SemaDeclCXX.cpp revision 72b505b7904b3c9320a1312998800ba76e4f5841
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
129                                                     "in default argument");
130  if (DefaultArgPtr != DefaultArg.get()) {
131    DefaultArg.take();
132    DefaultArg.reset(DefaultArgPtr);
133  }
134  if (DefaultInitFailed) {
135    return;
136  }
137
138  // Check that the default argument is well-formed
139  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
140  if (DefaultArgChecker.Visit(DefaultArg.get())) {
141    Param->setInvalidDecl();
142    return;
143  }
144
145  // Okay: add the default argument to the parameter
146  Param->setDefaultArg(DefaultArg.take());
147}
148
149/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
150/// the default argument for the parameter param failed.
151void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
152  ((ParmVarDecl*)param)->setInvalidDecl();
153}
154
155/// CheckExtraCXXDefaultArguments - Check for any extra default
156/// arguments in the declarator, which is not a function declaration
157/// or definition and therefore is not permitted to have default
158/// arguments. This routine should be invoked for every declarator
159/// that is not a function declaration or definition.
160void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
161  // C++ [dcl.fct.default]p3
162  //   A default argument expression shall be specified only in the
163  //   parameter-declaration-clause of a function declaration or in a
164  //   template-parameter (14.1). It shall not be specified for a
165  //   parameter pack. If it is specified in a
166  //   parameter-declaration-clause, it shall not occur within a
167  //   declarator or abstract-declarator of a parameter-declaration.
168  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
169    DeclaratorChunk &chunk = D.getTypeObject(i);
170    if (chunk.Kind == DeclaratorChunk::Function) {
171      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
172        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
173        if (Param->getDefaultArg()) {
174          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
175            << Param->getDefaultArg()->getSourceRange();
176          Param->setDefaultArg(0);
177        } else if (CachedTokens *Toks
178                     = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens) {
179          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
180            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
181          delete Toks;
182          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
183        }
184      }
185    }
186  }
187}
188
189// MergeCXXFunctionDecl - Merge two declarations of the same C++
190// function, once we already know that they have the same
191// type. Subroutine of MergeFunctionDecl.
192FunctionDecl *
193Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
194  // C++ [dcl.fct.default]p4:
195  //
196  //   For non-template functions, default arguments can be added in
197  //   later declarations of a function in the same
198  //   scope. Declarations in different scopes have completely
199  //   distinct sets of default arguments. That is, declarations in
200  //   inner scopes do not acquire default arguments from
201  //   declarations in outer scopes, and vice versa. In a given
202  //   function declaration, all parameters subsequent to a
203  //   parameter with a default argument shall have default
204  //   arguments supplied in this or previous declarations. A
205  //   default argument shall not be redefined by a later
206  //   declaration (not even to the same value).
207  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
208    ParmVarDecl *OldParam = Old->getParamDecl(p);
209    ParmVarDecl *NewParam = New->getParamDecl(p);
210
211    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
212      Diag(NewParam->getLocation(),
213           diag::err_param_default_argument_redefinition)
214        << NewParam->getDefaultArg()->getSourceRange();
215      Diag(OldParam->getLocation(), diag::note_previous_definition);
216    } else if (OldParam->getDefaultArg()) {
217      // Merge the old default argument into the new parameter
218      NewParam->setDefaultArg(OldParam->getDefaultArg());
219    }
220  }
221
222  return New;
223}
224
225/// CheckCXXDefaultArguments - Verify that the default arguments for a
226/// function declaration are well-formed according to C++
227/// [dcl.fct.default].
228void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
229  unsigned NumParams = FD->getNumParams();
230  unsigned p;
231
232  // Find first parameter with a default argument
233  for (p = 0; p < NumParams; ++p) {
234    ParmVarDecl *Param = FD->getParamDecl(p);
235    if (Param->getDefaultArg())
236      break;
237  }
238
239  // C++ [dcl.fct.default]p4:
240  //   In a given function declaration, all parameters
241  //   subsequent to a parameter with a default argument shall
242  //   have default arguments supplied in this or previous
243  //   declarations. A default argument shall not be redefined
244  //   by a later declaration (not even to the same value).
245  unsigned LastMissingDefaultArg = 0;
246  for(; p < NumParams; ++p) {
247    ParmVarDecl *Param = FD->getParamDecl(p);
248    if (!Param->getDefaultArg()) {
249      if (Param->isInvalidDecl())
250        /* We already complained about this parameter. */;
251      else if (Param->getIdentifier())
252        Diag(Param->getLocation(),
253             diag::err_param_default_argument_missing_name)
254          << Param->getIdentifier();
255      else
256        Diag(Param->getLocation(),
257             diag::err_param_default_argument_missing);
258
259      LastMissingDefaultArg = p;
260    }
261  }
262
263  if (LastMissingDefaultArg > 0) {
264    // Some default arguments were missing. Clear out all of the
265    // default arguments up to (and including) the last missing
266    // default argument, so that we leave the function parameters
267    // in a semantically valid state.
268    for (p = 0; p <= LastMissingDefaultArg; ++p) {
269      ParmVarDecl *Param = FD->getParamDecl(p);
270      if (Param->getDefaultArg()) {
271        delete Param->getDefaultArg();
272        Param->setDefaultArg(0);
273      }
274    }
275  }
276}
277
278/// isCurrentClassName - Determine whether the identifier II is the
279/// name of the class type currently being defined. In the case of
280/// nested classes, this will only return true if II is the name of
281/// the innermost class.
282bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
283                              const CXXScopeSpec *SS) {
284  CXXRecordDecl *CurDecl;
285  if (SS) {
286    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
287    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
288  } else
289    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
290
291  if (CurDecl)
292    return &II == CurDecl->getIdentifier();
293  else
294    return false;
295}
296
297/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
298/// one entry in the base class list of a class specifier, for
299/// example:
300///    class foo : public bar, virtual private baz {
301/// 'public bar' and 'virtual private baz' are each base-specifiers.
302Sema::BaseResult
303Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
304                         bool Virtual, AccessSpecifier Access,
305                         TypeTy *basetype, SourceLocation BaseLoc) {
306  RecordDecl *Decl = (RecordDecl*)classdecl;
307  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
308
309  // Base specifiers must be record types.
310  if (!BaseType->isRecordType())
311    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
312
313  // C++ [class.union]p1:
314  //   A union shall not be used as a base class.
315  if (BaseType->isUnionType())
316    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
317
318  // C++ [class.union]p1:
319  //   A union shall not have base classes.
320  if (Decl->isUnion())
321    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
322              << SpecifierRange;
323
324  // C++ [class.derived]p2:
325  //   The class-name in a base-specifier shall not be an incompletely
326  //   defined class.
327  if (BaseType->isIncompleteType())
328    return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
329
330  // If the base class is polymorphic, the new one is, too.
331  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
332  assert(BaseDecl && "Record type has no declaration");
333  BaseDecl = BaseDecl->getDefinition(Context);
334  assert(BaseDecl && "Base type is not incomplete, but has no definition");
335  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
336    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
337
338  // Create the base specifier.
339  return new CXXBaseSpecifier(SpecifierRange, Virtual,
340                              BaseType->isClassType(), Access, BaseType);
341}
342
343/// ActOnBaseSpecifiers - Attach the given base specifiers to the
344/// class, after checking whether there are any duplicate base
345/// classes.
346void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
347                               unsigned NumBases) {
348  if (NumBases == 0)
349    return;
350
351  // Used to keep track of which base types we have already seen, so
352  // that we can properly diagnose redundant direct base types. Note
353  // that the key is always the unqualified canonical type of the base
354  // class.
355  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
356
357  // Copy non-redundant base specifiers into permanent storage.
358  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
359  unsigned NumGoodBases = 0;
360  for (unsigned idx = 0; idx < NumBases; ++idx) {
361    QualType NewBaseType
362      = Context.getCanonicalType(BaseSpecs[idx]->getType());
363    NewBaseType = NewBaseType.getUnqualifiedType();
364
365    if (KnownBaseTypes[NewBaseType]) {
366      // C++ [class.mi]p3:
367      //   A class shall not be specified as a direct base class of a
368      //   derived class more than once.
369      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
370           diag::err_duplicate_base_class)
371        << KnownBaseTypes[NewBaseType]->getType()
372        << BaseSpecs[idx]->getSourceRange();
373
374      // Delete the duplicate base class specifier; we're going to
375      // overwrite its pointer later.
376      delete BaseSpecs[idx];
377    } else {
378      // Okay, add this new base class.
379      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
380      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
381    }
382  }
383
384  // Attach the remaining base class specifiers to the derived class.
385  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
386  Decl->setBases(BaseSpecs, NumGoodBases);
387
388  // Delete the remaining (good) base class specifiers, since their
389  // data has been copied into the CXXRecordDecl.
390  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
391    delete BaseSpecs[idx];
392}
393
394//===----------------------------------------------------------------------===//
395// C++ class member Handling
396//===----------------------------------------------------------------------===//
397
398/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
399/// definition, when on C++.
400void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
401  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
402  PushDeclContext(S, Dcl);
403  FieldCollector->StartClass();
404
405  if (Dcl->getIdentifier()) {
406    // C++ [class]p2:
407    //   [...] The class-name is also inserted into the scope of the
408    //   class itself; this is known as the injected-class-name. For
409    //   purposes of access checking, the injected-class-name is treated
410    //   as if it were a public member name.
411    PushOnScopeChains(Dcl, S);
412  }
413}
414
415/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
416/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
417/// bitfield width if there is one and 'InitExpr' specifies the initializer if
418/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
419/// declarators on it.
420///
421/// FIXME: The note below is out-of-date.
422/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
423/// an instance field is declared, a new CXXFieldDecl is created but the method
424/// does *not* return it; it returns LastInGroup instead. The other C++ members
425/// (which are all ScopedDecls) are returned after appending them to
426/// LastInGroup.
427Sema::DeclTy *
428Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
429                               ExprTy *BW, ExprTy *InitExpr,
430                               DeclTy *LastInGroup) {
431  const DeclSpec &DS = D.getDeclSpec();
432  DeclarationName Name = GetNameForDeclarator(D);
433  Expr *BitWidth = static_cast<Expr*>(BW);
434  Expr *Init = static_cast<Expr*>(InitExpr);
435  SourceLocation Loc = D.getIdentifierLoc();
436
437  bool isFunc = D.isFunctionDeclarator();
438
439  // C++ 9.2p6: A member shall not be declared to have automatic storage
440  // duration (auto, register) or with the extern storage-class-specifier.
441  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
442  // data members and cannot be applied to names declared const or static,
443  // and cannot be applied to reference members.
444  switch (DS.getStorageClassSpec()) {
445    case DeclSpec::SCS_unspecified:
446    case DeclSpec::SCS_typedef:
447    case DeclSpec::SCS_static:
448      // FALL THROUGH.
449      break;
450    case DeclSpec::SCS_mutable:
451      if (isFunc) {
452        if (DS.getStorageClassSpecLoc().isValid())
453          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
454        else
455          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
456
457        // FIXME: It would be nicer if the keyword was ignored only for this
458        // declarator. Otherwise we could get follow-up errors.
459        D.getMutableDeclSpec().ClearStorageClassSpecs();
460      } else {
461        QualType T = GetTypeForDeclarator(D, S);
462        diag::kind err = static_cast<diag::kind>(0);
463        if (T->isReferenceType())
464          err = diag::err_mutable_reference;
465        else if (T.isConstQualified())
466          err = diag::err_mutable_const;
467        if (err != 0) {
468          if (DS.getStorageClassSpecLoc().isValid())
469            Diag(DS.getStorageClassSpecLoc(), err);
470          else
471            Diag(DS.getThreadSpecLoc(), err);
472          // FIXME: It would be nicer if the keyword was ignored only for this
473          // declarator. Otherwise we could get follow-up errors.
474          D.getMutableDeclSpec().ClearStorageClassSpecs();
475        }
476      }
477      break;
478    default:
479      if (DS.getStorageClassSpecLoc().isValid())
480        Diag(DS.getStorageClassSpecLoc(),
481             diag::err_storageclass_invalid_for_member);
482      else
483        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
484      D.getMutableDeclSpec().ClearStorageClassSpecs();
485  }
486
487  if (!isFunc &&
488      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
489      D.getNumTypeObjects() == 0) {
490    // Check also for this case:
491    //
492    // typedef int f();
493    // f a;
494    //
495    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
496    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
497  }
498
499  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
500                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
501                      !isFunc);
502
503  Decl *Member;
504  bool InvalidDecl = false;
505
506  if (isInstField)
507    Member = static_cast<Decl*>(ActOnField(S, cast<CXXRecordDecl>(CurContext),
508                                           Loc, D, BitWidth));
509  else
510    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
511
512  if (!Member) return LastInGroup;
513
514  assert((Name || isInstField) && "No identifier for non-field ?");
515
516  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
517  // specific methods. Use a wrapper class that can be used with all C++ class
518  // member decls.
519  CXXClassMemberWrapper(Member).setAccess(AS);
520
521  // C++ [dcl.init.aggr]p1:
522  //   An aggregate is an array or a class (clause 9) with [...] no
523  //   private or protected non-static data members (clause 11).
524  if (isInstField && (AS == AS_private || AS == AS_protected))
525    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
526
527  if (DS.isVirtualSpecified()) {
528    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
529      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
530      InvalidDecl = true;
531    } else {
532      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
533      CurClass->setAggregate(false);
534      CurClass->setPolymorphic(true);
535    }
536  }
537
538  if (BitWidth) {
539    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
540    // constant-expression be a value equal to zero.
541    // FIXME: Check this.
542
543    if (D.isFunctionDeclarator()) {
544      // FIXME: Emit diagnostic about only constructors taking base initializers
545      // or something similar, when constructor support is in place.
546      Diag(Loc, diag::err_not_bitfield_type)
547        << Name << BitWidth->getSourceRange();
548      InvalidDecl = true;
549
550    } else if (isInstField) {
551      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
552      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
553        Diag(Loc, diag::err_not_integral_type_bitfield)
554          << Name << BitWidth->getSourceRange();
555        InvalidDecl = true;
556      }
557
558    } else if (isa<FunctionDecl>(Member)) {
559      // A function typedef ("typedef int f(); f a;").
560      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
561      Diag(Loc, diag::err_not_integral_type_bitfield)
562        << Name << BitWidth->getSourceRange();
563      InvalidDecl = true;
564
565    } else if (isa<TypedefDecl>(Member)) {
566      // "cannot declare 'A' to be a bit-field type"
567      Diag(Loc, diag::err_not_bitfield_type)
568        << Name << BitWidth->getSourceRange();
569      InvalidDecl = true;
570
571    } else {
572      assert(isa<CXXClassVarDecl>(Member) &&
573             "Didn't we cover all member kinds?");
574      // C++ 9.6p3: A bit-field shall not be a static member.
575      // "static member 'A' cannot be a bit-field"
576      Diag(Loc, diag::err_static_not_bitfield)
577        << Name << BitWidth->getSourceRange();
578      InvalidDecl = true;
579    }
580  }
581
582  if (Init) {
583    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
584    // if it declares a static member of const integral or const enumeration
585    // type.
586    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
587      // ...static member of...
588      CVD->setInit(Init);
589      // ...const integral or const enumeration type.
590      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
591          CVD->getType()->isIntegralType()) {
592        // constant-initializer
593        if (CheckForConstantInitializer(Init, CVD->getType()))
594          InvalidDecl = true;
595
596      } else {
597        // not const integral.
598        Diag(Loc, diag::err_member_initialization)
599          << Name << Init->getSourceRange();
600        InvalidDecl = true;
601      }
602
603    } else {
604      // not static member.
605      Diag(Loc, diag::err_member_initialization)
606        << Name << Init->getSourceRange();
607      InvalidDecl = true;
608    }
609  }
610
611  if (InvalidDecl)
612    Member->setInvalidDecl();
613
614  if (isInstField) {
615    FieldCollector->Add(cast<FieldDecl>(Member));
616    return LastInGroup;
617  }
618  return Member;
619}
620
621/// ActOnMemInitializer - Handle a C++ member initializer.
622Sema::MemInitResult
623Sema::ActOnMemInitializer(DeclTy *ConstructorD,
624                          Scope *S,
625                          IdentifierInfo *MemberOrBase,
626                          SourceLocation IdLoc,
627                          SourceLocation LParenLoc,
628                          ExprTy **Args, unsigned NumArgs,
629                          SourceLocation *CommaLocs,
630                          SourceLocation RParenLoc) {
631  CXXConstructorDecl *Constructor
632    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
633  if (!Constructor) {
634    // The user wrote a constructor initializer on a function that is
635    // not a C++ constructor. Ignore the error for now, because we may
636    // have more member initializers coming; we'll diagnose it just
637    // once in ActOnMemInitializers.
638    return true;
639  }
640
641  CXXRecordDecl *ClassDecl = Constructor->getParent();
642
643  // C++ [class.base.init]p2:
644  //   Names in a mem-initializer-id are looked up in the scope of the
645  //   constructor’s class and, if not found in that scope, are looked
646  //   up in the scope containing the constructor’s
647  //   definition. [Note: if the constructor’s class contains a member
648  //   with the same name as a direct or virtual base class of the
649  //   class, a mem-initializer-id naming the member or base class and
650  //   composed of a single identifier refers to the class member. A
651  //   mem-initializer-id for the hidden base class may be specified
652  //   using a qualified name. ]
653  // Look for a member, first.
654  FieldDecl *Member = 0;
655  DeclContext::lookup_result Result = ClassDecl->lookup(Context, MemberOrBase);
656  if (Result.first != Result.second)
657    Member = dyn_cast<FieldDecl>(*Result.first);
658
659  // FIXME: Handle members of an anonymous union.
660
661  if (Member) {
662    // FIXME: Perform direct initialization of the member.
663    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
664  }
665
666  // It didn't name a member, so see if it names a class.
667  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
668  if (!BaseTy)
669    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
670      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
671
672  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
673  if (!BaseType->isRecordType())
674    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
675      << BaseType << SourceRange(IdLoc, RParenLoc);
676
677  // C++ [class.base.init]p2:
678  //   [...] Unless the mem-initializer-id names a nonstatic data
679  //   member of the constructor’s class or a direct or virtual base
680  //   of that class, the mem-initializer is ill-formed. A
681  //   mem-initializer-list can initialize a base class using any
682  //   name that denotes that base class type.
683
684  // First, check for a direct base class.
685  const CXXBaseSpecifier *DirectBaseSpec = 0;
686  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
687       Base != ClassDecl->bases_end(); ++Base) {
688    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
689        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
690      // We found a direct base of this type. That's what we're
691      // initializing.
692      DirectBaseSpec = &*Base;
693      break;
694    }
695  }
696
697  // Check for a virtual base class.
698  // FIXME: We might be able to short-circuit this if we know in
699  // advance that there are no virtual bases.
700  const CXXBaseSpecifier *VirtualBaseSpec = 0;
701  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
702    // We haven't found a base yet; search the class hierarchy for a
703    // virtual base class.
704    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
705                    /*DetectVirtual=*/false);
706    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
707      for (BasePaths::paths_iterator Path = Paths.begin();
708           Path != Paths.end(); ++Path) {
709        if (Path->back().Base->isVirtual()) {
710          VirtualBaseSpec = Path->back().Base;
711          break;
712        }
713      }
714    }
715  }
716
717  // C++ [base.class.init]p2:
718  //   If a mem-initializer-id is ambiguous because it designates both
719  //   a direct non-virtual base class and an inherited virtual base
720  //   class, the mem-initializer is ill-formed.
721  if (DirectBaseSpec && VirtualBaseSpec)
722    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
723      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
724
725  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
726}
727
728
729void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
730                                             DeclTy *TagDecl,
731                                             SourceLocation LBrac,
732                                             SourceLocation RBrac) {
733  ActOnFields(S, RLoc, TagDecl,
734              (DeclTy**)FieldCollector->getCurFields(),
735              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
736}
737
738/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
739/// special functions, such as the default constructor, copy
740/// constructor, or destructor, to the given C++ class (C++
741/// [special]p1).  This routine can only be executed just before the
742/// definition of the class is complete.
743void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
744  QualType ClassType = Context.getTypeDeclType(ClassDecl);
745  ClassType = Context.getCanonicalType(ClassType);
746
747  if (!ClassDecl->hasUserDeclaredConstructor()) {
748    // C++ [class.ctor]p5:
749    //   A default constructor for a class X is a constructor of class X
750    //   that can be called without an argument. If there is no
751    //   user-declared constructor for class X, a default constructor is
752    //   implicitly declared. An implicitly-declared default constructor
753    //   is an inline public member of its class.
754    DeclarationName Name
755      = Context.DeclarationNames.getCXXConstructorName(ClassType);
756    CXXConstructorDecl *DefaultCon =
757      CXXConstructorDecl::Create(Context, ClassDecl,
758                                 ClassDecl->getLocation(), Name,
759                                 Context.getFunctionType(Context.VoidTy,
760                                                         0, 0, false, 0),
761                                 /*isExplicit=*/false,
762                                 /*isInline=*/true,
763                                 /*isImplicitlyDeclared=*/true);
764    DefaultCon->setAccess(AS_public);
765    ClassDecl->addDecl(Context, DefaultCon);
766
767    // Notify the class that we've added a constructor.
768    ClassDecl->addedConstructor(Context, DefaultCon);
769  }
770
771  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
772    // C++ [class.copy]p4:
773    //   If the class definition does not explicitly declare a copy
774    //   constructor, one is declared implicitly.
775
776    // C++ [class.copy]p5:
777    //   The implicitly-declared copy constructor for a class X will
778    //   have the form
779    //
780    //       X::X(const X&)
781    //
782    //   if
783    bool HasConstCopyConstructor = true;
784
785    //     -- each direct or virtual base class B of X has a copy
786    //        constructor whose first parameter is of type const B& or
787    //        const volatile B&, and
788    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
789         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
790      const CXXRecordDecl *BaseClassDecl
791        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
792      HasConstCopyConstructor
793        = BaseClassDecl->hasConstCopyConstructor(Context);
794    }
795
796    //     -- for all the nonstatic data members of X that are of a
797    //        class type M (or array thereof), each such class type
798    //        has a copy constructor whose first parameter is of type
799    //        const M& or const volatile M&.
800    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
801         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
802      QualType FieldType = (*Field)->getType();
803      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
804        FieldType = Array->getElementType();
805      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
806        const CXXRecordDecl *FieldClassDecl
807          = cast<CXXRecordDecl>(FieldClassType->getDecl());
808        HasConstCopyConstructor
809          = FieldClassDecl->hasConstCopyConstructor(Context);
810      }
811    }
812
813    //  Otherwise, the implicitly declared copy constructor will have
814    //  the form
815    //
816    //       X::X(X&)
817    QualType ArgType = Context.getTypeDeclType(ClassDecl);
818    if (HasConstCopyConstructor)
819      ArgType = ArgType.withConst();
820    ArgType = Context.getReferenceType(ArgType);
821
822    //  An implicitly-declared copy constructor is an inline public
823    //  member of its class.
824    DeclarationName Name
825      = Context.DeclarationNames.getCXXConstructorName(ClassType);
826    CXXConstructorDecl *CopyConstructor
827      = CXXConstructorDecl::Create(Context, ClassDecl,
828                                   ClassDecl->getLocation(), Name,
829                                   Context.getFunctionType(Context.VoidTy,
830                                                           &ArgType, 1,
831                                                           false, 0),
832                                   /*isExplicit=*/false,
833                                   /*isInline=*/true,
834                                   /*isImplicitlyDeclared=*/true);
835    CopyConstructor->setAccess(AS_public);
836
837    // Add the parameter to the constructor.
838    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
839                                                 ClassDecl->getLocation(),
840                                                 /*IdentifierInfo=*/0,
841                                                 ArgType, VarDecl::None, 0, 0);
842    CopyConstructor->setParams(&FromParam, 1);
843
844    ClassDecl->addedConstructor(Context, CopyConstructor);
845    DeclContext::lookup_result Lookup = ClassDecl->lookup(Context, Name);
846    if (Lookup.first == Lookup.second
847        || (!isa<CXXConstructorDecl>(*Lookup.first) &&
848            !isa<OverloadedFunctionDecl>(*Lookup.first)))
849      ClassDecl->addDecl(Context, CopyConstructor);
850    else {
851      OverloadedFunctionDecl *Ovl
852        = dyn_cast<OverloadedFunctionDecl>(*Lookup.first);
853      if (!Ovl) {
854        Ovl = OverloadedFunctionDecl::Create(Context, ClassDecl, Name);
855        Ovl->addOverload(cast<CXXConstructorDecl>(*Lookup.first));
856        ClassDecl->insert(Context, Ovl);
857      }
858
859      Ovl->addOverload(CopyConstructor);
860      ClassDecl->addDecl(Context, CopyConstructor, false);
861    }
862  }
863
864  if (!ClassDecl->hasUserDeclaredDestructor()) {
865    // C++ [class.dtor]p2:
866    //   If a class has no user-declared destructor, a destructor is
867    //   declared implicitly. An implicitly-declared destructor is an
868    //   inline public member of its class.
869    DeclarationName Name
870      = Context.DeclarationNames.getCXXDestructorName(ClassType);
871    CXXDestructorDecl *Destructor
872      = CXXDestructorDecl::Create(Context, ClassDecl,
873                                  ClassDecl->getLocation(), Name,
874                                  Context.getFunctionType(Context.VoidTy,
875                                                          0, 0, false, 0),
876                                  /*isInline=*/true,
877                                  /*isImplicitlyDeclared=*/true);
878    Destructor->setAccess(AS_public);
879    ClassDecl->addDecl(Context, Destructor);
880  }
881
882  // FIXME: Implicit copy assignment operator
883}
884
885void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
886  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
887  FieldCollector->FinishClass();
888  AddImplicitlyDeclaredMembersToClass(Rec);
889  PopDeclContext();
890
891  // Everything, including inline method definitions, have been parsed.
892  // Let the consumer know of the new TagDecl definition.
893  Consumer.HandleTagDeclDefinition(Rec);
894}
895
896/// ActOnStartDelayedCXXMethodDeclaration - We have completed
897/// parsing a top-level (non-nested) C++ class, and we are now
898/// parsing those parts of the given Method declaration that could
899/// not be parsed earlier (C++ [class.mem]p2), such as default
900/// arguments. This action should enter the scope of the given
901/// Method declaration as if we had just parsed the qualified method
902/// name. However, it should not bring the parameters into scope;
903/// that will be performed by ActOnDelayedCXXMethodParameter.
904void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
905  CXXScopeSpec SS;
906  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
907  ActOnCXXEnterDeclaratorScope(S, SS);
908}
909
910/// ActOnDelayedCXXMethodParameter - We've already started a delayed
911/// C++ method declaration. We're (re-)introducing the given
912/// function parameter into scope for use in parsing later parts of
913/// the method declaration. For example, we could see an
914/// ActOnParamDefaultArgument event for this parameter.
915void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
916  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
917  S->AddDecl(Param);
918  if (Param->getDeclName())
919    IdResolver.AddDecl(Param);
920}
921
922/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
923/// processing the delayed method declaration for Method. The method
924/// declaration is now considered finished. There may be a separate
925/// ActOnStartOfFunctionDef action later (not necessarily
926/// immediately!) for this method, if it was also defined inside the
927/// class body.
928void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
929  FunctionDecl *Method = (FunctionDecl*)MethodD;
930  CXXScopeSpec SS;
931  SS.setScopeRep(Method->getDeclContext());
932  ActOnCXXExitDeclaratorScope(S, SS);
933
934  // Now that we have our default arguments, check the constructor
935  // again. It could produce additional diagnostics or affect whether
936  // the class has implicitly-declared destructors, among other
937  // things.
938  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
939    if (CheckConstructor(Constructor))
940      Constructor->setInvalidDecl();
941  }
942
943  // Check the default arguments, which we may have added.
944  if (!Method->isInvalidDecl())
945    CheckCXXDefaultArguments(Method);
946}
947
948/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
949/// the well-formedness of the constructor declarator @p D with type @p
950/// R. If there are any errors in the declarator, this routine will
951/// emit diagnostics and return true. Otherwise, it will return
952/// false. Either way, the type @p R will be updated to reflect a
953/// well-formed type for the constructor.
954bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
955                                      FunctionDecl::StorageClass& SC) {
956  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
957  bool isInvalid = false;
958
959  // C++ [class.ctor]p3:
960  //   A constructor shall not be virtual (10.3) or static (9.4). A
961  //   constructor can be invoked for a const, volatile or const
962  //   volatile object. A constructor shall not be declared const,
963  //   volatile, or const volatile (9.3.2).
964  if (isVirtual) {
965    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
966      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
967      << SourceRange(D.getIdentifierLoc());
968    isInvalid = true;
969  }
970  if (SC == FunctionDecl::Static) {
971    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
972      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
973      << SourceRange(D.getIdentifierLoc());
974    isInvalid = true;
975    SC = FunctionDecl::None;
976  }
977  if (D.getDeclSpec().hasTypeSpecifier()) {
978    // Constructors don't have return types, but the parser will
979    // happily parse something like:
980    //
981    //   class X {
982    //     float X(float);
983    //   };
984    //
985    // The return type will be eliminated later.
986    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
987      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
988      << SourceRange(D.getIdentifierLoc());
989  }
990  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
991    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
992    if (FTI.TypeQuals & QualType::Const)
993      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
994        << "const" << SourceRange(D.getIdentifierLoc());
995    if (FTI.TypeQuals & QualType::Volatile)
996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
997        << "volatile" << SourceRange(D.getIdentifierLoc());
998    if (FTI.TypeQuals & QualType::Restrict)
999      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1000        << "restrict" << SourceRange(D.getIdentifierLoc());
1001  }
1002
1003  // Rebuild the function type "R" without any type qualifiers (in
1004  // case any of the errors above fired) and with "void" as the
1005  // return type, since constructors don't have return types. We
1006  // *always* have to do this, because GetTypeForDeclarator will
1007  // put in a result type of "int" when none was specified.
1008  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
1009  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1010                              Proto->getNumArgs(),
1011                              Proto->isVariadic(),
1012                              0);
1013
1014  return isInvalid;
1015}
1016
1017/// CheckConstructor - Checks a fully-formed constructor for
1018/// well-formedness, issuing any diagnostics required. Returns true if
1019/// the constructor declarator is invalid.
1020bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1021  if (Constructor->isInvalidDecl())
1022    return true;
1023
1024  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1025  bool Invalid = false;
1026
1027  // C++ [class.copy]p3:
1028  //   A declaration of a constructor for a class X is ill-formed if
1029  //   its first parameter is of type (optionally cv-qualified) X and
1030  //   either there are no other parameters or else all other
1031  //   parameters have default arguments.
1032  if ((Constructor->getNumParams() == 1) ||
1033      (Constructor->getNumParams() > 1 &&
1034       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1035    QualType ParamType = Constructor->getParamDecl(0)->getType();
1036    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1037    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1038      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1039        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1040      Invalid = true;
1041    }
1042  }
1043
1044  // Notify the class that we've added a constructor.
1045  ClassDecl->addedConstructor(Context, Constructor);
1046
1047  return Invalid;
1048}
1049
1050/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1051/// the well-formednes of the destructor declarator @p D with type @p
1052/// R. If there are any errors in the declarator, this routine will
1053/// emit diagnostics and return true. Otherwise, it will return
1054/// false. Either way, the type @p R will be updated to reflect a
1055/// well-formed type for the destructor.
1056bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1057                                     FunctionDecl::StorageClass& SC) {
1058  bool isInvalid = false;
1059
1060  // C++ [class.dtor]p1:
1061  //   [...] A typedef-name that names a class is a class-name
1062  //   (7.1.3); however, a typedef-name that names a class shall not
1063  //   be used as the identifier in the declarator for a destructor
1064  //   declaration.
1065  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
1066  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
1067    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1068      << TypedefD->getDeclName();
1069    isInvalid = true;
1070  }
1071
1072  // C++ [class.dtor]p2:
1073  //   A destructor is used to destroy objects of its class type. A
1074  //   destructor takes no parameters, and no return type can be
1075  //   specified for it (not even void). The address of a destructor
1076  //   shall not be taken. A destructor shall not be static. A
1077  //   destructor can be invoked for a const, volatile or const
1078  //   volatile object. A destructor shall not be declared const,
1079  //   volatile or const volatile (9.3.2).
1080  if (SC == FunctionDecl::Static) {
1081    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1082      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1083      << SourceRange(D.getIdentifierLoc());
1084    isInvalid = true;
1085    SC = FunctionDecl::None;
1086  }
1087  if (D.getDeclSpec().hasTypeSpecifier()) {
1088    // Destructors don't have return types, but the parser will
1089    // happily parse something like:
1090    //
1091    //   class X {
1092    //     float ~X();
1093    //   };
1094    //
1095    // The return type will be eliminated later.
1096    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1097      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1098      << SourceRange(D.getIdentifierLoc());
1099  }
1100  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
1101    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1102    if (FTI.TypeQuals & QualType::Const)
1103      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1104        << "const" << SourceRange(D.getIdentifierLoc());
1105    if (FTI.TypeQuals & QualType::Volatile)
1106      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1107        << "volatile" << SourceRange(D.getIdentifierLoc());
1108    if (FTI.TypeQuals & QualType::Restrict)
1109      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1110        << "restrict" << SourceRange(D.getIdentifierLoc());
1111  }
1112
1113  // Make sure we don't have any parameters.
1114  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1115    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1116
1117    // Delete the parameters.
1118    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1119    if (FTI.NumArgs) {
1120      delete [] FTI.ArgInfo;
1121      FTI.NumArgs = 0;
1122      FTI.ArgInfo = 0;
1123    }
1124  }
1125
1126  // Make sure the destructor isn't variadic.
1127  if (R->getAsFunctionTypeProto()->isVariadic())
1128    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1129
1130  // Rebuild the function type "R" without any type qualifiers or
1131  // parameters (in case any of the errors above fired) and with
1132  // "void" as the return type, since destructors don't have return
1133  // types. We *always* have to do this, because GetTypeForDeclarator
1134  // will put in a result type of "int" when none was specified.
1135  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1136
1137  return isInvalid;
1138}
1139
1140/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1141/// well-formednes of the conversion function declarator @p D with
1142/// type @p R. If there are any errors in the declarator, this routine
1143/// will emit diagnostics and return true. Otherwise, it will return
1144/// false. Either way, the type @p R will be updated to reflect a
1145/// well-formed type for the conversion operator.
1146bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1147                                     FunctionDecl::StorageClass& SC) {
1148  bool isInvalid = false;
1149
1150  // C++ [class.conv.fct]p1:
1151  //   Neither parameter types nor return type can be specified. The
1152  //   type of a conversion function (8.3.5) is “function taking no
1153  //   parameter returning conversion-type-id.”
1154  if (SC == FunctionDecl::Static) {
1155    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1156      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1157      << SourceRange(D.getIdentifierLoc());
1158    isInvalid = true;
1159    SC = FunctionDecl::None;
1160  }
1161  if (D.getDeclSpec().hasTypeSpecifier()) {
1162    // Conversion functions don't have return types, but the parser will
1163    // happily parse something like:
1164    //
1165    //   class X {
1166    //     float operator bool();
1167    //   };
1168    //
1169    // The return type will be changed later anyway.
1170    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1171      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1172      << SourceRange(D.getIdentifierLoc());
1173  }
1174
1175  // Make sure we don't have any parameters.
1176  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1178
1179    // Delete the parameters.
1180    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1181    if (FTI.NumArgs) {
1182      delete [] FTI.ArgInfo;
1183      FTI.NumArgs = 0;
1184      FTI.ArgInfo = 0;
1185    }
1186  }
1187
1188  // Make sure the conversion function isn't variadic.
1189  if (R->getAsFunctionTypeProto()->isVariadic())
1190    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1191
1192  // C++ [class.conv.fct]p4:
1193  //   The conversion-type-id shall not represent a function type nor
1194  //   an array type.
1195  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1196  if (ConvType->isArrayType()) {
1197    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1198    ConvType = Context.getPointerType(ConvType);
1199  } else if (ConvType->isFunctionType()) {
1200    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1201    ConvType = Context.getPointerType(ConvType);
1202  }
1203
1204  // Rebuild the function type "R" without any parameters (in case any
1205  // of the errors above fired) and with the conversion type as the
1206  // return type.
1207  R = Context.getFunctionType(ConvType, 0, 0, false,
1208                              R->getAsFunctionTypeProto()->getTypeQuals());
1209
1210  return isInvalid;
1211}
1212
1213/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1214/// the declaration of the given C++ conversion function. This routine
1215/// is responsible for recording the conversion function in the C++
1216/// class, if possible.
1217Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1218  assert(Conversion && "Expected to receive a conversion function declaration");
1219
1220  // Set the lexical context of this conversion function
1221  Conversion->setLexicalDeclContext(CurContext);
1222
1223  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1224
1225  // Make sure we aren't redeclaring the conversion function.
1226  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1227  OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1228  for (OverloadedFunctionDecl::function_iterator Func
1229         = Conversions->function_begin();
1230       Func != Conversions->function_end(); ++Func) {
1231    CXXConversionDecl *OtherConv = cast<CXXConversionDecl>(*Func);
1232    if (ConvType == Context.getCanonicalType(OtherConv->getConversionType())) {
1233      Diag(Conversion->getLocation(), diag::err_conv_function_redeclared);
1234      Diag(OtherConv->getLocation(),
1235           OtherConv->isThisDeclarationADefinition()?
1236              diag::note_previous_definition
1237            : diag::note_previous_declaration);
1238      Conversion->setInvalidDecl();
1239      return (DeclTy *)Conversion;
1240    }
1241  }
1242
1243  // C++ [class.conv.fct]p1:
1244  //   [...] A conversion function is never used to convert a
1245  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1246  //   same object type (or a reference to it), to a (possibly
1247  //   cv-qualified) base class of that type (or a reference to it),
1248  //   or to (possibly cv-qualified) void.
1249  // FIXME: Suppress this warning if the conversion function ends up
1250  // being a virtual function that overrides a virtual function in a
1251  // base class.
1252  QualType ClassType
1253    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1254  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1255    ConvType = ConvTypeRef->getPointeeType();
1256  if (ConvType->isRecordType()) {
1257    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1258    if (ConvType == ClassType)
1259      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1260        << ClassType;
1261    else if (IsDerivedFrom(ClassType, ConvType))
1262      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1263        <<  ClassType << ConvType;
1264  } else if (ConvType->isVoidType()) {
1265    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1266      << ClassType << ConvType;
1267  }
1268
1269  ClassDecl->addConversionFunction(Context, Conversion);
1270
1271  return (DeclTy *)Conversion;
1272}
1273
1274//===----------------------------------------------------------------------===//
1275// Namespace Handling
1276//===----------------------------------------------------------------------===//
1277
1278/// ActOnStartNamespaceDef - This is called at the start of a namespace
1279/// definition.
1280Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1281                                           SourceLocation IdentLoc,
1282                                           IdentifierInfo *II,
1283                                           SourceLocation LBrace) {
1284  NamespaceDecl *Namespc =
1285      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1286  Namespc->setLBracLoc(LBrace);
1287
1288  Scope *DeclRegionScope = NamespcScope->getParent();
1289
1290  if (II) {
1291    // C++ [namespace.def]p2:
1292    // The identifier in an original-namespace-definition shall not have been
1293    // previously defined in the declarative region in which the
1294    // original-namespace-definition appears. The identifier in an
1295    // original-namespace-definition is the name of the namespace. Subsequently
1296    // in that declarative region, it is treated as an original-namespace-name.
1297
1298    Decl *PrevDecl =
1299      LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1300                /*enableLazyBuiltinCreation=*/false,
1301                /*LookupInParent=*/false);
1302
1303    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1304      // This is an extended namespace definition.
1305      // Attach this namespace decl to the chain of extended namespace
1306      // definitions.
1307      OrigNS->setNextNamespace(Namespc);
1308      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1309
1310      // Remove the previous declaration from the scope.
1311      if (DeclRegionScope->isDeclScope(OrigNS)) {
1312        IdResolver.RemoveDecl(OrigNS);
1313        DeclRegionScope->RemoveDecl(OrigNS);
1314      }
1315    } else if (PrevDecl) {
1316      // This is an invalid name redefinition.
1317      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1318       << Namespc->getDeclName();
1319      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1320      Namespc->setInvalidDecl();
1321      // Continue on to push Namespc as current DeclContext and return it.
1322    }
1323
1324    PushOnScopeChains(Namespc, DeclRegionScope);
1325  } else {
1326    // FIXME: Handle anonymous namespaces
1327  }
1328
1329  // Although we could have an invalid decl (i.e. the namespace name is a
1330  // redefinition), push it as current DeclContext and try to continue parsing.
1331  // FIXME: We should be able to push Namespc here, so that the
1332  // each DeclContext for the namespace has the declarations
1333  // that showed up in that particular namespace definition.
1334  PushDeclContext(NamespcScope, Namespc);
1335  return Namespc;
1336}
1337
1338/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1339/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1340void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1341  Decl *Dcl = static_cast<Decl *>(D);
1342  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1343  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1344  Namespc->setRBracLoc(RBrace);
1345  PopDeclContext();
1346}
1347
1348
1349/// AddCXXDirectInitializerToDecl - This action is called immediately after
1350/// ActOnDeclarator, when a C++ direct initializer is present.
1351/// e.g: "int x(1);"
1352void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1353                                         ExprTy **ExprTys, unsigned NumExprs,
1354                                         SourceLocation *CommaLocs,
1355                                         SourceLocation RParenLoc) {
1356  assert(NumExprs != 0 && ExprTys && "missing expressions");
1357  Decl *RealDecl = static_cast<Decl *>(Dcl);
1358
1359  // If there is no declaration, there was an error parsing it.  Just ignore
1360  // the initializer.
1361  if (RealDecl == 0) {
1362    for (unsigned i = 0; i != NumExprs; ++i)
1363      delete static_cast<Expr *>(ExprTys[i]);
1364    return;
1365  }
1366
1367  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1368  if (!VDecl) {
1369    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1370    RealDecl->setInvalidDecl();
1371    return;
1372  }
1373
1374  // We will treat direct-initialization as a copy-initialization:
1375  //    int x(1);  -as-> int x = 1;
1376  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1377  //
1378  // Clients that want to distinguish between the two forms, can check for
1379  // direct initializer using VarDecl::hasCXXDirectInitializer().
1380  // A major benefit is that clients that don't particularly care about which
1381  // exactly form was it (like the CodeGen) can handle both cases without
1382  // special case code.
1383
1384  // C++ 8.5p11:
1385  // The form of initialization (using parentheses or '=') is generally
1386  // insignificant, but does matter when the entity being initialized has a
1387  // class type.
1388  QualType DeclInitType = VDecl->getType();
1389  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1390    DeclInitType = Array->getElementType();
1391
1392  if (VDecl->getType()->isRecordType()) {
1393    CXXConstructorDecl *Constructor
1394      = PerformInitializationByConstructor(DeclInitType,
1395                                           (Expr **)ExprTys, NumExprs,
1396                                           VDecl->getLocation(),
1397                                           SourceRange(VDecl->getLocation(),
1398                                                       RParenLoc),
1399                                           VDecl->getDeclName(),
1400                                           IK_Direct);
1401    if (!Constructor) {
1402      RealDecl->setInvalidDecl();
1403    }
1404
1405    // Let clients know that initialization was done with a direct
1406    // initializer.
1407    VDecl->setCXXDirectInitializer(true);
1408
1409    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1410    // the initializer.
1411    return;
1412  }
1413
1414  if (NumExprs > 1) {
1415    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1416      << SourceRange(VDecl->getLocation(), RParenLoc);
1417    RealDecl->setInvalidDecl();
1418    return;
1419  }
1420
1421  // Let clients know that initialization was done with a direct initializer.
1422  VDecl->setCXXDirectInitializer(true);
1423
1424  assert(NumExprs == 1 && "Expected 1 expression");
1425  // Set the init expression, handles conversions.
1426  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]));
1427}
1428
1429/// PerformInitializationByConstructor - Perform initialization by
1430/// constructor (C++ [dcl.init]p14), which may occur as part of
1431/// direct-initialization or copy-initialization. We are initializing
1432/// an object of type @p ClassType with the given arguments @p
1433/// Args. @p Loc is the location in the source code where the
1434/// initializer occurs (e.g., a declaration, member initializer,
1435/// functional cast, etc.) while @p Range covers the whole
1436/// initialization. @p InitEntity is the entity being initialized,
1437/// which may by the name of a declaration or a type. @p Kind is the
1438/// kind of initialization we're performing, which affects whether
1439/// explicit constructors will be considered. When successful, returns
1440/// the constructor that will be used to perform the initialization;
1441/// when the initialization fails, emits a diagnostic and returns
1442/// null.
1443CXXConstructorDecl *
1444Sema::PerformInitializationByConstructor(QualType ClassType,
1445                                         Expr **Args, unsigned NumArgs,
1446                                         SourceLocation Loc, SourceRange Range,
1447                                         DeclarationName InitEntity,
1448                                         InitializationKind Kind) {
1449  const RecordType *ClassRec = ClassType->getAsRecordType();
1450  assert(ClassRec && "Can only initialize a class type here");
1451
1452  // C++ [dcl.init]p14:
1453  //
1454  //   If the initialization is direct-initialization, or if it is
1455  //   copy-initialization where the cv-unqualified version of the
1456  //   source type is the same class as, or a derived class of, the
1457  //   class of the destination, constructors are considered. The
1458  //   applicable constructors are enumerated (13.3.1.3), and the
1459  //   best one is chosen through overload resolution (13.3). The
1460  //   constructor so selected is called to initialize the object,
1461  //   with the initializer expression(s) as its argument(s). If no
1462  //   constructor applies, or the overload resolution is ambiguous,
1463  //   the initialization is ill-formed.
1464  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1465  OverloadCandidateSet CandidateSet;
1466
1467  // Add constructors to the overload set.
1468  DeclarationName ConstructorName
1469    = Context.DeclarationNames.getCXXConstructorName(
1470                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1471  DeclContext::lookup_const_result Lookup
1472    = ClassDecl->lookup(Context, ConstructorName);
1473  if (Lookup.first == Lookup.second)
1474    /* No constructors */;
1475  else if (OverloadedFunctionDecl *Constructors
1476             = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
1477    for (OverloadedFunctionDecl::function_iterator Con
1478           = Constructors->function_begin();
1479         Con != Constructors->function_end(); ++Con) {
1480      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1481      if ((Kind == IK_Direct) ||
1482          (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1483          (Kind == IK_Default && Constructor->isDefaultConstructor()))
1484        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1485    }
1486  } else if (CXXConstructorDecl *Constructor
1487               = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
1488    if ((Kind == IK_Direct) ||
1489        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1490        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1491      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1492  }
1493
1494  // FIXME: When we decide not to synthesize the implicitly-declared
1495  // constructors, we'll need to make them appear here.
1496
1497  OverloadCandidateSet::iterator Best;
1498  switch (BestViableFunction(CandidateSet, Best)) {
1499  case OR_Success:
1500    // We found a constructor. Return it.
1501    return cast<CXXConstructorDecl>(Best->Function);
1502
1503  case OR_No_Viable_Function:
1504    Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1505      << InitEntity << (unsigned)CandidateSet.size() << Range;
1506    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1507    return 0;
1508
1509  case OR_Ambiguous:
1510    Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1511    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1512    return 0;
1513  }
1514
1515  return 0;
1516}
1517
1518/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1519/// determine whether they are reference-related,
1520/// reference-compatible, reference-compatible with added
1521/// qualification, or incompatible, for use in C++ initialization by
1522/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1523/// type, and the first type (T1) is the pointee type of the reference
1524/// type being initialized.
1525Sema::ReferenceCompareResult
1526Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1527                                   bool& DerivedToBase) {
1528  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1529  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1530
1531  T1 = Context.getCanonicalType(T1);
1532  T2 = Context.getCanonicalType(T2);
1533  QualType UnqualT1 = T1.getUnqualifiedType();
1534  QualType UnqualT2 = T2.getUnqualifiedType();
1535
1536  // C++ [dcl.init.ref]p4:
1537  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1538  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1539  //   T1 is a base class of T2.
1540  if (UnqualT1 == UnqualT2)
1541    DerivedToBase = false;
1542  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1543    DerivedToBase = true;
1544  else
1545    return Ref_Incompatible;
1546
1547  // At this point, we know that T1 and T2 are reference-related (at
1548  // least).
1549
1550  // C++ [dcl.init.ref]p4:
1551  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1552  //   reference-related to T2 and cv1 is the same cv-qualification
1553  //   as, or greater cv-qualification than, cv2. For purposes of
1554  //   overload resolution, cases for which cv1 is greater
1555  //   cv-qualification than cv2 are identified as
1556  //   reference-compatible with added qualification (see 13.3.3.2).
1557  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1558    return Ref_Compatible;
1559  else if (T1.isMoreQualifiedThan(T2))
1560    return Ref_Compatible_With_Added_Qualification;
1561  else
1562    return Ref_Related;
1563}
1564
1565/// CheckReferenceInit - Check the initialization of a reference
1566/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1567/// the initializer (either a simple initializer or an initializer
1568/// list), and DeclType is the type of the declaration. When ICS is
1569/// non-null, this routine will compute the implicit conversion
1570/// sequence according to C++ [over.ics.ref] and will not produce any
1571/// diagnostics; when ICS is null, it will emit diagnostics when any
1572/// errors are found. Either way, a return value of true indicates
1573/// that there was a failure, a return value of false indicates that
1574/// the reference initialization succeeded.
1575///
1576/// When @p SuppressUserConversions, user-defined conversions are
1577/// suppressed.
1578bool
1579Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1580                         ImplicitConversionSequence *ICS,
1581                         bool SuppressUserConversions) {
1582  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1583
1584  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1585  QualType T2 = Init->getType();
1586
1587  // If the initializer is the address of an overloaded function, try
1588  // to resolve the overloaded function. If all goes well, T2 is the
1589  // type of the resulting function.
1590  if (T2->isOverloadType()) {
1591    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1592                                                          ICS != 0);
1593    if (Fn) {
1594      // Since we're performing this reference-initialization for
1595      // real, update the initializer with the resulting function.
1596      if (!ICS)
1597        FixOverloadedFunctionReference(Init, Fn);
1598
1599      T2 = Fn->getType();
1600    }
1601  }
1602
1603  // Compute some basic properties of the types and the initializer.
1604  bool DerivedToBase = false;
1605  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1606  ReferenceCompareResult RefRelationship
1607    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1608
1609  // Most paths end in a failed conversion.
1610  if (ICS)
1611    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1612
1613  // C++ [dcl.init.ref]p5:
1614  //   A reference to type “cv1 T1” is initialized by an expression
1615  //   of type “cv2 T2” as follows:
1616
1617  //     -- If the initializer expression
1618
1619  bool BindsDirectly = false;
1620  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1621  //          reference-compatible with “cv2 T2,” or
1622  //
1623  // Note that the bit-field check is skipped if we are just computing
1624  // the implicit conversion sequence (C++ [over.best.ics]p2).
1625  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1626      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1627    BindsDirectly = true;
1628
1629    if (ICS) {
1630      // C++ [over.ics.ref]p1:
1631      //   When a parameter of reference type binds directly (8.5.3)
1632      //   to an argument expression, the implicit conversion sequence
1633      //   is the identity conversion, unless the argument expression
1634      //   has a type that is a derived class of the parameter type,
1635      //   in which case the implicit conversion sequence is a
1636      //   derived-to-base Conversion (13.3.3.1).
1637      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1638      ICS->Standard.First = ICK_Identity;
1639      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1640      ICS->Standard.Third = ICK_Identity;
1641      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1642      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1643      ICS->Standard.ReferenceBinding = true;
1644      ICS->Standard.DirectBinding = true;
1645
1646      // Nothing more to do: the inaccessibility/ambiguity check for
1647      // derived-to-base conversions is suppressed when we're
1648      // computing the implicit conversion sequence (C++
1649      // [over.best.ics]p2).
1650      return false;
1651    } else {
1652      // Perform the conversion.
1653      // FIXME: Binding to a subobject of the lvalue is going to require
1654      // more AST annotation than this.
1655      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1656    }
1657  }
1658
1659  //       -- has a class type (i.e., T2 is a class type) and can be
1660  //          implicitly converted to an lvalue of type “cv3 T3,”
1661  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1662  //          92) (this conversion is selected by enumerating the
1663  //          applicable conversion functions (13.3.1.6) and choosing
1664  //          the best one through overload resolution (13.3)),
1665  if (!SuppressUserConversions && T2->isRecordType()) {
1666    // FIXME: Look for conversions in base classes!
1667    CXXRecordDecl *T2RecordDecl
1668      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1669
1670    OverloadCandidateSet CandidateSet;
1671    OverloadedFunctionDecl *Conversions
1672      = T2RecordDecl->getConversionFunctions();
1673    for (OverloadedFunctionDecl::function_iterator Func
1674           = Conversions->function_begin();
1675         Func != Conversions->function_end(); ++Func) {
1676      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1677
1678      // If the conversion function doesn't return a reference type,
1679      // it can't be considered for this conversion.
1680      // FIXME: This will change when we support rvalue references.
1681      if (Conv->getConversionType()->isReferenceType())
1682        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1683    }
1684
1685    OverloadCandidateSet::iterator Best;
1686    switch (BestViableFunction(CandidateSet, Best)) {
1687    case OR_Success:
1688      // This is a direct binding.
1689      BindsDirectly = true;
1690
1691      if (ICS) {
1692        // C++ [over.ics.ref]p1:
1693        //
1694        //   [...] If the parameter binds directly to the result of
1695        //   applying a conversion function to the argument
1696        //   expression, the implicit conversion sequence is a
1697        //   user-defined conversion sequence (13.3.3.1.2), with the
1698        //   second standard conversion sequence either an identity
1699        //   conversion or, if the conversion function returns an
1700        //   entity of a type that is a derived class of the parameter
1701        //   type, a derived-to-base Conversion.
1702        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1703        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1704        ICS->UserDefined.After = Best->FinalConversion;
1705        ICS->UserDefined.ConversionFunction = Best->Function;
1706        assert(ICS->UserDefined.After.ReferenceBinding &&
1707               ICS->UserDefined.After.DirectBinding &&
1708               "Expected a direct reference binding!");
1709        return false;
1710      } else {
1711        // Perform the conversion.
1712        // FIXME: Binding to a subobject of the lvalue is going to require
1713        // more AST annotation than this.
1714        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1715      }
1716      break;
1717
1718    case OR_Ambiguous:
1719      assert(false && "Ambiguous reference binding conversions not implemented.");
1720      return true;
1721
1722    case OR_No_Viable_Function:
1723      // There was no suitable conversion; continue with other checks.
1724      break;
1725    }
1726  }
1727
1728  if (BindsDirectly) {
1729    // C++ [dcl.init.ref]p4:
1730    //   [...] In all cases where the reference-related or
1731    //   reference-compatible relationship of two types is used to
1732    //   establish the validity of a reference binding, and T1 is a
1733    //   base class of T2, a program that necessitates such a binding
1734    //   is ill-formed if T1 is an inaccessible (clause 11) or
1735    //   ambiguous (10.2) base class of T2.
1736    //
1737    // Note that we only check this condition when we're allowed to
1738    // complain about errors, because we should not be checking for
1739    // ambiguity (or inaccessibility) unless the reference binding
1740    // actually happens.
1741    if (DerivedToBase)
1742      return CheckDerivedToBaseConversion(T2, T1,
1743                                          Init->getSourceRange().getBegin(),
1744                                          Init->getSourceRange());
1745    else
1746      return false;
1747  }
1748
1749  //     -- Otherwise, the reference shall be to a non-volatile const
1750  //        type (i.e., cv1 shall be const).
1751  if (T1.getCVRQualifiers() != QualType::Const) {
1752    if (!ICS)
1753      Diag(Init->getSourceRange().getBegin(),
1754           diag::err_not_reference_to_const_init)
1755        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1756        << T2 << Init->getSourceRange();
1757    return true;
1758  }
1759
1760  //       -- If the initializer expression is an rvalue, with T2 a
1761  //          class type, and “cv1 T1” is reference-compatible with
1762  //          “cv2 T2,” the reference is bound in one of the
1763  //          following ways (the choice is implementation-defined):
1764  //
1765  //          -- The reference is bound to the object represented by
1766  //             the rvalue (see 3.10) or to a sub-object within that
1767  //             object.
1768  //
1769  //          -- A temporary of type “cv1 T2” [sic] is created, and
1770  //             a constructor is called to copy the entire rvalue
1771  //             object into the temporary. The reference is bound to
1772  //             the temporary or to a sub-object within the
1773  //             temporary.
1774  //
1775  //
1776  //          The constructor that would be used to make the copy
1777  //          shall be callable whether or not the copy is actually
1778  //          done.
1779  //
1780  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1781  // freedom, so we will always take the first option and never build
1782  // a temporary in this case. FIXME: We will, however, have to check
1783  // for the presence of a copy constructor in C++98/03 mode.
1784  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1785      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1786    if (ICS) {
1787      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1788      ICS->Standard.First = ICK_Identity;
1789      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1790      ICS->Standard.Third = ICK_Identity;
1791      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1792      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1793      ICS->Standard.ReferenceBinding = true;
1794      ICS->Standard.DirectBinding = false;
1795    } else {
1796      // FIXME: Binding to a subobject of the rvalue is going to require
1797      // more AST annotation than this.
1798      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1799    }
1800    return false;
1801  }
1802
1803  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1804  //          initialized from the initializer expression using the
1805  //          rules for a non-reference copy initialization (8.5). The
1806  //          reference is then bound to the temporary. If T1 is
1807  //          reference-related to T2, cv1 must be the same
1808  //          cv-qualification as, or greater cv-qualification than,
1809  //          cv2; otherwise, the program is ill-formed.
1810  if (RefRelationship == Ref_Related) {
1811    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1812    // we would be reference-compatible or reference-compatible with
1813    // added qualification. But that wasn't the case, so the reference
1814    // initialization fails.
1815    if (!ICS)
1816      Diag(Init->getSourceRange().getBegin(),
1817           diag::err_reference_init_drops_quals)
1818        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1819        << T2 << Init->getSourceRange();
1820    return true;
1821  }
1822
1823  // Actually try to convert the initializer to T1.
1824  if (ICS) {
1825    /// C++ [over.ics.ref]p2:
1826    ///
1827    ///   When a parameter of reference type is not bound directly to
1828    ///   an argument expression, the conversion sequence is the one
1829    ///   required to convert the argument expression to the
1830    ///   underlying type of the reference according to
1831    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1832    ///   to copy-initializing a temporary of the underlying type with
1833    ///   the argument expression. Any difference in top-level
1834    ///   cv-qualification is subsumed by the initialization itself
1835    ///   and does not constitute a conversion.
1836    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1837    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1838  } else {
1839    return PerformImplicitConversion(Init, T1);
1840  }
1841}
1842
1843/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1844/// of this overloaded operator is well-formed. If so, returns false;
1845/// otherwise, emits appropriate diagnostics and returns true.
1846bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1847  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1848         "Expected an overloaded operator declaration");
1849
1850  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1851
1852  // C++ [over.oper]p5:
1853  //   The allocation and deallocation functions, operator new,
1854  //   operator new[], operator delete and operator delete[], are
1855  //   described completely in 3.7.3. The attributes and restrictions
1856  //   found in the rest of this subclause do not apply to them unless
1857  //   explicitly stated in 3.7.3.
1858  // FIXME: Write a separate routine for checking this. For now, just
1859  // allow it.
1860  if (Op == OO_New || Op == OO_Array_New ||
1861      Op == OO_Delete || Op == OO_Array_Delete)
1862    return false;
1863
1864  // C++ [over.oper]p6:
1865  //   An operator function shall either be a non-static member
1866  //   function or be a non-member function and have at least one
1867  //   parameter whose type is a class, a reference to a class, an
1868  //   enumeration, or a reference to an enumeration.
1869  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1870    if (MethodDecl->isStatic())
1871      return Diag(FnDecl->getLocation(),
1872                  diag::err_operator_overload_static) << FnDecl->getDeclName();
1873  } else {
1874    bool ClassOrEnumParam = false;
1875    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
1876                                   ParamEnd = FnDecl->param_end();
1877         Param != ParamEnd; ++Param) {
1878      QualType ParamType = (*Param)->getType().getNonReferenceType();
1879      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1880        ClassOrEnumParam = true;
1881        break;
1882      }
1883    }
1884
1885    if (!ClassOrEnumParam)
1886      return Diag(FnDecl->getLocation(),
1887                  diag::err_operator_overload_needs_class_or_enum)
1888        << FnDecl->getDeclName();
1889  }
1890
1891  // C++ [over.oper]p8:
1892  //   An operator function cannot have default arguments (8.3.6),
1893  //   except where explicitly stated below.
1894  //
1895  // Only the function-call operator allows default arguments
1896  // (C++ [over.call]p1).
1897  if (Op != OO_Call) {
1898    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1899         Param != FnDecl->param_end(); ++Param) {
1900      if (Expr *DefArg = (*Param)->getDefaultArg())
1901        return Diag((*Param)->getLocation(),
1902                    diag::err_operator_overload_default_arg)
1903          << FnDecl->getDeclName() << DefArg->getSourceRange();
1904    }
1905  }
1906
1907  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
1908    { false, false, false }
1909#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1910    , { Unary, Binary, MemberOnly }
1911#include "clang/Basic/OperatorKinds.def"
1912  };
1913
1914  bool CanBeUnaryOperator = OperatorUses[Op][0];
1915  bool CanBeBinaryOperator = OperatorUses[Op][1];
1916  bool MustBeMemberOperator = OperatorUses[Op][2];
1917
1918  // C++ [over.oper]p8:
1919  //   [...] Operator functions cannot have more or fewer parameters
1920  //   than the number required for the corresponding operator, as
1921  //   described in the rest of this subclause.
1922  unsigned NumParams = FnDecl->getNumParams()
1923                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
1924  if (Op != OO_Call &&
1925      ((NumParams == 1 && !CanBeUnaryOperator) ||
1926       (NumParams == 2 && !CanBeBinaryOperator) ||
1927       (NumParams < 1) || (NumParams > 2))) {
1928    // We have the wrong number of parameters.
1929    unsigned ErrorKind;
1930    if (CanBeUnaryOperator && CanBeBinaryOperator) {
1931      ErrorKind = 2;  // 2 -> unary or binary.
1932    } else if (CanBeUnaryOperator) {
1933      ErrorKind = 0;  // 0 -> unary
1934    } else {
1935      assert(CanBeBinaryOperator &&
1936             "All non-call overloaded operators are unary or binary!");
1937      ErrorKind = 1;  // 1 -> binary
1938    }
1939
1940    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
1941      << FnDecl->getDeclName() << NumParams << ErrorKind;
1942  }
1943
1944  // Overloaded operators other than operator() cannot be variadic.
1945  if (Op != OO_Call &&
1946      FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1947    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
1948      << FnDecl->getDeclName();
1949  }
1950
1951  // Some operators must be non-static member functions.
1952  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
1953    return Diag(FnDecl->getLocation(),
1954                diag::err_operator_overload_must_be_member)
1955      << FnDecl->getDeclName();
1956  }
1957
1958  // C++ [over.inc]p1:
1959  //   The user-defined function called operator++ implements the
1960  //   prefix and postfix ++ operator. If this function is a member
1961  //   function with no parameters, or a non-member function with one
1962  //   parameter of class or enumeration type, it defines the prefix
1963  //   increment operator ++ for objects of that type. If the function
1964  //   is a member function with one parameter (which shall be of type
1965  //   int) or a non-member function with two parameters (the second
1966  //   of which shall be of type int), it defines the postfix
1967  //   increment operator ++ for objects of that type.
1968  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1969    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1970    bool ParamIsInt = false;
1971    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1972      ParamIsInt = BT->getKind() == BuiltinType::Int;
1973
1974    if (!ParamIsInt)
1975      return Diag(LastParam->getLocation(),
1976                  diag::err_operator_overload_post_incdec_must_be_int)
1977        << LastParam->getType() << (Op == OO_MinusMinus);
1978  }
1979
1980  return false;
1981}
1982