SemaDeclCXX.cpp revision 74e611a5fd0b5977c664d13a07b625ae23527d0d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = D.isDeclarationOfFunction();
1083
1084  // C++ 9.2p6: A member shall not be declared to have automatic storage
1085  // duration (auto, register) or with the extern storage-class-specifier.
1086  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087  // data members and cannot be applied to names declared const or static,
1088  // and cannot be applied to reference members.
1089  switch (DS.getStorageClassSpec()) {
1090    case DeclSpec::SCS_unspecified:
1091    case DeclSpec::SCS_typedef:
1092    case DeclSpec::SCS_static:
1093      // FALL THROUGH.
1094      break;
1095    case DeclSpec::SCS_mutable:
1096      if (isFunc) {
1097        if (DS.getStorageClassSpecLoc().isValid())
1098          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099        else
1100          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101
1102        // FIXME: It would be nicer if the keyword was ignored only for this
1103        // declarator. Otherwise we could get follow-up errors.
1104        D.getMutableDeclSpec().ClearStorageClassSpecs();
1105      }
1106      break;
1107    default:
1108      if (DS.getStorageClassSpecLoc().isValid())
1109        Diag(DS.getStorageClassSpecLoc(),
1110             diag::err_storageclass_invalid_for_member);
1111      else
1112        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113      D.getMutableDeclSpec().ClearStorageClassSpecs();
1114  }
1115
1116  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                      !isFunc);
1119
1120  Decl *Member;
1121  if (isInstField) {
1122    CXXScopeSpec &SS = D.getCXXScopeSpec();
1123
1124    if (SS.isSet() && !SS.isInvalid()) {
1125      // The user provided a superfluous scope specifier inside a class
1126      // definition:
1127      //
1128      // class X {
1129      //   int X::member;
1130      // };
1131      DeclContext *DC = 0;
1132      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134        << Name << FixItHint::CreateRemoval(SS.getRange());
1135      else
1136        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137          << Name << SS.getRange();
1138
1139      SS.clear();
1140    }
1141
1142    // FIXME: Check for template parameters!
1143    // FIXME: Check that the name is an identifier!
1144    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                         HasDeferredInit, AS);
1146    assert(Member && "HandleField never returns null");
1147  } else {
1148    assert(!HasDeferredInit);
1149
1150    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151    if (!Member) {
1152      return 0;
1153    }
1154
1155    // Non-instance-fields can't have a bitfield.
1156    if (BitWidth) {
1157      if (Member->isInvalidDecl()) {
1158        // don't emit another diagnostic.
1159      } else if (isa<VarDecl>(Member)) {
1160        // C++ 9.6p3: A bit-field shall not be a static member.
1161        // "static member 'A' cannot be a bit-field"
1162        Diag(Loc, diag::err_static_not_bitfield)
1163          << Name << BitWidth->getSourceRange();
1164      } else if (isa<TypedefDecl>(Member)) {
1165        // "typedef member 'x' cannot be a bit-field"
1166        Diag(Loc, diag::err_typedef_not_bitfield)
1167          << Name << BitWidth->getSourceRange();
1168      } else {
1169        // A function typedef ("typedef int f(); f a;").
1170        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171        Diag(Loc, diag::err_not_integral_type_bitfield)
1172          << Name << cast<ValueDecl>(Member)->getType()
1173          << BitWidth->getSourceRange();
1174      }
1175
1176      BitWidth = 0;
1177      Member->setInvalidDecl();
1178    }
1179
1180    Member->setAccess(AS);
1181
1182    // If we have declared a member function template, set the access of the
1183    // templated declaration as well.
1184    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185      FunTmpl->getTemplatedDecl()->setAccess(AS);
1186  }
1187
1188  if (VS.isOverrideSpecified()) {
1189    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190    if (!MD || !MD->isVirtual()) {
1191      Diag(Member->getLocStart(),
1192           diag::override_keyword_only_allowed_on_virtual_member_functions)
1193        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194    } else
1195      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196  }
1197  if (VS.isFinalSpecified()) {
1198    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199    if (!MD || !MD->isVirtual()) {
1200      Diag(Member->getLocStart(),
1201           diag::override_keyword_only_allowed_on_virtual_member_functions)
1202      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203    } else
1204      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205  }
1206
1207  if (VS.getLastLocation().isValid()) {
1208    // Update the end location of a method that has a virt-specifiers.
1209    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210      MD->setRangeEnd(VS.getLastLocation());
1211  }
1212
1213  CheckOverrideControl(Member);
1214
1215  assert((Name || isInstField) && "No identifier for non-field ?");
1216
1217  if (Init)
1218    AddInitializerToDecl(Member, Init, false,
1219                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1220  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223    // data member if a brace-or-equal-initializer is provided.
1224    Diag(Loc, diag::err_auto_var_requires_init)
1225      << Name << cast<ValueDecl>(Member)->getType();
1226    Member->setInvalidDecl();
1227  }
1228
1229  FinalizeDeclaration(Member);
1230
1231  if (isInstField)
1232    FieldCollector->Add(cast<FieldDecl>(Member));
1233  return Member;
1234}
1235
1236/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237/// in-class initializer for a non-static C++ class member, and after
1238/// instantiating an in-class initializer in a class template. Such actions
1239/// are deferred until the class is complete.
1240void
1241Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1242                                       Expr *InitExpr) {
1243  FieldDecl *FD = cast<FieldDecl>(D);
1244
1245  if (!InitExpr) {
1246    FD->setInvalidDecl();
1247    FD->removeInClassInitializer();
1248    return;
1249  }
1250
1251  ExprResult Init = InitExpr;
1252  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1253    // FIXME: if there is no EqualLoc, this is list-initialization.
1254    Init = PerformCopyInitialization(
1255      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1256    if (Init.isInvalid()) {
1257      FD->setInvalidDecl();
1258      return;
1259    }
1260
1261    CheckImplicitConversions(Init.get(), EqualLoc);
1262  }
1263
1264  // C++0x [class.base.init]p7:
1265  //   The initialization of each base and member constitutes a
1266  //   full-expression.
1267  Init = MaybeCreateExprWithCleanups(Init);
1268  if (Init.isInvalid()) {
1269    FD->setInvalidDecl();
1270    return;
1271  }
1272
1273  InitExpr = Init.release();
1274
1275  FD->setInClassInitializer(InitExpr);
1276}
1277
1278/// \brief Find the direct and/or virtual base specifiers that
1279/// correspond to the given base type, for use in base initialization
1280/// within a constructor.
1281static bool FindBaseInitializer(Sema &SemaRef,
1282                                CXXRecordDecl *ClassDecl,
1283                                QualType BaseType,
1284                                const CXXBaseSpecifier *&DirectBaseSpec,
1285                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1286  // First, check for a direct base class.
1287  DirectBaseSpec = 0;
1288  for (CXXRecordDecl::base_class_const_iterator Base
1289         = ClassDecl->bases_begin();
1290       Base != ClassDecl->bases_end(); ++Base) {
1291    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1292      // We found a direct base of this type. That's what we're
1293      // initializing.
1294      DirectBaseSpec = &*Base;
1295      break;
1296    }
1297  }
1298
1299  // Check for a virtual base class.
1300  // FIXME: We might be able to short-circuit this if we know in advance that
1301  // there are no virtual bases.
1302  VirtualBaseSpec = 0;
1303  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1304    // We haven't found a base yet; search the class hierarchy for a
1305    // virtual base class.
1306    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1307                       /*DetectVirtual=*/false);
1308    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1309                              BaseType, Paths)) {
1310      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1311           Path != Paths.end(); ++Path) {
1312        if (Path->back().Base->isVirtual()) {
1313          VirtualBaseSpec = Path->back().Base;
1314          break;
1315        }
1316      }
1317    }
1318  }
1319
1320  return DirectBaseSpec || VirtualBaseSpec;
1321}
1322
1323/// ActOnMemInitializer - Handle a C++ member initializer.
1324MemInitResult
1325Sema::ActOnMemInitializer(Decl *ConstructorD,
1326                          Scope *S,
1327                          CXXScopeSpec &SS,
1328                          IdentifierInfo *MemberOrBase,
1329                          ParsedType TemplateTypeTy,
1330                          SourceLocation IdLoc,
1331                          SourceLocation LParenLoc,
1332                          ExprTy **Args, unsigned NumArgs,
1333                          SourceLocation RParenLoc,
1334                          SourceLocation EllipsisLoc) {
1335  if (!ConstructorD)
1336    return true;
1337
1338  AdjustDeclIfTemplate(ConstructorD);
1339
1340  CXXConstructorDecl *Constructor
1341    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1342  if (!Constructor) {
1343    // The user wrote a constructor initializer on a function that is
1344    // not a C++ constructor. Ignore the error for now, because we may
1345    // have more member initializers coming; we'll diagnose it just
1346    // once in ActOnMemInitializers.
1347    return true;
1348  }
1349
1350  CXXRecordDecl *ClassDecl = Constructor->getParent();
1351
1352  // C++ [class.base.init]p2:
1353  //   Names in a mem-initializer-id are looked up in the scope of the
1354  //   constructor's class and, if not found in that scope, are looked
1355  //   up in the scope containing the constructor's definition.
1356  //   [Note: if the constructor's class contains a member with the
1357  //   same name as a direct or virtual base class of the class, a
1358  //   mem-initializer-id naming the member or base class and composed
1359  //   of a single identifier refers to the class member. A
1360  //   mem-initializer-id for the hidden base class may be specified
1361  //   using a qualified name. ]
1362  if (!SS.getScopeRep() && !TemplateTypeTy) {
1363    // Look for a member, first.
1364    FieldDecl *Member = 0;
1365    DeclContext::lookup_result Result
1366      = ClassDecl->lookup(MemberOrBase);
1367    if (Result.first != Result.second) {
1368      Member = dyn_cast<FieldDecl>(*Result.first);
1369
1370      if (Member) {
1371        if (EllipsisLoc.isValid())
1372          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1373            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1374
1375        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1376                                    LParenLoc, RParenLoc);
1377      }
1378
1379      // Handle anonymous union case.
1380      if (IndirectFieldDecl* IndirectField
1381            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1382        if (EllipsisLoc.isValid())
1383          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1384            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1385
1386         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1387                                       NumArgs, IdLoc,
1388                                       LParenLoc, RParenLoc);
1389      }
1390    }
1391  }
1392  // It didn't name a member, so see if it names a class.
1393  QualType BaseType;
1394  TypeSourceInfo *TInfo = 0;
1395
1396  if (TemplateTypeTy) {
1397    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1398  } else {
1399    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1400    LookupParsedName(R, S, &SS);
1401
1402    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1403    if (!TyD) {
1404      if (R.isAmbiguous()) return true;
1405
1406      // We don't want access-control diagnostics here.
1407      R.suppressDiagnostics();
1408
1409      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1410        bool NotUnknownSpecialization = false;
1411        DeclContext *DC = computeDeclContext(SS, false);
1412        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1413          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1414
1415        if (!NotUnknownSpecialization) {
1416          // When the scope specifier can refer to a member of an unknown
1417          // specialization, we take it as a type name.
1418          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1419                                       SS.getWithLocInContext(Context),
1420                                       *MemberOrBase, IdLoc);
1421          if (BaseType.isNull())
1422            return true;
1423
1424          R.clear();
1425          R.setLookupName(MemberOrBase);
1426        }
1427      }
1428
1429      // If no results were found, try to correct typos.
1430      TypoCorrection Corr;
1431      if (R.empty() && BaseType.isNull() &&
1432          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1433                              ClassDecl, false, CTC_NoKeywords))) {
1434        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1435        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1436        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1437          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1438            // We have found a non-static data member with a similar
1439            // name to what was typed; complain and initialize that
1440            // member.
1441            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1442              << MemberOrBase << true << CorrectedQuotedStr
1443              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1444            Diag(Member->getLocation(), diag::note_previous_decl)
1445              << CorrectedQuotedStr;
1446
1447            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1448                                          LParenLoc, RParenLoc);
1449          }
1450        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1451          const CXXBaseSpecifier *DirectBaseSpec;
1452          const CXXBaseSpecifier *VirtualBaseSpec;
1453          if (FindBaseInitializer(*this, ClassDecl,
1454                                  Context.getTypeDeclType(Type),
1455                                  DirectBaseSpec, VirtualBaseSpec)) {
1456            // We have found a direct or virtual base class with a
1457            // similar name to what was typed; complain and initialize
1458            // that base class.
1459            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1460              << MemberOrBase << false << CorrectedQuotedStr
1461              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1462
1463            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1464                                                             : VirtualBaseSpec;
1465            Diag(BaseSpec->getSourceRange().getBegin(),
1466                 diag::note_base_class_specified_here)
1467              << BaseSpec->getType()
1468              << BaseSpec->getSourceRange();
1469
1470            TyD = Type;
1471          }
1472        }
1473      }
1474
1475      if (!TyD && BaseType.isNull()) {
1476        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1477          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1478        return true;
1479      }
1480    }
1481
1482    if (BaseType.isNull()) {
1483      BaseType = Context.getTypeDeclType(TyD);
1484      if (SS.isSet()) {
1485        NestedNameSpecifier *Qualifier =
1486          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1487
1488        // FIXME: preserve source range information
1489        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1490      }
1491    }
1492  }
1493
1494  if (!TInfo)
1495    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1496
1497  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1498                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1499}
1500
1501/// Checks a member initializer expression for cases where reference (or
1502/// pointer) members are bound to by-value parameters (or their addresses).
1503static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1504                                               Expr *Init,
1505                                               SourceLocation IdLoc) {
1506  QualType MemberTy = Member->getType();
1507
1508  // We only handle pointers and references currently.
1509  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1510  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1511    return;
1512
1513  const bool IsPointer = MemberTy->isPointerType();
1514  if (IsPointer) {
1515    if (const UnaryOperator *Op
1516          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1517      // The only case we're worried about with pointers requires taking the
1518      // address.
1519      if (Op->getOpcode() != UO_AddrOf)
1520        return;
1521
1522      Init = Op->getSubExpr();
1523    } else {
1524      // We only handle address-of expression initializers for pointers.
1525      return;
1526    }
1527  }
1528
1529  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1530    // Taking the address of a temporary will be diagnosed as a hard error.
1531    if (IsPointer)
1532      return;
1533
1534    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1535      << Member << Init->getSourceRange();
1536  } else if (const DeclRefExpr *DRE
1537               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1538    // We only warn when referring to a non-reference parameter declaration.
1539    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1540    if (!Parameter || Parameter->getType()->isReferenceType())
1541      return;
1542
1543    S.Diag(Init->getExprLoc(),
1544           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1545                     : diag::warn_bind_ref_member_to_parameter)
1546      << Member << Parameter << Init->getSourceRange();
1547  } else {
1548    // Other initializers are fine.
1549    return;
1550  }
1551
1552  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1553    << (unsigned)IsPointer;
1554}
1555
1556/// Checks an initializer expression for use of uninitialized fields, such as
1557/// containing the field that is being initialized. Returns true if there is an
1558/// uninitialized field was used an updates the SourceLocation parameter; false
1559/// otherwise.
1560static bool InitExprContainsUninitializedFields(const Stmt *S,
1561                                                const ValueDecl *LhsField,
1562                                                SourceLocation *L) {
1563  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1564
1565  if (isa<CallExpr>(S)) {
1566    // Do not descend into function calls or constructors, as the use
1567    // of an uninitialized field may be valid. One would have to inspect
1568    // the contents of the function/ctor to determine if it is safe or not.
1569    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1570    // may be safe, depending on what the function/ctor does.
1571    return false;
1572  }
1573  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1574    const NamedDecl *RhsField = ME->getMemberDecl();
1575
1576    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1577      // The member expression points to a static data member.
1578      assert(VD->isStaticDataMember() &&
1579             "Member points to non-static data member!");
1580      (void)VD;
1581      return false;
1582    }
1583
1584    if (isa<EnumConstantDecl>(RhsField)) {
1585      // The member expression points to an enum.
1586      return false;
1587    }
1588
1589    if (RhsField == LhsField) {
1590      // Initializing a field with itself. Throw a warning.
1591      // But wait; there are exceptions!
1592      // Exception #1:  The field may not belong to this record.
1593      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1594      const Expr *base = ME->getBase();
1595      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1596        // Even though the field matches, it does not belong to this record.
1597        return false;
1598      }
1599      // None of the exceptions triggered; return true to indicate an
1600      // uninitialized field was used.
1601      *L = ME->getMemberLoc();
1602      return true;
1603    }
1604  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1605    // sizeof/alignof doesn't reference contents, do not warn.
1606    return false;
1607  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1608    // address-of doesn't reference contents (the pointer may be dereferenced
1609    // in the same expression but it would be rare; and weird).
1610    if (UOE->getOpcode() == UO_AddrOf)
1611      return false;
1612  }
1613  for (Stmt::const_child_range it = S->children(); it; ++it) {
1614    if (!*it) {
1615      // An expression such as 'member(arg ?: "")' may trigger this.
1616      continue;
1617    }
1618    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1619      return true;
1620  }
1621  return false;
1622}
1623
1624MemInitResult
1625Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1626                             unsigned NumArgs, SourceLocation IdLoc,
1627                             SourceLocation LParenLoc,
1628                             SourceLocation RParenLoc) {
1629  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1630  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1631  assert((DirectMember || IndirectMember) &&
1632         "Member must be a FieldDecl or IndirectFieldDecl");
1633
1634  if (Member->isInvalidDecl())
1635    return true;
1636
1637  // Diagnose value-uses of fields to initialize themselves, e.g.
1638  //   foo(foo)
1639  // where foo is not also a parameter to the constructor.
1640  // TODO: implement -Wuninitialized and fold this into that framework.
1641  for (unsigned i = 0; i < NumArgs; ++i) {
1642    SourceLocation L;
1643    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1644      // FIXME: Return true in the case when other fields are used before being
1645      // uninitialized. For example, let this field be the i'th field. When
1646      // initializing the i'th field, throw a warning if any of the >= i'th
1647      // fields are used, as they are not yet initialized.
1648      // Right now we are only handling the case where the i'th field uses
1649      // itself in its initializer.
1650      Diag(L, diag::warn_field_is_uninit);
1651    }
1652  }
1653
1654  bool HasDependentArg = false;
1655  for (unsigned i = 0; i < NumArgs; i++)
1656    HasDependentArg |= Args[i]->isTypeDependent();
1657
1658  Expr *Init;
1659  if (Member->getType()->isDependentType() || HasDependentArg) {
1660    // Can't check initialization for a member of dependent type or when
1661    // any of the arguments are type-dependent expressions.
1662    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1663                                       RParenLoc,
1664                                       Member->getType().getNonReferenceType());
1665
1666    DiscardCleanupsInEvaluationContext();
1667  } else {
1668    // Initialize the member.
1669    InitializedEntity MemberEntity =
1670      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1671                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1672    InitializationKind Kind =
1673      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1674
1675    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1676
1677    ExprResult MemberInit =
1678      InitSeq.Perform(*this, MemberEntity, Kind,
1679                      MultiExprArg(*this, Args, NumArgs), 0);
1680    if (MemberInit.isInvalid())
1681      return true;
1682
1683    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1684
1685    // C++0x [class.base.init]p7:
1686    //   The initialization of each base and member constitutes a
1687    //   full-expression.
1688    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1689    if (MemberInit.isInvalid())
1690      return true;
1691
1692    // If we are in a dependent context, template instantiation will
1693    // perform this type-checking again. Just save the arguments that we
1694    // received in a ParenListExpr.
1695    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1696    // of the information that we have about the member
1697    // initializer. However, deconstructing the ASTs is a dicey process,
1698    // and this approach is far more likely to get the corner cases right.
1699    if (CurContext->isDependentContext()) {
1700      Init = new (Context) ParenListExpr(
1701          Context, LParenLoc, Args, NumArgs, RParenLoc,
1702          Member->getType().getNonReferenceType());
1703    } else {
1704      Init = MemberInit.get();
1705      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
1706    }
1707  }
1708
1709  if (DirectMember) {
1710    return new (Context) CXXCtorInitializer(Context, DirectMember,
1711                                                    IdLoc, LParenLoc, Init,
1712                                                    RParenLoc);
1713  } else {
1714    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1715                                                    IdLoc, LParenLoc, Init,
1716                                                    RParenLoc);
1717  }
1718}
1719
1720MemInitResult
1721Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1722                                 Expr **Args, unsigned NumArgs,
1723                                 SourceLocation NameLoc,
1724                                 SourceLocation LParenLoc,
1725                                 SourceLocation RParenLoc,
1726                                 CXXRecordDecl *ClassDecl) {
1727  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1728  if (!LangOpts.CPlusPlus0x)
1729    return Diag(Loc, diag::err_delegation_0x_only)
1730      << TInfo->getTypeLoc().getLocalSourceRange();
1731
1732  // Initialize the object.
1733  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1734                                     QualType(ClassDecl->getTypeForDecl(), 0));
1735  InitializationKind Kind =
1736    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1737
1738  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1739
1740  ExprResult DelegationInit =
1741    InitSeq.Perform(*this, DelegationEntity, Kind,
1742                    MultiExprArg(*this, Args, NumArgs), 0);
1743  if (DelegationInit.isInvalid())
1744    return true;
1745
1746  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1747  CXXConstructorDecl *Constructor
1748    = ConExpr->getConstructor();
1749  assert(Constructor && "Delegating constructor with no target?");
1750
1751  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1752
1753  // C++0x [class.base.init]p7:
1754  //   The initialization of each base and member constitutes a
1755  //   full-expression.
1756  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1757  if (DelegationInit.isInvalid())
1758    return true;
1759
1760  assert(!CurContext->isDependentContext());
1761  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1762                                          DelegationInit.takeAs<Expr>(),
1763                                          RParenLoc);
1764}
1765
1766MemInitResult
1767Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1768                           Expr **Args, unsigned NumArgs,
1769                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1770                           CXXRecordDecl *ClassDecl,
1771                           SourceLocation EllipsisLoc) {
1772  bool HasDependentArg = false;
1773  for (unsigned i = 0; i < NumArgs; i++)
1774    HasDependentArg |= Args[i]->isTypeDependent();
1775
1776  SourceLocation BaseLoc
1777    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1778
1779  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1780    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1781             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1782
1783  // C++ [class.base.init]p2:
1784  //   [...] Unless the mem-initializer-id names a nonstatic data
1785  //   member of the constructor's class or a direct or virtual base
1786  //   of that class, the mem-initializer is ill-formed. A
1787  //   mem-initializer-list can initialize a base class using any
1788  //   name that denotes that base class type.
1789  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1790
1791  if (EllipsisLoc.isValid()) {
1792    // This is a pack expansion.
1793    if (!BaseType->containsUnexpandedParameterPack())  {
1794      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1795        << SourceRange(BaseLoc, RParenLoc);
1796
1797      EllipsisLoc = SourceLocation();
1798    }
1799  } else {
1800    // Check for any unexpanded parameter packs.
1801    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1802      return true;
1803
1804    for (unsigned I = 0; I != NumArgs; ++I)
1805      if (DiagnoseUnexpandedParameterPack(Args[I]))
1806        return true;
1807  }
1808
1809  // Check for direct and virtual base classes.
1810  const CXXBaseSpecifier *DirectBaseSpec = 0;
1811  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1812  if (!Dependent) {
1813    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1814                                       BaseType))
1815      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1816                                        LParenLoc, RParenLoc, ClassDecl);
1817
1818    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1819                        VirtualBaseSpec);
1820
1821    // C++ [base.class.init]p2:
1822    // Unless the mem-initializer-id names a nonstatic data member of the
1823    // constructor's class or a direct or virtual base of that class, the
1824    // mem-initializer is ill-formed.
1825    if (!DirectBaseSpec && !VirtualBaseSpec) {
1826      // If the class has any dependent bases, then it's possible that
1827      // one of those types will resolve to the same type as
1828      // BaseType. Therefore, just treat this as a dependent base
1829      // class initialization.  FIXME: Should we try to check the
1830      // initialization anyway? It seems odd.
1831      if (ClassDecl->hasAnyDependentBases())
1832        Dependent = true;
1833      else
1834        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1835          << BaseType << Context.getTypeDeclType(ClassDecl)
1836          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1837    }
1838  }
1839
1840  if (Dependent) {
1841    // Can't check initialization for a base of dependent type or when
1842    // any of the arguments are type-dependent expressions.
1843    ExprResult BaseInit
1844      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1845                                          RParenLoc, BaseType));
1846
1847    DiscardCleanupsInEvaluationContext();
1848
1849    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1850                                                    /*IsVirtual=*/false,
1851                                                    LParenLoc,
1852                                                    BaseInit.takeAs<Expr>(),
1853                                                    RParenLoc,
1854                                                    EllipsisLoc);
1855  }
1856
1857  // C++ [base.class.init]p2:
1858  //   If a mem-initializer-id is ambiguous because it designates both
1859  //   a direct non-virtual base class and an inherited virtual base
1860  //   class, the mem-initializer is ill-formed.
1861  if (DirectBaseSpec && VirtualBaseSpec)
1862    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1863      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1864
1865  CXXBaseSpecifier *BaseSpec
1866    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1867  if (!BaseSpec)
1868    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1869
1870  // Initialize the base.
1871  InitializedEntity BaseEntity =
1872    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1873  InitializationKind Kind =
1874    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1875
1876  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1877
1878  ExprResult BaseInit =
1879    InitSeq.Perform(*this, BaseEntity, Kind,
1880                    MultiExprArg(*this, Args, NumArgs), 0);
1881  if (BaseInit.isInvalid())
1882    return true;
1883
1884  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1885
1886  // C++0x [class.base.init]p7:
1887  //   The initialization of each base and member constitutes a
1888  //   full-expression.
1889  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1890  if (BaseInit.isInvalid())
1891    return true;
1892
1893  // If we are in a dependent context, template instantiation will
1894  // perform this type-checking again. Just save the arguments that we
1895  // received in a ParenListExpr.
1896  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1897  // of the information that we have about the base
1898  // initializer. However, deconstructing the ASTs is a dicey process,
1899  // and this approach is far more likely to get the corner cases right.
1900  if (CurContext->isDependentContext()) {
1901    ExprResult Init
1902      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1903                                          RParenLoc, BaseType));
1904    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1905                                                    BaseSpec->isVirtual(),
1906                                                    LParenLoc,
1907                                                    Init.takeAs<Expr>(),
1908                                                    RParenLoc,
1909                                                    EllipsisLoc);
1910  }
1911
1912  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1913                                                  BaseSpec->isVirtual(),
1914                                                  LParenLoc,
1915                                                  BaseInit.takeAs<Expr>(),
1916                                                  RParenLoc,
1917                                                  EllipsisLoc);
1918}
1919
1920// Create a static_cast\<T&&>(expr).
1921static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
1922  QualType ExprType = E->getType();
1923  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
1924  SourceLocation ExprLoc = E->getLocStart();
1925  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
1926      TargetType, ExprLoc);
1927
1928  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1929                                   SourceRange(ExprLoc, ExprLoc),
1930                                   E->getSourceRange()).take();
1931}
1932
1933/// ImplicitInitializerKind - How an implicit base or member initializer should
1934/// initialize its base or member.
1935enum ImplicitInitializerKind {
1936  IIK_Default,
1937  IIK_Copy,
1938  IIK_Move
1939};
1940
1941static bool
1942BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1943                             ImplicitInitializerKind ImplicitInitKind,
1944                             CXXBaseSpecifier *BaseSpec,
1945                             bool IsInheritedVirtualBase,
1946                             CXXCtorInitializer *&CXXBaseInit) {
1947  InitializedEntity InitEntity
1948    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1949                                        IsInheritedVirtualBase);
1950
1951  ExprResult BaseInit;
1952
1953  switch (ImplicitInitKind) {
1954  case IIK_Default: {
1955    InitializationKind InitKind
1956      = InitializationKind::CreateDefault(Constructor->getLocation());
1957    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1958    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1959                               MultiExprArg(SemaRef, 0, 0));
1960    break;
1961  }
1962
1963  case IIK_Move:
1964  case IIK_Copy: {
1965    bool Moving = ImplicitInitKind == IIK_Move;
1966    ParmVarDecl *Param = Constructor->getParamDecl(0);
1967    QualType ParamType = Param->getType().getNonReferenceType();
1968
1969    Expr *CopyCtorArg =
1970      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1971                          Constructor->getLocation(), ParamType,
1972                          VK_LValue, 0);
1973
1974    // Cast to the base class to avoid ambiguities.
1975    QualType ArgTy =
1976      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1977                                       ParamType.getQualifiers());
1978
1979    if (Moving) {
1980      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
1981    }
1982
1983    CXXCastPath BasePath;
1984    BasePath.push_back(BaseSpec);
1985    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1986                                            CK_UncheckedDerivedToBase,
1987                                            Moving ? VK_XValue : VK_LValue,
1988                                            &BasePath).take();
1989
1990    InitializationKind InitKind
1991      = InitializationKind::CreateDirect(Constructor->getLocation(),
1992                                         SourceLocation(), SourceLocation());
1993    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1994                                   &CopyCtorArg, 1);
1995    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1996                               MultiExprArg(&CopyCtorArg, 1));
1997    break;
1998  }
1999  }
2000
2001  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2002  if (BaseInit.isInvalid())
2003    return true;
2004
2005  CXXBaseInit =
2006    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2007               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2008                                                        SourceLocation()),
2009                                             BaseSpec->isVirtual(),
2010                                             SourceLocation(),
2011                                             BaseInit.takeAs<Expr>(),
2012                                             SourceLocation(),
2013                                             SourceLocation());
2014
2015  return false;
2016}
2017
2018static bool RefersToRValueRef(Expr *MemRef) {
2019  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2020  return Referenced->getType()->isRValueReferenceType();
2021}
2022
2023static bool
2024BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2025                               ImplicitInitializerKind ImplicitInitKind,
2026                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2027                               CXXCtorInitializer *&CXXMemberInit) {
2028  if (Field->isInvalidDecl())
2029    return true;
2030
2031  SourceLocation Loc = Constructor->getLocation();
2032
2033  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2034    bool Moving = ImplicitInitKind == IIK_Move;
2035    ParmVarDecl *Param = Constructor->getParamDecl(0);
2036    QualType ParamType = Param->getType().getNonReferenceType();
2037
2038    // Suppress copying zero-width bitfields.
2039    if (const Expr *Width = Field->getBitWidth())
2040      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
2041        return false;
2042
2043    Expr *MemberExprBase =
2044      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2045                          Loc, ParamType, VK_LValue, 0);
2046
2047    if (Moving) {
2048      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2049    }
2050
2051    // Build a reference to this field within the parameter.
2052    CXXScopeSpec SS;
2053    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2054                              Sema::LookupMemberName);
2055    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2056                                  : cast<ValueDecl>(Field), AS_public);
2057    MemberLookup.resolveKind();
2058    ExprResult CtorArg
2059      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2060                                         ParamType, Loc,
2061                                         /*IsArrow=*/false,
2062                                         SS,
2063                                         /*FirstQualifierInScope=*/0,
2064                                         MemberLookup,
2065                                         /*TemplateArgs=*/0);
2066    if (CtorArg.isInvalid())
2067      return true;
2068
2069    // C++11 [class.copy]p15:
2070    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2071    //     with static_cast<T&&>(x.m);
2072    if (RefersToRValueRef(CtorArg.get())) {
2073      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2074    }
2075
2076    // When the field we are copying is an array, create index variables for
2077    // each dimension of the array. We use these index variables to subscript
2078    // the source array, and other clients (e.g., CodeGen) will perform the
2079    // necessary iteration with these index variables.
2080    SmallVector<VarDecl *, 4> IndexVariables;
2081    QualType BaseType = Field->getType();
2082    QualType SizeType = SemaRef.Context.getSizeType();
2083    bool InitializingArray = false;
2084    while (const ConstantArrayType *Array
2085                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2086      InitializingArray = true;
2087      // Create the iteration variable for this array index.
2088      IdentifierInfo *IterationVarName = 0;
2089      {
2090        llvm::SmallString<8> Str;
2091        llvm::raw_svector_ostream OS(Str);
2092        OS << "__i" << IndexVariables.size();
2093        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2094      }
2095      VarDecl *IterationVar
2096        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2097                          IterationVarName, SizeType,
2098                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2099                          SC_None, SC_None);
2100      IndexVariables.push_back(IterationVar);
2101
2102      // Create a reference to the iteration variable.
2103      ExprResult IterationVarRef
2104        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2105      assert(!IterationVarRef.isInvalid() &&
2106             "Reference to invented variable cannot fail!");
2107
2108      // Subscript the array with this iteration variable.
2109      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2110                                                        IterationVarRef.take(),
2111                                                        Loc);
2112      if (CtorArg.isInvalid())
2113        return true;
2114
2115      BaseType = Array->getElementType();
2116    }
2117
2118    // The array subscript expression is an lvalue, which is wrong for moving.
2119    if (Moving && InitializingArray)
2120      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2121
2122    // Construct the entity that we will be initializing. For an array, this
2123    // will be first element in the array, which may require several levels
2124    // of array-subscript entities.
2125    SmallVector<InitializedEntity, 4> Entities;
2126    Entities.reserve(1 + IndexVariables.size());
2127    if (Indirect)
2128      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2129    else
2130      Entities.push_back(InitializedEntity::InitializeMember(Field));
2131    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2132      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2133                                                              0,
2134                                                              Entities.back()));
2135
2136    // Direct-initialize to use the copy constructor.
2137    InitializationKind InitKind =
2138      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2139
2140    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2141    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2142                                   &CtorArgE, 1);
2143
2144    ExprResult MemberInit
2145      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2146                        MultiExprArg(&CtorArgE, 1));
2147    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2148    if (MemberInit.isInvalid())
2149      return true;
2150
2151    if (Indirect) {
2152      assert(IndexVariables.size() == 0 &&
2153             "Indirect field improperly initialized");
2154      CXXMemberInit
2155        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2156                                                   Loc, Loc,
2157                                                   MemberInit.takeAs<Expr>(),
2158                                                   Loc);
2159    } else
2160      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2161                                                 Loc, MemberInit.takeAs<Expr>(),
2162                                                 Loc,
2163                                                 IndexVariables.data(),
2164                                                 IndexVariables.size());
2165    return false;
2166  }
2167
2168  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2169
2170  QualType FieldBaseElementType =
2171    SemaRef.Context.getBaseElementType(Field->getType());
2172
2173  if (FieldBaseElementType->isRecordType()) {
2174    InitializedEntity InitEntity
2175      = Indirect? InitializedEntity::InitializeMember(Indirect)
2176                : InitializedEntity::InitializeMember(Field);
2177    InitializationKind InitKind =
2178      InitializationKind::CreateDefault(Loc);
2179
2180    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2181    ExprResult MemberInit =
2182      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2183
2184    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2185    if (MemberInit.isInvalid())
2186      return true;
2187
2188    if (Indirect)
2189      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2190                                                               Indirect, Loc,
2191                                                               Loc,
2192                                                               MemberInit.get(),
2193                                                               Loc);
2194    else
2195      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2196                                                               Field, Loc, Loc,
2197                                                               MemberInit.get(),
2198                                                               Loc);
2199    return false;
2200  }
2201
2202  if (!Field->getParent()->isUnion()) {
2203    if (FieldBaseElementType->isReferenceType()) {
2204      SemaRef.Diag(Constructor->getLocation(),
2205                   diag::err_uninitialized_member_in_ctor)
2206      << (int)Constructor->isImplicit()
2207      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2208      << 0 << Field->getDeclName();
2209      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2210      return true;
2211    }
2212
2213    if (FieldBaseElementType.isConstQualified()) {
2214      SemaRef.Diag(Constructor->getLocation(),
2215                   diag::err_uninitialized_member_in_ctor)
2216      << (int)Constructor->isImplicit()
2217      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2218      << 1 << Field->getDeclName();
2219      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2220      return true;
2221    }
2222  }
2223
2224  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2225      FieldBaseElementType->isObjCRetainableType() &&
2226      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2227      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2228    // Instant objects:
2229    //   Default-initialize Objective-C pointers to NULL.
2230    CXXMemberInit
2231      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2232                                                 Loc, Loc,
2233                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2234                                                 Loc);
2235    return false;
2236  }
2237
2238  // Nothing to initialize.
2239  CXXMemberInit = 0;
2240  return false;
2241}
2242
2243namespace {
2244struct BaseAndFieldInfo {
2245  Sema &S;
2246  CXXConstructorDecl *Ctor;
2247  bool AnyErrorsInInits;
2248  ImplicitInitializerKind IIK;
2249  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2250  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2251
2252  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2253    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2254    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2255    if (Generated && Ctor->isCopyConstructor())
2256      IIK = IIK_Copy;
2257    else if (Generated && Ctor->isMoveConstructor())
2258      IIK = IIK_Move;
2259    else
2260      IIK = IIK_Default;
2261  }
2262};
2263}
2264
2265static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2266                                    FieldDecl *Field,
2267                                    IndirectFieldDecl *Indirect = 0) {
2268
2269  // Overwhelmingly common case: we have a direct initializer for this field.
2270  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2271    Info.AllToInit.push_back(Init);
2272    return false;
2273  }
2274
2275  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2276  // has a brace-or-equal-initializer, the entity is initialized as specified
2277  // in [dcl.init].
2278  if (Field->hasInClassInitializer()) {
2279    CXXCtorInitializer *Init;
2280    if (Indirect)
2281      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2282                                                      SourceLocation(),
2283                                                      SourceLocation(), 0,
2284                                                      SourceLocation());
2285    else
2286      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2287                                                      SourceLocation(),
2288                                                      SourceLocation(), 0,
2289                                                      SourceLocation());
2290    Info.AllToInit.push_back(Init);
2291    return false;
2292  }
2293
2294  // Don't try to build an implicit initializer if there were semantic
2295  // errors in any of the initializers (and therefore we might be
2296  // missing some that the user actually wrote).
2297  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2298    return false;
2299
2300  CXXCtorInitializer *Init = 0;
2301  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2302                                     Indirect, Init))
2303    return true;
2304
2305  if (Init)
2306    Info.AllToInit.push_back(Init);
2307
2308  return false;
2309}
2310
2311bool
2312Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2313                               CXXCtorInitializer *Initializer) {
2314  assert(Initializer->isDelegatingInitializer());
2315  Constructor->setNumCtorInitializers(1);
2316  CXXCtorInitializer **initializer =
2317    new (Context) CXXCtorInitializer*[1];
2318  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2319  Constructor->setCtorInitializers(initializer);
2320
2321  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2322    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2323    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2324  }
2325
2326  DelegatingCtorDecls.push_back(Constructor);
2327
2328  return false;
2329}
2330
2331/// \brief Determine whether the given indirect field declaration is somewhere
2332/// within an anonymous union.
2333static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2334  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2335                                      CEnd = F->chain_end();
2336       C != CEnd; ++C)
2337    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2338      if (Record->isUnion())
2339        return true;
2340
2341  return false;
2342}
2343
2344bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2345                               CXXCtorInitializer **Initializers,
2346                               unsigned NumInitializers,
2347                               bool AnyErrors) {
2348  if (Constructor->getDeclContext()->isDependentContext()) {
2349    // Just store the initializers as written, they will be checked during
2350    // instantiation.
2351    if (NumInitializers > 0) {
2352      Constructor->setNumCtorInitializers(NumInitializers);
2353      CXXCtorInitializer **baseOrMemberInitializers =
2354        new (Context) CXXCtorInitializer*[NumInitializers];
2355      memcpy(baseOrMemberInitializers, Initializers,
2356             NumInitializers * sizeof(CXXCtorInitializer*));
2357      Constructor->setCtorInitializers(baseOrMemberInitializers);
2358    }
2359
2360    return false;
2361  }
2362
2363  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2364
2365  // We need to build the initializer AST according to order of construction
2366  // and not what user specified in the Initializers list.
2367  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2368  if (!ClassDecl)
2369    return true;
2370
2371  bool HadError = false;
2372
2373  for (unsigned i = 0; i < NumInitializers; i++) {
2374    CXXCtorInitializer *Member = Initializers[i];
2375
2376    if (Member->isBaseInitializer())
2377      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2378    else
2379      Info.AllBaseFields[Member->getAnyMember()] = Member;
2380  }
2381
2382  // Keep track of the direct virtual bases.
2383  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2384  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2385       E = ClassDecl->bases_end(); I != E; ++I) {
2386    if (I->isVirtual())
2387      DirectVBases.insert(I);
2388  }
2389
2390  // Push virtual bases before others.
2391  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2392       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2393
2394    if (CXXCtorInitializer *Value
2395        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2396      Info.AllToInit.push_back(Value);
2397    } else if (!AnyErrors) {
2398      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2399      CXXCtorInitializer *CXXBaseInit;
2400      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2401                                       VBase, IsInheritedVirtualBase,
2402                                       CXXBaseInit)) {
2403        HadError = true;
2404        continue;
2405      }
2406
2407      Info.AllToInit.push_back(CXXBaseInit);
2408    }
2409  }
2410
2411  // Non-virtual bases.
2412  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2413       E = ClassDecl->bases_end(); Base != E; ++Base) {
2414    // Virtuals are in the virtual base list and already constructed.
2415    if (Base->isVirtual())
2416      continue;
2417
2418    if (CXXCtorInitializer *Value
2419          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2420      Info.AllToInit.push_back(Value);
2421    } else if (!AnyErrors) {
2422      CXXCtorInitializer *CXXBaseInit;
2423      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2424                                       Base, /*IsInheritedVirtualBase=*/false,
2425                                       CXXBaseInit)) {
2426        HadError = true;
2427        continue;
2428      }
2429
2430      Info.AllToInit.push_back(CXXBaseInit);
2431    }
2432  }
2433
2434  // Fields.
2435  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2436                               MemEnd = ClassDecl->decls_end();
2437       Mem != MemEnd; ++Mem) {
2438    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2439      if (F->getType()->isIncompleteArrayType()) {
2440        assert(ClassDecl->hasFlexibleArrayMember() &&
2441               "Incomplete array type is not valid");
2442        continue;
2443      }
2444
2445      // If we're not generating the implicit copy/move constructor, then we'll
2446      // handle anonymous struct/union fields based on their individual
2447      // indirect fields.
2448      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2449        continue;
2450
2451      if (CollectFieldInitializer(*this, Info, F))
2452        HadError = true;
2453      continue;
2454    }
2455
2456    // Beyond this point, we only consider default initialization.
2457    if (Info.IIK != IIK_Default)
2458      continue;
2459
2460    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2461      if (F->getType()->isIncompleteArrayType()) {
2462        assert(ClassDecl->hasFlexibleArrayMember() &&
2463               "Incomplete array type is not valid");
2464        continue;
2465      }
2466
2467      // If this field is somewhere within an anonymous union, we only
2468      // initialize it if there's an explicit initializer.
2469      if (isWithinAnonymousUnion(F)) {
2470        if (CXXCtorInitializer *Init
2471              = Info.AllBaseFields.lookup(F->getAnonField())) {
2472          Info.AllToInit.push_back(Init);
2473        }
2474
2475        continue;
2476      }
2477
2478      // Initialize each field of an anonymous struct individually.
2479      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2480        HadError = true;
2481
2482      continue;
2483    }
2484  }
2485
2486  NumInitializers = Info.AllToInit.size();
2487  if (NumInitializers > 0) {
2488    Constructor->setNumCtorInitializers(NumInitializers);
2489    CXXCtorInitializer **baseOrMemberInitializers =
2490      new (Context) CXXCtorInitializer*[NumInitializers];
2491    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2492           NumInitializers * sizeof(CXXCtorInitializer*));
2493    Constructor->setCtorInitializers(baseOrMemberInitializers);
2494
2495    // Constructors implicitly reference the base and member
2496    // destructors.
2497    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2498                                           Constructor->getParent());
2499  }
2500
2501  return HadError;
2502}
2503
2504static void *GetKeyForTopLevelField(FieldDecl *Field) {
2505  // For anonymous unions, use the class declaration as the key.
2506  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2507    if (RT->getDecl()->isAnonymousStructOrUnion())
2508      return static_cast<void *>(RT->getDecl());
2509  }
2510  return static_cast<void *>(Field);
2511}
2512
2513static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2514  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2515}
2516
2517static void *GetKeyForMember(ASTContext &Context,
2518                             CXXCtorInitializer *Member) {
2519  if (!Member->isAnyMemberInitializer())
2520    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2521
2522  // For fields injected into the class via declaration of an anonymous union,
2523  // use its anonymous union class declaration as the unique key.
2524  FieldDecl *Field = Member->getAnyMember();
2525
2526  // If the field is a member of an anonymous struct or union, our key
2527  // is the anonymous record decl that's a direct child of the class.
2528  RecordDecl *RD = Field->getParent();
2529  if (RD->isAnonymousStructOrUnion()) {
2530    while (true) {
2531      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2532      if (Parent->isAnonymousStructOrUnion())
2533        RD = Parent;
2534      else
2535        break;
2536    }
2537
2538    return static_cast<void *>(RD);
2539  }
2540
2541  return static_cast<void *>(Field);
2542}
2543
2544static void
2545DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2546                                  const CXXConstructorDecl *Constructor,
2547                                  CXXCtorInitializer **Inits,
2548                                  unsigned NumInits) {
2549  if (Constructor->getDeclContext()->isDependentContext())
2550    return;
2551
2552  // Don't check initializers order unless the warning is enabled at the
2553  // location of at least one initializer.
2554  bool ShouldCheckOrder = false;
2555  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2556    CXXCtorInitializer *Init = Inits[InitIndex];
2557    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2558                                         Init->getSourceLocation())
2559          != Diagnostic::Ignored) {
2560      ShouldCheckOrder = true;
2561      break;
2562    }
2563  }
2564  if (!ShouldCheckOrder)
2565    return;
2566
2567  // Build the list of bases and members in the order that they'll
2568  // actually be initialized.  The explicit initializers should be in
2569  // this same order but may be missing things.
2570  SmallVector<const void*, 32> IdealInitKeys;
2571
2572  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2573
2574  // 1. Virtual bases.
2575  for (CXXRecordDecl::base_class_const_iterator VBase =
2576       ClassDecl->vbases_begin(),
2577       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2578    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2579
2580  // 2. Non-virtual bases.
2581  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2582       E = ClassDecl->bases_end(); Base != E; ++Base) {
2583    if (Base->isVirtual())
2584      continue;
2585    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2586  }
2587
2588  // 3. Direct fields.
2589  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2590       E = ClassDecl->field_end(); Field != E; ++Field)
2591    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2592
2593  unsigned NumIdealInits = IdealInitKeys.size();
2594  unsigned IdealIndex = 0;
2595
2596  CXXCtorInitializer *PrevInit = 0;
2597  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2598    CXXCtorInitializer *Init = Inits[InitIndex];
2599    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2600
2601    // Scan forward to try to find this initializer in the idealized
2602    // initializers list.
2603    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2604      if (InitKey == IdealInitKeys[IdealIndex])
2605        break;
2606
2607    // If we didn't find this initializer, it must be because we
2608    // scanned past it on a previous iteration.  That can only
2609    // happen if we're out of order;  emit a warning.
2610    if (IdealIndex == NumIdealInits && PrevInit) {
2611      Sema::SemaDiagnosticBuilder D =
2612        SemaRef.Diag(PrevInit->getSourceLocation(),
2613                     diag::warn_initializer_out_of_order);
2614
2615      if (PrevInit->isAnyMemberInitializer())
2616        D << 0 << PrevInit->getAnyMember()->getDeclName();
2617      else
2618        D << 1 << PrevInit->getBaseClassInfo()->getType();
2619
2620      if (Init->isAnyMemberInitializer())
2621        D << 0 << Init->getAnyMember()->getDeclName();
2622      else
2623        D << 1 << Init->getBaseClassInfo()->getType();
2624
2625      // Move back to the initializer's location in the ideal list.
2626      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2627        if (InitKey == IdealInitKeys[IdealIndex])
2628          break;
2629
2630      assert(IdealIndex != NumIdealInits &&
2631             "initializer not found in initializer list");
2632    }
2633
2634    PrevInit = Init;
2635  }
2636}
2637
2638namespace {
2639bool CheckRedundantInit(Sema &S,
2640                        CXXCtorInitializer *Init,
2641                        CXXCtorInitializer *&PrevInit) {
2642  if (!PrevInit) {
2643    PrevInit = Init;
2644    return false;
2645  }
2646
2647  if (FieldDecl *Field = Init->getMember())
2648    S.Diag(Init->getSourceLocation(),
2649           diag::err_multiple_mem_initialization)
2650      << Field->getDeclName()
2651      << Init->getSourceRange();
2652  else {
2653    const Type *BaseClass = Init->getBaseClass();
2654    assert(BaseClass && "neither field nor base");
2655    S.Diag(Init->getSourceLocation(),
2656           diag::err_multiple_base_initialization)
2657      << QualType(BaseClass, 0)
2658      << Init->getSourceRange();
2659  }
2660  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2661    << 0 << PrevInit->getSourceRange();
2662
2663  return true;
2664}
2665
2666typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2667typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2668
2669bool CheckRedundantUnionInit(Sema &S,
2670                             CXXCtorInitializer *Init,
2671                             RedundantUnionMap &Unions) {
2672  FieldDecl *Field = Init->getAnyMember();
2673  RecordDecl *Parent = Field->getParent();
2674  if (!Parent->isAnonymousStructOrUnion())
2675    return false;
2676
2677  NamedDecl *Child = Field;
2678  do {
2679    if (Parent->isUnion()) {
2680      UnionEntry &En = Unions[Parent];
2681      if (En.first && En.first != Child) {
2682        S.Diag(Init->getSourceLocation(),
2683               diag::err_multiple_mem_union_initialization)
2684          << Field->getDeclName()
2685          << Init->getSourceRange();
2686        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2687          << 0 << En.second->getSourceRange();
2688        return true;
2689      } else if (!En.first) {
2690        En.first = Child;
2691        En.second = Init;
2692      }
2693    }
2694
2695    Child = Parent;
2696    Parent = cast<RecordDecl>(Parent->getDeclContext());
2697  } while (Parent->isAnonymousStructOrUnion());
2698
2699  return false;
2700}
2701}
2702
2703/// ActOnMemInitializers - Handle the member initializers for a constructor.
2704void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2705                                SourceLocation ColonLoc,
2706                                MemInitTy **meminits, unsigned NumMemInits,
2707                                bool AnyErrors) {
2708  if (!ConstructorDecl)
2709    return;
2710
2711  AdjustDeclIfTemplate(ConstructorDecl);
2712
2713  CXXConstructorDecl *Constructor
2714    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2715
2716  if (!Constructor) {
2717    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2718    return;
2719  }
2720
2721  CXXCtorInitializer **MemInits =
2722    reinterpret_cast<CXXCtorInitializer **>(meminits);
2723
2724  // Mapping for the duplicate initializers check.
2725  // For member initializers, this is keyed with a FieldDecl*.
2726  // For base initializers, this is keyed with a Type*.
2727  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2728
2729  // Mapping for the inconsistent anonymous-union initializers check.
2730  RedundantUnionMap MemberUnions;
2731
2732  bool HadError = false;
2733  for (unsigned i = 0; i < NumMemInits; i++) {
2734    CXXCtorInitializer *Init = MemInits[i];
2735
2736    // Set the source order index.
2737    Init->setSourceOrder(i);
2738
2739    if (Init->isAnyMemberInitializer()) {
2740      FieldDecl *Field = Init->getAnyMember();
2741      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2742          CheckRedundantUnionInit(*this, Init, MemberUnions))
2743        HadError = true;
2744    } else if (Init->isBaseInitializer()) {
2745      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2746      if (CheckRedundantInit(*this, Init, Members[Key]))
2747        HadError = true;
2748    } else {
2749      assert(Init->isDelegatingInitializer());
2750      // This must be the only initializer
2751      if (i != 0 || NumMemInits > 1) {
2752        Diag(MemInits[0]->getSourceLocation(),
2753             diag::err_delegating_initializer_alone)
2754          << MemInits[0]->getSourceRange();
2755        HadError = true;
2756        // We will treat this as being the only initializer.
2757      }
2758      SetDelegatingInitializer(Constructor, MemInits[i]);
2759      // Return immediately as the initializer is set.
2760      return;
2761    }
2762  }
2763
2764  if (HadError)
2765    return;
2766
2767  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2768
2769  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2770}
2771
2772void
2773Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2774                                             CXXRecordDecl *ClassDecl) {
2775  // Ignore dependent contexts.
2776  if (ClassDecl->isDependentContext())
2777    return;
2778
2779  // FIXME: all the access-control diagnostics are positioned on the
2780  // field/base declaration.  That's probably good; that said, the
2781  // user might reasonably want to know why the destructor is being
2782  // emitted, and we currently don't say.
2783
2784  // Non-static data members.
2785  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2786       E = ClassDecl->field_end(); I != E; ++I) {
2787    FieldDecl *Field = *I;
2788    if (Field->isInvalidDecl())
2789      continue;
2790    QualType FieldType = Context.getBaseElementType(Field->getType());
2791
2792    const RecordType* RT = FieldType->getAs<RecordType>();
2793    if (!RT)
2794      continue;
2795
2796    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2797    if (FieldClassDecl->isInvalidDecl())
2798      continue;
2799    if (FieldClassDecl->hasTrivialDestructor())
2800      continue;
2801
2802    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2803    assert(Dtor && "No dtor found for FieldClassDecl!");
2804    CheckDestructorAccess(Field->getLocation(), Dtor,
2805                          PDiag(diag::err_access_dtor_field)
2806                            << Field->getDeclName()
2807                            << FieldType);
2808
2809    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2810  }
2811
2812  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2813
2814  // Bases.
2815  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2816       E = ClassDecl->bases_end(); Base != E; ++Base) {
2817    // Bases are always records in a well-formed non-dependent class.
2818    const RecordType *RT = Base->getType()->getAs<RecordType>();
2819
2820    // Remember direct virtual bases.
2821    if (Base->isVirtual())
2822      DirectVirtualBases.insert(RT);
2823
2824    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2825    // If our base class is invalid, we probably can't get its dtor anyway.
2826    if (BaseClassDecl->isInvalidDecl())
2827      continue;
2828    // Ignore trivial destructors.
2829    if (BaseClassDecl->hasTrivialDestructor())
2830      continue;
2831
2832    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2833    assert(Dtor && "No dtor found for BaseClassDecl!");
2834
2835    // FIXME: caret should be on the start of the class name
2836    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2837                          PDiag(diag::err_access_dtor_base)
2838                            << Base->getType()
2839                            << Base->getSourceRange());
2840
2841    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2842  }
2843
2844  // Virtual bases.
2845  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2846       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2847
2848    // Bases are always records in a well-formed non-dependent class.
2849    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2850
2851    // Ignore direct virtual bases.
2852    if (DirectVirtualBases.count(RT))
2853      continue;
2854
2855    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2856    // If our base class is invalid, we probably can't get its dtor anyway.
2857    if (BaseClassDecl->isInvalidDecl())
2858      continue;
2859    // Ignore trivial destructors.
2860    if (BaseClassDecl->hasTrivialDestructor())
2861      continue;
2862
2863    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2864    assert(Dtor && "No dtor found for BaseClassDecl!");
2865    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2866                          PDiag(diag::err_access_dtor_vbase)
2867                            << VBase->getType());
2868
2869    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2870  }
2871}
2872
2873void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2874  if (!CDtorDecl)
2875    return;
2876
2877  if (CXXConstructorDecl *Constructor
2878      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2879    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2880}
2881
2882bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2883                                  unsigned DiagID, AbstractDiagSelID SelID) {
2884  if (SelID == -1)
2885    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2886  else
2887    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2888}
2889
2890bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2891                                  const PartialDiagnostic &PD) {
2892  if (!getLangOptions().CPlusPlus)
2893    return false;
2894
2895  if (const ArrayType *AT = Context.getAsArrayType(T))
2896    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2897
2898  if (const PointerType *PT = T->getAs<PointerType>()) {
2899    // Find the innermost pointer type.
2900    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2901      PT = T;
2902
2903    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2904      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2905  }
2906
2907  const RecordType *RT = T->getAs<RecordType>();
2908  if (!RT)
2909    return false;
2910
2911  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2912
2913  // We can't answer whether something is abstract until it has a
2914  // definition.  If it's currently being defined, we'll walk back
2915  // over all the declarations when we have a full definition.
2916  const CXXRecordDecl *Def = RD->getDefinition();
2917  if (!Def || Def->isBeingDefined())
2918    return false;
2919
2920  if (!RD->isAbstract())
2921    return false;
2922
2923  Diag(Loc, PD) << RD->getDeclName();
2924  DiagnoseAbstractType(RD);
2925
2926  return true;
2927}
2928
2929void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2930  // Check if we've already emitted the list of pure virtual functions
2931  // for this class.
2932  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2933    return;
2934
2935  CXXFinalOverriderMap FinalOverriders;
2936  RD->getFinalOverriders(FinalOverriders);
2937
2938  // Keep a set of seen pure methods so we won't diagnose the same method
2939  // more than once.
2940  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2941
2942  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2943                                   MEnd = FinalOverriders.end();
2944       M != MEnd;
2945       ++M) {
2946    for (OverridingMethods::iterator SO = M->second.begin(),
2947                                  SOEnd = M->second.end();
2948         SO != SOEnd; ++SO) {
2949      // C++ [class.abstract]p4:
2950      //   A class is abstract if it contains or inherits at least one
2951      //   pure virtual function for which the final overrider is pure
2952      //   virtual.
2953
2954      //
2955      if (SO->second.size() != 1)
2956        continue;
2957
2958      if (!SO->second.front().Method->isPure())
2959        continue;
2960
2961      if (!SeenPureMethods.insert(SO->second.front().Method))
2962        continue;
2963
2964      Diag(SO->second.front().Method->getLocation(),
2965           diag::note_pure_virtual_function)
2966        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2967    }
2968  }
2969
2970  if (!PureVirtualClassDiagSet)
2971    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2972  PureVirtualClassDiagSet->insert(RD);
2973}
2974
2975namespace {
2976struct AbstractUsageInfo {
2977  Sema &S;
2978  CXXRecordDecl *Record;
2979  CanQualType AbstractType;
2980  bool Invalid;
2981
2982  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2983    : S(S), Record(Record),
2984      AbstractType(S.Context.getCanonicalType(
2985                   S.Context.getTypeDeclType(Record))),
2986      Invalid(false) {}
2987
2988  void DiagnoseAbstractType() {
2989    if (Invalid) return;
2990    S.DiagnoseAbstractType(Record);
2991    Invalid = true;
2992  }
2993
2994  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2995};
2996
2997struct CheckAbstractUsage {
2998  AbstractUsageInfo &Info;
2999  const NamedDecl *Ctx;
3000
3001  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3002    : Info(Info), Ctx(Ctx) {}
3003
3004  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3005    switch (TL.getTypeLocClass()) {
3006#define ABSTRACT_TYPELOC(CLASS, PARENT)
3007#define TYPELOC(CLASS, PARENT) \
3008    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3009#include "clang/AST/TypeLocNodes.def"
3010    }
3011  }
3012
3013  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3014    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3015    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3016      if (!TL.getArg(I))
3017        continue;
3018
3019      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3020      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3021    }
3022  }
3023
3024  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3025    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3026  }
3027
3028  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3029    // Visit the type parameters from a permissive context.
3030    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3031      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3032      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3033        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3034          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3035      // TODO: other template argument types?
3036    }
3037  }
3038
3039  // Visit pointee types from a permissive context.
3040#define CheckPolymorphic(Type) \
3041  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3042    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3043  }
3044  CheckPolymorphic(PointerTypeLoc)
3045  CheckPolymorphic(ReferenceTypeLoc)
3046  CheckPolymorphic(MemberPointerTypeLoc)
3047  CheckPolymorphic(BlockPointerTypeLoc)
3048
3049  /// Handle all the types we haven't given a more specific
3050  /// implementation for above.
3051  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3052    // Every other kind of type that we haven't called out already
3053    // that has an inner type is either (1) sugar or (2) contains that
3054    // inner type in some way as a subobject.
3055    if (TypeLoc Next = TL.getNextTypeLoc())
3056      return Visit(Next, Sel);
3057
3058    // If there's no inner type and we're in a permissive context,
3059    // don't diagnose.
3060    if (Sel == Sema::AbstractNone) return;
3061
3062    // Check whether the type matches the abstract type.
3063    QualType T = TL.getType();
3064    if (T->isArrayType()) {
3065      Sel = Sema::AbstractArrayType;
3066      T = Info.S.Context.getBaseElementType(T);
3067    }
3068    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3069    if (CT != Info.AbstractType) return;
3070
3071    // It matched; do some magic.
3072    if (Sel == Sema::AbstractArrayType) {
3073      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3074        << T << TL.getSourceRange();
3075    } else {
3076      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3077        << Sel << T << TL.getSourceRange();
3078    }
3079    Info.DiagnoseAbstractType();
3080  }
3081};
3082
3083void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3084                                  Sema::AbstractDiagSelID Sel) {
3085  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3086}
3087
3088}
3089
3090/// Check for invalid uses of an abstract type in a method declaration.
3091static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3092                                    CXXMethodDecl *MD) {
3093  // No need to do the check on definitions, which require that
3094  // the return/param types be complete.
3095  if (MD->doesThisDeclarationHaveABody())
3096    return;
3097
3098  // For safety's sake, just ignore it if we don't have type source
3099  // information.  This should never happen for non-implicit methods,
3100  // but...
3101  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3102    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3103}
3104
3105/// Check for invalid uses of an abstract type within a class definition.
3106static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3107                                    CXXRecordDecl *RD) {
3108  for (CXXRecordDecl::decl_iterator
3109         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3110    Decl *D = *I;
3111    if (D->isImplicit()) continue;
3112
3113    // Methods and method templates.
3114    if (isa<CXXMethodDecl>(D)) {
3115      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3116    } else if (isa<FunctionTemplateDecl>(D)) {
3117      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3118      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3119
3120    // Fields and static variables.
3121    } else if (isa<FieldDecl>(D)) {
3122      FieldDecl *FD = cast<FieldDecl>(D);
3123      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3124        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3125    } else if (isa<VarDecl>(D)) {
3126      VarDecl *VD = cast<VarDecl>(D);
3127      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3128        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3129
3130    // Nested classes and class templates.
3131    } else if (isa<CXXRecordDecl>(D)) {
3132      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3133    } else if (isa<ClassTemplateDecl>(D)) {
3134      CheckAbstractClassUsage(Info,
3135                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3136    }
3137  }
3138}
3139
3140/// \brief Perform semantic checks on a class definition that has been
3141/// completing, introducing implicitly-declared members, checking for
3142/// abstract types, etc.
3143void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3144  if (!Record)
3145    return;
3146
3147  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3148    AbstractUsageInfo Info(*this, Record);
3149    CheckAbstractClassUsage(Info, Record);
3150  }
3151
3152  // If this is not an aggregate type and has no user-declared constructor,
3153  // complain about any non-static data members of reference or const scalar
3154  // type, since they will never get initializers.
3155  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3156      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3157    bool Complained = false;
3158    for (RecordDecl::field_iterator F = Record->field_begin(),
3159                                 FEnd = Record->field_end();
3160         F != FEnd; ++F) {
3161      if (F->hasInClassInitializer())
3162        continue;
3163
3164      if (F->getType()->isReferenceType() ||
3165          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3166        if (!Complained) {
3167          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3168            << Record->getTagKind() << Record;
3169          Complained = true;
3170        }
3171
3172        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3173          << F->getType()->isReferenceType()
3174          << F->getDeclName();
3175      }
3176    }
3177  }
3178
3179  if (Record->isDynamicClass() && !Record->isDependentType())
3180    DynamicClasses.push_back(Record);
3181
3182  if (Record->getIdentifier()) {
3183    // C++ [class.mem]p13:
3184    //   If T is the name of a class, then each of the following shall have a
3185    //   name different from T:
3186    //     - every member of every anonymous union that is a member of class T.
3187    //
3188    // C++ [class.mem]p14:
3189    //   In addition, if class T has a user-declared constructor (12.1), every
3190    //   non-static data member of class T shall have a name different from T.
3191    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3192         R.first != R.second; ++R.first) {
3193      NamedDecl *D = *R.first;
3194      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3195          isa<IndirectFieldDecl>(D)) {
3196        Diag(D->getLocation(), diag::err_member_name_of_class)
3197          << D->getDeclName();
3198        break;
3199      }
3200    }
3201  }
3202
3203  // Warn if the class has virtual methods but non-virtual public destructor.
3204  if (Record->isPolymorphic() && !Record->isDependentType()) {
3205    CXXDestructorDecl *dtor = Record->getDestructor();
3206    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3207      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3208           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3209  }
3210
3211  // See if a method overloads virtual methods in a base
3212  /// class without overriding any.
3213  if (!Record->isDependentType()) {
3214    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3215                                     MEnd = Record->method_end();
3216         M != MEnd; ++M) {
3217      if (!(*M)->isStatic())
3218        DiagnoseHiddenVirtualMethods(Record, *M);
3219    }
3220  }
3221
3222  // Declare inherited constructors. We do this eagerly here because:
3223  // - The standard requires an eager diagnostic for conflicting inherited
3224  //   constructors from different classes.
3225  // - The lazy declaration of the other implicit constructors is so as to not
3226  //   waste space and performance on classes that are not meant to be
3227  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3228  //   have inherited constructors.
3229  DeclareInheritedConstructors(Record);
3230
3231  if (!Record->isDependentType())
3232    CheckExplicitlyDefaultedMethods(Record);
3233}
3234
3235void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3236  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3237                                      ME = Record->method_end();
3238       MI != ME; ++MI) {
3239    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3240      switch (getSpecialMember(*MI)) {
3241      case CXXDefaultConstructor:
3242        CheckExplicitlyDefaultedDefaultConstructor(
3243                                                  cast<CXXConstructorDecl>(*MI));
3244        break;
3245
3246      case CXXDestructor:
3247        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3248        break;
3249
3250      case CXXCopyConstructor:
3251        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3252        break;
3253
3254      case CXXCopyAssignment:
3255        CheckExplicitlyDefaultedCopyAssignment(*MI);
3256        break;
3257
3258      case CXXMoveConstructor:
3259        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3260        break;
3261
3262      case CXXMoveAssignment:
3263        CheckExplicitlyDefaultedMoveAssignment(*MI);
3264        break;
3265
3266      case CXXInvalid:
3267        llvm_unreachable("non-special member explicitly defaulted!");
3268      }
3269    }
3270  }
3271
3272}
3273
3274void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3275  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3276
3277  // Whether this was the first-declared instance of the constructor.
3278  // This affects whether we implicitly add an exception spec (and, eventually,
3279  // constexpr). It is also ill-formed to explicitly default a constructor such
3280  // that it would be deleted. (C++0x [decl.fct.def.default])
3281  bool First = CD == CD->getCanonicalDecl();
3282
3283  bool HadError = false;
3284  if (CD->getNumParams() != 0) {
3285    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3286      << CD->getSourceRange();
3287    HadError = true;
3288  }
3289
3290  ImplicitExceptionSpecification Spec
3291    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3292  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3293  if (EPI.ExceptionSpecType == EST_Delayed) {
3294    // Exception specification depends on some deferred part of the class. We'll
3295    // try again when the class's definition has been fully processed.
3296    return;
3297  }
3298  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3299                          *ExceptionType = Context.getFunctionType(
3300                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3301
3302  if (CtorType->hasExceptionSpec()) {
3303    if (CheckEquivalentExceptionSpec(
3304          PDiag(diag::err_incorrect_defaulted_exception_spec)
3305            << CXXDefaultConstructor,
3306          PDiag(),
3307          ExceptionType, SourceLocation(),
3308          CtorType, CD->getLocation())) {
3309      HadError = true;
3310    }
3311  } else if (First) {
3312    // We set the declaration to have the computed exception spec here.
3313    // We know there are no parameters.
3314    EPI.ExtInfo = CtorType->getExtInfo();
3315    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3316  }
3317
3318  if (HadError) {
3319    CD->setInvalidDecl();
3320    return;
3321  }
3322
3323  if (ShouldDeleteDefaultConstructor(CD)) {
3324    if (First) {
3325      CD->setDeletedAsWritten();
3326    } else {
3327      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3328        << CXXDefaultConstructor;
3329      CD->setInvalidDecl();
3330    }
3331  }
3332}
3333
3334void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3335  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3336
3337  // Whether this was the first-declared instance of the constructor.
3338  bool First = CD == CD->getCanonicalDecl();
3339
3340  bool HadError = false;
3341  if (CD->getNumParams() != 1) {
3342    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3343      << CD->getSourceRange();
3344    HadError = true;
3345  }
3346
3347  ImplicitExceptionSpecification Spec(Context);
3348  bool Const;
3349  llvm::tie(Spec, Const) =
3350    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3351
3352  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3353  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3354                          *ExceptionType = Context.getFunctionType(
3355                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3356
3357  // Check for parameter type matching.
3358  // This is a copy ctor so we know it's a cv-qualified reference to T.
3359  QualType ArgType = CtorType->getArgType(0);
3360  if (ArgType->getPointeeType().isVolatileQualified()) {
3361    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3362    HadError = true;
3363  }
3364  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3365    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3366    HadError = true;
3367  }
3368
3369  if (CtorType->hasExceptionSpec()) {
3370    if (CheckEquivalentExceptionSpec(
3371          PDiag(diag::err_incorrect_defaulted_exception_spec)
3372            << CXXCopyConstructor,
3373          PDiag(),
3374          ExceptionType, SourceLocation(),
3375          CtorType, CD->getLocation())) {
3376      HadError = true;
3377    }
3378  } else if (First) {
3379    // We set the declaration to have the computed exception spec here.
3380    // We duplicate the one parameter type.
3381    EPI.ExtInfo = CtorType->getExtInfo();
3382    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3383  }
3384
3385  if (HadError) {
3386    CD->setInvalidDecl();
3387    return;
3388  }
3389
3390  if (ShouldDeleteCopyConstructor(CD)) {
3391    if (First) {
3392      CD->setDeletedAsWritten();
3393    } else {
3394      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3395        << CXXCopyConstructor;
3396      CD->setInvalidDecl();
3397    }
3398  }
3399}
3400
3401void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3402  assert(MD->isExplicitlyDefaulted());
3403
3404  // Whether this was the first-declared instance of the operator
3405  bool First = MD == MD->getCanonicalDecl();
3406
3407  bool HadError = false;
3408  if (MD->getNumParams() != 1) {
3409    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3410      << MD->getSourceRange();
3411    HadError = true;
3412  }
3413
3414  QualType ReturnType =
3415    MD->getType()->getAs<FunctionType>()->getResultType();
3416  if (!ReturnType->isLValueReferenceType() ||
3417      !Context.hasSameType(
3418        Context.getCanonicalType(ReturnType->getPointeeType()),
3419        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3420    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3421    HadError = true;
3422  }
3423
3424  ImplicitExceptionSpecification Spec(Context);
3425  bool Const;
3426  llvm::tie(Spec, Const) =
3427    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3428
3429  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3430  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3431                          *ExceptionType = Context.getFunctionType(
3432                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3433
3434  QualType ArgType = OperType->getArgType(0);
3435  if (!ArgType->isLValueReferenceType()) {
3436    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3437    HadError = true;
3438  } else {
3439    if (ArgType->getPointeeType().isVolatileQualified()) {
3440      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3441      HadError = true;
3442    }
3443    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3444      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3445      HadError = true;
3446    }
3447  }
3448
3449  if (OperType->getTypeQuals()) {
3450    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3451    HadError = true;
3452  }
3453
3454  if (OperType->hasExceptionSpec()) {
3455    if (CheckEquivalentExceptionSpec(
3456          PDiag(diag::err_incorrect_defaulted_exception_spec)
3457            << CXXCopyAssignment,
3458          PDiag(),
3459          ExceptionType, SourceLocation(),
3460          OperType, MD->getLocation())) {
3461      HadError = true;
3462    }
3463  } else if (First) {
3464    // We set the declaration to have the computed exception spec here.
3465    // We duplicate the one parameter type.
3466    EPI.RefQualifier = OperType->getRefQualifier();
3467    EPI.ExtInfo = OperType->getExtInfo();
3468    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3469  }
3470
3471  if (HadError) {
3472    MD->setInvalidDecl();
3473    return;
3474  }
3475
3476  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3477    if (First) {
3478      MD->setDeletedAsWritten();
3479    } else {
3480      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3481        << CXXCopyAssignment;
3482      MD->setInvalidDecl();
3483    }
3484  }
3485}
3486
3487void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3488  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3489
3490  // Whether this was the first-declared instance of the constructor.
3491  bool First = CD == CD->getCanonicalDecl();
3492
3493  bool HadError = false;
3494  if (CD->getNumParams() != 1) {
3495    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3496      << CD->getSourceRange();
3497    HadError = true;
3498  }
3499
3500  ImplicitExceptionSpecification Spec(
3501      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3502
3503  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3504  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3505                          *ExceptionType = Context.getFunctionType(
3506                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3507
3508  // Check for parameter type matching.
3509  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3510  QualType ArgType = CtorType->getArgType(0);
3511  if (ArgType->getPointeeType().isVolatileQualified()) {
3512    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3513    HadError = true;
3514  }
3515  if (ArgType->getPointeeType().isConstQualified()) {
3516    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3517    HadError = true;
3518  }
3519
3520  if (CtorType->hasExceptionSpec()) {
3521    if (CheckEquivalentExceptionSpec(
3522          PDiag(diag::err_incorrect_defaulted_exception_spec)
3523            << CXXMoveConstructor,
3524          PDiag(),
3525          ExceptionType, SourceLocation(),
3526          CtorType, CD->getLocation())) {
3527      HadError = true;
3528    }
3529  } else if (First) {
3530    // We set the declaration to have the computed exception spec here.
3531    // We duplicate the one parameter type.
3532    EPI.ExtInfo = CtorType->getExtInfo();
3533    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3534  }
3535
3536  if (HadError) {
3537    CD->setInvalidDecl();
3538    return;
3539  }
3540
3541  if (ShouldDeleteMoveConstructor(CD)) {
3542    if (First) {
3543      CD->setDeletedAsWritten();
3544    } else {
3545      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3546        << CXXMoveConstructor;
3547      CD->setInvalidDecl();
3548    }
3549  }
3550}
3551
3552void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3553  assert(MD->isExplicitlyDefaulted());
3554
3555  // Whether this was the first-declared instance of the operator
3556  bool First = MD == MD->getCanonicalDecl();
3557
3558  bool HadError = false;
3559  if (MD->getNumParams() != 1) {
3560    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3561      << MD->getSourceRange();
3562    HadError = true;
3563  }
3564
3565  QualType ReturnType =
3566    MD->getType()->getAs<FunctionType>()->getResultType();
3567  if (!ReturnType->isLValueReferenceType() ||
3568      !Context.hasSameType(
3569        Context.getCanonicalType(ReturnType->getPointeeType()),
3570        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3571    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
3572    HadError = true;
3573  }
3574
3575  ImplicitExceptionSpecification Spec(
3576      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
3577
3578  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3579  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3580                          *ExceptionType = Context.getFunctionType(
3581                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3582
3583  QualType ArgType = OperType->getArgType(0);
3584  if (!ArgType->isRValueReferenceType()) {
3585    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
3586    HadError = true;
3587  } else {
3588    if (ArgType->getPointeeType().isVolatileQualified()) {
3589      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
3590      HadError = true;
3591    }
3592    if (ArgType->getPointeeType().isConstQualified()) {
3593      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
3594      HadError = true;
3595    }
3596  }
3597
3598  if (OperType->getTypeQuals()) {
3599    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
3600    HadError = true;
3601  }
3602
3603  if (OperType->hasExceptionSpec()) {
3604    if (CheckEquivalentExceptionSpec(
3605          PDiag(diag::err_incorrect_defaulted_exception_spec)
3606            << CXXMoveAssignment,
3607          PDiag(),
3608          ExceptionType, SourceLocation(),
3609          OperType, MD->getLocation())) {
3610      HadError = true;
3611    }
3612  } else if (First) {
3613    // We set the declaration to have the computed exception spec here.
3614    // We duplicate the one parameter type.
3615    EPI.RefQualifier = OperType->getRefQualifier();
3616    EPI.ExtInfo = OperType->getExtInfo();
3617    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3618  }
3619
3620  if (HadError) {
3621    MD->setInvalidDecl();
3622    return;
3623  }
3624
3625  if (ShouldDeleteMoveAssignmentOperator(MD)) {
3626    if (First) {
3627      MD->setDeletedAsWritten();
3628    } else {
3629      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3630        << CXXMoveAssignment;
3631      MD->setInvalidDecl();
3632    }
3633  }
3634}
3635
3636void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3637  assert(DD->isExplicitlyDefaulted());
3638
3639  // Whether this was the first-declared instance of the destructor.
3640  bool First = DD == DD->getCanonicalDecl();
3641
3642  ImplicitExceptionSpecification Spec
3643    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3644  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3645  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3646                          *ExceptionType = Context.getFunctionType(
3647                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3648
3649  if (DtorType->hasExceptionSpec()) {
3650    if (CheckEquivalentExceptionSpec(
3651          PDiag(diag::err_incorrect_defaulted_exception_spec)
3652            << CXXDestructor,
3653          PDiag(),
3654          ExceptionType, SourceLocation(),
3655          DtorType, DD->getLocation())) {
3656      DD->setInvalidDecl();
3657      return;
3658    }
3659  } else if (First) {
3660    // We set the declaration to have the computed exception spec here.
3661    // There are no parameters.
3662    EPI.ExtInfo = DtorType->getExtInfo();
3663    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3664  }
3665
3666  if (ShouldDeleteDestructor(DD)) {
3667    if (First) {
3668      DD->setDeletedAsWritten();
3669    } else {
3670      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3671        << CXXDestructor;
3672      DD->setInvalidDecl();
3673    }
3674  }
3675}
3676
3677bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3678  CXXRecordDecl *RD = CD->getParent();
3679  assert(!RD->isDependentType() && "do deletion after instantiation");
3680  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3681    return false;
3682
3683  SourceLocation Loc = CD->getLocation();
3684
3685  // Do access control from the constructor
3686  ContextRAII CtorContext(*this, CD);
3687
3688  bool Union = RD->isUnion();
3689  bool AllConst = true;
3690
3691  // We do this because we should never actually use an anonymous
3692  // union's constructor.
3693  if (Union && RD->isAnonymousStructOrUnion())
3694    return false;
3695
3696  // FIXME: We should put some diagnostic logic right into this function.
3697
3698  // C++0x [class.ctor]/5
3699  //    A defaulted default constructor for class X is defined as deleted if:
3700
3701  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3702                                          BE = RD->bases_end();
3703       BI != BE; ++BI) {
3704    // We'll handle this one later
3705    if (BI->isVirtual())
3706      continue;
3707
3708    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3709    assert(BaseDecl && "base isn't a CXXRecordDecl");
3710
3711    // -- any [direct base class] has a type with a destructor that is
3712    //    deleted or inaccessible from the defaulted default constructor
3713    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3714    if (BaseDtor->isDeleted())
3715      return true;
3716    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3717        AR_accessible)
3718      return true;
3719
3720    // -- any [direct base class either] has no default constructor or
3721    //    overload resolution as applied to [its] default constructor
3722    //    results in an ambiguity or in a function that is deleted or
3723    //    inaccessible from the defaulted default constructor
3724    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3725    if (!BaseDefault || BaseDefault->isDeleted())
3726      return true;
3727
3728    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3729                               PDiag()) != AR_accessible)
3730      return true;
3731  }
3732
3733  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3734                                          BE = RD->vbases_end();
3735       BI != BE; ++BI) {
3736    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3737    assert(BaseDecl && "base isn't a CXXRecordDecl");
3738
3739    // -- any [virtual base class] has a type with a destructor that is
3740    //    delete or inaccessible from the defaulted default constructor
3741    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3742    if (BaseDtor->isDeleted())
3743      return true;
3744    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3745        AR_accessible)
3746      return true;
3747
3748    // -- any [virtual base class either] has no default constructor or
3749    //    overload resolution as applied to [its] default constructor
3750    //    results in an ambiguity or in a function that is deleted or
3751    //    inaccessible from the defaulted default constructor
3752    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3753    if (!BaseDefault || BaseDefault->isDeleted())
3754      return true;
3755
3756    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3757                               PDiag()) != AR_accessible)
3758      return true;
3759  }
3760
3761  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3762                                     FE = RD->field_end();
3763       FI != FE; ++FI) {
3764    if (FI->isInvalidDecl())
3765      continue;
3766
3767    QualType FieldType = Context.getBaseElementType(FI->getType());
3768    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3769
3770    // -- any non-static data member with no brace-or-equal-initializer is of
3771    //    reference type
3772    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3773      return true;
3774
3775    // -- X is a union and all its variant members are of const-qualified type
3776    //    (or array thereof)
3777    if (Union && !FieldType.isConstQualified())
3778      AllConst = false;
3779
3780    if (FieldRecord) {
3781      // -- X is a union-like class that has a variant member with a non-trivial
3782      //    default constructor
3783      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3784        return true;
3785
3786      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3787      if (FieldDtor->isDeleted())
3788        return true;
3789      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3790          AR_accessible)
3791        return true;
3792
3793      // -- any non-variant non-static data member of const-qualified type (or
3794      //    array thereof) with no brace-or-equal-initializer does not have a
3795      //    user-provided default constructor
3796      if (FieldType.isConstQualified() &&
3797          !FI->hasInClassInitializer() &&
3798          !FieldRecord->hasUserProvidedDefaultConstructor())
3799        return true;
3800
3801      if (!Union && FieldRecord->isUnion() &&
3802          FieldRecord->isAnonymousStructOrUnion()) {
3803        // We're okay to reuse AllConst here since we only care about the
3804        // value otherwise if we're in a union.
3805        AllConst = true;
3806
3807        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3808                                           UE = FieldRecord->field_end();
3809             UI != UE; ++UI) {
3810          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3811          CXXRecordDecl *UnionFieldRecord =
3812            UnionFieldType->getAsCXXRecordDecl();
3813
3814          if (!UnionFieldType.isConstQualified())
3815            AllConst = false;
3816
3817          if (UnionFieldRecord &&
3818              !UnionFieldRecord->hasTrivialDefaultConstructor())
3819            return true;
3820        }
3821
3822        if (AllConst)
3823          return true;
3824
3825        // Don't try to initialize the anonymous union
3826        // This is technically non-conformant, but sanity demands it.
3827        continue;
3828      }
3829
3830      // -- any non-static data member with no brace-or-equal-initializer has
3831      //    class type M (or array thereof) and either M has no default
3832      //    constructor or overload resolution as applied to M's default
3833      //    constructor results in an ambiguity or in a function that is deleted
3834      //    or inaccessible from the defaulted default constructor.
3835      if (!FI->hasInClassInitializer()) {
3836        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3837        if (!FieldDefault || FieldDefault->isDeleted())
3838          return true;
3839        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3840                                   PDiag()) != AR_accessible)
3841          return true;
3842      }
3843    } else if (!Union && FieldType.isConstQualified() &&
3844               !FI->hasInClassInitializer()) {
3845      // -- any non-variant non-static data member of const-qualified type (or
3846      //    array thereof) with no brace-or-equal-initializer does not have a
3847      //    user-provided default constructor
3848      return true;
3849    }
3850  }
3851
3852  if (Union && AllConst)
3853    return true;
3854
3855  return false;
3856}
3857
3858bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3859  CXXRecordDecl *RD = CD->getParent();
3860  assert(!RD->isDependentType() && "do deletion after instantiation");
3861  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3862    return false;
3863
3864  SourceLocation Loc = CD->getLocation();
3865
3866  // Do access control from the constructor
3867  ContextRAII CtorContext(*this, CD);
3868
3869  bool Union = RD->isUnion();
3870
3871  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3872         "copy assignment arg has no pointee type");
3873  unsigned ArgQuals =
3874    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3875      Qualifiers::Const : 0;
3876
3877  // We do this because we should never actually use an anonymous
3878  // union's constructor.
3879  if (Union && RD->isAnonymousStructOrUnion())
3880    return false;
3881
3882  // FIXME: We should put some diagnostic logic right into this function.
3883
3884  // C++0x [class.copy]/11
3885  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3886
3887  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3888                                          BE = RD->bases_end();
3889       BI != BE; ++BI) {
3890    // We'll handle this one later
3891    if (BI->isVirtual())
3892      continue;
3893
3894    QualType BaseType = BI->getType();
3895    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3896    assert(BaseDecl && "base isn't a CXXRecordDecl");
3897
3898    // -- any [direct base class] of a type with a destructor that is deleted or
3899    //    inaccessible from the defaulted constructor
3900    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3901    if (BaseDtor->isDeleted())
3902      return true;
3903    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3904        AR_accessible)
3905      return true;
3906
3907    // -- a [direct base class] B that cannot be [copied] because overload
3908    //    resolution, as applied to B's [copy] constructor, results in an
3909    //    ambiguity or a function that is deleted or inaccessible from the
3910    //    defaulted constructor
3911    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3912    if (!BaseCtor || BaseCtor->isDeleted())
3913      return true;
3914    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3915        AR_accessible)
3916      return true;
3917  }
3918
3919  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3920                                          BE = RD->vbases_end();
3921       BI != BE; ++BI) {
3922    QualType BaseType = BI->getType();
3923    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3924    assert(BaseDecl && "base isn't a CXXRecordDecl");
3925
3926    // -- any [virtual base class] of a type with a destructor that is deleted or
3927    //    inaccessible from the defaulted constructor
3928    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3929    if (BaseDtor->isDeleted())
3930      return true;
3931    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3932        AR_accessible)
3933      return true;
3934
3935    // -- a [virtual base class] B that cannot be [copied] because overload
3936    //    resolution, as applied to B's [copy] constructor, results in an
3937    //    ambiguity or a function that is deleted or inaccessible from the
3938    //    defaulted constructor
3939    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3940    if (!BaseCtor || BaseCtor->isDeleted())
3941      return true;
3942    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3943        AR_accessible)
3944      return true;
3945  }
3946
3947  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3948                                     FE = RD->field_end();
3949       FI != FE; ++FI) {
3950    QualType FieldType = Context.getBaseElementType(FI->getType());
3951
3952    // -- for a copy constructor, a non-static data member of rvalue reference
3953    //    type
3954    if (FieldType->isRValueReferenceType())
3955      return true;
3956
3957    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3958
3959    if (FieldRecord) {
3960      // This is an anonymous union
3961      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3962        // Anonymous unions inside unions do not variant members create
3963        if (!Union) {
3964          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3965                                             UE = FieldRecord->field_end();
3966               UI != UE; ++UI) {
3967            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3968            CXXRecordDecl *UnionFieldRecord =
3969              UnionFieldType->getAsCXXRecordDecl();
3970
3971            // -- a variant member with a non-trivial [copy] constructor and X
3972            //    is a union-like class
3973            if (UnionFieldRecord &&
3974                !UnionFieldRecord->hasTrivialCopyConstructor())
3975              return true;
3976          }
3977        }
3978
3979        // Don't try to initalize an anonymous union
3980        continue;
3981      } else {
3982         // -- a variant member with a non-trivial [copy] constructor and X is a
3983         //    union-like class
3984        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3985          return true;
3986
3987        // -- any [non-static data member] of a type with a destructor that is
3988        //    deleted or inaccessible from the defaulted constructor
3989        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3990        if (FieldDtor->isDeleted())
3991          return true;
3992        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3993            AR_accessible)
3994          return true;
3995      }
3996
3997    // -- a [non-static data member of class type (or array thereof)] B that
3998    //    cannot be [copied] because overload resolution, as applied to B's
3999    //    [copy] constructor, results in an ambiguity or a function that is
4000    //    deleted or inaccessible from the defaulted constructor
4001      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
4002                                                               ArgQuals);
4003      if (!FieldCtor || FieldCtor->isDeleted())
4004        return true;
4005      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4006                                 PDiag()) != AR_accessible)
4007        return true;
4008    }
4009  }
4010
4011  return false;
4012}
4013
4014bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4015  CXXRecordDecl *RD = MD->getParent();
4016  assert(!RD->isDependentType() && "do deletion after instantiation");
4017  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4018    return false;
4019
4020  SourceLocation Loc = MD->getLocation();
4021
4022  // Do access control from the constructor
4023  ContextRAII MethodContext(*this, MD);
4024
4025  bool Union = RD->isUnion();
4026
4027  unsigned ArgQuals =
4028    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4029      Qualifiers::Const : 0;
4030
4031  // We do this because we should never actually use an anonymous
4032  // union's constructor.
4033  if (Union && RD->isAnonymousStructOrUnion())
4034    return false;
4035
4036  // FIXME: We should put some diagnostic logic right into this function.
4037
4038  // C++0x [class.copy]/20
4039  //    A defaulted [copy] assignment operator for class X is defined as deleted
4040  //    if X has:
4041
4042  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4043                                          BE = RD->bases_end();
4044       BI != BE; ++BI) {
4045    // We'll handle this one later
4046    if (BI->isVirtual())
4047      continue;
4048
4049    QualType BaseType = BI->getType();
4050    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4051    assert(BaseDecl && "base isn't a CXXRecordDecl");
4052
4053    // -- a [direct base class] B that cannot be [copied] because overload
4054    //    resolution, as applied to B's [copy] assignment operator, results in
4055    //    an ambiguity or a function that is deleted or inaccessible from the
4056    //    assignment operator
4057    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4058                                                      0);
4059    if (!CopyOper || CopyOper->isDeleted())
4060      return true;
4061    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4062      return true;
4063  }
4064
4065  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4066                                          BE = RD->vbases_end();
4067       BI != BE; ++BI) {
4068    QualType BaseType = BI->getType();
4069    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4070    assert(BaseDecl && "base isn't a CXXRecordDecl");
4071
4072    // -- a [virtual base class] B that cannot be [copied] because overload
4073    //    resolution, as applied to B's [copy] assignment operator, results in
4074    //    an ambiguity or a function that is deleted or inaccessible from the
4075    //    assignment operator
4076    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4077                                                      0);
4078    if (!CopyOper || CopyOper->isDeleted())
4079      return true;
4080    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4081      return true;
4082  }
4083
4084  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4085                                     FE = RD->field_end();
4086       FI != FE; ++FI) {
4087    QualType FieldType = Context.getBaseElementType(FI->getType());
4088
4089    // -- a non-static data member of reference type
4090    if (FieldType->isReferenceType())
4091      return true;
4092
4093    // -- a non-static data member of const non-class type (or array thereof)
4094    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4095      return true;
4096
4097    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4098
4099    if (FieldRecord) {
4100      // This is an anonymous union
4101      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4102        // Anonymous unions inside unions do not variant members create
4103        if (!Union) {
4104          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4105                                             UE = FieldRecord->field_end();
4106               UI != UE; ++UI) {
4107            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4108            CXXRecordDecl *UnionFieldRecord =
4109              UnionFieldType->getAsCXXRecordDecl();
4110
4111            // -- a variant member with a non-trivial [copy] assignment operator
4112            //    and X is a union-like class
4113            if (UnionFieldRecord &&
4114                !UnionFieldRecord->hasTrivialCopyAssignment())
4115              return true;
4116          }
4117        }
4118
4119        // Don't try to initalize an anonymous union
4120        continue;
4121      // -- a variant member with a non-trivial [copy] assignment operator
4122      //    and X is a union-like class
4123      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4124          return true;
4125      }
4126
4127      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4128                                                        false, 0);
4129      if (!CopyOper || CopyOper->isDeleted())
4130        return true;
4131      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4132        return true;
4133    }
4134  }
4135
4136  return false;
4137}
4138
4139bool Sema::ShouldDeleteMoveConstructor(CXXConstructorDecl *CD) {
4140  CXXRecordDecl *RD = CD->getParent();
4141  assert(!RD->isDependentType() && "do deletion after instantiation");
4142  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4143    return false;
4144
4145  SourceLocation Loc = CD->getLocation();
4146
4147  // Do access control from the constructor
4148  ContextRAII CtorContext(*this, CD);
4149
4150  bool Union = RD->isUnion();
4151
4152  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4153         "copy assignment arg has no pointee type");
4154
4155  // We do this because we should never actually use an anonymous
4156  // union's constructor.
4157  if (Union && RD->isAnonymousStructOrUnion())
4158    return false;
4159
4160  // C++0x [class.copy]/11
4161  //    A defaulted [move] constructor for class X is defined as deleted
4162  //    if X has:
4163
4164  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4165                                          BE = RD->bases_end();
4166       BI != BE; ++BI) {
4167    // We'll handle this one later
4168    if (BI->isVirtual())
4169      continue;
4170
4171    QualType BaseType = BI->getType();
4172    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4173    assert(BaseDecl && "base isn't a CXXRecordDecl");
4174
4175    // -- any [direct base class] of a type with a destructor that is deleted or
4176    //    inaccessible from the defaulted constructor
4177    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4178    if (BaseDtor->isDeleted())
4179      return true;
4180    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4181        AR_accessible)
4182      return true;
4183
4184    // -- a [direct base class] B that cannot be [moved] because overload
4185    //    resolution, as applied to B's [move] constructor, results in an
4186    //    ambiguity or a function that is deleted or inaccessible from the
4187    //    defaulted constructor
4188    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4189    if (!BaseCtor || BaseCtor->isDeleted())
4190      return true;
4191    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4192        AR_accessible)
4193      return true;
4194
4195    // -- for a move constructor, a [direct base class] with a type that
4196    //    does not have a move constructor and is not trivially copyable.
4197    // If the field isn't a record, it's always trivially copyable.
4198    // A moving constructor could be a copy constructor instead.
4199    if (!BaseCtor->isMoveConstructor() &&
4200        !BaseDecl->isTriviallyCopyable())
4201      return true;
4202  }
4203
4204  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4205                                          BE = RD->vbases_end();
4206       BI != BE; ++BI) {
4207    QualType BaseType = BI->getType();
4208    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4209    assert(BaseDecl && "base isn't a CXXRecordDecl");
4210
4211    // -- any [virtual base class] of a type with a destructor that is deleted
4212    //    or inaccessible from the defaulted constructor
4213    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4214    if (BaseDtor->isDeleted())
4215      return true;
4216    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4217        AR_accessible)
4218      return true;
4219
4220    // -- a [virtual base class] B that cannot be [moved] because overload
4221    //    resolution, as applied to B's [move] constructor, results in an
4222    //    ambiguity or a function that is deleted or inaccessible from the
4223    //    defaulted constructor
4224    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4225    if (!BaseCtor || BaseCtor->isDeleted())
4226      return true;
4227    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4228        AR_accessible)
4229      return true;
4230
4231    // -- for a move constructor, a [virtual base class] with a type that
4232    //    does not have a move constructor and is not trivially copyable.
4233    // If the field isn't a record, it's always trivially copyable.
4234    // A moving constructor could be a copy constructor instead.
4235    if (!BaseCtor->isMoveConstructor() &&
4236        !BaseDecl->isTriviallyCopyable())
4237      return true;
4238  }
4239
4240  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4241                                     FE = RD->field_end();
4242       FI != FE; ++FI) {
4243    QualType FieldType = Context.getBaseElementType(FI->getType());
4244
4245    if (CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl()) {
4246      // This is an anonymous union
4247      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4248        // Anonymous unions inside unions do not variant members create
4249        if (!Union) {
4250          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4251                                             UE = FieldRecord->field_end();
4252               UI != UE; ++UI) {
4253            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4254            CXXRecordDecl *UnionFieldRecord =
4255              UnionFieldType->getAsCXXRecordDecl();
4256
4257            // -- a variant member with a non-trivial [move] constructor and X
4258            //    is a union-like class
4259            if (UnionFieldRecord &&
4260                !UnionFieldRecord->hasTrivialMoveConstructor())
4261              return true;
4262          }
4263        }
4264
4265        // Don't try to initalize an anonymous union
4266        continue;
4267      } else {
4268         // -- a variant member with a non-trivial [move] constructor and X is a
4269         //    union-like class
4270        if (Union && !FieldRecord->hasTrivialMoveConstructor())
4271          return true;
4272
4273        // -- any [non-static data member] of a type with a destructor that is
4274        //    deleted or inaccessible from the defaulted constructor
4275        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4276        if (FieldDtor->isDeleted())
4277          return true;
4278        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4279            AR_accessible)
4280          return true;
4281      }
4282
4283      // -- a [non-static data member of class type (or array thereof)] B that
4284      //    cannot be [moved] because overload resolution, as applied to B's
4285      //    [move] constructor, results in an ambiguity or a function that is
4286      //    deleted or inaccessible from the defaulted constructor
4287      CXXConstructorDecl *FieldCtor = LookupMovingConstructor(FieldRecord);
4288      if (!FieldCtor || FieldCtor->isDeleted())
4289        return true;
4290      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4291                                 PDiag()) != AR_accessible)
4292        return true;
4293
4294      // -- for a move constructor, a [non-static data member] with a type that
4295      //    does not have a move constructor and is not trivially copyable.
4296      // If the field isn't a record, it's always trivially copyable.
4297      // A moving constructor could be a copy constructor instead.
4298      if (!FieldCtor->isMoveConstructor() &&
4299          !FieldRecord->isTriviallyCopyable())
4300        return true;
4301    }
4302  }
4303
4304  return false;
4305}
4306
4307bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4308  CXXRecordDecl *RD = MD->getParent();
4309  assert(!RD->isDependentType() && "do deletion after instantiation");
4310  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4311    return false;
4312
4313  SourceLocation Loc = MD->getLocation();
4314
4315  // Do access control from the constructor
4316  ContextRAII MethodContext(*this, MD);
4317
4318  bool Union = RD->isUnion();
4319
4320  // We do this because we should never actually use an anonymous
4321  // union's constructor.
4322  if (Union && RD->isAnonymousStructOrUnion())
4323    return false;
4324
4325  // C++0x [class.copy]/20
4326  //    A defaulted [move] assignment operator for class X is defined as deleted
4327  //    if X has:
4328
4329  //    -- for the move constructor, [...] any direct or indirect virtual base
4330  //       class.
4331  if (RD->getNumVBases() != 0)
4332    return true;
4333
4334  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4335                                          BE = RD->bases_end();
4336       BI != BE; ++BI) {
4337
4338    QualType BaseType = BI->getType();
4339    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4340    assert(BaseDecl && "base isn't a CXXRecordDecl");
4341
4342    // -- a [direct base class] B that cannot be [moved] because overload
4343    //    resolution, as applied to B's [move] assignment operator, results in
4344    //    an ambiguity or a function that is deleted or inaccessible from the
4345    //    assignment operator
4346    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4347    if (!MoveOper || MoveOper->isDeleted())
4348      return true;
4349    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4350      return true;
4351
4352    // -- for the move assignment operator, a [direct base class] with a type
4353    //    that does not have a move assignment operator and is not trivially
4354    //    copyable.
4355    if (!MoveOper->isMoveAssignmentOperator() &&
4356        !BaseDecl->isTriviallyCopyable())
4357      return true;
4358  }
4359
4360  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4361                                     FE = RD->field_end();
4362       FI != FE; ++FI) {
4363    QualType FieldType = Context.getBaseElementType(FI->getType());
4364
4365    // -- a non-static data member of reference type
4366    if (FieldType->isReferenceType())
4367      return true;
4368
4369    // -- a non-static data member of const non-class type (or array thereof)
4370    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4371      return true;
4372
4373    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4374
4375    if (FieldRecord) {
4376      // This is an anonymous union
4377      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4378        // Anonymous unions inside unions do not variant members create
4379        if (!Union) {
4380          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4381                                             UE = FieldRecord->field_end();
4382               UI != UE; ++UI) {
4383            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4384            CXXRecordDecl *UnionFieldRecord =
4385              UnionFieldType->getAsCXXRecordDecl();
4386
4387            // -- a variant member with a non-trivial [move] assignment operator
4388            //    and X is a union-like class
4389            if (UnionFieldRecord &&
4390                !UnionFieldRecord->hasTrivialMoveAssignment())
4391              return true;
4392          }
4393        }
4394
4395        // Don't try to initalize an anonymous union
4396        continue;
4397      // -- a variant member with a non-trivial [move] assignment operator
4398      //    and X is a union-like class
4399      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4400          return true;
4401      }
4402
4403      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4404      if (!MoveOper || MoveOper->isDeleted())
4405        return true;
4406      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4407        return true;
4408
4409      // -- for the move assignment operator, a [non-static data member] with a
4410      //    type that does not have a move assignment operator and is not
4411      //    trivially copyable.
4412      if (!MoveOper->isMoveAssignmentOperator() &&
4413          !FieldRecord->isTriviallyCopyable())
4414        return true;
4415    }
4416  }
4417
4418  return false;
4419}
4420
4421bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4422  CXXRecordDecl *RD = DD->getParent();
4423  assert(!RD->isDependentType() && "do deletion after instantiation");
4424  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4425    return false;
4426
4427  SourceLocation Loc = DD->getLocation();
4428
4429  // Do access control from the destructor
4430  ContextRAII CtorContext(*this, DD);
4431
4432  bool Union = RD->isUnion();
4433
4434  // We do this because we should never actually use an anonymous
4435  // union's destructor.
4436  if (Union && RD->isAnonymousStructOrUnion())
4437    return false;
4438
4439  // C++0x [class.dtor]p5
4440  //    A defaulted destructor for a class X is defined as deleted if:
4441  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4442                                          BE = RD->bases_end();
4443       BI != BE; ++BI) {
4444    // We'll handle this one later
4445    if (BI->isVirtual())
4446      continue;
4447
4448    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4449    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4450    assert(BaseDtor && "base has no destructor");
4451
4452    // -- any direct or virtual base class has a deleted destructor or
4453    //    a destructor that is inaccessible from the defaulted destructor
4454    if (BaseDtor->isDeleted())
4455      return true;
4456    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4457        AR_accessible)
4458      return true;
4459  }
4460
4461  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4462                                          BE = RD->vbases_end();
4463       BI != BE; ++BI) {
4464    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4465    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4466    assert(BaseDtor && "base has no destructor");
4467
4468    // -- any direct or virtual base class has a deleted destructor or
4469    //    a destructor that is inaccessible from the defaulted destructor
4470    if (BaseDtor->isDeleted())
4471      return true;
4472    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4473        AR_accessible)
4474      return true;
4475  }
4476
4477  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4478                                     FE = RD->field_end();
4479       FI != FE; ++FI) {
4480    QualType FieldType = Context.getBaseElementType(FI->getType());
4481    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4482    if (FieldRecord) {
4483      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4484         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4485                                            UE = FieldRecord->field_end();
4486              UI != UE; ++UI) {
4487           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4488           CXXRecordDecl *UnionFieldRecord =
4489             UnionFieldType->getAsCXXRecordDecl();
4490
4491           // -- X is a union-like class that has a variant member with a non-
4492           //    trivial destructor.
4493           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4494             return true;
4495         }
4496      // Technically we are supposed to do this next check unconditionally.
4497      // But that makes absolutely no sense.
4498      } else {
4499        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4500
4501        // -- any of the non-static data members has class type M (or array
4502        //    thereof) and M has a deleted destructor or a destructor that is
4503        //    inaccessible from the defaulted destructor
4504        if (FieldDtor->isDeleted())
4505          return true;
4506        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4507          AR_accessible)
4508        return true;
4509
4510        // -- X is a union-like class that has a variant member with a non-
4511        //    trivial destructor.
4512        if (Union && !FieldDtor->isTrivial())
4513          return true;
4514      }
4515    }
4516  }
4517
4518  if (DD->isVirtual()) {
4519    FunctionDecl *OperatorDelete = 0;
4520    DeclarationName Name =
4521      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4522    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4523          false))
4524      return true;
4525  }
4526
4527
4528  return false;
4529}
4530
4531/// \brief Data used with FindHiddenVirtualMethod
4532namespace {
4533  struct FindHiddenVirtualMethodData {
4534    Sema *S;
4535    CXXMethodDecl *Method;
4536    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4537    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4538  };
4539}
4540
4541/// \brief Member lookup function that determines whether a given C++
4542/// method overloads virtual methods in a base class without overriding any,
4543/// to be used with CXXRecordDecl::lookupInBases().
4544static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4545                                    CXXBasePath &Path,
4546                                    void *UserData) {
4547  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4548
4549  FindHiddenVirtualMethodData &Data
4550    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4551
4552  DeclarationName Name = Data.Method->getDeclName();
4553  assert(Name.getNameKind() == DeclarationName::Identifier);
4554
4555  bool foundSameNameMethod = false;
4556  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4557  for (Path.Decls = BaseRecord->lookup(Name);
4558       Path.Decls.first != Path.Decls.second;
4559       ++Path.Decls.first) {
4560    NamedDecl *D = *Path.Decls.first;
4561    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4562      MD = MD->getCanonicalDecl();
4563      foundSameNameMethod = true;
4564      // Interested only in hidden virtual methods.
4565      if (!MD->isVirtual())
4566        continue;
4567      // If the method we are checking overrides a method from its base
4568      // don't warn about the other overloaded methods.
4569      if (!Data.S->IsOverload(Data.Method, MD, false))
4570        return true;
4571      // Collect the overload only if its hidden.
4572      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4573        overloadedMethods.push_back(MD);
4574    }
4575  }
4576
4577  if (foundSameNameMethod)
4578    Data.OverloadedMethods.append(overloadedMethods.begin(),
4579                                   overloadedMethods.end());
4580  return foundSameNameMethod;
4581}
4582
4583/// \brief See if a method overloads virtual methods in a base class without
4584/// overriding any.
4585void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4586  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4587                               MD->getLocation()) == Diagnostic::Ignored)
4588    return;
4589  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4590    return;
4591
4592  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4593                     /*bool RecordPaths=*/false,
4594                     /*bool DetectVirtual=*/false);
4595  FindHiddenVirtualMethodData Data;
4596  Data.Method = MD;
4597  Data.S = this;
4598
4599  // Keep the base methods that were overriden or introduced in the subclass
4600  // by 'using' in a set. A base method not in this set is hidden.
4601  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4602       res.first != res.second; ++res.first) {
4603    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4604      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4605                                          E = MD->end_overridden_methods();
4606           I != E; ++I)
4607        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4608    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4609      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4610        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4611  }
4612
4613  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4614      !Data.OverloadedMethods.empty()) {
4615    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4616      << MD << (Data.OverloadedMethods.size() > 1);
4617
4618    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4619      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4620      Diag(overloadedMD->getLocation(),
4621           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4622    }
4623  }
4624}
4625
4626void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4627                                             Decl *TagDecl,
4628                                             SourceLocation LBrac,
4629                                             SourceLocation RBrac,
4630                                             AttributeList *AttrList) {
4631  if (!TagDecl)
4632    return;
4633
4634  AdjustDeclIfTemplate(TagDecl);
4635
4636  ActOnFields(S, RLoc, TagDecl,
4637              // strict aliasing violation!
4638              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4639              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4640
4641  CheckCompletedCXXClass(
4642                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4643}
4644
4645/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4646/// special functions, such as the default constructor, copy
4647/// constructor, or destructor, to the given C++ class (C++
4648/// [special]p1).  This routine can only be executed just before the
4649/// definition of the class is complete.
4650void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4651  if (!ClassDecl->hasUserDeclaredConstructor())
4652    ++ASTContext::NumImplicitDefaultConstructors;
4653
4654  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4655    ++ASTContext::NumImplicitCopyConstructors;
4656
4657  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4658    ++ASTContext::NumImplicitCopyAssignmentOperators;
4659
4660    // If we have a dynamic class, then the copy assignment operator may be
4661    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4662    // it shows up in the right place in the vtable and that we diagnose
4663    // problems with the implicit exception specification.
4664    if (ClassDecl->isDynamicClass())
4665      DeclareImplicitCopyAssignment(ClassDecl);
4666  }
4667
4668  if (!ClassDecl->hasUserDeclaredDestructor()) {
4669    ++ASTContext::NumImplicitDestructors;
4670
4671    // If we have a dynamic class, then the destructor may be virtual, so we
4672    // have to declare the destructor immediately. This ensures that, e.g., it
4673    // shows up in the right place in the vtable and that we diagnose problems
4674    // with the implicit exception specification.
4675    if (ClassDecl->isDynamicClass())
4676      DeclareImplicitDestructor(ClassDecl);
4677  }
4678}
4679
4680void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4681  if (!D)
4682    return;
4683
4684  int NumParamList = D->getNumTemplateParameterLists();
4685  for (int i = 0; i < NumParamList; i++) {
4686    TemplateParameterList* Params = D->getTemplateParameterList(i);
4687    for (TemplateParameterList::iterator Param = Params->begin(),
4688                                      ParamEnd = Params->end();
4689          Param != ParamEnd; ++Param) {
4690      NamedDecl *Named = cast<NamedDecl>(*Param);
4691      if (Named->getDeclName()) {
4692        S->AddDecl(Named);
4693        IdResolver.AddDecl(Named);
4694      }
4695    }
4696  }
4697}
4698
4699void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4700  if (!D)
4701    return;
4702
4703  TemplateParameterList *Params = 0;
4704  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4705    Params = Template->getTemplateParameters();
4706  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4707           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4708    Params = PartialSpec->getTemplateParameters();
4709  else
4710    return;
4711
4712  for (TemplateParameterList::iterator Param = Params->begin(),
4713                                    ParamEnd = Params->end();
4714       Param != ParamEnd; ++Param) {
4715    NamedDecl *Named = cast<NamedDecl>(*Param);
4716    if (Named->getDeclName()) {
4717      S->AddDecl(Named);
4718      IdResolver.AddDecl(Named);
4719    }
4720  }
4721}
4722
4723void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4724  if (!RecordD) return;
4725  AdjustDeclIfTemplate(RecordD);
4726  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4727  PushDeclContext(S, Record);
4728}
4729
4730void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4731  if (!RecordD) return;
4732  PopDeclContext();
4733}
4734
4735/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4736/// parsing a top-level (non-nested) C++ class, and we are now
4737/// parsing those parts of the given Method declaration that could
4738/// not be parsed earlier (C++ [class.mem]p2), such as default
4739/// arguments. This action should enter the scope of the given
4740/// Method declaration as if we had just parsed the qualified method
4741/// name. However, it should not bring the parameters into scope;
4742/// that will be performed by ActOnDelayedCXXMethodParameter.
4743void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4744}
4745
4746/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4747/// C++ method declaration. We're (re-)introducing the given
4748/// function parameter into scope for use in parsing later parts of
4749/// the method declaration. For example, we could see an
4750/// ActOnParamDefaultArgument event for this parameter.
4751void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4752  if (!ParamD)
4753    return;
4754
4755  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4756
4757  // If this parameter has an unparsed default argument, clear it out
4758  // to make way for the parsed default argument.
4759  if (Param->hasUnparsedDefaultArg())
4760    Param->setDefaultArg(0);
4761
4762  S->AddDecl(Param);
4763  if (Param->getDeclName())
4764    IdResolver.AddDecl(Param);
4765}
4766
4767/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4768/// processing the delayed method declaration for Method. The method
4769/// declaration is now considered finished. There may be a separate
4770/// ActOnStartOfFunctionDef action later (not necessarily
4771/// immediately!) for this method, if it was also defined inside the
4772/// class body.
4773void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4774  if (!MethodD)
4775    return;
4776
4777  AdjustDeclIfTemplate(MethodD);
4778
4779  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4780
4781  // Now that we have our default arguments, check the constructor
4782  // again. It could produce additional diagnostics or affect whether
4783  // the class has implicitly-declared destructors, among other
4784  // things.
4785  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4786    CheckConstructor(Constructor);
4787
4788  // Check the default arguments, which we may have added.
4789  if (!Method->isInvalidDecl())
4790    CheckCXXDefaultArguments(Method);
4791}
4792
4793/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4794/// the well-formedness of the constructor declarator @p D with type @p
4795/// R. If there are any errors in the declarator, this routine will
4796/// emit diagnostics and set the invalid bit to true.  In any case, the type
4797/// will be updated to reflect a well-formed type for the constructor and
4798/// returned.
4799QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4800                                          StorageClass &SC) {
4801  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4802
4803  // C++ [class.ctor]p3:
4804  //   A constructor shall not be virtual (10.3) or static (9.4). A
4805  //   constructor can be invoked for a const, volatile or const
4806  //   volatile object. A constructor shall not be declared const,
4807  //   volatile, or const volatile (9.3.2).
4808  if (isVirtual) {
4809    if (!D.isInvalidType())
4810      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4811        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4812        << SourceRange(D.getIdentifierLoc());
4813    D.setInvalidType();
4814  }
4815  if (SC == SC_Static) {
4816    if (!D.isInvalidType())
4817      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4818        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4819        << SourceRange(D.getIdentifierLoc());
4820    D.setInvalidType();
4821    SC = SC_None;
4822  }
4823
4824  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4825  if (FTI.TypeQuals != 0) {
4826    if (FTI.TypeQuals & Qualifiers::Const)
4827      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4828        << "const" << SourceRange(D.getIdentifierLoc());
4829    if (FTI.TypeQuals & Qualifiers::Volatile)
4830      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4831        << "volatile" << SourceRange(D.getIdentifierLoc());
4832    if (FTI.TypeQuals & Qualifiers::Restrict)
4833      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4834        << "restrict" << SourceRange(D.getIdentifierLoc());
4835    D.setInvalidType();
4836  }
4837
4838  // C++0x [class.ctor]p4:
4839  //   A constructor shall not be declared with a ref-qualifier.
4840  if (FTI.hasRefQualifier()) {
4841    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4842      << FTI.RefQualifierIsLValueRef
4843      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4844    D.setInvalidType();
4845  }
4846
4847  // Rebuild the function type "R" without any type qualifiers (in
4848  // case any of the errors above fired) and with "void" as the
4849  // return type, since constructors don't have return types.
4850  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4851  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4852    return R;
4853
4854  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4855  EPI.TypeQuals = 0;
4856  EPI.RefQualifier = RQ_None;
4857
4858  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4859                                 Proto->getNumArgs(), EPI);
4860}
4861
4862/// CheckConstructor - Checks a fully-formed constructor for
4863/// well-formedness, issuing any diagnostics required. Returns true if
4864/// the constructor declarator is invalid.
4865void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4866  CXXRecordDecl *ClassDecl
4867    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4868  if (!ClassDecl)
4869    return Constructor->setInvalidDecl();
4870
4871  // C++ [class.copy]p3:
4872  //   A declaration of a constructor for a class X is ill-formed if
4873  //   its first parameter is of type (optionally cv-qualified) X and
4874  //   either there are no other parameters or else all other
4875  //   parameters have default arguments.
4876  if (!Constructor->isInvalidDecl() &&
4877      ((Constructor->getNumParams() == 1) ||
4878       (Constructor->getNumParams() > 1 &&
4879        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4880      Constructor->getTemplateSpecializationKind()
4881                                              != TSK_ImplicitInstantiation) {
4882    QualType ParamType = Constructor->getParamDecl(0)->getType();
4883    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4884    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4885      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4886      const char *ConstRef
4887        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4888                                                        : " const &";
4889      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4890        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4891
4892      // FIXME: Rather that making the constructor invalid, we should endeavor
4893      // to fix the type.
4894      Constructor->setInvalidDecl();
4895    }
4896  }
4897}
4898
4899/// CheckDestructor - Checks a fully-formed destructor definition for
4900/// well-formedness, issuing any diagnostics required.  Returns true
4901/// on error.
4902bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4903  CXXRecordDecl *RD = Destructor->getParent();
4904
4905  if (Destructor->isVirtual()) {
4906    SourceLocation Loc;
4907
4908    if (!Destructor->isImplicit())
4909      Loc = Destructor->getLocation();
4910    else
4911      Loc = RD->getLocation();
4912
4913    // If we have a virtual destructor, look up the deallocation function
4914    FunctionDecl *OperatorDelete = 0;
4915    DeclarationName Name =
4916    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4917    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4918      return true;
4919
4920    MarkDeclarationReferenced(Loc, OperatorDelete);
4921
4922    Destructor->setOperatorDelete(OperatorDelete);
4923  }
4924
4925  return false;
4926}
4927
4928static inline bool
4929FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4930  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4931          FTI.ArgInfo[0].Param &&
4932          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4933}
4934
4935/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4936/// the well-formednes of the destructor declarator @p D with type @p
4937/// R. If there are any errors in the declarator, this routine will
4938/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4939/// will be updated to reflect a well-formed type for the destructor and
4940/// returned.
4941QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4942                                         StorageClass& SC) {
4943  // C++ [class.dtor]p1:
4944  //   [...] A typedef-name that names a class is a class-name
4945  //   (7.1.3); however, a typedef-name that names a class shall not
4946  //   be used as the identifier in the declarator for a destructor
4947  //   declaration.
4948  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4949  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4950    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4951      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4952  else if (const TemplateSpecializationType *TST =
4953             DeclaratorType->getAs<TemplateSpecializationType>())
4954    if (TST->isTypeAlias())
4955      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4956        << DeclaratorType << 1;
4957
4958  // C++ [class.dtor]p2:
4959  //   A destructor is used to destroy objects of its class type. A
4960  //   destructor takes no parameters, and no return type can be
4961  //   specified for it (not even void). The address of a destructor
4962  //   shall not be taken. A destructor shall not be static. A
4963  //   destructor can be invoked for a const, volatile or const
4964  //   volatile object. A destructor shall not be declared const,
4965  //   volatile or const volatile (9.3.2).
4966  if (SC == SC_Static) {
4967    if (!D.isInvalidType())
4968      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4969        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4970        << SourceRange(D.getIdentifierLoc())
4971        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4972
4973    SC = SC_None;
4974  }
4975  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4976    // Destructors don't have return types, but the parser will
4977    // happily parse something like:
4978    //
4979    //   class X {
4980    //     float ~X();
4981    //   };
4982    //
4983    // The return type will be eliminated later.
4984    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4985      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4986      << SourceRange(D.getIdentifierLoc());
4987  }
4988
4989  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4990  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4991    if (FTI.TypeQuals & Qualifiers::Const)
4992      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4993        << "const" << SourceRange(D.getIdentifierLoc());
4994    if (FTI.TypeQuals & Qualifiers::Volatile)
4995      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4996        << "volatile" << SourceRange(D.getIdentifierLoc());
4997    if (FTI.TypeQuals & Qualifiers::Restrict)
4998      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4999        << "restrict" << SourceRange(D.getIdentifierLoc());
5000    D.setInvalidType();
5001  }
5002
5003  // C++0x [class.dtor]p2:
5004  //   A destructor shall not be declared with a ref-qualifier.
5005  if (FTI.hasRefQualifier()) {
5006    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5007      << FTI.RefQualifierIsLValueRef
5008      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5009    D.setInvalidType();
5010  }
5011
5012  // Make sure we don't have any parameters.
5013  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5014    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5015
5016    // Delete the parameters.
5017    FTI.freeArgs();
5018    D.setInvalidType();
5019  }
5020
5021  // Make sure the destructor isn't variadic.
5022  if (FTI.isVariadic) {
5023    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5024    D.setInvalidType();
5025  }
5026
5027  // Rebuild the function type "R" without any type qualifiers or
5028  // parameters (in case any of the errors above fired) and with
5029  // "void" as the return type, since destructors don't have return
5030  // types.
5031  if (!D.isInvalidType())
5032    return R;
5033
5034  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5035  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5036  EPI.Variadic = false;
5037  EPI.TypeQuals = 0;
5038  EPI.RefQualifier = RQ_None;
5039  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5040}
5041
5042/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5043/// well-formednes of the conversion function declarator @p D with
5044/// type @p R. If there are any errors in the declarator, this routine
5045/// will emit diagnostics and return true. Otherwise, it will return
5046/// false. Either way, the type @p R will be updated to reflect a
5047/// well-formed type for the conversion operator.
5048void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5049                                     StorageClass& SC) {
5050  // C++ [class.conv.fct]p1:
5051  //   Neither parameter types nor return type can be specified. The
5052  //   type of a conversion function (8.3.5) is "function taking no
5053  //   parameter returning conversion-type-id."
5054  if (SC == SC_Static) {
5055    if (!D.isInvalidType())
5056      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5057        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5058        << SourceRange(D.getIdentifierLoc());
5059    D.setInvalidType();
5060    SC = SC_None;
5061  }
5062
5063  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5064
5065  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5066    // Conversion functions don't have return types, but the parser will
5067    // happily parse something like:
5068    //
5069    //   class X {
5070    //     float operator bool();
5071    //   };
5072    //
5073    // The return type will be changed later anyway.
5074    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5075      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5076      << SourceRange(D.getIdentifierLoc());
5077    D.setInvalidType();
5078  }
5079
5080  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5081
5082  // Make sure we don't have any parameters.
5083  if (Proto->getNumArgs() > 0) {
5084    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5085
5086    // Delete the parameters.
5087    D.getFunctionTypeInfo().freeArgs();
5088    D.setInvalidType();
5089  } else if (Proto->isVariadic()) {
5090    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5091    D.setInvalidType();
5092  }
5093
5094  // Diagnose "&operator bool()" and other such nonsense.  This
5095  // is actually a gcc extension which we don't support.
5096  if (Proto->getResultType() != ConvType) {
5097    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5098      << Proto->getResultType();
5099    D.setInvalidType();
5100    ConvType = Proto->getResultType();
5101  }
5102
5103  // C++ [class.conv.fct]p4:
5104  //   The conversion-type-id shall not represent a function type nor
5105  //   an array type.
5106  if (ConvType->isArrayType()) {
5107    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5108    ConvType = Context.getPointerType(ConvType);
5109    D.setInvalidType();
5110  } else if (ConvType->isFunctionType()) {
5111    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5112    ConvType = Context.getPointerType(ConvType);
5113    D.setInvalidType();
5114  }
5115
5116  // Rebuild the function type "R" without any parameters (in case any
5117  // of the errors above fired) and with the conversion type as the
5118  // return type.
5119  if (D.isInvalidType())
5120    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5121
5122  // C++0x explicit conversion operators.
5123  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
5124    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5125         diag::warn_explicit_conversion_functions)
5126      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5127}
5128
5129/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5130/// the declaration of the given C++ conversion function. This routine
5131/// is responsible for recording the conversion function in the C++
5132/// class, if possible.
5133Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5134  assert(Conversion && "Expected to receive a conversion function declaration");
5135
5136  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5137
5138  // Make sure we aren't redeclaring the conversion function.
5139  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5140
5141  // C++ [class.conv.fct]p1:
5142  //   [...] A conversion function is never used to convert a
5143  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5144  //   same object type (or a reference to it), to a (possibly
5145  //   cv-qualified) base class of that type (or a reference to it),
5146  //   or to (possibly cv-qualified) void.
5147  // FIXME: Suppress this warning if the conversion function ends up being a
5148  // virtual function that overrides a virtual function in a base class.
5149  QualType ClassType
5150    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5151  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5152    ConvType = ConvTypeRef->getPointeeType();
5153  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5154      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5155    /* Suppress diagnostics for instantiations. */;
5156  else if (ConvType->isRecordType()) {
5157    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5158    if (ConvType == ClassType)
5159      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5160        << ClassType;
5161    else if (IsDerivedFrom(ClassType, ConvType))
5162      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5163        <<  ClassType << ConvType;
5164  } else if (ConvType->isVoidType()) {
5165    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5166      << ClassType << ConvType;
5167  }
5168
5169  if (FunctionTemplateDecl *ConversionTemplate
5170                                = Conversion->getDescribedFunctionTemplate())
5171    return ConversionTemplate;
5172
5173  return Conversion;
5174}
5175
5176//===----------------------------------------------------------------------===//
5177// Namespace Handling
5178//===----------------------------------------------------------------------===//
5179
5180
5181
5182/// ActOnStartNamespaceDef - This is called at the start of a namespace
5183/// definition.
5184Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5185                                   SourceLocation InlineLoc,
5186                                   SourceLocation NamespaceLoc,
5187                                   SourceLocation IdentLoc,
5188                                   IdentifierInfo *II,
5189                                   SourceLocation LBrace,
5190                                   AttributeList *AttrList) {
5191  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5192  // For anonymous namespace, take the location of the left brace.
5193  SourceLocation Loc = II ? IdentLoc : LBrace;
5194  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5195                                                 StartLoc, Loc, II);
5196  Namespc->setInline(InlineLoc.isValid());
5197
5198  Scope *DeclRegionScope = NamespcScope->getParent();
5199
5200  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5201
5202  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5203    PushNamespaceVisibilityAttr(Attr);
5204
5205  if (II) {
5206    // C++ [namespace.def]p2:
5207    //   The identifier in an original-namespace-definition shall not
5208    //   have been previously defined in the declarative region in
5209    //   which the original-namespace-definition appears. The
5210    //   identifier in an original-namespace-definition is the name of
5211    //   the namespace. Subsequently in that declarative region, it is
5212    //   treated as an original-namespace-name.
5213    //
5214    // Since namespace names are unique in their scope, and we don't
5215    // look through using directives, just look for any ordinary names.
5216
5217    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5218      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5219      Decl::IDNS_Namespace;
5220    NamedDecl *PrevDecl = 0;
5221    for (DeclContext::lookup_result R
5222            = CurContext->getRedeclContext()->lookup(II);
5223         R.first != R.second; ++R.first) {
5224      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5225        PrevDecl = *R.first;
5226        break;
5227      }
5228    }
5229
5230    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5231      // This is an extended namespace definition.
5232      if (Namespc->isInline() != OrigNS->isInline()) {
5233        // inline-ness must match
5234        if (OrigNS->isInline()) {
5235          // The user probably just forgot the 'inline', so suggest that it
5236          // be added back.
5237          Diag(Namespc->getLocation(),
5238               diag::warn_inline_namespace_reopened_noninline)
5239            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5240        } else {
5241          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5242            << Namespc->isInline();
5243        }
5244        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5245
5246        // Recover by ignoring the new namespace's inline status.
5247        Namespc->setInline(OrigNS->isInline());
5248      }
5249
5250      // Attach this namespace decl to the chain of extended namespace
5251      // definitions.
5252      OrigNS->setNextNamespace(Namespc);
5253      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5254
5255      // Remove the previous declaration from the scope.
5256      if (DeclRegionScope->isDeclScope(OrigNS)) {
5257        IdResolver.RemoveDecl(OrigNS);
5258        DeclRegionScope->RemoveDecl(OrigNS);
5259      }
5260    } else if (PrevDecl) {
5261      // This is an invalid name redefinition.
5262      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5263       << Namespc->getDeclName();
5264      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5265      Namespc->setInvalidDecl();
5266      // Continue on to push Namespc as current DeclContext and return it.
5267    } else if (II->isStr("std") &&
5268               CurContext->getRedeclContext()->isTranslationUnit()) {
5269      // This is the first "real" definition of the namespace "std", so update
5270      // our cache of the "std" namespace to point at this definition.
5271      if (NamespaceDecl *StdNS = getStdNamespace()) {
5272        // We had already defined a dummy namespace "std". Link this new
5273        // namespace definition to the dummy namespace "std".
5274        StdNS->setNextNamespace(Namespc);
5275        StdNS->setLocation(IdentLoc);
5276        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5277      }
5278
5279      // Make our StdNamespace cache point at the first real definition of the
5280      // "std" namespace.
5281      StdNamespace = Namespc;
5282
5283      // Add this instance of "std" to the set of known namespaces
5284      KnownNamespaces[Namespc] = false;
5285    } else if (!Namespc->isInline()) {
5286      // Since this is an "original" namespace, add it to the known set of
5287      // namespaces if it is not an inline namespace.
5288      KnownNamespaces[Namespc] = false;
5289    }
5290
5291    PushOnScopeChains(Namespc, DeclRegionScope);
5292  } else {
5293    // Anonymous namespaces.
5294    assert(Namespc->isAnonymousNamespace());
5295
5296    // Link the anonymous namespace into its parent.
5297    NamespaceDecl *PrevDecl;
5298    DeclContext *Parent = CurContext->getRedeclContext();
5299    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5300      PrevDecl = TU->getAnonymousNamespace();
5301      TU->setAnonymousNamespace(Namespc);
5302    } else {
5303      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5304      PrevDecl = ND->getAnonymousNamespace();
5305      ND->setAnonymousNamespace(Namespc);
5306    }
5307
5308    // Link the anonymous namespace with its previous declaration.
5309    if (PrevDecl) {
5310      assert(PrevDecl->isAnonymousNamespace());
5311      assert(!PrevDecl->getNextNamespace());
5312      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5313      PrevDecl->setNextNamespace(Namespc);
5314
5315      if (Namespc->isInline() != PrevDecl->isInline()) {
5316        // inline-ness must match
5317        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5318          << Namespc->isInline();
5319        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5320        Namespc->setInvalidDecl();
5321        // Recover by ignoring the new namespace's inline status.
5322        Namespc->setInline(PrevDecl->isInline());
5323      }
5324    }
5325
5326    CurContext->addDecl(Namespc);
5327
5328    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5329    //   behaves as if it were replaced by
5330    //     namespace unique { /* empty body */ }
5331    //     using namespace unique;
5332    //     namespace unique { namespace-body }
5333    //   where all occurrences of 'unique' in a translation unit are
5334    //   replaced by the same identifier and this identifier differs
5335    //   from all other identifiers in the entire program.
5336
5337    // We just create the namespace with an empty name and then add an
5338    // implicit using declaration, just like the standard suggests.
5339    //
5340    // CodeGen enforces the "universally unique" aspect by giving all
5341    // declarations semantically contained within an anonymous
5342    // namespace internal linkage.
5343
5344    if (!PrevDecl) {
5345      UsingDirectiveDecl* UD
5346        = UsingDirectiveDecl::Create(Context, CurContext,
5347                                     /* 'using' */ LBrace,
5348                                     /* 'namespace' */ SourceLocation(),
5349                                     /* qualifier */ NestedNameSpecifierLoc(),
5350                                     /* identifier */ SourceLocation(),
5351                                     Namespc,
5352                                     /* Ancestor */ CurContext);
5353      UD->setImplicit();
5354      CurContext->addDecl(UD);
5355    }
5356  }
5357
5358  // Although we could have an invalid decl (i.e. the namespace name is a
5359  // redefinition), push it as current DeclContext and try to continue parsing.
5360  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5361  // for the namespace has the declarations that showed up in that particular
5362  // namespace definition.
5363  PushDeclContext(NamespcScope, Namespc);
5364  return Namespc;
5365}
5366
5367/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5368/// is a namespace alias, returns the namespace it points to.
5369static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5370  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5371    return AD->getNamespace();
5372  return dyn_cast_or_null<NamespaceDecl>(D);
5373}
5374
5375/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5376/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5377void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5378  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5379  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5380  Namespc->setRBraceLoc(RBrace);
5381  PopDeclContext();
5382  if (Namespc->hasAttr<VisibilityAttr>())
5383    PopPragmaVisibility();
5384}
5385
5386CXXRecordDecl *Sema::getStdBadAlloc() const {
5387  return cast_or_null<CXXRecordDecl>(
5388                                  StdBadAlloc.get(Context.getExternalSource()));
5389}
5390
5391NamespaceDecl *Sema::getStdNamespace() const {
5392  return cast_or_null<NamespaceDecl>(
5393                                 StdNamespace.get(Context.getExternalSource()));
5394}
5395
5396/// \brief Retrieve the special "std" namespace, which may require us to
5397/// implicitly define the namespace.
5398NamespaceDecl *Sema::getOrCreateStdNamespace() {
5399  if (!StdNamespace) {
5400    // The "std" namespace has not yet been defined, so build one implicitly.
5401    StdNamespace = NamespaceDecl::Create(Context,
5402                                         Context.getTranslationUnitDecl(),
5403                                         SourceLocation(), SourceLocation(),
5404                                         &PP.getIdentifierTable().get("std"));
5405    getStdNamespace()->setImplicit(true);
5406  }
5407
5408  return getStdNamespace();
5409}
5410
5411/// \brief Determine whether a using statement is in a context where it will be
5412/// apply in all contexts.
5413static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5414  switch (CurContext->getDeclKind()) {
5415    case Decl::TranslationUnit:
5416      return true;
5417    case Decl::LinkageSpec:
5418      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5419    default:
5420      return false;
5421  }
5422}
5423
5424static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5425                                       CXXScopeSpec &SS,
5426                                       SourceLocation IdentLoc,
5427                                       IdentifierInfo *Ident) {
5428  R.clear();
5429  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5430                                               R.getLookupKind(), Sc, &SS, NULL,
5431                                               false, S.CTC_NoKeywords, NULL)) {
5432    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5433        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5434      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5435      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5436      if (DeclContext *DC = S.computeDeclContext(SS, false))
5437        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5438          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5439          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5440      else
5441        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5442          << Ident << CorrectedQuotedStr
5443          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5444
5445      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5446           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5447
5448      Ident = Corrected.getCorrectionAsIdentifierInfo();
5449      R.addDecl(Corrected.getCorrectionDecl());
5450      return true;
5451    }
5452    R.setLookupName(Ident);
5453  }
5454  return false;
5455}
5456
5457Decl *Sema::ActOnUsingDirective(Scope *S,
5458                                          SourceLocation UsingLoc,
5459                                          SourceLocation NamespcLoc,
5460                                          CXXScopeSpec &SS,
5461                                          SourceLocation IdentLoc,
5462                                          IdentifierInfo *NamespcName,
5463                                          AttributeList *AttrList) {
5464  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5465  assert(NamespcName && "Invalid NamespcName.");
5466  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5467
5468  // This can only happen along a recovery path.
5469  while (S->getFlags() & Scope::TemplateParamScope)
5470    S = S->getParent();
5471  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5472
5473  UsingDirectiveDecl *UDir = 0;
5474  NestedNameSpecifier *Qualifier = 0;
5475  if (SS.isSet())
5476    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5477
5478  // Lookup namespace name.
5479  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5480  LookupParsedName(R, S, &SS);
5481  if (R.isAmbiguous())
5482    return 0;
5483
5484  if (R.empty()) {
5485    R.clear();
5486    // Allow "using namespace std;" or "using namespace ::std;" even if
5487    // "std" hasn't been defined yet, for GCC compatibility.
5488    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5489        NamespcName->isStr("std")) {
5490      Diag(IdentLoc, diag::ext_using_undefined_std);
5491      R.addDecl(getOrCreateStdNamespace());
5492      R.resolveKind();
5493    }
5494    // Otherwise, attempt typo correction.
5495    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5496  }
5497
5498  if (!R.empty()) {
5499    NamedDecl *Named = R.getFoundDecl();
5500    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5501        && "expected namespace decl");
5502    // C++ [namespace.udir]p1:
5503    //   A using-directive specifies that the names in the nominated
5504    //   namespace can be used in the scope in which the
5505    //   using-directive appears after the using-directive. During
5506    //   unqualified name lookup (3.4.1), the names appear as if they
5507    //   were declared in the nearest enclosing namespace which
5508    //   contains both the using-directive and the nominated
5509    //   namespace. [Note: in this context, "contains" means "contains
5510    //   directly or indirectly". ]
5511
5512    // Find enclosing context containing both using-directive and
5513    // nominated namespace.
5514    NamespaceDecl *NS = getNamespaceDecl(Named);
5515    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5516    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5517      CommonAncestor = CommonAncestor->getParent();
5518
5519    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5520                                      SS.getWithLocInContext(Context),
5521                                      IdentLoc, Named, CommonAncestor);
5522
5523    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5524        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5525      Diag(IdentLoc, diag::warn_using_directive_in_header);
5526    }
5527
5528    PushUsingDirective(S, UDir);
5529  } else {
5530    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5531  }
5532
5533  // FIXME: We ignore attributes for now.
5534  return UDir;
5535}
5536
5537void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5538  // If scope has associated entity, then using directive is at namespace
5539  // or translation unit scope. We add UsingDirectiveDecls, into
5540  // it's lookup structure.
5541  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5542    Ctx->addDecl(UDir);
5543  else
5544    // Otherwise it is block-sope. using-directives will affect lookup
5545    // only to the end of scope.
5546    S->PushUsingDirective(UDir);
5547}
5548
5549
5550Decl *Sema::ActOnUsingDeclaration(Scope *S,
5551                                  AccessSpecifier AS,
5552                                  bool HasUsingKeyword,
5553                                  SourceLocation UsingLoc,
5554                                  CXXScopeSpec &SS,
5555                                  UnqualifiedId &Name,
5556                                  AttributeList *AttrList,
5557                                  bool IsTypeName,
5558                                  SourceLocation TypenameLoc) {
5559  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5560
5561  switch (Name.getKind()) {
5562  case UnqualifiedId::IK_ImplicitSelfParam:
5563  case UnqualifiedId::IK_Identifier:
5564  case UnqualifiedId::IK_OperatorFunctionId:
5565  case UnqualifiedId::IK_LiteralOperatorId:
5566  case UnqualifiedId::IK_ConversionFunctionId:
5567    break;
5568
5569  case UnqualifiedId::IK_ConstructorName:
5570  case UnqualifiedId::IK_ConstructorTemplateId:
5571    // C++0x inherited constructors.
5572    if (getLangOptions().CPlusPlus0x) break;
5573
5574    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5575      << SS.getRange();
5576    return 0;
5577
5578  case UnqualifiedId::IK_DestructorName:
5579    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5580      << SS.getRange();
5581    return 0;
5582
5583  case UnqualifiedId::IK_TemplateId:
5584    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5585      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5586    return 0;
5587  }
5588
5589  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5590  DeclarationName TargetName = TargetNameInfo.getName();
5591  if (!TargetName)
5592    return 0;
5593
5594  // Warn about using declarations.
5595  // TODO: store that the declaration was written without 'using' and
5596  // talk about access decls instead of using decls in the
5597  // diagnostics.
5598  if (!HasUsingKeyword) {
5599    UsingLoc = Name.getSourceRange().getBegin();
5600
5601    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5602      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5603  }
5604
5605  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5606      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5607    return 0;
5608
5609  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5610                                        TargetNameInfo, AttrList,
5611                                        /* IsInstantiation */ false,
5612                                        IsTypeName, TypenameLoc);
5613  if (UD)
5614    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5615
5616  return UD;
5617}
5618
5619/// \brief Determine whether a using declaration considers the given
5620/// declarations as "equivalent", e.g., if they are redeclarations of
5621/// the same entity or are both typedefs of the same type.
5622static bool
5623IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5624                         bool &SuppressRedeclaration) {
5625  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5626    SuppressRedeclaration = false;
5627    return true;
5628  }
5629
5630  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5631    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5632      SuppressRedeclaration = true;
5633      return Context.hasSameType(TD1->getUnderlyingType(),
5634                                 TD2->getUnderlyingType());
5635    }
5636
5637  return false;
5638}
5639
5640
5641/// Determines whether to create a using shadow decl for a particular
5642/// decl, given the set of decls existing prior to this using lookup.
5643bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5644                                const LookupResult &Previous) {
5645  // Diagnose finding a decl which is not from a base class of the
5646  // current class.  We do this now because there are cases where this
5647  // function will silently decide not to build a shadow decl, which
5648  // will pre-empt further diagnostics.
5649  //
5650  // We don't need to do this in C++0x because we do the check once on
5651  // the qualifier.
5652  //
5653  // FIXME: diagnose the following if we care enough:
5654  //   struct A { int foo; };
5655  //   struct B : A { using A::foo; };
5656  //   template <class T> struct C : A {};
5657  //   template <class T> struct D : C<T> { using B::foo; } // <---
5658  // This is invalid (during instantiation) in C++03 because B::foo
5659  // resolves to the using decl in B, which is not a base class of D<T>.
5660  // We can't diagnose it immediately because C<T> is an unknown
5661  // specialization.  The UsingShadowDecl in D<T> then points directly
5662  // to A::foo, which will look well-formed when we instantiate.
5663  // The right solution is to not collapse the shadow-decl chain.
5664  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5665    DeclContext *OrigDC = Orig->getDeclContext();
5666
5667    // Handle enums and anonymous structs.
5668    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5669    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5670    while (OrigRec->isAnonymousStructOrUnion())
5671      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5672
5673    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5674      if (OrigDC == CurContext) {
5675        Diag(Using->getLocation(),
5676             diag::err_using_decl_nested_name_specifier_is_current_class)
5677          << Using->getQualifierLoc().getSourceRange();
5678        Diag(Orig->getLocation(), diag::note_using_decl_target);
5679        return true;
5680      }
5681
5682      Diag(Using->getQualifierLoc().getBeginLoc(),
5683           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5684        << Using->getQualifier()
5685        << cast<CXXRecordDecl>(CurContext)
5686        << Using->getQualifierLoc().getSourceRange();
5687      Diag(Orig->getLocation(), diag::note_using_decl_target);
5688      return true;
5689    }
5690  }
5691
5692  if (Previous.empty()) return false;
5693
5694  NamedDecl *Target = Orig;
5695  if (isa<UsingShadowDecl>(Target))
5696    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5697
5698  // If the target happens to be one of the previous declarations, we
5699  // don't have a conflict.
5700  //
5701  // FIXME: but we might be increasing its access, in which case we
5702  // should redeclare it.
5703  NamedDecl *NonTag = 0, *Tag = 0;
5704  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5705         I != E; ++I) {
5706    NamedDecl *D = (*I)->getUnderlyingDecl();
5707    bool Result;
5708    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5709      return Result;
5710
5711    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5712  }
5713
5714  if (Target->isFunctionOrFunctionTemplate()) {
5715    FunctionDecl *FD;
5716    if (isa<FunctionTemplateDecl>(Target))
5717      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5718    else
5719      FD = cast<FunctionDecl>(Target);
5720
5721    NamedDecl *OldDecl = 0;
5722    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5723    case Ovl_Overload:
5724      return false;
5725
5726    case Ovl_NonFunction:
5727      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5728      break;
5729
5730    // We found a decl with the exact signature.
5731    case Ovl_Match:
5732      // If we're in a record, we want to hide the target, so we
5733      // return true (without a diagnostic) to tell the caller not to
5734      // build a shadow decl.
5735      if (CurContext->isRecord())
5736        return true;
5737
5738      // If we're not in a record, this is an error.
5739      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5740      break;
5741    }
5742
5743    Diag(Target->getLocation(), diag::note_using_decl_target);
5744    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5745    return true;
5746  }
5747
5748  // Target is not a function.
5749
5750  if (isa<TagDecl>(Target)) {
5751    // No conflict between a tag and a non-tag.
5752    if (!Tag) return false;
5753
5754    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5755    Diag(Target->getLocation(), diag::note_using_decl_target);
5756    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5757    return true;
5758  }
5759
5760  // No conflict between a tag and a non-tag.
5761  if (!NonTag) return false;
5762
5763  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5764  Diag(Target->getLocation(), diag::note_using_decl_target);
5765  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5766  return true;
5767}
5768
5769/// Builds a shadow declaration corresponding to a 'using' declaration.
5770UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5771                                            UsingDecl *UD,
5772                                            NamedDecl *Orig) {
5773
5774  // If we resolved to another shadow declaration, just coalesce them.
5775  NamedDecl *Target = Orig;
5776  if (isa<UsingShadowDecl>(Target)) {
5777    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5778    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5779  }
5780
5781  UsingShadowDecl *Shadow
5782    = UsingShadowDecl::Create(Context, CurContext,
5783                              UD->getLocation(), UD, Target);
5784  UD->addShadowDecl(Shadow);
5785
5786  Shadow->setAccess(UD->getAccess());
5787  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5788    Shadow->setInvalidDecl();
5789
5790  if (S)
5791    PushOnScopeChains(Shadow, S);
5792  else
5793    CurContext->addDecl(Shadow);
5794
5795
5796  return Shadow;
5797}
5798
5799/// Hides a using shadow declaration.  This is required by the current
5800/// using-decl implementation when a resolvable using declaration in a
5801/// class is followed by a declaration which would hide or override
5802/// one or more of the using decl's targets; for example:
5803///
5804///   struct Base { void foo(int); };
5805///   struct Derived : Base {
5806///     using Base::foo;
5807///     void foo(int);
5808///   };
5809///
5810/// The governing language is C++03 [namespace.udecl]p12:
5811///
5812///   When a using-declaration brings names from a base class into a
5813///   derived class scope, member functions in the derived class
5814///   override and/or hide member functions with the same name and
5815///   parameter types in a base class (rather than conflicting).
5816///
5817/// There are two ways to implement this:
5818///   (1) optimistically create shadow decls when they're not hidden
5819///       by existing declarations, or
5820///   (2) don't create any shadow decls (or at least don't make them
5821///       visible) until we've fully parsed/instantiated the class.
5822/// The problem with (1) is that we might have to retroactively remove
5823/// a shadow decl, which requires several O(n) operations because the
5824/// decl structures are (very reasonably) not designed for removal.
5825/// (2) avoids this but is very fiddly and phase-dependent.
5826void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5827  if (Shadow->getDeclName().getNameKind() ==
5828        DeclarationName::CXXConversionFunctionName)
5829    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5830
5831  // Remove it from the DeclContext...
5832  Shadow->getDeclContext()->removeDecl(Shadow);
5833
5834  // ...and the scope, if applicable...
5835  if (S) {
5836    S->RemoveDecl(Shadow);
5837    IdResolver.RemoveDecl(Shadow);
5838  }
5839
5840  // ...and the using decl.
5841  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5842
5843  // TODO: complain somehow if Shadow was used.  It shouldn't
5844  // be possible for this to happen, because...?
5845}
5846
5847/// Builds a using declaration.
5848///
5849/// \param IsInstantiation - Whether this call arises from an
5850///   instantiation of an unresolved using declaration.  We treat
5851///   the lookup differently for these declarations.
5852NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5853                                       SourceLocation UsingLoc,
5854                                       CXXScopeSpec &SS,
5855                                       const DeclarationNameInfo &NameInfo,
5856                                       AttributeList *AttrList,
5857                                       bool IsInstantiation,
5858                                       bool IsTypeName,
5859                                       SourceLocation TypenameLoc) {
5860  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5861  SourceLocation IdentLoc = NameInfo.getLoc();
5862  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5863
5864  // FIXME: We ignore attributes for now.
5865
5866  if (SS.isEmpty()) {
5867    Diag(IdentLoc, diag::err_using_requires_qualname);
5868    return 0;
5869  }
5870
5871  // Do the redeclaration lookup in the current scope.
5872  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5873                        ForRedeclaration);
5874  Previous.setHideTags(false);
5875  if (S) {
5876    LookupName(Previous, S);
5877
5878    // It is really dumb that we have to do this.
5879    LookupResult::Filter F = Previous.makeFilter();
5880    while (F.hasNext()) {
5881      NamedDecl *D = F.next();
5882      if (!isDeclInScope(D, CurContext, S))
5883        F.erase();
5884    }
5885    F.done();
5886  } else {
5887    assert(IsInstantiation && "no scope in non-instantiation");
5888    assert(CurContext->isRecord() && "scope not record in instantiation");
5889    LookupQualifiedName(Previous, CurContext);
5890  }
5891
5892  // Check for invalid redeclarations.
5893  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5894    return 0;
5895
5896  // Check for bad qualifiers.
5897  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5898    return 0;
5899
5900  DeclContext *LookupContext = computeDeclContext(SS);
5901  NamedDecl *D;
5902  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5903  if (!LookupContext) {
5904    if (IsTypeName) {
5905      // FIXME: not all declaration name kinds are legal here
5906      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5907                                              UsingLoc, TypenameLoc,
5908                                              QualifierLoc,
5909                                              IdentLoc, NameInfo.getName());
5910    } else {
5911      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5912                                           QualifierLoc, NameInfo);
5913    }
5914  } else {
5915    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5916                          NameInfo, IsTypeName);
5917  }
5918  D->setAccess(AS);
5919  CurContext->addDecl(D);
5920
5921  if (!LookupContext) return D;
5922  UsingDecl *UD = cast<UsingDecl>(D);
5923
5924  if (RequireCompleteDeclContext(SS, LookupContext)) {
5925    UD->setInvalidDecl();
5926    return UD;
5927  }
5928
5929  // Constructor inheriting using decls get special treatment.
5930  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5931    if (CheckInheritedConstructorUsingDecl(UD))
5932      UD->setInvalidDecl();
5933    return UD;
5934  }
5935
5936  // Otherwise, look up the target name.
5937
5938  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5939  R.setUsingDeclaration(true);
5940
5941  // Unlike most lookups, we don't always want to hide tag
5942  // declarations: tag names are visible through the using declaration
5943  // even if hidden by ordinary names, *except* in a dependent context
5944  // where it's important for the sanity of two-phase lookup.
5945  if (!IsInstantiation)
5946    R.setHideTags(false);
5947
5948  LookupQualifiedName(R, LookupContext);
5949
5950  if (R.empty()) {
5951    Diag(IdentLoc, diag::err_no_member)
5952      << NameInfo.getName() << LookupContext << SS.getRange();
5953    UD->setInvalidDecl();
5954    return UD;
5955  }
5956
5957  if (R.isAmbiguous()) {
5958    UD->setInvalidDecl();
5959    return UD;
5960  }
5961
5962  if (IsTypeName) {
5963    // If we asked for a typename and got a non-type decl, error out.
5964    if (!R.getAsSingle<TypeDecl>()) {
5965      Diag(IdentLoc, diag::err_using_typename_non_type);
5966      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5967        Diag((*I)->getUnderlyingDecl()->getLocation(),
5968             diag::note_using_decl_target);
5969      UD->setInvalidDecl();
5970      return UD;
5971    }
5972  } else {
5973    // If we asked for a non-typename and we got a type, error out,
5974    // but only if this is an instantiation of an unresolved using
5975    // decl.  Otherwise just silently find the type name.
5976    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5977      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5978      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5979      UD->setInvalidDecl();
5980      return UD;
5981    }
5982  }
5983
5984  // C++0x N2914 [namespace.udecl]p6:
5985  // A using-declaration shall not name a namespace.
5986  if (R.getAsSingle<NamespaceDecl>()) {
5987    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5988      << SS.getRange();
5989    UD->setInvalidDecl();
5990    return UD;
5991  }
5992
5993  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5994    if (!CheckUsingShadowDecl(UD, *I, Previous))
5995      BuildUsingShadowDecl(S, UD, *I);
5996  }
5997
5998  return UD;
5999}
6000
6001/// Additional checks for a using declaration referring to a constructor name.
6002bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6003  if (UD->isTypeName()) {
6004    // FIXME: Cannot specify typename when specifying constructor
6005    return true;
6006  }
6007
6008  const Type *SourceType = UD->getQualifier()->getAsType();
6009  assert(SourceType &&
6010         "Using decl naming constructor doesn't have type in scope spec.");
6011  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6012
6013  // Check whether the named type is a direct base class.
6014  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6015  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6016  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6017       BaseIt != BaseE; ++BaseIt) {
6018    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6019    if (CanonicalSourceType == BaseType)
6020      break;
6021  }
6022
6023  if (BaseIt == BaseE) {
6024    // Did not find SourceType in the bases.
6025    Diag(UD->getUsingLocation(),
6026         diag::err_using_decl_constructor_not_in_direct_base)
6027      << UD->getNameInfo().getSourceRange()
6028      << QualType(SourceType, 0) << TargetClass;
6029    return true;
6030  }
6031
6032  BaseIt->setInheritConstructors();
6033
6034  return false;
6035}
6036
6037/// Checks that the given using declaration is not an invalid
6038/// redeclaration.  Note that this is checking only for the using decl
6039/// itself, not for any ill-formedness among the UsingShadowDecls.
6040bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6041                                       bool isTypeName,
6042                                       const CXXScopeSpec &SS,
6043                                       SourceLocation NameLoc,
6044                                       const LookupResult &Prev) {
6045  // C++03 [namespace.udecl]p8:
6046  // C++0x [namespace.udecl]p10:
6047  //   A using-declaration is a declaration and can therefore be used
6048  //   repeatedly where (and only where) multiple declarations are
6049  //   allowed.
6050  //
6051  // That's in non-member contexts.
6052  if (!CurContext->getRedeclContext()->isRecord())
6053    return false;
6054
6055  NestedNameSpecifier *Qual
6056    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6057
6058  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6059    NamedDecl *D = *I;
6060
6061    bool DTypename;
6062    NestedNameSpecifier *DQual;
6063    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6064      DTypename = UD->isTypeName();
6065      DQual = UD->getQualifier();
6066    } else if (UnresolvedUsingValueDecl *UD
6067                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6068      DTypename = false;
6069      DQual = UD->getQualifier();
6070    } else if (UnresolvedUsingTypenameDecl *UD
6071                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6072      DTypename = true;
6073      DQual = UD->getQualifier();
6074    } else continue;
6075
6076    // using decls differ if one says 'typename' and the other doesn't.
6077    // FIXME: non-dependent using decls?
6078    if (isTypeName != DTypename) continue;
6079
6080    // using decls differ if they name different scopes (but note that
6081    // template instantiation can cause this check to trigger when it
6082    // didn't before instantiation).
6083    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6084        Context.getCanonicalNestedNameSpecifier(DQual))
6085      continue;
6086
6087    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6088    Diag(D->getLocation(), diag::note_using_decl) << 1;
6089    return true;
6090  }
6091
6092  return false;
6093}
6094
6095
6096/// Checks that the given nested-name qualifier used in a using decl
6097/// in the current context is appropriately related to the current
6098/// scope.  If an error is found, diagnoses it and returns true.
6099bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6100                                   const CXXScopeSpec &SS,
6101                                   SourceLocation NameLoc) {
6102  DeclContext *NamedContext = computeDeclContext(SS);
6103
6104  if (!CurContext->isRecord()) {
6105    // C++03 [namespace.udecl]p3:
6106    // C++0x [namespace.udecl]p8:
6107    //   A using-declaration for a class member shall be a member-declaration.
6108
6109    // If we weren't able to compute a valid scope, it must be a
6110    // dependent class scope.
6111    if (!NamedContext || NamedContext->isRecord()) {
6112      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6113        << SS.getRange();
6114      return true;
6115    }
6116
6117    // Otherwise, everything is known to be fine.
6118    return false;
6119  }
6120
6121  // The current scope is a record.
6122
6123  // If the named context is dependent, we can't decide much.
6124  if (!NamedContext) {
6125    // FIXME: in C++0x, we can diagnose if we can prove that the
6126    // nested-name-specifier does not refer to a base class, which is
6127    // still possible in some cases.
6128
6129    // Otherwise we have to conservatively report that things might be
6130    // okay.
6131    return false;
6132  }
6133
6134  if (!NamedContext->isRecord()) {
6135    // Ideally this would point at the last name in the specifier,
6136    // but we don't have that level of source info.
6137    Diag(SS.getRange().getBegin(),
6138         diag::err_using_decl_nested_name_specifier_is_not_class)
6139      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6140    return true;
6141  }
6142
6143  if (!NamedContext->isDependentContext() &&
6144      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6145    return true;
6146
6147  if (getLangOptions().CPlusPlus0x) {
6148    // C++0x [namespace.udecl]p3:
6149    //   In a using-declaration used as a member-declaration, the
6150    //   nested-name-specifier shall name a base class of the class
6151    //   being defined.
6152
6153    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6154                                 cast<CXXRecordDecl>(NamedContext))) {
6155      if (CurContext == NamedContext) {
6156        Diag(NameLoc,
6157             diag::err_using_decl_nested_name_specifier_is_current_class)
6158          << SS.getRange();
6159        return true;
6160      }
6161
6162      Diag(SS.getRange().getBegin(),
6163           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6164        << (NestedNameSpecifier*) SS.getScopeRep()
6165        << cast<CXXRecordDecl>(CurContext)
6166        << SS.getRange();
6167      return true;
6168    }
6169
6170    return false;
6171  }
6172
6173  // C++03 [namespace.udecl]p4:
6174  //   A using-declaration used as a member-declaration shall refer
6175  //   to a member of a base class of the class being defined [etc.].
6176
6177  // Salient point: SS doesn't have to name a base class as long as
6178  // lookup only finds members from base classes.  Therefore we can
6179  // diagnose here only if we can prove that that can't happen,
6180  // i.e. if the class hierarchies provably don't intersect.
6181
6182  // TODO: it would be nice if "definitely valid" results were cached
6183  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6184  // need to be repeated.
6185
6186  struct UserData {
6187    llvm::DenseSet<const CXXRecordDecl*> Bases;
6188
6189    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6190      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6191      Data->Bases.insert(Base);
6192      return true;
6193    }
6194
6195    bool hasDependentBases(const CXXRecordDecl *Class) {
6196      return !Class->forallBases(collect, this);
6197    }
6198
6199    /// Returns true if the base is dependent or is one of the
6200    /// accumulated base classes.
6201    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6202      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6203      return !Data->Bases.count(Base);
6204    }
6205
6206    bool mightShareBases(const CXXRecordDecl *Class) {
6207      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6208    }
6209  };
6210
6211  UserData Data;
6212
6213  // Returns false if we find a dependent base.
6214  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6215    return false;
6216
6217  // Returns false if the class has a dependent base or if it or one
6218  // of its bases is present in the base set of the current context.
6219  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6220    return false;
6221
6222  Diag(SS.getRange().getBegin(),
6223       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6224    << (NestedNameSpecifier*) SS.getScopeRep()
6225    << cast<CXXRecordDecl>(CurContext)
6226    << SS.getRange();
6227
6228  return true;
6229}
6230
6231Decl *Sema::ActOnAliasDeclaration(Scope *S,
6232                                  AccessSpecifier AS,
6233                                  MultiTemplateParamsArg TemplateParamLists,
6234                                  SourceLocation UsingLoc,
6235                                  UnqualifiedId &Name,
6236                                  TypeResult Type) {
6237  // Skip up to the relevant declaration scope.
6238  while (S->getFlags() & Scope::TemplateParamScope)
6239    S = S->getParent();
6240  assert((S->getFlags() & Scope::DeclScope) &&
6241         "got alias-declaration outside of declaration scope");
6242
6243  if (Type.isInvalid())
6244    return 0;
6245
6246  bool Invalid = false;
6247  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6248  TypeSourceInfo *TInfo = 0;
6249  GetTypeFromParser(Type.get(), &TInfo);
6250
6251  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6252    return 0;
6253
6254  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6255                                      UPPC_DeclarationType)) {
6256    Invalid = true;
6257    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6258                                             TInfo->getTypeLoc().getBeginLoc());
6259  }
6260
6261  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6262  LookupName(Previous, S);
6263
6264  // Warn about shadowing the name of a template parameter.
6265  if (Previous.isSingleResult() &&
6266      Previous.getFoundDecl()->isTemplateParameter()) {
6267    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
6268                                        Previous.getFoundDecl()))
6269      Invalid = true;
6270    Previous.clear();
6271  }
6272
6273  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6274         "name in alias declaration must be an identifier");
6275  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6276                                               Name.StartLocation,
6277                                               Name.Identifier, TInfo);
6278
6279  NewTD->setAccess(AS);
6280
6281  if (Invalid)
6282    NewTD->setInvalidDecl();
6283
6284  CheckTypedefForVariablyModifiedType(S, NewTD);
6285  Invalid |= NewTD->isInvalidDecl();
6286
6287  bool Redeclaration = false;
6288
6289  NamedDecl *NewND;
6290  if (TemplateParamLists.size()) {
6291    TypeAliasTemplateDecl *OldDecl = 0;
6292    TemplateParameterList *OldTemplateParams = 0;
6293
6294    if (TemplateParamLists.size() != 1) {
6295      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6296        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6297         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6298    }
6299    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6300
6301    // Only consider previous declarations in the same scope.
6302    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6303                         /*ExplicitInstantiationOrSpecialization*/false);
6304    if (!Previous.empty()) {
6305      Redeclaration = true;
6306
6307      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6308      if (!OldDecl && !Invalid) {
6309        Diag(UsingLoc, diag::err_redefinition_different_kind)
6310          << Name.Identifier;
6311
6312        NamedDecl *OldD = Previous.getRepresentativeDecl();
6313        if (OldD->getLocation().isValid())
6314          Diag(OldD->getLocation(), diag::note_previous_definition);
6315
6316        Invalid = true;
6317      }
6318
6319      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6320        if (TemplateParameterListsAreEqual(TemplateParams,
6321                                           OldDecl->getTemplateParameters(),
6322                                           /*Complain=*/true,
6323                                           TPL_TemplateMatch))
6324          OldTemplateParams = OldDecl->getTemplateParameters();
6325        else
6326          Invalid = true;
6327
6328        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6329        if (!Invalid &&
6330            !Context.hasSameType(OldTD->getUnderlyingType(),
6331                                 NewTD->getUnderlyingType())) {
6332          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6333          // but we can't reasonably accept it.
6334          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6335            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6336          if (OldTD->getLocation().isValid())
6337            Diag(OldTD->getLocation(), diag::note_previous_definition);
6338          Invalid = true;
6339        }
6340      }
6341    }
6342
6343    // Merge any previous default template arguments into our parameters,
6344    // and check the parameter list.
6345    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6346                                   TPC_TypeAliasTemplate))
6347      return 0;
6348
6349    TypeAliasTemplateDecl *NewDecl =
6350      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6351                                    Name.Identifier, TemplateParams,
6352                                    NewTD);
6353
6354    NewDecl->setAccess(AS);
6355
6356    if (Invalid)
6357      NewDecl->setInvalidDecl();
6358    else if (OldDecl)
6359      NewDecl->setPreviousDeclaration(OldDecl);
6360
6361    NewND = NewDecl;
6362  } else {
6363    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6364    NewND = NewTD;
6365  }
6366
6367  if (!Redeclaration)
6368    PushOnScopeChains(NewND, S);
6369
6370  return NewND;
6371}
6372
6373Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6374                                             SourceLocation NamespaceLoc,
6375                                             SourceLocation AliasLoc,
6376                                             IdentifierInfo *Alias,
6377                                             CXXScopeSpec &SS,
6378                                             SourceLocation IdentLoc,
6379                                             IdentifierInfo *Ident) {
6380
6381  // Lookup the namespace name.
6382  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6383  LookupParsedName(R, S, &SS);
6384
6385  // Check if we have a previous declaration with the same name.
6386  NamedDecl *PrevDecl
6387    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6388                       ForRedeclaration);
6389  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6390    PrevDecl = 0;
6391
6392  if (PrevDecl) {
6393    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6394      // We already have an alias with the same name that points to the same
6395      // namespace, so don't create a new one.
6396      // FIXME: At some point, we'll want to create the (redundant)
6397      // declaration to maintain better source information.
6398      if (!R.isAmbiguous() && !R.empty() &&
6399          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6400        return 0;
6401    }
6402
6403    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6404      diag::err_redefinition_different_kind;
6405    Diag(AliasLoc, DiagID) << Alias;
6406    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6407    return 0;
6408  }
6409
6410  if (R.isAmbiguous())
6411    return 0;
6412
6413  if (R.empty()) {
6414    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6415      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6416      return 0;
6417    }
6418  }
6419
6420  NamespaceAliasDecl *AliasDecl =
6421    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6422                               Alias, SS.getWithLocInContext(Context),
6423                               IdentLoc, R.getFoundDecl());
6424
6425  PushOnScopeChains(AliasDecl, S);
6426  return AliasDecl;
6427}
6428
6429namespace {
6430  /// \brief Scoped object used to handle the state changes required in Sema
6431  /// to implicitly define the body of a C++ member function;
6432  class ImplicitlyDefinedFunctionScope {
6433    Sema &S;
6434    Sema::ContextRAII SavedContext;
6435
6436  public:
6437    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6438      : S(S), SavedContext(S, Method)
6439    {
6440      S.PushFunctionScope();
6441      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6442    }
6443
6444    ~ImplicitlyDefinedFunctionScope() {
6445      S.PopExpressionEvaluationContext();
6446      S.PopFunctionOrBlockScope();
6447    }
6448  };
6449}
6450
6451Sema::ImplicitExceptionSpecification
6452Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6453  // C++ [except.spec]p14:
6454  //   An implicitly declared special member function (Clause 12) shall have an
6455  //   exception-specification. [...]
6456  ImplicitExceptionSpecification ExceptSpec(Context);
6457  if (ClassDecl->isInvalidDecl())
6458    return ExceptSpec;
6459
6460  // Direct base-class constructors.
6461  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6462                                       BEnd = ClassDecl->bases_end();
6463       B != BEnd; ++B) {
6464    if (B->isVirtual()) // Handled below.
6465      continue;
6466
6467    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6468      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6469      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6470      // If this is a deleted function, add it anyway. This might be conformant
6471      // with the standard. This might not. I'm not sure. It might not matter.
6472      if (Constructor)
6473        ExceptSpec.CalledDecl(Constructor);
6474    }
6475  }
6476
6477  // Virtual base-class constructors.
6478  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6479                                       BEnd = ClassDecl->vbases_end();
6480       B != BEnd; ++B) {
6481    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6482      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6483      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6484      // If this is a deleted function, add it anyway. This might be conformant
6485      // with the standard. This might not. I'm not sure. It might not matter.
6486      if (Constructor)
6487        ExceptSpec.CalledDecl(Constructor);
6488    }
6489  }
6490
6491  // Field constructors.
6492  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6493                               FEnd = ClassDecl->field_end();
6494       F != FEnd; ++F) {
6495    if (F->hasInClassInitializer()) {
6496      if (Expr *E = F->getInClassInitializer())
6497        ExceptSpec.CalledExpr(E);
6498      else if (!F->isInvalidDecl())
6499        ExceptSpec.SetDelayed();
6500    } else if (const RecordType *RecordTy
6501              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6502      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6503      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6504      // If this is a deleted function, add it anyway. This might be conformant
6505      // with the standard. This might not. I'm not sure. It might not matter.
6506      // In particular, the problem is that this function never gets called. It
6507      // might just be ill-formed because this function attempts to refer to
6508      // a deleted function here.
6509      if (Constructor)
6510        ExceptSpec.CalledDecl(Constructor);
6511    }
6512  }
6513
6514  return ExceptSpec;
6515}
6516
6517CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6518                                                     CXXRecordDecl *ClassDecl) {
6519  // C++ [class.ctor]p5:
6520  //   A default constructor for a class X is a constructor of class X
6521  //   that can be called without an argument. If there is no
6522  //   user-declared constructor for class X, a default constructor is
6523  //   implicitly declared. An implicitly-declared default constructor
6524  //   is an inline public member of its class.
6525  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6526         "Should not build implicit default constructor!");
6527
6528  ImplicitExceptionSpecification Spec =
6529    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6530  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6531
6532  // Create the actual constructor declaration.
6533  CanQualType ClassType
6534    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6535  SourceLocation ClassLoc = ClassDecl->getLocation();
6536  DeclarationName Name
6537    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6538  DeclarationNameInfo NameInfo(Name, ClassLoc);
6539  CXXConstructorDecl *DefaultCon
6540    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6541                                 Context.getFunctionType(Context.VoidTy,
6542                                                         0, 0, EPI),
6543                                 /*TInfo=*/0,
6544                                 /*isExplicit=*/false,
6545                                 /*isInline=*/true,
6546                                 /*isImplicitlyDeclared=*/true,
6547                                 // FIXME: apply the rules for definitions here
6548                                 /*isConstexpr=*/false);
6549  DefaultCon->setAccess(AS_public);
6550  DefaultCon->setDefaulted();
6551  DefaultCon->setImplicit();
6552  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6553
6554  // Note that we have declared this constructor.
6555  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6556
6557  if (Scope *S = getScopeForContext(ClassDecl))
6558    PushOnScopeChains(DefaultCon, S, false);
6559  ClassDecl->addDecl(DefaultCon);
6560
6561  if (ShouldDeleteDefaultConstructor(DefaultCon))
6562    DefaultCon->setDeletedAsWritten();
6563
6564  return DefaultCon;
6565}
6566
6567void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6568                                            CXXConstructorDecl *Constructor) {
6569  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6570          !Constructor->doesThisDeclarationHaveABody() &&
6571          !Constructor->isDeleted()) &&
6572    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6573
6574  CXXRecordDecl *ClassDecl = Constructor->getParent();
6575  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6576
6577  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6578  DiagnosticErrorTrap Trap(Diags);
6579  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6580      Trap.hasErrorOccurred()) {
6581    Diag(CurrentLocation, diag::note_member_synthesized_at)
6582      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6583    Constructor->setInvalidDecl();
6584    return;
6585  }
6586
6587  SourceLocation Loc = Constructor->getLocation();
6588  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6589
6590  Constructor->setUsed();
6591  MarkVTableUsed(CurrentLocation, ClassDecl);
6592
6593  if (ASTMutationListener *L = getASTMutationListener()) {
6594    L->CompletedImplicitDefinition(Constructor);
6595  }
6596}
6597
6598/// Get any existing defaulted default constructor for the given class. Do not
6599/// implicitly define one if it does not exist.
6600static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6601                                                             CXXRecordDecl *D) {
6602  ASTContext &Context = Self.Context;
6603  QualType ClassType = Context.getTypeDeclType(D);
6604  DeclarationName ConstructorName
6605    = Context.DeclarationNames.getCXXConstructorName(
6606                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6607
6608  DeclContext::lookup_const_iterator Con, ConEnd;
6609  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6610       Con != ConEnd; ++Con) {
6611    // A function template cannot be defaulted.
6612    if (isa<FunctionTemplateDecl>(*Con))
6613      continue;
6614
6615    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6616    if (Constructor->isDefaultConstructor())
6617      return Constructor->isDefaulted() ? Constructor : 0;
6618  }
6619  return 0;
6620}
6621
6622void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6623  if (!D) return;
6624  AdjustDeclIfTemplate(D);
6625
6626  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6627  CXXConstructorDecl *CtorDecl
6628    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6629
6630  if (!CtorDecl) return;
6631
6632  // Compute the exception specification for the default constructor.
6633  const FunctionProtoType *CtorTy =
6634    CtorDecl->getType()->castAs<FunctionProtoType>();
6635  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6636    ImplicitExceptionSpecification Spec =
6637      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6638    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6639    assert(EPI.ExceptionSpecType != EST_Delayed);
6640
6641    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6642  }
6643
6644  // If the default constructor is explicitly defaulted, checking the exception
6645  // specification is deferred until now.
6646  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6647      !ClassDecl->isDependentType())
6648    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6649}
6650
6651void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6652  // We start with an initial pass over the base classes to collect those that
6653  // inherit constructors from. If there are none, we can forgo all further
6654  // processing.
6655  typedef SmallVector<const RecordType *, 4> BasesVector;
6656  BasesVector BasesToInheritFrom;
6657  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6658                                          BaseE = ClassDecl->bases_end();
6659         BaseIt != BaseE; ++BaseIt) {
6660    if (BaseIt->getInheritConstructors()) {
6661      QualType Base = BaseIt->getType();
6662      if (Base->isDependentType()) {
6663        // If we inherit constructors from anything that is dependent, just
6664        // abort processing altogether. We'll get another chance for the
6665        // instantiations.
6666        return;
6667      }
6668      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6669    }
6670  }
6671  if (BasesToInheritFrom.empty())
6672    return;
6673
6674  // Now collect the constructors that we already have in the current class.
6675  // Those take precedence over inherited constructors.
6676  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6677  //   unless there is a user-declared constructor with the same signature in
6678  //   the class where the using-declaration appears.
6679  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6680  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6681                                    CtorE = ClassDecl->ctor_end();
6682       CtorIt != CtorE; ++CtorIt) {
6683    ExistingConstructors.insert(
6684        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6685  }
6686
6687  Scope *S = getScopeForContext(ClassDecl);
6688  DeclarationName CreatedCtorName =
6689      Context.DeclarationNames.getCXXConstructorName(
6690          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6691
6692  // Now comes the true work.
6693  // First, we keep a map from constructor types to the base that introduced
6694  // them. Needed for finding conflicting constructors. We also keep the
6695  // actually inserted declarations in there, for pretty diagnostics.
6696  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6697  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6698  ConstructorToSourceMap InheritedConstructors;
6699  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6700                             BaseE = BasesToInheritFrom.end();
6701       BaseIt != BaseE; ++BaseIt) {
6702    const RecordType *Base = *BaseIt;
6703    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6704    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6705    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6706                                      CtorE = BaseDecl->ctor_end();
6707         CtorIt != CtorE; ++CtorIt) {
6708      // Find the using declaration for inheriting this base's constructors.
6709      DeclarationName Name =
6710          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6711      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6712          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6713      SourceLocation UsingLoc = UD ? UD->getLocation() :
6714                                     ClassDecl->getLocation();
6715
6716      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6717      //   from the class X named in the using-declaration consists of actual
6718      //   constructors and notional constructors that result from the
6719      //   transformation of defaulted parameters as follows:
6720      //   - all non-template default constructors of X, and
6721      //   - for each non-template constructor of X that has at least one
6722      //     parameter with a default argument, the set of constructors that
6723      //     results from omitting any ellipsis parameter specification and
6724      //     successively omitting parameters with a default argument from the
6725      //     end of the parameter-type-list.
6726      CXXConstructorDecl *BaseCtor = *CtorIt;
6727      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6728      const FunctionProtoType *BaseCtorType =
6729          BaseCtor->getType()->getAs<FunctionProtoType>();
6730
6731      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6732                    maxParams = BaseCtor->getNumParams();
6733           params <= maxParams; ++params) {
6734        // Skip default constructors. They're never inherited.
6735        if (params == 0)
6736          continue;
6737        // Skip copy and move constructors for the same reason.
6738        if (CanBeCopyOrMove && params == 1)
6739          continue;
6740
6741        // Build up a function type for this particular constructor.
6742        // FIXME: The working paper does not consider that the exception spec
6743        // for the inheriting constructor might be larger than that of the
6744        // source. This code doesn't yet, either. When it does, this code will
6745        // need to be delayed until after exception specifications and in-class
6746        // member initializers are attached.
6747        const Type *NewCtorType;
6748        if (params == maxParams)
6749          NewCtorType = BaseCtorType;
6750        else {
6751          SmallVector<QualType, 16> Args;
6752          for (unsigned i = 0; i < params; ++i) {
6753            Args.push_back(BaseCtorType->getArgType(i));
6754          }
6755          FunctionProtoType::ExtProtoInfo ExtInfo =
6756              BaseCtorType->getExtProtoInfo();
6757          ExtInfo.Variadic = false;
6758          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6759                                                Args.data(), params, ExtInfo)
6760                       .getTypePtr();
6761        }
6762        const Type *CanonicalNewCtorType =
6763            Context.getCanonicalType(NewCtorType);
6764
6765        // Now that we have the type, first check if the class already has a
6766        // constructor with this signature.
6767        if (ExistingConstructors.count(CanonicalNewCtorType))
6768          continue;
6769
6770        // Then we check if we have already declared an inherited constructor
6771        // with this signature.
6772        std::pair<ConstructorToSourceMap::iterator, bool> result =
6773            InheritedConstructors.insert(std::make_pair(
6774                CanonicalNewCtorType,
6775                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6776        if (!result.second) {
6777          // Already in the map. If it came from a different class, that's an
6778          // error. Not if it's from the same.
6779          CanQualType PreviousBase = result.first->second.first;
6780          if (CanonicalBase != PreviousBase) {
6781            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6782            const CXXConstructorDecl *PrevBaseCtor =
6783                PrevCtor->getInheritedConstructor();
6784            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6785
6786            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6787            Diag(BaseCtor->getLocation(),
6788                 diag::note_using_decl_constructor_conflict_current_ctor);
6789            Diag(PrevBaseCtor->getLocation(),
6790                 diag::note_using_decl_constructor_conflict_previous_ctor);
6791            Diag(PrevCtor->getLocation(),
6792                 diag::note_using_decl_constructor_conflict_previous_using);
6793          }
6794          continue;
6795        }
6796
6797        // OK, we're there, now add the constructor.
6798        // C++0x [class.inhctor]p8: [...] that would be performed by a
6799        //   user-written inline constructor [...]
6800        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6801        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6802            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6803            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6804            /*ImplicitlyDeclared=*/true,
6805            // FIXME: Due to a defect in the standard, we treat inherited
6806            // constructors as constexpr even if that makes them ill-formed.
6807            /*Constexpr=*/BaseCtor->isConstexpr());
6808        NewCtor->setAccess(BaseCtor->getAccess());
6809
6810        // Build up the parameter decls and add them.
6811        SmallVector<ParmVarDecl *, 16> ParamDecls;
6812        for (unsigned i = 0; i < params; ++i) {
6813          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6814                                                   UsingLoc, UsingLoc,
6815                                                   /*IdentifierInfo=*/0,
6816                                                   BaseCtorType->getArgType(i),
6817                                                   /*TInfo=*/0, SC_None,
6818                                                   SC_None, /*DefaultArg=*/0));
6819        }
6820        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6821        NewCtor->setInheritedConstructor(BaseCtor);
6822
6823        PushOnScopeChains(NewCtor, S, false);
6824        ClassDecl->addDecl(NewCtor);
6825        result.first->second.second = NewCtor;
6826      }
6827    }
6828  }
6829}
6830
6831Sema::ImplicitExceptionSpecification
6832Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6833  // C++ [except.spec]p14:
6834  //   An implicitly declared special member function (Clause 12) shall have
6835  //   an exception-specification.
6836  ImplicitExceptionSpecification ExceptSpec(Context);
6837  if (ClassDecl->isInvalidDecl())
6838    return ExceptSpec;
6839
6840  // Direct base-class destructors.
6841  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6842                                       BEnd = ClassDecl->bases_end();
6843       B != BEnd; ++B) {
6844    if (B->isVirtual()) // Handled below.
6845      continue;
6846
6847    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6848      ExceptSpec.CalledDecl(
6849                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6850  }
6851
6852  // Virtual base-class destructors.
6853  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6854                                       BEnd = ClassDecl->vbases_end();
6855       B != BEnd; ++B) {
6856    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6857      ExceptSpec.CalledDecl(
6858                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6859  }
6860
6861  // Field destructors.
6862  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6863                               FEnd = ClassDecl->field_end();
6864       F != FEnd; ++F) {
6865    if (const RecordType *RecordTy
6866        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6867      ExceptSpec.CalledDecl(
6868                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6869  }
6870
6871  return ExceptSpec;
6872}
6873
6874CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6875  // C++ [class.dtor]p2:
6876  //   If a class has no user-declared destructor, a destructor is
6877  //   declared implicitly. An implicitly-declared destructor is an
6878  //   inline public member of its class.
6879
6880  ImplicitExceptionSpecification Spec =
6881      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6882  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6883
6884  // Create the actual destructor declaration.
6885  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6886
6887  CanQualType ClassType
6888    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6889  SourceLocation ClassLoc = ClassDecl->getLocation();
6890  DeclarationName Name
6891    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6892  DeclarationNameInfo NameInfo(Name, ClassLoc);
6893  CXXDestructorDecl *Destructor
6894      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6895                                  /*isInline=*/true,
6896                                  /*isImplicitlyDeclared=*/true);
6897  Destructor->setAccess(AS_public);
6898  Destructor->setDefaulted();
6899  Destructor->setImplicit();
6900  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6901
6902  // Note that we have declared this destructor.
6903  ++ASTContext::NumImplicitDestructorsDeclared;
6904
6905  // Introduce this destructor into its scope.
6906  if (Scope *S = getScopeForContext(ClassDecl))
6907    PushOnScopeChains(Destructor, S, false);
6908  ClassDecl->addDecl(Destructor);
6909
6910  // This could be uniqued if it ever proves significant.
6911  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6912
6913  if (ShouldDeleteDestructor(Destructor))
6914    Destructor->setDeletedAsWritten();
6915
6916  AddOverriddenMethods(ClassDecl, Destructor);
6917
6918  return Destructor;
6919}
6920
6921void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6922                                    CXXDestructorDecl *Destructor) {
6923  assert((Destructor->isDefaulted() &&
6924          !Destructor->doesThisDeclarationHaveABody()) &&
6925         "DefineImplicitDestructor - call it for implicit default dtor");
6926  CXXRecordDecl *ClassDecl = Destructor->getParent();
6927  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6928
6929  if (Destructor->isInvalidDecl())
6930    return;
6931
6932  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6933
6934  DiagnosticErrorTrap Trap(Diags);
6935  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6936                                         Destructor->getParent());
6937
6938  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6939    Diag(CurrentLocation, diag::note_member_synthesized_at)
6940      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6941
6942    Destructor->setInvalidDecl();
6943    return;
6944  }
6945
6946  SourceLocation Loc = Destructor->getLocation();
6947  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6948
6949  Destructor->setUsed();
6950  MarkVTableUsed(CurrentLocation, ClassDecl);
6951
6952  if (ASTMutationListener *L = getASTMutationListener()) {
6953    L->CompletedImplicitDefinition(Destructor);
6954  }
6955}
6956
6957void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6958                                         CXXDestructorDecl *destructor) {
6959  // C++11 [class.dtor]p3:
6960  //   A declaration of a destructor that does not have an exception-
6961  //   specification is implicitly considered to have the same exception-
6962  //   specification as an implicit declaration.
6963  const FunctionProtoType *dtorType = destructor->getType()->
6964                                        getAs<FunctionProtoType>();
6965  if (dtorType->hasExceptionSpec())
6966    return;
6967
6968  ImplicitExceptionSpecification exceptSpec =
6969      ComputeDefaultedDtorExceptionSpec(classDecl);
6970
6971  // Replace the destructor's type.
6972  FunctionProtoType::ExtProtoInfo epi;
6973  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6974  epi.NumExceptions = exceptSpec.size();
6975  epi.Exceptions = exceptSpec.data();
6976  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6977
6978  destructor->setType(ty);
6979
6980  // FIXME: If the destructor has a body that could throw, and the newly created
6981  // spec doesn't allow exceptions, we should emit a warning, because this
6982  // change in behavior can break conforming C++03 programs at runtime.
6983  // However, we don't have a body yet, so it needs to be done somewhere else.
6984}
6985
6986/// \brief Builds a statement that copies/moves the given entity from \p From to
6987/// \c To.
6988///
6989/// This routine is used to copy/move the members of a class with an
6990/// implicitly-declared copy/move assignment operator. When the entities being
6991/// copied are arrays, this routine builds for loops to copy them.
6992///
6993/// \param S The Sema object used for type-checking.
6994///
6995/// \param Loc The location where the implicit copy/move is being generated.
6996///
6997/// \param T The type of the expressions being copied/moved. Both expressions
6998/// must have this type.
6999///
7000/// \param To The expression we are copying/moving to.
7001///
7002/// \param From The expression we are copying/moving from.
7003///
7004/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7005/// Otherwise, it's a non-static member subobject.
7006///
7007/// \param Copying Whether we're copying or moving.
7008///
7009/// \param Depth Internal parameter recording the depth of the recursion.
7010///
7011/// \returns A statement or a loop that copies the expressions.
7012static StmtResult
7013BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7014                      Expr *To, Expr *From,
7015                      bool CopyingBaseSubobject, bool Copying,
7016                      unsigned Depth = 0) {
7017  // C++0x [class.copy]p28:
7018  //   Each subobject is assigned in the manner appropriate to its type:
7019  //
7020  //     - if the subobject is of class type, as if by a call to operator= with
7021  //       the subobject as the object expression and the corresponding
7022  //       subobject of x as a single function argument (as if by explicit
7023  //       qualification; that is, ignoring any possible virtual overriding
7024  //       functions in more derived classes);
7025  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7026    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7027
7028    // Look for operator=.
7029    DeclarationName Name
7030      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7031    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7032    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7033
7034    // Filter out any result that isn't a copy/move-assignment operator.
7035    LookupResult::Filter F = OpLookup.makeFilter();
7036    while (F.hasNext()) {
7037      NamedDecl *D = F.next();
7038      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7039        if (Copying ? Method->isCopyAssignmentOperator() :
7040                      Method->isMoveAssignmentOperator())
7041          continue;
7042
7043      F.erase();
7044    }
7045    F.done();
7046
7047    // Suppress the protected check (C++ [class.protected]) for each of the
7048    // assignment operators we found. This strange dance is required when
7049    // we're assigning via a base classes's copy-assignment operator. To
7050    // ensure that we're getting the right base class subobject (without
7051    // ambiguities), we need to cast "this" to that subobject type; to
7052    // ensure that we don't go through the virtual call mechanism, we need
7053    // to qualify the operator= name with the base class (see below). However,
7054    // this means that if the base class has a protected copy assignment
7055    // operator, the protected member access check will fail. So, we
7056    // rewrite "protected" access to "public" access in this case, since we
7057    // know by construction that we're calling from a derived class.
7058    if (CopyingBaseSubobject) {
7059      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7060           L != LEnd; ++L) {
7061        if (L.getAccess() == AS_protected)
7062          L.setAccess(AS_public);
7063      }
7064    }
7065
7066    // Create the nested-name-specifier that will be used to qualify the
7067    // reference to operator=; this is required to suppress the virtual
7068    // call mechanism.
7069    CXXScopeSpec SS;
7070    SS.MakeTrivial(S.Context,
7071                   NestedNameSpecifier::Create(S.Context, 0, false,
7072                                               T.getTypePtr()),
7073                   Loc);
7074
7075    // Create the reference to operator=.
7076    ExprResult OpEqualRef
7077      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7078                                   /*FirstQualifierInScope=*/0, OpLookup,
7079                                   /*TemplateArgs=*/0,
7080                                   /*SuppressQualifierCheck=*/true);
7081    if (OpEqualRef.isInvalid())
7082      return StmtError();
7083
7084    // Build the call to the assignment operator.
7085
7086    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7087                                                  OpEqualRef.takeAs<Expr>(),
7088                                                  Loc, &From, 1, Loc);
7089    if (Call.isInvalid())
7090      return StmtError();
7091
7092    return S.Owned(Call.takeAs<Stmt>());
7093  }
7094
7095  //     - if the subobject is of scalar type, the built-in assignment
7096  //       operator is used.
7097  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7098  if (!ArrayTy) {
7099    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7100    if (Assignment.isInvalid())
7101      return StmtError();
7102
7103    return S.Owned(Assignment.takeAs<Stmt>());
7104  }
7105
7106  //     - if the subobject is an array, each element is assigned, in the
7107  //       manner appropriate to the element type;
7108
7109  // Construct a loop over the array bounds, e.g.,
7110  //
7111  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7112  //
7113  // that will copy each of the array elements.
7114  QualType SizeType = S.Context.getSizeType();
7115
7116  // Create the iteration variable.
7117  IdentifierInfo *IterationVarName = 0;
7118  {
7119    llvm::SmallString<8> Str;
7120    llvm::raw_svector_ostream OS(Str);
7121    OS << "__i" << Depth;
7122    IterationVarName = &S.Context.Idents.get(OS.str());
7123  }
7124  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7125                                          IterationVarName, SizeType,
7126                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7127                                          SC_None, SC_None);
7128
7129  // Initialize the iteration variable to zero.
7130  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7131  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7132
7133  // Create a reference to the iteration variable; we'll use this several
7134  // times throughout.
7135  Expr *IterationVarRef
7136    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7137  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7138
7139  // Create the DeclStmt that holds the iteration variable.
7140  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7141
7142  // Create the comparison against the array bound.
7143  llvm::APInt Upper
7144    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7145  Expr *Comparison
7146    = new (S.Context) BinaryOperator(IterationVarRef,
7147                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7148                                     BO_NE, S.Context.BoolTy,
7149                                     VK_RValue, OK_Ordinary, Loc);
7150
7151  // Create the pre-increment of the iteration variable.
7152  Expr *Increment
7153    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7154                                    VK_LValue, OK_Ordinary, Loc);
7155
7156  // Subscript the "from" and "to" expressions with the iteration variable.
7157  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7158                                                         IterationVarRef, Loc));
7159  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7160                                                       IterationVarRef, Loc));
7161  if (!Copying) // Cast to rvalue
7162    From = CastForMoving(S, From);
7163
7164  // Build the copy/move for an individual element of the array.
7165  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7166                                          To, From, CopyingBaseSubobject,
7167                                          Copying, Depth + 1);
7168  if (Copy.isInvalid())
7169    return StmtError();
7170
7171  // Construct the loop that copies all elements of this array.
7172  return S.ActOnForStmt(Loc, Loc, InitStmt,
7173                        S.MakeFullExpr(Comparison),
7174                        0, S.MakeFullExpr(Increment),
7175                        Loc, Copy.take());
7176}
7177
7178std::pair<Sema::ImplicitExceptionSpecification, bool>
7179Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7180                                                   CXXRecordDecl *ClassDecl) {
7181  if (ClassDecl->isInvalidDecl())
7182    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7183
7184  // C++ [class.copy]p10:
7185  //   If the class definition does not explicitly declare a copy
7186  //   assignment operator, one is declared implicitly.
7187  //   The implicitly-defined copy assignment operator for a class X
7188  //   will have the form
7189  //
7190  //       X& X::operator=(const X&)
7191  //
7192  //   if
7193  bool HasConstCopyAssignment = true;
7194
7195  //       -- each direct base class B of X has a copy assignment operator
7196  //          whose parameter is of type const B&, const volatile B& or B,
7197  //          and
7198  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7199                                       BaseEnd = ClassDecl->bases_end();
7200       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7201    // We'll handle this below
7202    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7203      continue;
7204
7205    assert(!Base->getType()->isDependentType() &&
7206           "Cannot generate implicit members for class with dependent bases.");
7207    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7208    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7209                            &HasConstCopyAssignment);
7210  }
7211
7212  // In C++0x, the above citation has "or virtual added"
7213  if (LangOpts.CPlusPlus0x) {
7214    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7215                                         BaseEnd = ClassDecl->vbases_end();
7216         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7217      assert(!Base->getType()->isDependentType() &&
7218             "Cannot generate implicit members for class with dependent bases.");
7219      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7220      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7221                              &HasConstCopyAssignment);
7222    }
7223  }
7224
7225  //       -- for all the nonstatic data members of X that are of a class
7226  //          type M (or array thereof), each such class type has a copy
7227  //          assignment operator whose parameter is of type const M&,
7228  //          const volatile M& or M.
7229  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7230                                  FieldEnd = ClassDecl->field_end();
7231       HasConstCopyAssignment && Field != FieldEnd;
7232       ++Field) {
7233    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7234    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7235      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7236                              &HasConstCopyAssignment);
7237    }
7238  }
7239
7240  //   Otherwise, the implicitly declared copy assignment operator will
7241  //   have the form
7242  //
7243  //       X& X::operator=(X&)
7244
7245  // C++ [except.spec]p14:
7246  //   An implicitly declared special member function (Clause 12) shall have an
7247  //   exception-specification. [...]
7248
7249  // It is unspecified whether or not an implicit copy assignment operator
7250  // attempts to deduplicate calls to assignment operators of virtual bases are
7251  // made. As such, this exception specification is effectively unspecified.
7252  // Based on a similar decision made for constness in C++0x, we're erring on
7253  // the side of assuming such calls to be made regardless of whether they
7254  // actually happen.
7255  ImplicitExceptionSpecification ExceptSpec(Context);
7256  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7257  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7258                                       BaseEnd = ClassDecl->bases_end();
7259       Base != BaseEnd; ++Base) {
7260    if (Base->isVirtual())
7261      continue;
7262
7263    CXXRecordDecl *BaseClassDecl
7264      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7265    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7266                                                            ArgQuals, false, 0))
7267      ExceptSpec.CalledDecl(CopyAssign);
7268  }
7269
7270  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7271                                       BaseEnd = ClassDecl->vbases_end();
7272       Base != BaseEnd; ++Base) {
7273    CXXRecordDecl *BaseClassDecl
7274      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7275    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7276                                                            ArgQuals, false, 0))
7277      ExceptSpec.CalledDecl(CopyAssign);
7278  }
7279
7280  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7281                                  FieldEnd = ClassDecl->field_end();
7282       Field != FieldEnd;
7283       ++Field) {
7284    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7285    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7286      if (CXXMethodDecl *CopyAssign =
7287          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7288        ExceptSpec.CalledDecl(CopyAssign);
7289    }
7290  }
7291
7292  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7293}
7294
7295CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7296  // Note: The following rules are largely analoguous to the copy
7297  // constructor rules. Note that virtual bases are not taken into account
7298  // for determining the argument type of the operator. Note also that
7299  // operators taking an object instead of a reference are allowed.
7300
7301  ImplicitExceptionSpecification Spec(Context);
7302  bool Const;
7303  llvm::tie(Spec, Const) =
7304    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7305
7306  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7307  QualType RetType = Context.getLValueReferenceType(ArgType);
7308  if (Const)
7309    ArgType = ArgType.withConst();
7310  ArgType = Context.getLValueReferenceType(ArgType);
7311
7312  //   An implicitly-declared copy assignment operator is an inline public
7313  //   member of its class.
7314  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7315  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7316  SourceLocation ClassLoc = ClassDecl->getLocation();
7317  DeclarationNameInfo NameInfo(Name, ClassLoc);
7318  CXXMethodDecl *CopyAssignment
7319    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7320                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7321                            /*TInfo=*/0, /*isStatic=*/false,
7322                            /*StorageClassAsWritten=*/SC_None,
7323                            /*isInline=*/true, /*isConstexpr=*/false,
7324                            SourceLocation());
7325  CopyAssignment->setAccess(AS_public);
7326  CopyAssignment->setDefaulted();
7327  CopyAssignment->setImplicit();
7328  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7329
7330  // Add the parameter to the operator.
7331  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7332                                               ClassLoc, ClassLoc, /*Id=*/0,
7333                                               ArgType, /*TInfo=*/0,
7334                                               SC_None,
7335                                               SC_None, 0);
7336  CopyAssignment->setParams(&FromParam, 1);
7337
7338  // Note that we have added this copy-assignment operator.
7339  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7340
7341  if (Scope *S = getScopeForContext(ClassDecl))
7342    PushOnScopeChains(CopyAssignment, S, false);
7343  ClassDecl->addDecl(CopyAssignment);
7344
7345  // C++0x [class.copy]p18:
7346  //   ... If the class definition declares a move constructor or move
7347  //   assignment operator, the implicitly declared copy assignment operator is
7348  //   defined as deleted; ...
7349  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7350      ClassDecl->hasUserDeclaredMoveAssignment() ||
7351      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7352    CopyAssignment->setDeletedAsWritten();
7353
7354  AddOverriddenMethods(ClassDecl, CopyAssignment);
7355  return CopyAssignment;
7356}
7357
7358void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7359                                        CXXMethodDecl *CopyAssignOperator) {
7360  assert((CopyAssignOperator->isDefaulted() &&
7361          CopyAssignOperator->isOverloadedOperator() &&
7362          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7363          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7364         "DefineImplicitCopyAssignment called for wrong function");
7365
7366  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7367
7368  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7369    CopyAssignOperator->setInvalidDecl();
7370    return;
7371  }
7372
7373  CopyAssignOperator->setUsed();
7374
7375  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7376  DiagnosticErrorTrap Trap(Diags);
7377
7378  // C++0x [class.copy]p30:
7379  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7380  //   for a non-union class X performs memberwise copy assignment of its
7381  //   subobjects. The direct base classes of X are assigned first, in the
7382  //   order of their declaration in the base-specifier-list, and then the
7383  //   immediate non-static data members of X are assigned, in the order in
7384  //   which they were declared in the class definition.
7385
7386  // The statements that form the synthesized function body.
7387  ASTOwningVector<Stmt*> Statements(*this);
7388
7389  // The parameter for the "other" object, which we are copying from.
7390  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7391  Qualifiers OtherQuals = Other->getType().getQualifiers();
7392  QualType OtherRefType = Other->getType();
7393  if (const LValueReferenceType *OtherRef
7394                                = OtherRefType->getAs<LValueReferenceType>()) {
7395    OtherRefType = OtherRef->getPointeeType();
7396    OtherQuals = OtherRefType.getQualifiers();
7397  }
7398
7399  // Our location for everything implicitly-generated.
7400  SourceLocation Loc = CopyAssignOperator->getLocation();
7401
7402  // Construct a reference to the "other" object. We'll be using this
7403  // throughout the generated ASTs.
7404  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7405  assert(OtherRef && "Reference to parameter cannot fail!");
7406
7407  // Construct the "this" pointer. We'll be using this throughout the generated
7408  // ASTs.
7409  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7410  assert(This && "Reference to this cannot fail!");
7411
7412  // Assign base classes.
7413  bool Invalid = false;
7414  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7415       E = ClassDecl->bases_end(); Base != E; ++Base) {
7416    // Form the assignment:
7417    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7418    QualType BaseType = Base->getType().getUnqualifiedType();
7419    if (!BaseType->isRecordType()) {
7420      Invalid = true;
7421      continue;
7422    }
7423
7424    CXXCastPath BasePath;
7425    BasePath.push_back(Base);
7426
7427    // Construct the "from" expression, which is an implicit cast to the
7428    // appropriately-qualified base type.
7429    Expr *From = OtherRef;
7430    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7431                             CK_UncheckedDerivedToBase,
7432                             VK_LValue, &BasePath).take();
7433
7434    // Dereference "this".
7435    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7436
7437    // Implicitly cast "this" to the appropriately-qualified base type.
7438    To = ImpCastExprToType(To.take(),
7439                           Context.getCVRQualifiedType(BaseType,
7440                                     CopyAssignOperator->getTypeQualifiers()),
7441                           CK_UncheckedDerivedToBase,
7442                           VK_LValue, &BasePath);
7443
7444    // Build the copy.
7445    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7446                                            To.get(), From,
7447                                            /*CopyingBaseSubobject=*/true,
7448                                            /*Copying=*/true);
7449    if (Copy.isInvalid()) {
7450      Diag(CurrentLocation, diag::note_member_synthesized_at)
7451        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7452      CopyAssignOperator->setInvalidDecl();
7453      return;
7454    }
7455
7456    // Success! Record the copy.
7457    Statements.push_back(Copy.takeAs<Expr>());
7458  }
7459
7460  // \brief Reference to the __builtin_memcpy function.
7461  Expr *BuiltinMemCpyRef = 0;
7462  // \brief Reference to the __builtin_objc_memmove_collectable function.
7463  Expr *CollectableMemCpyRef = 0;
7464
7465  // Assign non-static members.
7466  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7467                                  FieldEnd = ClassDecl->field_end();
7468       Field != FieldEnd; ++Field) {
7469    // Check for members of reference type; we can't copy those.
7470    if (Field->getType()->isReferenceType()) {
7471      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7472        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7473      Diag(Field->getLocation(), diag::note_declared_at);
7474      Diag(CurrentLocation, diag::note_member_synthesized_at)
7475        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7476      Invalid = true;
7477      continue;
7478    }
7479
7480    // Check for members of const-qualified, non-class type.
7481    QualType BaseType = Context.getBaseElementType(Field->getType());
7482    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7483      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7484        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7485      Diag(Field->getLocation(), diag::note_declared_at);
7486      Diag(CurrentLocation, diag::note_member_synthesized_at)
7487        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7488      Invalid = true;
7489      continue;
7490    }
7491
7492    // Suppress assigning zero-width bitfields.
7493    if (const Expr *Width = Field->getBitWidth())
7494      if (Width->EvaluateAsInt(Context) == 0)
7495        continue;
7496
7497    QualType FieldType = Field->getType().getNonReferenceType();
7498    if (FieldType->isIncompleteArrayType()) {
7499      assert(ClassDecl->hasFlexibleArrayMember() &&
7500             "Incomplete array type is not valid");
7501      continue;
7502    }
7503
7504    // Build references to the field in the object we're copying from and to.
7505    CXXScopeSpec SS; // Intentionally empty
7506    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7507                              LookupMemberName);
7508    MemberLookup.addDecl(*Field);
7509    MemberLookup.resolveKind();
7510    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7511                                               Loc, /*IsArrow=*/false,
7512                                               SS, 0, MemberLookup, 0);
7513    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7514                                             Loc, /*IsArrow=*/true,
7515                                             SS, 0, MemberLookup, 0);
7516    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7517    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7518
7519    // If the field should be copied with __builtin_memcpy rather than via
7520    // explicit assignments, do so. This optimization only applies for arrays
7521    // of scalars and arrays of class type with trivial copy-assignment
7522    // operators.
7523    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7524        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7525      // Compute the size of the memory buffer to be copied.
7526      QualType SizeType = Context.getSizeType();
7527      llvm::APInt Size(Context.getTypeSize(SizeType),
7528                       Context.getTypeSizeInChars(BaseType).getQuantity());
7529      for (const ConstantArrayType *Array
7530              = Context.getAsConstantArrayType(FieldType);
7531           Array;
7532           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7533        llvm::APInt ArraySize
7534          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7535        Size *= ArraySize;
7536      }
7537
7538      // Take the address of the field references for "from" and "to".
7539      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7540      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7541
7542      bool NeedsCollectableMemCpy =
7543          (BaseType->isRecordType() &&
7544           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7545
7546      if (NeedsCollectableMemCpy) {
7547        if (!CollectableMemCpyRef) {
7548          // Create a reference to the __builtin_objc_memmove_collectable function.
7549          LookupResult R(*this,
7550                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7551                         Loc, LookupOrdinaryName);
7552          LookupName(R, TUScope, true);
7553
7554          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7555          if (!CollectableMemCpy) {
7556            // Something went horribly wrong earlier, and we will have
7557            // complained about it.
7558            Invalid = true;
7559            continue;
7560          }
7561
7562          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7563                                                  CollectableMemCpy->getType(),
7564                                                  VK_LValue, Loc, 0).take();
7565          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7566        }
7567      }
7568      // Create a reference to the __builtin_memcpy builtin function.
7569      else if (!BuiltinMemCpyRef) {
7570        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7571                       LookupOrdinaryName);
7572        LookupName(R, TUScope, true);
7573
7574        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7575        if (!BuiltinMemCpy) {
7576          // Something went horribly wrong earlier, and we will have complained
7577          // about it.
7578          Invalid = true;
7579          continue;
7580        }
7581
7582        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7583                                            BuiltinMemCpy->getType(),
7584                                            VK_LValue, Loc, 0).take();
7585        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7586      }
7587
7588      ASTOwningVector<Expr*> CallArgs(*this);
7589      CallArgs.push_back(To.takeAs<Expr>());
7590      CallArgs.push_back(From.takeAs<Expr>());
7591      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7592      ExprResult Call = ExprError();
7593      if (NeedsCollectableMemCpy)
7594        Call = ActOnCallExpr(/*Scope=*/0,
7595                             CollectableMemCpyRef,
7596                             Loc, move_arg(CallArgs),
7597                             Loc);
7598      else
7599        Call = ActOnCallExpr(/*Scope=*/0,
7600                             BuiltinMemCpyRef,
7601                             Loc, move_arg(CallArgs),
7602                             Loc);
7603
7604      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7605      Statements.push_back(Call.takeAs<Expr>());
7606      continue;
7607    }
7608
7609    // Build the copy of this field.
7610    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7611                                            To.get(), From.get(),
7612                                            /*CopyingBaseSubobject=*/false,
7613                                            /*Copying=*/true);
7614    if (Copy.isInvalid()) {
7615      Diag(CurrentLocation, diag::note_member_synthesized_at)
7616        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7617      CopyAssignOperator->setInvalidDecl();
7618      return;
7619    }
7620
7621    // Success! Record the copy.
7622    Statements.push_back(Copy.takeAs<Stmt>());
7623  }
7624
7625  if (!Invalid) {
7626    // Add a "return *this;"
7627    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7628
7629    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7630    if (Return.isInvalid())
7631      Invalid = true;
7632    else {
7633      Statements.push_back(Return.takeAs<Stmt>());
7634
7635      if (Trap.hasErrorOccurred()) {
7636        Diag(CurrentLocation, diag::note_member_synthesized_at)
7637          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7638        Invalid = true;
7639      }
7640    }
7641  }
7642
7643  if (Invalid) {
7644    CopyAssignOperator->setInvalidDecl();
7645    return;
7646  }
7647
7648  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7649                                            /*isStmtExpr=*/false);
7650  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7651  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7652
7653  if (ASTMutationListener *L = getASTMutationListener()) {
7654    L->CompletedImplicitDefinition(CopyAssignOperator);
7655  }
7656}
7657
7658Sema::ImplicitExceptionSpecification
7659Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7660  ImplicitExceptionSpecification ExceptSpec(Context);
7661
7662  if (ClassDecl->isInvalidDecl())
7663    return ExceptSpec;
7664
7665  // C++0x [except.spec]p14:
7666  //   An implicitly declared special member function (Clause 12) shall have an
7667  //   exception-specification. [...]
7668
7669  // It is unspecified whether or not an implicit move assignment operator
7670  // attempts to deduplicate calls to assignment operators of virtual bases are
7671  // made. As such, this exception specification is effectively unspecified.
7672  // Based on a similar decision made for constness in C++0x, we're erring on
7673  // the side of assuming such calls to be made regardless of whether they
7674  // actually happen.
7675  // Note that a move constructor is not implicitly declared when there are
7676  // virtual bases, but it can still be user-declared and explicitly defaulted.
7677  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7678                                       BaseEnd = ClassDecl->bases_end();
7679       Base != BaseEnd; ++Base) {
7680    if (Base->isVirtual())
7681      continue;
7682
7683    CXXRecordDecl *BaseClassDecl
7684      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7685    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7686                                                           false, 0))
7687      ExceptSpec.CalledDecl(MoveAssign);
7688  }
7689
7690  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7691                                       BaseEnd = ClassDecl->vbases_end();
7692       Base != BaseEnd; ++Base) {
7693    CXXRecordDecl *BaseClassDecl
7694      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7695    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7696                                                           false, 0))
7697      ExceptSpec.CalledDecl(MoveAssign);
7698  }
7699
7700  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7701                                  FieldEnd = ClassDecl->field_end();
7702       Field != FieldEnd;
7703       ++Field) {
7704    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7705    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7706      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7707                                                             false, 0))
7708        ExceptSpec.CalledDecl(MoveAssign);
7709    }
7710  }
7711
7712  return ExceptSpec;
7713}
7714
7715CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7716  // Note: The following rules are largely analoguous to the move
7717  // constructor rules.
7718
7719  ImplicitExceptionSpecification Spec(
7720      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7721
7722  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7723  QualType RetType = Context.getLValueReferenceType(ArgType);
7724  ArgType = Context.getRValueReferenceType(ArgType);
7725
7726  //   An implicitly-declared move assignment operator is an inline public
7727  //   member of its class.
7728  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7729  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7730  SourceLocation ClassLoc = ClassDecl->getLocation();
7731  DeclarationNameInfo NameInfo(Name, ClassLoc);
7732  CXXMethodDecl *MoveAssignment
7733    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7734                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7735                            /*TInfo=*/0, /*isStatic=*/false,
7736                            /*StorageClassAsWritten=*/SC_None,
7737                            /*isInline=*/true,
7738                            /*isConstexpr=*/false,
7739                            SourceLocation());
7740  MoveAssignment->setAccess(AS_public);
7741  MoveAssignment->setDefaulted();
7742  MoveAssignment->setImplicit();
7743  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7744
7745  // Add the parameter to the operator.
7746  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7747                                               ClassLoc, ClassLoc, /*Id=*/0,
7748                                               ArgType, /*TInfo=*/0,
7749                                               SC_None,
7750                                               SC_None, 0);
7751  MoveAssignment->setParams(&FromParam, 1);
7752
7753  // Note that we have added this copy-assignment operator.
7754  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
7755
7756  // C++0x [class.copy]p9:
7757  //   If the definition of a class X does not explicitly declare a move
7758  //   assignment operator, one will be implicitly declared as defaulted if and
7759  //   only if:
7760  //   [...]
7761  //   - the move assignment operator would not be implicitly defined as
7762  //     deleted.
7763  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
7764    // Cache this result so that we don't try to generate this over and over
7765    // on every lookup, leaking memory and wasting time.
7766    ClassDecl->setFailedImplicitMoveAssignment();
7767    return 0;
7768  }
7769
7770  if (Scope *S = getScopeForContext(ClassDecl))
7771    PushOnScopeChains(MoveAssignment, S, false);
7772  ClassDecl->addDecl(MoveAssignment);
7773
7774  AddOverriddenMethods(ClassDecl, MoveAssignment);
7775  return MoveAssignment;
7776}
7777
7778void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
7779                                        CXXMethodDecl *MoveAssignOperator) {
7780  assert((MoveAssignOperator->isDefaulted() &&
7781          MoveAssignOperator->isOverloadedOperator() &&
7782          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
7783          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
7784         "DefineImplicitMoveAssignment called for wrong function");
7785
7786  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
7787
7788  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
7789    MoveAssignOperator->setInvalidDecl();
7790    return;
7791  }
7792
7793  MoveAssignOperator->setUsed();
7794
7795  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
7796  DiagnosticErrorTrap Trap(Diags);
7797
7798  // C++0x [class.copy]p28:
7799  //   The implicitly-defined or move assignment operator for a non-union class
7800  //   X performs memberwise move assignment of its subobjects. The direct base
7801  //   classes of X are assigned first, in the order of their declaration in the
7802  //   base-specifier-list, and then the immediate non-static data members of X
7803  //   are assigned, in the order in which they were declared in the class
7804  //   definition.
7805
7806  // The statements that form the synthesized function body.
7807  ASTOwningVector<Stmt*> Statements(*this);
7808
7809  // The parameter for the "other" object, which we are move from.
7810  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
7811  QualType OtherRefType = Other->getType()->
7812      getAs<RValueReferenceType>()->getPointeeType();
7813  assert(OtherRefType.getQualifiers() == 0 &&
7814         "Bad argument type of defaulted move assignment");
7815
7816  // Our location for everything implicitly-generated.
7817  SourceLocation Loc = MoveAssignOperator->getLocation();
7818
7819  // Construct a reference to the "other" object. We'll be using this
7820  // throughout the generated ASTs.
7821  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7822  assert(OtherRef && "Reference to parameter cannot fail!");
7823  // Cast to rvalue.
7824  OtherRef = CastForMoving(*this, OtherRef);
7825
7826  // Construct the "this" pointer. We'll be using this throughout the generated
7827  // ASTs.
7828  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7829  assert(This && "Reference to this cannot fail!");
7830
7831  // Assign base classes.
7832  bool Invalid = false;
7833  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7834       E = ClassDecl->bases_end(); Base != E; ++Base) {
7835    // Form the assignment:
7836    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
7837    QualType BaseType = Base->getType().getUnqualifiedType();
7838    if (!BaseType->isRecordType()) {
7839      Invalid = true;
7840      continue;
7841    }
7842
7843    CXXCastPath BasePath;
7844    BasePath.push_back(Base);
7845
7846    // Construct the "from" expression, which is an implicit cast to the
7847    // appropriately-qualified base type.
7848    Expr *From = OtherRef;
7849    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
7850                             VK_RValue, &BasePath).take();
7851
7852    // Dereference "this".
7853    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7854
7855    // Implicitly cast "this" to the appropriately-qualified base type.
7856    To = ImpCastExprToType(To.take(),
7857                           Context.getCVRQualifiedType(BaseType,
7858                                     MoveAssignOperator->getTypeQualifiers()),
7859                           CK_UncheckedDerivedToBase,
7860                           VK_LValue, &BasePath);
7861
7862    // Build the move.
7863    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
7864                                            To.get(), From,
7865                                            /*CopyingBaseSubobject=*/true,
7866                                            /*Copying=*/false);
7867    if (Move.isInvalid()) {
7868      Diag(CurrentLocation, diag::note_member_synthesized_at)
7869        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
7870      MoveAssignOperator->setInvalidDecl();
7871      return;
7872    }
7873
7874    // Success! Record the move.
7875    Statements.push_back(Move.takeAs<Expr>());
7876  }
7877
7878  // \brief Reference to the __builtin_memcpy function.
7879  Expr *BuiltinMemCpyRef = 0;
7880  // \brief Reference to the __builtin_objc_memmove_collectable function.
7881  Expr *CollectableMemCpyRef = 0;
7882
7883  // Assign non-static members.
7884  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7885                                  FieldEnd = ClassDecl->field_end();
7886       Field != FieldEnd; ++Field) {
7887    // Check for members of reference type; we can't move those.
7888    if (Field->getType()->isReferenceType()) {
7889      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7890        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7891      Diag(Field->getLocation(), diag::note_declared_at);
7892      Diag(CurrentLocation, diag::note_member_synthesized_at)
7893        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
7894      Invalid = true;
7895      continue;
7896    }
7897
7898    // Check for members of const-qualified, non-class type.
7899    QualType BaseType = Context.getBaseElementType(Field->getType());
7900    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7901      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7902        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7903      Diag(Field->getLocation(), diag::note_declared_at);
7904      Diag(CurrentLocation, diag::note_member_synthesized_at)
7905        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
7906      Invalid = true;
7907      continue;
7908    }
7909
7910    // Suppress assigning zero-width bitfields.
7911    if (const Expr *Width = Field->getBitWidth())
7912      if (Width->EvaluateAsInt(Context) == 0)
7913        continue;
7914
7915    QualType FieldType = Field->getType().getNonReferenceType();
7916    if (FieldType->isIncompleteArrayType()) {
7917      assert(ClassDecl->hasFlexibleArrayMember() &&
7918             "Incomplete array type is not valid");
7919      continue;
7920    }
7921
7922    // Build references to the field in the object we're copying from and to.
7923    CXXScopeSpec SS; // Intentionally empty
7924    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7925                              LookupMemberName);
7926    MemberLookup.addDecl(*Field);
7927    MemberLookup.resolveKind();
7928    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7929                                               Loc, /*IsArrow=*/false,
7930                                               SS, 0, MemberLookup, 0);
7931    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7932                                             Loc, /*IsArrow=*/true,
7933                                             SS, 0, MemberLookup, 0);
7934    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7935    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7936
7937    assert(!From.get()->isLValue() && // could be xvalue or prvalue
7938        "Member reference with rvalue base must be rvalue except for reference "
7939        "members, which aren't allowed for move assignment.");
7940
7941    // If the field should be copied with __builtin_memcpy rather than via
7942    // explicit assignments, do so. This optimization only applies for arrays
7943    // of scalars and arrays of class type with trivial move-assignment
7944    // operators.
7945    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7946        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
7947      // Compute the size of the memory buffer to be copied.
7948      QualType SizeType = Context.getSizeType();
7949      llvm::APInt Size(Context.getTypeSize(SizeType),
7950                       Context.getTypeSizeInChars(BaseType).getQuantity());
7951      for (const ConstantArrayType *Array
7952              = Context.getAsConstantArrayType(FieldType);
7953           Array;
7954           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7955        llvm::APInt ArraySize
7956          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7957        Size *= ArraySize;
7958      }
7959
7960      // Take the address of the field references for "from" and "to". We
7961      // directly construct UnaryOperators here because semantic analysis
7962      // does not permit us to take the address of an xvalue.
7963      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
7964                             Context.getPointerType(From.get()->getType()),
7965                             VK_RValue, OK_Ordinary, Loc);
7966      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
7967                           Context.getPointerType(To.get()->getType()),
7968                           VK_RValue, OK_Ordinary, Loc);
7969
7970      bool NeedsCollectableMemCpy =
7971          (BaseType->isRecordType() &&
7972           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7973
7974      if (NeedsCollectableMemCpy) {
7975        if (!CollectableMemCpyRef) {
7976          // Create a reference to the __builtin_objc_memmove_collectable function.
7977          LookupResult R(*this,
7978                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7979                         Loc, LookupOrdinaryName);
7980          LookupName(R, TUScope, true);
7981
7982          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7983          if (!CollectableMemCpy) {
7984            // Something went horribly wrong earlier, and we will have
7985            // complained about it.
7986            Invalid = true;
7987            continue;
7988          }
7989
7990          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7991                                                  CollectableMemCpy->getType(),
7992                                                  VK_LValue, Loc, 0).take();
7993          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7994        }
7995      }
7996      // Create a reference to the __builtin_memcpy builtin function.
7997      else if (!BuiltinMemCpyRef) {
7998        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7999                       LookupOrdinaryName);
8000        LookupName(R, TUScope, true);
8001
8002        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8003        if (!BuiltinMemCpy) {
8004          // Something went horribly wrong earlier, and we will have complained
8005          // about it.
8006          Invalid = true;
8007          continue;
8008        }
8009
8010        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8011                                            BuiltinMemCpy->getType(),
8012                                            VK_LValue, Loc, 0).take();
8013        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8014      }
8015
8016      ASTOwningVector<Expr*> CallArgs(*this);
8017      CallArgs.push_back(To.takeAs<Expr>());
8018      CallArgs.push_back(From.takeAs<Expr>());
8019      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8020      ExprResult Call = ExprError();
8021      if (NeedsCollectableMemCpy)
8022        Call = ActOnCallExpr(/*Scope=*/0,
8023                             CollectableMemCpyRef,
8024                             Loc, move_arg(CallArgs),
8025                             Loc);
8026      else
8027        Call = ActOnCallExpr(/*Scope=*/0,
8028                             BuiltinMemCpyRef,
8029                             Loc, move_arg(CallArgs),
8030                             Loc);
8031
8032      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8033      Statements.push_back(Call.takeAs<Expr>());
8034      continue;
8035    }
8036
8037    // Build the move of this field.
8038    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8039                                            To.get(), From.get(),
8040                                            /*CopyingBaseSubobject=*/false,
8041                                            /*Copying=*/false);
8042    if (Move.isInvalid()) {
8043      Diag(CurrentLocation, diag::note_member_synthesized_at)
8044        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8045      MoveAssignOperator->setInvalidDecl();
8046      return;
8047    }
8048
8049    // Success! Record the copy.
8050    Statements.push_back(Move.takeAs<Stmt>());
8051  }
8052
8053  if (!Invalid) {
8054    // Add a "return *this;"
8055    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8056
8057    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8058    if (Return.isInvalid())
8059      Invalid = true;
8060    else {
8061      Statements.push_back(Return.takeAs<Stmt>());
8062
8063      if (Trap.hasErrorOccurred()) {
8064        Diag(CurrentLocation, diag::note_member_synthesized_at)
8065          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8066        Invalid = true;
8067      }
8068    }
8069  }
8070
8071  if (Invalid) {
8072    MoveAssignOperator->setInvalidDecl();
8073    return;
8074  }
8075
8076  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8077                                            /*isStmtExpr=*/false);
8078  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8079  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8080
8081  if (ASTMutationListener *L = getASTMutationListener()) {
8082    L->CompletedImplicitDefinition(MoveAssignOperator);
8083  }
8084}
8085
8086std::pair<Sema::ImplicitExceptionSpecification, bool>
8087Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8088  if (ClassDecl->isInvalidDecl())
8089    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8090
8091  // C++ [class.copy]p5:
8092  //   The implicitly-declared copy constructor for a class X will
8093  //   have the form
8094  //
8095  //       X::X(const X&)
8096  //
8097  //   if
8098  // FIXME: It ought to be possible to store this on the record.
8099  bool HasConstCopyConstructor = true;
8100
8101  //     -- each direct or virtual base class B of X has a copy
8102  //        constructor whose first parameter is of type const B& or
8103  //        const volatile B&, and
8104  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8105                                       BaseEnd = ClassDecl->bases_end();
8106       HasConstCopyConstructor && Base != BaseEnd;
8107       ++Base) {
8108    // Virtual bases are handled below.
8109    if (Base->isVirtual())
8110      continue;
8111
8112    CXXRecordDecl *BaseClassDecl
8113      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8114    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8115                             &HasConstCopyConstructor);
8116  }
8117
8118  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8119                                       BaseEnd = ClassDecl->vbases_end();
8120       HasConstCopyConstructor && Base != BaseEnd;
8121       ++Base) {
8122    CXXRecordDecl *BaseClassDecl
8123      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8124    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8125                             &HasConstCopyConstructor);
8126  }
8127
8128  //     -- for all the nonstatic data members of X that are of a
8129  //        class type M (or array thereof), each such class type
8130  //        has a copy constructor whose first parameter is of type
8131  //        const M& or const volatile M&.
8132  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8133                                  FieldEnd = ClassDecl->field_end();
8134       HasConstCopyConstructor && Field != FieldEnd;
8135       ++Field) {
8136    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8137    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8138      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8139                               &HasConstCopyConstructor);
8140    }
8141  }
8142  //   Otherwise, the implicitly declared copy constructor will have
8143  //   the form
8144  //
8145  //       X::X(X&)
8146
8147  // C++ [except.spec]p14:
8148  //   An implicitly declared special member function (Clause 12) shall have an
8149  //   exception-specification. [...]
8150  ImplicitExceptionSpecification ExceptSpec(Context);
8151  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8152  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8153                                       BaseEnd = ClassDecl->bases_end();
8154       Base != BaseEnd;
8155       ++Base) {
8156    // Virtual bases are handled below.
8157    if (Base->isVirtual())
8158      continue;
8159
8160    CXXRecordDecl *BaseClassDecl
8161      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8162    if (CXXConstructorDecl *CopyConstructor =
8163          LookupCopyingConstructor(BaseClassDecl, Quals))
8164      ExceptSpec.CalledDecl(CopyConstructor);
8165  }
8166  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8167                                       BaseEnd = ClassDecl->vbases_end();
8168       Base != BaseEnd;
8169       ++Base) {
8170    CXXRecordDecl *BaseClassDecl
8171      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8172    if (CXXConstructorDecl *CopyConstructor =
8173          LookupCopyingConstructor(BaseClassDecl, Quals))
8174      ExceptSpec.CalledDecl(CopyConstructor);
8175  }
8176  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8177                                  FieldEnd = ClassDecl->field_end();
8178       Field != FieldEnd;
8179       ++Field) {
8180    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8181    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8182      if (CXXConstructorDecl *CopyConstructor =
8183        LookupCopyingConstructor(FieldClassDecl, Quals))
8184      ExceptSpec.CalledDecl(CopyConstructor);
8185    }
8186  }
8187
8188  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8189}
8190
8191CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8192                                                    CXXRecordDecl *ClassDecl) {
8193  // C++ [class.copy]p4:
8194  //   If the class definition does not explicitly declare a copy
8195  //   constructor, one is declared implicitly.
8196
8197  ImplicitExceptionSpecification Spec(Context);
8198  bool Const;
8199  llvm::tie(Spec, Const) =
8200    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8201
8202  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8203  QualType ArgType = ClassType;
8204  if (Const)
8205    ArgType = ArgType.withConst();
8206  ArgType = Context.getLValueReferenceType(ArgType);
8207
8208  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8209
8210  DeclarationName Name
8211    = Context.DeclarationNames.getCXXConstructorName(
8212                                           Context.getCanonicalType(ClassType));
8213  SourceLocation ClassLoc = ClassDecl->getLocation();
8214  DeclarationNameInfo NameInfo(Name, ClassLoc);
8215
8216  //   An implicitly-declared copy constructor is an inline public
8217  //   member of its class.
8218  CXXConstructorDecl *CopyConstructor
8219    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8220                                 Context.getFunctionType(Context.VoidTy,
8221                                                         &ArgType, 1, EPI),
8222                                 /*TInfo=*/0,
8223                                 /*isExplicit=*/false,
8224                                 /*isInline=*/true,
8225                                 /*isImplicitlyDeclared=*/true,
8226                                 // FIXME: apply the rules for definitions here
8227                                 /*isConstexpr=*/false);
8228  CopyConstructor->setAccess(AS_public);
8229  CopyConstructor->setDefaulted();
8230  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8231
8232  // Note that we have declared this constructor.
8233  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8234
8235  // Add the parameter to the constructor.
8236  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8237                                               ClassLoc, ClassLoc,
8238                                               /*IdentifierInfo=*/0,
8239                                               ArgType, /*TInfo=*/0,
8240                                               SC_None,
8241                                               SC_None, 0);
8242  CopyConstructor->setParams(&FromParam, 1);
8243
8244  if (Scope *S = getScopeForContext(ClassDecl))
8245    PushOnScopeChains(CopyConstructor, S, false);
8246  ClassDecl->addDecl(CopyConstructor);
8247
8248  // C++0x [class.copy]p7:
8249  //   ... If the class definition declares a move constructor or move
8250  //   assignment operator, the implicitly declared constructor is defined as
8251  //   deleted; ...
8252  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8253      ClassDecl->hasUserDeclaredMoveAssignment() ||
8254      ShouldDeleteCopyConstructor(CopyConstructor))
8255    CopyConstructor->setDeletedAsWritten();
8256
8257  return CopyConstructor;
8258}
8259
8260void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8261                                   CXXConstructorDecl *CopyConstructor) {
8262  assert((CopyConstructor->isDefaulted() &&
8263          CopyConstructor->isCopyConstructor() &&
8264          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8265         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8266
8267  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8268  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8269
8270  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8271  DiagnosticErrorTrap Trap(Diags);
8272
8273  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8274      Trap.hasErrorOccurred()) {
8275    Diag(CurrentLocation, diag::note_member_synthesized_at)
8276      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8277    CopyConstructor->setInvalidDecl();
8278  }  else {
8279    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8280                                               CopyConstructor->getLocation(),
8281                                               MultiStmtArg(*this, 0, 0),
8282                                               /*isStmtExpr=*/false)
8283                                                              .takeAs<Stmt>());
8284  }
8285
8286  CopyConstructor->setUsed();
8287
8288  if (ASTMutationListener *L = getASTMutationListener()) {
8289    L->CompletedImplicitDefinition(CopyConstructor);
8290  }
8291}
8292
8293Sema::ImplicitExceptionSpecification
8294Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8295  // C++ [except.spec]p14:
8296  //   An implicitly declared special member function (Clause 12) shall have an
8297  //   exception-specification. [...]
8298  ImplicitExceptionSpecification ExceptSpec(Context);
8299  if (ClassDecl->isInvalidDecl())
8300    return ExceptSpec;
8301
8302  // Direct base-class constructors.
8303  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8304                                       BEnd = ClassDecl->bases_end();
8305       B != BEnd; ++B) {
8306    if (B->isVirtual()) // Handled below.
8307      continue;
8308
8309    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8310      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8311      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8312      // If this is a deleted function, add it anyway. This might be conformant
8313      // with the standard. This might not. I'm not sure. It might not matter.
8314      if (Constructor)
8315        ExceptSpec.CalledDecl(Constructor);
8316    }
8317  }
8318
8319  // Virtual base-class constructors.
8320  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8321                                       BEnd = ClassDecl->vbases_end();
8322       B != BEnd; ++B) {
8323    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8324      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8325      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8326      // If this is a deleted function, add it anyway. This might be conformant
8327      // with the standard. This might not. I'm not sure. It might not matter.
8328      if (Constructor)
8329        ExceptSpec.CalledDecl(Constructor);
8330    }
8331  }
8332
8333  // Field constructors.
8334  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8335                               FEnd = ClassDecl->field_end();
8336       F != FEnd; ++F) {
8337    if (F->hasInClassInitializer()) {
8338      if (Expr *E = F->getInClassInitializer())
8339        ExceptSpec.CalledExpr(E);
8340      else if (!F->isInvalidDecl())
8341        ExceptSpec.SetDelayed();
8342    } else if (const RecordType *RecordTy
8343              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8344      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8345      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8346      // If this is a deleted function, add it anyway. This might be conformant
8347      // with the standard. This might not. I'm not sure. It might not matter.
8348      // In particular, the problem is that this function never gets called. It
8349      // might just be ill-formed because this function attempts to refer to
8350      // a deleted function here.
8351      if (Constructor)
8352        ExceptSpec.CalledDecl(Constructor);
8353    }
8354  }
8355
8356  return ExceptSpec;
8357}
8358
8359CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8360                                                    CXXRecordDecl *ClassDecl) {
8361  ImplicitExceptionSpecification Spec(
8362      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8363
8364  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8365  QualType ArgType = Context.getRValueReferenceType(ClassType);
8366
8367  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8368
8369  DeclarationName Name
8370    = Context.DeclarationNames.getCXXConstructorName(
8371                                           Context.getCanonicalType(ClassType));
8372  SourceLocation ClassLoc = ClassDecl->getLocation();
8373  DeclarationNameInfo NameInfo(Name, ClassLoc);
8374
8375  // C++0x [class.copy]p11:
8376  //   An implicitly-declared copy/move constructor is an inline public
8377  //   member of its class.
8378  CXXConstructorDecl *MoveConstructor
8379    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8380                                 Context.getFunctionType(Context.VoidTy,
8381                                                         &ArgType, 1, EPI),
8382                                 /*TInfo=*/0,
8383                                 /*isExplicit=*/false,
8384                                 /*isInline=*/true,
8385                                 /*isImplicitlyDeclared=*/true,
8386                                 // FIXME: apply the rules for definitions here
8387                                 /*isConstexpr=*/false);
8388  MoveConstructor->setAccess(AS_public);
8389  MoveConstructor->setDefaulted();
8390  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8391
8392  // Add the parameter to the constructor.
8393  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8394                                               ClassLoc, ClassLoc,
8395                                               /*IdentifierInfo=*/0,
8396                                               ArgType, /*TInfo=*/0,
8397                                               SC_None,
8398                                               SC_None, 0);
8399  MoveConstructor->setParams(&FromParam, 1);
8400
8401  // C++0x [class.copy]p9:
8402  //   If the definition of a class X does not explicitly declare a move
8403  //   constructor, one will be implicitly declared as defaulted if and only if:
8404  //   [...]
8405  //   - the move constructor would not be implicitly defined as deleted.
8406  if (ShouldDeleteMoveConstructor(MoveConstructor)) {
8407    // Cache this result so that we don't try to generate this over and over
8408    // on every lookup, leaking memory and wasting time.
8409    ClassDecl->setFailedImplicitMoveConstructor();
8410    return 0;
8411  }
8412
8413  // Note that we have declared this constructor.
8414  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8415
8416  if (Scope *S = getScopeForContext(ClassDecl))
8417    PushOnScopeChains(MoveConstructor, S, false);
8418  ClassDecl->addDecl(MoveConstructor);
8419
8420  return MoveConstructor;
8421}
8422
8423void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8424                                   CXXConstructorDecl *MoveConstructor) {
8425  assert((MoveConstructor->isDefaulted() &&
8426          MoveConstructor->isMoveConstructor() &&
8427          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8428         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8429
8430  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8431  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8432
8433  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8434  DiagnosticErrorTrap Trap(Diags);
8435
8436  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8437      Trap.hasErrorOccurred()) {
8438    Diag(CurrentLocation, diag::note_member_synthesized_at)
8439      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8440    MoveConstructor->setInvalidDecl();
8441  }  else {
8442    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8443                                               MoveConstructor->getLocation(),
8444                                               MultiStmtArg(*this, 0, 0),
8445                                               /*isStmtExpr=*/false)
8446                                                              .takeAs<Stmt>());
8447  }
8448
8449  MoveConstructor->setUsed();
8450
8451  if (ASTMutationListener *L = getASTMutationListener()) {
8452    L->CompletedImplicitDefinition(MoveConstructor);
8453  }
8454}
8455
8456ExprResult
8457Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8458                            CXXConstructorDecl *Constructor,
8459                            MultiExprArg ExprArgs,
8460                            bool RequiresZeroInit,
8461                            unsigned ConstructKind,
8462                            SourceRange ParenRange) {
8463  bool Elidable = false;
8464
8465  // C++0x [class.copy]p34:
8466  //   When certain criteria are met, an implementation is allowed to
8467  //   omit the copy/move construction of a class object, even if the
8468  //   copy/move constructor and/or destructor for the object have
8469  //   side effects. [...]
8470  //     - when a temporary class object that has not been bound to a
8471  //       reference (12.2) would be copied/moved to a class object
8472  //       with the same cv-unqualified type, the copy/move operation
8473  //       can be omitted by constructing the temporary object
8474  //       directly into the target of the omitted copy/move
8475  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8476      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8477    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8478    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8479  }
8480
8481  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8482                               Elidable, move(ExprArgs), RequiresZeroInit,
8483                               ConstructKind, ParenRange);
8484}
8485
8486/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8487/// including handling of its default argument expressions.
8488ExprResult
8489Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8490                            CXXConstructorDecl *Constructor, bool Elidable,
8491                            MultiExprArg ExprArgs,
8492                            bool RequiresZeroInit,
8493                            unsigned ConstructKind,
8494                            SourceRange ParenRange) {
8495  unsigned NumExprs = ExprArgs.size();
8496  Expr **Exprs = (Expr **)ExprArgs.release();
8497
8498  for (specific_attr_iterator<NonNullAttr>
8499           i = Constructor->specific_attr_begin<NonNullAttr>(),
8500           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8501    const NonNullAttr *NonNull = *i;
8502    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8503  }
8504
8505  MarkDeclarationReferenced(ConstructLoc, Constructor);
8506  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8507                                        Constructor, Elidable, Exprs, NumExprs,
8508                                        RequiresZeroInit,
8509              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8510                                        ParenRange));
8511}
8512
8513bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8514                                        CXXConstructorDecl *Constructor,
8515                                        MultiExprArg Exprs) {
8516  // FIXME: Provide the correct paren SourceRange when available.
8517  ExprResult TempResult =
8518    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8519                          move(Exprs), false, CXXConstructExpr::CK_Complete,
8520                          SourceRange());
8521  if (TempResult.isInvalid())
8522    return true;
8523
8524  Expr *Temp = TempResult.takeAs<Expr>();
8525  CheckImplicitConversions(Temp, VD->getLocation());
8526  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8527  Temp = MaybeCreateExprWithCleanups(Temp);
8528  VD->setInit(Temp);
8529
8530  return false;
8531}
8532
8533void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8534  if (VD->isInvalidDecl()) return;
8535
8536  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8537  if (ClassDecl->isInvalidDecl()) return;
8538  if (ClassDecl->hasTrivialDestructor()) return;
8539  if (ClassDecl->isDependentContext()) return;
8540
8541  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8542  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8543  CheckDestructorAccess(VD->getLocation(), Destructor,
8544                        PDiag(diag::err_access_dtor_var)
8545                        << VD->getDeclName()
8546                        << VD->getType());
8547
8548  if (!VD->hasGlobalStorage()) return;
8549
8550  // Emit warning for non-trivial dtor in global scope (a real global,
8551  // class-static, function-static).
8552  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8553
8554  // TODO: this should be re-enabled for static locals by !CXAAtExit
8555  if (!VD->isStaticLocal())
8556    Diag(VD->getLocation(), diag::warn_global_destructor);
8557}
8558
8559/// AddCXXDirectInitializerToDecl - This action is called immediately after
8560/// ActOnDeclarator, when a C++ direct initializer is present.
8561/// e.g: "int x(1);"
8562void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8563                                         SourceLocation LParenLoc,
8564                                         MultiExprArg Exprs,
8565                                         SourceLocation RParenLoc,
8566                                         bool TypeMayContainAuto) {
8567  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8568
8569  // If there is no declaration, there was an error parsing it.  Just ignore
8570  // the initializer.
8571  if (RealDecl == 0)
8572    return;
8573
8574  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8575  if (!VDecl) {
8576    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8577    RealDecl->setInvalidDecl();
8578    return;
8579  }
8580
8581  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8582  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8583    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8584    if (Exprs.size() > 1) {
8585      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8586           diag::err_auto_var_init_multiple_expressions)
8587        << VDecl->getDeclName() << VDecl->getType()
8588        << VDecl->getSourceRange();
8589      RealDecl->setInvalidDecl();
8590      return;
8591    }
8592
8593    Expr *Init = Exprs.get()[0];
8594    TypeSourceInfo *DeducedType = 0;
8595    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8596      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8597        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8598        << Init->getSourceRange();
8599    if (!DeducedType) {
8600      RealDecl->setInvalidDecl();
8601      return;
8602    }
8603    VDecl->setTypeSourceInfo(DeducedType);
8604    VDecl->setType(DeducedType->getType());
8605
8606    // In ARC, infer lifetime.
8607    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8608      VDecl->setInvalidDecl();
8609
8610    // If this is a redeclaration, check that the type we just deduced matches
8611    // the previously declared type.
8612    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8613      MergeVarDeclTypes(VDecl, Old);
8614  }
8615
8616  // We will represent direct-initialization similarly to copy-initialization:
8617  //    int x(1);  -as-> int x = 1;
8618  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8619  //
8620  // Clients that want to distinguish between the two forms, can check for
8621  // direct initializer using VarDecl::hasCXXDirectInitializer().
8622  // A major benefit is that clients that don't particularly care about which
8623  // exactly form was it (like the CodeGen) can handle both cases without
8624  // special case code.
8625
8626  // C++ 8.5p11:
8627  // The form of initialization (using parentheses or '=') is generally
8628  // insignificant, but does matter when the entity being initialized has a
8629  // class type.
8630
8631  if (!VDecl->getType()->isDependentType() &&
8632      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8633                          diag::err_typecheck_decl_incomplete_type)) {
8634    VDecl->setInvalidDecl();
8635    return;
8636  }
8637
8638  // The variable can not have an abstract class type.
8639  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8640                             diag::err_abstract_type_in_decl,
8641                             AbstractVariableType))
8642    VDecl->setInvalidDecl();
8643
8644  const VarDecl *Def;
8645  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8646    Diag(VDecl->getLocation(), diag::err_redefinition)
8647    << VDecl->getDeclName();
8648    Diag(Def->getLocation(), diag::note_previous_definition);
8649    VDecl->setInvalidDecl();
8650    return;
8651  }
8652
8653  // C++ [class.static.data]p4
8654  //   If a static data member is of const integral or const
8655  //   enumeration type, its declaration in the class definition can
8656  //   specify a constant-initializer which shall be an integral
8657  //   constant expression (5.19). In that case, the member can appear
8658  //   in integral constant expressions. The member shall still be
8659  //   defined in a namespace scope if it is used in the program and the
8660  //   namespace scope definition shall not contain an initializer.
8661  //
8662  // We already performed a redefinition check above, but for static
8663  // data members we also need to check whether there was an in-class
8664  // declaration with an initializer.
8665  const VarDecl* PrevInit = 0;
8666  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8667    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8668    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8669    return;
8670  }
8671
8672  bool IsDependent = false;
8673  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8674    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8675      VDecl->setInvalidDecl();
8676      return;
8677    }
8678
8679    if (Exprs.get()[I]->isTypeDependent())
8680      IsDependent = true;
8681  }
8682
8683  // If either the declaration has a dependent type or if any of the
8684  // expressions is type-dependent, we represent the initialization
8685  // via a ParenListExpr for later use during template instantiation.
8686  if (VDecl->getType()->isDependentType() || IsDependent) {
8687    // Let clients know that initialization was done with a direct initializer.
8688    VDecl->setCXXDirectInitializer(true);
8689
8690    // Store the initialization expressions as a ParenListExpr.
8691    unsigned NumExprs = Exprs.size();
8692    VDecl->setInit(new (Context) ParenListExpr(
8693        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8694        VDecl->getType().getNonReferenceType()));
8695    return;
8696  }
8697
8698  // Capture the variable that is being initialized and the style of
8699  // initialization.
8700  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8701
8702  // FIXME: Poor source location information.
8703  InitializationKind Kind
8704    = InitializationKind::CreateDirect(VDecl->getLocation(),
8705                                       LParenLoc, RParenLoc);
8706
8707  InitializationSequence InitSeq(*this, Entity, Kind,
8708                                 Exprs.get(), Exprs.size());
8709  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
8710  if (Result.isInvalid()) {
8711    VDecl->setInvalidDecl();
8712    return;
8713  }
8714
8715  CheckImplicitConversions(Result.get(), LParenLoc);
8716
8717  Result = MaybeCreateExprWithCleanups(Result);
8718  VDecl->setInit(Result.takeAs<Expr>());
8719  VDecl->setCXXDirectInitializer(true);
8720
8721  CheckCompleteVariableDeclaration(VDecl);
8722}
8723
8724/// \brief Given a constructor and the set of arguments provided for the
8725/// constructor, convert the arguments and add any required default arguments
8726/// to form a proper call to this constructor.
8727///
8728/// \returns true if an error occurred, false otherwise.
8729bool
8730Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8731                              MultiExprArg ArgsPtr,
8732                              SourceLocation Loc,
8733                              ASTOwningVector<Expr*> &ConvertedArgs) {
8734  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8735  unsigned NumArgs = ArgsPtr.size();
8736  Expr **Args = (Expr **)ArgsPtr.get();
8737
8738  const FunctionProtoType *Proto
8739    = Constructor->getType()->getAs<FunctionProtoType>();
8740  assert(Proto && "Constructor without a prototype?");
8741  unsigned NumArgsInProto = Proto->getNumArgs();
8742
8743  // If too few arguments are available, we'll fill in the rest with defaults.
8744  if (NumArgs < NumArgsInProto)
8745    ConvertedArgs.reserve(NumArgsInProto);
8746  else
8747    ConvertedArgs.reserve(NumArgs);
8748
8749  VariadicCallType CallType =
8750    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
8751  SmallVector<Expr *, 8> AllArgs;
8752  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
8753                                        Proto, 0, Args, NumArgs, AllArgs,
8754                                        CallType);
8755  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
8756    ConvertedArgs.push_back(AllArgs[i]);
8757  return Invalid;
8758}
8759
8760static inline bool
8761CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
8762                                       const FunctionDecl *FnDecl) {
8763  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
8764  if (isa<NamespaceDecl>(DC)) {
8765    return SemaRef.Diag(FnDecl->getLocation(),
8766                        diag::err_operator_new_delete_declared_in_namespace)
8767      << FnDecl->getDeclName();
8768  }
8769
8770  if (isa<TranslationUnitDecl>(DC) &&
8771      FnDecl->getStorageClass() == SC_Static) {
8772    return SemaRef.Diag(FnDecl->getLocation(),
8773                        diag::err_operator_new_delete_declared_static)
8774      << FnDecl->getDeclName();
8775  }
8776
8777  return false;
8778}
8779
8780static inline bool
8781CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
8782                            CanQualType ExpectedResultType,
8783                            CanQualType ExpectedFirstParamType,
8784                            unsigned DependentParamTypeDiag,
8785                            unsigned InvalidParamTypeDiag) {
8786  QualType ResultType =
8787    FnDecl->getType()->getAs<FunctionType>()->getResultType();
8788
8789  // Check that the result type is not dependent.
8790  if (ResultType->isDependentType())
8791    return SemaRef.Diag(FnDecl->getLocation(),
8792                        diag::err_operator_new_delete_dependent_result_type)
8793    << FnDecl->getDeclName() << ExpectedResultType;
8794
8795  // Check that the result type is what we expect.
8796  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
8797    return SemaRef.Diag(FnDecl->getLocation(),
8798                        diag::err_operator_new_delete_invalid_result_type)
8799    << FnDecl->getDeclName() << ExpectedResultType;
8800
8801  // A function template must have at least 2 parameters.
8802  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
8803    return SemaRef.Diag(FnDecl->getLocation(),
8804                      diag::err_operator_new_delete_template_too_few_parameters)
8805        << FnDecl->getDeclName();
8806
8807  // The function decl must have at least 1 parameter.
8808  if (FnDecl->getNumParams() == 0)
8809    return SemaRef.Diag(FnDecl->getLocation(),
8810                        diag::err_operator_new_delete_too_few_parameters)
8811      << FnDecl->getDeclName();
8812
8813  // Check the the first parameter type is not dependent.
8814  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
8815  if (FirstParamType->isDependentType())
8816    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
8817      << FnDecl->getDeclName() << ExpectedFirstParamType;
8818
8819  // Check that the first parameter type is what we expect.
8820  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
8821      ExpectedFirstParamType)
8822    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
8823    << FnDecl->getDeclName() << ExpectedFirstParamType;
8824
8825  return false;
8826}
8827
8828static bool
8829CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
8830  // C++ [basic.stc.dynamic.allocation]p1:
8831  //   A program is ill-formed if an allocation function is declared in a
8832  //   namespace scope other than global scope or declared static in global
8833  //   scope.
8834  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
8835    return true;
8836
8837  CanQualType SizeTy =
8838    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
8839
8840  // C++ [basic.stc.dynamic.allocation]p1:
8841  //  The return type shall be void*. The first parameter shall have type
8842  //  std::size_t.
8843  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
8844                                  SizeTy,
8845                                  diag::err_operator_new_dependent_param_type,
8846                                  diag::err_operator_new_param_type))
8847    return true;
8848
8849  // C++ [basic.stc.dynamic.allocation]p1:
8850  //  The first parameter shall not have an associated default argument.
8851  if (FnDecl->getParamDecl(0)->hasDefaultArg())
8852    return SemaRef.Diag(FnDecl->getLocation(),
8853                        diag::err_operator_new_default_arg)
8854      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
8855
8856  return false;
8857}
8858
8859static bool
8860CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
8861  // C++ [basic.stc.dynamic.deallocation]p1:
8862  //   A program is ill-formed if deallocation functions are declared in a
8863  //   namespace scope other than global scope or declared static in global
8864  //   scope.
8865  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
8866    return true;
8867
8868  // C++ [basic.stc.dynamic.deallocation]p2:
8869  //   Each deallocation function shall return void and its first parameter
8870  //   shall be void*.
8871  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
8872                                  SemaRef.Context.VoidPtrTy,
8873                                 diag::err_operator_delete_dependent_param_type,
8874                                 diag::err_operator_delete_param_type))
8875    return true;
8876
8877  return false;
8878}
8879
8880/// CheckOverloadedOperatorDeclaration - Check whether the declaration
8881/// of this overloaded operator is well-formed. If so, returns false;
8882/// otherwise, emits appropriate diagnostics and returns true.
8883bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
8884  assert(FnDecl && FnDecl->isOverloadedOperator() &&
8885         "Expected an overloaded operator declaration");
8886
8887  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
8888
8889  // C++ [over.oper]p5:
8890  //   The allocation and deallocation functions, operator new,
8891  //   operator new[], operator delete and operator delete[], are
8892  //   described completely in 3.7.3. The attributes and restrictions
8893  //   found in the rest of this subclause do not apply to them unless
8894  //   explicitly stated in 3.7.3.
8895  if (Op == OO_Delete || Op == OO_Array_Delete)
8896    return CheckOperatorDeleteDeclaration(*this, FnDecl);
8897
8898  if (Op == OO_New || Op == OO_Array_New)
8899    return CheckOperatorNewDeclaration(*this, FnDecl);
8900
8901  // C++ [over.oper]p6:
8902  //   An operator function shall either be a non-static member
8903  //   function or be a non-member function and have at least one
8904  //   parameter whose type is a class, a reference to a class, an
8905  //   enumeration, or a reference to an enumeration.
8906  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
8907    if (MethodDecl->isStatic())
8908      return Diag(FnDecl->getLocation(),
8909                  diag::err_operator_overload_static) << FnDecl->getDeclName();
8910  } else {
8911    bool ClassOrEnumParam = false;
8912    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
8913                                   ParamEnd = FnDecl->param_end();
8914         Param != ParamEnd; ++Param) {
8915      QualType ParamType = (*Param)->getType().getNonReferenceType();
8916      if (ParamType->isDependentType() || ParamType->isRecordType() ||
8917          ParamType->isEnumeralType()) {
8918        ClassOrEnumParam = true;
8919        break;
8920      }
8921    }
8922
8923    if (!ClassOrEnumParam)
8924      return Diag(FnDecl->getLocation(),
8925                  diag::err_operator_overload_needs_class_or_enum)
8926        << FnDecl->getDeclName();
8927  }
8928
8929  // C++ [over.oper]p8:
8930  //   An operator function cannot have default arguments (8.3.6),
8931  //   except where explicitly stated below.
8932  //
8933  // Only the function-call operator allows default arguments
8934  // (C++ [over.call]p1).
8935  if (Op != OO_Call) {
8936    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
8937         Param != FnDecl->param_end(); ++Param) {
8938      if ((*Param)->hasDefaultArg())
8939        return Diag((*Param)->getLocation(),
8940                    diag::err_operator_overload_default_arg)
8941          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
8942    }
8943  }
8944
8945  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
8946    { false, false, false }
8947#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
8948    , { Unary, Binary, MemberOnly }
8949#include "clang/Basic/OperatorKinds.def"
8950  };
8951
8952  bool CanBeUnaryOperator = OperatorUses[Op][0];
8953  bool CanBeBinaryOperator = OperatorUses[Op][1];
8954  bool MustBeMemberOperator = OperatorUses[Op][2];
8955
8956  // C++ [over.oper]p8:
8957  //   [...] Operator functions cannot have more or fewer parameters
8958  //   than the number required for the corresponding operator, as
8959  //   described in the rest of this subclause.
8960  unsigned NumParams = FnDecl->getNumParams()
8961                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
8962  if (Op != OO_Call &&
8963      ((NumParams == 1 && !CanBeUnaryOperator) ||
8964       (NumParams == 2 && !CanBeBinaryOperator) ||
8965       (NumParams < 1) || (NumParams > 2))) {
8966    // We have the wrong number of parameters.
8967    unsigned ErrorKind;
8968    if (CanBeUnaryOperator && CanBeBinaryOperator) {
8969      ErrorKind = 2;  // 2 -> unary or binary.
8970    } else if (CanBeUnaryOperator) {
8971      ErrorKind = 0;  // 0 -> unary
8972    } else {
8973      assert(CanBeBinaryOperator &&
8974             "All non-call overloaded operators are unary or binary!");
8975      ErrorKind = 1;  // 1 -> binary
8976    }
8977
8978    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
8979      << FnDecl->getDeclName() << NumParams << ErrorKind;
8980  }
8981
8982  // Overloaded operators other than operator() cannot be variadic.
8983  if (Op != OO_Call &&
8984      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
8985    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
8986      << FnDecl->getDeclName();
8987  }
8988
8989  // Some operators must be non-static member functions.
8990  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
8991    return Diag(FnDecl->getLocation(),
8992                diag::err_operator_overload_must_be_member)
8993      << FnDecl->getDeclName();
8994  }
8995
8996  // C++ [over.inc]p1:
8997  //   The user-defined function called operator++ implements the
8998  //   prefix and postfix ++ operator. If this function is a member
8999  //   function with no parameters, or a non-member function with one
9000  //   parameter of class or enumeration type, it defines the prefix
9001  //   increment operator ++ for objects of that type. If the function
9002  //   is a member function with one parameter (which shall be of type
9003  //   int) or a non-member function with two parameters (the second
9004  //   of which shall be of type int), it defines the postfix
9005  //   increment operator ++ for objects of that type.
9006  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9007    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9008    bool ParamIsInt = false;
9009    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9010      ParamIsInt = BT->getKind() == BuiltinType::Int;
9011
9012    if (!ParamIsInt)
9013      return Diag(LastParam->getLocation(),
9014                  diag::err_operator_overload_post_incdec_must_be_int)
9015        << LastParam->getType() << (Op == OO_MinusMinus);
9016  }
9017
9018  return false;
9019}
9020
9021/// CheckLiteralOperatorDeclaration - Check whether the declaration
9022/// of this literal operator function is well-formed. If so, returns
9023/// false; otherwise, emits appropriate diagnostics and returns true.
9024bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9025  DeclContext *DC = FnDecl->getDeclContext();
9026  Decl::Kind Kind = DC->getDeclKind();
9027  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9028      Kind != Decl::LinkageSpec) {
9029    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9030      << FnDecl->getDeclName();
9031    return true;
9032  }
9033
9034  bool Valid = false;
9035
9036  // template <char...> type operator "" name() is the only valid template
9037  // signature, and the only valid signature with no parameters.
9038  if (FnDecl->param_size() == 0) {
9039    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9040      // Must have only one template parameter
9041      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9042      if (Params->size() == 1) {
9043        NonTypeTemplateParmDecl *PmDecl =
9044          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9045
9046        // The template parameter must be a char parameter pack.
9047        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9048            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9049          Valid = true;
9050      }
9051    }
9052  } else {
9053    // Check the first parameter
9054    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9055
9056    QualType T = (*Param)->getType();
9057
9058    // unsigned long long int, long double, and any character type are allowed
9059    // as the only parameters.
9060    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9061        Context.hasSameType(T, Context.LongDoubleTy) ||
9062        Context.hasSameType(T, Context.CharTy) ||
9063        Context.hasSameType(T, Context.WCharTy) ||
9064        Context.hasSameType(T, Context.Char16Ty) ||
9065        Context.hasSameType(T, Context.Char32Ty)) {
9066      if (++Param == FnDecl->param_end())
9067        Valid = true;
9068      goto FinishedParams;
9069    }
9070
9071    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9072    const PointerType *PT = T->getAs<PointerType>();
9073    if (!PT)
9074      goto FinishedParams;
9075    T = PT->getPointeeType();
9076    if (!T.isConstQualified())
9077      goto FinishedParams;
9078    T = T.getUnqualifiedType();
9079
9080    // Move on to the second parameter;
9081    ++Param;
9082
9083    // If there is no second parameter, the first must be a const char *
9084    if (Param == FnDecl->param_end()) {
9085      if (Context.hasSameType(T, Context.CharTy))
9086        Valid = true;
9087      goto FinishedParams;
9088    }
9089
9090    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9091    // are allowed as the first parameter to a two-parameter function
9092    if (!(Context.hasSameType(T, Context.CharTy) ||
9093          Context.hasSameType(T, Context.WCharTy) ||
9094          Context.hasSameType(T, Context.Char16Ty) ||
9095          Context.hasSameType(T, Context.Char32Ty)))
9096      goto FinishedParams;
9097
9098    // The second and final parameter must be an std::size_t
9099    T = (*Param)->getType().getUnqualifiedType();
9100    if (Context.hasSameType(T, Context.getSizeType()) &&
9101        ++Param == FnDecl->param_end())
9102      Valid = true;
9103  }
9104
9105  // FIXME: This diagnostic is absolutely terrible.
9106FinishedParams:
9107  if (!Valid) {
9108    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9109      << FnDecl->getDeclName();
9110    return true;
9111  }
9112
9113  StringRef LiteralName
9114    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9115  if (LiteralName[0] != '_') {
9116    // C++0x [usrlit.suffix]p1:
9117    //   Literal suffix identifiers that do not start with an underscore are
9118    //   reserved for future standardization.
9119    bool IsHexFloat = true;
9120    if (LiteralName.size() > 1 &&
9121        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9122      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9123        if (!isdigit(LiteralName[I])) {
9124          IsHexFloat = false;
9125          break;
9126        }
9127      }
9128    }
9129
9130    if (IsHexFloat)
9131      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9132        << LiteralName;
9133    else
9134      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9135  }
9136
9137  return false;
9138}
9139
9140/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9141/// linkage specification, including the language and (if present)
9142/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9143/// the location of the language string literal, which is provided
9144/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9145/// the '{' brace. Otherwise, this linkage specification does not
9146/// have any braces.
9147Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9148                                           SourceLocation LangLoc,
9149                                           StringRef Lang,
9150                                           SourceLocation LBraceLoc) {
9151  LinkageSpecDecl::LanguageIDs Language;
9152  if (Lang == "\"C\"")
9153    Language = LinkageSpecDecl::lang_c;
9154  else if (Lang == "\"C++\"")
9155    Language = LinkageSpecDecl::lang_cxx;
9156  else {
9157    Diag(LangLoc, diag::err_bad_language);
9158    return 0;
9159  }
9160
9161  // FIXME: Add all the various semantics of linkage specifications
9162
9163  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9164                                               ExternLoc, LangLoc, Language);
9165  CurContext->addDecl(D);
9166  PushDeclContext(S, D);
9167  return D;
9168}
9169
9170/// ActOnFinishLinkageSpecification - Complete the definition of
9171/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9172/// valid, it's the position of the closing '}' brace in a linkage
9173/// specification that uses braces.
9174Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9175                                            Decl *LinkageSpec,
9176                                            SourceLocation RBraceLoc) {
9177  if (LinkageSpec) {
9178    if (RBraceLoc.isValid()) {
9179      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9180      LSDecl->setRBraceLoc(RBraceLoc);
9181    }
9182    PopDeclContext();
9183  }
9184  return LinkageSpec;
9185}
9186
9187/// \brief Perform semantic analysis for the variable declaration that
9188/// occurs within a C++ catch clause, returning the newly-created
9189/// variable.
9190VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9191                                         TypeSourceInfo *TInfo,
9192                                         SourceLocation StartLoc,
9193                                         SourceLocation Loc,
9194                                         IdentifierInfo *Name) {
9195  bool Invalid = false;
9196  QualType ExDeclType = TInfo->getType();
9197
9198  // Arrays and functions decay.
9199  if (ExDeclType->isArrayType())
9200    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9201  else if (ExDeclType->isFunctionType())
9202    ExDeclType = Context.getPointerType(ExDeclType);
9203
9204  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9205  // The exception-declaration shall not denote a pointer or reference to an
9206  // incomplete type, other than [cv] void*.
9207  // N2844 forbids rvalue references.
9208  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9209    Diag(Loc, diag::err_catch_rvalue_ref);
9210    Invalid = true;
9211  }
9212
9213  // GCC allows catching pointers and references to incomplete types
9214  // as an extension; so do we, but we warn by default.
9215
9216  QualType BaseType = ExDeclType;
9217  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9218  unsigned DK = diag::err_catch_incomplete;
9219  bool IncompleteCatchIsInvalid = true;
9220  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9221    BaseType = Ptr->getPointeeType();
9222    Mode = 1;
9223    DK = diag::ext_catch_incomplete_ptr;
9224    IncompleteCatchIsInvalid = false;
9225  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9226    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9227    BaseType = Ref->getPointeeType();
9228    Mode = 2;
9229    DK = diag::ext_catch_incomplete_ref;
9230    IncompleteCatchIsInvalid = false;
9231  }
9232  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9233      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9234      IncompleteCatchIsInvalid)
9235    Invalid = true;
9236
9237  if (!Invalid && !ExDeclType->isDependentType() &&
9238      RequireNonAbstractType(Loc, ExDeclType,
9239                             diag::err_abstract_type_in_decl,
9240                             AbstractVariableType))
9241    Invalid = true;
9242
9243  // Only the non-fragile NeXT runtime currently supports C++ catches
9244  // of ObjC types, and no runtime supports catching ObjC types by value.
9245  if (!Invalid && getLangOptions().ObjC1) {
9246    QualType T = ExDeclType;
9247    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9248      T = RT->getPointeeType();
9249
9250    if (T->isObjCObjectType()) {
9251      Diag(Loc, diag::err_objc_object_catch);
9252      Invalid = true;
9253    } else if (T->isObjCObjectPointerType()) {
9254      if (!getLangOptions().ObjCNonFragileABI)
9255        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9256    }
9257  }
9258
9259  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9260                                    ExDeclType, TInfo, SC_None, SC_None);
9261  ExDecl->setExceptionVariable(true);
9262
9263  if (!Invalid && !ExDeclType->isDependentType()) {
9264    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9265      // C++ [except.handle]p16:
9266      //   The object declared in an exception-declaration or, if the
9267      //   exception-declaration does not specify a name, a temporary (12.2) is
9268      //   copy-initialized (8.5) from the exception object. [...]
9269      //   The object is destroyed when the handler exits, after the destruction
9270      //   of any automatic objects initialized within the handler.
9271      //
9272      // We just pretend to initialize the object with itself, then make sure
9273      // it can be destroyed later.
9274      QualType initType = ExDeclType;
9275
9276      InitializedEntity entity =
9277        InitializedEntity::InitializeVariable(ExDecl);
9278      InitializationKind initKind =
9279        InitializationKind::CreateCopy(Loc, SourceLocation());
9280
9281      Expr *opaqueValue =
9282        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9283      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9284      ExprResult result = sequence.Perform(*this, entity, initKind,
9285                                           MultiExprArg(&opaqueValue, 1));
9286      if (result.isInvalid())
9287        Invalid = true;
9288      else {
9289        // If the constructor used was non-trivial, set this as the
9290        // "initializer".
9291        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9292        if (!construct->getConstructor()->isTrivial()) {
9293          Expr *init = MaybeCreateExprWithCleanups(construct);
9294          ExDecl->setInit(init);
9295        }
9296
9297        // And make sure it's destructable.
9298        FinalizeVarWithDestructor(ExDecl, recordType);
9299      }
9300    }
9301  }
9302
9303  if (Invalid)
9304    ExDecl->setInvalidDecl();
9305
9306  return ExDecl;
9307}
9308
9309/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9310/// handler.
9311Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9312  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9313  bool Invalid = D.isInvalidType();
9314
9315  // Check for unexpanded parameter packs.
9316  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9317                                               UPPC_ExceptionType)) {
9318    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9319                                             D.getIdentifierLoc());
9320    Invalid = true;
9321  }
9322
9323  IdentifierInfo *II = D.getIdentifier();
9324  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9325                                             LookupOrdinaryName,
9326                                             ForRedeclaration)) {
9327    // The scope should be freshly made just for us. There is just no way
9328    // it contains any previous declaration.
9329    assert(!S->isDeclScope(PrevDecl));
9330    if (PrevDecl->isTemplateParameter()) {
9331      // Maybe we will complain about the shadowed template parameter.
9332      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9333    }
9334  }
9335
9336  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9337    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9338      << D.getCXXScopeSpec().getRange();
9339    Invalid = true;
9340  }
9341
9342  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9343                                              D.getSourceRange().getBegin(),
9344                                              D.getIdentifierLoc(),
9345                                              D.getIdentifier());
9346  if (Invalid)
9347    ExDecl->setInvalidDecl();
9348
9349  // Add the exception declaration into this scope.
9350  if (II)
9351    PushOnScopeChains(ExDecl, S);
9352  else
9353    CurContext->addDecl(ExDecl);
9354
9355  ProcessDeclAttributes(S, ExDecl, D);
9356  return ExDecl;
9357}
9358
9359Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9360                                         Expr *AssertExpr,
9361                                         Expr *AssertMessageExpr_,
9362                                         SourceLocation RParenLoc) {
9363  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9364
9365  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9366    llvm::APSInt Value(32);
9367    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9368      Diag(StaticAssertLoc,
9369           diag::err_static_assert_expression_is_not_constant) <<
9370        AssertExpr->getSourceRange();
9371      return 0;
9372    }
9373
9374    if (Value == 0) {
9375      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9376        << AssertMessage->getString() << AssertExpr->getSourceRange();
9377    }
9378  }
9379
9380  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9381    return 0;
9382
9383  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9384                                        AssertExpr, AssertMessage, RParenLoc);
9385
9386  CurContext->addDecl(Decl);
9387  return Decl;
9388}
9389
9390/// \brief Perform semantic analysis of the given friend type declaration.
9391///
9392/// \returns A friend declaration that.
9393FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9394                                      TypeSourceInfo *TSInfo) {
9395  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9396
9397  QualType T = TSInfo->getType();
9398  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9399
9400  if (!getLangOptions().CPlusPlus0x) {
9401    // C++03 [class.friend]p2:
9402    //   An elaborated-type-specifier shall be used in a friend declaration
9403    //   for a class.*
9404    //
9405    //   * The class-key of the elaborated-type-specifier is required.
9406    if (!ActiveTemplateInstantiations.empty()) {
9407      // Do not complain about the form of friend template types during
9408      // template instantiation; we will already have complained when the
9409      // template was declared.
9410    } else if (!T->isElaboratedTypeSpecifier()) {
9411      // If we evaluated the type to a record type, suggest putting
9412      // a tag in front.
9413      if (const RecordType *RT = T->getAs<RecordType>()) {
9414        RecordDecl *RD = RT->getDecl();
9415
9416        std::string InsertionText = std::string(" ") + RD->getKindName();
9417
9418        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
9419          << (unsigned) RD->getTagKind()
9420          << T
9421          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9422                                        InsertionText);
9423      } else {
9424        Diag(FriendLoc, diag::ext_nonclass_type_friend)
9425          << T
9426          << SourceRange(FriendLoc, TypeRange.getEnd());
9427      }
9428    } else if (T->getAs<EnumType>()) {
9429      Diag(FriendLoc, diag::ext_enum_friend)
9430        << T
9431        << SourceRange(FriendLoc, TypeRange.getEnd());
9432    }
9433  }
9434
9435  // C++0x [class.friend]p3:
9436  //   If the type specifier in a friend declaration designates a (possibly
9437  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9438  //   the friend declaration is ignored.
9439
9440  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9441  // in [class.friend]p3 that we do not implement.
9442
9443  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9444}
9445
9446/// Handle a friend tag declaration where the scope specifier was
9447/// templated.
9448Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9449                                    unsigned TagSpec, SourceLocation TagLoc,
9450                                    CXXScopeSpec &SS,
9451                                    IdentifierInfo *Name, SourceLocation NameLoc,
9452                                    AttributeList *Attr,
9453                                    MultiTemplateParamsArg TempParamLists) {
9454  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9455
9456  bool isExplicitSpecialization = false;
9457  bool Invalid = false;
9458
9459  if (TemplateParameterList *TemplateParams
9460        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9461                                                  TempParamLists.get(),
9462                                                  TempParamLists.size(),
9463                                                  /*friend*/ true,
9464                                                  isExplicitSpecialization,
9465                                                  Invalid)) {
9466    if (TemplateParams->size() > 0) {
9467      // This is a declaration of a class template.
9468      if (Invalid)
9469        return 0;
9470
9471      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9472                                SS, Name, NameLoc, Attr,
9473                                TemplateParams, AS_public,
9474                                TempParamLists.size() - 1,
9475                   (TemplateParameterList**) TempParamLists.release()).take();
9476    } else {
9477      // The "template<>" header is extraneous.
9478      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9479        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9480      isExplicitSpecialization = true;
9481    }
9482  }
9483
9484  if (Invalid) return 0;
9485
9486  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9487
9488  bool isAllExplicitSpecializations = true;
9489  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9490    if (TempParamLists.get()[I]->size()) {
9491      isAllExplicitSpecializations = false;
9492      break;
9493    }
9494  }
9495
9496  // FIXME: don't ignore attributes.
9497
9498  // If it's explicit specializations all the way down, just forget
9499  // about the template header and build an appropriate non-templated
9500  // friend.  TODO: for source fidelity, remember the headers.
9501  if (isAllExplicitSpecializations) {
9502    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9503    ElaboratedTypeKeyword Keyword
9504      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9505    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9506                                   *Name, NameLoc);
9507    if (T.isNull())
9508      return 0;
9509
9510    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9511    if (isa<DependentNameType>(T)) {
9512      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9513      TL.setKeywordLoc(TagLoc);
9514      TL.setQualifierLoc(QualifierLoc);
9515      TL.setNameLoc(NameLoc);
9516    } else {
9517      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9518      TL.setKeywordLoc(TagLoc);
9519      TL.setQualifierLoc(QualifierLoc);
9520      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9521    }
9522
9523    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9524                                            TSI, FriendLoc);
9525    Friend->setAccess(AS_public);
9526    CurContext->addDecl(Friend);
9527    return Friend;
9528  }
9529
9530  // Handle the case of a templated-scope friend class.  e.g.
9531  //   template <class T> class A<T>::B;
9532  // FIXME: we don't support these right now.
9533  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9534  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9535  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9536  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9537  TL.setKeywordLoc(TagLoc);
9538  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9539  TL.setNameLoc(NameLoc);
9540
9541  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9542                                          TSI, FriendLoc);
9543  Friend->setAccess(AS_public);
9544  Friend->setUnsupportedFriend(true);
9545  CurContext->addDecl(Friend);
9546  return Friend;
9547}
9548
9549
9550/// Handle a friend type declaration.  This works in tandem with
9551/// ActOnTag.
9552///
9553/// Notes on friend class templates:
9554///
9555/// We generally treat friend class declarations as if they were
9556/// declaring a class.  So, for example, the elaborated type specifier
9557/// in a friend declaration is required to obey the restrictions of a
9558/// class-head (i.e. no typedefs in the scope chain), template
9559/// parameters are required to match up with simple template-ids, &c.
9560/// However, unlike when declaring a template specialization, it's
9561/// okay to refer to a template specialization without an empty
9562/// template parameter declaration, e.g.
9563///   friend class A<T>::B<unsigned>;
9564/// We permit this as a special case; if there are any template
9565/// parameters present at all, require proper matching, i.e.
9566///   template <> template <class T> friend class A<int>::B;
9567Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9568                                MultiTemplateParamsArg TempParams) {
9569  SourceLocation Loc = DS.getSourceRange().getBegin();
9570
9571  assert(DS.isFriendSpecified());
9572  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9573
9574  // Try to convert the decl specifier to a type.  This works for
9575  // friend templates because ActOnTag never produces a ClassTemplateDecl
9576  // for a TUK_Friend.
9577  Declarator TheDeclarator(DS, Declarator::MemberContext);
9578  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9579  QualType T = TSI->getType();
9580  if (TheDeclarator.isInvalidType())
9581    return 0;
9582
9583  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9584    return 0;
9585
9586  // This is definitely an error in C++98.  It's probably meant to
9587  // be forbidden in C++0x, too, but the specification is just
9588  // poorly written.
9589  //
9590  // The problem is with declarations like the following:
9591  //   template <T> friend A<T>::foo;
9592  // where deciding whether a class C is a friend or not now hinges
9593  // on whether there exists an instantiation of A that causes
9594  // 'foo' to equal C.  There are restrictions on class-heads
9595  // (which we declare (by fiat) elaborated friend declarations to
9596  // be) that makes this tractable.
9597  //
9598  // FIXME: handle "template <> friend class A<T>;", which
9599  // is possibly well-formed?  Who even knows?
9600  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9601    Diag(Loc, diag::err_tagless_friend_type_template)
9602      << DS.getSourceRange();
9603    return 0;
9604  }
9605
9606  // C++98 [class.friend]p1: A friend of a class is a function
9607  //   or class that is not a member of the class . . .
9608  // This is fixed in DR77, which just barely didn't make the C++03
9609  // deadline.  It's also a very silly restriction that seriously
9610  // affects inner classes and which nobody else seems to implement;
9611  // thus we never diagnose it, not even in -pedantic.
9612  //
9613  // But note that we could warn about it: it's always useless to
9614  // friend one of your own members (it's not, however, worthless to
9615  // friend a member of an arbitrary specialization of your template).
9616
9617  Decl *D;
9618  if (unsigned NumTempParamLists = TempParams.size())
9619    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9620                                   NumTempParamLists,
9621                                   TempParams.release(),
9622                                   TSI,
9623                                   DS.getFriendSpecLoc());
9624  else
9625    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
9626
9627  if (!D)
9628    return 0;
9629
9630  D->setAccess(AS_public);
9631  CurContext->addDecl(D);
9632
9633  return D;
9634}
9635
9636Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
9637                                    MultiTemplateParamsArg TemplateParams) {
9638  const DeclSpec &DS = D.getDeclSpec();
9639
9640  assert(DS.isFriendSpecified());
9641  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9642
9643  SourceLocation Loc = D.getIdentifierLoc();
9644  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9645  QualType T = TInfo->getType();
9646
9647  // C++ [class.friend]p1
9648  //   A friend of a class is a function or class....
9649  // Note that this sees through typedefs, which is intended.
9650  // It *doesn't* see through dependent types, which is correct
9651  // according to [temp.arg.type]p3:
9652  //   If a declaration acquires a function type through a
9653  //   type dependent on a template-parameter and this causes
9654  //   a declaration that does not use the syntactic form of a
9655  //   function declarator to have a function type, the program
9656  //   is ill-formed.
9657  if (!T->isFunctionType()) {
9658    Diag(Loc, diag::err_unexpected_friend);
9659
9660    // It might be worthwhile to try to recover by creating an
9661    // appropriate declaration.
9662    return 0;
9663  }
9664
9665  // C++ [namespace.memdef]p3
9666  //  - If a friend declaration in a non-local class first declares a
9667  //    class or function, the friend class or function is a member
9668  //    of the innermost enclosing namespace.
9669  //  - The name of the friend is not found by simple name lookup
9670  //    until a matching declaration is provided in that namespace
9671  //    scope (either before or after the class declaration granting
9672  //    friendship).
9673  //  - If a friend function is called, its name may be found by the
9674  //    name lookup that considers functions from namespaces and
9675  //    classes associated with the types of the function arguments.
9676  //  - When looking for a prior declaration of a class or a function
9677  //    declared as a friend, scopes outside the innermost enclosing
9678  //    namespace scope are not considered.
9679
9680  CXXScopeSpec &SS = D.getCXXScopeSpec();
9681  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9682  DeclarationName Name = NameInfo.getName();
9683  assert(Name);
9684
9685  // Check for unexpanded parameter packs.
9686  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9687      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9688      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9689    return 0;
9690
9691  // The context we found the declaration in, or in which we should
9692  // create the declaration.
9693  DeclContext *DC;
9694  Scope *DCScope = S;
9695  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9696                        ForRedeclaration);
9697
9698  // FIXME: there are different rules in local classes
9699
9700  // There are four cases here.
9701  //   - There's no scope specifier, in which case we just go to the
9702  //     appropriate scope and look for a function or function template
9703  //     there as appropriate.
9704  // Recover from invalid scope qualifiers as if they just weren't there.
9705  if (SS.isInvalid() || !SS.isSet()) {
9706    // C++0x [namespace.memdef]p3:
9707    //   If the name in a friend declaration is neither qualified nor
9708    //   a template-id and the declaration is a function or an
9709    //   elaborated-type-specifier, the lookup to determine whether
9710    //   the entity has been previously declared shall not consider
9711    //   any scopes outside the innermost enclosing namespace.
9712    // C++0x [class.friend]p11:
9713    //   If a friend declaration appears in a local class and the name
9714    //   specified is an unqualified name, a prior declaration is
9715    //   looked up without considering scopes that are outside the
9716    //   innermost enclosing non-class scope. For a friend function
9717    //   declaration, if there is no prior declaration, the program is
9718    //   ill-formed.
9719    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
9720    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
9721
9722    // Find the appropriate context according to the above.
9723    DC = CurContext;
9724    while (true) {
9725      // Skip class contexts.  If someone can cite chapter and verse
9726      // for this behavior, that would be nice --- it's what GCC and
9727      // EDG do, and it seems like a reasonable intent, but the spec
9728      // really only says that checks for unqualified existing
9729      // declarations should stop at the nearest enclosing namespace,
9730      // not that they should only consider the nearest enclosing
9731      // namespace.
9732      while (DC->isRecord())
9733        DC = DC->getParent();
9734
9735      LookupQualifiedName(Previous, DC);
9736
9737      // TODO: decide what we think about using declarations.
9738      if (isLocal || !Previous.empty())
9739        break;
9740
9741      if (isTemplateId) {
9742        if (isa<TranslationUnitDecl>(DC)) break;
9743      } else {
9744        if (DC->isFileContext()) break;
9745      }
9746      DC = DC->getParent();
9747    }
9748
9749    // C++ [class.friend]p1: A friend of a class is a function or
9750    //   class that is not a member of the class . . .
9751    // C++0x changes this for both friend types and functions.
9752    // Most C++ 98 compilers do seem to give an error here, so
9753    // we do, too.
9754    if (!Previous.empty() && DC->Equals(CurContext)
9755        && !getLangOptions().CPlusPlus0x)
9756      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
9757
9758    DCScope = getScopeForDeclContext(S, DC);
9759
9760  //   - There's a non-dependent scope specifier, in which case we
9761  //     compute it and do a previous lookup there for a function
9762  //     or function template.
9763  } else if (!SS.getScopeRep()->isDependent()) {
9764    DC = computeDeclContext(SS);
9765    if (!DC) return 0;
9766
9767    if (RequireCompleteDeclContext(SS, DC)) return 0;
9768
9769    LookupQualifiedName(Previous, DC);
9770
9771    // Ignore things found implicitly in the wrong scope.
9772    // TODO: better diagnostics for this case.  Suggesting the right
9773    // qualified scope would be nice...
9774    LookupResult::Filter F = Previous.makeFilter();
9775    while (F.hasNext()) {
9776      NamedDecl *D = F.next();
9777      if (!DC->InEnclosingNamespaceSetOf(
9778              D->getDeclContext()->getRedeclContext()))
9779        F.erase();
9780    }
9781    F.done();
9782
9783    if (Previous.empty()) {
9784      D.setInvalidType();
9785      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
9786      return 0;
9787    }
9788
9789    // C++ [class.friend]p1: A friend of a class is a function or
9790    //   class that is not a member of the class . . .
9791    if (DC->Equals(CurContext))
9792      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
9793
9794  //   - There's a scope specifier that does not match any template
9795  //     parameter lists, in which case we use some arbitrary context,
9796  //     create a method or method template, and wait for instantiation.
9797  //   - There's a scope specifier that does match some template
9798  //     parameter lists, which we don't handle right now.
9799  } else {
9800    DC = CurContext;
9801    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
9802  }
9803
9804  if (!DC->isRecord()) {
9805    // This implies that it has to be an operator or function.
9806    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
9807        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
9808        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
9809      Diag(Loc, diag::err_introducing_special_friend) <<
9810        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
9811         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
9812      return 0;
9813    }
9814  }
9815
9816  bool Redeclaration = false;
9817  bool AddToScope = true;
9818  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
9819                                          move(TemplateParams),
9820                                          IsDefinition,
9821                                          Redeclaration, AddToScope);
9822  if (!ND) return 0;
9823
9824  assert(ND->getDeclContext() == DC);
9825  assert(ND->getLexicalDeclContext() == CurContext);
9826
9827  // Add the function declaration to the appropriate lookup tables,
9828  // adjusting the redeclarations list as necessary.  We don't
9829  // want to do this yet if the friending class is dependent.
9830  //
9831  // Also update the scope-based lookup if the target context's
9832  // lookup context is in lexical scope.
9833  if (!CurContext->isDependentContext()) {
9834    DC = DC->getRedeclContext();
9835    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
9836    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9837      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
9838  }
9839
9840  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
9841                                       D.getIdentifierLoc(), ND,
9842                                       DS.getFriendSpecLoc());
9843  FrD->setAccess(AS_public);
9844  CurContext->addDecl(FrD);
9845
9846  if (ND->isInvalidDecl())
9847    FrD->setInvalidDecl();
9848  else {
9849    FunctionDecl *FD;
9850    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
9851      FD = FTD->getTemplatedDecl();
9852    else
9853      FD = cast<FunctionDecl>(ND);
9854
9855    // Mark templated-scope function declarations as unsupported.
9856    if (FD->getNumTemplateParameterLists())
9857      FrD->setUnsupportedFriend(true);
9858  }
9859
9860  return ND;
9861}
9862
9863void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
9864  AdjustDeclIfTemplate(Dcl);
9865
9866  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
9867  if (!Fn) {
9868    Diag(DelLoc, diag::err_deleted_non_function);
9869    return;
9870  }
9871  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
9872    Diag(DelLoc, diag::err_deleted_decl_not_first);
9873    Diag(Prev->getLocation(), diag::note_previous_declaration);
9874    // If the declaration wasn't the first, we delete the function anyway for
9875    // recovery.
9876  }
9877  Fn->setDeletedAsWritten();
9878}
9879
9880void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
9881  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
9882
9883  if (MD) {
9884    if (MD->getParent()->isDependentType()) {
9885      MD->setDefaulted();
9886      MD->setExplicitlyDefaulted();
9887      return;
9888    }
9889
9890    CXXSpecialMember Member = getSpecialMember(MD);
9891    if (Member == CXXInvalid) {
9892      Diag(DefaultLoc, diag::err_default_special_members);
9893      return;
9894    }
9895
9896    MD->setDefaulted();
9897    MD->setExplicitlyDefaulted();
9898
9899    // If this definition appears within the record, do the checking when
9900    // the record is complete.
9901    const FunctionDecl *Primary = MD;
9902    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
9903      // Find the uninstantiated declaration that actually had the '= default'
9904      // on it.
9905      MD->getTemplateInstantiationPattern()->isDefined(Primary);
9906
9907    if (Primary == Primary->getCanonicalDecl())
9908      return;
9909
9910    switch (Member) {
9911    case CXXDefaultConstructor: {
9912      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
9913      CheckExplicitlyDefaultedDefaultConstructor(CD);
9914      if (!CD->isInvalidDecl())
9915        DefineImplicitDefaultConstructor(DefaultLoc, CD);
9916      break;
9917    }
9918
9919    case CXXCopyConstructor: {
9920      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
9921      CheckExplicitlyDefaultedCopyConstructor(CD);
9922      if (!CD->isInvalidDecl())
9923        DefineImplicitCopyConstructor(DefaultLoc, CD);
9924      break;
9925    }
9926
9927    case CXXCopyAssignment: {
9928      CheckExplicitlyDefaultedCopyAssignment(MD);
9929      if (!MD->isInvalidDecl())
9930        DefineImplicitCopyAssignment(DefaultLoc, MD);
9931      break;
9932    }
9933
9934    case CXXDestructor: {
9935      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
9936      CheckExplicitlyDefaultedDestructor(DD);
9937      if (!DD->isInvalidDecl())
9938        DefineImplicitDestructor(DefaultLoc, DD);
9939      break;
9940    }
9941
9942    case CXXMoveConstructor: {
9943      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
9944      CheckExplicitlyDefaultedMoveConstructor(CD);
9945      if (!CD->isInvalidDecl())
9946        DefineImplicitMoveConstructor(DefaultLoc, CD);
9947      break;
9948    }
9949
9950    case CXXMoveAssignment: {
9951      CheckExplicitlyDefaultedMoveAssignment(MD);
9952      if (!MD->isInvalidDecl())
9953        DefineImplicitMoveAssignment(DefaultLoc, MD);
9954      break;
9955    }
9956
9957    case CXXInvalid:
9958      assert(false && "Invalid special member.");
9959      break;
9960    }
9961  } else {
9962    Diag(DefaultLoc, diag::err_default_special_members);
9963  }
9964}
9965
9966static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
9967  for (Stmt::child_range CI = S->children(); CI; ++CI) {
9968    Stmt *SubStmt = *CI;
9969    if (!SubStmt)
9970      continue;
9971    if (isa<ReturnStmt>(SubStmt))
9972      Self.Diag(SubStmt->getSourceRange().getBegin(),
9973           diag::err_return_in_constructor_handler);
9974    if (!isa<Expr>(SubStmt))
9975      SearchForReturnInStmt(Self, SubStmt);
9976  }
9977}
9978
9979void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
9980  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
9981    CXXCatchStmt *Handler = TryBlock->getHandler(I);
9982    SearchForReturnInStmt(*this, Handler);
9983  }
9984}
9985
9986bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
9987                                             const CXXMethodDecl *Old) {
9988  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
9989  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
9990
9991  if (Context.hasSameType(NewTy, OldTy) ||
9992      NewTy->isDependentType() || OldTy->isDependentType())
9993    return false;
9994
9995  // Check if the return types are covariant
9996  QualType NewClassTy, OldClassTy;
9997
9998  /// Both types must be pointers or references to classes.
9999  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10000    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10001      NewClassTy = NewPT->getPointeeType();
10002      OldClassTy = OldPT->getPointeeType();
10003    }
10004  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10005    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10006      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10007        NewClassTy = NewRT->getPointeeType();
10008        OldClassTy = OldRT->getPointeeType();
10009      }
10010    }
10011  }
10012
10013  // The return types aren't either both pointers or references to a class type.
10014  if (NewClassTy.isNull()) {
10015    Diag(New->getLocation(),
10016         diag::err_different_return_type_for_overriding_virtual_function)
10017      << New->getDeclName() << NewTy << OldTy;
10018    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10019
10020    return true;
10021  }
10022
10023  // C++ [class.virtual]p6:
10024  //   If the return type of D::f differs from the return type of B::f, the
10025  //   class type in the return type of D::f shall be complete at the point of
10026  //   declaration of D::f or shall be the class type D.
10027  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10028    if (!RT->isBeingDefined() &&
10029        RequireCompleteType(New->getLocation(), NewClassTy,
10030                            PDiag(diag::err_covariant_return_incomplete)
10031                              << New->getDeclName()))
10032    return true;
10033  }
10034
10035  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10036    // Check if the new class derives from the old class.
10037    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10038      Diag(New->getLocation(),
10039           diag::err_covariant_return_not_derived)
10040      << New->getDeclName() << NewTy << OldTy;
10041      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10042      return true;
10043    }
10044
10045    // Check if we the conversion from derived to base is valid.
10046    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10047                    diag::err_covariant_return_inaccessible_base,
10048                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10049                    // FIXME: Should this point to the return type?
10050                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10051      // FIXME: this note won't trigger for delayed access control
10052      // diagnostics, and it's impossible to get an undelayed error
10053      // here from access control during the original parse because
10054      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10055      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10056      return true;
10057    }
10058  }
10059
10060  // The qualifiers of the return types must be the same.
10061  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10062    Diag(New->getLocation(),
10063         diag::err_covariant_return_type_different_qualifications)
10064    << New->getDeclName() << NewTy << OldTy;
10065    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10066    return true;
10067  };
10068
10069
10070  // The new class type must have the same or less qualifiers as the old type.
10071  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10072    Diag(New->getLocation(),
10073         diag::err_covariant_return_type_class_type_more_qualified)
10074    << New->getDeclName() << NewTy << OldTy;
10075    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10076    return true;
10077  };
10078
10079  return false;
10080}
10081
10082/// \brief Mark the given method pure.
10083///
10084/// \param Method the method to be marked pure.
10085///
10086/// \param InitRange the source range that covers the "0" initializer.
10087bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10088  SourceLocation EndLoc = InitRange.getEnd();
10089  if (EndLoc.isValid())
10090    Method->setRangeEnd(EndLoc);
10091
10092  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10093    Method->setPure();
10094    return false;
10095  }
10096
10097  if (!Method->isInvalidDecl())
10098    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10099      << Method->getDeclName() << InitRange;
10100  return true;
10101}
10102
10103/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10104/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10105/// is a fresh scope pushed for just this purpose.
10106///
10107/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10108/// static data member of class X, names should be looked up in the scope of
10109/// class X.
10110void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10111  // If there is no declaration, there was an error parsing it.
10112  if (D == 0 || D->isInvalidDecl()) return;
10113
10114  // We should only get called for declarations with scope specifiers, like:
10115  //   int foo::bar;
10116  assert(D->isOutOfLine());
10117  EnterDeclaratorContext(S, D->getDeclContext());
10118}
10119
10120/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10121/// initializer for the out-of-line declaration 'D'.
10122void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10123  // If there is no declaration, there was an error parsing it.
10124  if (D == 0 || D->isInvalidDecl()) return;
10125
10126  assert(D->isOutOfLine());
10127  ExitDeclaratorContext(S);
10128}
10129
10130/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10131/// C++ if/switch/while/for statement.
10132/// e.g: "if (int x = f()) {...}"
10133DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10134  // C++ 6.4p2:
10135  // The declarator shall not specify a function or an array.
10136  // The type-specifier-seq shall not contain typedef and shall not declare a
10137  // new class or enumeration.
10138  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10139         "Parser allowed 'typedef' as storage class of condition decl.");
10140
10141  Decl *Dcl = ActOnDeclarator(S, D);
10142  if (!Dcl)
10143    return true;
10144
10145  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10146    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10147      << D.getSourceRange();
10148    return true;
10149  }
10150
10151  return Dcl;
10152}
10153
10154void Sema::LoadExternalVTableUses() {
10155  if (!ExternalSource)
10156    return;
10157
10158  SmallVector<ExternalVTableUse, 4> VTables;
10159  ExternalSource->ReadUsedVTables(VTables);
10160  SmallVector<VTableUse, 4> NewUses;
10161  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10162    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10163      = VTablesUsed.find(VTables[I].Record);
10164    // Even if a definition wasn't required before, it may be required now.
10165    if (Pos != VTablesUsed.end()) {
10166      if (!Pos->second && VTables[I].DefinitionRequired)
10167        Pos->second = true;
10168      continue;
10169    }
10170
10171    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10172    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10173  }
10174
10175  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10176}
10177
10178void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10179                          bool DefinitionRequired) {
10180  // Ignore any vtable uses in unevaluated operands or for classes that do
10181  // not have a vtable.
10182  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10183      CurContext->isDependentContext() ||
10184      ExprEvalContexts.back().Context == Unevaluated)
10185    return;
10186
10187  // Try to insert this class into the map.
10188  LoadExternalVTableUses();
10189  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10190  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10191    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10192  if (!Pos.second) {
10193    // If we already had an entry, check to see if we are promoting this vtable
10194    // to required a definition. If so, we need to reappend to the VTableUses
10195    // list, since we may have already processed the first entry.
10196    if (DefinitionRequired && !Pos.first->second) {
10197      Pos.first->second = true;
10198    } else {
10199      // Otherwise, we can early exit.
10200      return;
10201    }
10202  }
10203
10204  // Local classes need to have their virtual members marked
10205  // immediately. For all other classes, we mark their virtual members
10206  // at the end of the translation unit.
10207  if (Class->isLocalClass())
10208    MarkVirtualMembersReferenced(Loc, Class);
10209  else
10210    VTableUses.push_back(std::make_pair(Class, Loc));
10211}
10212
10213bool Sema::DefineUsedVTables() {
10214  LoadExternalVTableUses();
10215  if (VTableUses.empty())
10216    return false;
10217
10218  // Note: The VTableUses vector could grow as a result of marking
10219  // the members of a class as "used", so we check the size each
10220  // time through the loop and prefer indices (with are stable) to
10221  // iterators (which are not).
10222  bool DefinedAnything = false;
10223  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10224    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10225    if (!Class)
10226      continue;
10227
10228    SourceLocation Loc = VTableUses[I].second;
10229
10230    // If this class has a key function, but that key function is
10231    // defined in another translation unit, we don't need to emit the
10232    // vtable even though we're using it.
10233    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10234    if (KeyFunction && !KeyFunction->hasBody()) {
10235      switch (KeyFunction->getTemplateSpecializationKind()) {
10236      case TSK_Undeclared:
10237      case TSK_ExplicitSpecialization:
10238      case TSK_ExplicitInstantiationDeclaration:
10239        // The key function is in another translation unit.
10240        continue;
10241
10242      case TSK_ExplicitInstantiationDefinition:
10243      case TSK_ImplicitInstantiation:
10244        // We will be instantiating the key function.
10245        break;
10246      }
10247    } else if (!KeyFunction) {
10248      // If we have a class with no key function that is the subject
10249      // of an explicit instantiation declaration, suppress the
10250      // vtable; it will live with the explicit instantiation
10251      // definition.
10252      bool IsExplicitInstantiationDeclaration
10253        = Class->getTemplateSpecializationKind()
10254                                      == TSK_ExplicitInstantiationDeclaration;
10255      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10256                                 REnd = Class->redecls_end();
10257           R != REnd; ++R) {
10258        TemplateSpecializationKind TSK
10259          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10260        if (TSK == TSK_ExplicitInstantiationDeclaration)
10261          IsExplicitInstantiationDeclaration = true;
10262        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10263          IsExplicitInstantiationDeclaration = false;
10264          break;
10265        }
10266      }
10267
10268      if (IsExplicitInstantiationDeclaration)
10269        continue;
10270    }
10271
10272    // Mark all of the virtual members of this class as referenced, so
10273    // that we can build a vtable. Then, tell the AST consumer that a
10274    // vtable for this class is required.
10275    DefinedAnything = true;
10276    MarkVirtualMembersReferenced(Loc, Class);
10277    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10278    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10279
10280    // Optionally warn if we're emitting a weak vtable.
10281    if (Class->getLinkage() == ExternalLinkage &&
10282        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10283      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
10284        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10285    }
10286  }
10287  VTableUses.clear();
10288
10289  return DefinedAnything;
10290}
10291
10292void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10293                                        const CXXRecordDecl *RD) {
10294  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10295       e = RD->method_end(); i != e; ++i) {
10296    CXXMethodDecl *MD = *i;
10297
10298    // C++ [basic.def.odr]p2:
10299    //   [...] A virtual member function is used if it is not pure. [...]
10300    if (MD->isVirtual() && !MD->isPure())
10301      MarkDeclarationReferenced(Loc, MD);
10302  }
10303
10304  // Only classes that have virtual bases need a VTT.
10305  if (RD->getNumVBases() == 0)
10306    return;
10307
10308  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10309           e = RD->bases_end(); i != e; ++i) {
10310    const CXXRecordDecl *Base =
10311        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10312    if (Base->getNumVBases() == 0)
10313      continue;
10314    MarkVirtualMembersReferenced(Loc, Base);
10315  }
10316}
10317
10318/// SetIvarInitializers - This routine builds initialization ASTs for the
10319/// Objective-C implementation whose ivars need be initialized.
10320void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10321  if (!getLangOptions().CPlusPlus)
10322    return;
10323  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10324    SmallVector<ObjCIvarDecl*, 8> ivars;
10325    CollectIvarsToConstructOrDestruct(OID, ivars);
10326    if (ivars.empty())
10327      return;
10328    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10329    for (unsigned i = 0; i < ivars.size(); i++) {
10330      FieldDecl *Field = ivars[i];
10331      if (Field->isInvalidDecl())
10332        continue;
10333
10334      CXXCtorInitializer *Member;
10335      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10336      InitializationKind InitKind =
10337        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10338
10339      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10340      ExprResult MemberInit =
10341        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10342      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10343      // Note, MemberInit could actually come back empty if no initialization
10344      // is required (e.g., because it would call a trivial default constructor)
10345      if (!MemberInit.get() || MemberInit.isInvalid())
10346        continue;
10347
10348      Member =
10349        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10350                                         SourceLocation(),
10351                                         MemberInit.takeAs<Expr>(),
10352                                         SourceLocation());
10353      AllToInit.push_back(Member);
10354
10355      // Be sure that the destructor is accessible and is marked as referenced.
10356      if (const RecordType *RecordTy
10357                  = Context.getBaseElementType(Field->getType())
10358                                                        ->getAs<RecordType>()) {
10359                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10360        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10361          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10362          CheckDestructorAccess(Field->getLocation(), Destructor,
10363                            PDiag(diag::err_access_dtor_ivar)
10364                              << Context.getBaseElementType(Field->getType()));
10365        }
10366      }
10367    }
10368    ObjCImplementation->setIvarInitializers(Context,
10369                                            AllToInit.data(), AllToInit.size());
10370  }
10371}
10372
10373static
10374void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10375                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10376                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10377                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10378                           Sema &S) {
10379  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10380                                                   CE = Current.end();
10381  if (Ctor->isInvalidDecl())
10382    return;
10383
10384  const FunctionDecl *FNTarget = 0;
10385  CXXConstructorDecl *Target;
10386
10387  // We ignore the result here since if we don't have a body, Target will be
10388  // null below.
10389  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10390  Target
10391= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10392
10393  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10394                     // Avoid dereferencing a null pointer here.
10395                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10396
10397  if (!Current.insert(Canonical))
10398    return;
10399
10400  // We know that beyond here, we aren't chaining into a cycle.
10401  if (!Target || !Target->isDelegatingConstructor() ||
10402      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10403    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10404      Valid.insert(*CI);
10405    Current.clear();
10406  // We've hit a cycle.
10407  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10408             Current.count(TCanonical)) {
10409    // If we haven't diagnosed this cycle yet, do so now.
10410    if (!Invalid.count(TCanonical)) {
10411      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10412             diag::warn_delegating_ctor_cycle)
10413        << Ctor;
10414
10415      // Don't add a note for a function delegating directo to itself.
10416      if (TCanonical != Canonical)
10417        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10418
10419      CXXConstructorDecl *C = Target;
10420      while (C->getCanonicalDecl() != Canonical) {
10421        (void)C->getTargetConstructor()->hasBody(FNTarget);
10422        assert(FNTarget && "Ctor cycle through bodiless function");
10423
10424        C
10425       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10426        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10427      }
10428    }
10429
10430    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10431      Invalid.insert(*CI);
10432    Current.clear();
10433  } else {
10434    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10435  }
10436}
10437
10438
10439void Sema::CheckDelegatingCtorCycles() {
10440  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10441
10442  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10443                                                   CE = Current.end();
10444
10445  for (DelegatingCtorDeclsType::iterator
10446         I = DelegatingCtorDecls.begin(ExternalSource),
10447         E = DelegatingCtorDecls.end();
10448       I != E; ++I) {
10449   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10450  }
10451
10452  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10453    (*CI)->setInvalidDecl();
10454}
10455