError = true;
1439      }
1440
1441      // Don't create initializers for trivial constructors, since they don't
1442      // actually need to be run.
1443      if (Ctor->isTrivial())
1444        continue;
1445
1446      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1447      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1448                                  Constructor->getLocation(), CtorArgs))
1449        continue;
1450
1451      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1452      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1453      ExprTemporaries.clear();
1454      CXXBaseOrMemberInitializer *Member =
1455        new (Context) CXXBaseOrMemberInitializer(Context,
1456                                                 *Field, SourceLocation(),
1457                                                 Ctor,
1458                                                 SourceLocation(),
1459                                                 CtorArgs.takeAs<Expr>(),
1460                                                 CtorArgs.size(),
1461                                                 SourceLocation());
1462
1463      AllToInit.push_back(Member);
1464      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1465    }
1466    else if (FT->isReferenceType()) {
1467      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1468        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1469        << 0 << (*Field)->getDeclName();
1470      Diag((*Field)->getLocation(), diag::note_declared_at);
1471      HadError = true;
1472    }
1473    else if (FT.isConstQualified()) {
1474      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1475        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1476        << 1 << (*Field)->getDeclName();
1477      Diag((*Field)->getLocation(), diag::note_declared_at);
1478      HadError = true;
1479    }
1480  }
1481
1482  NumInitializers = AllToInit.size();
1483  if (NumInitializers > 0) {
1484    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1485    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1486      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1487
1488    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1489    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1490      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1491  }
1492
1493  return HadError;
1494}
1495
1496static void *GetKeyForTopLevelField(FieldDecl *Field) {
1497  // For anonymous unions, use the class declaration as the key.
1498  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1499    if (RT->getDecl()->isAnonymousStructOrUnion())
1500      return static_cast<void *>(RT->getDecl());
1501  }
1502  return static_cast<void *>(Field);
1503}
1504
1505static void *GetKeyForBase(QualType BaseType) {
1506  if (const RecordType *RT = BaseType->getAs<RecordType>())
1507    return (void *)RT;
1508
1509  assert(0 && "Unexpected base type!");
1510  return 0;
1511}
1512
1513static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1514                             bool MemberMaybeAnon = false) {
1515  // For fields injected into the class via declaration of an anonymous union,
1516  // use its anonymous union class declaration as the unique key.
1517  if (Member->isMemberInitializer()) {
1518    FieldDecl *Field = Member->getMember();
1519
1520    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1521    // data member of the class. Data member used in the initializer list is
1522    // in AnonUnionMember field.
1523    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1524      Field = Member->getAnonUnionMember();
1525    if (Field->getDeclContext()->isRecord()) {
1526      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1527      if (RD->isAnonymousStructOrUnion())
1528        return static_cast<void *>(RD);
1529    }
1530    return static_cast<void *>(Field);
1531  }
1532
1533  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1534}
1535
1536/// ActOnMemInitializers - Handle the member initializers for a constructor.
1537void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1538                                SourceLocation ColonLoc,
1539                                MemInitTy **MemInits, unsigned NumMemInits) {
1540  if (!ConstructorDecl)
1541    return;
1542
1543  AdjustDeclIfTemplate(ConstructorDecl);
1544
1545  CXXConstructorDecl *Constructor
1546    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1547
1548  if (!Constructor) {
1549    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1550    return;
1551  }
1552
1553  if (!Constructor->isDependentContext()) {
1554    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1555    bool err = false;
1556    for (unsigned i = 0; i < NumMemInits; i++) {
1557      CXXBaseOrMemberInitializer *Member =
1558        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1559      void *KeyToMember = GetKeyForMember(Member);
1560      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1561      if (!PrevMember) {
1562        PrevMember = Member;
1563        continue;
1564      }
1565      if (FieldDecl *Field = Member->getMember())
1566        Diag(Member->getSourceLocation(),
1567             diag::error_multiple_mem_initialization)
1568          << Field->getNameAsString()
1569          << Member->getSourceRange();
1570      else {
1571        Type *BaseClass = Member->getBaseClass();
1572        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1573        Diag(Member->getSourceLocation(),
1574             diag::error_multiple_base_initialization)
1575          << QualType(BaseClass, 0)
1576          << Member->getSourceRange();
1577      }
1578      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1579        << 0;
1580      err = true;
1581    }
1582
1583    if (err)
1584      return;
1585  }
1586
1587  SetBaseOrMemberInitializers(Constructor,
1588                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1589                      NumMemInits, false);
1590
1591  if (Constructor->isDependentContext())
1592    return;
1593
1594  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1595      Diagnostic::Ignored &&
1596      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1597      Diagnostic::Ignored)
1598    return;
1599
1600  // Also issue warning if order of ctor-initializer list does not match order
1601  // of 1) base class declarations and 2) order of non-static data members.
1602  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1603
1604  CXXRecordDecl *ClassDecl
1605    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1606  // Push virtual bases before others.
1607  for (CXXRecordDecl::base_class_iterator VBase =
1608       ClassDecl->vbases_begin(),
1609       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1610    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1611
1612  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1613       E = ClassDecl->bases_end(); Base != E; ++Base) {
1614    // Virtuals are alread in the virtual base list and are constructed
1615    // first.
1616    if (Base->isVirtual())
1617      continue;
1618    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1619  }
1620
1621  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1622       E = ClassDecl->field_end(); Field != E; ++Field)
1623    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1624
1625  int Last = AllBaseOrMembers.size();
1626  int curIndex = 0;
1627  CXXBaseOrMemberInitializer *PrevMember = 0;
1628  for (unsigned i = 0; i < NumMemInits; i++) {
1629    CXXBaseOrMemberInitializer *Member =
1630      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1631    void *MemberInCtorList = GetKeyForMember(Member, true);
1632
1633    for (; curIndex < Last; curIndex++)
1634      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1635        break;
1636    if (curIndex == Last) {
1637      assert(PrevMember && "Member not in member list?!");
1638      // Initializer as specified in ctor-initializer list is out of order.
1639      // Issue a warning diagnostic.
1640      if (PrevMember->isBaseInitializer()) {
1641        // Diagnostics is for an initialized base class.
1642        Type *BaseClass = PrevMember->getBaseClass();
1643        Diag(PrevMember->getSourceLocation(),
1644             diag::warn_base_initialized)
1645          << QualType(BaseClass, 0);
1646      } else {
1647        FieldDecl *Field = PrevMember->getMember();
1648        Diag(PrevMember->getSourceLocation(),
1649             diag::warn_field_initialized)
1650          << Field->getNameAsString();
1651      }
1652      // Also the note!
1653      if (FieldDecl *Field = Member->getMember())
1654        Diag(Member->getSourceLocation(),
1655             diag::note_fieldorbase_initialized_here) << 0
1656          << Field->getNameAsString();
1657      else {
1658        Type *BaseClass = Member->getBaseClass();
1659        Diag(Member->getSourceLocation(),
1660             diag::note_fieldorbase_initialized_here) << 1
1661          << QualType(BaseClass, 0);
1662      }
1663      for (curIndex = 0; curIndex < Last; curIndex++)
1664        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1665          break;
1666    }
1667    PrevMember = Member;
1668  }
1669}
1670
1671void
1672Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1673  // Ignore dependent destructors.
1674  if (Destructor->isDependentContext())
1675    return;
1676
1677  CXXRecordDecl *ClassDecl = Destructor->getParent();
1678
1679  // Non-static data members.
1680  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1681       E = ClassDecl->field_end(); I != E; ++I) {
1682    FieldDecl *Field = *I;
1683
1684    QualType FieldType = Context.getBaseElementType(Field->getType());
1685
1686    const RecordType* RT = FieldType->getAs<RecordType>();
1687    if (!RT)
1688      continue;
1689
1690    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1691    if (FieldClassDecl->hasTrivialDestructor())
1692      continue;
1693
1694    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1695    MarkDeclarationReferenced(Destructor->getLocation(),
1696                              const_cast<CXXDestructorDecl*>(Dtor));
1697  }
1698
1699  // Bases.
1700  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1701       E = ClassDecl->bases_end(); Base != E; ++Base) {
1702    // Ignore virtual bases.
1703    if (Base->isVirtual())
1704      continue;
1705
1706    // Ignore trivial destructors.
1707    CXXRecordDecl *BaseClassDecl
1708      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1709    if (BaseClassDecl->hasTrivialDestructor())
1710      continue;
1711
1712    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1713    MarkDeclarationReferenced(Destructor->getLocation(),
1714                              const_cast<CXXDestructorDecl*>(Dtor));
1715  }
1716
1717  // Virtual bases.
1718  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1719       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1720    // Ignore trivial destructors.
1721    CXXRecordDecl *BaseClassDecl
1722      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1723    if (BaseClassDecl->hasTrivialDestructor())
1724      continue;
1725
1726    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1727    MarkDeclarationReferenced(Destructor->getLocation(),
1728                              const_cast<CXXDestructorDecl*>(Dtor));
1729  }
1730}
1731
1732void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1733  if (!CDtorDecl)
1734    return;
1735
1736  AdjustDeclIfTemplate(CDtorDecl);
1737
1738  if (CXXConstructorDecl *Constructor
1739      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1740    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1741}
1742
1743namespace {
1744  /// PureVirtualMethodCollector - traverses a class and its superclasses
1745  /// and determines if it has any pure virtual methods.
1746  class PureVirtualMethodCollector {
1747    ASTContext &Context;
1748
1749  public:
1750    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1751
1752  private:
1753    MethodList Methods;
1754
1755    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1756
1757  public:
1758    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1759      : Context(Ctx) {
1760
1761      MethodList List;
1762      Collect(RD, List);
1763
1764      // Copy the temporary list to methods, and make sure to ignore any
1765      // null entries.
1766      for (size_t i = 0, e = List.size(); i != e; ++i) {
1767        if (List[i])
1768          Methods.push_back(List[i]);
1769      }
1770    }
1771
1772    bool empty() const { return Methods.empty(); }
1773
1774    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1775    MethodList::const_iterator methods_end() { return Methods.end(); }
1776  };
1777
1778  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1779                                           MethodList& Methods) {
1780    // First, collect the pure virtual methods for the base classes.
1781    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1782         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1783      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1784        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1785        if (BaseDecl && BaseDecl->isAbstract())
1786          Collect(BaseDecl, Methods);
1787      }
1788    }
1789
1790    // Next, zero out any pure virtual methods that this class overrides.
1791    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1792
1793    MethodSetTy OverriddenMethods;
1794    size_t MethodsSize = Methods.size();
1795
1796    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1797         i != e; ++i) {
1798      // Traverse the record, looking for methods.
1799      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1800        // If the method is pure virtual, add it to the methods vector.
1801        if (MD->isPure())
1802          Methods.push_back(MD);
1803
1804        // Record all the overridden methods in our set.
1805        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1806             E = MD->end_overridden_methods(); I != E; ++I) {
1807          // Keep track of the overridden methods.
1808          OverriddenMethods.insert(*I);
1809        }
1810      }
1811    }
1812
1813    // Now go through the methods and zero out all the ones we know are
1814    // overridden.
1815    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1816      if (OverriddenMethods.count(Methods[i]))
1817        Methods[i] = 0;
1818    }
1819
1820  }
1821}
1822
1823
1824bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1825                                  unsigned DiagID, AbstractDiagSelID SelID,
1826                                  const CXXRecordDecl *CurrentRD) {
1827  if (SelID == -1)
1828    return RequireNonAbstractType(Loc, T,
1829                                  PDiag(DiagID), CurrentRD);
1830  else
1831    return RequireNonAbstractType(Loc, T,
1832                                  PDiag(DiagID) << SelID, CurrentRD);
1833}
1834
1835bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1836                                  const PartialDiagnostic &PD,
1837                                  const CXXRecordDecl *CurrentRD) {
1838  if (!getLangOptions().CPlusPlus)
1839    return false;
1840
1841  if (const ArrayType *AT = Context.getAsArrayType(T))
1842    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1843                                  CurrentRD);
1844
1845  if (const PointerType *PT = T->getAs<PointerType>()) {
1846    // Find the innermost pointer type.
1847    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1848      PT = T;
1849
1850    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1851      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1852  }
1853
1854  const RecordType *RT = T->getAs<RecordType>();
1855  if (!RT)
1856    return false;
1857
1858  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1859  if (!RD)
1860    return false;
1861
1862  if (CurrentRD && CurrentRD != RD)
1863    return false;
1864
1865  if (!RD->isAbstract())
1866    return false;
1867
1868  Diag(Loc, PD) << RD->getDeclName();
1869
1870  // Check if we've already emitted the list of pure virtual functions for this
1871  // class.
1872  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1873    return true;
1874
1875  PureVirtualMethodCollector Collector(Context, RD);
1876
1877  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1878       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1879    const CXXMethodDecl *MD = *I;
1880
1881    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1882      MD->getDeclName();
1883  }
1884
1885  if (!PureVirtualClassDiagSet)
1886    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1887  PureVirtualClassDiagSet->insert(RD);
1888
1889  return true;
1890}
1891
1892namespace {
1893  class AbstractClassUsageDiagnoser
1894    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1895    Sema &SemaRef;
1896    CXXRecordDecl *AbstractClass;
1897
1898    bool VisitDeclContext(const DeclContext *DC) {
1899      bool Invalid = false;
1900
1901      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1902           E = DC->decls_end(); I != E; ++I)
1903        Invalid |= Visit(*I);
1904
1905      return Invalid;
1906    }
1907
1908  public:
1909    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1910      : SemaRef(SemaRef), AbstractClass(ac) {
1911        Visit(SemaRef.Context.getTranslationUnitDecl());
1912    }
1913
1914    bool VisitFunctionDecl(const FunctionDecl *FD) {
1915      if (FD->isThisDeclarationADefinition()) {
1916        // No need to do the check if we're in a definition, because it requires
1917        // that the return/param types are complete.
1918        // because that requires
1919        return VisitDeclContext(FD);
1920      }
1921
1922      // Check the return type.
1923      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1924      bool Invalid =
1925        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1926                                       diag::err_abstract_type_in_decl,
1927                                       Sema::AbstractReturnType,
1928                                       AbstractClass);
1929
1930      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1931           E = FD->param_end(); I != E; ++I) {
1932        const ParmVarDecl *VD = *I;
1933        Invalid |=
1934          SemaRef.RequireNonAbstractType(VD->getLocation(),
1935                                         VD->getOriginalType(),
1936                                         diag::err_abstract_type_in_decl,
1937                                         Sema::AbstractParamType,
1938                                         AbstractClass);
1939      }
1940
1941      return Invalid;
1942    }
1943
1944    bool VisitDecl(const Decl* D) {
1945      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1946        return VisitDeclContext(DC);
1947
1948      return false;
1949    }
1950  };
1951}
1952
1953void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1954                                             DeclPtrTy TagDecl,
1955                                             SourceLocation LBrac,
1956                                             SourceLocation RBrac) {
1957  if (!TagDecl)
1958    return;
1959
1960  AdjustDeclIfTemplate(TagDecl);
1961  ActOnFields(S, RLoc, TagDecl,
1962              (DeclPtrTy*)FieldCollector->getCurFields(),
1963              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1964
1965  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1966  if (!RD->isAbstract()) {
1967    // Collect all the pure virtual methods and see if this is an abstract
1968    // class after all.
1969    PureVirtualMethodCollector Collector(Context, RD);
1970    if (!Collector.empty())
1971      RD->setAbstract(true);
1972  }
1973
1974  if (RD->isAbstract())
1975    (void)AbstractClassUsageDiagnoser(*this, RD);
1976
1977  if (!RD->isDependentType() && !RD->isInvalidDecl())
1978    AddImplicitlyDeclaredMembersToClass(RD);
1979}
1980
1981/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1982/// special functions, such as the default constructor, copy
1983/// constructor, or destructor, to the given C++ class (C++
1984/// [special]p1).  This routine can only be executed just before the
1985/// definition of the class is complete.
1986void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1987  CanQualType ClassType
1988    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1989
1990  // FIXME: Implicit declarations have exception specifications, which are
1991  // the union of the specifications of the implicitly called functions.
1992
1993  if (!ClassDecl->hasUserDeclaredConstructor()) {
1994    // C++ [class.ctor]p5:
1995    //   A default constructor for a class X is a constructor of class X
1996    //   that can be called without an argument. If there is no
1997    //   user-declared constructor for class X, a default constructor is
1998    //   implicitly declared. An implicitly-declared default constructor
1999    //   is an inline public member of its class.
2000    DeclarationName Name
2001      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2002    CXXConstructorDecl *DefaultCon =
2003      CXXConstructorDecl::Create(Context, ClassDecl,
2004                                 ClassDecl->getLocation(), Name,
2005                                 Context.getFunctionType(Context.VoidTy,
2006                                                         0, 0, false, 0),
2007                                 /*DInfo=*/0,
2008                                 /*isExplicit=*/false,
2009                                 /*isInline=*/true,
2010                                 /*isImplicitlyDeclared=*/true);
2011    DefaultCon->setAccess(AS_public);
2012    DefaultCon->setImplicit();
2013    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2014    ClassDecl->addDecl(DefaultCon);
2015  }
2016
2017  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2018    // C++ [class.copy]p4:
2019    //   If the class definition does not explicitly declare a copy
2020    //   constructor, one is declared implicitly.
2021
2022    // C++ [class.copy]p5:
2023    //   The implicitly-declared copy constructor for a class X will
2024    //   have the form
2025    //
2026    //       X::X(const X&)
2027    //
2028    //   if
2029    bool HasConstCopyConstructor = true;
2030
2031    //     -- each direct or virtual base class B of X has a copy
2032    //        constructor whose first parameter is of type const B& or
2033    //        const volatile B&, and
2034    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2035         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2036      const CXXRecordDecl *BaseClassDecl
2037        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2038      HasConstCopyConstructor
2039        = BaseClassDecl->hasConstCopyConstructor(Context);
2040    }
2041
2042    //     -- for all the nonstatic data members of X that are of a
2043    //        class type M (or array thereof), each such class type
2044    //        has a copy constructor whose first parameter is of type
2045    //        const M& or const volatile M&.
2046    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2047         HasConstCopyConstructor && Field != ClassDecl->field_end();
2048         ++Field) {
2049      QualType FieldType = (*Field)->getType();
2050      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2051        FieldType = Array->getElementType();
2052      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2053        const CXXRecordDecl *FieldClassDecl
2054          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2055        HasConstCopyConstructor
2056          = FieldClassDecl->hasConstCopyConstructor(Context);
2057      }
2058    }
2059
2060    //   Otherwise, the implicitly declared copy constructor will have
2061    //   the form
2062    //
2063    //       X::X(X&)
2064    QualType ArgType = ClassType;
2065    if (HasConstCopyConstructor)
2066      ArgType = ArgType.withConst();
2067    ArgType = Context.getLValueReferenceType(ArgType);
2068
2069    //   An implicitly-declared copy constructor is an inline public
2070    //   member of its class.
2071    DeclarationName Name
2072      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2073    CXXConstructorDecl *CopyConstructor
2074      = CXXConstructorDecl::Create(Context, ClassDecl,
2075                                   ClassDecl->getLocation(), Name,
2076                                   Context.getFunctionType(Context.VoidTy,
2077                                                           &ArgType, 1,
2078                                                           false, 0),
2079                                   /*DInfo=*/0,
2080                                   /*isExplicit=*/false,
2081                                   /*isInline=*/true,
2082                                   /*isImplicitlyDeclared=*/true);
2083    CopyConstructor->setAccess(AS_public);
2084    CopyConstructor->setImplicit();
2085    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2086
2087    // Add the parameter to the constructor.
2088    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2089                                                 ClassDecl->getLocation(),
2090                                                 /*IdentifierInfo=*/0,
2091                                                 ArgType, /*DInfo=*/0,
2092                                                 VarDecl::None, 0);
2093    CopyConstructor->setParams(Context, &FromParam, 1);
2094    ClassDecl->addDecl(CopyConstructor);
2095  }
2096
2097  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2098    // Note: The following rules are largely analoguous to the copy
2099    // constructor rules. Note that virtual bases are not taken into account
2100    // for determining the argument type of the operator. Note also that
2101    // operators taking an object instead of a reference are allowed.
2102    //
2103    // C++ [class.copy]p10:
2104    //   If the class definition does not explicitly declare a copy
2105    //   assignment operator, one is declared implicitly.
2106    //   The implicitly-defined copy assignment operator for a class X
2107    //   will have the form
2108    //
2109    //       X& X::operator=(const X&)
2110    //
2111    //   if
2112    bool HasConstCopyAssignment = true;
2113
2114    //       -- each direct base class B of X has a copy assignment operator
2115    //          whose parameter is of type const B&, const volatile B& or B,
2116    //          and
2117    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2118         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2119      assert(!Base->getType()->isDependentType() &&
2120            "Cannot generate implicit members for class with dependent bases.");
2121      const CXXRecordDecl *BaseClassDecl
2122        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2123      const CXXMethodDecl *MD = 0;
2124      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2125                                                                     MD);
2126    }
2127
2128    //       -- for all the nonstatic data members of X that are of a class
2129    //          type M (or array thereof), each such class type has a copy
2130    //          assignment operator whose parameter is of type const M&,
2131    //          const volatile M& or M.
2132    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2133         HasConstCopyAssignment && Field != ClassDecl->field_end();
2134         ++Field) {
2135      QualType FieldType = (*Field)->getType();
2136      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2137        FieldType = Array->getElementType();
2138      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2139        const CXXRecordDecl *FieldClassDecl
2140          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2141        const CXXMethodDecl *MD = 0;
2142        HasConstCopyAssignment
2143          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2144      }
2145    }
2146
2147    //   Otherwise, the implicitly declared copy assignment operator will
2148    //   have the form
2149    //
2150    //       X& X::operator=(X&)
2151    QualType ArgType = ClassType;
2152    QualType RetType = Context.getLValueReferenceType(ArgType);
2153    if (HasConstCopyAssignment)
2154      ArgType = ArgType.withConst();
2155    ArgType = Context.getLValueReferenceType(ArgType);
2156
2157    //   An implicitly-declared copy assignment operator is an inline public
2158    //   member of its class.
2159    DeclarationName Name =
2160      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2161    CXXMethodDecl *CopyAssignment =
2162      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2163                            Context.getFunctionType(RetType, &ArgType, 1,
2164                                                    false, 0),
2165                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2166    CopyAssignment->setAccess(AS_public);
2167    CopyAssignment->setImplicit();
2168    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2169    CopyAssignment->setCopyAssignment(true);
2170
2171    // Add the parameter to the operator.
2172    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2173                                                 ClassDecl->getLocation(),
2174                                                 /*IdentifierInfo=*/0,
2175                                                 ArgType, /*DInfo=*/0,
2176                                                 VarDecl::None, 0);
2177    CopyAssignment->setParams(Context, &FromParam, 1);
2178
2179    // Don't call addedAssignmentOperator. There is no way to distinguish an
2180    // implicit from an explicit assignment operator.
2181    ClassDecl->addDecl(CopyAssignment);
2182    AddOverriddenMethods(ClassDecl, CopyAssignment);
2183  }
2184
2185  if (!ClassDecl->hasUserDeclaredDestructor()) {
2186    // C++ [class.dtor]p2:
2187    //   If a class has no user-declared destructor, a destructor is
2188    //   declared implicitly. An implicitly-declared destructor is an
2189    //   inline public member of its class.
2190    DeclarationName Name
2191      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2192    CXXDestructorDecl *Destructor
2193      = CXXDestructorDecl::Create(Context, ClassDecl,
2194                                  ClassDecl->getLocation(), Name,
2195                                  Context.getFunctionType(Context.VoidTy,
2196                                                          0, 0, false, 0),
2197                                  /*isInline=*/true,
2198                                  /*isImplicitlyDeclared=*/true);
2199    Destructor->setAccess(AS_public);
2200    Destructor->setImplicit();
2201    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2202    ClassDecl->addDecl(Destructor);
2203
2204    AddOverriddenMethods(ClassDecl, Destructor);
2205  }
2206}
2207
2208void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2209  Decl *D = TemplateD.getAs<Decl>();
2210  if (!D)
2211    return;
2212
2213  TemplateParameterList *Params = 0;
2214  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2215    Params = Template->getTemplateParameters();
2216  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2217           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2218    Params = PartialSpec->getTemplateParameters();
2219  else
2220    return;
2221
2222  for (TemplateParameterList::iterator Param = Params->begin(),
2223                                    ParamEnd = Params->end();
2224       Param != ParamEnd; ++Param) {
2225    NamedDecl *Named = cast<NamedDecl>(*Param);
2226    if (Named->getDeclName()) {
2227      S->AddDecl(DeclPtrTy::make(Named));
2228      IdResolver.AddDecl(Named);
2229    }
2230  }
2231}
2232
2233/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2234/// parsing a top-level (non-nested) C++ class, and we are now
2235/// parsing those parts of the given Method declaration that could
2236/// not be parsed earlier (C++ [class.mem]p2), such as default
2237/// arguments. This action should enter the scope of the given
2238/// Method declaration as if we had just parsed the qualified method
2239/// name. However, it should not bring the parameters into scope;
2240/// that will be performed by ActOnDelayedCXXMethodParameter.
2241void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2242  if (!MethodD)
2243    return;
2244
2245  AdjustDeclIfTemplate(MethodD);
2246
2247  CXXScopeSpec SS;
2248  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2249  QualType ClassTy
2250    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2251  SS.setScopeRep(
2252    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2253  ActOnCXXEnterDeclaratorScope(S, SS);
2254}
2255
2256/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2257/// C++ method declaration. We're (re-)introducing the given
2258/// function parameter into scope for use in parsing later parts of
2259/// the method declaration. For example, we could see an
2260/// ActOnParamDefaultArgument event for this parameter.
2261void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2262  if (!ParamD)
2263    return;
2264
2265  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2266
2267  // If this parameter has an unparsed default argument, clear it out
2268  // to make way for the parsed default argument.
2269  if (Param->hasUnparsedDefaultArg())
2270    Param->setDefaultArg(0);
2271
2272  S->AddDecl(DeclPtrTy::make(Param));
2273  if (Param->getDeclName())
2274    IdResolver.AddDecl(Param);
2275}
2276
2277/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2278/// processing the delayed method declaration for Method. The method
2279/// declaration is now considered finished. There may be a separate
2280/// ActOnStartOfFunctionDef action later (not necessarily
2281/// immediately!) for this method, if it was also defined inside the
2282/// class body.
2283void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2284  if (!MethodD)
2285    return;
2286
2287  AdjustDeclIfTemplate(MethodD);
2288
2289  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2290  CXXScopeSpec SS;
2291  QualType ClassTy
2292    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2293  SS.setScopeRep(
2294    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2295  ActOnCXXExitDeclaratorScope(S, SS);
2296
2297  // Now that we have our default arguments, check the constructor
2298  // again. It could produce additional diagnostics or affect whether
2299  // the class has implicitly-declared destructors, among other
2300  // things.
2301  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2302    CheckConstructor(Constructor);
2303
2304  // Check the default arguments, which we may have added.
2305  if (!Method->isInvalidDecl())
2306    CheckCXXDefaultArguments(Method);
2307}
2308
2309/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2310/// the well-formedness of the constructor declarator @p D with type @p
2311/// R. If there are any errors in the declarator, this routine will
2312/// emit diagnostics and set the invalid bit to true.  In any case, the type
2313/// will be updated to reflect a well-formed type for the constructor and
2314/// returned.
2315QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2316                                          FunctionDecl::StorageClass &SC) {
2317  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2318
2319  // C++ [class.ctor]p3:
2320  //   A constructor shall not be virtual (10.3) or static (9.4). A
2321  //   constructor can be invoked for a const, volatile or const
2322  //   volatile object. A constructor shall not be declared const,
2323  //   volatile, or const volatile (9.3.2).
2324  if (isVirtual) {
2325    if (!D.isInvalidType())
2326      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2327        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2328        << SourceRange(D.getIdentifierLoc());
2329    D.setInvalidType();
2330  }
2331  if (SC == FunctionDecl::Static) {
2332    if (!D.isInvalidType())
2333      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2334        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2335        << SourceRange(D.getIdentifierLoc());
2336    D.setInvalidType();
2337    SC = FunctionDecl::None;
2338  }
2339
2340  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2341  if (FTI.TypeQuals != 0) {
2342    if (FTI.TypeQuals & Qualifiers::Const)
2343      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2344        << "const" << SourceRange(D.getIdentifierLoc());
2345    if (FTI.TypeQuals & Qualifiers::Volatile)
2346      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2347        << "volatile" << SourceRange(D.getIdentifierLoc());
2348    if (FTI.TypeQuals & Qualifiers::Restrict)
2349      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2350        << "restrict" << SourceRange(D.getIdentifierLoc());
2351  }
2352
2353  // Rebuild the function type "R" without any type qualifiers (in
2354  // case any of the errors above fired) and with "void" as the
2355  // return type, since constructors don't have return types. We
2356  // *always* have to do this, because GetTypeForDeclarator will
2357  // put in a result type of "int" when none was specified.
2358  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2359  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2360                                 Proto->getNumArgs(),
2361                                 Proto->isVariadic(), 0);
2362}
2363
2364/// CheckConstructor - Checks a fully-formed constructor for
2365/// well-formedness, issuing any diagnostics required. Returns true if
2366/// the constructor declarator is invalid.
2367void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2368  CXXRecordDecl *ClassDecl
2369    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2370  if (!ClassDecl)
2371    return Constructor->setInvalidDecl();
2372
2373  // C++ [class.copy]p3:
2374  //   A declaration of a constructor for a class X is ill-formed if
2375  //   its first parameter is of type (optionally cv-qualified) X and
2376  //   either there are no other parameters or else all other
2377  //   parameters have default arguments.
2378  if (!Constructor->isInvalidDecl() &&
2379      ((Constructor->getNumParams() == 1) ||
2380       (Constructor->getNumParams() > 1 &&
2381        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2382      Constructor->getTemplateSpecializationKind()
2383                                              != TSK_ImplicitInstantiation) {
2384    QualType ParamType = Constructor->getParamDecl(0)->getType();
2385    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2386    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2387      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2388      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2389        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2390
2391      // FIXME: Rather that making the constructor invalid, we should endeavor
2392      // to fix the type.
2393      Constructor->setInvalidDecl();
2394    }
2395  }
2396
2397  // Notify the class that we've added a constructor.
2398  ClassDecl->addedConstructor(Context, Constructor);
2399}
2400
2401/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2402/// issuing any diagnostics required. Returns true on error.
2403bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2404  CXXRecordDecl *RD = Destructor->getParent();
2405
2406  if (Destructor->isVirtual()) {
2407    SourceLocation Loc;
2408
2409    if (!Destructor->isImplicit())
2410      Loc = Destructor->getLocation();
2411    else
2412      Loc = RD->getLocation();
2413
2414    // If we have a virtual destructor, look up the deallocation function
2415    FunctionDecl *OperatorDelete = 0;
2416    DeclarationName Name =
2417    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2418    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2419      return true;
2420
2421    Destructor->setOperatorDelete(OperatorDelete);
2422  }
2423
2424  return false;
2425}
2426
2427static inline bool
2428FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2429  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2430          FTI.ArgInfo[0].Param &&
2431          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2432}
2433
2434/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2435/// the well-formednes of the destructor declarator @p D with type @p
2436/// R. If there are any errors in the declarator, this routine will
2437/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2438/// will be updated to reflect a well-formed type for the destructor and
2439/// returned.
2440QualType Sema::CheckDestructorDeclarator(Declarator &D,
2441                                         FunctionDecl::StorageClass& SC) {
2442  // C++ [class.dtor]p1:
2443  //   [...] A typedef-name that names a class is a class-name
2444  //   (7.1.3); however, a typedef-name that names a class shall not
2445  //   be used as the identifier in the declarator for a destructor
2446  //   declaration.
2447  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2448  if (isa<TypedefType>(DeclaratorType)) {
2449    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2450      << DeclaratorType;
2451    D.setInvalidType();
2452  }
2453
2454  // C++ [class.dtor]p2:
2455  //   A destructor is used to destroy objects of its class type. A
2456  //   destructor takes no parameters, and no return type can be
2457  //   specified for it (not even void). The address of a destructor
2458  //   shall not be taken. A destructor shall not be static. A
2459  //   destructor can be invoked for a const, volatile or const
2460  //   volatile object. A destructor shall not be declared const,
2461  //   volatile or const volatile (9.3.2).
2462  if (SC == FunctionDecl::Static) {
2463    if (!D.isInvalidType())
2464      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2465        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2466        << SourceRange(D.getIdentifierLoc());
2467    SC = FunctionDecl::None;
2468    D.setInvalidType();
2469  }
2470  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2471    // Destructors don't have return types, but the parser will
2472    // happily parse something like:
2473    //
2474    //   class X {
2475    //     float ~X();
2476    //   };
2477    //
2478    // The return type will be eliminated later.
2479    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2480      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2481      << SourceRange(D.getIdentifierLoc());
2482  }
2483
2484  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2485  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2486    if (FTI.TypeQuals & Qualifiers::Const)
2487      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2488        << "const" << SourceRange(D.getIdentifierLoc());
2489    if (FTI.TypeQuals & Qualifiers::Volatile)
2490      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2491        << "volatile" << SourceRange(D.getIdentifierLoc());
2492    if (FTI.TypeQuals & Qualifiers::Restrict)
2493      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2494        << "restrict" << SourceRange(D.getIdentifierLoc());
2495    D.setInvalidType();
2496  }
2497
2498  // Make sure we don't have any parameters.
2499  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2500    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2501
2502    // Delete the parameters.
2503    FTI.freeArgs();
2504    D.setInvalidType();
2505  }
2506
2507  // Make sure the destructor isn't variadic.
2508  if (FTI.isVariadic) {
2509    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2510    D.setInvalidType();
2511  }
2512
2513  // Rebuild the function type "R" without any type qualifiers or
2514  // parameters (in case any of the errors above fired) and with
2515  // "void" as the return type, since destructors don't have return
2516  // types. We *always* have to do this, because GetTypeForDeclarator
2517  // will put in a result type of "int" when none was specified.
2518  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2519}
2520
2521/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2522/// well-formednes of the conversion function declarator @p D with
2523/// type @p R. If there are any errors in the declarator, this routine
2524/// will emit diagnostics and return true. Otherwise, it will return
2525/// false. Either way, the type @p R will be updated to reflect a
2526/// well-formed type for the conversion operator.
2527void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2528                                     FunctionDecl::StorageClass& SC) {
2529  // C++ [class.conv.fct]p1:
2530  //   Neither parameter types nor return type can be specified. The
2531  //   type of a conversion function (8.3.5) is "function taking no
2532  //   parameter returning conversion-type-id."
2533  if (SC == FunctionDecl::Static) {
2534    if (!D.isInvalidType())
2535      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2536        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2537        << SourceRange(D.getIdentifierLoc());
2538    D.setInvalidType();
2539    SC = FunctionDecl::None;
2540  }
2541  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2542    // Conversion functions don't have return types, but the parser will
2543    // happily parse something like:
2544    //
2545    //   class X {
2546    //     float operator bool();
2547    //   };
2548    //
2549    // The return type will be changed later anyway.
2550    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2551      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2552      << SourceRange(D.getIdentifierLoc());
2553  }
2554
2555  // Make sure we don't have any parameters.
2556  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2557    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2558
2559    // Delete the parameters.
2560    D.getTypeObject(0).Fun.freeArgs();
2561    D.setInvalidType();
2562  }
2563
2564  // Make sure the conversion function isn't variadic.
2565  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2566    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2567    D.setInvalidType();
2568  }
2569
2570  // C++ [class.conv.fct]p4:
2571  //   The conversion-type-id shall not represent a function type nor
2572  //   an array type.
2573  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2574  if (ConvType->isArrayType()) {
2575    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2576    ConvType = Context.getPointerType(ConvType);
2577    D.setInvalidType();
2578  } else if (ConvType->isFunctionType()) {
2579    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2580    ConvType = Context.getPointerType(ConvType);
2581    D.setInvalidType();
2582  }
2583
2584  // Rebuild the function type "R" without any parameters (in case any
2585  // of the errors above fired) and with the conversion type as the
2586  // return type.
2587  R = Context.getFunctionType(ConvType, 0, 0, false,
2588                              R->getAs<FunctionProtoType>()->getTypeQuals());
2589
2590  // C++0x explicit conversion operators.
2591  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2592    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2593         diag::warn_explicit_conversion_functions)
2594      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2595}
2596
2597/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2598/// the declaration of the given C++ conversion function. This routine
2599/// is responsible for recording the conversion function in the C++
2600/// class, if possible.
2601Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2602  assert(Conversion && "Expected to receive a conversion function declaration");
2603
2604  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2605
2606  // Make sure we aren't redeclaring the conversion function.
2607  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2608
2609  // C++ [class.conv.fct]p1:
2610  //   [...] A conversion function is never used to convert a
2611  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2612  //   same object type (or a reference to it), to a (possibly
2613  //   cv-qualified) base class of that type (or a reference to it),
2614  //   or to (possibly cv-qualified) void.
2615  // FIXME: Suppress this warning if the conversion function ends up being a
2616  // virtual function that overrides a virtual function in a base class.
2617  QualType ClassType
2618    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2619  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2620    ConvType = ConvTypeRef->getPointeeType();
2621  if (ConvType->isRecordType()) {
2622    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2623    if (ConvType == ClassType)
2624      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2625        << ClassType;
2626    else if (IsDerivedFrom(ClassType, ConvType))
2627      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2628        <<  ClassType << ConvType;
2629  } else if (ConvType->isVoidType()) {
2630    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2631      << ClassType << ConvType;
2632  }
2633
2634  if (Conversion->getPreviousDeclaration()) {
2635    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2636    if (FunctionTemplateDecl *ConversionTemplate
2637          = Conversion->getDescribedFunctionTemplate())
2638      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2639    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2640      return DeclPtrTy::make(Conversion);
2641    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2642  } else if (FunctionTemplateDecl *ConversionTemplate
2643               = Conversion->getDescribedFunctionTemplate())
2644    ClassDecl->addConversionFunction(ConversionTemplate);
2645  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2646    ClassDecl->addConversionFunction(Conversion);
2647
2648  return DeclPtrTy::make(Conversion);
2649}
2650
2651//===----------------------------------------------------------------------===//
2652// Namespace Handling
2653//===----------------------------------------------------------------------===//
2654
2655/// ActOnStartNamespaceDef - This is called at the start of a namespace
2656/// definition.
2657Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2658                                             SourceLocation IdentLoc,
2659                                             IdentifierInfo *II,
2660                                             SourceLocation LBrace) {
2661  NamespaceDecl *Namespc =
2662      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2663  Namespc->setLBracLoc(LBrace);
2664
2665  Scope *DeclRegionScope = NamespcScope->getParent();
2666
2667  if (II) {
2668    // C++ [namespace.def]p2:
2669    // The identifier in an original-namespace-definition shall not have been
2670    // previously defined in the declarative region in which the
2671    // original-namespace-definition appears. The identifier in an
2672    // original-namespace-definition is the name of the namespace. Subsequently
2673    // in that declarative region, it is treated as an original-namespace-name.
2674
2675    NamedDecl *PrevDecl
2676      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2677                         ForRedeclaration);
2678
2679    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2680      // This is an extended namespace definition.
2681      // Attach this namespace decl to the chain of extended namespace
2682      // definitions.
2683      OrigNS->setNextNamespace(Namespc);
2684      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2685
2686      // Remove the previous declaration from the scope.
2687      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2688        IdResolver.RemoveDecl(OrigNS);
2689        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2690      }
2691    } else if (PrevDecl) {
2692      // This is an invalid name redefinition.
2693      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2694       << Namespc->getDeclName();
2695      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2696      Namespc->setInvalidDecl();
2697      // Continue on to push Namespc as current DeclContext and return it.
2698    } else if (II->isStr("std") &&
2699               CurContext->getLookupContext()->isTranslationUnit()) {
2700      // This is the first "real" definition of the namespace "std", so update
2701      // our cache of the "std" namespace to point at this definition.
2702      if (StdNamespace) {
2703        // We had already defined a dummy namespace "std". Link this new
2704        // namespace definition to the dummy namespace "std".
2705        StdNamespace->setNextNamespace(Namespc);
2706        StdNamespace->setLocation(IdentLoc);
2707        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2708      }
2709
2710      // Make our StdNamespace cache point at the first real definition of the
2711      // "std" namespace.
2712      StdNamespace = Namespc;
2713    }
2714
2715    PushOnScopeChains(Namespc, DeclRegionScope);
2716  } else {
2717    // Anonymous namespaces.
2718
2719    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2720    //   behaves as if it were replaced by
2721    //     namespace unique { /* empty body */ }
2722    //     using namespace unique;
2723    //     namespace unique { namespace-body }
2724    //   where all occurrences of 'unique' in a translation unit are
2725    //   replaced by the same identifier and this identifier differs
2726    //   from all other identifiers in the entire program.
2727
2728    // We just create the namespace with an empty name and then add an
2729    // implicit using declaration, just like the standard suggests.
2730    //
2731    // CodeGen enforces the "universally unique" aspect by giving all
2732    // declarations semantically contained within an anonymous
2733    // namespace internal linkage.
2734
2735    assert(Namespc->isAnonymousNamespace());
2736    CurContext->addDecl(Namespc);
2737
2738    UsingDirectiveDecl* UD
2739      = UsingDirectiveDecl::Create(Context, CurContext,
2740                                   /* 'using' */ LBrace,
2741                                   /* 'namespace' */ SourceLocation(),
2742                                   /* qualifier */ SourceRange(),
2743                                   /* NNS */ NULL,
2744                                   /* identifier */ SourceLocation(),
2745                                   Namespc,
2746                                   /* Ancestor */ CurContext);
2747    UD->setImplicit();
2748    CurContext->addDecl(UD);
2749  }
2750
2751  // Although we could have an invalid decl (i.e. the namespace name is a
2752  // redefinition), push it as current DeclContext and try to continue parsing.
2753  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2754  // for the namespace has the declarations that showed up in that particular
2755  // namespace definition.
2756  PushDeclContext(NamespcScope, Namespc);
2757  return DeclPtrTy::make(Namespc);
2758}
2759
2760/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2761/// is a namespace alias, returns the namespace it points to.
2762static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2763  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2764    return AD->getNamespace();
2765  return dyn_cast_or_null<NamespaceDecl>(D);
2766}
2767
2768/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2769/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2770void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2771  Decl *Dcl = D.getAs<Decl>();
2772  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2773  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2774  Namespc->setRBracLoc(RBrace);
2775  PopDeclContext();
2776}
2777
2778Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2779                                          SourceLocation UsingLoc,
2780                                          SourceLocation NamespcLoc,
2781                                          const CXXScopeSpec &SS,
2782                                          SourceLocation IdentLoc,
2783                                          IdentifierInfo *NamespcName,
2784                                          AttributeList *AttrList) {
2785  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2786  assert(NamespcName && "Invalid NamespcName.");
2787  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2788  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2789
2790  UsingDirectiveDecl *UDir = 0;
2791
2792  // Lookup namespace name.
2793  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2794  LookupParsedName(R, S, &SS);
2795  if (R.isAmbiguous())
2796    return DeclPtrTy();
2797
2798  if (!R.empty()) {
2799    NamedDecl *Named = R.getFoundDecl();
2800    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2801        && "expected namespace decl");
2802    // C++ [namespace.udir]p1:
2803    //   A using-directive specifies that the names in the nominated
2804    //   namespace can be used in the scope in which the
2805    //   using-directive appears after the using-directive. During
2806    //   unqualified name lookup (3.4.1), the names appear as if they
2807    //   were declared in the nearest enclosing namespace which
2808    //   contains both the using-directive and the nominated
2809    //   namespace. [Note: in this context, "contains" means "contains
2810    //   directly or indirectly". ]
2811
2812    // Find enclosing context containing both using-directive and
2813    // nominated namespace.
2814    NamespaceDecl *NS = getNamespaceDecl(Named);
2815    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2816    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2817      CommonAncestor = CommonAncestor->getParent();
2818
2819    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2820                                      SS.getRange(),
2821                                      (NestedNameSpecifier *)SS.getScopeRep(),
2822                                      IdentLoc, Named, CommonAncestor);
2823    PushUsingDirective(S, UDir);
2824  } else {
2825    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2826  }
2827
2828  // FIXME: We ignore attributes for now.
2829  delete AttrList;
2830  return DeclPtrTy::make(UDir);
2831}
2832
2833void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2834  // If scope has associated entity, then using directive is at namespace
2835  // or translation unit scope. We add UsingDirectiveDecls, into
2836  // it's lookup structure.
2837  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2838    Ctx->addDecl(UDir);
2839  else
2840    // Otherwise it is block-sope. using-directives will affect lookup
2841    // only to the end of scope.
2842    S->PushUsingDirective(DeclPtrTy::make(UDir));
2843}
2844
2845
2846Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2847                                            AccessSpecifier AS,
2848                                            SourceLocation UsingLoc,
2849                                            const CXXScopeSpec &SS,
2850                                            UnqualifiedId &Name,
2851                                            AttributeList *AttrList,
2852                                            bool IsTypeName,
2853                                            SourceLocation TypenameLoc) {
2854  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2855
2856  switch (Name.getKind()) {
2857  case UnqualifiedId::IK_Identifier:
2858  case UnqualifiedId::IK_OperatorFunctionId:
2859  case UnqualifiedId::IK_LiteralOperatorId:
2860  case UnqualifiedId::IK_ConversionFunctionId:
2861    break;
2862
2863  case UnqualifiedId::IK_ConstructorName:
2864    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2865      << SS.getRange();
2866    return DeclPtrTy();
2867
2868  case UnqualifiedId::IK_DestructorName:
2869    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2870      << SS.getRange();
2871    return DeclPtrTy();
2872
2873  case UnqualifiedId::IK_TemplateId:
2874    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2875      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2876    return DeclPtrTy();
2877  }
2878
2879  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2880  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2881                                        Name.getSourceRange().getBegin(),
2882                                        TargetName, AttrList,
2883                                        /* IsInstantiation */ false,
2884                                        IsTypeName, TypenameLoc);
2885  if (UD) {
2886    PushOnScopeChains(UD, S);
2887    UD->setAccess(AS);
2888  }
2889
2890  return DeclPtrTy::make(UD);
2891}
2892
2893/// Builds a shadow declaration corresponding to a 'using' declaration.
2894static UsingShadowDecl *BuildUsingShadowDecl(Sema &SemaRef, Scope *S,
2895                                             AccessSpecifier AS,
2896                                             UsingDecl *UD, NamedDecl *Orig) {
2897  // FIXME: diagnose hiding, collisions
2898
2899  // If we resolved to another shadow declaration, just coalesce them.
2900  if (isa<UsingShadowDecl>(Orig)) {
2901    Orig = cast<UsingShadowDecl>(Orig)->getTargetDecl();
2902    assert(!isa<UsingShadowDecl>(Orig) && "nested shadow declaration");
2903  }
2904
2905  UsingShadowDecl *Shadow
2906    = UsingShadowDecl::Create(SemaRef.Context, SemaRef.CurContext,
2907                              UD->getLocation(), UD, Orig);
2908  UD->addShadowDecl(Shadow);
2909
2910  if (S)
2911    SemaRef.PushOnScopeChains(Shadow, S);
2912  else
2913    SemaRef.CurContext->addDecl(Shadow);
2914  Shadow->setAccess(AS);
2915
2916  return Shadow;
2917}
2918
2919/// Builds a using declaration.
2920///
2921/// \param IsInstantiation - Whether this call arises from an
2922///   instantiation of an unresolved using declaration.  We treat
2923///   the lookup differently for these declarations.
2924NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
2925                                       SourceLocation UsingLoc,
2926                                       const CXXScopeSpec &SS,
2927                                       SourceLocation IdentLoc,
2928                                       DeclarationName Name,
2929                                       AttributeList *AttrList,
2930                                       bool IsInstantiation,
2931                                       bool IsTypeName,
2932                                       SourceLocation TypenameLoc) {
2933  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2934  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2935
2936  // FIXME: We ignore attributes for now.
2937  delete AttrList;
2938
2939  if (SS.isEmpty()) {
2940    Diag(IdentLoc, diag::err_using_requires_qualname);
2941    return 0;
2942  }
2943
2944  NestedNameSpecifier *NNS =
2945    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2946
2947  DeclContext *LookupContext = computeDeclContext(SS);
2948  if (!LookupContext) {
2949    if (IsTypeName) {
2950      return UnresolvedUsingTypenameDecl::Create(Context, CurContext,
2951                                                 UsingLoc, TypenameLoc,
2952                                                 SS.getRange(), NNS,
2953                                                 IdentLoc, Name);
2954    } else {
2955      return UnresolvedUsingValueDecl::Create(Context, CurContext,
2956                                              UsingLoc, SS.getRange(), NNS,
2957                                              IdentLoc, Name);
2958    }
2959  }
2960
2961  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2962    // C++0x N2914 [namespace.udecl]p3:
2963    // A using-declaration used as a member-declaration shall refer to a member
2964    // of a base class of the class being defined, shall refer to a member of an
2965    // anonymous union that is a member of a base class of the class being
2966    // defined, or shall refer to an enumerator for an enumeration type that is
2967    // a member of a base class of the class being defined.
2968
2969    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2970    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2971      Diag(SS.getRange().getBegin(),
2972           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2973        << NNS << RD->getDeclName();
2974      return 0;
2975    }
2976  } else {
2977    // C++0x N2914 [namespace.udecl]p8:
2978    // A using-declaration for a class member shall be a member-declaration.
2979    if (isa<CXXRecordDecl>(LookupContext)) {
2980      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2981        << SS.getRange();
2982      return 0;
2983    }
2984  }
2985
2986  // Look up the target name.  Unlike most lookups, we do not want to
2987  // hide tag declarations: tag names are visible through the using
2988  // declaration even if hidden by ordinary names.
2989  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
2990
2991  // We don't hide tags behind ordinary decls if we're in a
2992  // non-dependent context, but in a dependent context, this is
2993  // important for the stability of two-phase lookup.
2994  if (!IsInstantiation)
2995    R.setHideTags(false);
2996
2997  LookupQualifiedName(R, LookupContext);
2998
2999  if (R.empty()) {
3000    Diag(IdentLoc, diag::err_no_member)
3001      << Name << LookupContext << SS.getRange();
3002    return 0;
3003  }
3004
3005  if (R.isAmbiguous())
3006    return 0;
3007
3008  if (IsTypeName) {
3009    // If we asked for a typename and got a non-type decl, error out.
3010    if (R.getResultKind() != LookupResult::Found
3011        || !isa<TypeDecl>(R.getFoundDecl())) {
3012      Diag(IdentLoc, diag::err_using_typename_non_type);
3013      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3014        Diag((*I)->getUnderlyingDecl()->getLocation(),
3015             diag::note_using_decl_target);
3016      return 0;
3017    }
3018  } else {
3019    // If we asked for a non-typename and we got a type, error out,
3020    // but only if this is an instantiation of an unresolved using
3021    // decl.  Otherwise just silently find the type name.
3022    if (IsInstantiation &&
3023        R.getResultKind() == LookupResult::Found &&
3024        isa<TypeDecl>(R.getFoundDecl())) {
3025      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3026      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3027      return 0;
3028    }
3029  }
3030
3031  // C++0x N2914 [namespace.udecl]p6:
3032  // A using-declaration shall not name a namespace.
3033  if (R.getResultKind() == LookupResult::Found
3034      && isa<NamespaceDecl>(R.getFoundDecl())) {
3035    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3036      << SS.getRange();
3037    return 0;
3038  }
3039
3040  UsingDecl *UD = UsingDecl::Create(Context, CurContext, IdentLoc,
3041                                    SS.getRange(), UsingLoc, NNS, Name,
3042                                    IsTypeName);
3043
3044  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3045    BuildUsingShadowDecl(*this, S, AS, UD, *I);
3046
3047  return UD;
3048}
3049
3050Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3051                                             SourceLocation NamespaceLoc,
3052                                             SourceLocation AliasLoc,
3053                                             IdentifierInfo *Alias,
3054                                             const CXXScopeSpec &SS,
3055                                             SourceLocation IdentLoc,
3056                                             IdentifierInfo *Ident) {
3057
3058  // Lookup the namespace name.
3059  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3060  LookupParsedName(R, S, &SS);
3061
3062  // Check if we have a previous declaration with the same name.
3063  if (NamedDecl *PrevDecl
3064        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3065    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3066      // We already have an alias with the same name that points to the same
3067      // namespace, so don't create a new one.
3068      if (!R.isAmbiguous() && !R.empty() &&
3069          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3070        return DeclPtrTy();
3071    }
3072
3073    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3074      diag::err_redefinition_different_kind;
3075    Diag(AliasLoc, DiagID) << Alias;
3076    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3077    return DeclPtrTy();
3078  }
3079
3080  if (R.isAmbiguous())
3081    return DeclPtrTy();
3082
3083  if (R.empty()) {
3084    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3085    return DeclPtrTy();
3086  }
3087
3088  NamespaceAliasDecl *AliasDecl =
3089    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3090                               Alias, SS.getRange(),
3091                               (NestedNameSpecifier *)SS.getScopeRep(),
3092                               IdentLoc, R.getFoundDecl());
3093
3094  CurContext->addDecl(AliasDecl);
3095  return DeclPtrTy::make(AliasDecl);
3096}
3097
3098void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3099                                            CXXConstructorDecl *Constructor) {
3100  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3101          !Constructor->isUsed()) &&
3102    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3103
3104  CXXRecordDecl *ClassDecl
3105    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3106  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3107
3108  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3109    Diag(CurrentLocation, diag::note_member_synthesized_at)
3110      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3111    Constructor->setInvalidDecl();
3112  } else {
3113    Constructor->setUsed();
3114  }
3115
3116  MaybeMarkVirtualImplicitMembersReferenced(CurrentLocation, Constructor);
3117}
3118
3119void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3120                                    CXXDestructorDecl *Destructor) {
3121  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3122         "DefineImplicitDestructor - call it for implicit default dtor");
3123  CXXRecordDecl *ClassDecl = Destructor->getParent();
3124  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3125  // C++ [class.dtor] p5
3126  // Before the implicitly-declared default destructor for a class is
3127  // implicitly defined, all the implicitly-declared default destructors
3128  // for its base class and its non-static data members shall have been
3129  // implicitly defined.
3130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3131       E = ClassDecl->bases_end(); Base != E; ++Base) {
3132    CXXRecordDecl *BaseClassDecl
3133      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3134    if (!BaseClassDecl->hasTrivialDestructor()) {
3135      if (CXXDestructorDecl *BaseDtor =
3136          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3137        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3138      else
3139        assert(false &&
3140               "DefineImplicitDestructor - missing dtor in a base class");
3141    }
3142  }
3143
3144  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3145       E = ClassDecl->field_end(); Field != E; ++Field) {
3146    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3147    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3148      FieldType = Array->getElementType();
3149    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3150      CXXRecordDecl *FieldClassDecl
3151        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3152      if (!FieldClassDecl->hasTrivialDestructor()) {
3153        if (CXXDestructorDecl *FieldDtor =
3154            const_cast<CXXDestructorDecl*>(
3155                                        FieldClassDecl->getDestructor(Context)))
3156          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3157        else
3158          assert(false &&
3159          "DefineImplicitDestructor - missing dtor in class of a data member");
3160      }
3161    }
3162  }
3163
3164  // FIXME: If CheckDestructor fails, we should emit a note about where the
3165  // implicit destructor was needed.
3166  if (CheckDestructor(Destructor)) {
3167    Diag(CurrentLocation, diag::note_member_synthesized_at)
3168      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3169
3170    Destructor->setInvalidDecl();
3171    return;
3172  }
3173
3174  Destructor->setUsed();
3175}
3176
3177void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3178                                          CXXMethodDecl *MethodDecl) {
3179  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3180          MethodDecl->getOverloadedOperator() == OO_Equal &&
3181          !MethodDecl->isUsed()) &&
3182         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3183
3184  CXXRecordDecl *ClassDecl
3185    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3186
3187  // C++[class.copy] p12
3188  // Before the implicitly-declared copy assignment operator for a class is
3189  // implicitly defined, all implicitly-declared copy assignment operators
3190  // for its direct base classes and its nonstatic data members shall have
3191  // been implicitly defined.
3192  bool err = false;
3193  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3194       E = ClassDecl->bases_end(); Base != E; ++Base) {
3195    CXXRecordDecl *BaseClassDecl
3196      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3197    if (CXXMethodDecl *BaseAssignOpMethod =
3198          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3199      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3200  }
3201  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3202       E = ClassDecl->field_end(); Field != E; ++Field) {
3203    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3204    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3205      FieldType = Array->getElementType();
3206    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3207      CXXRecordDecl *FieldClassDecl
3208        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3209      if (CXXMethodDecl *FieldAssignOpMethod =
3210          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3211        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3212    } else if (FieldType->isReferenceType()) {
3213      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3214      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3215      Diag(Field->getLocation(), diag::note_declared_at);
3216      Diag(CurrentLocation, diag::note_first_required_here);
3217      err = true;
3218    } else if (FieldType.isConstQualified()) {
3219      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3220      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3221      Diag(Field->getLocation(), diag::note_declared_at);
3222      Diag(CurrentLocation, diag::note_first_required_here);
3223      err = true;
3224    }
3225  }
3226  if (!err)
3227    MethodDecl->setUsed();
3228}
3229
3230CXXMethodDecl *
3231Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3232                              CXXRecordDecl *ClassDecl) {
3233  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3234  QualType RHSType(LHSType);
3235  // If class's assignment operator argument is const/volatile qualified,
3236  // look for operator = (const/volatile B&). Otherwise, look for
3237  // operator = (B&).
3238  RHSType = Context.getCVRQualifiedType(RHSType,
3239                                     ParmDecl->getType().getCVRQualifiers());
3240  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3241                                                          LHSType,
3242                                                          SourceLocation()));
3243  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3244                                                          RHSType,
3245                                                          SourceLocation()));
3246  Expr *Args[2] = { &*LHS, &*RHS };
3247  OverloadCandidateSet CandidateSet;
3248  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3249                              CandidateSet);
3250  OverloadCandidateSet::iterator Best;
3251  if (BestViableFunction(CandidateSet,
3252                         ClassDecl->getLocation(), Best) == OR_Success)
3253    return cast<CXXMethodDecl>(Best->Function);
3254  assert(false &&
3255         "getAssignOperatorMethod - copy assignment operator method not found");
3256  return 0;
3257}
3258
3259void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3260                                   CXXConstructorDecl *CopyConstructor,
3261                                   unsigned TypeQuals) {
3262  assert((CopyConstructor->isImplicit() &&
3263          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3264          !CopyConstructor->isUsed()) &&
3265         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3266
3267  CXXRecordDecl *ClassDecl
3268    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3269  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3270  // C++ [class.copy] p209
3271  // Before the implicitly-declared copy constructor for a class is
3272  // implicitly defined, all the implicitly-declared copy constructors
3273  // for its base class and its non-static data members shall have been
3274  // implicitly defined.
3275  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3276       Base != ClassDecl->bases_end(); ++Base) {
3277    CXXRecordDecl *BaseClassDecl
3278      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3279    if (CXXConstructorDecl *BaseCopyCtor =
3280        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3281      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3282  }
3283  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3284                                  FieldEnd = ClassDecl->field_end();
3285       Field != FieldEnd; ++Field) {
3286    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3287    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3288      FieldType = Array->getElementType();
3289    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3290      CXXRecordDecl *FieldClassDecl
3291        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3292      if (CXXConstructorDecl *FieldCopyCtor =
3293          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3294        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3295    }
3296  }
3297  CopyConstructor->setUsed();
3298}
3299
3300Sema::OwningExprResult
3301Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3302                            CXXConstructorDecl *Constructor,
3303                            MultiExprArg ExprArgs) {
3304  bool Elidable = false;
3305
3306  // C++ [class.copy]p15:
3307  //   Whenever a temporary class object is copied using a copy constructor, and
3308  //   this object and the copy have the same cv-unqualified type, an
3309  //   implementation is permitted to treat the original and the copy as two
3310  //   different ways of referring to the same object and not perform a copy at
3311  //   all, even if the class copy constructor or destructor have side effects.
3312
3313  // FIXME: Is this enough?
3314  if (Constructor->isCopyConstructor(Context)) {
3315    Expr *E = ((Expr **)ExprArgs.get())[0];
3316    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3317      E = BE->getSubExpr();
3318    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3319      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3320        E = ICE->getSubExpr();
3321
3322    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3323      Elidable = true;
3324  }
3325
3326  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3327                               Elidable, move(ExprArgs));
3328}
3329
3330/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3331/// including handling of its default argument expressions.
3332Sema::OwningExprResult
3333Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3334                            CXXConstructorDecl *Constructor, bool Elidable,
3335                            MultiExprArg ExprArgs) {
3336  unsigned NumExprs = ExprArgs.size();
3337  Expr **Exprs = (Expr **)ExprArgs.release();
3338
3339  MarkDeclarationReferenced(ConstructLoc, Constructor);
3340  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3341                                        Elidable, Exprs, NumExprs));
3342}
3343
3344Sema::OwningExprResult
3345Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3346                                  QualType Ty,
3347                                  SourceLocation TyBeginLoc,
3348                                  MultiExprArg Args,
3349                                  SourceLocation RParenLoc) {
3350  unsigned NumExprs = Args.size();
3351  Expr **Exprs = (Expr **)Args.release();
3352
3353  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3354  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3355                                                    TyBeginLoc, Exprs,
3356                                                    NumExprs, RParenLoc));
3357}
3358
3359
3360bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3361                                        CXXConstructorDecl *Constructor,
3362                                        MultiExprArg Exprs) {
3363  OwningExprResult TempResult =
3364    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3365                          move(Exprs));
3366  if (TempResult.isInvalid())
3367    return true;
3368
3369  Expr *Temp = TempResult.takeAs<Expr>();
3370  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3371  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3372  VD->setInit(Context, Temp);
3373
3374  return false;
3375}
3376
3377void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3378  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3379                                  DeclInitType->getAs<RecordType>()->getDecl());
3380  if (!ClassDecl->hasTrivialDestructor())
3381    if (CXXDestructorDecl *Destructor =
3382        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3383      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3384}
3385
3386/// AddCXXDirectInitializerToDecl - This action is called immediately after
3387/// ActOnDeclarator, when a C++ direct initializer is present.
3388/// e.g: "int x(1);"
3389void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3390                                         SourceLocation LParenLoc,
3391                                         MultiExprArg Exprs,
3392                                         SourceLocation *CommaLocs,
3393                                         SourceLocation RParenLoc) {
3394  unsigned NumExprs = Exprs.size();
3395  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3396  Decl *RealDecl = Dcl.getAs<Decl>();
3397
3398  // If there is no declaration, there was an error parsing it.  Just ignore
3399  // the initializer.
3400  if (RealDecl == 0)
3401    return;
3402
3403  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3404  if (!VDecl) {
3405    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3406    RealDecl->setInvalidDecl();
3407    return;
3408  }
3409
3410  // We will represent direct-initialization similarly to copy-initialization:
3411  //    int x(1);  -as-> int x = 1;
3412  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3413  //
3414  // Clients that want to distinguish between the two forms, can check for
3415  // direct initializer using VarDecl::hasCXXDirectInitializer().
3416  // A major benefit is that clients that don't particularly care about which
3417  // exactly form was it (like the CodeGen) can handle both cases without
3418  // special case code.
3419
3420  // If either the declaration has a dependent type or if any of the expressions
3421  // is type-dependent, we represent the initialization via a ParenListExpr for
3422  // later use during template instantiation.
3423  if (VDecl->getType()->isDependentType() ||
3424      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3425    // Let clients know that initialization was done with a direct initializer.
3426    VDecl->setCXXDirectInitializer(true);
3427
3428    // Store the initialization expressions as a ParenListExpr.
3429    unsigned NumExprs = Exprs.size();
3430    VDecl->setInit(Context,
3431                   new (Context) ParenListExpr(Context, LParenLoc,
3432                                               (Expr **)Exprs.release(),
3433                                               NumExprs, RParenLoc));
3434    return;
3435  }
3436
3437
3438  // C++ 8.5p11:
3439  // The form of initialization (using parentheses or '=') is generally
3440  // insignificant, but does matter when the entity being initialized has a
3441  // class type.
3442  QualType DeclInitType = VDecl->getType();
3443  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3444    DeclInitType = Context.getBaseElementType(Array);
3445
3446  // FIXME: This isn't the right place to complete the type.
3447  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3448                          diag::err_typecheck_decl_incomplete_type)) {
3449    VDecl->setInvalidDecl();
3450    return;
3451  }
3452
3453  if (VDecl->getType()->isRecordType()) {
3454    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3455
3456    CXXConstructorDecl *Constructor
3457      = PerformInitializationByConstructor(DeclInitType,
3458                                           move(Exprs),
3459                                           VDecl->getLocation(),
3460                                           SourceRange(VDecl->getLocation(),
3461                                                       RParenLoc),
3462                                           VDecl->getDeclName(),
3463                                           IK_Direct,
3464                                           ConstructorArgs);
3465    if (!Constructor)
3466      RealDecl->setInvalidDecl();
3467    else {
3468      VDecl->setCXXDirectInitializer(true);
3469      if (InitializeVarWithConstructor(VDecl, Constructor,
3470                                       move_arg(ConstructorArgs)))
3471        RealDecl->setInvalidDecl();
3472      FinalizeVarWithDestructor(VDecl, DeclInitType);
3473    }
3474    return;
3475  }
3476
3477  if (NumExprs > 1) {
3478    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3479      << SourceRange(VDecl->getLocation(), RParenLoc);
3480    RealDecl->setInvalidDecl();
3481    return;
3482  }
3483
3484  // Let clients know that initialization was done with a direct initializer.
3485  VDecl->setCXXDirectInitializer(true);
3486
3487  assert(NumExprs == 1 && "Expected 1 expression");
3488  // Set the init expression, handles conversions.
3489  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3490                       /*DirectInit=*/true);
3491}
3492
3493/// \brief Add the applicable constructor candidates for an initialization
3494/// by constructor.
3495static void AddConstructorInitializationCandidates(Sema &SemaRef,
3496                                                   QualType ClassType,
3497                                                   Expr **Args,
3498                                                   unsigned NumArgs,
3499                                                  Sema::InitializationKind Kind,
3500                                           OverloadCandidateSet &CandidateSet) {
3501  // C++ [dcl.init]p14:
3502  //   If the initialization is direct-initialization, or if it is
3503  //   copy-initialization where the cv-unqualified version of the
3504  //   source type is the same class as, or a derived class of, the
3505  //   class of the destination, constructors are considered. The
3506  //   applicable constructors are enumerated (13.3.1.3), and the
3507  //   best one is chosen through overload resolution (13.3). The
3508  //   constructor so selected is called to initialize the object,
3509  //   with the initializer expression(s) as its argument(s). If no
3510  //   constructor applies, or the overload resolution is ambiguous,
3511  //   the initialization is ill-formed.
3512  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3513  assert(ClassRec && "Can only initialize a class type here");
3514
3515  // FIXME: When we decide not to synthesize the implicitly-declared
3516  // constructors, we'll need to make them appear here.
3517
3518  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3519  DeclarationName ConstructorName
3520    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3521              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3522  DeclContext::lookup_const_iterator Con, ConEnd;
3523  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3524       Con != ConEnd; ++Con) {
3525    // Find the constructor (which may be a template).
3526    CXXConstructorDecl *Constructor = 0;
3527    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3528    if (ConstructorTmpl)
3529      Constructor
3530      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3531    else
3532      Constructor = cast<CXXConstructorDecl>(*Con);
3533
3534    if ((Kind == Sema::IK_Direct) ||
3535        (Kind == Sema::IK_Copy &&
3536         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3537        (Kind == Sema::IK_Default && Constructor->isDefaultConstructor())) {
3538      if (ConstructorTmpl)
3539        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
3540                                             /*ExplicitArgs*/ 0,
3541                                             Args, NumArgs, CandidateSet);
3542      else
3543        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3544    }
3545  }
3546}
3547
3548/// \brief Attempt to perform initialization by constructor
3549/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
3550/// copy-initialization.
3551///
3552/// This routine determines whether initialization by constructor is possible,
3553/// but it does not emit any diagnostics in the case where the initialization
3554/// is ill-formed.
3555///
3556/// \param ClassType the type of the object being initialized, which must have
3557/// class type.
3558///
3559/// \param Args the arguments provided to initialize the object
3560///
3561/// \param NumArgs the number of arguments provided to initialize the object
3562///
3563/// \param Kind the type of initialization being performed
3564///
3565/// \returns the constructor used to initialize the object, if successful.
3566/// Otherwise, emits a diagnostic and returns NULL.
3567CXXConstructorDecl *
3568Sema::TryInitializationByConstructor(QualType ClassType,
3569                                     Expr **Args, unsigned NumArgs,
3570                                     SourceLocation Loc,
3571                                     InitializationKind Kind) {
3572  // Build the overload candidate set
3573  OverloadCandidateSet CandidateSet;
3574  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3575                                         CandidateSet);
3576
3577  // Determine whether we found a constructor we can use.
3578  OverloadCandidateSet::iterator Best;
3579  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3580    case OR_Success:
3581    case OR_Deleted:
3582      // We found a constructor. Return it.
3583      return cast<CXXConstructorDecl>(Best->Function);
3584
3585    case OR_No_Viable_Function:
3586    case OR_Ambiguous:
3587      // Overload resolution failed. Return nothing.
3588      return 0;
3589  }
3590
3591  // Silence GCC warning
3592  return 0;
3593}
3594
3595/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3596/// may occur as part of direct-initialization or copy-initialization.
3597///
3598/// \param ClassType the type of the object being initialized, which must have
3599/// class type.
3600///
3601/// \param ArgsPtr the arguments provided to initialize the object
3602///
3603/// \param Loc the source location where the initialization occurs
3604///
3605/// \param Range the source range that covers the entire initialization
3606///
3607/// \param InitEntity the name of the entity being initialized, if known
3608///
3609/// \param Kind the type of initialization being performed
3610///
3611/// \param ConvertedArgs a vector that will be filled in with the
3612/// appropriately-converted arguments to the constructor (if initialization
3613/// succeeded).
3614///
3615/// \returns the constructor used to initialize the object, if successful.
3616/// Otherwise, emits a diagnostic and returns NULL.
3617CXXConstructorDecl *
3618Sema::PerformInitializationByConstructor(QualType ClassType,
3619                                         MultiExprArg ArgsPtr,
3620                                         SourceLocation Loc, SourceRange Range,
3621                                         DeclarationName InitEntity,
3622                                         InitializationKind Kind,
3623                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3624
3625  // Build the overload candidate set
3626  Expr **Args = (Expr **)ArgsPtr.get();
3627  unsigned NumArgs = ArgsPtr.size();
3628  OverloadCandidateSet CandidateSet;
3629  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3630                                         CandidateSet);
3631
3632  OverloadCandidateSet::iterator Best;
3633  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3634  case OR_Success:
3635    // We found a constructor. Break out so that we can convert the arguments
3636    // appropriately.
3637    break;
3638
3639  case OR_No_Viable_Function:
3640    if (InitEntity)
3641      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3642        << InitEntity << Range;
3643    else
3644      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3645        << ClassType << Range;
3646    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3647    return 0;
3648
3649  case OR_Ambiguous:
3650    if (InitEntity)
3651      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3652    else
3653      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3654    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3655    return 0;
3656
3657  case OR_Deleted:
3658    if (InitEntity)
3659      Diag(Loc, diag::err_ovl_deleted_init)
3660        << Best->Function->isDeleted()
3661        << InitEntity << Range;
3662    else {
3663      const CXXRecordDecl *RD =
3664          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
3665      Diag(Loc, diag::err_ovl_deleted_init)
3666        << Best->Function->isDeleted()
3667        << RD->getDeclName() << Range;
3668    }
3669    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3670    return 0;
3671  }
3672
3673  // Convert the arguments, fill in default arguments, etc.
3674  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3675  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3676    return 0;
3677
3678  return Constructor;
3679}
3680
3681/// \brief Given a constructor and the set of arguments provided for the
3682/// constructor, convert the arguments and add any required default arguments
3683/// to form a proper call to this constructor.
3684///
3685/// \returns true if an error occurred, false otherwise.
3686bool
3687Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3688                              MultiExprArg ArgsPtr,
3689                              SourceLocation Loc,
3690                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3691  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3692  unsigned NumArgs = ArgsPtr.size();
3693  Expr **Args = (Expr **)ArgsPtr.get();
3694
3695  const FunctionProtoType *Proto
3696    = Constructor->getType()->getAs<FunctionProtoType>();
3697  assert(Proto && "Constructor without a prototype?");
3698  unsigned NumArgsInProto = Proto->getNumArgs();
3699
3700  // If too few arguments are available, we'll fill in the rest with defaults.
3701  if (NumArgs < NumArgsInProto)
3702    ConvertedArgs.reserve(NumArgsInProto);
3703  else
3704    ConvertedArgs.reserve(NumArgs);
3705
3706  VariadicCallType CallType =
3707    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3708  llvm::SmallVector<Expr *, 8> AllArgs;
3709  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
3710                                        Proto, 0, Args, NumArgs, AllArgs,
3711                                        CallType);
3712  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
3713    ConvertedArgs.push_back(AllArgs[i]);
3714  return Invalid;
3715}
3716
3717/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3718/// determine whether they are reference-related,
3719/// reference-compatible, reference-compatible with added
3720/// qualification, or incompatible, for use in C++ initialization by
3721/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3722/// type, and the first type (T1) is the pointee type of the reference
3723/// type being initialized.
3724Sema::ReferenceCompareResult
3725Sema::CompareReferenceRelationship(SourceLocation Loc,
3726                                   QualType OrigT1, QualType OrigT2,
3727                                   bool& DerivedToBase) {
3728  assert(!OrigT1->isReferenceType() &&
3729    "T1 must be the pointee type of the reference type");
3730  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3731
3732  QualType T1 = Context.getCanonicalType(OrigT1);
3733  QualType T2 = Context.getCanonicalType(OrigT2);
3734  QualType UnqualT1 = T1.getLocalUnqualifiedType();
3735  QualType UnqualT2 = T2.getLocalUnqualifiedType();
3736
3737  // C++ [dcl.init.ref]p4:
3738  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3739  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3740  //   T1 is a base class of T2.
3741  if (UnqualT1 == UnqualT2)
3742    DerivedToBase = false;
3743  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3744           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3745           IsDerivedFrom(UnqualT2, UnqualT1))
3746    DerivedToBase = true;
3747  else
3748    return Ref_Incompatible;
3749
3750  // At this point, we know that T1 and T2 are reference-related (at
3751  // least).
3752
3753  // C++ [dcl.init.ref]p4:
3754  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3755  //   reference-related to T2 and cv1 is the same cv-qualification
3756  //   as, or greater cv-qualification than, cv2. For purposes of
3757  //   overload resolution, cases for which cv1 is greater
3758  //   cv-qualification than cv2 are identified as
3759  //   reference-compatible with added qualification (see 13.3.3.2).
3760  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3761    return Ref_Compatible;
3762  else if (T1.isMoreQualifiedThan(T2))
3763    return Ref_Compatible_With_Added_Qualification;
3764  else
3765    return Ref_Related;
3766}
3767
3768/// CheckReferenceInit - Check the initialization of a reference
3769/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3770/// the initializer (either a simple initializer or an initializer
3771/// list), and DeclType is the type of the declaration. When ICS is
3772/// non-null, this routine will compute the implicit conversion
3773/// sequence according to C++ [over.ics.ref] and will not produce any
3774/// diagnostics; when ICS is null, it will emit diagnostics when any
3775/// errors are found. Either way, a return value of true indicates
3776/// that there was a failure, a return value of false indicates that
3777/// the reference initialization succeeded.
3778///
3779/// When @p SuppressUserConversions, user-defined conversions are
3780/// suppressed.
3781/// When @p AllowExplicit, we also permit explicit user-defined
3782/// conversion functions.
3783/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3784/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
3785/// This is used when this is called from a C-style cast.
3786bool
3787Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3788                         SourceLocation DeclLoc,
3789                         bool SuppressUserConversions,
3790                         bool AllowExplicit, bool ForceRValue,
3791                         ImplicitConversionSequence *ICS,
3792                         bool IgnoreBaseAccess) {
3793  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3794
3795  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3796  QualType T2 = Init->getType();
3797
3798  // If the initializer is the address of an overloaded function, try
3799  // to resolve the overloaded function. If all goes well, T2 is the
3800  // type of the resulting function.
3801  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3802    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3803                                                          ICS != 0);
3804    if (Fn) {
3805      // Since we're performing this reference-initialization for
3806      // real, update the initializer with the resulting function.
3807      if (!ICS) {
3808        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3809          return true;
3810
3811        Init = FixOverloadedFunctionReference(Init, Fn);
3812      }
3813
3814      T2 = Fn->getType();
3815    }
3816  }
3817
3818  // Compute some basic properties of the types and the initializer.
3819  bool isRValRef = DeclType->isRValueReferenceType();
3820  bool DerivedToBase = false;
3821  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3822                                                  Init->isLvalue(Context);
3823  ReferenceCompareResult RefRelationship
3824    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3825
3826  // Most paths end in a failed conversion.
3827  if (ICS)
3828    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3829
3830  // C++ [dcl.init.ref]p5:
3831  //   A reference to type "cv1 T1" is initialized by an expression
3832  //   of type "cv2 T2" as follows:
3833
3834  //     -- If the initializer expression
3835
3836  // Rvalue references cannot bind to lvalues (N2812).
3837  // There is absolutely no situation where they can. In particular, note that
3838  // this is ill-formed, even if B has a user-defined conversion to A&&:
3839  //   B b;
3840  //   A&& r = b;
3841  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3842    if (!ICS)
3843      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3844        << Init->getSourceRange();
3845    return true;
3846  }
3847
3848  bool BindsDirectly = false;
3849  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3850  //          reference-compatible with "cv2 T2," or
3851  //
3852  // Note that the bit-field check is skipped if we are just computing
3853  // the implicit conversion sequence (C++ [over.best.ics]p2).
3854  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3855      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3856    BindsDirectly = true;
3857
3858    if (ICS) {
3859      // C++ [over.ics.ref]p1:
3860      //   When a parameter of reference type binds directly (8.5.3)
3861      //   to an argument expression, the implicit conversion sequence
3862      //   is the identity conversion, unless the argument expression
3863      //   has a type that is a derived class of the parameter type,
3864      //   in which case the implicit conversion sequence is a
3865      //   derived-to-base Conversion (13.3.3.1).
3866      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3867      ICS->Standard.First = ICK_Identity;
3868      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3869      ICS->Standard.Third = ICK_Identity;
3870      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3871      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3872      ICS->Standard.ReferenceBinding = true;
3873      ICS->Standard.DirectBinding = true;
3874      ICS->Standard.RRefBinding = false;
3875      ICS->Standard.CopyConstructor = 0;
3876
3877      // Nothing more to do: the inaccessibility/ambiguity check for
3878      // derived-to-base conversions is suppressed when we're
3879      // computing the implicit conversion sequence (C++
3880      // [over.best.ics]p2).
3881      return false;
3882    } else {
3883      // Perform the conversion.
3884      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3885      if (DerivedToBase)
3886        CK = CastExpr::CK_DerivedToBase;
3887      else if(CheckExceptionSpecCompatibility(Init, T1))
3888        return true;
3889      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3890    }
3891  }
3892
3893  //       -- has a class type (i.e., T2 is a class type) and can be
3894  //          implicitly converted to an lvalue of type "cv3 T3,"
3895  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3896  //          92) (this conversion is selected by enumerating the
3897  //          applicable conversion functions (13.3.1.6) and choosing
3898  //          the best one through overload resolution (13.3)),
3899  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3900      !RequireCompleteType(DeclLoc, T2, 0)) {
3901    CXXRecordDecl *T2RecordDecl
3902      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3903
3904    OverloadCandidateSet CandidateSet;
3905    const UnresolvedSet *Conversions
3906      = T2RecordDecl->getVisibleConversionFunctions();
3907    for (UnresolvedSet::iterator I = Conversions->begin(),
3908           E = Conversions->end(); I != E; ++I) {
3909      NamedDecl *D = *I;
3910      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3911      if (isa<UsingShadowDecl>(D))
3912        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3913
3914      FunctionTemplateDecl *ConvTemplate
3915        = dyn_cast<FunctionTemplateDecl>(D);
3916      CXXConversionDecl *Conv;
3917      if (ConvTemplate)
3918        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3919      else
3920        Conv = cast<CXXConversionDecl>(D);
3921
3922      // If the conversion function doesn't return a reference type,
3923      // it can't be considered for this conversion.
3924      if (Conv->getConversionType()->isLValueReferenceType() &&
3925          (AllowExplicit || !Conv->isExplicit())) {
3926        if (ConvTemplate)
3927          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
3928                                         Init, DeclType, CandidateSet);
3929        else
3930          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
3931      }
3932    }
3933
3934    OverloadCandidateSet::iterator Best;
3935    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3936    case OR_Success:
3937      // This is a direct binding.
3938      BindsDirectly = true;
3939
3940      if (ICS) {
3941        // C++ [over.ics.ref]p1:
3942        //
3943        //   [...] If the parameter binds directly to the result of
3944        //   applying a conversion function to the argument
3945        //   expression, the implicit conversion sequence is a
3946        //   user-defined conversion sequence (13.3.3.1.2), with the
3947        //   second standard conversion sequence either an identity
3948        //   conversion or, if the conversion function returns an
3949        //   entity of a type that is a derived class of the parameter
3950        //   type, a derived-to-base Conversion.
3951        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3952        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3953        ICS->UserDefined.After = Best->FinalConversion;
3954        ICS->UserDefined.ConversionFunction = Best->Function;
3955        ICS->UserDefined.EllipsisConversion = false;
3956        assert(ICS->UserDefined.After.ReferenceBinding &&
3957               ICS->UserDefined.After.DirectBinding &&
3958               "Expected a direct reference binding!");
3959        return false;
3960      } else {
3961        OwningExprResult InitConversion =
3962          BuildCXXCastArgument(DeclLoc, QualType(),
3963                               CastExpr::CK_UserDefinedConversion,
3964                               cast<CXXMethodDecl>(Best->Function),
3965                               Owned(Init));
3966        Init = InitConversion.takeAs<Expr>();
3967
3968        if (CheckExceptionSpecCompatibility(Init, T1))
3969          return true;
3970        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3971                          /*isLvalue=*/true);
3972      }
3973      break;
3974
3975    case OR_Ambiguous:
3976      if (ICS) {
3977        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3978             Cand != CandidateSet.end(); ++Cand)
3979          if (Cand->Viable)
3980            ICS->ConversionFunctionSet.push_back(Cand->Function);
3981        break;
3982      }
3983      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3984            << Init->getSourceRange();
3985      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3986      return true;
3987
3988    case OR_No_Viable_Function:
3989    case OR_Deleted:
3990      // There was no suitable conversion, or we found a deleted
3991      // conversion; continue with other checks.
3992      break;
3993    }
3994  }
3995
3996  if (BindsDirectly) {
3997    // C++ [dcl.init.ref]p4:
3998    //   [...] In all cases where the reference-related or
3999    //   reference-compatible relationship of two types is used to
4000    //   establish the validity of a reference binding, and T1 is a
4001    //   base class of T2, a program that necessitates such a binding
4002    //   is ill-formed if T1 is an inaccessible (clause 11) or
4003    //   ambiguous (10.2) base class of T2.
4004    //
4005    // Note that we only check this condition when we're allowed to
4006    // complain about errors, because we should not be checking for
4007    // ambiguity (or inaccessibility) unless the reference binding
4008    // actually happens.
4009    if (DerivedToBase)
4010      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4011                                          Init->getSourceRange(),
4012                                          IgnoreBaseAccess);
4013    else
4014      return false;
4015  }
4016
4017  //     -- Otherwise, the reference shall be to a non-volatile const
4018  //        type (i.e., cv1 shall be const), or the reference shall be an
4019  //        rvalue reference and the initializer expression shall be an rvalue.
4020  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4021    if (!ICS)
4022      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4023        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4024        << T2 << Init->getSourceRange();
4025    return true;
4026  }
4027
4028  //       -- If the initializer expression is an rvalue, with T2 a
4029  //          class type, and "cv1 T1" is reference-compatible with
4030  //          "cv2 T2," the reference is bound in one of the
4031  //          following ways (the choice is implementation-defined):
4032  //
4033  //          -- The reference is bound to the object represented by
4034  //             the rvalue (see 3.10) or to a sub-object within that
4035  //             object.
4036  //
4037  //          -- A temporary of type "cv1 T2" [sic] is created, and
4038  //             a constructor is called to copy the entire rvalue
4039  //             object into the temporary. The reference is bound to
4040  //             the temporary or to a sub-object within the
4041  //             temporary.
4042  //
4043  //          The constructor that would be used to make the copy
4044  //          shall be callable whether or not the copy is actually
4045  //          done.
4046  //
4047  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4048  // freedom, so we will always take the first option and never build
4049  // a temporary in this case. FIXME: We will, however, have to check
4050  // for the presence of a copy constructor in C++98/03 mode.
4051  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4052      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4053    if (ICS) {
4054      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4055      ICS->Standard.First = ICK_Identity;
4056      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4057      ICS->Standard.Third = ICK_Identity;
4058      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4059      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4060      ICS->Standard.ReferenceBinding = true;
4061      ICS->Standard.DirectBinding = false;
4062      ICS->Standard.RRefBinding = isRValRef;
4063      ICS->Standard.CopyConstructor = 0;
4064    } else {
4065      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4066      if (DerivedToBase)
4067        CK = CastExpr::CK_DerivedToBase;
4068      else if(CheckExceptionSpecCompatibility(Init, T1))
4069        return true;
4070      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4071    }
4072    return false;
4073  }
4074
4075  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4076  //          initialized from the initializer expression using the
4077  //          rules for a non-reference copy initialization (8.5). The
4078  //          reference is then bound to the temporary. If T1 is
4079  //          reference-related to T2, cv1 must be the same
4080  //          cv-qualification as, or greater cv-qualification than,
4081  //          cv2; otherwise, the program is ill-formed.
4082  if (RefRelationship == Ref_Related) {
4083    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4084    // we would be reference-compatible or reference-compatible with
4085    // added qualification. But that wasn't the case, so the reference
4086    // initialization fails.
4087    if (!ICS)
4088      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4089        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4090        << T2 << Init->getSourceRange();
4091    return true;
4092  }
4093
4094  // If at least one of the types is a class type, the types are not
4095  // related, and we aren't allowed any user conversions, the
4096  // reference binding fails. This case is important for breaking
4097  // recursion, since TryImplicitConversion below will attempt to
4098  // create a temporary through the use of a copy constructor.
4099  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4100      (T1->isRecordType() || T2->isRecordType())) {
4101    if (!ICS)
4102      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4103        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
4104    return true;
4105  }
4106
4107  // Actually try to convert the initializer to T1.
4108  if (ICS) {
4109    // C++ [over.ics.ref]p2:
4110    //
4111    //   When a parameter of reference type is not bound directly to
4112    //   an argument expression, the conversion sequence is the one
4113    //   required to convert the argument expression to the
4114    //   underlying type of the reference according to
4115    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4116    //   to copy-initializing a temporary of the underlying type with
4117    //   the argument expression. Any difference in top-level
4118    //   cv-qualification is subsumed by the initialization itself
4119    //   and does not constitute a conversion.
4120    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4121                                 /*AllowExplicit=*/false,
4122                                 /*ForceRValue=*/false,
4123                                 /*InOverloadResolution=*/false);
4124
4125    // Of course, that's still a reference binding.
4126    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4127      ICS->Standard.ReferenceBinding = true;
4128      ICS->Standard.RRefBinding = isRValRef;
4129    } else if (ICS->ConversionKind ==
4130              ImplicitConversionSequence::UserDefinedConversion) {
4131      ICS->UserDefined.After.ReferenceBinding = true;
4132      ICS->UserDefined.After.RRefBinding = isRValRef;
4133    }
4134    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4135  } else {
4136    ImplicitConversionSequence Conversions;
4137    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
4138                                                   false, false,
4139                                                   Conversions);
4140    if (badConversion) {
4141      if ((Conversions.ConversionKind  ==
4142            ImplicitConversionSequence::BadConversion)
4143          && !Conversions.ConversionFunctionSet.empty()) {
4144        Diag(DeclLoc,
4145             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4146        for (int j = Conversions.ConversionFunctionSet.size()-1;
4147             j >= 0; j--) {
4148          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4149          Diag(Func->getLocation(), diag::err_ovl_candidate);
4150        }
4151      }
4152      else {
4153        if (isRValRef)
4154          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4155            << Init->getSourceRange();
4156        else
4157          Diag(DeclLoc, diag::err_invalid_initialization)
4158            << DeclType << Init->getType() << Init->getSourceRange();
4159      }
4160    }
4161    return badConversion;
4162  }
4163}
4164
4165/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4166/// of this overloaded operator is well-formed. If so, returns false;
4167/// otherwise, emits appropriate diagnostics and returns true.
4168bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4169  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4170         "Expected an overloaded operator declaration");
4171
4172  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4173
4174  // C++ [over.oper]p5:
4175  //   The allocation and deallocation functions, operator new,
4176  //   operator new[], operator delete and operator delete[], are
4177  //   described completely in 3.7.3. The attributes and restrictions
4178  //   found in the rest of this subclause do not apply to them unless
4179  //   explicitly stated in 3.7.3.
4180  // FIXME: Write a separate routine for checking this. For now, just allow it.
4181  if (Op == OO_Delete || Op == OO_Array_Delete)
4182    return false;
4183
4184  if (Op == OO_New || Op == OO_Array_New) {
4185    bool ret = false;
4186    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4187      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4188      QualType T = Context.getCanonicalType((*Param)->getType());
4189      if (!T->isDependentType() && SizeTy != T) {
4190        Diag(FnDecl->getLocation(),
4191             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4192              << SizeTy;
4193        ret = true;
4194      }
4195    }
4196    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4197    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4198      return Diag(FnDecl->getLocation(),
4199                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4200                  << static_cast<QualType>(Context.VoidPtrTy);
4201    return ret;
4202  }
4203
4204  // C++ [over.oper]p6:
4205  //   An operator function shall either be a non-static member
4206  //   function or be a non-member function and have at least one
4207  //   parameter whose type is a class, a reference to a class, an
4208  //   enumeration, or a reference to an enumeration.
4209  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4210    if (MethodDecl->isStatic())
4211      return Diag(FnDecl->getLocation(),
4212                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4213  } else {
4214    bool ClassOrEnumParam = false;
4215    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4216                                   ParamEnd = FnDecl->param_end();
4217         Param != ParamEnd; ++Param) {
4218      QualType ParamType = (*Param)->getType().getNonReferenceType();
4219      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4220          ParamType->isEnumeralType()) {
4221        ClassOrEnumParam = true;
4222        break;
4223      }
4224    }
4225
4226    if (!ClassOrEnumParam)
4227      return Diag(FnDecl->getLocation(),
4228                  diag::err_operator_overload_needs_class_or_enum)
4229        << FnDecl->getDeclName();
4230  }
4231
4232  // C++ [over.oper]p8:
4233  //   An operator function cannot have default arguments (8.3.6),
4234  //   except where explicitly stated below.
4235  //
4236  // Only the function-call operator allows default arguments
4237  // (C++ [over.call]p1).
4238  if (Op != OO_Call) {
4239    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4240         Param != FnDecl->param_end(); ++Param) {
4241      if ((*Param)->hasUnparsedDefaultArg())
4242        return Diag((*Param)->getLocation(),
4243                    diag::err_operator_overload_default_arg)
4244          << FnDecl->getDeclName();
4245      else if (Expr *DefArg = (*Param)->getDefaultArg())
4246        return Diag((*Param)->getLocation(),
4247                    diag::err_operator_overload_default_arg)
4248          << FnDecl->getDeclName() << DefArg->getSourceRange();
4249    }
4250  }
4251
4252  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4253    { false, false, false }
4254#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4255    , { Unary, Binary, MemberOnly }
4256#include "clang/Basic/OperatorKinds.def"
4257  };
4258
4259  bool CanBeUnaryOperator = OperatorUses[Op][0];
4260  bool CanBeBinaryOperator = OperatorUses[Op][1];
4261  bool MustBeMemberOperator = OperatorUses[Op][2];
4262
4263  // C++ [over.oper]p8:
4264  //   [...] Operator functions cannot have more or fewer parameters
4265  //   than the number required for the corresponding operator, as
4266  //   described in the rest of this subclause.
4267  unsigned NumParams = FnDecl->getNumParams()
4268                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4269  if (Op != OO_Call &&
4270      ((NumParams == 1 && !CanBeUnaryOperator) ||
4271       (NumParams == 2 && !CanBeBinaryOperator) ||
4272       (NumParams < 1) || (NumParams > 2))) {
4273    // We have the wrong number of parameters.
4274    unsigned ErrorKind;
4275    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4276      ErrorKind = 2;  // 2 -> unary or binary.
4277    } else if (CanBeUnaryOperator) {
4278      ErrorKind = 0;  // 0 -> unary
4279    } else {
4280      assert(CanBeBinaryOperator &&
4281             "All non-call overloaded operators are unary or binary!");
4282      ErrorKind = 1;  // 1 -> binary
4283    }
4284
4285    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4286      << FnDecl->getDeclName() << NumParams << ErrorKind;
4287  }
4288
4289  // Overloaded operators other than operator() cannot be variadic.
4290  if (Op != OO_Call &&
4291      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4292    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4293      << FnDecl->getDeclName();
4294  }
4295
4296  // Some operators must be non-static member functions.
4297  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4298    return Diag(FnDecl->getLocation(),
4299                diag::err_operator_overload_must_be_member)
4300      << FnDecl->getDeclName();
4301  }
4302
4303  // C++ [over.inc]p1:
4304  //   The user-defined function called operator++ implements the
4305  //   prefix and postfix ++ operator. If this function is a member
4306  //   function with no parameters, or a non-member function with one
4307  //   parameter of class or enumeration type, it defines the prefix
4308  //   increment operator ++ for objects of that type. If the function
4309  //   is a member function with one parameter (which shall be of type
4310  //   int) or a non-member function with two parameters (the second
4311  //   of which shall be of type int), it defines the postfix
4312  //   increment operator ++ for objects of that type.
4313  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4314    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4315    bool ParamIsInt = false;
4316    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4317      ParamIsInt = BT->getKind() == BuiltinType::Int;
4318
4319    if (!ParamIsInt)
4320      return Diag(LastParam->getLocation(),
4321                  diag::err_operator_overload_post_incdec_must_be_int)
4322        << LastParam->getType() << (Op == OO_MinusMinus);
4323  }
4324
4325  // Notify the class if it got an assignment operator.
4326  if (Op == OO_Equal) {
4327    // Would have returned earlier otherwise.
4328    assert(isa<CXXMethodDecl>(FnDecl) &&
4329      "Overloaded = not member, but not filtered.");
4330    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4331    Method->getParent()->addedAssignmentOperator(Context, Method);
4332  }
4333
4334  return false;
4335}
4336
4337/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4338/// linkage specification, including the language and (if present)
4339/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4340/// the location of the language string literal, which is provided
4341/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4342/// the '{' brace. Otherwise, this linkage specification does not
4343/// have any braces.
4344Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4345                                                     SourceLocation ExternLoc,
4346                                                     SourceLocation LangLoc,
4347                                                     const char *Lang,
4348                                                     unsigned StrSize,
4349                                                     SourceLocation LBraceLoc) {
4350  LinkageSpecDecl::LanguageIDs Language;
4351  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4352    Language = LinkageSpecDecl::lang_c;
4353  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4354    Language = LinkageSpecDecl::lang_cxx;
4355  else {
4356    Diag(LangLoc, diag::err_bad_language);
4357    return DeclPtrTy();
4358  }
4359
4360  // FIXME: Add all the various semantics of linkage specifications
4361
4362  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4363                                               LangLoc, Language,
4364                                               LBraceLoc.isValid());
4365  CurContext->addDecl(D);
4366  PushDeclContext(S, D);
4367  return DeclPtrTy::make(D);
4368}
4369
4370/// ActOnFinishLinkageSpecification - Completely the definition of
4371/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4372/// valid, it's the position of the closing '}' brace in a linkage
4373/// specification that uses braces.
4374Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4375                                                      DeclPtrTy LinkageSpec,
4376                                                      SourceLocation RBraceLoc) {
4377  if (LinkageSpec)
4378    PopDeclContext();
4379  return LinkageSpec;
4380}
4381
4382/// \brief Perform semantic analysis for the variable declaration that
4383/// occurs within a C++ catch clause, returning the newly-created
4384/// variable.
4385VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4386                                         DeclaratorInfo *DInfo,
4387                                         IdentifierInfo *Name,
4388                                         SourceLocation Loc,
4389                                         SourceRange Range) {
4390  bool Invalid = false;
4391
4392  // Arrays and functions decay.
4393  if (ExDeclType->isArrayType())
4394    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4395  else if (ExDeclType->isFunctionType())
4396    ExDeclType = Context.getPointerType(ExDeclType);
4397
4398  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4399  // The exception-declaration shall not denote a pointer or reference to an
4400  // incomplete type, other than [cv] void*.
4401  // N2844 forbids rvalue references.
4402  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4403    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4404    Invalid = true;
4405  }
4406
4407  QualType BaseType = ExDeclType;
4408  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4409  unsigned DK = diag::err_catch_incomplete;
4410  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4411    BaseType = Ptr->getPointeeType();
4412    Mode = 1;
4413    DK = diag::err_catch_incomplete_ptr;
4414  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4415    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4416    BaseType = Ref->getPointeeType();
4417    Mode = 2;
4418    DK = diag::err_catch_incomplete_ref;
4419  }
4420  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4421      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4422    Invalid = true;
4423
4424  if (!Invalid && !ExDeclType->isDependentType() &&
4425      RequireNonAbstractType(Loc, ExDeclType,
4426                             diag::err_abstract_type_in_decl,
4427                             AbstractVariableType))
4428    Invalid = true;
4429
4430  // FIXME: Need to test for ability to copy-construct and destroy the
4431  // exception variable.
4432
4433  // FIXME: Need to check for abstract classes.
4434
4435  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4436                                    Name, ExDeclType, DInfo, VarDecl::None);
4437
4438  if (Invalid)
4439    ExDecl->setInvalidDecl();
4440
4441  return ExDecl;
4442}
4443
4444/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4445/// handler.
4446Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4447  DeclaratorInfo *DInfo = 0;
4448  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4449
4450  bool Invalid = D.isInvalidType();
4451  IdentifierInfo *II = D.getIdentifier();
4452  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4453    // The scope should be freshly made just for us. There is just no way
4454    // it contains any previous declaration.
4455    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4456    if (PrevDecl->isTemplateParameter()) {
4457      // Maybe we will complain about the shadowed template parameter.
4458      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4459    }
4460  }
4461
4462  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4463    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4464      << D.getCXXScopeSpec().getRange();
4465    Invalid = true;
4466  }
4467
4468  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4469                                              D.getIdentifier(),
4470                                              D.getIdentifierLoc(),
4471                                            D.getDeclSpec().getSourceRange());
4472
4473  if (Invalid)
4474    ExDecl->setInvalidDecl();
4475
4476  // Add the exception declaration into this scope.
4477  if (II)
4478    PushOnScopeChains(ExDecl, S);
4479  else
4480    CurContext->addDecl(ExDecl);
4481
4482  ProcessDeclAttributes(S, ExDecl, D);
4483  return DeclPtrTy::make(ExDecl);
4484}
4485
4486Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4487                                                   ExprArg assertexpr,
4488                                                   ExprArg assertmessageexpr) {
4489  Expr *AssertExpr = (Expr *)assertexpr.get();
4490  StringLiteral *AssertMessage =
4491    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4492
4493  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4494    llvm::APSInt Value(32);
4495    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4496      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4497        AssertExpr->getSourceRange();
4498      return DeclPtrTy();
4499    }
4500
4501    if (Value == 0) {
4502      std::string str(AssertMessage->getStrData(),
4503                      AssertMessage->getByteLength());
4504      Diag(AssertLoc, diag::err_static_assert_failed)
4505        << str << AssertExpr->getSourceRange();
4506    }
4507  }
4508
4509  assertexpr.release();
4510  assertmessageexpr.release();
4511  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4512                                        AssertExpr, AssertMessage);
4513
4514  CurContext->addDecl(Decl);
4515  return DeclPtrTy::make(Decl);
4516}
4517
4518/// Handle a friend type declaration.  This works in tandem with
4519/// ActOnTag.
4520///
4521/// Notes on friend class templates:
4522///
4523/// We generally treat friend class declarations as if they were
4524/// declaring a class.  So, for example, the elaborated type specifier
4525/// in a friend declaration is required to obey the restrictions of a
4526/// class-head (i.e. no typedefs in the scope chain), template
4527/// parameters are required to match up with simple template-ids, &c.
4528/// However, unlike when declaring a template specialization, it's
4529/// okay to refer to a template specialization without an empty
4530/// template parameter declaration, e.g.
4531///   friend class A<T>::B<unsigned>;
4532/// We permit this as a special case; if there are any template
4533/// parameters present at all, require proper matching, i.e.
4534///   template <> template <class T> friend class A<int>::B;
4535Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4536                                          MultiTemplateParamsArg TempParams) {
4537  SourceLocation Loc = DS.getSourceRange().getBegin();
4538
4539  assert(DS.isFriendSpecified());
4540  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4541
4542  // Try to convert the decl specifier to a type.  This works for
4543  // friend templates because ActOnTag never produces a ClassTemplateDecl
4544  // for a TUK_Friend.
4545  Declarator TheDeclarator(DS, Declarator::MemberContext);
4546  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4547  if (TheDeclarator.isInvalidType())
4548    return DeclPtrTy();
4549
4550  // This is definitely an error in C++98.  It's probably meant to
4551  // be forbidden in C++0x, too, but the specification is just
4552  // poorly written.
4553  //
4554  // The problem is with declarations like the following:
4555  //   template <T> friend A<T>::foo;
4556  // where deciding whether a class C is a friend or not now hinges
4557  // on whether there exists an instantiation of A that causes
4558  // 'foo' to equal C.  There are restrictions on class-heads
4559  // (which we declare (by fiat) elaborated friend declarations to
4560  // be) that makes this tractable.
4561  //
4562  // FIXME: handle "template <> friend class A<T>;", which
4563  // is possibly well-formed?  Who even knows?
4564  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4565    Diag(Loc, diag::err_tagless_friend_type_template)
4566      << DS.getSourceRange();
4567    return DeclPtrTy();
4568  }
4569
4570  // C++ [class.friend]p2:
4571  //   An elaborated-type-specifier shall be used in a friend declaration
4572  //   for a class.*
4573  //   * The class-key of the elaborated-type-specifier is required.
4574  // This is one of the rare places in Clang where it's legitimate to
4575  // ask about the "spelling" of the type.
4576  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4577    // If we evaluated the type to a record type, suggest putting
4578    // a tag in front.
4579    if (const RecordType *RT = T->getAs<RecordType>()) {
4580      RecordDecl *RD = RT->getDecl();
4581
4582      std::string InsertionText = std::string(" ") + RD->getKindName();
4583
4584      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4585        << (unsigned) RD->getTagKind()
4586        << T
4587        << SourceRange(DS.getFriendSpecLoc())
4588        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4589                                                 InsertionText);
4590      return DeclPtrTy();
4591    }else {
4592      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4593          << DS.getSourceRange();
4594      return DeclPtrTy();
4595    }
4596  }
4597
4598  // Enum types cannot be friends.
4599  if (T->getAs<EnumType>()) {
4600    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4601      << SourceRange(DS.getFriendSpecLoc());
4602    return DeclPtrTy();
4603  }
4604
4605  // C++98 [class.friend]p1: A friend of a class is a function
4606  //   or class that is not a member of the class . . .
4607  // But that's a silly restriction which nobody implements for
4608  // inner classes, and C++0x removes it anyway, so we only report
4609  // this (as a warning) if we're being pedantic.
4610  if (!getLangOptions().CPlusPlus0x)
4611    if (const RecordType *RT = T->getAs<RecordType>())
4612      if (RT->getDecl()->getDeclContext() == CurContext)
4613        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4614
4615  Decl *D;
4616  if (TempParams.size())
4617    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4618                                   TempParams.size(),
4619                                 (TemplateParameterList**) TempParams.release(),
4620                                   T.getTypePtr(),
4621                                   DS.getFriendSpecLoc());
4622  else
4623    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4624                           DS.getFriendSpecLoc());
4625  D->setAccess(AS_public);
4626  CurContext->addDecl(D);
4627
4628  return DeclPtrTy::make(D);
4629}
4630
4631Sema::DeclPtrTy
4632Sema::ActOnFriendFunctionDecl(Scope *S,
4633                              Declarator &D,
4634                              bool IsDefinition,
4635                              MultiTemplateParamsArg TemplateParams) {
4636  const DeclSpec &DS = D.getDeclSpec();
4637
4638  assert(DS.isFriendSpecified());
4639  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4640
4641  SourceLocation Loc = D.getIdentifierLoc();
4642  DeclaratorInfo *DInfo = 0;
4643  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4644
4645  // C++ [class.friend]p1
4646  //   A friend of a class is a function or class....
4647  // Note that this sees through typedefs, which is intended.
4648  // It *doesn't* see through dependent types, which is correct
4649  // according to [temp.arg.type]p3:
4650  //   If a declaration acquires a function type through a
4651  //   type dependent on a template-parameter and this causes
4652  //   a declaration that does not use the syntactic form of a
4653  //   function declarator to have a function type, the program
4654  //   is ill-formed.
4655  if (!T->isFunctionType()) {
4656    Diag(Loc, diag::err_unexpected_friend);
4657
4658    // It might be worthwhile to try to recover by creating an
4659    // appropriate declaration.
4660    return DeclPtrTy();
4661  }
4662
4663  // C++ [namespace.memdef]p3
4664  //  - If a friend declaration in a non-local class first declares a
4665  //    class or function, the friend class or function is a member
4666  //    of the innermost enclosing namespace.
4667  //  - The name of the friend is not found by simple name lookup
4668  //    until a matching declaration is provided in that namespace
4669  //    scope (either before or after the class declaration granting
4670  //    friendship).
4671  //  - If a friend function is called, its name may be found by the
4672  //    name lookup that considers functions from namespaces and
4673  //    classes associated with the types of the function arguments.
4674  //  - When looking for a prior declaration of a class or a function
4675  //    declared as a friend, scopes outside the innermost enclosing
4676  //    namespace scope are not considered.
4677
4678  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4679  DeclarationName Name = GetNameForDeclarator(D);
4680  assert(Name);
4681
4682  // The context we found the declaration in, or in which we should
4683  // create the declaration.
4684  DeclContext *DC;
4685
4686  // FIXME: handle local classes
4687
4688  // Recover from invalid scope qualifiers as if they just weren't there.
4689  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
4690                        ForRedeclaration);
4691  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4692    // FIXME: RequireCompleteDeclContext
4693    DC = computeDeclContext(ScopeQual);
4694
4695    // FIXME: handle dependent contexts
4696    if (!DC) return DeclPtrTy();
4697
4698    LookupQualifiedName(Previous, DC);
4699
4700    // If searching in that context implicitly found a declaration in
4701    // a different context, treat it like it wasn't found at all.
4702    // TODO: better diagnostics for this case.  Suggesting the right
4703    // qualified scope would be nice...
4704    // FIXME: getRepresentativeDecl() is not right here at all
4705    if (Previous.empty() ||
4706        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
4707      D.setInvalidType();
4708      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4709      return DeclPtrTy();
4710    }
4711
4712    // C++ [class.friend]p1: A friend of a class is a function or
4713    //   class that is not a member of the class . . .
4714    if (DC->Equals(CurContext))
4715      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4716
4717  // Otherwise walk out to the nearest namespace scope looking for matches.
4718  } else {
4719    // TODO: handle local class contexts.
4720
4721    DC = CurContext;
4722    while (true) {
4723      // Skip class contexts.  If someone can cite chapter and verse
4724      // for this behavior, that would be nice --- it's what GCC and
4725      // EDG do, and it seems like a reasonable intent, but the spec
4726      // really only says that checks for unqualified existing
4727      // declarations should stop at the nearest enclosing namespace,
4728      // not that they should only consider the nearest enclosing
4729      // namespace.
4730      while (DC->isRecord())
4731        DC = DC->getParent();
4732
4733      LookupQualifiedName(Previous, DC);
4734
4735      // TODO: decide what we think about using declarations.
4736      if (!Previous.empty())
4737        break;
4738
4739      if (DC->isFileContext()) break;
4740      DC = DC->getParent();
4741    }
4742
4743    // C++ [class.friend]p1: A friend of a class is a function or
4744    //   class that is not a member of the class . . .
4745    // C++0x changes this for both friend types and functions.
4746    // Most C++ 98 compilers do seem to give an error here, so
4747    // we do, too.
4748    if (!Previous.empty() && DC->Equals(CurContext)
4749        && !getLangOptions().CPlusPlus0x)
4750      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4751  }
4752
4753  if (DC->isFileContext()) {
4754    // This implies that it has to be an operator or function.
4755    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4756        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4757        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4758      Diag(Loc, diag::err_introducing_special_friend) <<
4759        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4760         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4761      return DeclPtrTy();
4762    }
4763  }
4764
4765  bool Redeclaration = false;
4766  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, Previous,
4767                                          move(TemplateParams),
4768                                          IsDefinition,
4769                                          Redeclaration);
4770  if (!ND) return DeclPtrTy();
4771
4772  assert(ND->getDeclContext() == DC);
4773  assert(ND->getLexicalDeclContext() == CurContext);
4774
4775  // Add the function declaration to the appropriate lookup tables,
4776  // adjusting the redeclarations list as necessary.  We don't
4777  // want to do this yet if the friending class is dependent.
4778  //
4779  // Also update the scope-based lookup if the target context's
4780  // lookup context is in lexical scope.
4781  if (!CurContext->isDependentContext()) {
4782    DC = DC->getLookupContext();
4783    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4784    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4785      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4786  }
4787
4788  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4789                                       D.getIdentifierLoc(), ND,
4790                                       DS.getFriendSpecLoc());
4791  FrD->setAccess(AS_public);
4792  CurContext->addDecl(FrD);
4793
4794  return DeclPtrTy::make(ND);
4795}
4796
4797void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4798  AdjustDeclIfTemplate(dcl);
4799
4800  Decl *Dcl = dcl.getAs<Decl>();
4801  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4802  if (!Fn) {
4803    Diag(DelLoc, diag::err_deleted_non_function);
4804    return;
4805  }
4806  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4807    Diag(DelLoc, diag::err_deleted_decl_not_first);
4808    Diag(Prev->getLocation(), diag::note_previous_declaration);
4809    // If the declaration wasn't the first, we delete the function anyway for
4810    // recovery.
4811  }
4812  Fn->setDeleted();
4813}
4814
4815static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4816  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4817       ++CI) {
4818    Stmt *SubStmt = *CI;
4819    if (!SubStmt)
4820      continue;
4821    if (isa<ReturnStmt>(SubStmt))
4822      Self.Diag(SubStmt->getSourceRange().getBegin(),
4823           diag::err_return_in_constructor_handler);
4824    if (!isa<Expr>(SubStmt))
4825      SearchForReturnInStmt(Self, SubStmt);
4826  }
4827}
4828
4829void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4830  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4831    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4832    SearchForReturnInStmt(*this, Handler);
4833  }
4834}
4835
4836bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4837                                             const CXXMethodDecl *Old) {
4838  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4839  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4840
4841  QualType CNewTy = Context.getCanonicalType(NewTy);
4842  QualType COldTy = Context.getCanonicalType(OldTy);
4843
4844  if (CNewTy == COldTy &&
4845      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
4846    return false;
4847
4848  // Check if the return types are covariant
4849  QualType NewClassTy, OldClassTy;
4850
4851  /// Both types must be pointers or references to classes.
4852  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4853    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4854      NewClassTy = NewPT->getPointeeType();
4855      OldClassTy = OldPT->getPointeeType();
4856    }
4857  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4858    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4859      NewClassTy = NewRT->getPointeeType();
4860      OldClassTy = OldRT->getPointeeType();
4861    }
4862  }
4863
4864  // The return types aren't either both pointers or references to a class type.
4865  if (NewClassTy.isNull()) {
4866    Diag(New->getLocation(),
4867         diag::err_different_return_type_for_overriding_virtual_function)
4868      << New->getDeclName() << NewTy << OldTy;
4869    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4870
4871    return true;
4872  }
4873
4874  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
4875    // Check if the new class derives from the old class.
4876    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4877      Diag(New->getLocation(),
4878           diag::err_covariant_return_not_derived)
4879      << New->getDeclName() << NewTy << OldTy;
4880      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4881      return true;
4882    }
4883
4884    // Check if we the conversion from derived to base is valid.
4885    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4886                      diag::err_covariant_return_inaccessible_base,
4887                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4888                      // FIXME: Should this point to the return type?
4889                      New->getLocation(), SourceRange(), New->getDeclName())) {
4890      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4891      return true;
4892    }
4893  }
4894
4895  // The qualifiers of the return types must be the same.
4896  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
4897    Diag(New->getLocation(),
4898         diag::err_covariant_return_type_different_qualifications)
4899    << New->getDeclName() << NewTy << OldTy;
4900    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4901    return true;
4902  };
4903
4904
4905  // The new class type must have the same or less qualifiers as the old type.
4906  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4907    Diag(New->getLocation(),
4908         diag::err_covariant_return_type_class_type_more_qualified)
4909    << New->getDeclName() << NewTy << OldTy;
4910    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4911    return true;
4912  };
4913
4914  return false;
4915}
4916
4917bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
4918                                             const CXXMethodDecl *Old)
4919{
4920  if (Old->hasAttr<FinalAttr>()) {
4921    Diag(New->getLocation(), diag::err_final_function_overridden)
4922      << New->getDeclName();
4923    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4924    return true;
4925  }
4926
4927  return false;
4928}
4929
4930/// \brief Mark the given method pure.
4931///
4932/// \param Method the method to be marked pure.
4933///
4934/// \param InitRange the source range that covers the "0" initializer.
4935bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
4936  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
4937    Method->setPure();
4938
4939    // A class is abstract if at least one function is pure virtual.
4940    Method->getParent()->setAbstract(true);
4941    return false;
4942  }
4943
4944  if (!Method->isInvalidDecl())
4945    Diag(Method->getLocation(), diag::err_non_virtual_pure)
4946      << Method->getDeclName() << InitRange;
4947  return true;
4948}
4949
4950/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4951/// initializer for the declaration 'Dcl'.
4952/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4953/// static data member of class X, names should be looked up in the scope of
4954/// class X.
4955void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4956  AdjustDeclIfTemplate(Dcl);
4957
4958  Decl *D = Dcl.getAs<Decl>();
4959  // If there is no declaration, there was an error parsing it.
4960  if (D == 0)
4961    return;
4962
4963  // Check whether it is a declaration with a nested name specifier like
4964  // int foo::bar;
4965  if (!D->isOutOfLine())
4966    return;
4967
4968  // C++ [basic.lookup.unqual]p13
4969  //
4970  // A name used in the definition of a static data member of class X
4971  // (after the qualified-id of the static member) is looked up as if the name
4972  // was used in a member function of X.
4973
4974  // Change current context into the context of the initializing declaration.
4975  EnterDeclaratorContext(S, D->getDeclContext());
4976}
4977
4978/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4979/// initializer for the declaration 'Dcl'.
4980void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4981  AdjustDeclIfTemplate(Dcl);
4982
4983  Decl *D = Dcl.getAs<Decl>();
4984  // If there is no declaration, there was an error parsing it.
4985  if (D == 0)
4986    return;
4987
4988  // Check whether it is a declaration with a nested name specifier like
4989  // int foo::bar;
4990  if (!D->isOutOfLine())
4991    return;
4992
4993  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4994  ExitDeclaratorContext(S);
4995}
4996
4997/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
4998/// C++ if/switch/while/for statement.
4999/// e.g: "if (int x = f()) {...}"
5000Action::DeclResult
5001Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5002  // C++ 6.4p2:
5003  // The declarator shall not specify a function or an array.
5004  // The type-specifier-seq shall not contain typedef and shall not declare a
5005  // new class or enumeration.
5006  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5007         "Parser allowed 'typedef' as storage class of condition decl.");
5008
5009  DeclaratorInfo *DInfo = 0;
5010  TagDecl *OwnedTag = 0;
5011  QualType Ty = GetTypeForDeclarator(D, S, &DInfo, &OwnedTag);
5012
5013  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5014                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5015                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5016    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5017      << D.getSourceRange();
5018    return DeclResult();
5019  } else if (OwnedTag && OwnedTag->isDefinition()) {
5020    // The type-specifier-seq shall not declare a new class or enumeration.
5021    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5022  }
5023
5024  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5025  if (!Dcl)
5026    return DeclResult();
5027
5028  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5029  VD->setDeclaredInCondition(true);
5030  return Dcl;
5031}
5032
5033void Sema::MaybeMarkVirtualImplicitMembersReferenced(SourceLocation Loc,
5034                                                     CXXMethodDecl *MD) {
5035  // Ignore dependent types.
5036  if (MD->isDependentContext())
5037    return;
5038
5039  CXXRecordDecl *RD = MD->getParent();
5040  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5041  const CXXMethodDecl *KeyFunction = Layout.getKeyFunction();
5042
5043  if (!KeyFunction) {
5044    // This record does not have a key function, so we assume that the vtable
5045    // will be emitted when it's used by the constructor.
5046    if (!isa<CXXConstructorDecl>(MD))
5047      return;
5048  } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) {
5049    // We don't have the right key function.
5050    return;
5051  }
5052
5053  if (CXXDestructorDecl *Dtor = RD->getDestructor(Context)) {
5054    if (Dtor->isImplicit() && Dtor->isVirtual())
5055      MarkDeclarationReferenced(Loc, Dtor);
5056  }
5057
5058  // FIXME: Need to handle the virtual assignment operator here too.
5059}
5060