SemaDeclCXX.cpp revision 72564e73277e29f6db3305d1f27ba408abb7ed88
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
315/// one entry in the base class list of a class specifier, for
316/// example:
317///    class foo : public bar, virtual private baz {
318/// 'public bar' and 'virtual private baz' are each base-specifiers.
319Sema::BaseResult
320Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         TypeTy *basetype, SourceLocation BaseLoc) {
323  CXXRecordDecl *Decl = (CXXRecordDecl*)classdecl;
324  QualType BaseType = QualType::getFromOpaquePtr(basetype);
325
326  // Base specifiers must be record types.
327  if (!BaseType->isRecordType())
328    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
329
330  // C++ [class.union]p1:
331  //   A union shall not be used as a base class.
332  if (BaseType->isUnionType())
333    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
334
335  // C++ [class.union]p1:
336  //   A union shall not have base classes.
337  if (Decl->isUnion())
338    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
339              << SpecifierRange;
340
341  // C++ [class.derived]p2:
342  //   The class-name in a base-specifier shall not be an incompletely
343  //   defined class.
344  if (DiagnoseIncompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
345                             SpecifierRange))
346    return true;
347
348  // If the base class is polymorphic, the new one is, too.
349  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
350  assert(BaseDecl && "Record type has no declaration");
351  BaseDecl = BaseDecl->getDefinition(Context);
352  assert(BaseDecl && "Base type is not incomplete, but has no definition");
353  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
354    Decl->setPolymorphic(true);
355
356  // C++ [dcl.init.aggr]p1:
357  //   An aggregate is [...] a class with [...] no base classes [...].
358  Decl->setAggregate(false);
359  Decl->setPOD(false);
360
361  // Create the base specifier.
362  return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                              BaseType->isClassType(), Access, BaseType);
364}
365
366/// ActOnBaseSpecifiers - Attach the given base specifiers to the
367/// class, after checking whether there are any duplicate base
368/// classes.
369void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
370                               unsigned NumBases) {
371  if (NumBases == 0)
372    return;
373
374  // Used to keep track of which base types we have already seen, so
375  // that we can properly diagnose redundant direct base types. Note
376  // that the key is always the unqualified canonical type of the base
377  // class.
378  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
379
380  // Copy non-redundant base specifiers into permanent storage.
381  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
382  unsigned NumGoodBases = 0;
383  for (unsigned idx = 0; idx < NumBases; ++idx) {
384    QualType NewBaseType
385      = Context.getCanonicalType(BaseSpecs[idx]->getType());
386    NewBaseType = NewBaseType.getUnqualifiedType();
387
388    if (KnownBaseTypes[NewBaseType]) {
389      // C++ [class.mi]p3:
390      //   A class shall not be specified as a direct base class of a
391      //   derived class more than once.
392      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
393           diag::err_duplicate_base_class)
394        << KnownBaseTypes[NewBaseType]->getType()
395        << BaseSpecs[idx]->getSourceRange();
396
397      // Delete the duplicate base class specifier; we're going to
398      // overwrite its pointer later.
399      delete BaseSpecs[idx];
400    } else {
401      // Okay, add this new base class.
402      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
403      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
404    }
405  }
406
407  // Attach the remaining base class specifiers to the derived class.
408  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
409  Decl->setBases(BaseSpecs, NumGoodBases);
410
411  // Delete the remaining (good) base class specifiers, since their
412  // data has been copied into the CXXRecordDecl.
413  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
414    delete BaseSpecs[idx];
415}
416
417//===----------------------------------------------------------------------===//
418// C++ class member Handling
419//===----------------------------------------------------------------------===//
420
421/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
422/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
423/// bitfield width if there is one and 'InitExpr' specifies the initializer if
424/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
425/// declarators on it.
426Sema::DeclTy *
427Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
428                               ExprTy *BW, ExprTy *InitExpr,
429                               DeclTy *LastInGroup) {
430  const DeclSpec &DS = D.getDeclSpec();
431  DeclarationName Name = GetNameForDeclarator(D);
432  Expr *BitWidth = static_cast<Expr*>(BW);
433  Expr *Init = static_cast<Expr*>(InitExpr);
434  SourceLocation Loc = D.getIdentifierLoc();
435
436  bool isFunc = D.isFunctionDeclarator();
437
438  // C++ 9.2p6: A member shall not be declared to have automatic storage
439  // duration (auto, register) or with the extern storage-class-specifier.
440  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
441  // data members and cannot be applied to names declared const or static,
442  // and cannot be applied to reference members.
443  switch (DS.getStorageClassSpec()) {
444    case DeclSpec::SCS_unspecified:
445    case DeclSpec::SCS_typedef:
446    case DeclSpec::SCS_static:
447      // FALL THROUGH.
448      break;
449    case DeclSpec::SCS_mutable:
450      if (isFunc) {
451        if (DS.getStorageClassSpecLoc().isValid())
452          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
453        else
454          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
455
456        // FIXME: It would be nicer if the keyword was ignored only for this
457        // declarator. Otherwise we could get follow-up errors.
458        D.getMutableDeclSpec().ClearStorageClassSpecs();
459      } else {
460        QualType T = GetTypeForDeclarator(D, S);
461        diag::kind err = static_cast<diag::kind>(0);
462        if (T->isReferenceType())
463          err = diag::err_mutable_reference;
464        else if (T.isConstQualified())
465          err = diag::err_mutable_const;
466        if (err != 0) {
467          if (DS.getStorageClassSpecLoc().isValid())
468            Diag(DS.getStorageClassSpecLoc(), err);
469          else
470            Diag(DS.getThreadSpecLoc(), err);
471          // FIXME: It would be nicer if the keyword was ignored only for this
472          // declarator. Otherwise we could get follow-up errors.
473          D.getMutableDeclSpec().ClearStorageClassSpecs();
474        }
475      }
476      break;
477    default:
478      if (DS.getStorageClassSpecLoc().isValid())
479        Diag(DS.getStorageClassSpecLoc(),
480             diag::err_storageclass_invalid_for_member);
481      else
482        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
483      D.getMutableDeclSpec().ClearStorageClassSpecs();
484  }
485
486  if (!isFunc &&
487      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
488      D.getNumTypeObjects() == 0) {
489    // Check also for this case:
490    //
491    // typedef int f();
492    // f a;
493    //
494    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
495    isFunc = TDType->isFunctionType();
496  }
497
498  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
499                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
500                      !isFunc);
501
502  Decl *Member;
503  bool InvalidDecl = false;
504
505  if (isInstField)
506    Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
507                                           Loc, D, BitWidth));
508  else
509    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
510
511  if (!Member) return LastInGroup;
512
513  assert((Name || isInstField) && "No identifier for non-field ?");
514
515  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
516  // specific methods. Use a wrapper class that can be used with all C++ class
517  // member decls.
518  CXXClassMemberWrapper(Member).setAccess(AS);
519
520  // C++ [dcl.init.aggr]p1:
521  //   An aggregate is an array or a class (clause 9) with [...] no
522  //   private or protected non-static data members (clause 11).
523  // A POD must be an aggregate.
524  if (isInstField && (AS == AS_private || AS == AS_protected)) {
525    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
526    Record->setAggregate(false);
527    Record->setPOD(false);
528  }
529
530  if (DS.isVirtualSpecified()) {
531    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
532      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
533      InvalidDecl = true;
534    } else {
535      cast<CXXMethodDecl>(Member)->setVirtual();
536      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
537      CurClass->setAggregate(false);
538      CurClass->setPOD(false);
539      CurClass->setPolymorphic(true);
540    }
541  }
542
543  // FIXME: The above definition of virtual is not sufficient. A function is
544  // also virtual if it overrides an already virtual function. This is important
545  // to do here because it decides the validity of a pure specifier.
546
547  if (BitWidth) {
548    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
549    // constant-expression be a value equal to zero.
550    // FIXME: Check this.
551
552    if (D.isFunctionDeclarator()) {
553      // FIXME: Emit diagnostic about only constructors taking base initializers
554      // or something similar, when constructor support is in place.
555      Diag(Loc, diag::err_not_bitfield_type)
556        << Name << BitWidth->getSourceRange();
557      InvalidDecl = true;
558
559    } else if (isInstField) {
560      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
561      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
562        Diag(Loc, diag::err_not_integral_type_bitfield)
563          << Name << BitWidth->getSourceRange();
564        InvalidDecl = true;
565      }
566
567    } else if (isa<FunctionDecl>(Member)) {
568      // A function typedef ("typedef int f(); f a;").
569      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
570      Diag(Loc, diag::err_not_integral_type_bitfield)
571        << Name << BitWidth->getSourceRange();
572      InvalidDecl = true;
573
574    } else if (isa<TypedefDecl>(Member)) {
575      // "cannot declare 'A' to be a bit-field type"
576      Diag(Loc, diag::err_not_bitfield_type)
577        << Name << BitWidth->getSourceRange();
578      InvalidDecl = true;
579
580    } else {
581      assert(isa<CXXClassVarDecl>(Member) &&
582             "Didn't we cover all member kinds?");
583      // C++ 9.6p3: A bit-field shall not be a static member.
584      // "static member 'A' cannot be a bit-field"
585      Diag(Loc, diag::err_static_not_bitfield)
586        << Name << BitWidth->getSourceRange();
587      InvalidDecl = true;
588    }
589  }
590
591  if (Init) {
592    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
593    // if it declares a static member of const integral or const enumeration
594    // type.
595    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
596      // ...static member of...
597      CVD->setInit(Init);
598      // ...const integral or const enumeration type.
599      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
600          CVD->getType()->isIntegralType()) {
601        // constant-initializer
602        if (CheckForConstantInitializer(Init, CVD->getType()))
603          InvalidDecl = true;
604
605      } else {
606        // not const integral.
607        Diag(Loc, diag::err_member_initialization)
608          << Name << Init->getSourceRange();
609        InvalidDecl = true;
610      }
611
612    } else {
613      // not static member. perhaps virtual function?
614      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
615        // With declarators parsed the way they are, the parser cannot
616        // distinguish between a normal initializer and a pure-specifier.
617        // Thus this grotesque test.
618        IntegerLiteral *IL;
619        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
620            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
621          if (MD->isVirtual())
622            MD->setPure();
623          else {
624            Diag(Loc, diag::err_non_virtual_pure)
625              << Name << Init->getSourceRange();
626            InvalidDecl = true;
627          }
628        } else {
629          Diag(Loc, diag::err_member_function_initialization)
630            << Name << Init->getSourceRange();
631          InvalidDecl = true;
632        }
633      } else {
634        Diag(Loc, diag::err_member_initialization)
635          << Name << Init->getSourceRange();
636        InvalidDecl = true;
637      }
638    }
639  }
640
641  if (InvalidDecl)
642    Member->setInvalidDecl();
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return LastInGroup;
647  }
648  return Member;
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclTy *ConstructorD,
654                          Scope *S,
655                          IdentifierInfo *MemberOrBase,
656                          SourceLocation IdLoc,
657                          SourceLocation LParenLoc,
658                          ExprTy **Args, unsigned NumArgs,
659                          SourceLocation *CommaLocs,
660                          SourceLocation RParenLoc) {
661  CXXConstructorDecl *Constructor
662    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
663  if (!Constructor) {
664    // The user wrote a constructor initializer on a function that is
665    // not a C++ constructor. Ignore the error for now, because we may
666    // have more member initializers coming; we'll diagnose it just
667    // once in ActOnMemInitializers.
668    return true;
669  }
670
671  CXXRecordDecl *ClassDecl = Constructor->getParent();
672
673  // C++ [class.base.init]p2:
674  //   Names in a mem-initializer-id are looked up in the scope of the
675  //   constructor’s class and, if not found in that scope, are looked
676  //   up in the scope containing the constructor’s
677  //   definition. [Note: if the constructor’s class contains a member
678  //   with the same name as a direct or virtual base class of the
679  //   class, a mem-initializer-id naming the member or base class and
680  //   composed of a single identifier refers to the class member. A
681  //   mem-initializer-id for the hidden base class may be specified
682  //   using a qualified name. ]
683  // Look for a member, first.
684  FieldDecl *Member = 0;
685  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
686  if (Result.first != Result.second)
687    Member = dyn_cast<FieldDecl>(*Result.first);
688
689  // FIXME: Handle members of an anonymous union.
690
691  if (Member) {
692    // FIXME: Perform direct initialization of the member.
693    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
694  }
695
696  // It didn't name a member, so see if it names a class.
697  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
698  if (!BaseTy)
699    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
700      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
701
702  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
703  if (!BaseType->isRecordType())
704    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
705      << BaseType << SourceRange(IdLoc, RParenLoc);
706
707  // C++ [class.base.init]p2:
708  //   [...] Unless the mem-initializer-id names a nonstatic data
709  //   member of the constructor’s class or a direct or virtual base
710  //   of that class, the mem-initializer is ill-formed. A
711  //   mem-initializer-list can initialize a base class using any
712  //   name that denotes that base class type.
713
714  // First, check for a direct base class.
715  const CXXBaseSpecifier *DirectBaseSpec = 0;
716  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
717       Base != ClassDecl->bases_end(); ++Base) {
718    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
719        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
720      // We found a direct base of this type. That's what we're
721      // initializing.
722      DirectBaseSpec = &*Base;
723      break;
724    }
725  }
726
727  // Check for a virtual base class.
728  // FIXME: We might be able to short-circuit this if we know in
729  // advance that there are no virtual bases.
730  const CXXBaseSpecifier *VirtualBaseSpec = 0;
731  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
732    // We haven't found a base yet; search the class hierarchy for a
733    // virtual base class.
734    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
735                    /*DetectVirtual=*/false);
736    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
737      for (BasePaths::paths_iterator Path = Paths.begin();
738           Path != Paths.end(); ++Path) {
739        if (Path->back().Base->isVirtual()) {
740          VirtualBaseSpec = Path->back().Base;
741          break;
742        }
743      }
744    }
745  }
746
747  // C++ [base.class.init]p2:
748  //   If a mem-initializer-id is ambiguous because it designates both
749  //   a direct non-virtual base class and an inherited virtual base
750  //   class, the mem-initializer is ill-formed.
751  if (DirectBaseSpec && VirtualBaseSpec)
752    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
753      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
754
755  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
756}
757
758
759void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
760                                             DeclTy *TagDecl,
761                                             SourceLocation LBrac,
762                                             SourceLocation RBrac) {
763  AdjustDeclIfTemplate(TagDecl);
764  ActOnFields(S, RLoc, TagDecl,
765              (DeclTy**)FieldCollector->getCurFields(),
766              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
767  AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
768}
769
770/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
771/// special functions, such as the default constructor, copy
772/// constructor, or destructor, to the given C++ class (C++
773/// [special]p1).  This routine can only be executed just before the
774/// definition of the class is complete.
775void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
776  QualType ClassType = Context.getTypeDeclType(ClassDecl);
777  ClassType = Context.getCanonicalType(ClassType);
778
779  if (!ClassDecl->hasUserDeclaredConstructor()) {
780    // C++ [class.ctor]p5:
781    //   A default constructor for a class X is a constructor of class X
782    //   that can be called without an argument. If there is no
783    //   user-declared constructor for class X, a default constructor is
784    //   implicitly declared. An implicitly-declared default constructor
785    //   is an inline public member of its class.
786    DeclarationName Name
787      = Context.DeclarationNames.getCXXConstructorName(ClassType);
788    CXXConstructorDecl *DefaultCon =
789      CXXConstructorDecl::Create(Context, ClassDecl,
790                                 ClassDecl->getLocation(), Name,
791                                 Context.getFunctionType(Context.VoidTy,
792                                                         0, 0, false, 0),
793                                 /*isExplicit=*/false,
794                                 /*isInline=*/true,
795                                 /*isImplicitlyDeclared=*/true);
796    DefaultCon->setAccess(AS_public);
797    DefaultCon->setImplicit();
798    ClassDecl->addDecl(DefaultCon);
799
800    // Notify the class that we've added a constructor.
801    ClassDecl->addedConstructor(Context, DefaultCon);
802  }
803
804  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
805    // C++ [class.copy]p4:
806    //   If the class definition does not explicitly declare a copy
807    //   constructor, one is declared implicitly.
808
809    // C++ [class.copy]p5:
810    //   The implicitly-declared copy constructor for a class X will
811    //   have the form
812    //
813    //       X::X(const X&)
814    //
815    //   if
816    bool HasConstCopyConstructor = true;
817
818    //     -- each direct or virtual base class B of X has a copy
819    //        constructor whose first parameter is of type const B& or
820    //        const volatile B&, and
821    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
822         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
823      const CXXRecordDecl *BaseClassDecl
824        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
825      HasConstCopyConstructor
826        = BaseClassDecl->hasConstCopyConstructor(Context);
827    }
828
829    //     -- for all the nonstatic data members of X that are of a
830    //        class type M (or array thereof), each such class type
831    //        has a copy constructor whose first parameter is of type
832    //        const M& or const volatile M&.
833    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
834         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
835      QualType FieldType = (*Field)->getType();
836      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
837        FieldType = Array->getElementType();
838      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
839        const CXXRecordDecl *FieldClassDecl
840          = cast<CXXRecordDecl>(FieldClassType->getDecl());
841        HasConstCopyConstructor
842          = FieldClassDecl->hasConstCopyConstructor(Context);
843      }
844    }
845
846    //   Otherwise, the implicitly declared copy constructor will have
847    //   the form
848    //
849    //       X::X(X&)
850    QualType ArgType = ClassType;
851    if (HasConstCopyConstructor)
852      ArgType = ArgType.withConst();
853    ArgType = Context.getReferenceType(ArgType);
854
855    //   An implicitly-declared copy constructor is an inline public
856    //   member of its class.
857    DeclarationName Name
858      = Context.DeclarationNames.getCXXConstructorName(ClassType);
859    CXXConstructorDecl *CopyConstructor
860      = CXXConstructorDecl::Create(Context, ClassDecl,
861                                   ClassDecl->getLocation(), Name,
862                                   Context.getFunctionType(Context.VoidTy,
863                                                           &ArgType, 1,
864                                                           false, 0),
865                                   /*isExplicit=*/false,
866                                   /*isInline=*/true,
867                                   /*isImplicitlyDeclared=*/true);
868    CopyConstructor->setAccess(AS_public);
869    CopyConstructor->setImplicit();
870
871    // Add the parameter to the constructor.
872    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
873                                                 ClassDecl->getLocation(),
874                                                 /*IdentifierInfo=*/0,
875                                                 ArgType, VarDecl::None, 0);
876    CopyConstructor->setParams(Context, &FromParam, 1);
877
878    ClassDecl->addedConstructor(Context, CopyConstructor);
879    ClassDecl->addDecl(CopyConstructor);
880  }
881
882  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
883    // Note: The following rules are largely analoguous to the copy
884    // constructor rules. Note that virtual bases are not taken into account
885    // for determining the argument type of the operator. Note also that
886    // operators taking an object instead of a reference are allowed.
887    //
888    // C++ [class.copy]p10:
889    //   If the class definition does not explicitly declare a copy
890    //   assignment operator, one is declared implicitly.
891    //   The implicitly-defined copy assignment operator for a class X
892    //   will have the form
893    //
894    //       X& X::operator=(const X&)
895    //
896    //   if
897    bool HasConstCopyAssignment = true;
898
899    //       -- each direct base class B of X has a copy assignment operator
900    //          whose parameter is of type const B&, const volatile B& or B,
901    //          and
902    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
903         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
904      const CXXRecordDecl *BaseClassDecl
905        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
906      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
907    }
908
909    //       -- for all the nonstatic data members of X that are of a class
910    //          type M (or array thereof), each such class type has a copy
911    //          assignment operator whose parameter is of type const M&,
912    //          const volatile M& or M.
913    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
914         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
915      QualType FieldType = (*Field)->getType();
916      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
917        FieldType = Array->getElementType();
918      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
919        const CXXRecordDecl *FieldClassDecl
920          = cast<CXXRecordDecl>(FieldClassType->getDecl());
921        HasConstCopyAssignment
922          = FieldClassDecl->hasConstCopyAssignment(Context);
923      }
924    }
925
926    //   Otherwise, the implicitly declared copy assignment operator will
927    //   have the form
928    //
929    //       X& X::operator=(X&)
930    QualType ArgType = ClassType;
931    QualType RetType = Context.getReferenceType(ArgType);
932    if (HasConstCopyAssignment)
933      ArgType = ArgType.withConst();
934    ArgType = Context.getReferenceType(ArgType);
935
936    //   An implicitly-declared copy assignment operator is an inline public
937    //   member of its class.
938    DeclarationName Name =
939      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
940    CXXMethodDecl *CopyAssignment =
941      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
942                            Context.getFunctionType(RetType, &ArgType, 1,
943                                                    false, 0),
944                            /*isStatic=*/false, /*isInline=*/true);
945    CopyAssignment->setAccess(AS_public);
946    CopyAssignment->setImplicit();
947
948    // Add the parameter to the operator.
949    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
950                                                 ClassDecl->getLocation(),
951                                                 /*IdentifierInfo=*/0,
952                                                 ArgType, VarDecl::None, 0);
953    CopyAssignment->setParams(Context, &FromParam, 1);
954
955    // Don't call addedAssignmentOperator. There is no way to distinguish an
956    // implicit from an explicit assignment operator.
957    ClassDecl->addDecl(CopyAssignment);
958  }
959
960  if (!ClassDecl->hasUserDeclaredDestructor()) {
961    // C++ [class.dtor]p2:
962    //   If a class has no user-declared destructor, a destructor is
963    //   declared implicitly. An implicitly-declared destructor is an
964    //   inline public member of its class.
965    DeclarationName Name
966      = Context.DeclarationNames.getCXXDestructorName(ClassType);
967    CXXDestructorDecl *Destructor
968      = CXXDestructorDecl::Create(Context, ClassDecl,
969                                  ClassDecl->getLocation(), Name,
970                                  Context.getFunctionType(Context.VoidTy,
971                                                          0, 0, false, 0),
972                                  /*isInline=*/true,
973                                  /*isImplicitlyDeclared=*/true);
974    Destructor->setAccess(AS_public);
975    Destructor->setImplicit();
976    ClassDecl->addDecl(Destructor);
977  }
978}
979
980/// ActOnStartDelayedCXXMethodDeclaration - We have completed
981/// parsing a top-level (non-nested) C++ class, and we are now
982/// parsing those parts of the given Method declaration that could
983/// not be parsed earlier (C++ [class.mem]p2), such as default
984/// arguments. This action should enter the scope of the given
985/// Method declaration as if we had just parsed the qualified method
986/// name. However, it should not bring the parameters into scope;
987/// that will be performed by ActOnDelayedCXXMethodParameter.
988void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
989  CXXScopeSpec SS;
990  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
991  ActOnCXXEnterDeclaratorScope(S, SS);
992}
993
994/// ActOnDelayedCXXMethodParameter - We've already started a delayed
995/// C++ method declaration. We're (re-)introducing the given
996/// function parameter into scope for use in parsing later parts of
997/// the method declaration. For example, we could see an
998/// ActOnParamDefaultArgument event for this parameter.
999void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1000  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1001
1002  // If this parameter has an unparsed default argument, clear it out
1003  // to make way for the parsed default argument.
1004  if (Param->hasUnparsedDefaultArg())
1005    Param->setDefaultArg(0);
1006
1007  S->AddDecl(Param);
1008  if (Param->getDeclName())
1009    IdResolver.AddDecl(Param);
1010}
1011
1012/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1013/// processing the delayed method declaration for Method. The method
1014/// declaration is now considered finished. There may be a separate
1015/// ActOnStartOfFunctionDef action later (not necessarily
1016/// immediately!) for this method, if it was also defined inside the
1017/// class body.
1018void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1019  FunctionDecl *Method = (FunctionDecl*)MethodD;
1020  CXXScopeSpec SS;
1021  SS.setScopeRep(Method->getDeclContext());
1022  ActOnCXXExitDeclaratorScope(S, SS);
1023
1024  // Now that we have our default arguments, check the constructor
1025  // again. It could produce additional diagnostics or affect whether
1026  // the class has implicitly-declared destructors, among other
1027  // things.
1028  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1029    if (CheckConstructor(Constructor))
1030      Constructor->setInvalidDecl();
1031  }
1032
1033  // Check the default arguments, which we may have added.
1034  if (!Method->isInvalidDecl())
1035    CheckCXXDefaultArguments(Method);
1036}
1037
1038/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1039/// the well-formedness of the constructor declarator @p D with type @p
1040/// R. If there are any errors in the declarator, this routine will
1041/// emit diagnostics and return true. Otherwise, it will return
1042/// false. Either way, the type @p R will be updated to reflect a
1043/// well-formed type for the constructor.
1044bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1045                                      FunctionDecl::StorageClass& SC) {
1046  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1047  bool isInvalid = false;
1048
1049  // C++ [class.ctor]p3:
1050  //   A constructor shall not be virtual (10.3) or static (9.4). A
1051  //   constructor can be invoked for a const, volatile or const
1052  //   volatile object. A constructor shall not be declared const,
1053  //   volatile, or const volatile (9.3.2).
1054  if (isVirtual) {
1055    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1056      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1057      << SourceRange(D.getIdentifierLoc());
1058    isInvalid = true;
1059  }
1060  if (SC == FunctionDecl::Static) {
1061    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1062      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1063      << SourceRange(D.getIdentifierLoc());
1064    isInvalid = true;
1065    SC = FunctionDecl::None;
1066  }
1067  if (D.getDeclSpec().hasTypeSpecifier()) {
1068    // Constructors don't have return types, but the parser will
1069    // happily parse something like:
1070    //
1071    //   class X {
1072    //     float X(float);
1073    //   };
1074    //
1075    // The return type will be eliminated later.
1076    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1077      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1078      << SourceRange(D.getIdentifierLoc());
1079  }
1080  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1081    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1082    if (FTI.TypeQuals & QualType::Const)
1083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1084        << "const" << SourceRange(D.getIdentifierLoc());
1085    if (FTI.TypeQuals & QualType::Volatile)
1086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1087        << "volatile" << SourceRange(D.getIdentifierLoc());
1088    if (FTI.TypeQuals & QualType::Restrict)
1089      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1090        << "restrict" << SourceRange(D.getIdentifierLoc());
1091  }
1092
1093  // Rebuild the function type "R" without any type qualifiers (in
1094  // case any of the errors above fired) and with "void" as the
1095  // return type, since constructors don't have return types. We
1096  // *always* have to do this, because GetTypeForDeclarator will
1097  // put in a result type of "int" when none was specified.
1098  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1099  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1100                              Proto->getNumArgs(),
1101                              Proto->isVariadic(),
1102                              0);
1103
1104  return isInvalid;
1105}
1106
1107/// CheckConstructor - Checks a fully-formed constructor for
1108/// well-formedness, issuing any diagnostics required. Returns true if
1109/// the constructor declarator is invalid.
1110bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1111  if (Constructor->isInvalidDecl())
1112    return true;
1113
1114  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1115  bool Invalid = false;
1116
1117  // C++ [class.copy]p3:
1118  //   A declaration of a constructor for a class X is ill-formed if
1119  //   its first parameter is of type (optionally cv-qualified) X and
1120  //   either there are no other parameters or else all other
1121  //   parameters have default arguments.
1122  if ((Constructor->getNumParams() == 1) ||
1123      (Constructor->getNumParams() > 1 &&
1124       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1125    QualType ParamType = Constructor->getParamDecl(0)->getType();
1126    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1127    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1128      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1129        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1130      Invalid = true;
1131    }
1132  }
1133
1134  // Notify the class that we've added a constructor.
1135  ClassDecl->addedConstructor(Context, Constructor);
1136
1137  return Invalid;
1138}
1139
1140/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1141/// the well-formednes of the destructor declarator @p D with type @p
1142/// R. If there are any errors in the declarator, this routine will
1143/// emit diagnostics and return true. Otherwise, it will return
1144/// false. Either way, the type @p R will be updated to reflect a
1145/// well-formed type for the destructor.
1146bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1147                                     FunctionDecl::StorageClass& SC) {
1148  bool isInvalid = false;
1149
1150  // C++ [class.dtor]p1:
1151  //   [...] A typedef-name that names a class is a class-name
1152  //   (7.1.3); however, a typedef-name that names a class shall not
1153  //   be used as the identifier in the declarator for a destructor
1154  //   declaration.
1155  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1156  if (DeclaratorType->getAsTypedefType()) {
1157    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1158      << DeclaratorType;
1159    isInvalid = true;
1160  }
1161
1162  // C++ [class.dtor]p2:
1163  //   A destructor is used to destroy objects of its class type. A
1164  //   destructor takes no parameters, and no return type can be
1165  //   specified for it (not even void). The address of a destructor
1166  //   shall not be taken. A destructor shall not be static. A
1167  //   destructor can be invoked for a const, volatile or const
1168  //   volatile object. A destructor shall not be declared const,
1169  //   volatile or const volatile (9.3.2).
1170  if (SC == FunctionDecl::Static) {
1171    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1172      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1173      << SourceRange(D.getIdentifierLoc());
1174    isInvalid = true;
1175    SC = FunctionDecl::None;
1176  }
1177  if (D.getDeclSpec().hasTypeSpecifier()) {
1178    // Destructors don't have return types, but the parser will
1179    // happily parse something like:
1180    //
1181    //   class X {
1182    //     float ~X();
1183    //   };
1184    //
1185    // The return type will be eliminated later.
1186    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1187      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1188      << SourceRange(D.getIdentifierLoc());
1189  }
1190  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1191    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1192    if (FTI.TypeQuals & QualType::Const)
1193      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1194        << "const" << SourceRange(D.getIdentifierLoc());
1195    if (FTI.TypeQuals & QualType::Volatile)
1196      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1197        << "volatile" << SourceRange(D.getIdentifierLoc());
1198    if (FTI.TypeQuals & QualType::Restrict)
1199      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1200        << "restrict" << SourceRange(D.getIdentifierLoc());
1201  }
1202
1203  // Make sure we don't have any parameters.
1204  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1205    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1206
1207    // Delete the parameters.
1208    D.getTypeObject(0).Fun.freeArgs();
1209  }
1210
1211  // Make sure the destructor isn't variadic.
1212  if (R->getAsFunctionProtoType()->isVariadic())
1213    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1214
1215  // Rebuild the function type "R" without any type qualifiers or
1216  // parameters (in case any of the errors above fired) and with
1217  // "void" as the return type, since destructors don't have return
1218  // types. We *always* have to do this, because GetTypeForDeclarator
1219  // will put in a result type of "int" when none was specified.
1220  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1221
1222  return isInvalid;
1223}
1224
1225/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1226/// well-formednes of the conversion function declarator @p D with
1227/// type @p R. If there are any errors in the declarator, this routine
1228/// will emit diagnostics and return true. Otherwise, it will return
1229/// false. Either way, the type @p R will be updated to reflect a
1230/// well-formed type for the conversion operator.
1231bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1232                                     FunctionDecl::StorageClass& SC) {
1233  bool isInvalid = false;
1234
1235  // C++ [class.conv.fct]p1:
1236  //   Neither parameter types nor return type can be specified. The
1237  //   type of a conversion function (8.3.5) is “function taking no
1238  //   parameter returning conversion-type-id.”
1239  if (SC == FunctionDecl::Static) {
1240    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1241      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1242      << SourceRange(D.getIdentifierLoc());
1243    isInvalid = true;
1244    SC = FunctionDecl::None;
1245  }
1246  if (D.getDeclSpec().hasTypeSpecifier()) {
1247    // Conversion functions don't have return types, but the parser will
1248    // happily parse something like:
1249    //
1250    //   class X {
1251    //     float operator bool();
1252    //   };
1253    //
1254    // The return type will be changed later anyway.
1255    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1256      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1257      << SourceRange(D.getIdentifierLoc());
1258  }
1259
1260  // Make sure we don't have any parameters.
1261  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1262    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1263
1264    // Delete the parameters.
1265    D.getTypeObject(0).Fun.freeArgs();
1266  }
1267
1268  // Make sure the conversion function isn't variadic.
1269  if (R->getAsFunctionProtoType()->isVariadic())
1270    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1271
1272  // C++ [class.conv.fct]p4:
1273  //   The conversion-type-id shall not represent a function type nor
1274  //   an array type.
1275  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1276  if (ConvType->isArrayType()) {
1277    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1278    ConvType = Context.getPointerType(ConvType);
1279  } else if (ConvType->isFunctionType()) {
1280    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1281    ConvType = Context.getPointerType(ConvType);
1282  }
1283
1284  // Rebuild the function type "R" without any parameters (in case any
1285  // of the errors above fired) and with the conversion type as the
1286  // return type.
1287  R = Context.getFunctionType(ConvType, 0, 0, false,
1288                              R->getAsFunctionProtoType()->getTypeQuals());
1289
1290  // C++0x explicit conversion operators.
1291  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1292    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1293         diag::warn_explicit_conversion_functions)
1294      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1295
1296  return isInvalid;
1297}
1298
1299/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1300/// the declaration of the given C++ conversion function. This routine
1301/// is responsible for recording the conversion function in the C++
1302/// class, if possible.
1303Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1304  assert(Conversion && "Expected to receive a conversion function declaration");
1305
1306  // Set the lexical context of this conversion function
1307  Conversion->setLexicalDeclContext(CurContext);
1308
1309  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1310
1311  // Make sure we aren't redeclaring the conversion function.
1312  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1313
1314  // C++ [class.conv.fct]p1:
1315  //   [...] A conversion function is never used to convert a
1316  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1317  //   same object type (or a reference to it), to a (possibly
1318  //   cv-qualified) base class of that type (or a reference to it),
1319  //   or to (possibly cv-qualified) void.
1320  // FIXME: Suppress this warning if the conversion function ends up
1321  // being a virtual function that overrides a virtual function in a
1322  // base class.
1323  QualType ClassType
1324    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1325  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1326    ConvType = ConvTypeRef->getPointeeType();
1327  if (ConvType->isRecordType()) {
1328    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1329    if (ConvType == ClassType)
1330      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1331        << ClassType;
1332    else if (IsDerivedFrom(ClassType, ConvType))
1333      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1334        <<  ClassType << ConvType;
1335  } else if (ConvType->isVoidType()) {
1336    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1337      << ClassType << ConvType;
1338  }
1339
1340  if (Conversion->getPreviousDeclaration()) {
1341    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1342    for (OverloadedFunctionDecl::function_iterator
1343           Conv = Conversions->function_begin(),
1344           ConvEnd = Conversions->function_end();
1345         Conv != ConvEnd; ++Conv) {
1346      if (*Conv == Conversion->getPreviousDeclaration()) {
1347        *Conv = Conversion;
1348        return (DeclTy *)Conversion;
1349      }
1350    }
1351    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1352  } else
1353    ClassDecl->addConversionFunction(Context, Conversion);
1354
1355  return (DeclTy *)Conversion;
1356}
1357
1358//===----------------------------------------------------------------------===//
1359// Namespace Handling
1360//===----------------------------------------------------------------------===//
1361
1362/// ActOnStartNamespaceDef - This is called at the start of a namespace
1363/// definition.
1364Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1365                                           SourceLocation IdentLoc,
1366                                           IdentifierInfo *II,
1367                                           SourceLocation LBrace) {
1368  NamespaceDecl *Namespc =
1369      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1370  Namespc->setLBracLoc(LBrace);
1371
1372  Scope *DeclRegionScope = NamespcScope->getParent();
1373
1374  if (II) {
1375    // C++ [namespace.def]p2:
1376    // The identifier in an original-namespace-definition shall not have been
1377    // previously defined in the declarative region in which the
1378    // original-namespace-definition appears. The identifier in an
1379    // original-namespace-definition is the name of the namespace. Subsequently
1380    // in that declarative region, it is treated as an original-namespace-name.
1381
1382    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1383                                     true);
1384
1385    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1386      // This is an extended namespace definition.
1387      // Attach this namespace decl to the chain of extended namespace
1388      // definitions.
1389      OrigNS->setNextNamespace(Namespc);
1390      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1391
1392      // Remove the previous declaration from the scope.
1393      if (DeclRegionScope->isDeclScope(OrigNS)) {
1394        IdResolver.RemoveDecl(OrigNS);
1395        DeclRegionScope->RemoveDecl(OrigNS);
1396      }
1397    } else if (PrevDecl) {
1398      // This is an invalid name redefinition.
1399      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1400       << Namespc->getDeclName();
1401      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1402      Namespc->setInvalidDecl();
1403      // Continue on to push Namespc as current DeclContext and return it.
1404    }
1405
1406    PushOnScopeChains(Namespc, DeclRegionScope);
1407  } else {
1408    // FIXME: Handle anonymous namespaces
1409  }
1410
1411  // Although we could have an invalid decl (i.e. the namespace name is a
1412  // redefinition), push it as current DeclContext and try to continue parsing.
1413  // FIXME: We should be able to push Namespc here, so that the
1414  // each DeclContext for the namespace has the declarations
1415  // that showed up in that particular namespace definition.
1416  PushDeclContext(NamespcScope, Namespc);
1417  return Namespc;
1418}
1419
1420/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1421/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1422void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1423  Decl *Dcl = static_cast<Decl *>(D);
1424  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1425  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1426  Namespc->setRBracLoc(RBrace);
1427  PopDeclContext();
1428}
1429
1430Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1431                                        SourceLocation UsingLoc,
1432                                        SourceLocation NamespcLoc,
1433                                        const CXXScopeSpec &SS,
1434                                        SourceLocation IdentLoc,
1435                                        IdentifierInfo *NamespcName,
1436                                        AttributeList *AttrList) {
1437  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1438  assert(NamespcName && "Invalid NamespcName.");
1439  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1440  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1441
1442  UsingDirectiveDecl *UDir = 0;
1443
1444  // Lookup namespace name.
1445  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1446                                    LookupNamespaceName, false);
1447  if (R.isAmbiguous()) {
1448    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1449    return 0;
1450  }
1451  if (NamedDecl *NS = R) {
1452    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1453    // C++ [namespace.udir]p1:
1454    //   A using-directive specifies that the names in the nominated
1455    //   namespace can be used in the scope in which the
1456    //   using-directive appears after the using-directive. During
1457    //   unqualified name lookup (3.4.1), the names appear as if they
1458    //   were declared in the nearest enclosing namespace which
1459    //   contains both the using-directive and the nominated
1460    //   namespace. [Note: in this context, “contains” means “contains
1461    //   directly or indirectly”. ]
1462
1463    // Find enclosing context containing both using-directive and
1464    // nominated namespace.
1465    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1466    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1467      CommonAncestor = CommonAncestor->getParent();
1468
1469    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1470                                      NamespcLoc, IdentLoc,
1471                                      cast<NamespaceDecl>(NS),
1472                                      CommonAncestor);
1473    PushUsingDirective(S, UDir);
1474  } else {
1475    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1476  }
1477
1478  // FIXME: We ignore attributes for now.
1479  delete AttrList;
1480  return UDir;
1481}
1482
1483void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1484  // If scope has associated entity, then using directive is at namespace
1485  // or translation unit scope. We add UsingDirectiveDecls, into
1486  // it's lookup structure.
1487  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1488    Ctx->addDecl(UDir);
1489  else
1490    // Otherwise it is block-sope. using-directives will affect lookup
1491    // only to the end of scope.
1492    S->PushUsingDirective(UDir);
1493}
1494
1495/// AddCXXDirectInitializerToDecl - This action is called immediately after
1496/// ActOnDeclarator, when a C++ direct initializer is present.
1497/// e.g: "int x(1);"
1498void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1499                                         ExprTy **ExprTys, unsigned NumExprs,
1500                                         SourceLocation *CommaLocs,
1501                                         SourceLocation RParenLoc) {
1502  assert(NumExprs != 0 && ExprTys && "missing expressions");
1503  Decl *RealDecl = static_cast<Decl *>(Dcl);
1504
1505  // If there is no declaration, there was an error parsing it.  Just ignore
1506  // the initializer.
1507  if (RealDecl == 0) {
1508    for (unsigned i = 0; i != NumExprs; ++i)
1509      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1510    return;
1511  }
1512
1513  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1514  if (!VDecl) {
1515    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1516    RealDecl->setInvalidDecl();
1517    return;
1518  }
1519
1520  // We will treat direct-initialization as a copy-initialization:
1521  //    int x(1);  -as-> int x = 1;
1522  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1523  //
1524  // Clients that want to distinguish between the two forms, can check for
1525  // direct initializer using VarDecl::hasCXXDirectInitializer().
1526  // A major benefit is that clients that don't particularly care about which
1527  // exactly form was it (like the CodeGen) can handle both cases without
1528  // special case code.
1529
1530  // C++ 8.5p11:
1531  // The form of initialization (using parentheses or '=') is generally
1532  // insignificant, but does matter when the entity being initialized has a
1533  // class type.
1534  QualType DeclInitType = VDecl->getType();
1535  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1536    DeclInitType = Array->getElementType();
1537
1538  if (VDecl->getType()->isRecordType()) {
1539    CXXConstructorDecl *Constructor
1540      = PerformInitializationByConstructor(DeclInitType,
1541                                           (Expr **)ExprTys, NumExprs,
1542                                           VDecl->getLocation(),
1543                                           SourceRange(VDecl->getLocation(),
1544                                                       RParenLoc),
1545                                           VDecl->getDeclName(),
1546                                           IK_Direct);
1547    if (!Constructor) {
1548      RealDecl->setInvalidDecl();
1549    }
1550
1551    // Let clients know that initialization was done with a direct
1552    // initializer.
1553    VDecl->setCXXDirectInitializer(true);
1554
1555    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1556    // the initializer.
1557    return;
1558  }
1559
1560  if (NumExprs > 1) {
1561    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1562      << SourceRange(VDecl->getLocation(), RParenLoc);
1563    RealDecl->setInvalidDecl();
1564    return;
1565  }
1566
1567  // Let clients know that initialization was done with a direct initializer.
1568  VDecl->setCXXDirectInitializer(true);
1569
1570  assert(NumExprs == 1 && "Expected 1 expression");
1571  // Set the init expression, handles conversions.
1572  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1573}
1574
1575/// PerformInitializationByConstructor - Perform initialization by
1576/// constructor (C++ [dcl.init]p14), which may occur as part of
1577/// direct-initialization or copy-initialization. We are initializing
1578/// an object of type @p ClassType with the given arguments @p
1579/// Args. @p Loc is the location in the source code where the
1580/// initializer occurs (e.g., a declaration, member initializer,
1581/// functional cast, etc.) while @p Range covers the whole
1582/// initialization. @p InitEntity is the entity being initialized,
1583/// which may by the name of a declaration or a type. @p Kind is the
1584/// kind of initialization we're performing, which affects whether
1585/// explicit constructors will be considered. When successful, returns
1586/// the constructor that will be used to perform the initialization;
1587/// when the initialization fails, emits a diagnostic and returns
1588/// null.
1589CXXConstructorDecl *
1590Sema::PerformInitializationByConstructor(QualType ClassType,
1591                                         Expr **Args, unsigned NumArgs,
1592                                         SourceLocation Loc, SourceRange Range,
1593                                         DeclarationName InitEntity,
1594                                         InitializationKind Kind) {
1595  const RecordType *ClassRec = ClassType->getAsRecordType();
1596  assert(ClassRec && "Can only initialize a class type here");
1597
1598  // C++ [dcl.init]p14:
1599  //
1600  //   If the initialization is direct-initialization, or if it is
1601  //   copy-initialization where the cv-unqualified version of the
1602  //   source type is the same class as, or a derived class of, the
1603  //   class of the destination, constructors are considered. The
1604  //   applicable constructors are enumerated (13.3.1.3), and the
1605  //   best one is chosen through overload resolution (13.3). The
1606  //   constructor so selected is called to initialize the object,
1607  //   with the initializer expression(s) as its argument(s). If no
1608  //   constructor applies, or the overload resolution is ambiguous,
1609  //   the initialization is ill-formed.
1610  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1611  OverloadCandidateSet CandidateSet;
1612
1613  // Add constructors to the overload set.
1614  DeclarationName ConstructorName
1615    = Context.DeclarationNames.getCXXConstructorName(
1616                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1617  DeclContext::lookup_const_iterator Con, ConEnd;
1618  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1619       Con != ConEnd; ++Con) {
1620    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1621    if ((Kind == IK_Direct) ||
1622        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1623        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1624      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1625  }
1626
1627  // FIXME: When we decide not to synthesize the implicitly-declared
1628  // constructors, we'll need to make them appear here.
1629
1630  OverloadCandidateSet::iterator Best;
1631  switch (BestViableFunction(CandidateSet, Best)) {
1632  case OR_Success:
1633    // We found a constructor. Return it.
1634    return cast<CXXConstructorDecl>(Best->Function);
1635
1636  case OR_No_Viable_Function:
1637    if (InitEntity)
1638      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1639        << InitEntity << Range;
1640    else
1641      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1642        << ClassType << Range;
1643    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1644    return 0;
1645
1646  case OR_Ambiguous:
1647    if (InitEntity)
1648      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1649    else
1650      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1651    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1652    return 0;
1653
1654  case OR_Deleted:
1655    if (InitEntity)
1656      Diag(Loc, diag::err_ovl_deleted_init)
1657        << Best->Function->isDeleted()
1658        << InitEntity << Range;
1659    else
1660      Diag(Loc, diag::err_ovl_deleted_init)
1661        << Best->Function->isDeleted()
1662        << InitEntity << Range;
1663    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1664    return 0;
1665  }
1666
1667  return 0;
1668}
1669
1670/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1671/// determine whether they are reference-related,
1672/// reference-compatible, reference-compatible with added
1673/// qualification, or incompatible, for use in C++ initialization by
1674/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1675/// type, and the first type (T1) is the pointee type of the reference
1676/// type being initialized.
1677Sema::ReferenceCompareResult
1678Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1679                                   bool& DerivedToBase) {
1680  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1681  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1682
1683  T1 = Context.getCanonicalType(T1);
1684  T2 = Context.getCanonicalType(T2);
1685  QualType UnqualT1 = T1.getUnqualifiedType();
1686  QualType UnqualT2 = T2.getUnqualifiedType();
1687
1688  // C++ [dcl.init.ref]p4:
1689  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1690  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1691  //   T1 is a base class of T2.
1692  if (UnqualT1 == UnqualT2)
1693    DerivedToBase = false;
1694  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1695    DerivedToBase = true;
1696  else
1697    return Ref_Incompatible;
1698
1699  // At this point, we know that T1 and T2 are reference-related (at
1700  // least).
1701
1702  // C++ [dcl.init.ref]p4:
1703  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1704  //   reference-related to T2 and cv1 is the same cv-qualification
1705  //   as, or greater cv-qualification than, cv2. For purposes of
1706  //   overload resolution, cases for which cv1 is greater
1707  //   cv-qualification than cv2 are identified as
1708  //   reference-compatible with added qualification (see 13.3.3.2).
1709  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1710    return Ref_Compatible;
1711  else if (T1.isMoreQualifiedThan(T2))
1712    return Ref_Compatible_With_Added_Qualification;
1713  else
1714    return Ref_Related;
1715}
1716
1717/// CheckReferenceInit - Check the initialization of a reference
1718/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1719/// the initializer (either a simple initializer or an initializer
1720/// list), and DeclType is the type of the declaration. When ICS is
1721/// non-null, this routine will compute the implicit conversion
1722/// sequence according to C++ [over.ics.ref] and will not produce any
1723/// diagnostics; when ICS is null, it will emit diagnostics when any
1724/// errors are found. Either way, a return value of true indicates
1725/// that there was a failure, a return value of false indicates that
1726/// the reference initialization succeeded.
1727///
1728/// When @p SuppressUserConversions, user-defined conversions are
1729/// suppressed.
1730/// When @p AllowExplicit, we also permit explicit user-defined
1731/// conversion functions.
1732bool
1733Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1734                         ImplicitConversionSequence *ICS,
1735                         bool SuppressUserConversions,
1736                         bool AllowExplicit) {
1737  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1738
1739  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1740  QualType T2 = Init->getType();
1741
1742  // If the initializer is the address of an overloaded function, try
1743  // to resolve the overloaded function. If all goes well, T2 is the
1744  // type of the resulting function.
1745  if (T2->isOverloadType()) {
1746    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1747                                                          ICS != 0);
1748    if (Fn) {
1749      // Since we're performing this reference-initialization for
1750      // real, update the initializer with the resulting function.
1751      if (!ICS) {
1752        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1753          return true;
1754
1755        FixOverloadedFunctionReference(Init, Fn);
1756      }
1757
1758      T2 = Fn->getType();
1759    }
1760  }
1761
1762  // Compute some basic properties of the types and the initializer.
1763  bool DerivedToBase = false;
1764  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1765  ReferenceCompareResult RefRelationship
1766    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1767
1768  // Most paths end in a failed conversion.
1769  if (ICS)
1770    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1771
1772  // C++ [dcl.init.ref]p5:
1773  //   A reference to type “cv1 T1” is initialized by an expression
1774  //   of type “cv2 T2” as follows:
1775
1776  //     -- If the initializer expression
1777
1778  bool BindsDirectly = false;
1779  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1780  //          reference-compatible with “cv2 T2,” or
1781  //
1782  // Note that the bit-field check is skipped if we are just computing
1783  // the implicit conversion sequence (C++ [over.best.ics]p2).
1784  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1785      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1786    BindsDirectly = true;
1787
1788    if (ICS) {
1789      // C++ [over.ics.ref]p1:
1790      //   When a parameter of reference type binds directly (8.5.3)
1791      //   to an argument expression, the implicit conversion sequence
1792      //   is the identity conversion, unless the argument expression
1793      //   has a type that is a derived class of the parameter type,
1794      //   in which case the implicit conversion sequence is a
1795      //   derived-to-base Conversion (13.3.3.1).
1796      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1797      ICS->Standard.First = ICK_Identity;
1798      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1799      ICS->Standard.Third = ICK_Identity;
1800      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1801      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1802      ICS->Standard.ReferenceBinding = true;
1803      ICS->Standard.DirectBinding = true;
1804
1805      // Nothing more to do: the inaccessibility/ambiguity check for
1806      // derived-to-base conversions is suppressed when we're
1807      // computing the implicit conversion sequence (C++
1808      // [over.best.ics]p2).
1809      return false;
1810    } else {
1811      // Perform the conversion.
1812      // FIXME: Binding to a subobject of the lvalue is going to require
1813      // more AST annotation than this.
1814      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1815    }
1816  }
1817
1818  //       -- has a class type (i.e., T2 is a class type) and can be
1819  //          implicitly converted to an lvalue of type “cv3 T3,”
1820  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1821  //          92) (this conversion is selected by enumerating the
1822  //          applicable conversion functions (13.3.1.6) and choosing
1823  //          the best one through overload resolution (13.3)),
1824  if (!SuppressUserConversions && T2->isRecordType()) {
1825    // FIXME: Look for conversions in base classes!
1826    CXXRecordDecl *T2RecordDecl
1827      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1828
1829    OverloadCandidateSet CandidateSet;
1830    OverloadedFunctionDecl *Conversions
1831      = T2RecordDecl->getConversionFunctions();
1832    for (OverloadedFunctionDecl::function_iterator Func
1833           = Conversions->function_begin();
1834         Func != Conversions->function_end(); ++Func) {
1835      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1836
1837      // If the conversion function doesn't return a reference type,
1838      // it can't be considered for this conversion.
1839      // FIXME: This will change when we support rvalue references.
1840      if (Conv->getConversionType()->isReferenceType() &&
1841          (AllowExplicit || !Conv->isExplicit()))
1842        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1843    }
1844
1845    OverloadCandidateSet::iterator Best;
1846    switch (BestViableFunction(CandidateSet, Best)) {
1847    case OR_Success:
1848      // This is a direct binding.
1849      BindsDirectly = true;
1850
1851      if (ICS) {
1852        // C++ [over.ics.ref]p1:
1853        //
1854        //   [...] If the parameter binds directly to the result of
1855        //   applying a conversion function to the argument
1856        //   expression, the implicit conversion sequence is a
1857        //   user-defined conversion sequence (13.3.3.1.2), with the
1858        //   second standard conversion sequence either an identity
1859        //   conversion or, if the conversion function returns an
1860        //   entity of a type that is a derived class of the parameter
1861        //   type, a derived-to-base Conversion.
1862        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1863        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1864        ICS->UserDefined.After = Best->FinalConversion;
1865        ICS->UserDefined.ConversionFunction = Best->Function;
1866        assert(ICS->UserDefined.After.ReferenceBinding &&
1867               ICS->UserDefined.After.DirectBinding &&
1868               "Expected a direct reference binding!");
1869        return false;
1870      } else {
1871        // Perform the conversion.
1872        // FIXME: Binding to a subobject of the lvalue is going to require
1873        // more AST annotation than this.
1874        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1875      }
1876      break;
1877
1878    case OR_Ambiguous:
1879      assert(false && "Ambiguous reference binding conversions not implemented.");
1880      return true;
1881
1882    case OR_No_Viable_Function:
1883    case OR_Deleted:
1884      // There was no suitable conversion, or we found a deleted
1885      // conversion; continue with other checks.
1886      break;
1887    }
1888  }
1889
1890  if (BindsDirectly) {
1891    // C++ [dcl.init.ref]p4:
1892    //   [...] In all cases where the reference-related or
1893    //   reference-compatible relationship of two types is used to
1894    //   establish the validity of a reference binding, and T1 is a
1895    //   base class of T2, a program that necessitates such a binding
1896    //   is ill-formed if T1 is an inaccessible (clause 11) or
1897    //   ambiguous (10.2) base class of T2.
1898    //
1899    // Note that we only check this condition when we're allowed to
1900    // complain about errors, because we should not be checking for
1901    // ambiguity (or inaccessibility) unless the reference binding
1902    // actually happens.
1903    if (DerivedToBase)
1904      return CheckDerivedToBaseConversion(T2, T1,
1905                                          Init->getSourceRange().getBegin(),
1906                                          Init->getSourceRange());
1907    else
1908      return false;
1909  }
1910
1911  //     -- Otherwise, the reference shall be to a non-volatile const
1912  //        type (i.e., cv1 shall be const).
1913  if (T1.getCVRQualifiers() != QualType::Const) {
1914    if (!ICS)
1915      Diag(Init->getSourceRange().getBegin(),
1916           diag::err_not_reference_to_const_init)
1917        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1918        << T2 << Init->getSourceRange();
1919    return true;
1920  }
1921
1922  //       -- If the initializer expression is an rvalue, with T2 a
1923  //          class type, and “cv1 T1” is reference-compatible with
1924  //          “cv2 T2,” the reference is bound in one of the
1925  //          following ways (the choice is implementation-defined):
1926  //
1927  //          -- The reference is bound to the object represented by
1928  //             the rvalue (see 3.10) or to a sub-object within that
1929  //             object.
1930  //
1931  //          -- A temporary of type “cv1 T2” [sic] is created, and
1932  //             a constructor is called to copy the entire rvalue
1933  //             object into the temporary. The reference is bound to
1934  //             the temporary or to a sub-object within the
1935  //             temporary.
1936  //
1937  //          The constructor that would be used to make the copy
1938  //          shall be callable whether or not the copy is actually
1939  //          done.
1940  //
1941  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1942  // freedom, so we will always take the first option and never build
1943  // a temporary in this case. FIXME: We will, however, have to check
1944  // for the presence of a copy constructor in C++98/03 mode.
1945  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1946      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1947    if (ICS) {
1948      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1949      ICS->Standard.First = ICK_Identity;
1950      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1951      ICS->Standard.Third = ICK_Identity;
1952      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1953      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1954      ICS->Standard.ReferenceBinding = true;
1955      ICS->Standard.DirectBinding = false;
1956    } else {
1957      // FIXME: Binding to a subobject of the rvalue is going to require
1958      // more AST annotation than this.
1959      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1960    }
1961    return false;
1962  }
1963
1964  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1965  //          initialized from the initializer expression using the
1966  //          rules for a non-reference copy initialization (8.5). The
1967  //          reference is then bound to the temporary. If T1 is
1968  //          reference-related to T2, cv1 must be the same
1969  //          cv-qualification as, or greater cv-qualification than,
1970  //          cv2; otherwise, the program is ill-formed.
1971  if (RefRelationship == Ref_Related) {
1972    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1973    // we would be reference-compatible or reference-compatible with
1974    // added qualification. But that wasn't the case, so the reference
1975    // initialization fails.
1976    if (!ICS)
1977      Diag(Init->getSourceRange().getBegin(),
1978           diag::err_reference_init_drops_quals)
1979        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1980        << T2 << Init->getSourceRange();
1981    return true;
1982  }
1983
1984  // If at least one of the types is a class type, the types are not
1985  // related, and we aren't allowed any user conversions, the
1986  // reference binding fails. This case is important for breaking
1987  // recursion, since TryImplicitConversion below will attempt to
1988  // create a temporary through the use of a copy constructor.
1989  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
1990      (T1->isRecordType() || T2->isRecordType())) {
1991    if (!ICS)
1992      Diag(Init->getSourceRange().getBegin(),
1993           diag::err_typecheck_convert_incompatible)
1994        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
1995    return true;
1996  }
1997
1998  // Actually try to convert the initializer to T1.
1999  if (ICS) {
2000    /// C++ [over.ics.ref]p2:
2001    ///
2002    ///   When a parameter of reference type is not bound directly to
2003    ///   an argument expression, the conversion sequence is the one
2004    ///   required to convert the argument expression to the
2005    ///   underlying type of the reference according to
2006    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2007    ///   to copy-initializing a temporary of the underlying type with
2008    ///   the argument expression. Any difference in top-level
2009    ///   cv-qualification is subsumed by the initialization itself
2010    ///   and does not constitute a conversion.
2011    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2012    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2013  } else {
2014    return PerformImplicitConversion(Init, T1, "initializing");
2015  }
2016}
2017
2018/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2019/// of this overloaded operator is well-formed. If so, returns false;
2020/// otherwise, emits appropriate diagnostics and returns true.
2021bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2022  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2023         "Expected an overloaded operator declaration");
2024
2025  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2026
2027  // C++ [over.oper]p5:
2028  //   The allocation and deallocation functions, operator new,
2029  //   operator new[], operator delete and operator delete[], are
2030  //   described completely in 3.7.3. The attributes and restrictions
2031  //   found in the rest of this subclause do not apply to them unless
2032  //   explicitly stated in 3.7.3.
2033  // FIXME: Write a separate routine for checking this. For now, just
2034  // allow it.
2035  if (Op == OO_New || Op == OO_Array_New ||
2036      Op == OO_Delete || Op == OO_Array_Delete)
2037    return false;
2038
2039  // C++ [over.oper]p6:
2040  //   An operator function shall either be a non-static member
2041  //   function or be a non-member function and have at least one
2042  //   parameter whose type is a class, a reference to a class, an
2043  //   enumeration, or a reference to an enumeration.
2044  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2045    if (MethodDecl->isStatic())
2046      return Diag(FnDecl->getLocation(),
2047                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2048  } else {
2049    bool ClassOrEnumParam = false;
2050    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2051                                   ParamEnd = FnDecl->param_end();
2052         Param != ParamEnd; ++Param) {
2053      QualType ParamType = (*Param)->getType().getNonReferenceType();
2054      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2055        ClassOrEnumParam = true;
2056        break;
2057      }
2058    }
2059
2060    if (!ClassOrEnumParam)
2061      return Diag(FnDecl->getLocation(),
2062                  diag::err_operator_overload_needs_class_or_enum)
2063        << FnDecl->getDeclName();
2064  }
2065
2066  // C++ [over.oper]p8:
2067  //   An operator function cannot have default arguments (8.3.6),
2068  //   except where explicitly stated below.
2069  //
2070  // Only the function-call operator allows default arguments
2071  // (C++ [over.call]p1).
2072  if (Op != OO_Call) {
2073    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2074         Param != FnDecl->param_end(); ++Param) {
2075      if ((*Param)->hasUnparsedDefaultArg())
2076        return Diag((*Param)->getLocation(),
2077                    diag::err_operator_overload_default_arg)
2078          << FnDecl->getDeclName();
2079      else if (Expr *DefArg = (*Param)->getDefaultArg())
2080        return Diag((*Param)->getLocation(),
2081                    diag::err_operator_overload_default_arg)
2082          << FnDecl->getDeclName() << DefArg->getSourceRange();
2083    }
2084  }
2085
2086  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2087    { false, false, false }
2088#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2089    , { Unary, Binary, MemberOnly }
2090#include "clang/Basic/OperatorKinds.def"
2091  };
2092
2093  bool CanBeUnaryOperator = OperatorUses[Op][0];
2094  bool CanBeBinaryOperator = OperatorUses[Op][1];
2095  bool MustBeMemberOperator = OperatorUses[Op][2];
2096
2097  // C++ [over.oper]p8:
2098  //   [...] Operator functions cannot have more or fewer parameters
2099  //   than the number required for the corresponding operator, as
2100  //   described in the rest of this subclause.
2101  unsigned NumParams = FnDecl->getNumParams()
2102                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2103  if (Op != OO_Call &&
2104      ((NumParams == 1 && !CanBeUnaryOperator) ||
2105       (NumParams == 2 && !CanBeBinaryOperator) ||
2106       (NumParams < 1) || (NumParams > 2))) {
2107    // We have the wrong number of parameters.
2108    unsigned ErrorKind;
2109    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2110      ErrorKind = 2;  // 2 -> unary or binary.
2111    } else if (CanBeUnaryOperator) {
2112      ErrorKind = 0;  // 0 -> unary
2113    } else {
2114      assert(CanBeBinaryOperator &&
2115             "All non-call overloaded operators are unary or binary!");
2116      ErrorKind = 1;  // 1 -> binary
2117    }
2118
2119    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2120      << FnDecl->getDeclName() << NumParams << ErrorKind;
2121  }
2122
2123  // Overloaded operators other than operator() cannot be variadic.
2124  if (Op != OO_Call &&
2125      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2126    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2127      << FnDecl->getDeclName();
2128  }
2129
2130  // Some operators must be non-static member functions.
2131  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2132    return Diag(FnDecl->getLocation(),
2133                diag::err_operator_overload_must_be_member)
2134      << FnDecl->getDeclName();
2135  }
2136
2137  // C++ [over.inc]p1:
2138  //   The user-defined function called operator++ implements the
2139  //   prefix and postfix ++ operator. If this function is a member
2140  //   function with no parameters, or a non-member function with one
2141  //   parameter of class or enumeration type, it defines the prefix
2142  //   increment operator ++ for objects of that type. If the function
2143  //   is a member function with one parameter (which shall be of type
2144  //   int) or a non-member function with two parameters (the second
2145  //   of which shall be of type int), it defines the postfix
2146  //   increment operator ++ for objects of that type.
2147  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2148    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2149    bool ParamIsInt = false;
2150    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2151      ParamIsInt = BT->getKind() == BuiltinType::Int;
2152
2153    if (!ParamIsInt)
2154      return Diag(LastParam->getLocation(),
2155                  diag::err_operator_overload_post_incdec_must_be_int)
2156        << LastParam->getType() << (Op == OO_MinusMinus);
2157  }
2158
2159  // Notify the class if it got an assignment operator.
2160  if (Op == OO_Equal) {
2161    // Would have returned earlier otherwise.
2162    assert(isa<CXXMethodDecl>(FnDecl) &&
2163      "Overloaded = not member, but not filtered.");
2164    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2165    Method->getParent()->addedAssignmentOperator(Context, Method);
2166  }
2167
2168  return false;
2169}
2170
2171/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2172/// linkage specification, including the language and (if present)
2173/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2174/// the location of the language string literal, which is provided
2175/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2176/// the '{' brace. Otherwise, this linkage specification does not
2177/// have any braces.
2178Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2179                                                   SourceLocation ExternLoc,
2180                                                   SourceLocation LangLoc,
2181                                                   const char *Lang,
2182                                                   unsigned StrSize,
2183                                                   SourceLocation LBraceLoc) {
2184  LinkageSpecDecl::LanguageIDs Language;
2185  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2186    Language = LinkageSpecDecl::lang_c;
2187  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2188    Language = LinkageSpecDecl::lang_cxx;
2189  else {
2190    Diag(LangLoc, diag::err_bad_language);
2191    return 0;
2192  }
2193
2194  // FIXME: Add all the various semantics of linkage specifications
2195
2196  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2197                                               LangLoc, Language,
2198                                               LBraceLoc.isValid());
2199  CurContext->addDecl(D);
2200  PushDeclContext(S, D);
2201  return D;
2202}
2203
2204/// ActOnFinishLinkageSpecification - Completely the definition of
2205/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2206/// valid, it's the position of the closing '}' brace in a linkage
2207/// specification that uses braces.
2208Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2209                                                    DeclTy *LinkageSpec,
2210                                                    SourceLocation RBraceLoc) {
2211  if (LinkageSpec)
2212    PopDeclContext();
2213  return LinkageSpec;
2214}
2215
2216/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2217/// handler.
2218Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2219{
2220  QualType ExDeclType = GetTypeForDeclarator(D, S);
2221  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2222
2223  bool Invalid = false;
2224
2225  // Arrays and functions decay.
2226  if (ExDeclType->isArrayType())
2227    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2228  else if (ExDeclType->isFunctionType())
2229    ExDeclType = Context.getPointerType(ExDeclType);
2230
2231  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2232  // The exception-declaration shall not denote a pointer or reference to an
2233  // incomplete type, other than [cv] void*.
2234  QualType BaseType = ExDeclType;
2235  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2236  unsigned DK = diag::err_catch_incomplete;
2237  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2238    BaseType = Ptr->getPointeeType();
2239    Mode = 1;
2240    DK = diag::err_catch_incomplete_ptr;
2241  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2242    BaseType = Ref->getPointeeType();
2243    Mode = 2;
2244    DK = diag::err_catch_incomplete_ref;
2245  }
2246  if ((Mode == 0 || !BaseType->isVoidType()) &&
2247      DiagnoseIncompleteType(Begin, BaseType, DK))
2248    Invalid = true;
2249
2250  // FIXME: Need to test for ability to copy-construct and destroy the
2251  // exception variable.
2252  // FIXME: Need to check for abstract classes.
2253
2254  IdentifierInfo *II = D.getIdentifier();
2255  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2256    // The scope should be freshly made just for us. There is just no way
2257    // it contains any previous declaration.
2258    assert(!S->isDeclScope(PrevDecl));
2259    if (PrevDecl->isTemplateParameter()) {
2260      // Maybe we will complain about the shadowed template parameter.
2261      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2262
2263    }
2264  }
2265
2266  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2267                                    II, ExDeclType, VarDecl::None, Begin);
2268  if (D.getInvalidType() || Invalid)
2269    ExDecl->setInvalidDecl();
2270
2271  if (D.getCXXScopeSpec().isSet()) {
2272    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2273      << D.getCXXScopeSpec().getRange();
2274    ExDecl->setInvalidDecl();
2275  }
2276
2277  // Add the exception declaration into this scope.
2278  S->AddDecl(ExDecl);
2279  if (II)
2280    IdResolver.AddDecl(ExDecl);
2281
2282  ProcessDeclAttributes(ExDecl, D);
2283  return ExDecl;
2284}
2285