SemaDeclCXX.cpp revision 769b4dd31d3f1b911a1a7442eae93c670af6efeb
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
126  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
127                                                           EqualLoc);
128  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
129  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
130                                            MultiExprArg(*this, &Arg, 1));
131  if (Result.isInvalid())
132    return true;
133  Arg = Result.takeAs<Expr>();
134
135  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
136
137  // Okay: add the default argument to the parameter
138  Param->setDefaultArg(Arg);
139
140  return false;
141}
142
143/// ActOnParamDefaultArgument - Check whether the default argument
144/// provided for a function parameter is well-formed. If so, attach it
145/// to the parameter declaration.
146void
147Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
148                                Expr *DefaultArg) {
149  if (!param || !DefaultArg)
150    return;
151
152  ParmVarDecl *Param = cast<ParmVarDecl>(param);
153  UnparsedDefaultArgLocs.erase(Param);
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
165  if (DefaultArgChecker.Visit(DefaultArg)) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param);
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(Decl *param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param);
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
269      // hint here. Alternatively, we could walk the type-source information
270      // for NewParam to find the last source location in the type... but it
271      // isn't worth the effort right now. This is the kind of test case that
272      // is hard to get right:
273
274      //   int f(int);
275      //   void g(int (*fp)(int) = f);
276      //   void g(int (*fp)(int) = &f);
277      Diag(NewParam->getLocation(),
278           diag::err_param_default_argument_redefinition)
279        << NewParam->getDefaultArgRange();
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter.
296      // It's important to use getInit() here;  getDefaultArg()
297      // strips off any top-level CXXExprWithTemporaries.
298      NewParam->setHasInheritedDefaultArg();
299      if (OldParam->hasUninstantiatedDefaultArg())
300        NewParam->setUninstantiatedDefaultArg(
301                                      OldParam->getUninstantiatedDefaultArg());
302      else
303        NewParam->setDefaultArg(OldParam->getInit());
304    } else if (NewParam->hasDefaultArg()) {
305      if (New->getDescribedFunctionTemplate()) {
306        // Paragraph 4, quoted above, only applies to non-template functions.
307        Diag(NewParam->getLocation(),
308             diag::err_param_default_argument_template_redecl)
309          << NewParam->getDefaultArgRange();
310        Diag(Old->getLocation(), diag::note_template_prev_declaration)
311          << false;
312      } else if (New->getTemplateSpecializationKind()
313                   != TSK_ImplicitInstantiation &&
314                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
315        // C++ [temp.expr.spec]p21:
316        //   Default function arguments shall not be specified in a declaration
317        //   or a definition for one of the following explicit specializations:
318        //     - the explicit specialization of a function template;
319        //     - the explicit specialization of a member function template;
320        //     - the explicit specialization of a member function of a class
321        //       template where the class template specialization to which the
322        //       member function specialization belongs is implicitly
323        //       instantiated.
324        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
325          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
326          << New->getDeclName()
327          << NewParam->getDefaultArgRange();
328      } else if (New->getDeclContext()->isDependentContext()) {
329        // C++ [dcl.fct.default]p6 (DR217):
330        //   Default arguments for a member function of a class template shall
331        //   be specified on the initial declaration of the member function
332        //   within the class template.
333        //
334        // Reading the tea leaves a bit in DR217 and its reference to DR205
335        // leads me to the conclusion that one cannot add default function
336        // arguments for an out-of-line definition of a member function of a
337        // dependent type.
338        int WhichKind = 2;
339        if (CXXRecordDecl *Record
340              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
341          if (Record->getDescribedClassTemplate())
342            WhichKind = 0;
343          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
344            WhichKind = 1;
345          else
346            WhichKind = 2;
347        }
348
349        Diag(NewParam->getLocation(),
350             diag::err_param_default_argument_member_template_redecl)
351          << WhichKind
352          << NewParam->getDefaultArgRange();
353      }
354    }
355  }
356
357  if (CheckEquivalentExceptionSpec(Old, New))
358    Invalid = true;
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        Param->setDefaultArg(0);
410      }
411    }
412  }
413}
414
415/// isCurrentClassName - Determine whether the identifier II is the
416/// name of the class type currently being defined. In the case of
417/// nested classes, this will only return true if II is the name of
418/// the innermost class.
419bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
420                              const CXXScopeSpec *SS) {
421  assert(getLangOptions().CPlusPlus && "No class names in C!");
422
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl && CurDecl->getIdentifier())
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         TypeSourceInfo *TInfo) {
445  QualType BaseType = TInfo->getType();
446
447  // C++ [class.union]p1:
448  //   A union shall not have base classes.
449  if (Class->isUnion()) {
450    Diag(Class->getLocation(), diag::err_base_clause_on_union)
451      << SpecifierRange;
452    return 0;
453  }
454
455  if (BaseType->isDependentType())
456    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
457                                          Class->getTagKind() == TTK_Class,
458                                          Access, TInfo);
459
460  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
461
462  // Base specifiers must be record types.
463  if (!BaseType->isRecordType()) {
464    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
465    return 0;
466  }
467
468  // C++ [class.union]p1:
469  //   A union shall not be used as a base class.
470  if (BaseType->isUnionType()) {
471    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
472    return 0;
473  }
474
475  // C++ [class.derived]p2:
476  //   The class-name in a base-specifier shall not be an incompletely
477  //   defined class.
478  if (RequireCompleteType(BaseLoc, BaseType,
479                          PDiag(diag::err_incomplete_base_class)
480                            << SpecifierRange)) {
481    Class->setInvalidDecl();
482    return 0;
483  }
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  if (BaseDecl->isInvalidDecl())
504    Class->setInvalidDecl();
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                                        Class->getTagKind() == TTK_Class,
509                                        Access, TInfo);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
593  if (!Class)
594    return true;
595
596  TypeSourceInfo *TInfo = 0;
597  GetTypeFromParser(basetype, &TInfo);
598  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
599                                                      Virtual, Access, TInfo))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXCastPath &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
747  for (CXXCastPath::const_iterator B = BasePath.begin(),
748                                BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXCastPath *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXCastPath *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
876                                 SourceLocation ASLoc,
877                                 SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return ASDecl;
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Decl *
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
896  DeclarationName Name = NameInfo.getName();
897  SourceLocation Loc = NameInfo.getLoc();
898  Expr *BitWidth = static_cast<Expr*>(BW);
899  Expr *Init = static_cast<Expr*>(InitExpr);
900
901  assert(isa<CXXRecordDecl>(CurContext));
902  assert(!DS.isFriendSpecified());
903
904  bool isFunc = false;
905  if (D.isFunctionDeclarator())
906    isFunc = true;
907  else if (D.getNumTypeObjects() == 0 &&
908           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
909    QualType TDType = GetTypeFromParser(DS.getTypeRep());
910    isFunc = TDType->isFunctionType();
911  }
912
913  // C++ 9.2p6: A member shall not be declared to have automatic storage
914  // duration (auto, register) or with the extern storage-class-specifier.
915  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
916  // data members and cannot be applied to names declared const or static,
917  // and cannot be applied to reference members.
918  switch (DS.getStorageClassSpec()) {
919    case DeclSpec::SCS_unspecified:
920    case DeclSpec::SCS_typedef:
921    case DeclSpec::SCS_static:
922      // FALL THROUGH.
923      break;
924    case DeclSpec::SCS_mutable:
925      if (isFunc) {
926        if (DS.getStorageClassSpecLoc().isValid())
927          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
928        else
929          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
930
931        // FIXME: It would be nicer if the keyword was ignored only for this
932        // declarator. Otherwise we could get follow-up errors.
933        D.getMutableDeclSpec().ClearStorageClassSpecs();
934      }
935      break;
936    default:
937      if (DS.getStorageClassSpecLoc().isValid())
938        Diag(DS.getStorageClassSpecLoc(),
939             diag::err_storageclass_invalid_for_member);
940      else
941        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
942      D.getMutableDeclSpec().ClearStorageClassSpecs();
943  }
944
945  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
946                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
947                      !isFunc);
948
949  Decl *Member;
950  if (isInstField) {
951    // FIXME: Check for template parameters!
952    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
953                         AS);
954    assert(Member && "HandleField never returns null");
955  } else {
956    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return 0;
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(Member, Init, false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return 0;
1006  }
1007  return Member;
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(Decl *ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  if (Member->getType()->isDependentType() || HasDependentArg) {
1289    // Can't check initialization for a member of dependent type or when
1290    // any of the arguments are type-dependent expressions.
1291    Expr *Init
1292      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1293                                    RParenLoc);
1294
1295    // Erase any temporaries within this evaluation context; we're not
1296    // going to track them in the AST, since we'll be rebuilding the
1297    // ASTs during template instantiation.
1298    ExprTemporaries.erase(
1299              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1300                          ExprTemporaries.end());
1301
1302    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1303                                                    LParenLoc,
1304                                                    Init,
1305                                                    RParenLoc);
1306
1307  }
1308
1309  if (Member->isInvalidDecl())
1310    return true;
1311
1312  // Initialize the member.
1313  InitializedEntity MemberEntity =
1314    InitializedEntity::InitializeMember(Member, 0);
1315  InitializationKind Kind =
1316    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1317
1318  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1319
1320  OwningExprResult MemberInit =
1321    InitSeq.Perform(*this, MemberEntity, Kind,
1322                    MultiExprArg(*this, Args, NumArgs), 0);
1323  if (MemberInit.isInvalid())
1324    return true;
1325
1326  // C++0x [class.base.init]p7:
1327  //   The initialization of each base and member constitutes a
1328  //   full-expression.
1329  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // If we are in a dependent context, template instantiation will
1334  // perform this type-checking again. Just save the arguments that we
1335  // received in a ParenListExpr.
1336  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1337  // of the information that we have about the member
1338  // initializer. However, deconstructing the ASTs is a dicey process,
1339  // and this approach is far more likely to get the corner cases right.
1340  if (CurContext->isDependentContext()) {
1341    // Bump the reference count of all of the arguments.
1342    for (unsigned I = 0; I != NumArgs; ++I)
1343      Args[I]->Retain();
1344
1345    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1346                                             RParenLoc);
1347    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1348                                                    LParenLoc,
1349                                                    Init,
1350                                                    RParenLoc);
1351  }
1352
1353  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1354                                                  LParenLoc,
1355                                                  MemberInit.get(),
1356                                                  RParenLoc);
1357}
1358
1359Sema::MemInitResult
1360Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1361                           Expr **Args, unsigned NumArgs,
1362                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1363                           CXXRecordDecl *ClassDecl) {
1364  bool HasDependentArg = false;
1365  for (unsigned i = 0; i < NumArgs; i++)
1366    HasDependentArg |= Args[i]->isTypeDependent();
1367
1368  SourceLocation BaseLoc
1369    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1370
1371  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1372    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1373             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1374
1375  // C++ [class.base.init]p2:
1376  //   [...] Unless the mem-initializer-id names a nonstatic data
1377  //   member of the constructor’s class or a direct or virtual base
1378  //   of that class, the mem-initializer is ill-formed. A
1379  //   mem-initializer-list can initialize a base class using any
1380  //   name that denotes that base class type.
1381  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1382
1383  // Check for direct and virtual base classes.
1384  const CXXBaseSpecifier *DirectBaseSpec = 0;
1385  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1386  if (!Dependent) {
1387    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1388                        VirtualBaseSpec);
1389
1390    // C++ [base.class.init]p2:
1391    // Unless the mem-initializer-id names a nonstatic data member of the
1392    // constructor's class or a direct or virtual base of that class, the
1393    // mem-initializer is ill-formed.
1394    if (!DirectBaseSpec && !VirtualBaseSpec) {
1395      // If the class has any dependent bases, then it's possible that
1396      // one of those types will resolve to the same type as
1397      // BaseType. Therefore, just treat this as a dependent base
1398      // class initialization.  FIXME: Should we try to check the
1399      // initialization anyway? It seems odd.
1400      if (ClassDecl->hasAnyDependentBases())
1401        Dependent = true;
1402      else
1403        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1404          << BaseType << Context.getTypeDeclType(ClassDecl)
1405          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1406    }
1407  }
1408
1409  if (Dependent) {
1410    // Can't check initialization for a base of dependent type or when
1411    // any of the arguments are type-dependent expressions.
1412    OwningExprResult BaseInit
1413      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1414                                          RParenLoc));
1415
1416    // Erase any temporaries within this evaluation context; we're not
1417    // going to track them in the AST, since we'll be rebuilding the
1418    // ASTs during template instantiation.
1419    ExprTemporaries.erase(
1420              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1421                          ExprTemporaries.end());
1422
1423    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1424                                                    /*IsVirtual=*/false,
1425                                                    LParenLoc,
1426                                                    BaseInit.takeAs<Expr>(),
1427                                                    RParenLoc);
1428  }
1429
1430  // C++ [base.class.init]p2:
1431  //   If a mem-initializer-id is ambiguous because it designates both
1432  //   a direct non-virtual base class and an inherited virtual base
1433  //   class, the mem-initializer is ill-formed.
1434  if (DirectBaseSpec && VirtualBaseSpec)
1435    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1436      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1437
1438  CXXBaseSpecifier *BaseSpec
1439    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1440  if (!BaseSpec)
1441    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1442
1443  // Initialize the base.
1444  InitializedEntity BaseEntity =
1445    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1446  InitializationKind Kind =
1447    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1448
1449  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1450
1451  OwningExprResult BaseInit =
1452    InitSeq.Perform(*this, BaseEntity, Kind,
1453                    MultiExprArg(*this, Args, NumArgs), 0);
1454  if (BaseInit.isInvalid())
1455    return true;
1456
1457  // C++0x [class.base.init]p7:
1458  //   The initialization of each base and member constitutes a
1459  //   full-expression.
1460  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1461  if (BaseInit.isInvalid())
1462    return true;
1463
1464  // If we are in a dependent context, template instantiation will
1465  // perform this type-checking again. Just save the arguments that we
1466  // received in a ParenListExpr.
1467  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1468  // of the information that we have about the base
1469  // initializer. However, deconstructing the ASTs is a dicey process,
1470  // and this approach is far more likely to get the corner cases right.
1471  if (CurContext->isDependentContext()) {
1472    // Bump the reference count of all of the arguments.
1473    for (unsigned I = 0; I != NumArgs; ++I)
1474      Args[I]->Retain();
1475
1476    OwningExprResult Init
1477      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1478                                          RParenLoc));
1479    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1480                                                    BaseSpec->isVirtual(),
1481                                                    LParenLoc,
1482                                                    Init.takeAs<Expr>(),
1483                                                    RParenLoc);
1484  }
1485
1486  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1487                                                  BaseSpec->isVirtual(),
1488                                                  LParenLoc,
1489                                                  BaseInit.takeAs<Expr>(),
1490                                                  RParenLoc);
1491}
1492
1493/// ImplicitInitializerKind - How an implicit base or member initializer should
1494/// initialize its base or member.
1495enum ImplicitInitializerKind {
1496  IIK_Default,
1497  IIK_Copy,
1498  IIK_Move
1499};
1500
1501static bool
1502BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1503                             ImplicitInitializerKind ImplicitInitKind,
1504                             CXXBaseSpecifier *BaseSpec,
1505                             bool IsInheritedVirtualBase,
1506                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1507  InitializedEntity InitEntity
1508    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1509                                        IsInheritedVirtualBase);
1510
1511  Sema::OwningExprResult BaseInit;
1512
1513  switch (ImplicitInitKind) {
1514  case IIK_Default: {
1515    InitializationKind InitKind
1516      = InitializationKind::CreateDefault(Constructor->getLocation());
1517    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1518    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1519                               Sema::MultiExprArg(SemaRef, 0, 0));
1520    break;
1521  }
1522
1523  case IIK_Copy: {
1524    ParmVarDecl *Param = Constructor->getParamDecl(0);
1525    QualType ParamType = Param->getType().getNonReferenceType();
1526
1527    Expr *CopyCtorArg =
1528      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1529                          Constructor->getLocation(), ParamType, 0);
1530
1531    // Cast to the base class to avoid ambiguities.
1532    QualType ArgTy =
1533      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1534                                       ParamType.getQualifiers());
1535
1536    CXXCastPath BasePath;
1537    BasePath.push_back(BaseSpec);
1538    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1539                              CastExpr::CK_UncheckedDerivedToBase,
1540                              ImplicitCastExpr::LValue, &BasePath);
1541
1542    InitializationKind InitKind
1543      = InitializationKind::CreateDirect(Constructor->getLocation(),
1544                                         SourceLocation(), SourceLocation());
1545    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1546                                   &CopyCtorArg, 1);
1547    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1548                               Sema::MultiExprArg(SemaRef,
1549                                                  &CopyCtorArg, 1));
1550    break;
1551  }
1552
1553  case IIK_Move:
1554    assert(false && "Unhandled initializer kind!");
1555  }
1556
1557  if (BaseInit.isInvalid())
1558    return true;
1559
1560  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1561  if (BaseInit.isInvalid())
1562    return true;
1563
1564  CXXBaseInit =
1565    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1566               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1567                                                        SourceLocation()),
1568                                             BaseSpec->isVirtual(),
1569                                             SourceLocation(),
1570                                             BaseInit.takeAs<Expr>(),
1571                                             SourceLocation());
1572
1573  return false;
1574}
1575
1576static bool
1577BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1578                               ImplicitInitializerKind ImplicitInitKind,
1579                               FieldDecl *Field,
1580                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1581  if (Field->isInvalidDecl())
1582    return true;
1583
1584  SourceLocation Loc = Constructor->getLocation();
1585
1586  if (ImplicitInitKind == IIK_Copy) {
1587    ParmVarDecl *Param = Constructor->getParamDecl(0);
1588    QualType ParamType = Param->getType().getNonReferenceType();
1589
1590    Expr *MemberExprBase =
1591      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1592                          Loc, ParamType, 0);
1593
1594    // Build a reference to this field within the parameter.
1595    CXXScopeSpec SS;
1596    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1597                              Sema::LookupMemberName);
1598    MemberLookup.addDecl(Field, AS_public);
1599    MemberLookup.resolveKind();
1600    Sema::OwningExprResult CopyCtorArg
1601      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1602                                         ParamType, Loc,
1603                                         /*IsArrow=*/false,
1604                                         SS,
1605                                         /*FirstQualifierInScope=*/0,
1606                                         MemberLookup,
1607                                         /*TemplateArgs=*/0);
1608    if (CopyCtorArg.isInvalid())
1609      return true;
1610
1611    // When the field we are copying is an array, create index variables for
1612    // each dimension of the array. We use these index variables to subscript
1613    // the source array, and other clients (e.g., CodeGen) will perform the
1614    // necessary iteration with these index variables.
1615    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1616    QualType BaseType = Field->getType();
1617    QualType SizeType = SemaRef.Context.getSizeType();
1618    while (const ConstantArrayType *Array
1619                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1620      // Create the iteration variable for this array index.
1621      IdentifierInfo *IterationVarName = 0;
1622      {
1623        llvm::SmallString<8> Str;
1624        llvm::raw_svector_ostream OS(Str);
1625        OS << "__i" << IndexVariables.size();
1626        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1627      }
1628      VarDecl *IterationVar
1629        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1630                          IterationVarName, SizeType,
1631                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1632                          VarDecl::None, VarDecl::None);
1633      IndexVariables.push_back(IterationVar);
1634
1635      // Create a reference to the iteration variable.
1636      Sema::OwningExprResult IterationVarRef
1637        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1638      assert(!IterationVarRef.isInvalid() &&
1639             "Reference to invented variable cannot fail!");
1640
1641      // Subscript the array with this iteration variable.
1642      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1643                                                            Loc,
1644                                                        IterationVarRef.take(),
1645                                                            Loc);
1646      if (CopyCtorArg.isInvalid())
1647        return true;
1648
1649      BaseType = Array->getElementType();
1650    }
1651
1652    // Construct the entity that we will be initializing. For an array, this
1653    // will be first element in the array, which may require several levels
1654    // of array-subscript entities.
1655    llvm::SmallVector<InitializedEntity, 4> Entities;
1656    Entities.reserve(1 + IndexVariables.size());
1657    Entities.push_back(InitializedEntity::InitializeMember(Field));
1658    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1659      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1660                                                              0,
1661                                                              Entities.back()));
1662
1663    // Direct-initialize to use the copy constructor.
1664    InitializationKind InitKind =
1665      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1666
1667    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1668    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1669                                   &CopyCtorArgE, 1);
1670
1671    Sema::OwningExprResult MemberInit
1672      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1673                        Sema::MultiExprArg(SemaRef, &CopyCtorArgE, 1));
1674    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1675    if (MemberInit.isInvalid())
1676      return true;
1677
1678    CXXMemberInit
1679      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1680                                           MemberInit.takeAs<Expr>(), Loc,
1681                                           IndexVariables.data(),
1682                                           IndexVariables.size());
1683    return false;
1684  }
1685
1686  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1687
1688  QualType FieldBaseElementType =
1689    SemaRef.Context.getBaseElementType(Field->getType());
1690
1691  if (FieldBaseElementType->isRecordType()) {
1692    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1693    InitializationKind InitKind =
1694      InitializationKind::CreateDefault(Loc);
1695
1696    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1697    Sema::OwningExprResult MemberInit =
1698      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1699                      Sema::MultiExprArg(SemaRef, 0, 0));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1704    if (MemberInit.isInvalid())
1705      return true;
1706
1707    CXXMemberInit =
1708      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1709                                                       Field, Loc, Loc,
1710                                                       MemberInit.get(),
1711                                                       Loc);
1712    return false;
1713  }
1714
1715  if (FieldBaseElementType->isReferenceType()) {
1716    SemaRef.Diag(Constructor->getLocation(),
1717                 diag::err_uninitialized_member_in_ctor)
1718    << (int)Constructor->isImplicit()
1719    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1720    << 0 << Field->getDeclName();
1721    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1722    return true;
1723  }
1724
1725  if (FieldBaseElementType.isConstQualified()) {
1726    SemaRef.Diag(Constructor->getLocation(),
1727                 diag::err_uninitialized_member_in_ctor)
1728    << (int)Constructor->isImplicit()
1729    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1730    << 1 << Field->getDeclName();
1731    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1732    return true;
1733  }
1734
1735  // Nothing to initialize.
1736  CXXMemberInit = 0;
1737  return false;
1738}
1739
1740namespace {
1741struct BaseAndFieldInfo {
1742  Sema &S;
1743  CXXConstructorDecl *Ctor;
1744  bool AnyErrorsInInits;
1745  ImplicitInitializerKind IIK;
1746  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1747  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1748
1749  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1750    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1751    // FIXME: Handle implicit move constructors.
1752    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1753      IIK = IIK_Copy;
1754    else
1755      IIK = IIK_Default;
1756  }
1757};
1758}
1759
1760static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1761                                   FieldDecl *Top, FieldDecl *Field,
1762                                   CXXBaseOrMemberInitializer *Init) {
1763  // If the member doesn't need to be initialized, Init will still be null.
1764  if (!Init)
1765    return;
1766
1767  Info.AllToInit.push_back(Init);
1768  if (Field != Top) {
1769    Init->setMember(Top);
1770    Init->setAnonUnionMember(Field);
1771  }
1772}
1773
1774static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1775                                    FieldDecl *Top, FieldDecl *Field) {
1776
1777  // Overwhelmingly common case: we have a direct initializer for this field.
1778  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1779    RecordFieldInitializer(Info, Top, Field, Init);
1780    return false;
1781  }
1782
1783  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1784    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1785    assert(FieldClassType && "anonymous struct/union without record type");
1786    CXXRecordDecl *FieldClassDecl
1787      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1788
1789    // Even though union members never have non-trivial default
1790    // constructions in C++03, we still build member initializers for aggregate
1791    // record types which can be union members, and C++0x allows non-trivial
1792    // default constructors for union members, so we ensure that only one
1793    // member is initialized for these.
1794    if (FieldClassDecl->isUnion()) {
1795      // First check for an explicit initializer for one field.
1796      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1797           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1798        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1799          RecordFieldInitializer(Info, Top, *FA, Init);
1800
1801          // Once we've initialized a field of an anonymous union, the union
1802          // field in the class is also initialized, so exit immediately.
1803          return false;
1804        } else if ((*FA)->isAnonymousStructOrUnion()) {
1805          if (CollectFieldInitializer(Info, Top, *FA))
1806            return true;
1807        }
1808      }
1809
1810      // Fallthrough and construct a default initializer for the union as
1811      // a whole, which can call its default constructor if such a thing exists
1812      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1813      // behavior going forward with C++0x, when anonymous unions there are
1814      // finalized, we should revisit this.
1815    } else {
1816      // For structs, we simply descend through to initialize all members where
1817      // necessary.
1818      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1819           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1820        if (CollectFieldInitializer(Info, Top, *FA))
1821          return true;
1822      }
1823    }
1824  }
1825
1826  // Don't try to build an implicit initializer if there were semantic
1827  // errors in any of the initializers (and therefore we might be
1828  // missing some that the user actually wrote).
1829  if (Info.AnyErrorsInInits)
1830    return false;
1831
1832  CXXBaseOrMemberInitializer *Init = 0;
1833  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1834    return true;
1835
1836  RecordFieldInitializer(Info, Top, Field, Init);
1837  return false;
1838}
1839
1840bool
1841Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1842                                  CXXBaseOrMemberInitializer **Initializers,
1843                                  unsigned NumInitializers,
1844                                  bool AnyErrors) {
1845  if (Constructor->getDeclContext()->isDependentContext()) {
1846    // Just store the initializers as written, they will be checked during
1847    // instantiation.
1848    if (NumInitializers > 0) {
1849      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1850      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1851        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1852      memcpy(baseOrMemberInitializers, Initializers,
1853             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1854      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1855    }
1856
1857    return false;
1858  }
1859
1860  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1861
1862  // We need to build the initializer AST according to order of construction
1863  // and not what user specified in the Initializers list.
1864  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1865  if (!ClassDecl)
1866    return true;
1867
1868  bool HadError = false;
1869
1870  for (unsigned i = 0; i < NumInitializers; i++) {
1871    CXXBaseOrMemberInitializer *Member = Initializers[i];
1872
1873    if (Member->isBaseInitializer())
1874      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1875    else
1876      Info.AllBaseFields[Member->getMember()] = Member;
1877  }
1878
1879  // Keep track of the direct virtual bases.
1880  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1881  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1882       E = ClassDecl->bases_end(); I != E; ++I) {
1883    if (I->isVirtual())
1884      DirectVBases.insert(I);
1885  }
1886
1887  // Push virtual bases before others.
1888  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1889       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1890
1891    if (CXXBaseOrMemberInitializer *Value
1892        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1893      Info.AllToInit.push_back(Value);
1894    } else if (!AnyErrors) {
1895      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1896      CXXBaseOrMemberInitializer *CXXBaseInit;
1897      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1898                                       VBase, IsInheritedVirtualBase,
1899                                       CXXBaseInit)) {
1900        HadError = true;
1901        continue;
1902      }
1903
1904      Info.AllToInit.push_back(CXXBaseInit);
1905    }
1906  }
1907
1908  // Non-virtual bases.
1909  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1910       E = ClassDecl->bases_end(); Base != E; ++Base) {
1911    // Virtuals are in the virtual base list and already constructed.
1912    if (Base->isVirtual())
1913      continue;
1914
1915    if (CXXBaseOrMemberInitializer *Value
1916          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1917      Info.AllToInit.push_back(Value);
1918    } else if (!AnyErrors) {
1919      CXXBaseOrMemberInitializer *CXXBaseInit;
1920      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1921                                       Base, /*IsInheritedVirtualBase=*/false,
1922                                       CXXBaseInit)) {
1923        HadError = true;
1924        continue;
1925      }
1926
1927      Info.AllToInit.push_back(CXXBaseInit);
1928    }
1929  }
1930
1931  // Fields.
1932  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1933       E = ClassDecl->field_end(); Field != E; ++Field) {
1934    if ((*Field)->getType()->isIncompleteArrayType()) {
1935      assert(ClassDecl->hasFlexibleArrayMember() &&
1936             "Incomplete array type is not valid");
1937      continue;
1938    }
1939    if (CollectFieldInitializer(Info, *Field, *Field))
1940      HadError = true;
1941  }
1942
1943  NumInitializers = Info.AllToInit.size();
1944  if (NumInitializers > 0) {
1945    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1946    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1947      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1948    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1949           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1950    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1951
1952    // Constructors implicitly reference the base and member
1953    // destructors.
1954    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1955                                           Constructor->getParent());
1956  }
1957
1958  return HadError;
1959}
1960
1961static void *GetKeyForTopLevelField(FieldDecl *Field) {
1962  // For anonymous unions, use the class declaration as the key.
1963  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1964    if (RT->getDecl()->isAnonymousStructOrUnion())
1965      return static_cast<void *>(RT->getDecl());
1966  }
1967  return static_cast<void *>(Field);
1968}
1969
1970static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1971  return Context.getCanonicalType(BaseType).getTypePtr();
1972}
1973
1974static void *GetKeyForMember(ASTContext &Context,
1975                             CXXBaseOrMemberInitializer *Member,
1976                             bool MemberMaybeAnon = false) {
1977  if (!Member->isMemberInitializer())
1978    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1979
1980  // For fields injected into the class via declaration of an anonymous union,
1981  // use its anonymous union class declaration as the unique key.
1982  FieldDecl *Field = Member->getMember();
1983
1984  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1985  // data member of the class. Data member used in the initializer list is
1986  // in AnonUnionMember field.
1987  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1988    Field = Member->getAnonUnionMember();
1989
1990  // If the field is a member of an anonymous struct or union, our key
1991  // is the anonymous record decl that's a direct child of the class.
1992  RecordDecl *RD = Field->getParent();
1993  if (RD->isAnonymousStructOrUnion()) {
1994    while (true) {
1995      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1996      if (Parent->isAnonymousStructOrUnion())
1997        RD = Parent;
1998      else
1999        break;
2000    }
2001
2002    return static_cast<void *>(RD);
2003  }
2004
2005  return static_cast<void *>(Field);
2006}
2007
2008static void
2009DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2010                                  const CXXConstructorDecl *Constructor,
2011                                  CXXBaseOrMemberInitializer **Inits,
2012                                  unsigned NumInits) {
2013  if (Constructor->getDeclContext()->isDependentContext())
2014    return;
2015
2016  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2017        == Diagnostic::Ignored)
2018    return;
2019
2020  // Build the list of bases and members in the order that they'll
2021  // actually be initialized.  The explicit initializers should be in
2022  // this same order but may be missing things.
2023  llvm::SmallVector<const void*, 32> IdealInitKeys;
2024
2025  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2026
2027  // 1. Virtual bases.
2028  for (CXXRecordDecl::base_class_const_iterator VBase =
2029       ClassDecl->vbases_begin(),
2030       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2031    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2032
2033  // 2. Non-virtual bases.
2034  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2035       E = ClassDecl->bases_end(); Base != E; ++Base) {
2036    if (Base->isVirtual())
2037      continue;
2038    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2039  }
2040
2041  // 3. Direct fields.
2042  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2043       E = ClassDecl->field_end(); Field != E; ++Field)
2044    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2045
2046  unsigned NumIdealInits = IdealInitKeys.size();
2047  unsigned IdealIndex = 0;
2048
2049  CXXBaseOrMemberInitializer *PrevInit = 0;
2050  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2051    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2052    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2053
2054    // Scan forward to try to find this initializer in the idealized
2055    // initializers list.
2056    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2057      if (InitKey == IdealInitKeys[IdealIndex])
2058        break;
2059
2060    // If we didn't find this initializer, it must be because we
2061    // scanned past it on a previous iteration.  That can only
2062    // happen if we're out of order;  emit a warning.
2063    if (IdealIndex == NumIdealInits && PrevInit) {
2064      Sema::SemaDiagnosticBuilder D =
2065        SemaRef.Diag(PrevInit->getSourceLocation(),
2066                     diag::warn_initializer_out_of_order);
2067
2068      if (PrevInit->isMemberInitializer())
2069        D << 0 << PrevInit->getMember()->getDeclName();
2070      else
2071        D << 1 << PrevInit->getBaseClassInfo()->getType();
2072
2073      if (Init->isMemberInitializer())
2074        D << 0 << Init->getMember()->getDeclName();
2075      else
2076        D << 1 << Init->getBaseClassInfo()->getType();
2077
2078      // Move back to the initializer's location in the ideal list.
2079      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2080        if (InitKey == IdealInitKeys[IdealIndex])
2081          break;
2082
2083      assert(IdealIndex != NumIdealInits &&
2084             "initializer not found in initializer list");
2085    }
2086
2087    PrevInit = Init;
2088  }
2089}
2090
2091namespace {
2092bool CheckRedundantInit(Sema &S,
2093                        CXXBaseOrMemberInitializer *Init,
2094                        CXXBaseOrMemberInitializer *&PrevInit) {
2095  if (!PrevInit) {
2096    PrevInit = Init;
2097    return false;
2098  }
2099
2100  if (FieldDecl *Field = Init->getMember())
2101    S.Diag(Init->getSourceLocation(),
2102           diag::err_multiple_mem_initialization)
2103      << Field->getDeclName()
2104      << Init->getSourceRange();
2105  else {
2106    Type *BaseClass = Init->getBaseClass();
2107    assert(BaseClass && "neither field nor base");
2108    S.Diag(Init->getSourceLocation(),
2109           diag::err_multiple_base_initialization)
2110      << QualType(BaseClass, 0)
2111      << Init->getSourceRange();
2112  }
2113  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2114    << 0 << PrevInit->getSourceRange();
2115
2116  return true;
2117}
2118
2119typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2120typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2121
2122bool CheckRedundantUnionInit(Sema &S,
2123                             CXXBaseOrMemberInitializer *Init,
2124                             RedundantUnionMap &Unions) {
2125  FieldDecl *Field = Init->getMember();
2126  RecordDecl *Parent = Field->getParent();
2127  if (!Parent->isAnonymousStructOrUnion())
2128    return false;
2129
2130  NamedDecl *Child = Field;
2131  do {
2132    if (Parent->isUnion()) {
2133      UnionEntry &En = Unions[Parent];
2134      if (En.first && En.first != Child) {
2135        S.Diag(Init->getSourceLocation(),
2136               diag::err_multiple_mem_union_initialization)
2137          << Field->getDeclName()
2138          << Init->getSourceRange();
2139        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2140          << 0 << En.second->getSourceRange();
2141        return true;
2142      } else if (!En.first) {
2143        En.first = Child;
2144        En.second = Init;
2145      }
2146    }
2147
2148    Child = Parent;
2149    Parent = cast<RecordDecl>(Parent->getDeclContext());
2150  } while (Parent->isAnonymousStructOrUnion());
2151
2152  return false;
2153}
2154}
2155
2156/// ActOnMemInitializers - Handle the member initializers for a constructor.
2157void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2158                                SourceLocation ColonLoc,
2159                                MemInitTy **meminits, unsigned NumMemInits,
2160                                bool AnyErrors) {
2161  if (!ConstructorDecl)
2162    return;
2163
2164  AdjustDeclIfTemplate(ConstructorDecl);
2165
2166  CXXConstructorDecl *Constructor
2167    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2168
2169  if (!Constructor) {
2170    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2171    return;
2172  }
2173
2174  CXXBaseOrMemberInitializer **MemInits =
2175    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2176
2177  // Mapping for the duplicate initializers check.
2178  // For member initializers, this is keyed with a FieldDecl*.
2179  // For base initializers, this is keyed with a Type*.
2180  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2181
2182  // Mapping for the inconsistent anonymous-union initializers check.
2183  RedundantUnionMap MemberUnions;
2184
2185  bool HadError = false;
2186  for (unsigned i = 0; i < NumMemInits; i++) {
2187    CXXBaseOrMemberInitializer *Init = MemInits[i];
2188
2189    // Set the source order index.
2190    Init->setSourceOrder(i);
2191
2192    if (Init->isMemberInitializer()) {
2193      FieldDecl *Field = Init->getMember();
2194      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2195          CheckRedundantUnionInit(*this, Init, MemberUnions))
2196        HadError = true;
2197    } else {
2198      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2199      if (CheckRedundantInit(*this, Init, Members[Key]))
2200        HadError = true;
2201    }
2202  }
2203
2204  if (HadError)
2205    return;
2206
2207  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2208
2209  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2210}
2211
2212void
2213Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2214                                             CXXRecordDecl *ClassDecl) {
2215  // Ignore dependent contexts.
2216  if (ClassDecl->isDependentContext())
2217    return;
2218
2219  // FIXME: all the access-control diagnostics are positioned on the
2220  // field/base declaration.  That's probably good; that said, the
2221  // user might reasonably want to know why the destructor is being
2222  // emitted, and we currently don't say.
2223
2224  // Non-static data members.
2225  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2226       E = ClassDecl->field_end(); I != E; ++I) {
2227    FieldDecl *Field = *I;
2228    if (Field->isInvalidDecl())
2229      continue;
2230    QualType FieldType = Context.getBaseElementType(Field->getType());
2231
2232    const RecordType* RT = FieldType->getAs<RecordType>();
2233    if (!RT)
2234      continue;
2235
2236    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2237    if (FieldClassDecl->hasTrivialDestructor())
2238      continue;
2239
2240    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2241    CheckDestructorAccess(Field->getLocation(), Dtor,
2242                          PDiag(diag::err_access_dtor_field)
2243                            << Field->getDeclName()
2244                            << FieldType);
2245
2246    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2247  }
2248
2249  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2250
2251  // Bases.
2252  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2253       E = ClassDecl->bases_end(); Base != E; ++Base) {
2254    // Bases are always records in a well-formed non-dependent class.
2255    const RecordType *RT = Base->getType()->getAs<RecordType>();
2256
2257    // Remember direct virtual bases.
2258    if (Base->isVirtual())
2259      DirectVirtualBases.insert(RT);
2260
2261    // Ignore trivial destructors.
2262    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2263    if (BaseClassDecl->hasTrivialDestructor())
2264      continue;
2265
2266    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2267
2268    // FIXME: caret should be on the start of the class name
2269    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2270                          PDiag(diag::err_access_dtor_base)
2271                            << Base->getType()
2272                            << Base->getSourceRange());
2273
2274    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2275  }
2276
2277  // Virtual bases.
2278  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2279       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2280
2281    // Bases are always records in a well-formed non-dependent class.
2282    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2283
2284    // Ignore direct virtual bases.
2285    if (DirectVirtualBases.count(RT))
2286      continue;
2287
2288    // Ignore trivial destructors.
2289    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2290    if (BaseClassDecl->hasTrivialDestructor())
2291      continue;
2292
2293    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2294    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2295                          PDiag(diag::err_access_dtor_vbase)
2296                            << VBase->getType());
2297
2298    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2299  }
2300}
2301
2302void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2303  if (!CDtorDecl)
2304    return;
2305
2306  if (CXXConstructorDecl *Constructor
2307      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2308    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2309}
2310
2311bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2312                                  unsigned DiagID, AbstractDiagSelID SelID) {
2313  if (SelID == -1)
2314    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2315  else
2316    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2317}
2318
2319bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2320                                  const PartialDiagnostic &PD) {
2321  if (!getLangOptions().CPlusPlus)
2322    return false;
2323
2324  if (const ArrayType *AT = Context.getAsArrayType(T))
2325    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2326
2327  if (const PointerType *PT = T->getAs<PointerType>()) {
2328    // Find the innermost pointer type.
2329    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2330      PT = T;
2331
2332    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2333      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2334  }
2335
2336  const RecordType *RT = T->getAs<RecordType>();
2337  if (!RT)
2338    return false;
2339
2340  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2341
2342  // We can't answer whether something is abstract until it has a
2343  // definition.  If it's currently being defined, we'll walk back
2344  // over all the declarations when we have a full definition.
2345  const CXXRecordDecl *Def = RD->getDefinition();
2346  if (!Def || Def->isBeingDefined())
2347    return false;
2348
2349  if (!RD->isAbstract())
2350    return false;
2351
2352  Diag(Loc, PD) << RD->getDeclName();
2353  DiagnoseAbstractType(RD);
2354
2355  return true;
2356}
2357
2358void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2359  // Check if we've already emitted the list of pure virtual functions
2360  // for this class.
2361  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2362    return;
2363
2364  CXXFinalOverriderMap FinalOverriders;
2365  RD->getFinalOverriders(FinalOverriders);
2366
2367  // Keep a set of seen pure methods so we won't diagnose the same method
2368  // more than once.
2369  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2370
2371  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2372                                   MEnd = FinalOverriders.end();
2373       M != MEnd;
2374       ++M) {
2375    for (OverridingMethods::iterator SO = M->second.begin(),
2376                                  SOEnd = M->second.end();
2377         SO != SOEnd; ++SO) {
2378      // C++ [class.abstract]p4:
2379      //   A class is abstract if it contains or inherits at least one
2380      //   pure virtual function for which the final overrider is pure
2381      //   virtual.
2382
2383      //
2384      if (SO->second.size() != 1)
2385        continue;
2386
2387      if (!SO->second.front().Method->isPure())
2388        continue;
2389
2390      if (!SeenPureMethods.insert(SO->second.front().Method))
2391        continue;
2392
2393      Diag(SO->second.front().Method->getLocation(),
2394           diag::note_pure_virtual_function)
2395        << SO->second.front().Method->getDeclName();
2396    }
2397  }
2398
2399  if (!PureVirtualClassDiagSet)
2400    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2401  PureVirtualClassDiagSet->insert(RD);
2402}
2403
2404namespace {
2405struct AbstractUsageInfo {
2406  Sema &S;
2407  CXXRecordDecl *Record;
2408  CanQualType AbstractType;
2409  bool Invalid;
2410
2411  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2412    : S(S), Record(Record),
2413      AbstractType(S.Context.getCanonicalType(
2414                   S.Context.getTypeDeclType(Record))),
2415      Invalid(false) {}
2416
2417  void DiagnoseAbstractType() {
2418    if (Invalid) return;
2419    S.DiagnoseAbstractType(Record);
2420    Invalid = true;
2421  }
2422
2423  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2424};
2425
2426struct CheckAbstractUsage {
2427  AbstractUsageInfo &Info;
2428  const NamedDecl *Ctx;
2429
2430  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2431    : Info(Info), Ctx(Ctx) {}
2432
2433  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2434    switch (TL.getTypeLocClass()) {
2435#define ABSTRACT_TYPELOC(CLASS, PARENT)
2436#define TYPELOC(CLASS, PARENT) \
2437    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2438#include "clang/AST/TypeLocNodes.def"
2439    }
2440  }
2441
2442  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2443    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2444    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2445      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2446      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2447    }
2448  }
2449
2450  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2451    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2452  }
2453
2454  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2455    // Visit the type parameters from a permissive context.
2456    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2457      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2458      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2459        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2460          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2461      // TODO: other template argument types?
2462    }
2463  }
2464
2465  // Visit pointee types from a permissive context.
2466#define CheckPolymorphic(Type) \
2467  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2468    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2469  }
2470  CheckPolymorphic(PointerTypeLoc)
2471  CheckPolymorphic(ReferenceTypeLoc)
2472  CheckPolymorphic(MemberPointerTypeLoc)
2473  CheckPolymorphic(BlockPointerTypeLoc)
2474
2475  /// Handle all the types we haven't given a more specific
2476  /// implementation for above.
2477  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2478    // Every other kind of type that we haven't called out already
2479    // that has an inner type is either (1) sugar or (2) contains that
2480    // inner type in some way as a subobject.
2481    if (TypeLoc Next = TL.getNextTypeLoc())
2482      return Visit(Next, Sel);
2483
2484    // If there's no inner type and we're in a permissive context,
2485    // don't diagnose.
2486    if (Sel == Sema::AbstractNone) return;
2487
2488    // Check whether the type matches the abstract type.
2489    QualType T = TL.getType();
2490    if (T->isArrayType()) {
2491      Sel = Sema::AbstractArrayType;
2492      T = Info.S.Context.getBaseElementType(T);
2493    }
2494    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2495    if (CT != Info.AbstractType) return;
2496
2497    // It matched; do some magic.
2498    if (Sel == Sema::AbstractArrayType) {
2499      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2500        << T << TL.getSourceRange();
2501    } else {
2502      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2503        << Sel << T << TL.getSourceRange();
2504    }
2505    Info.DiagnoseAbstractType();
2506  }
2507};
2508
2509void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2510                                  Sema::AbstractDiagSelID Sel) {
2511  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2512}
2513
2514}
2515
2516/// Check for invalid uses of an abstract type in a method declaration.
2517static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2518                                    CXXMethodDecl *MD) {
2519  // No need to do the check on definitions, which require that
2520  // the return/param types be complete.
2521  if (MD->isThisDeclarationADefinition())
2522    return;
2523
2524  // For safety's sake, just ignore it if we don't have type source
2525  // information.  This should never happen for non-implicit methods,
2526  // but...
2527  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2528    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2529}
2530
2531/// Check for invalid uses of an abstract type within a class definition.
2532static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2533                                    CXXRecordDecl *RD) {
2534  for (CXXRecordDecl::decl_iterator
2535         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2536    Decl *D = *I;
2537    if (D->isImplicit()) continue;
2538
2539    // Methods and method templates.
2540    if (isa<CXXMethodDecl>(D)) {
2541      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2542    } else if (isa<FunctionTemplateDecl>(D)) {
2543      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2544      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2545
2546    // Fields and static variables.
2547    } else if (isa<FieldDecl>(D)) {
2548      FieldDecl *FD = cast<FieldDecl>(D);
2549      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2550        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2551    } else if (isa<VarDecl>(D)) {
2552      VarDecl *VD = cast<VarDecl>(D);
2553      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2554        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2555
2556    // Nested classes and class templates.
2557    } else if (isa<CXXRecordDecl>(D)) {
2558      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2559    } else if (isa<ClassTemplateDecl>(D)) {
2560      CheckAbstractClassUsage(Info,
2561                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2562    }
2563  }
2564}
2565
2566/// \brief Perform semantic checks on a class definition that has been
2567/// completing, introducing implicitly-declared members, checking for
2568/// abstract types, etc.
2569void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2570  if (!Record || Record->isInvalidDecl())
2571    return;
2572
2573  if (!Record->isDependentType())
2574    AddImplicitlyDeclaredMembersToClass(Record);
2575
2576  if (Record->isInvalidDecl())
2577    return;
2578
2579  // Set access bits correctly on the directly-declared conversions.
2580  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2581  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2582    Convs->setAccess(I, (*I)->getAccess());
2583
2584  // Determine whether we need to check for final overriders. We do
2585  // this either when there are virtual base classes (in which case we
2586  // may end up finding multiple final overriders for a given virtual
2587  // function) or any of the base classes is abstract (in which case
2588  // we might detect that this class is abstract).
2589  bool CheckFinalOverriders = false;
2590  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2591      !Record->isDependentType()) {
2592    if (Record->getNumVBases())
2593      CheckFinalOverriders = true;
2594    else if (!Record->isAbstract()) {
2595      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2596                                                 BEnd = Record->bases_end();
2597           B != BEnd; ++B) {
2598        CXXRecordDecl *BaseDecl
2599          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2600        if (BaseDecl->isAbstract()) {
2601          CheckFinalOverriders = true;
2602          break;
2603        }
2604      }
2605    }
2606  }
2607
2608  if (CheckFinalOverriders) {
2609    CXXFinalOverriderMap FinalOverriders;
2610    Record->getFinalOverriders(FinalOverriders);
2611
2612    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2613                                     MEnd = FinalOverriders.end();
2614         M != MEnd; ++M) {
2615      for (OverridingMethods::iterator SO = M->second.begin(),
2616                                    SOEnd = M->second.end();
2617           SO != SOEnd; ++SO) {
2618        assert(SO->second.size() > 0 &&
2619               "All virtual functions have overridding virtual functions");
2620        if (SO->second.size() == 1) {
2621          // C++ [class.abstract]p4:
2622          //   A class is abstract if it contains or inherits at least one
2623          //   pure virtual function for which the final overrider is pure
2624          //   virtual.
2625          if (SO->second.front().Method->isPure())
2626            Record->setAbstract(true);
2627          continue;
2628        }
2629
2630        // C++ [class.virtual]p2:
2631        //   In a derived class, if a virtual member function of a base
2632        //   class subobject has more than one final overrider the
2633        //   program is ill-formed.
2634        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2635          << (NamedDecl *)M->first << Record;
2636        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2637        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2638                                                 OMEnd = SO->second.end();
2639             OM != OMEnd; ++OM)
2640          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2641            << (NamedDecl *)M->first << OM->Method->getParent();
2642
2643        Record->setInvalidDecl();
2644      }
2645    }
2646  }
2647
2648  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2649    AbstractUsageInfo Info(*this, Record);
2650    CheckAbstractClassUsage(Info, Record);
2651  }
2652
2653  // If this is not an aggregate type and has no user-declared constructor,
2654  // complain about any non-static data members of reference or const scalar
2655  // type, since they will never get initializers.
2656  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2657      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2658    bool Complained = false;
2659    for (RecordDecl::field_iterator F = Record->field_begin(),
2660                                 FEnd = Record->field_end();
2661         F != FEnd; ++F) {
2662      if (F->getType()->isReferenceType() ||
2663          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2664        if (!Complained) {
2665          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2666            << Record->getTagKind() << Record;
2667          Complained = true;
2668        }
2669
2670        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2671          << F->getType()->isReferenceType()
2672          << F->getDeclName();
2673      }
2674    }
2675  }
2676
2677  if (Record->isDynamicClass())
2678    DynamicClasses.push_back(Record);
2679}
2680
2681void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2682                                             Decl *TagDecl,
2683                                             SourceLocation LBrac,
2684                                             SourceLocation RBrac,
2685                                             AttributeList *AttrList) {
2686  if (!TagDecl)
2687    return;
2688
2689  AdjustDeclIfTemplate(TagDecl);
2690
2691  ActOnFields(S, RLoc, TagDecl,
2692              // strict aliasing violation!
2693              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2694              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2695
2696  CheckCompletedCXXClass(
2697                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2698}
2699
2700namespace {
2701  /// \brief Helper class that collects exception specifications for
2702  /// implicitly-declared special member functions.
2703  class ImplicitExceptionSpecification {
2704    ASTContext &Context;
2705    bool AllowsAllExceptions;
2706    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2707    llvm::SmallVector<QualType, 4> Exceptions;
2708
2709  public:
2710    explicit ImplicitExceptionSpecification(ASTContext &Context)
2711      : Context(Context), AllowsAllExceptions(false) { }
2712
2713    /// \brief Whether the special member function should have any
2714    /// exception specification at all.
2715    bool hasExceptionSpecification() const {
2716      return !AllowsAllExceptions;
2717    }
2718
2719    /// \brief Whether the special member function should have a
2720    /// throw(...) exception specification (a Microsoft extension).
2721    bool hasAnyExceptionSpecification() const {
2722      return false;
2723    }
2724
2725    /// \brief The number of exceptions in the exception specification.
2726    unsigned size() const { return Exceptions.size(); }
2727
2728    /// \brief The set of exceptions in the exception specification.
2729    const QualType *data() const { return Exceptions.data(); }
2730
2731    /// \brief Note that
2732    void CalledDecl(CXXMethodDecl *Method) {
2733      // If we already know that we allow all exceptions, do nothing.
2734      if (AllowsAllExceptions || !Method)
2735        return;
2736
2737      const FunctionProtoType *Proto
2738        = Method->getType()->getAs<FunctionProtoType>();
2739
2740      // If this function can throw any exceptions, make a note of that.
2741      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2742        AllowsAllExceptions = true;
2743        ExceptionsSeen.clear();
2744        Exceptions.clear();
2745        return;
2746      }
2747
2748      // Record the exceptions in this function's exception specification.
2749      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2750                                              EEnd = Proto->exception_end();
2751           E != EEnd; ++E)
2752        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2753          Exceptions.push_back(*E);
2754    }
2755  };
2756}
2757
2758
2759/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2760/// special functions, such as the default constructor, copy
2761/// constructor, or destructor, to the given C++ class (C++
2762/// [special]p1).  This routine can only be executed just before the
2763/// definition of the class is complete.
2764void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2765  if (!ClassDecl->hasUserDeclaredConstructor())
2766    ++ASTContext::NumImplicitDefaultConstructors;
2767
2768  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2769    ++ASTContext::NumImplicitCopyConstructors;
2770
2771  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2772    ++ASTContext::NumImplicitCopyAssignmentOperators;
2773
2774    // If we have a dynamic class, then the copy assignment operator may be
2775    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2776    // it shows up in the right place in the vtable and that we diagnose
2777    // problems with the implicit exception specification.
2778    if (ClassDecl->isDynamicClass())
2779      DeclareImplicitCopyAssignment(ClassDecl);
2780  }
2781
2782  if (!ClassDecl->hasUserDeclaredDestructor()) {
2783    ++ASTContext::NumImplicitDestructors;
2784
2785    // If we have a dynamic class, then the destructor may be virtual, so we
2786    // have to declare the destructor immediately. This ensures that, e.g., it
2787    // shows up in the right place in the vtable and that we diagnose problems
2788    // with the implicit exception specification.
2789    if (ClassDecl->isDynamicClass())
2790      DeclareImplicitDestructor(ClassDecl);
2791  }
2792}
2793
2794void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2795  if (!D)
2796    return;
2797
2798  TemplateParameterList *Params = 0;
2799  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2800    Params = Template->getTemplateParameters();
2801  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2802           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2803    Params = PartialSpec->getTemplateParameters();
2804  else
2805    return;
2806
2807  for (TemplateParameterList::iterator Param = Params->begin(),
2808                                    ParamEnd = Params->end();
2809       Param != ParamEnd; ++Param) {
2810    NamedDecl *Named = cast<NamedDecl>(*Param);
2811    if (Named->getDeclName()) {
2812      S->AddDecl(Named);
2813      IdResolver.AddDecl(Named);
2814    }
2815  }
2816}
2817
2818void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2819  if (!RecordD) return;
2820  AdjustDeclIfTemplate(RecordD);
2821  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2822  PushDeclContext(S, Record);
2823}
2824
2825void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2826  if (!RecordD) return;
2827  PopDeclContext();
2828}
2829
2830/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2831/// parsing a top-level (non-nested) C++ class, and we are now
2832/// parsing those parts of the given Method declaration that could
2833/// not be parsed earlier (C++ [class.mem]p2), such as default
2834/// arguments. This action should enter the scope of the given
2835/// Method declaration as if we had just parsed the qualified method
2836/// name. However, it should not bring the parameters into scope;
2837/// that will be performed by ActOnDelayedCXXMethodParameter.
2838void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2839}
2840
2841/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2842/// C++ method declaration. We're (re-)introducing the given
2843/// function parameter into scope for use in parsing later parts of
2844/// the method declaration. For example, we could see an
2845/// ActOnParamDefaultArgument event for this parameter.
2846void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2847  if (!ParamD)
2848    return;
2849
2850  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2851
2852  // If this parameter has an unparsed default argument, clear it out
2853  // to make way for the parsed default argument.
2854  if (Param->hasUnparsedDefaultArg())
2855    Param->setDefaultArg(0);
2856
2857  S->AddDecl(Param);
2858  if (Param->getDeclName())
2859    IdResolver.AddDecl(Param);
2860}
2861
2862/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2863/// processing the delayed method declaration for Method. The method
2864/// declaration is now considered finished. There may be a separate
2865/// ActOnStartOfFunctionDef action later (not necessarily
2866/// immediately!) for this method, if it was also defined inside the
2867/// class body.
2868void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2869  if (!MethodD)
2870    return;
2871
2872  AdjustDeclIfTemplate(MethodD);
2873
2874  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2875
2876  // Now that we have our default arguments, check the constructor
2877  // again. It could produce additional diagnostics or affect whether
2878  // the class has implicitly-declared destructors, among other
2879  // things.
2880  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2881    CheckConstructor(Constructor);
2882
2883  // Check the default arguments, which we may have added.
2884  if (!Method->isInvalidDecl())
2885    CheckCXXDefaultArguments(Method);
2886}
2887
2888/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2889/// the well-formedness of the constructor declarator @p D with type @p
2890/// R. If there are any errors in the declarator, this routine will
2891/// emit diagnostics and set the invalid bit to true.  In any case, the type
2892/// will be updated to reflect a well-formed type for the constructor and
2893/// returned.
2894QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2895                                          FunctionDecl::StorageClass &SC) {
2896  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2897
2898  // C++ [class.ctor]p3:
2899  //   A constructor shall not be virtual (10.3) or static (9.4). A
2900  //   constructor can be invoked for a const, volatile or const
2901  //   volatile object. A constructor shall not be declared const,
2902  //   volatile, or const volatile (9.3.2).
2903  if (isVirtual) {
2904    if (!D.isInvalidType())
2905      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2906        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2907        << SourceRange(D.getIdentifierLoc());
2908    D.setInvalidType();
2909  }
2910  if (SC == FunctionDecl::Static) {
2911    if (!D.isInvalidType())
2912      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2913        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2914        << SourceRange(D.getIdentifierLoc());
2915    D.setInvalidType();
2916    SC = FunctionDecl::None;
2917  }
2918
2919  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2920  if (FTI.TypeQuals != 0) {
2921    if (FTI.TypeQuals & Qualifiers::Const)
2922      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2923        << "const" << SourceRange(D.getIdentifierLoc());
2924    if (FTI.TypeQuals & Qualifiers::Volatile)
2925      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2926        << "volatile" << SourceRange(D.getIdentifierLoc());
2927    if (FTI.TypeQuals & Qualifiers::Restrict)
2928      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2929        << "restrict" << SourceRange(D.getIdentifierLoc());
2930  }
2931
2932  // Rebuild the function type "R" without any type qualifiers (in
2933  // case any of the errors above fired) and with "void" as the
2934  // return type, since constructors don't have return types.
2935  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2936  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2937                                 Proto->getNumArgs(),
2938                                 Proto->isVariadic(), 0,
2939                                 Proto->hasExceptionSpec(),
2940                                 Proto->hasAnyExceptionSpec(),
2941                                 Proto->getNumExceptions(),
2942                                 Proto->exception_begin(),
2943                                 Proto->getExtInfo());
2944}
2945
2946/// CheckConstructor - Checks a fully-formed constructor for
2947/// well-formedness, issuing any diagnostics required. Returns true if
2948/// the constructor declarator is invalid.
2949void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2950  CXXRecordDecl *ClassDecl
2951    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2952  if (!ClassDecl)
2953    return Constructor->setInvalidDecl();
2954
2955  // C++ [class.copy]p3:
2956  //   A declaration of a constructor for a class X is ill-formed if
2957  //   its first parameter is of type (optionally cv-qualified) X and
2958  //   either there are no other parameters or else all other
2959  //   parameters have default arguments.
2960  if (!Constructor->isInvalidDecl() &&
2961      ((Constructor->getNumParams() == 1) ||
2962       (Constructor->getNumParams() > 1 &&
2963        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2964      Constructor->getTemplateSpecializationKind()
2965                                              != TSK_ImplicitInstantiation) {
2966    QualType ParamType = Constructor->getParamDecl(0)->getType();
2967    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2968    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2969      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2970      const char *ConstRef
2971        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2972                                                        : " const &";
2973      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2974        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2975
2976      // FIXME: Rather that making the constructor invalid, we should endeavor
2977      // to fix the type.
2978      Constructor->setInvalidDecl();
2979    }
2980  }
2981
2982  // Notify the class that we've added a constructor.  In principle we
2983  // don't need to do this for out-of-line declarations; in practice
2984  // we only instantiate the most recent declaration of a method, so
2985  // we have to call this for everything but friends.
2986  if (!Constructor->getFriendObjectKind())
2987    ClassDecl->addedConstructor(Context, Constructor);
2988}
2989
2990/// CheckDestructor - Checks a fully-formed destructor definition for
2991/// well-formedness, issuing any diagnostics required.  Returns true
2992/// on error.
2993bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2994  CXXRecordDecl *RD = Destructor->getParent();
2995
2996  if (Destructor->isVirtual()) {
2997    SourceLocation Loc;
2998
2999    if (!Destructor->isImplicit())
3000      Loc = Destructor->getLocation();
3001    else
3002      Loc = RD->getLocation();
3003
3004    // If we have a virtual destructor, look up the deallocation function
3005    FunctionDecl *OperatorDelete = 0;
3006    DeclarationName Name =
3007    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3008    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3009      return true;
3010
3011    MarkDeclarationReferenced(Loc, OperatorDelete);
3012
3013    Destructor->setOperatorDelete(OperatorDelete);
3014  }
3015
3016  return false;
3017}
3018
3019static inline bool
3020FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3021  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3022          FTI.ArgInfo[0].Param &&
3023          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3024}
3025
3026/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3027/// the well-formednes of the destructor declarator @p D with type @p
3028/// R. If there are any errors in the declarator, this routine will
3029/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3030/// will be updated to reflect a well-formed type for the destructor and
3031/// returned.
3032QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3033                                         FunctionDecl::StorageClass& SC) {
3034  // C++ [class.dtor]p1:
3035  //   [...] A typedef-name that names a class is a class-name
3036  //   (7.1.3); however, a typedef-name that names a class shall not
3037  //   be used as the identifier in the declarator for a destructor
3038  //   declaration.
3039  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3040  if (isa<TypedefType>(DeclaratorType))
3041    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3042      << DeclaratorType;
3043
3044  // C++ [class.dtor]p2:
3045  //   A destructor is used to destroy objects of its class type. A
3046  //   destructor takes no parameters, and no return type can be
3047  //   specified for it (not even void). The address of a destructor
3048  //   shall not be taken. A destructor shall not be static. A
3049  //   destructor can be invoked for a const, volatile or const
3050  //   volatile object. A destructor shall not be declared const,
3051  //   volatile or const volatile (9.3.2).
3052  if (SC == FunctionDecl::Static) {
3053    if (!D.isInvalidType())
3054      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3055        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3056        << SourceRange(D.getIdentifierLoc())
3057        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3058
3059    SC = FunctionDecl::None;
3060  }
3061  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3062    // Destructors don't have return types, but the parser will
3063    // happily parse something like:
3064    //
3065    //   class X {
3066    //     float ~X();
3067    //   };
3068    //
3069    // The return type will be eliminated later.
3070    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3071      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3072      << SourceRange(D.getIdentifierLoc());
3073  }
3074
3075  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3076  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3077    if (FTI.TypeQuals & Qualifiers::Const)
3078      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3079        << "const" << SourceRange(D.getIdentifierLoc());
3080    if (FTI.TypeQuals & Qualifiers::Volatile)
3081      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3082        << "volatile" << SourceRange(D.getIdentifierLoc());
3083    if (FTI.TypeQuals & Qualifiers::Restrict)
3084      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3085        << "restrict" << SourceRange(D.getIdentifierLoc());
3086    D.setInvalidType();
3087  }
3088
3089  // Make sure we don't have any parameters.
3090  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3091    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3092
3093    // Delete the parameters.
3094    FTI.freeArgs();
3095    D.setInvalidType();
3096  }
3097
3098  // Make sure the destructor isn't variadic.
3099  if (FTI.isVariadic) {
3100    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3101    D.setInvalidType();
3102  }
3103
3104  // Rebuild the function type "R" without any type qualifiers or
3105  // parameters (in case any of the errors above fired) and with
3106  // "void" as the return type, since destructors don't have return
3107  // types.
3108  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3109  if (!Proto)
3110    return QualType();
3111
3112  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3113                                 Proto->hasExceptionSpec(),
3114                                 Proto->hasAnyExceptionSpec(),
3115                                 Proto->getNumExceptions(),
3116                                 Proto->exception_begin(),
3117                                 Proto->getExtInfo());
3118}
3119
3120/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3121/// well-formednes of the conversion function declarator @p D with
3122/// type @p R. If there are any errors in the declarator, this routine
3123/// will emit diagnostics and return true. Otherwise, it will return
3124/// false. Either way, the type @p R will be updated to reflect a
3125/// well-formed type for the conversion operator.
3126void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3127                                     FunctionDecl::StorageClass& SC) {
3128  // C++ [class.conv.fct]p1:
3129  //   Neither parameter types nor return type can be specified. The
3130  //   type of a conversion function (8.3.5) is "function taking no
3131  //   parameter returning conversion-type-id."
3132  if (SC == FunctionDecl::Static) {
3133    if (!D.isInvalidType())
3134      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3135        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3136        << SourceRange(D.getIdentifierLoc());
3137    D.setInvalidType();
3138    SC = FunctionDecl::None;
3139  }
3140
3141  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3142
3143  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3144    // Conversion functions don't have return types, but the parser will
3145    // happily parse something like:
3146    //
3147    //   class X {
3148    //     float operator bool();
3149    //   };
3150    //
3151    // The return type will be changed later anyway.
3152    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3153      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3154      << SourceRange(D.getIdentifierLoc());
3155    D.setInvalidType();
3156  }
3157
3158  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3159
3160  // Make sure we don't have any parameters.
3161  if (Proto->getNumArgs() > 0) {
3162    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3163
3164    // Delete the parameters.
3165    D.getTypeObject(0).Fun.freeArgs();
3166    D.setInvalidType();
3167  } else if (Proto->isVariadic()) {
3168    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3169    D.setInvalidType();
3170  }
3171
3172  // Diagnose "&operator bool()" and other such nonsense.  This
3173  // is actually a gcc extension which we don't support.
3174  if (Proto->getResultType() != ConvType) {
3175    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3176      << Proto->getResultType();
3177    D.setInvalidType();
3178    ConvType = Proto->getResultType();
3179  }
3180
3181  // C++ [class.conv.fct]p4:
3182  //   The conversion-type-id shall not represent a function type nor
3183  //   an array type.
3184  if (ConvType->isArrayType()) {
3185    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3186    ConvType = Context.getPointerType(ConvType);
3187    D.setInvalidType();
3188  } else if (ConvType->isFunctionType()) {
3189    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3190    ConvType = Context.getPointerType(ConvType);
3191    D.setInvalidType();
3192  }
3193
3194  // Rebuild the function type "R" without any parameters (in case any
3195  // of the errors above fired) and with the conversion type as the
3196  // return type.
3197  if (D.isInvalidType()) {
3198    R = Context.getFunctionType(ConvType, 0, 0, false,
3199                                Proto->getTypeQuals(),
3200                                Proto->hasExceptionSpec(),
3201                                Proto->hasAnyExceptionSpec(),
3202                                Proto->getNumExceptions(),
3203                                Proto->exception_begin(),
3204                                Proto->getExtInfo());
3205  }
3206
3207  // C++0x explicit conversion operators.
3208  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3209    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3210         diag::warn_explicit_conversion_functions)
3211      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3212}
3213
3214/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3215/// the declaration of the given C++ conversion function. This routine
3216/// is responsible for recording the conversion function in the C++
3217/// class, if possible.
3218Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3219  assert(Conversion && "Expected to receive a conversion function declaration");
3220
3221  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3222
3223  // Make sure we aren't redeclaring the conversion function.
3224  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3225
3226  // C++ [class.conv.fct]p1:
3227  //   [...] A conversion function is never used to convert a
3228  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3229  //   same object type (or a reference to it), to a (possibly
3230  //   cv-qualified) base class of that type (or a reference to it),
3231  //   or to (possibly cv-qualified) void.
3232  // FIXME: Suppress this warning if the conversion function ends up being a
3233  // virtual function that overrides a virtual function in a base class.
3234  QualType ClassType
3235    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3236  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3237    ConvType = ConvTypeRef->getPointeeType();
3238  if (ConvType->isRecordType()) {
3239    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3240    if (ConvType == ClassType)
3241      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3242        << ClassType;
3243    else if (IsDerivedFrom(ClassType, ConvType))
3244      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3245        <<  ClassType << ConvType;
3246  } else if (ConvType->isVoidType()) {
3247    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3248      << ClassType << ConvType;
3249  }
3250
3251  if (Conversion->getPrimaryTemplate()) {
3252    // ignore specializations
3253  } else if (Conversion->getPreviousDeclaration()) {
3254    if (FunctionTemplateDecl *ConversionTemplate
3255                                  = Conversion->getDescribedFunctionTemplate()) {
3256      if (ClassDecl->replaceConversion(
3257                                   ConversionTemplate->getPreviousDeclaration(),
3258                                       ConversionTemplate))
3259        return ConversionTemplate;
3260    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3261                                            Conversion))
3262      return Conversion;
3263    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3264  } else if (FunctionTemplateDecl *ConversionTemplate
3265               = Conversion->getDescribedFunctionTemplate())
3266    ClassDecl->addConversionFunction(ConversionTemplate);
3267  else
3268    ClassDecl->addConversionFunction(Conversion);
3269
3270  return Conversion;
3271}
3272
3273//===----------------------------------------------------------------------===//
3274// Namespace Handling
3275//===----------------------------------------------------------------------===//
3276
3277/// ActOnStartNamespaceDef - This is called at the start of a namespace
3278/// definition.
3279Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3280                                             SourceLocation IdentLoc,
3281                                             IdentifierInfo *II,
3282                                             SourceLocation LBrace,
3283                                             AttributeList *AttrList) {
3284  // anonymous namespace starts at its left brace
3285  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3286    (II ? IdentLoc : LBrace) , II);
3287  Namespc->setLBracLoc(LBrace);
3288
3289  Scope *DeclRegionScope = NamespcScope->getParent();
3290
3291  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3292
3293  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3294    PushPragmaVisibility(attr->getVisibility(), attr->getLocation());
3295
3296  if (II) {
3297    // C++ [namespace.def]p2:
3298    // The identifier in an original-namespace-definition shall not have been
3299    // previously defined in the declarative region in which the
3300    // original-namespace-definition appears. The identifier in an
3301    // original-namespace-definition is the name of the namespace. Subsequently
3302    // in that declarative region, it is treated as an original-namespace-name.
3303
3304    NamedDecl *PrevDecl
3305      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3306                         ForRedeclaration);
3307
3308    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3309      // This is an extended namespace definition.
3310      // Attach this namespace decl to the chain of extended namespace
3311      // definitions.
3312      OrigNS->setNextNamespace(Namespc);
3313      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3314
3315      // Remove the previous declaration from the scope.
3316      if (DeclRegionScope->isDeclScope(OrigNS)) {
3317        IdResolver.RemoveDecl(OrigNS);
3318        DeclRegionScope->RemoveDecl(OrigNS);
3319      }
3320    } else if (PrevDecl) {
3321      // This is an invalid name redefinition.
3322      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3323       << Namespc->getDeclName();
3324      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3325      Namespc->setInvalidDecl();
3326      // Continue on to push Namespc as current DeclContext and return it.
3327    } else if (II->isStr("std") &&
3328               CurContext->getLookupContext()->isTranslationUnit()) {
3329      // This is the first "real" definition of the namespace "std", so update
3330      // our cache of the "std" namespace to point at this definition.
3331      if (NamespaceDecl *StdNS = getStdNamespace()) {
3332        // We had already defined a dummy namespace "std". Link this new
3333        // namespace definition to the dummy namespace "std".
3334        StdNS->setNextNamespace(Namespc);
3335        StdNS->setLocation(IdentLoc);
3336        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3337      }
3338
3339      // Make our StdNamespace cache point at the first real definition of the
3340      // "std" namespace.
3341      StdNamespace = Namespc;
3342    }
3343
3344    PushOnScopeChains(Namespc, DeclRegionScope);
3345  } else {
3346    // Anonymous namespaces.
3347    assert(Namespc->isAnonymousNamespace());
3348
3349    // Link the anonymous namespace into its parent.
3350    NamespaceDecl *PrevDecl;
3351    DeclContext *Parent = CurContext->getLookupContext();
3352    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3353      PrevDecl = TU->getAnonymousNamespace();
3354      TU->setAnonymousNamespace(Namespc);
3355    } else {
3356      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3357      PrevDecl = ND->getAnonymousNamespace();
3358      ND->setAnonymousNamespace(Namespc);
3359    }
3360
3361    // Link the anonymous namespace with its previous declaration.
3362    if (PrevDecl) {
3363      assert(PrevDecl->isAnonymousNamespace());
3364      assert(!PrevDecl->getNextNamespace());
3365      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3366      PrevDecl->setNextNamespace(Namespc);
3367    }
3368
3369    CurContext->addDecl(Namespc);
3370
3371    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3372    //   behaves as if it were replaced by
3373    //     namespace unique { /* empty body */ }
3374    //     using namespace unique;
3375    //     namespace unique { namespace-body }
3376    //   where all occurrences of 'unique' in a translation unit are
3377    //   replaced by the same identifier and this identifier differs
3378    //   from all other identifiers in the entire program.
3379
3380    // We just create the namespace with an empty name and then add an
3381    // implicit using declaration, just like the standard suggests.
3382    //
3383    // CodeGen enforces the "universally unique" aspect by giving all
3384    // declarations semantically contained within an anonymous
3385    // namespace internal linkage.
3386
3387    if (!PrevDecl) {
3388      UsingDirectiveDecl* UD
3389        = UsingDirectiveDecl::Create(Context, CurContext,
3390                                     /* 'using' */ LBrace,
3391                                     /* 'namespace' */ SourceLocation(),
3392                                     /* qualifier */ SourceRange(),
3393                                     /* NNS */ NULL,
3394                                     /* identifier */ SourceLocation(),
3395                                     Namespc,
3396                                     /* Ancestor */ CurContext);
3397      UD->setImplicit();
3398      CurContext->addDecl(UD);
3399    }
3400  }
3401
3402  // Although we could have an invalid decl (i.e. the namespace name is a
3403  // redefinition), push it as current DeclContext and try to continue parsing.
3404  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3405  // for the namespace has the declarations that showed up in that particular
3406  // namespace definition.
3407  PushDeclContext(NamespcScope, Namespc);
3408  return Namespc;
3409}
3410
3411/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3412/// is a namespace alias, returns the namespace it points to.
3413static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3414  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3415    return AD->getNamespace();
3416  return dyn_cast_or_null<NamespaceDecl>(D);
3417}
3418
3419/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3420/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3421void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3422  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3423  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3424  Namespc->setRBracLoc(RBrace);
3425  PopDeclContext();
3426  if (Namespc->hasAttr<VisibilityAttr>())
3427    PopPragmaVisibility();
3428}
3429
3430/// \brief Retrieve the special "std" namespace, which may require us to
3431/// implicitly define the namespace.
3432NamespaceDecl *Sema::getOrCreateStdNamespace() {
3433  if (!StdNamespace) {
3434    // The "std" namespace has not yet been defined, so build one implicitly.
3435    StdNamespace = NamespaceDecl::Create(Context,
3436                                         Context.getTranslationUnitDecl(),
3437                                         SourceLocation(),
3438                                         &PP.getIdentifierTable().get("std"));
3439    getStdNamespace()->setImplicit(true);
3440  }
3441
3442  return getStdNamespace();
3443}
3444
3445Decl *Sema::ActOnUsingDirective(Scope *S,
3446                                          SourceLocation UsingLoc,
3447                                          SourceLocation NamespcLoc,
3448                                          CXXScopeSpec &SS,
3449                                          SourceLocation IdentLoc,
3450                                          IdentifierInfo *NamespcName,
3451                                          AttributeList *AttrList) {
3452  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3453  assert(NamespcName && "Invalid NamespcName.");
3454  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3455  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3456
3457  UsingDirectiveDecl *UDir = 0;
3458  NestedNameSpecifier *Qualifier = 0;
3459  if (SS.isSet())
3460    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3461
3462  // Lookup namespace name.
3463  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3464  LookupParsedName(R, S, &SS);
3465  if (R.isAmbiguous())
3466    return 0;
3467
3468  if (R.empty()) {
3469    // Allow "using namespace std;" or "using namespace ::std;" even if
3470    // "std" hasn't been defined yet, for GCC compatibility.
3471    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3472        NamespcName->isStr("std")) {
3473      Diag(IdentLoc, diag::ext_using_undefined_std);
3474      R.addDecl(getOrCreateStdNamespace());
3475      R.resolveKind();
3476    }
3477    // Otherwise, attempt typo correction.
3478    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3479                                                       CTC_NoKeywords, 0)) {
3480      if (R.getAsSingle<NamespaceDecl>() ||
3481          R.getAsSingle<NamespaceAliasDecl>()) {
3482        if (DeclContext *DC = computeDeclContext(SS, false))
3483          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3484            << NamespcName << DC << Corrected << SS.getRange()
3485            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3486        else
3487          Diag(IdentLoc, diag::err_using_directive_suggest)
3488            << NamespcName << Corrected
3489            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3490        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3491          << Corrected;
3492
3493        NamespcName = Corrected.getAsIdentifierInfo();
3494      } else {
3495        R.clear();
3496        R.setLookupName(NamespcName);
3497      }
3498    }
3499  }
3500
3501  if (!R.empty()) {
3502    NamedDecl *Named = R.getFoundDecl();
3503    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3504        && "expected namespace decl");
3505    // C++ [namespace.udir]p1:
3506    //   A using-directive specifies that the names in the nominated
3507    //   namespace can be used in the scope in which the
3508    //   using-directive appears after the using-directive. During
3509    //   unqualified name lookup (3.4.1), the names appear as if they
3510    //   were declared in the nearest enclosing namespace which
3511    //   contains both the using-directive and the nominated
3512    //   namespace. [Note: in this context, "contains" means "contains
3513    //   directly or indirectly". ]
3514
3515    // Find enclosing context containing both using-directive and
3516    // nominated namespace.
3517    NamespaceDecl *NS = getNamespaceDecl(Named);
3518    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3519    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3520      CommonAncestor = CommonAncestor->getParent();
3521
3522    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3523                                      SS.getRange(),
3524                                      (NestedNameSpecifier *)SS.getScopeRep(),
3525                                      IdentLoc, Named, CommonAncestor);
3526    PushUsingDirective(S, UDir);
3527  } else {
3528    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3529  }
3530
3531  // FIXME: We ignore attributes for now.
3532  delete AttrList;
3533  return UDir;
3534}
3535
3536void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3537  // If scope has associated entity, then using directive is at namespace
3538  // or translation unit scope. We add UsingDirectiveDecls, into
3539  // it's lookup structure.
3540  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3541    Ctx->addDecl(UDir);
3542  else
3543    // Otherwise it is block-sope. using-directives will affect lookup
3544    // only to the end of scope.
3545    S->PushUsingDirective(UDir);
3546}
3547
3548
3549Decl *Sema::ActOnUsingDeclaration(Scope *S,
3550                                            AccessSpecifier AS,
3551                                            bool HasUsingKeyword,
3552                                            SourceLocation UsingLoc,
3553                                            CXXScopeSpec &SS,
3554                                            UnqualifiedId &Name,
3555                                            AttributeList *AttrList,
3556                                            bool IsTypeName,
3557                                            SourceLocation TypenameLoc) {
3558  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3559
3560  switch (Name.getKind()) {
3561  case UnqualifiedId::IK_Identifier:
3562  case UnqualifiedId::IK_OperatorFunctionId:
3563  case UnqualifiedId::IK_LiteralOperatorId:
3564  case UnqualifiedId::IK_ConversionFunctionId:
3565    break;
3566
3567  case UnqualifiedId::IK_ConstructorName:
3568  case UnqualifiedId::IK_ConstructorTemplateId:
3569    // C++0x inherited constructors.
3570    if (getLangOptions().CPlusPlus0x) break;
3571
3572    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3573      << SS.getRange();
3574    return 0;
3575
3576  case UnqualifiedId::IK_DestructorName:
3577    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3578      << SS.getRange();
3579    return 0;
3580
3581  case UnqualifiedId::IK_TemplateId:
3582    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3583      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3584    return 0;
3585  }
3586
3587  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3588  DeclarationName TargetName = TargetNameInfo.getName();
3589  if (!TargetName)
3590    return 0;
3591
3592  // Warn about using declarations.
3593  // TODO: store that the declaration was written without 'using' and
3594  // talk about access decls instead of using decls in the
3595  // diagnostics.
3596  if (!HasUsingKeyword) {
3597    UsingLoc = Name.getSourceRange().getBegin();
3598
3599    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3600      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3601  }
3602
3603  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3604                                        TargetNameInfo, AttrList,
3605                                        /* IsInstantiation */ false,
3606                                        IsTypeName, TypenameLoc);
3607  if (UD)
3608    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3609
3610  return UD;
3611}
3612
3613/// \brief Determine whether a using declaration considers the given
3614/// declarations as "equivalent", e.g., if they are redeclarations of
3615/// the same entity or are both typedefs of the same type.
3616static bool
3617IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3618                         bool &SuppressRedeclaration) {
3619  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3620    SuppressRedeclaration = false;
3621    return true;
3622  }
3623
3624  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3625    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3626      SuppressRedeclaration = true;
3627      return Context.hasSameType(TD1->getUnderlyingType(),
3628                                 TD2->getUnderlyingType());
3629    }
3630
3631  return false;
3632}
3633
3634
3635/// Determines whether to create a using shadow decl for a particular
3636/// decl, given the set of decls existing prior to this using lookup.
3637bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3638                                const LookupResult &Previous) {
3639  // Diagnose finding a decl which is not from a base class of the
3640  // current class.  We do this now because there are cases where this
3641  // function will silently decide not to build a shadow decl, which
3642  // will pre-empt further diagnostics.
3643  //
3644  // We don't need to do this in C++0x because we do the check once on
3645  // the qualifier.
3646  //
3647  // FIXME: diagnose the following if we care enough:
3648  //   struct A { int foo; };
3649  //   struct B : A { using A::foo; };
3650  //   template <class T> struct C : A {};
3651  //   template <class T> struct D : C<T> { using B::foo; } // <---
3652  // This is invalid (during instantiation) in C++03 because B::foo
3653  // resolves to the using decl in B, which is not a base class of D<T>.
3654  // We can't diagnose it immediately because C<T> is an unknown
3655  // specialization.  The UsingShadowDecl in D<T> then points directly
3656  // to A::foo, which will look well-formed when we instantiate.
3657  // The right solution is to not collapse the shadow-decl chain.
3658  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3659    DeclContext *OrigDC = Orig->getDeclContext();
3660
3661    // Handle enums and anonymous structs.
3662    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3663    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3664    while (OrigRec->isAnonymousStructOrUnion())
3665      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3666
3667    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3668      if (OrigDC == CurContext) {
3669        Diag(Using->getLocation(),
3670             diag::err_using_decl_nested_name_specifier_is_current_class)
3671          << Using->getNestedNameRange();
3672        Diag(Orig->getLocation(), diag::note_using_decl_target);
3673        return true;
3674      }
3675
3676      Diag(Using->getNestedNameRange().getBegin(),
3677           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3678        << Using->getTargetNestedNameDecl()
3679        << cast<CXXRecordDecl>(CurContext)
3680        << Using->getNestedNameRange();
3681      Diag(Orig->getLocation(), diag::note_using_decl_target);
3682      return true;
3683    }
3684  }
3685
3686  if (Previous.empty()) return false;
3687
3688  NamedDecl *Target = Orig;
3689  if (isa<UsingShadowDecl>(Target))
3690    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3691
3692  // If the target happens to be one of the previous declarations, we
3693  // don't have a conflict.
3694  //
3695  // FIXME: but we might be increasing its access, in which case we
3696  // should redeclare it.
3697  NamedDecl *NonTag = 0, *Tag = 0;
3698  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3699         I != E; ++I) {
3700    NamedDecl *D = (*I)->getUnderlyingDecl();
3701    bool Result;
3702    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3703      return Result;
3704
3705    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3706  }
3707
3708  if (Target->isFunctionOrFunctionTemplate()) {
3709    FunctionDecl *FD;
3710    if (isa<FunctionTemplateDecl>(Target))
3711      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3712    else
3713      FD = cast<FunctionDecl>(Target);
3714
3715    NamedDecl *OldDecl = 0;
3716    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3717    case Ovl_Overload:
3718      return false;
3719
3720    case Ovl_NonFunction:
3721      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3722      break;
3723
3724    // We found a decl with the exact signature.
3725    case Ovl_Match:
3726      // If we're in a record, we want to hide the target, so we
3727      // return true (without a diagnostic) to tell the caller not to
3728      // build a shadow decl.
3729      if (CurContext->isRecord())
3730        return true;
3731
3732      // If we're not in a record, this is an error.
3733      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3734      break;
3735    }
3736
3737    Diag(Target->getLocation(), diag::note_using_decl_target);
3738    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3739    return true;
3740  }
3741
3742  // Target is not a function.
3743
3744  if (isa<TagDecl>(Target)) {
3745    // No conflict between a tag and a non-tag.
3746    if (!Tag) return false;
3747
3748    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3749    Diag(Target->getLocation(), diag::note_using_decl_target);
3750    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3751    return true;
3752  }
3753
3754  // No conflict between a tag and a non-tag.
3755  if (!NonTag) return false;
3756
3757  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3758  Diag(Target->getLocation(), diag::note_using_decl_target);
3759  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3760  return true;
3761}
3762
3763/// Builds a shadow declaration corresponding to a 'using' declaration.
3764UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3765                                            UsingDecl *UD,
3766                                            NamedDecl *Orig) {
3767
3768  // If we resolved to another shadow declaration, just coalesce them.
3769  NamedDecl *Target = Orig;
3770  if (isa<UsingShadowDecl>(Target)) {
3771    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3772    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3773  }
3774
3775  UsingShadowDecl *Shadow
3776    = UsingShadowDecl::Create(Context, CurContext,
3777                              UD->getLocation(), UD, Target);
3778  UD->addShadowDecl(Shadow);
3779
3780  if (S)
3781    PushOnScopeChains(Shadow, S);
3782  else
3783    CurContext->addDecl(Shadow);
3784  Shadow->setAccess(UD->getAccess());
3785
3786  // Register it as a conversion if appropriate.
3787  if (Shadow->getDeclName().getNameKind()
3788        == DeclarationName::CXXConversionFunctionName)
3789    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3790
3791  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3792    Shadow->setInvalidDecl();
3793
3794  return Shadow;
3795}
3796
3797/// Hides a using shadow declaration.  This is required by the current
3798/// using-decl implementation when a resolvable using declaration in a
3799/// class is followed by a declaration which would hide or override
3800/// one or more of the using decl's targets; for example:
3801///
3802///   struct Base { void foo(int); };
3803///   struct Derived : Base {
3804///     using Base::foo;
3805///     void foo(int);
3806///   };
3807///
3808/// The governing language is C++03 [namespace.udecl]p12:
3809///
3810///   When a using-declaration brings names from a base class into a
3811///   derived class scope, member functions in the derived class
3812///   override and/or hide member functions with the same name and
3813///   parameter types in a base class (rather than conflicting).
3814///
3815/// There are two ways to implement this:
3816///   (1) optimistically create shadow decls when they're not hidden
3817///       by existing declarations, or
3818///   (2) don't create any shadow decls (or at least don't make them
3819///       visible) until we've fully parsed/instantiated the class.
3820/// The problem with (1) is that we might have to retroactively remove
3821/// a shadow decl, which requires several O(n) operations because the
3822/// decl structures are (very reasonably) not designed for removal.
3823/// (2) avoids this but is very fiddly and phase-dependent.
3824void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3825  if (Shadow->getDeclName().getNameKind() ==
3826        DeclarationName::CXXConversionFunctionName)
3827    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3828
3829  // Remove it from the DeclContext...
3830  Shadow->getDeclContext()->removeDecl(Shadow);
3831
3832  // ...and the scope, if applicable...
3833  if (S) {
3834    S->RemoveDecl(Shadow);
3835    IdResolver.RemoveDecl(Shadow);
3836  }
3837
3838  // ...and the using decl.
3839  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3840
3841  // TODO: complain somehow if Shadow was used.  It shouldn't
3842  // be possible for this to happen, because...?
3843}
3844
3845/// Builds a using declaration.
3846///
3847/// \param IsInstantiation - Whether this call arises from an
3848///   instantiation of an unresolved using declaration.  We treat
3849///   the lookup differently for these declarations.
3850NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3851                                       SourceLocation UsingLoc,
3852                                       CXXScopeSpec &SS,
3853                                       const DeclarationNameInfo &NameInfo,
3854                                       AttributeList *AttrList,
3855                                       bool IsInstantiation,
3856                                       bool IsTypeName,
3857                                       SourceLocation TypenameLoc) {
3858  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3859  SourceLocation IdentLoc = NameInfo.getLoc();
3860  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3861
3862  // FIXME: We ignore attributes for now.
3863  delete AttrList;
3864
3865  if (SS.isEmpty()) {
3866    Diag(IdentLoc, diag::err_using_requires_qualname);
3867    return 0;
3868  }
3869
3870  // Do the redeclaration lookup in the current scope.
3871  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3872                        ForRedeclaration);
3873  Previous.setHideTags(false);
3874  if (S) {
3875    LookupName(Previous, S);
3876
3877    // It is really dumb that we have to do this.
3878    LookupResult::Filter F = Previous.makeFilter();
3879    while (F.hasNext()) {
3880      NamedDecl *D = F.next();
3881      if (!isDeclInScope(D, CurContext, S))
3882        F.erase();
3883    }
3884    F.done();
3885  } else {
3886    assert(IsInstantiation && "no scope in non-instantiation");
3887    assert(CurContext->isRecord() && "scope not record in instantiation");
3888    LookupQualifiedName(Previous, CurContext);
3889  }
3890
3891  NestedNameSpecifier *NNS =
3892    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3893
3894  // Check for invalid redeclarations.
3895  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3896    return 0;
3897
3898  // Check for bad qualifiers.
3899  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3900    return 0;
3901
3902  DeclContext *LookupContext = computeDeclContext(SS);
3903  NamedDecl *D;
3904  if (!LookupContext) {
3905    if (IsTypeName) {
3906      // FIXME: not all declaration name kinds are legal here
3907      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3908                                              UsingLoc, TypenameLoc,
3909                                              SS.getRange(), NNS,
3910                                              IdentLoc, NameInfo.getName());
3911    } else {
3912      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3913                                           UsingLoc, SS.getRange(),
3914                                           NNS, NameInfo);
3915    }
3916  } else {
3917    D = UsingDecl::Create(Context, CurContext,
3918                          SS.getRange(), UsingLoc, NNS, NameInfo,
3919                          IsTypeName);
3920  }
3921  D->setAccess(AS);
3922  CurContext->addDecl(D);
3923
3924  if (!LookupContext) return D;
3925  UsingDecl *UD = cast<UsingDecl>(D);
3926
3927  if (RequireCompleteDeclContext(SS, LookupContext)) {
3928    UD->setInvalidDecl();
3929    return UD;
3930  }
3931
3932  // Look up the target name.
3933
3934  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3935
3936  // Unlike most lookups, we don't always want to hide tag
3937  // declarations: tag names are visible through the using declaration
3938  // even if hidden by ordinary names, *except* in a dependent context
3939  // where it's important for the sanity of two-phase lookup.
3940  if (!IsInstantiation)
3941    R.setHideTags(false);
3942
3943  LookupQualifiedName(R, LookupContext);
3944
3945  if (R.empty()) {
3946    Diag(IdentLoc, diag::err_no_member)
3947      << NameInfo.getName() << LookupContext << SS.getRange();
3948    UD->setInvalidDecl();
3949    return UD;
3950  }
3951
3952  if (R.isAmbiguous()) {
3953    UD->setInvalidDecl();
3954    return UD;
3955  }
3956
3957  if (IsTypeName) {
3958    // If we asked for a typename and got a non-type decl, error out.
3959    if (!R.getAsSingle<TypeDecl>()) {
3960      Diag(IdentLoc, diag::err_using_typename_non_type);
3961      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3962        Diag((*I)->getUnderlyingDecl()->getLocation(),
3963             diag::note_using_decl_target);
3964      UD->setInvalidDecl();
3965      return UD;
3966    }
3967  } else {
3968    // If we asked for a non-typename and we got a type, error out,
3969    // but only if this is an instantiation of an unresolved using
3970    // decl.  Otherwise just silently find the type name.
3971    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3972      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3973      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3974      UD->setInvalidDecl();
3975      return UD;
3976    }
3977  }
3978
3979  // C++0x N2914 [namespace.udecl]p6:
3980  // A using-declaration shall not name a namespace.
3981  if (R.getAsSingle<NamespaceDecl>()) {
3982    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3983      << SS.getRange();
3984    UD->setInvalidDecl();
3985    return UD;
3986  }
3987
3988  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3989    if (!CheckUsingShadowDecl(UD, *I, Previous))
3990      BuildUsingShadowDecl(S, UD, *I);
3991  }
3992
3993  return UD;
3994}
3995
3996/// Checks that the given using declaration is not an invalid
3997/// redeclaration.  Note that this is checking only for the using decl
3998/// itself, not for any ill-formedness among the UsingShadowDecls.
3999bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4000                                       bool isTypeName,
4001                                       const CXXScopeSpec &SS,
4002                                       SourceLocation NameLoc,
4003                                       const LookupResult &Prev) {
4004  // C++03 [namespace.udecl]p8:
4005  // C++0x [namespace.udecl]p10:
4006  //   A using-declaration is a declaration and can therefore be used
4007  //   repeatedly where (and only where) multiple declarations are
4008  //   allowed.
4009  //
4010  // That's in non-member contexts.
4011  if (!CurContext->getLookupContext()->isRecord())
4012    return false;
4013
4014  NestedNameSpecifier *Qual
4015    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4016
4017  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4018    NamedDecl *D = *I;
4019
4020    bool DTypename;
4021    NestedNameSpecifier *DQual;
4022    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4023      DTypename = UD->isTypeName();
4024      DQual = UD->getTargetNestedNameDecl();
4025    } else if (UnresolvedUsingValueDecl *UD
4026                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4027      DTypename = false;
4028      DQual = UD->getTargetNestedNameSpecifier();
4029    } else if (UnresolvedUsingTypenameDecl *UD
4030                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4031      DTypename = true;
4032      DQual = UD->getTargetNestedNameSpecifier();
4033    } else continue;
4034
4035    // using decls differ if one says 'typename' and the other doesn't.
4036    // FIXME: non-dependent using decls?
4037    if (isTypeName != DTypename) continue;
4038
4039    // using decls differ if they name different scopes (but note that
4040    // template instantiation can cause this check to trigger when it
4041    // didn't before instantiation).
4042    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4043        Context.getCanonicalNestedNameSpecifier(DQual))
4044      continue;
4045
4046    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4047    Diag(D->getLocation(), diag::note_using_decl) << 1;
4048    return true;
4049  }
4050
4051  return false;
4052}
4053
4054
4055/// Checks that the given nested-name qualifier used in a using decl
4056/// in the current context is appropriately related to the current
4057/// scope.  If an error is found, diagnoses it and returns true.
4058bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4059                                   const CXXScopeSpec &SS,
4060                                   SourceLocation NameLoc) {
4061  DeclContext *NamedContext = computeDeclContext(SS);
4062
4063  if (!CurContext->isRecord()) {
4064    // C++03 [namespace.udecl]p3:
4065    // C++0x [namespace.udecl]p8:
4066    //   A using-declaration for a class member shall be a member-declaration.
4067
4068    // If we weren't able to compute a valid scope, it must be a
4069    // dependent class scope.
4070    if (!NamedContext || NamedContext->isRecord()) {
4071      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4072        << SS.getRange();
4073      return true;
4074    }
4075
4076    // Otherwise, everything is known to be fine.
4077    return false;
4078  }
4079
4080  // The current scope is a record.
4081
4082  // If the named context is dependent, we can't decide much.
4083  if (!NamedContext) {
4084    // FIXME: in C++0x, we can diagnose if we can prove that the
4085    // nested-name-specifier does not refer to a base class, which is
4086    // still possible in some cases.
4087
4088    // Otherwise we have to conservatively report that things might be
4089    // okay.
4090    return false;
4091  }
4092
4093  if (!NamedContext->isRecord()) {
4094    // Ideally this would point at the last name in the specifier,
4095    // but we don't have that level of source info.
4096    Diag(SS.getRange().getBegin(),
4097         diag::err_using_decl_nested_name_specifier_is_not_class)
4098      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4099    return true;
4100  }
4101
4102  if (getLangOptions().CPlusPlus0x) {
4103    // C++0x [namespace.udecl]p3:
4104    //   In a using-declaration used as a member-declaration, the
4105    //   nested-name-specifier shall name a base class of the class
4106    //   being defined.
4107
4108    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4109                                 cast<CXXRecordDecl>(NamedContext))) {
4110      if (CurContext == NamedContext) {
4111        Diag(NameLoc,
4112             diag::err_using_decl_nested_name_specifier_is_current_class)
4113          << SS.getRange();
4114        return true;
4115      }
4116
4117      Diag(SS.getRange().getBegin(),
4118           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4119        << (NestedNameSpecifier*) SS.getScopeRep()
4120        << cast<CXXRecordDecl>(CurContext)
4121        << SS.getRange();
4122      return true;
4123    }
4124
4125    return false;
4126  }
4127
4128  // C++03 [namespace.udecl]p4:
4129  //   A using-declaration used as a member-declaration shall refer
4130  //   to a member of a base class of the class being defined [etc.].
4131
4132  // Salient point: SS doesn't have to name a base class as long as
4133  // lookup only finds members from base classes.  Therefore we can
4134  // diagnose here only if we can prove that that can't happen,
4135  // i.e. if the class hierarchies provably don't intersect.
4136
4137  // TODO: it would be nice if "definitely valid" results were cached
4138  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4139  // need to be repeated.
4140
4141  struct UserData {
4142    llvm::DenseSet<const CXXRecordDecl*> Bases;
4143
4144    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4145      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4146      Data->Bases.insert(Base);
4147      return true;
4148    }
4149
4150    bool hasDependentBases(const CXXRecordDecl *Class) {
4151      return !Class->forallBases(collect, this);
4152    }
4153
4154    /// Returns true if the base is dependent or is one of the
4155    /// accumulated base classes.
4156    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4157      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4158      return !Data->Bases.count(Base);
4159    }
4160
4161    bool mightShareBases(const CXXRecordDecl *Class) {
4162      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4163    }
4164  };
4165
4166  UserData Data;
4167
4168  // Returns false if we find a dependent base.
4169  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4170    return false;
4171
4172  // Returns false if the class has a dependent base or if it or one
4173  // of its bases is present in the base set of the current context.
4174  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4175    return false;
4176
4177  Diag(SS.getRange().getBegin(),
4178       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4179    << (NestedNameSpecifier*) SS.getScopeRep()
4180    << cast<CXXRecordDecl>(CurContext)
4181    << SS.getRange();
4182
4183  return true;
4184}
4185
4186Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4187                                             SourceLocation NamespaceLoc,
4188                                             SourceLocation AliasLoc,
4189                                             IdentifierInfo *Alias,
4190                                             CXXScopeSpec &SS,
4191                                             SourceLocation IdentLoc,
4192                                             IdentifierInfo *Ident) {
4193
4194  // Lookup the namespace name.
4195  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4196  LookupParsedName(R, S, &SS);
4197
4198  // Check if we have a previous declaration with the same name.
4199  NamedDecl *PrevDecl
4200    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4201                       ForRedeclaration);
4202  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4203    PrevDecl = 0;
4204
4205  if (PrevDecl) {
4206    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4207      // We already have an alias with the same name that points to the same
4208      // namespace, so don't create a new one.
4209      // FIXME: At some point, we'll want to create the (redundant)
4210      // declaration to maintain better source information.
4211      if (!R.isAmbiguous() && !R.empty() &&
4212          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4213        return 0;
4214    }
4215
4216    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4217      diag::err_redefinition_different_kind;
4218    Diag(AliasLoc, DiagID) << Alias;
4219    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4220    return 0;
4221  }
4222
4223  if (R.isAmbiguous())
4224    return 0;
4225
4226  if (R.empty()) {
4227    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4228                                                CTC_NoKeywords, 0)) {
4229      if (R.getAsSingle<NamespaceDecl>() ||
4230          R.getAsSingle<NamespaceAliasDecl>()) {
4231        if (DeclContext *DC = computeDeclContext(SS, false))
4232          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4233            << Ident << DC << Corrected << SS.getRange()
4234            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4235        else
4236          Diag(IdentLoc, diag::err_using_directive_suggest)
4237            << Ident << Corrected
4238            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4239
4240        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4241          << Corrected;
4242
4243        Ident = Corrected.getAsIdentifierInfo();
4244      } else {
4245        R.clear();
4246        R.setLookupName(Ident);
4247      }
4248    }
4249
4250    if (R.empty()) {
4251      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4252      return 0;
4253    }
4254  }
4255
4256  NamespaceAliasDecl *AliasDecl =
4257    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4258                               Alias, SS.getRange(),
4259                               (NestedNameSpecifier *)SS.getScopeRep(),
4260                               IdentLoc, R.getFoundDecl());
4261
4262  PushOnScopeChains(AliasDecl, S);
4263  return AliasDecl;
4264}
4265
4266namespace {
4267  /// \brief Scoped object used to handle the state changes required in Sema
4268  /// to implicitly define the body of a C++ member function;
4269  class ImplicitlyDefinedFunctionScope {
4270    Sema &S;
4271    DeclContext *PreviousContext;
4272
4273  public:
4274    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4275      : S(S), PreviousContext(S.CurContext)
4276    {
4277      S.CurContext = Method;
4278      S.PushFunctionScope();
4279      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4280    }
4281
4282    ~ImplicitlyDefinedFunctionScope() {
4283      S.PopExpressionEvaluationContext();
4284      S.PopFunctionOrBlockScope();
4285      S.CurContext = PreviousContext;
4286    }
4287  };
4288}
4289
4290CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4291                                                     CXXRecordDecl *ClassDecl) {
4292  // C++ [class.ctor]p5:
4293  //   A default constructor for a class X is a constructor of class X
4294  //   that can be called without an argument. If there is no
4295  //   user-declared constructor for class X, a default constructor is
4296  //   implicitly declared. An implicitly-declared default constructor
4297  //   is an inline public member of its class.
4298  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4299         "Should not build implicit default constructor!");
4300
4301  // C++ [except.spec]p14:
4302  //   An implicitly declared special member function (Clause 12) shall have an
4303  //   exception-specification. [...]
4304  ImplicitExceptionSpecification ExceptSpec(Context);
4305
4306  // Direct base-class destructors.
4307  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4308                                       BEnd = ClassDecl->bases_end();
4309       B != BEnd; ++B) {
4310    if (B->isVirtual()) // Handled below.
4311      continue;
4312
4313    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4314      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4315      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4316        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4317      else if (CXXConstructorDecl *Constructor
4318                                       = BaseClassDecl->getDefaultConstructor())
4319        ExceptSpec.CalledDecl(Constructor);
4320    }
4321  }
4322
4323  // Virtual base-class destructors.
4324  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4325                                       BEnd = ClassDecl->vbases_end();
4326       B != BEnd; ++B) {
4327    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4328      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4329      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4330        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4331      else if (CXXConstructorDecl *Constructor
4332                                       = BaseClassDecl->getDefaultConstructor())
4333        ExceptSpec.CalledDecl(Constructor);
4334    }
4335  }
4336
4337  // Field destructors.
4338  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4339                               FEnd = ClassDecl->field_end();
4340       F != FEnd; ++F) {
4341    if (const RecordType *RecordTy
4342              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4343      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4344      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4345        ExceptSpec.CalledDecl(
4346                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4347      else if (CXXConstructorDecl *Constructor
4348                                      = FieldClassDecl->getDefaultConstructor())
4349        ExceptSpec.CalledDecl(Constructor);
4350    }
4351  }
4352
4353
4354  // Create the actual constructor declaration.
4355  CanQualType ClassType
4356    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4357  DeclarationName Name
4358    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4359  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4360  CXXConstructorDecl *DefaultCon
4361    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4362                                 Context.getFunctionType(Context.VoidTy,
4363                                                         0, 0, false, 0,
4364                                       ExceptSpec.hasExceptionSpecification(),
4365                                     ExceptSpec.hasAnyExceptionSpecification(),
4366                                                         ExceptSpec.size(),
4367                                                         ExceptSpec.data(),
4368                                                       FunctionType::ExtInfo()),
4369                                 /*TInfo=*/0,
4370                                 /*isExplicit=*/false,
4371                                 /*isInline=*/true,
4372                                 /*isImplicitlyDeclared=*/true);
4373  DefaultCon->setAccess(AS_public);
4374  DefaultCon->setImplicit();
4375  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4376
4377  // Note that we have declared this constructor.
4378  ClassDecl->setDeclaredDefaultConstructor(true);
4379  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4380
4381  if (Scope *S = getScopeForContext(ClassDecl))
4382    PushOnScopeChains(DefaultCon, S, false);
4383  ClassDecl->addDecl(DefaultCon);
4384
4385  return DefaultCon;
4386}
4387
4388void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4389                                            CXXConstructorDecl *Constructor) {
4390  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4391          !Constructor->isUsed(false)) &&
4392    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4393
4394  CXXRecordDecl *ClassDecl = Constructor->getParent();
4395  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4396
4397  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4398  ErrorTrap Trap(*this);
4399  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4400      Trap.hasErrorOccurred()) {
4401    Diag(CurrentLocation, diag::note_member_synthesized_at)
4402      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4403    Constructor->setInvalidDecl();
4404  } else {
4405    Constructor->setUsed();
4406    MarkVTableUsed(CurrentLocation, ClassDecl);
4407  }
4408}
4409
4410CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4411  // C++ [class.dtor]p2:
4412  //   If a class has no user-declared destructor, a destructor is
4413  //   declared implicitly. An implicitly-declared destructor is an
4414  //   inline public member of its class.
4415
4416  // C++ [except.spec]p14:
4417  //   An implicitly declared special member function (Clause 12) shall have
4418  //   an exception-specification.
4419  ImplicitExceptionSpecification ExceptSpec(Context);
4420
4421  // Direct base-class destructors.
4422  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4423                                       BEnd = ClassDecl->bases_end();
4424       B != BEnd; ++B) {
4425    if (B->isVirtual()) // Handled below.
4426      continue;
4427
4428    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4429      ExceptSpec.CalledDecl(
4430                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4431  }
4432
4433  // Virtual base-class destructors.
4434  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4435                                       BEnd = ClassDecl->vbases_end();
4436       B != BEnd; ++B) {
4437    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4438      ExceptSpec.CalledDecl(
4439                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4440  }
4441
4442  // Field destructors.
4443  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4444                               FEnd = ClassDecl->field_end();
4445       F != FEnd; ++F) {
4446    if (const RecordType *RecordTy
4447        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4448      ExceptSpec.CalledDecl(
4449                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4450  }
4451
4452  // Create the actual destructor declaration.
4453  QualType Ty = Context.getFunctionType(Context.VoidTy,
4454                                        0, 0, false, 0,
4455                                        ExceptSpec.hasExceptionSpecification(),
4456                                    ExceptSpec.hasAnyExceptionSpecification(),
4457                                        ExceptSpec.size(),
4458                                        ExceptSpec.data(),
4459                                        FunctionType::ExtInfo());
4460
4461  CanQualType ClassType
4462    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4463  DeclarationName Name
4464    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4465  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4466  CXXDestructorDecl *Destructor
4467    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4468                                /*isInline=*/true,
4469                                /*isImplicitlyDeclared=*/true);
4470  Destructor->setAccess(AS_public);
4471  Destructor->setImplicit();
4472  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4473
4474  // Note that we have declared this destructor.
4475  ClassDecl->setDeclaredDestructor(true);
4476  ++ASTContext::NumImplicitDestructorsDeclared;
4477
4478  // Introduce this destructor into its scope.
4479  if (Scope *S = getScopeForContext(ClassDecl))
4480    PushOnScopeChains(Destructor, S, false);
4481  ClassDecl->addDecl(Destructor);
4482
4483  // This could be uniqued if it ever proves significant.
4484  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4485
4486  AddOverriddenMethods(ClassDecl, Destructor);
4487
4488  return Destructor;
4489}
4490
4491void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4492                                    CXXDestructorDecl *Destructor) {
4493  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4494         "DefineImplicitDestructor - call it for implicit default dtor");
4495  CXXRecordDecl *ClassDecl = Destructor->getParent();
4496  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4497
4498  if (Destructor->isInvalidDecl())
4499    return;
4500
4501  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4502
4503  ErrorTrap Trap(*this);
4504  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4505                                         Destructor->getParent());
4506
4507  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4508    Diag(CurrentLocation, diag::note_member_synthesized_at)
4509      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4510
4511    Destructor->setInvalidDecl();
4512    return;
4513  }
4514
4515  Destructor->setUsed();
4516  MarkVTableUsed(CurrentLocation, ClassDecl);
4517}
4518
4519/// \brief Builds a statement that copies the given entity from \p From to
4520/// \c To.
4521///
4522/// This routine is used to copy the members of a class with an
4523/// implicitly-declared copy assignment operator. When the entities being
4524/// copied are arrays, this routine builds for loops to copy them.
4525///
4526/// \param S The Sema object used for type-checking.
4527///
4528/// \param Loc The location where the implicit copy is being generated.
4529///
4530/// \param T The type of the expressions being copied. Both expressions must
4531/// have this type.
4532///
4533/// \param To The expression we are copying to.
4534///
4535/// \param From The expression we are copying from.
4536///
4537/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4538/// Otherwise, it's a non-static member subobject.
4539///
4540/// \param Depth Internal parameter recording the depth of the recursion.
4541///
4542/// \returns A statement or a loop that copies the expressions.
4543static OwningStmtResult
4544BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4545                      Expr *To, Expr *From,
4546                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4547  // C++0x [class.copy]p30:
4548  //   Each subobject is assigned in the manner appropriate to its type:
4549  //
4550  //     - if the subobject is of class type, the copy assignment operator
4551  //       for the class is used (as if by explicit qualification; that is,
4552  //       ignoring any possible virtual overriding functions in more derived
4553  //       classes);
4554  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4555    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4556
4557    // Look for operator=.
4558    DeclarationName Name
4559      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4560    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4561    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4562
4563    // Filter out any result that isn't a copy-assignment operator.
4564    LookupResult::Filter F = OpLookup.makeFilter();
4565    while (F.hasNext()) {
4566      NamedDecl *D = F.next();
4567      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4568        if (Method->isCopyAssignmentOperator())
4569          continue;
4570
4571      F.erase();
4572    }
4573    F.done();
4574
4575    // Suppress the protected check (C++ [class.protected]) for each of the
4576    // assignment operators we found. This strange dance is required when
4577    // we're assigning via a base classes's copy-assignment operator. To
4578    // ensure that we're getting the right base class subobject (without
4579    // ambiguities), we need to cast "this" to that subobject type; to
4580    // ensure that we don't go through the virtual call mechanism, we need
4581    // to qualify the operator= name with the base class (see below). However,
4582    // this means that if the base class has a protected copy assignment
4583    // operator, the protected member access check will fail. So, we
4584    // rewrite "protected" access to "public" access in this case, since we
4585    // know by construction that we're calling from a derived class.
4586    if (CopyingBaseSubobject) {
4587      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4588           L != LEnd; ++L) {
4589        if (L.getAccess() == AS_protected)
4590          L.setAccess(AS_public);
4591      }
4592    }
4593
4594    // Create the nested-name-specifier that will be used to qualify the
4595    // reference to operator=; this is required to suppress the virtual
4596    // call mechanism.
4597    CXXScopeSpec SS;
4598    SS.setRange(Loc);
4599    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4600                                               T.getTypePtr()));
4601
4602    // Create the reference to operator=.
4603    OwningExprResult OpEqualRef
4604      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4605                                   /*FirstQualifierInScope=*/0, OpLookup,
4606                                   /*TemplateArgs=*/0,
4607                                   /*SuppressQualifierCheck=*/true);
4608    if (OpEqualRef.isInvalid())
4609      return S.StmtError();
4610
4611    // Build the call to the assignment operator.
4612
4613    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4614                                                      OpEqualRef.takeAs<Expr>(),
4615                                                        Loc, &From, 1, 0, Loc);
4616    if (Call.isInvalid())
4617      return S.StmtError();
4618
4619    return S.Owned(Call.takeAs<Stmt>());
4620  }
4621
4622  //     - if the subobject is of scalar type, the built-in assignment
4623  //       operator is used.
4624  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4625  if (!ArrayTy) {
4626    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4627                                                       BinaryOperator::Assign,
4628                                                       To,
4629                                                       From);
4630    if (Assignment.isInvalid())
4631      return S.StmtError();
4632
4633    return S.Owned(Assignment.takeAs<Stmt>());
4634  }
4635
4636  //     - if the subobject is an array, each element is assigned, in the
4637  //       manner appropriate to the element type;
4638
4639  // Construct a loop over the array bounds, e.g.,
4640  //
4641  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4642  //
4643  // that will copy each of the array elements.
4644  QualType SizeType = S.Context.getSizeType();
4645
4646  // Create the iteration variable.
4647  IdentifierInfo *IterationVarName = 0;
4648  {
4649    llvm::SmallString<8> Str;
4650    llvm::raw_svector_ostream OS(Str);
4651    OS << "__i" << Depth;
4652    IterationVarName = &S.Context.Idents.get(OS.str());
4653  }
4654  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4655                                          IterationVarName, SizeType,
4656                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4657                                          VarDecl::None, VarDecl::None);
4658
4659  // Initialize the iteration variable to zero.
4660  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4661  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4662
4663  // Create a reference to the iteration variable; we'll use this several
4664  // times throughout.
4665  Expr *IterationVarRef
4666    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4667  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4668
4669  // Create the DeclStmt that holds the iteration variable.
4670  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4671
4672  // Create the comparison against the array bound.
4673  llvm::APInt Upper = ArrayTy->getSize();
4674  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4675  Expr *Comparison
4676    = new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4677                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4678                                    BinaryOperator::NE, S.Context.BoolTy, Loc);
4679
4680  // Create the pre-increment of the iteration variable.
4681  Expr *Increment
4682    = new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4683                                    UnaryOperator::PreInc,
4684                                    SizeType, Loc);
4685
4686  // Subscript the "from" and "to" expressions with the iteration variable.
4687  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4688                                                         IterationVarRef, Loc));
4689  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4690                                                       IterationVarRef, Loc));
4691
4692  // Build the copy for an individual element of the array.
4693  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4694                                                ArrayTy->getElementType(),
4695                                                To, From,
4696                                                CopyingBaseSubobject, Depth+1);
4697  if (Copy.isInvalid())
4698    return S.StmtError();
4699
4700  // Construct the loop that copies all elements of this array.
4701  return S.ActOnForStmt(Loc, Loc, InitStmt,
4702                        S.MakeFullExpr(Comparison),
4703                        0, S.MakeFullExpr(Increment),
4704                        Loc, Copy.take());
4705}
4706
4707/// \brief Determine whether the given class has a copy assignment operator
4708/// that accepts a const-qualified argument.
4709static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4710  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4711
4712  if (!Class->hasDeclaredCopyAssignment())
4713    S.DeclareImplicitCopyAssignment(Class);
4714
4715  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4716  DeclarationName OpName
4717    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4718
4719  DeclContext::lookup_const_iterator Op, OpEnd;
4720  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4721    // C++ [class.copy]p9:
4722    //   A user-declared copy assignment operator is a non-static non-template
4723    //   member function of class X with exactly one parameter of type X, X&,
4724    //   const X&, volatile X& or const volatile X&.
4725    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4726    if (!Method)
4727      continue;
4728
4729    if (Method->isStatic())
4730      continue;
4731    if (Method->getPrimaryTemplate())
4732      continue;
4733    const FunctionProtoType *FnType =
4734    Method->getType()->getAs<FunctionProtoType>();
4735    assert(FnType && "Overloaded operator has no prototype.");
4736    // Don't assert on this; an invalid decl might have been left in the AST.
4737    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4738      continue;
4739    bool AcceptsConst = true;
4740    QualType ArgType = FnType->getArgType(0);
4741    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4742      ArgType = Ref->getPointeeType();
4743      // Is it a non-const lvalue reference?
4744      if (!ArgType.isConstQualified())
4745        AcceptsConst = false;
4746    }
4747    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4748      continue;
4749
4750    // We have a single argument of type cv X or cv X&, i.e. we've found the
4751    // copy assignment operator. Return whether it accepts const arguments.
4752    return AcceptsConst;
4753  }
4754  assert(Class->isInvalidDecl() &&
4755         "No copy assignment operator declared in valid code.");
4756  return false;
4757}
4758
4759CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4760  // Note: The following rules are largely analoguous to the copy
4761  // constructor rules. Note that virtual bases are not taken into account
4762  // for determining the argument type of the operator. Note also that
4763  // operators taking an object instead of a reference are allowed.
4764
4765
4766  // C++ [class.copy]p10:
4767  //   If the class definition does not explicitly declare a copy
4768  //   assignment operator, one is declared implicitly.
4769  //   The implicitly-defined copy assignment operator for a class X
4770  //   will have the form
4771  //
4772  //       X& X::operator=(const X&)
4773  //
4774  //   if
4775  bool HasConstCopyAssignment = true;
4776
4777  //       -- each direct base class B of X has a copy assignment operator
4778  //          whose parameter is of type const B&, const volatile B& or B,
4779  //          and
4780  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4781                                       BaseEnd = ClassDecl->bases_end();
4782       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4783    assert(!Base->getType()->isDependentType() &&
4784           "Cannot generate implicit members for class with dependent bases.");
4785    const CXXRecordDecl *BaseClassDecl
4786      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4787    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4788  }
4789
4790  //       -- for all the nonstatic data members of X that are of a class
4791  //          type M (or array thereof), each such class type has a copy
4792  //          assignment operator whose parameter is of type const M&,
4793  //          const volatile M& or M.
4794  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4795                                  FieldEnd = ClassDecl->field_end();
4796       HasConstCopyAssignment && Field != FieldEnd;
4797       ++Field) {
4798    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4799    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4800      const CXXRecordDecl *FieldClassDecl
4801        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4802      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4803    }
4804  }
4805
4806  //   Otherwise, the implicitly declared copy assignment operator will
4807  //   have the form
4808  //
4809  //       X& X::operator=(X&)
4810  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4811  QualType RetType = Context.getLValueReferenceType(ArgType);
4812  if (HasConstCopyAssignment)
4813    ArgType = ArgType.withConst();
4814  ArgType = Context.getLValueReferenceType(ArgType);
4815
4816  // C++ [except.spec]p14:
4817  //   An implicitly declared special member function (Clause 12) shall have an
4818  //   exception-specification. [...]
4819  ImplicitExceptionSpecification ExceptSpec(Context);
4820  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4821                                       BaseEnd = ClassDecl->bases_end();
4822       Base != BaseEnd; ++Base) {
4823    CXXRecordDecl *BaseClassDecl
4824      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4825
4826    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4827      DeclareImplicitCopyAssignment(BaseClassDecl);
4828
4829    if (CXXMethodDecl *CopyAssign
4830           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4831      ExceptSpec.CalledDecl(CopyAssign);
4832  }
4833  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4834                                  FieldEnd = ClassDecl->field_end();
4835       Field != FieldEnd;
4836       ++Field) {
4837    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4838    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4839      CXXRecordDecl *FieldClassDecl
4840        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4841
4842      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4843        DeclareImplicitCopyAssignment(FieldClassDecl);
4844
4845      if (CXXMethodDecl *CopyAssign
4846            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4847        ExceptSpec.CalledDecl(CopyAssign);
4848    }
4849  }
4850
4851  //   An implicitly-declared copy assignment operator is an inline public
4852  //   member of its class.
4853  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4854  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4855  CXXMethodDecl *CopyAssignment
4856    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4857                            Context.getFunctionType(RetType, &ArgType, 1,
4858                                                    false, 0,
4859                                         ExceptSpec.hasExceptionSpecification(),
4860                                      ExceptSpec.hasAnyExceptionSpecification(),
4861                                                    ExceptSpec.size(),
4862                                                    ExceptSpec.data(),
4863                                                    FunctionType::ExtInfo()),
4864                            /*TInfo=*/0, /*isStatic=*/false,
4865                            /*StorageClassAsWritten=*/FunctionDecl::None,
4866                            /*isInline=*/true);
4867  CopyAssignment->setAccess(AS_public);
4868  CopyAssignment->setImplicit();
4869  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4870  CopyAssignment->setCopyAssignment(true);
4871
4872  // Add the parameter to the operator.
4873  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4874                                               ClassDecl->getLocation(),
4875                                               /*Id=*/0,
4876                                               ArgType, /*TInfo=*/0,
4877                                               VarDecl::None,
4878                                               VarDecl::None, 0);
4879  CopyAssignment->setParams(&FromParam, 1);
4880
4881  // Note that we have added this copy-assignment operator.
4882  ClassDecl->setDeclaredCopyAssignment(true);
4883  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4884
4885  if (Scope *S = getScopeForContext(ClassDecl))
4886    PushOnScopeChains(CopyAssignment, S, false);
4887  ClassDecl->addDecl(CopyAssignment);
4888
4889  AddOverriddenMethods(ClassDecl, CopyAssignment);
4890  return CopyAssignment;
4891}
4892
4893void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4894                                        CXXMethodDecl *CopyAssignOperator) {
4895  assert((CopyAssignOperator->isImplicit() &&
4896          CopyAssignOperator->isOverloadedOperator() &&
4897          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4898          !CopyAssignOperator->isUsed(false)) &&
4899         "DefineImplicitCopyAssignment called for wrong function");
4900
4901  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4902
4903  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4904    CopyAssignOperator->setInvalidDecl();
4905    return;
4906  }
4907
4908  CopyAssignOperator->setUsed();
4909
4910  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4911  ErrorTrap Trap(*this);
4912
4913  // C++0x [class.copy]p30:
4914  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4915  //   for a non-union class X performs memberwise copy assignment of its
4916  //   subobjects. The direct base classes of X are assigned first, in the
4917  //   order of their declaration in the base-specifier-list, and then the
4918  //   immediate non-static data members of X are assigned, in the order in
4919  //   which they were declared in the class definition.
4920
4921  // The statements that form the synthesized function body.
4922  ASTOwningVector<Stmt*> Statements(*this);
4923
4924  // The parameter for the "other" object, which we are copying from.
4925  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4926  Qualifiers OtherQuals = Other->getType().getQualifiers();
4927  QualType OtherRefType = Other->getType();
4928  if (const LValueReferenceType *OtherRef
4929                                = OtherRefType->getAs<LValueReferenceType>()) {
4930    OtherRefType = OtherRef->getPointeeType();
4931    OtherQuals = OtherRefType.getQualifiers();
4932  }
4933
4934  // Our location for everything implicitly-generated.
4935  SourceLocation Loc = CopyAssignOperator->getLocation();
4936
4937  // Construct a reference to the "other" object. We'll be using this
4938  // throughout the generated ASTs.
4939  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4940  assert(OtherRef && "Reference to parameter cannot fail!");
4941
4942  // Construct the "this" pointer. We'll be using this throughout the generated
4943  // ASTs.
4944  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4945  assert(This && "Reference to this cannot fail!");
4946
4947  // Assign base classes.
4948  bool Invalid = false;
4949  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4950       E = ClassDecl->bases_end(); Base != E; ++Base) {
4951    // Form the assignment:
4952    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4953    QualType BaseType = Base->getType().getUnqualifiedType();
4954    CXXRecordDecl *BaseClassDecl = 0;
4955    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4956      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4957    else {
4958      Invalid = true;
4959      continue;
4960    }
4961
4962    CXXCastPath BasePath;
4963    BasePath.push_back(Base);
4964
4965    // Construct the "from" expression, which is an implicit cast to the
4966    // appropriately-qualified base type.
4967    Expr *From = OtherRef->Retain();
4968    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4969                      CastExpr::CK_UncheckedDerivedToBase,
4970                      ImplicitCastExpr::LValue, &BasePath);
4971
4972    // Dereference "this".
4973    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref, This);
4974
4975    // Implicitly cast "this" to the appropriately-qualified base type.
4976    Expr *ToE = To.takeAs<Expr>();
4977    ImpCastExprToType(ToE,
4978                      Context.getCVRQualifiedType(BaseType,
4979                                      CopyAssignOperator->getTypeQualifiers()),
4980                      CastExpr::CK_UncheckedDerivedToBase,
4981                      ImplicitCastExpr::LValue, &BasePath);
4982    To = Owned(ToE);
4983
4984    // Build the copy.
4985    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4986                                                  To.get(), From,
4987                                                /*CopyingBaseSubobject=*/true);
4988    if (Copy.isInvalid()) {
4989      Diag(CurrentLocation, diag::note_member_synthesized_at)
4990        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4991      CopyAssignOperator->setInvalidDecl();
4992      return;
4993    }
4994
4995    // Success! Record the copy.
4996    Statements.push_back(Copy.takeAs<Expr>());
4997  }
4998
4999  // \brief Reference to the __builtin_memcpy function.
5000  Expr *BuiltinMemCpyRef = 0;
5001  // \brief Reference to the __builtin_objc_memmove_collectable function.
5002  Expr *CollectableMemCpyRef = 0;
5003
5004  // Assign non-static members.
5005  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5006                                  FieldEnd = ClassDecl->field_end();
5007       Field != FieldEnd; ++Field) {
5008    // Check for members of reference type; we can't copy those.
5009    if (Field->getType()->isReferenceType()) {
5010      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5011        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5012      Diag(Field->getLocation(), diag::note_declared_at);
5013      Diag(CurrentLocation, diag::note_member_synthesized_at)
5014        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5015      Invalid = true;
5016      continue;
5017    }
5018
5019    // Check for members of const-qualified, non-class type.
5020    QualType BaseType = Context.getBaseElementType(Field->getType());
5021    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5022      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5023        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5024      Diag(Field->getLocation(), diag::note_declared_at);
5025      Diag(CurrentLocation, diag::note_member_synthesized_at)
5026        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5027      Invalid = true;
5028      continue;
5029    }
5030
5031    QualType FieldType = Field->getType().getNonReferenceType();
5032    if (FieldType->isIncompleteArrayType()) {
5033      assert(ClassDecl->hasFlexibleArrayMember() &&
5034             "Incomplete array type is not valid");
5035      continue;
5036    }
5037
5038    // Build references to the field in the object we're copying from and to.
5039    CXXScopeSpec SS; // Intentionally empty
5040    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5041                              LookupMemberName);
5042    MemberLookup.addDecl(*Field);
5043    MemberLookup.resolveKind();
5044    OwningExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5045                                                     Loc, /*IsArrow=*/false,
5046                                                     SS, 0, MemberLookup, 0);
5047    OwningExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5048                                                   Loc, /*IsArrow=*/true,
5049                                                   SS, 0, MemberLookup, 0);
5050    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5051    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5052
5053    // If the field should be copied with __builtin_memcpy rather than via
5054    // explicit assignments, do so. This optimization only applies for arrays
5055    // of scalars and arrays of class type with trivial copy-assignment
5056    // operators.
5057    if (FieldType->isArrayType() &&
5058        (!BaseType->isRecordType() ||
5059         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5060           ->hasTrivialCopyAssignment())) {
5061      // Compute the size of the memory buffer to be copied.
5062      QualType SizeType = Context.getSizeType();
5063      llvm::APInt Size(Context.getTypeSize(SizeType),
5064                       Context.getTypeSizeInChars(BaseType).getQuantity());
5065      for (const ConstantArrayType *Array
5066              = Context.getAsConstantArrayType(FieldType);
5067           Array;
5068           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5069        llvm::APInt ArraySize = Array->getSize();
5070        ArraySize.zextOrTrunc(Size.getBitWidth());
5071        Size *= ArraySize;
5072      }
5073
5074      // Take the address of the field references for "from" and "to".
5075      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, From.get());
5076      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, To.get());
5077
5078      bool NeedsCollectableMemCpy =
5079          (BaseType->isRecordType() &&
5080           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5081
5082      if (NeedsCollectableMemCpy) {
5083        if (!CollectableMemCpyRef) {
5084          // Create a reference to the __builtin_objc_memmove_collectable function.
5085          LookupResult R(*this,
5086                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5087                         Loc, LookupOrdinaryName);
5088          LookupName(R, TUScope, true);
5089
5090          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5091          if (!CollectableMemCpy) {
5092            // Something went horribly wrong earlier, and we will have
5093            // complained about it.
5094            Invalid = true;
5095            continue;
5096          }
5097
5098          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5099                                                  CollectableMemCpy->getType(),
5100                                                  Loc, 0).takeAs<Expr>();
5101          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5102        }
5103      }
5104      // Create a reference to the __builtin_memcpy builtin function.
5105      else if (!BuiltinMemCpyRef) {
5106        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5107                       LookupOrdinaryName);
5108        LookupName(R, TUScope, true);
5109
5110        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5111        if (!BuiltinMemCpy) {
5112          // Something went horribly wrong earlier, and we will have complained
5113          // about it.
5114          Invalid = true;
5115          continue;
5116        }
5117
5118        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5119                                            BuiltinMemCpy->getType(),
5120                                            Loc, 0).takeAs<Expr>();
5121        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5122      }
5123
5124      ASTOwningVector<Expr*> CallArgs(*this);
5125      CallArgs.push_back(To.takeAs<Expr>());
5126      CallArgs.push_back(From.takeAs<Expr>());
5127      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5128      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5129      Commas.push_back(Loc);
5130      Commas.push_back(Loc);
5131      OwningExprResult Call = ExprError();
5132      if (NeedsCollectableMemCpy)
5133        Call = ActOnCallExpr(/*Scope=*/0,
5134                             CollectableMemCpyRef,
5135                             Loc, move_arg(CallArgs),
5136                             Commas.data(), Loc);
5137      else
5138        Call = ActOnCallExpr(/*Scope=*/0,
5139                             BuiltinMemCpyRef,
5140                             Loc, move_arg(CallArgs),
5141                             Commas.data(), Loc);
5142
5143      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5144      Statements.push_back(Call.takeAs<Expr>());
5145      continue;
5146    }
5147
5148    // Build the copy of this field.
5149    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5150                                                  To.get(), From.get(),
5151                                              /*CopyingBaseSubobject=*/false);
5152    if (Copy.isInvalid()) {
5153      Diag(CurrentLocation, diag::note_member_synthesized_at)
5154        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5155      CopyAssignOperator->setInvalidDecl();
5156      return;
5157    }
5158
5159    // Success! Record the copy.
5160    Statements.push_back(Copy.takeAs<Stmt>());
5161  }
5162
5163  if (!Invalid) {
5164    // Add a "return *this;"
5165    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5166                                                    This);
5167
5168    OwningStmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5169    if (Return.isInvalid())
5170      Invalid = true;
5171    else {
5172      Statements.push_back(Return.takeAs<Stmt>());
5173
5174      if (Trap.hasErrorOccurred()) {
5175        Diag(CurrentLocation, diag::note_member_synthesized_at)
5176          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5177        Invalid = true;
5178      }
5179    }
5180  }
5181
5182  if (Invalid) {
5183    CopyAssignOperator->setInvalidDecl();
5184    return;
5185  }
5186
5187  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5188                                            /*isStmtExpr=*/false);
5189  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5190  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5191}
5192
5193CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5194                                                    CXXRecordDecl *ClassDecl) {
5195  // C++ [class.copy]p4:
5196  //   If the class definition does not explicitly declare a copy
5197  //   constructor, one is declared implicitly.
5198
5199  // C++ [class.copy]p5:
5200  //   The implicitly-declared copy constructor for a class X will
5201  //   have the form
5202  //
5203  //       X::X(const X&)
5204  //
5205  //   if
5206  bool HasConstCopyConstructor = true;
5207
5208  //     -- each direct or virtual base class B of X has a copy
5209  //        constructor whose first parameter is of type const B& or
5210  //        const volatile B&, and
5211  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5212                                       BaseEnd = ClassDecl->bases_end();
5213       HasConstCopyConstructor && Base != BaseEnd;
5214       ++Base) {
5215    // Virtual bases are handled below.
5216    if (Base->isVirtual())
5217      continue;
5218
5219    CXXRecordDecl *BaseClassDecl
5220      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5221    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5222      DeclareImplicitCopyConstructor(BaseClassDecl);
5223
5224    HasConstCopyConstructor
5225      = BaseClassDecl->hasConstCopyConstructor(Context);
5226  }
5227
5228  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5229                                       BaseEnd = ClassDecl->vbases_end();
5230       HasConstCopyConstructor && Base != BaseEnd;
5231       ++Base) {
5232    CXXRecordDecl *BaseClassDecl
5233      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5234    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5235      DeclareImplicitCopyConstructor(BaseClassDecl);
5236
5237    HasConstCopyConstructor
5238      = BaseClassDecl->hasConstCopyConstructor(Context);
5239  }
5240
5241  //     -- for all the nonstatic data members of X that are of a
5242  //        class type M (or array thereof), each such class type
5243  //        has a copy constructor whose first parameter is of type
5244  //        const M& or const volatile M&.
5245  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5246                                  FieldEnd = ClassDecl->field_end();
5247       HasConstCopyConstructor && Field != FieldEnd;
5248       ++Field) {
5249    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5250    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5251      CXXRecordDecl *FieldClassDecl
5252        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5253      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5254        DeclareImplicitCopyConstructor(FieldClassDecl);
5255
5256      HasConstCopyConstructor
5257        = FieldClassDecl->hasConstCopyConstructor(Context);
5258    }
5259  }
5260
5261  //   Otherwise, the implicitly declared copy constructor will have
5262  //   the form
5263  //
5264  //       X::X(X&)
5265  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5266  QualType ArgType = ClassType;
5267  if (HasConstCopyConstructor)
5268    ArgType = ArgType.withConst();
5269  ArgType = Context.getLValueReferenceType(ArgType);
5270
5271  // C++ [except.spec]p14:
5272  //   An implicitly declared special member function (Clause 12) shall have an
5273  //   exception-specification. [...]
5274  ImplicitExceptionSpecification ExceptSpec(Context);
5275  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5276  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5277                                       BaseEnd = ClassDecl->bases_end();
5278       Base != BaseEnd;
5279       ++Base) {
5280    // Virtual bases are handled below.
5281    if (Base->isVirtual())
5282      continue;
5283
5284    CXXRecordDecl *BaseClassDecl
5285      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5286    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5287      DeclareImplicitCopyConstructor(BaseClassDecl);
5288
5289    if (CXXConstructorDecl *CopyConstructor
5290                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5291      ExceptSpec.CalledDecl(CopyConstructor);
5292  }
5293  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5294                                       BaseEnd = ClassDecl->vbases_end();
5295       Base != BaseEnd;
5296       ++Base) {
5297    CXXRecordDecl *BaseClassDecl
5298      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5299    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5300      DeclareImplicitCopyConstructor(BaseClassDecl);
5301
5302    if (CXXConstructorDecl *CopyConstructor
5303                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5304      ExceptSpec.CalledDecl(CopyConstructor);
5305  }
5306  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5307                                  FieldEnd = ClassDecl->field_end();
5308       Field != FieldEnd;
5309       ++Field) {
5310    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5311    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5312      CXXRecordDecl *FieldClassDecl
5313        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5314      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5315        DeclareImplicitCopyConstructor(FieldClassDecl);
5316
5317      if (CXXConstructorDecl *CopyConstructor
5318                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5319        ExceptSpec.CalledDecl(CopyConstructor);
5320    }
5321  }
5322
5323  //   An implicitly-declared copy constructor is an inline public
5324  //   member of its class.
5325  DeclarationName Name
5326    = Context.DeclarationNames.getCXXConstructorName(
5327                                           Context.getCanonicalType(ClassType));
5328  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5329  CXXConstructorDecl *CopyConstructor
5330    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5331                                 Context.getFunctionType(Context.VoidTy,
5332                                                         &ArgType, 1,
5333                                                         false, 0,
5334                                         ExceptSpec.hasExceptionSpecification(),
5335                                      ExceptSpec.hasAnyExceptionSpecification(),
5336                                                         ExceptSpec.size(),
5337                                                         ExceptSpec.data(),
5338                                                       FunctionType::ExtInfo()),
5339                                 /*TInfo=*/0,
5340                                 /*isExplicit=*/false,
5341                                 /*isInline=*/true,
5342                                 /*isImplicitlyDeclared=*/true);
5343  CopyConstructor->setAccess(AS_public);
5344  CopyConstructor->setImplicit();
5345  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5346
5347  // Note that we have declared this constructor.
5348  ClassDecl->setDeclaredCopyConstructor(true);
5349  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5350
5351  // Add the parameter to the constructor.
5352  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5353                                               ClassDecl->getLocation(),
5354                                               /*IdentifierInfo=*/0,
5355                                               ArgType, /*TInfo=*/0,
5356                                               VarDecl::None,
5357                                               VarDecl::None, 0);
5358  CopyConstructor->setParams(&FromParam, 1);
5359  if (Scope *S = getScopeForContext(ClassDecl))
5360    PushOnScopeChains(CopyConstructor, S, false);
5361  ClassDecl->addDecl(CopyConstructor);
5362
5363  return CopyConstructor;
5364}
5365
5366void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5367                                   CXXConstructorDecl *CopyConstructor,
5368                                   unsigned TypeQuals) {
5369  assert((CopyConstructor->isImplicit() &&
5370          CopyConstructor->isCopyConstructor(TypeQuals) &&
5371          !CopyConstructor->isUsed(false)) &&
5372         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5373
5374  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5375  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5376
5377  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5378  ErrorTrap Trap(*this);
5379
5380  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5381      Trap.hasErrorOccurred()) {
5382    Diag(CurrentLocation, diag::note_member_synthesized_at)
5383      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5384    CopyConstructor->setInvalidDecl();
5385  }  else {
5386    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5387                                               CopyConstructor->getLocation(),
5388                                               MultiStmtArg(*this, 0, 0),
5389                                               /*isStmtExpr=*/false)
5390                                                              .takeAs<Stmt>());
5391  }
5392
5393  CopyConstructor->setUsed();
5394}
5395
5396Sema::OwningExprResult
5397Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5398                            CXXConstructorDecl *Constructor,
5399                            MultiExprArg ExprArgs,
5400                            bool RequiresZeroInit,
5401                            CXXConstructExpr::ConstructionKind ConstructKind) {
5402  bool Elidable = false;
5403
5404  // C++0x [class.copy]p34:
5405  //   When certain criteria are met, an implementation is allowed to
5406  //   omit the copy/move construction of a class object, even if the
5407  //   copy/move constructor and/or destructor for the object have
5408  //   side effects. [...]
5409  //     - when a temporary class object that has not been bound to a
5410  //       reference (12.2) would be copied/moved to a class object
5411  //       with the same cv-unqualified type, the copy/move operation
5412  //       can be omitted by constructing the temporary object
5413  //       directly into the target of the omitted copy/move
5414  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5415    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5416    Elidable = SubExpr->isTemporaryObject() &&
5417      ConstructKind == CXXConstructExpr::CK_Complete &&
5418      Context.hasSameUnqualifiedType(SubExpr->getType(),
5419                           Context.getTypeDeclType(Constructor->getParent()));
5420  }
5421
5422  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5423                               Elidable, move(ExprArgs), RequiresZeroInit,
5424                               ConstructKind);
5425}
5426
5427/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5428/// including handling of its default argument expressions.
5429Sema::OwningExprResult
5430Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5431                            CXXConstructorDecl *Constructor, bool Elidable,
5432                            MultiExprArg ExprArgs,
5433                            bool RequiresZeroInit,
5434                            CXXConstructExpr::ConstructionKind ConstructKind) {
5435  unsigned NumExprs = ExprArgs.size();
5436  Expr **Exprs = (Expr **)ExprArgs.release();
5437
5438  MarkDeclarationReferenced(ConstructLoc, Constructor);
5439  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5440                                        Constructor, Elidable, Exprs, NumExprs,
5441                                        RequiresZeroInit, ConstructKind));
5442}
5443
5444bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5445                                        CXXConstructorDecl *Constructor,
5446                                        MultiExprArg Exprs) {
5447  OwningExprResult TempResult =
5448    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5449                          move(Exprs));
5450  if (TempResult.isInvalid())
5451    return true;
5452
5453  Expr *Temp = TempResult.takeAs<Expr>();
5454  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5455  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5456  VD->setInit(Temp);
5457
5458  return false;
5459}
5460
5461void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5462  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5463  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5464      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5465    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5466    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5467    CheckDestructorAccess(VD->getLocation(), Destructor,
5468                          PDiag(diag::err_access_dtor_var)
5469                            << VD->getDeclName()
5470                            << VD->getType());
5471
5472    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5473      Diag(VD->getLocation(), diag::warn_global_destructor);
5474  }
5475}
5476
5477/// AddCXXDirectInitializerToDecl - This action is called immediately after
5478/// ActOnDeclarator, when a C++ direct initializer is present.
5479/// e.g: "int x(1);"
5480void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5481                                         SourceLocation LParenLoc,
5482                                         MultiExprArg Exprs,
5483                                         SourceLocation *CommaLocs,
5484                                         SourceLocation RParenLoc) {
5485  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5486
5487  // If there is no declaration, there was an error parsing it.  Just ignore
5488  // the initializer.
5489  if (RealDecl == 0)
5490    return;
5491
5492  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5493  if (!VDecl) {
5494    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5495    RealDecl->setInvalidDecl();
5496    return;
5497  }
5498
5499  // We will represent direct-initialization similarly to copy-initialization:
5500  //    int x(1);  -as-> int x = 1;
5501  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5502  //
5503  // Clients that want to distinguish between the two forms, can check for
5504  // direct initializer using VarDecl::hasCXXDirectInitializer().
5505  // A major benefit is that clients that don't particularly care about which
5506  // exactly form was it (like the CodeGen) can handle both cases without
5507  // special case code.
5508
5509  // C++ 8.5p11:
5510  // The form of initialization (using parentheses or '=') is generally
5511  // insignificant, but does matter when the entity being initialized has a
5512  // class type.
5513
5514  if (!VDecl->getType()->isDependentType() &&
5515      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5516                          diag::err_typecheck_decl_incomplete_type)) {
5517    VDecl->setInvalidDecl();
5518    return;
5519  }
5520
5521  // The variable can not have an abstract class type.
5522  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5523                             diag::err_abstract_type_in_decl,
5524                             AbstractVariableType))
5525    VDecl->setInvalidDecl();
5526
5527  const VarDecl *Def;
5528  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5529    Diag(VDecl->getLocation(), diag::err_redefinition)
5530    << VDecl->getDeclName();
5531    Diag(Def->getLocation(), diag::note_previous_definition);
5532    VDecl->setInvalidDecl();
5533    return;
5534  }
5535
5536  // C++ [class.static.data]p4
5537  //   If a static data member is of const integral or const
5538  //   enumeration type, its declaration in the class definition can
5539  //   specify a constant-initializer which shall be an integral
5540  //   constant expression (5.19). In that case, the member can appear
5541  //   in integral constant expressions. The member shall still be
5542  //   defined in a namespace scope if it is used in the program and the
5543  //   namespace scope definition shall not contain an initializer.
5544  //
5545  // We already performed a redefinition check above, but for static
5546  // data members we also need to check whether there was an in-class
5547  // declaration with an initializer.
5548  const VarDecl* PrevInit = 0;
5549  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5550    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5551    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5552    return;
5553  }
5554
5555  // If either the declaration has a dependent type or if any of the
5556  // expressions is type-dependent, we represent the initialization
5557  // via a ParenListExpr for later use during template instantiation.
5558  if (VDecl->getType()->isDependentType() ||
5559      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5560    // Let clients know that initialization was done with a direct initializer.
5561    VDecl->setCXXDirectInitializer(true);
5562
5563    // Store the initialization expressions as a ParenListExpr.
5564    unsigned NumExprs = Exprs.size();
5565    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5566                                               (Expr **)Exprs.release(),
5567                                               NumExprs, RParenLoc));
5568    return;
5569  }
5570
5571  // Capture the variable that is being initialized and the style of
5572  // initialization.
5573  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5574
5575  // FIXME: Poor source location information.
5576  InitializationKind Kind
5577    = InitializationKind::CreateDirect(VDecl->getLocation(),
5578                                       LParenLoc, RParenLoc);
5579
5580  InitializationSequence InitSeq(*this, Entity, Kind,
5581                                 Exprs.get(), Exprs.size());
5582  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5583  if (Result.isInvalid()) {
5584    VDecl->setInvalidDecl();
5585    return;
5586  }
5587
5588  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5589  VDecl->setInit(Result.takeAs<Expr>());
5590  VDecl->setCXXDirectInitializer(true);
5591
5592    if (!VDecl->isInvalidDecl() &&
5593        !VDecl->getDeclContext()->isDependentContext() &&
5594        VDecl->hasGlobalStorage() &&
5595        !VDecl->getInit()->isConstantInitializer(Context,
5596                                        VDecl->getType()->isReferenceType()))
5597      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5598        << VDecl->getInit()->getSourceRange();
5599
5600  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5601    FinalizeVarWithDestructor(VDecl, Record);
5602}
5603
5604/// \brief Given a constructor and the set of arguments provided for the
5605/// constructor, convert the arguments and add any required default arguments
5606/// to form a proper call to this constructor.
5607///
5608/// \returns true if an error occurred, false otherwise.
5609bool
5610Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5611                              MultiExprArg ArgsPtr,
5612                              SourceLocation Loc,
5613                              ASTOwningVector<Expr*> &ConvertedArgs) {
5614  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5615  unsigned NumArgs = ArgsPtr.size();
5616  Expr **Args = (Expr **)ArgsPtr.get();
5617
5618  const FunctionProtoType *Proto
5619    = Constructor->getType()->getAs<FunctionProtoType>();
5620  assert(Proto && "Constructor without a prototype?");
5621  unsigned NumArgsInProto = Proto->getNumArgs();
5622
5623  // If too few arguments are available, we'll fill in the rest with defaults.
5624  if (NumArgs < NumArgsInProto)
5625    ConvertedArgs.reserve(NumArgsInProto);
5626  else
5627    ConvertedArgs.reserve(NumArgs);
5628
5629  VariadicCallType CallType =
5630    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5631  llvm::SmallVector<Expr *, 8> AllArgs;
5632  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5633                                        Proto, 0, Args, NumArgs, AllArgs,
5634                                        CallType);
5635  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5636    ConvertedArgs.push_back(AllArgs[i]);
5637  return Invalid;
5638}
5639
5640static inline bool
5641CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5642                                       const FunctionDecl *FnDecl) {
5643  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5644  if (isa<NamespaceDecl>(DC)) {
5645    return SemaRef.Diag(FnDecl->getLocation(),
5646                        diag::err_operator_new_delete_declared_in_namespace)
5647      << FnDecl->getDeclName();
5648  }
5649
5650  if (isa<TranslationUnitDecl>(DC) &&
5651      FnDecl->getStorageClass() == FunctionDecl::Static) {
5652    return SemaRef.Diag(FnDecl->getLocation(),
5653                        diag::err_operator_new_delete_declared_static)
5654      << FnDecl->getDeclName();
5655  }
5656
5657  return false;
5658}
5659
5660static inline bool
5661CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5662                            CanQualType ExpectedResultType,
5663                            CanQualType ExpectedFirstParamType,
5664                            unsigned DependentParamTypeDiag,
5665                            unsigned InvalidParamTypeDiag) {
5666  QualType ResultType =
5667    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5668
5669  // Check that the result type is not dependent.
5670  if (ResultType->isDependentType())
5671    return SemaRef.Diag(FnDecl->getLocation(),
5672                        diag::err_operator_new_delete_dependent_result_type)
5673    << FnDecl->getDeclName() << ExpectedResultType;
5674
5675  // Check that the result type is what we expect.
5676  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5677    return SemaRef.Diag(FnDecl->getLocation(),
5678                        diag::err_operator_new_delete_invalid_result_type)
5679    << FnDecl->getDeclName() << ExpectedResultType;
5680
5681  // A function template must have at least 2 parameters.
5682  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5683    return SemaRef.Diag(FnDecl->getLocation(),
5684                      diag::err_operator_new_delete_template_too_few_parameters)
5685        << FnDecl->getDeclName();
5686
5687  // The function decl must have at least 1 parameter.
5688  if (FnDecl->getNumParams() == 0)
5689    return SemaRef.Diag(FnDecl->getLocation(),
5690                        diag::err_operator_new_delete_too_few_parameters)
5691      << FnDecl->getDeclName();
5692
5693  // Check the the first parameter type is not dependent.
5694  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5695  if (FirstParamType->isDependentType())
5696    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5697      << FnDecl->getDeclName() << ExpectedFirstParamType;
5698
5699  // Check that the first parameter type is what we expect.
5700  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5701      ExpectedFirstParamType)
5702    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5703    << FnDecl->getDeclName() << ExpectedFirstParamType;
5704
5705  return false;
5706}
5707
5708static bool
5709CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5710  // C++ [basic.stc.dynamic.allocation]p1:
5711  //   A program is ill-formed if an allocation function is declared in a
5712  //   namespace scope other than global scope or declared static in global
5713  //   scope.
5714  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5715    return true;
5716
5717  CanQualType SizeTy =
5718    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5719
5720  // C++ [basic.stc.dynamic.allocation]p1:
5721  //  The return type shall be void*. The first parameter shall have type
5722  //  std::size_t.
5723  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5724                                  SizeTy,
5725                                  diag::err_operator_new_dependent_param_type,
5726                                  diag::err_operator_new_param_type))
5727    return true;
5728
5729  // C++ [basic.stc.dynamic.allocation]p1:
5730  //  The first parameter shall not have an associated default argument.
5731  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5732    return SemaRef.Diag(FnDecl->getLocation(),
5733                        diag::err_operator_new_default_arg)
5734      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5735
5736  return false;
5737}
5738
5739static bool
5740CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5741  // C++ [basic.stc.dynamic.deallocation]p1:
5742  //   A program is ill-formed if deallocation functions are declared in a
5743  //   namespace scope other than global scope or declared static in global
5744  //   scope.
5745  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5746    return true;
5747
5748  // C++ [basic.stc.dynamic.deallocation]p2:
5749  //   Each deallocation function shall return void and its first parameter
5750  //   shall be void*.
5751  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5752                                  SemaRef.Context.VoidPtrTy,
5753                                 diag::err_operator_delete_dependent_param_type,
5754                                 diag::err_operator_delete_param_type))
5755    return true;
5756
5757  return false;
5758}
5759
5760/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5761/// of this overloaded operator is well-formed. If so, returns false;
5762/// otherwise, emits appropriate diagnostics and returns true.
5763bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5764  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5765         "Expected an overloaded operator declaration");
5766
5767  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5768
5769  // C++ [over.oper]p5:
5770  //   The allocation and deallocation functions, operator new,
5771  //   operator new[], operator delete and operator delete[], are
5772  //   described completely in 3.7.3. The attributes and restrictions
5773  //   found in the rest of this subclause do not apply to them unless
5774  //   explicitly stated in 3.7.3.
5775  if (Op == OO_Delete || Op == OO_Array_Delete)
5776    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5777
5778  if (Op == OO_New || Op == OO_Array_New)
5779    return CheckOperatorNewDeclaration(*this, FnDecl);
5780
5781  // C++ [over.oper]p6:
5782  //   An operator function shall either be a non-static member
5783  //   function or be a non-member function and have at least one
5784  //   parameter whose type is a class, a reference to a class, an
5785  //   enumeration, or a reference to an enumeration.
5786  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5787    if (MethodDecl->isStatic())
5788      return Diag(FnDecl->getLocation(),
5789                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5790  } else {
5791    bool ClassOrEnumParam = false;
5792    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5793                                   ParamEnd = FnDecl->param_end();
5794         Param != ParamEnd; ++Param) {
5795      QualType ParamType = (*Param)->getType().getNonReferenceType();
5796      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5797          ParamType->isEnumeralType()) {
5798        ClassOrEnumParam = true;
5799        break;
5800      }
5801    }
5802
5803    if (!ClassOrEnumParam)
5804      return Diag(FnDecl->getLocation(),
5805                  diag::err_operator_overload_needs_class_or_enum)
5806        << FnDecl->getDeclName();
5807  }
5808
5809  // C++ [over.oper]p8:
5810  //   An operator function cannot have default arguments (8.3.6),
5811  //   except where explicitly stated below.
5812  //
5813  // Only the function-call operator allows default arguments
5814  // (C++ [over.call]p1).
5815  if (Op != OO_Call) {
5816    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5817         Param != FnDecl->param_end(); ++Param) {
5818      if ((*Param)->hasDefaultArg())
5819        return Diag((*Param)->getLocation(),
5820                    diag::err_operator_overload_default_arg)
5821          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5822    }
5823  }
5824
5825  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5826    { false, false, false }
5827#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5828    , { Unary, Binary, MemberOnly }
5829#include "clang/Basic/OperatorKinds.def"
5830  };
5831
5832  bool CanBeUnaryOperator = OperatorUses[Op][0];
5833  bool CanBeBinaryOperator = OperatorUses[Op][1];
5834  bool MustBeMemberOperator = OperatorUses[Op][2];
5835
5836  // C++ [over.oper]p8:
5837  //   [...] Operator functions cannot have more or fewer parameters
5838  //   than the number required for the corresponding operator, as
5839  //   described in the rest of this subclause.
5840  unsigned NumParams = FnDecl->getNumParams()
5841                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5842  if (Op != OO_Call &&
5843      ((NumParams == 1 && !CanBeUnaryOperator) ||
5844       (NumParams == 2 && !CanBeBinaryOperator) ||
5845       (NumParams < 1) || (NumParams > 2))) {
5846    // We have the wrong number of parameters.
5847    unsigned ErrorKind;
5848    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5849      ErrorKind = 2;  // 2 -> unary or binary.
5850    } else if (CanBeUnaryOperator) {
5851      ErrorKind = 0;  // 0 -> unary
5852    } else {
5853      assert(CanBeBinaryOperator &&
5854             "All non-call overloaded operators are unary or binary!");
5855      ErrorKind = 1;  // 1 -> binary
5856    }
5857
5858    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5859      << FnDecl->getDeclName() << NumParams << ErrorKind;
5860  }
5861
5862  // Overloaded operators other than operator() cannot be variadic.
5863  if (Op != OO_Call &&
5864      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5865    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5866      << FnDecl->getDeclName();
5867  }
5868
5869  // Some operators must be non-static member functions.
5870  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5871    return Diag(FnDecl->getLocation(),
5872                diag::err_operator_overload_must_be_member)
5873      << FnDecl->getDeclName();
5874  }
5875
5876  // C++ [over.inc]p1:
5877  //   The user-defined function called operator++ implements the
5878  //   prefix and postfix ++ operator. If this function is a member
5879  //   function with no parameters, or a non-member function with one
5880  //   parameter of class or enumeration type, it defines the prefix
5881  //   increment operator ++ for objects of that type. If the function
5882  //   is a member function with one parameter (which shall be of type
5883  //   int) or a non-member function with two parameters (the second
5884  //   of which shall be of type int), it defines the postfix
5885  //   increment operator ++ for objects of that type.
5886  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5887    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5888    bool ParamIsInt = false;
5889    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5890      ParamIsInt = BT->getKind() == BuiltinType::Int;
5891
5892    if (!ParamIsInt)
5893      return Diag(LastParam->getLocation(),
5894                  diag::err_operator_overload_post_incdec_must_be_int)
5895        << LastParam->getType() << (Op == OO_MinusMinus);
5896  }
5897
5898  // Notify the class if it got an assignment operator.
5899  if (Op == OO_Equal) {
5900    // Would have returned earlier otherwise.
5901    assert(isa<CXXMethodDecl>(FnDecl) &&
5902      "Overloaded = not member, but not filtered.");
5903    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5904    Method->getParent()->addedAssignmentOperator(Context, Method);
5905  }
5906
5907  return false;
5908}
5909
5910/// CheckLiteralOperatorDeclaration - Check whether the declaration
5911/// of this literal operator function is well-formed. If so, returns
5912/// false; otherwise, emits appropriate diagnostics and returns true.
5913bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5914  DeclContext *DC = FnDecl->getDeclContext();
5915  Decl::Kind Kind = DC->getDeclKind();
5916  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5917      Kind != Decl::LinkageSpec) {
5918    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5919      << FnDecl->getDeclName();
5920    return true;
5921  }
5922
5923  bool Valid = false;
5924
5925  // template <char...> type operator "" name() is the only valid template
5926  // signature, and the only valid signature with no parameters.
5927  if (FnDecl->param_size() == 0) {
5928    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5929      // Must have only one template parameter
5930      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5931      if (Params->size() == 1) {
5932        NonTypeTemplateParmDecl *PmDecl =
5933          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5934
5935        // The template parameter must be a char parameter pack.
5936        // FIXME: This test will always fail because non-type parameter packs
5937        //   have not been implemented.
5938        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5939            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5940          Valid = true;
5941      }
5942    }
5943  } else {
5944    // Check the first parameter
5945    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5946
5947    QualType T = (*Param)->getType();
5948
5949    // unsigned long long int, long double, and any character type are allowed
5950    // as the only parameters.
5951    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5952        Context.hasSameType(T, Context.LongDoubleTy) ||
5953        Context.hasSameType(T, Context.CharTy) ||
5954        Context.hasSameType(T, Context.WCharTy) ||
5955        Context.hasSameType(T, Context.Char16Ty) ||
5956        Context.hasSameType(T, Context.Char32Ty)) {
5957      if (++Param == FnDecl->param_end())
5958        Valid = true;
5959      goto FinishedParams;
5960    }
5961
5962    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5963    const PointerType *PT = T->getAs<PointerType>();
5964    if (!PT)
5965      goto FinishedParams;
5966    T = PT->getPointeeType();
5967    if (!T.isConstQualified())
5968      goto FinishedParams;
5969    T = T.getUnqualifiedType();
5970
5971    // Move on to the second parameter;
5972    ++Param;
5973
5974    // If there is no second parameter, the first must be a const char *
5975    if (Param == FnDecl->param_end()) {
5976      if (Context.hasSameType(T, Context.CharTy))
5977        Valid = true;
5978      goto FinishedParams;
5979    }
5980
5981    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5982    // are allowed as the first parameter to a two-parameter function
5983    if (!(Context.hasSameType(T, Context.CharTy) ||
5984          Context.hasSameType(T, Context.WCharTy) ||
5985          Context.hasSameType(T, Context.Char16Ty) ||
5986          Context.hasSameType(T, Context.Char32Ty)))
5987      goto FinishedParams;
5988
5989    // The second and final parameter must be an std::size_t
5990    T = (*Param)->getType().getUnqualifiedType();
5991    if (Context.hasSameType(T, Context.getSizeType()) &&
5992        ++Param == FnDecl->param_end())
5993      Valid = true;
5994  }
5995
5996  // FIXME: This diagnostic is absolutely terrible.
5997FinishedParams:
5998  if (!Valid) {
5999    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6000      << FnDecl->getDeclName();
6001    return true;
6002  }
6003
6004  return false;
6005}
6006
6007/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6008/// linkage specification, including the language and (if present)
6009/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6010/// the location of the language string literal, which is provided
6011/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6012/// the '{' brace. Otherwise, this linkage specification does not
6013/// have any braces.
6014Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
6015                                                     SourceLocation ExternLoc,
6016                                                     SourceLocation LangLoc,
6017                                                     llvm::StringRef Lang,
6018                                                     SourceLocation LBraceLoc) {
6019  LinkageSpecDecl::LanguageIDs Language;
6020  if (Lang == "\"C\"")
6021    Language = LinkageSpecDecl::lang_c;
6022  else if (Lang == "\"C++\"")
6023    Language = LinkageSpecDecl::lang_cxx;
6024  else {
6025    Diag(LangLoc, diag::err_bad_language);
6026    return 0;
6027  }
6028
6029  // FIXME: Add all the various semantics of linkage specifications
6030
6031  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6032                                               LangLoc, Language,
6033                                               LBraceLoc.isValid());
6034  CurContext->addDecl(D);
6035  PushDeclContext(S, D);
6036  return D;
6037}
6038
6039/// ActOnFinishLinkageSpecification - Complete the definition of
6040/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6041/// valid, it's the position of the closing '}' brace in a linkage
6042/// specification that uses braces.
6043Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6044                                                      Decl *LinkageSpec,
6045                                                      SourceLocation RBraceLoc) {
6046  if (LinkageSpec)
6047    PopDeclContext();
6048  return LinkageSpec;
6049}
6050
6051/// \brief Perform semantic analysis for the variable declaration that
6052/// occurs within a C++ catch clause, returning the newly-created
6053/// variable.
6054VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
6055                                         TypeSourceInfo *TInfo,
6056                                         IdentifierInfo *Name,
6057                                         SourceLocation Loc,
6058                                         SourceRange Range) {
6059  bool Invalid = false;
6060
6061  // Arrays and functions decay.
6062  if (ExDeclType->isArrayType())
6063    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6064  else if (ExDeclType->isFunctionType())
6065    ExDeclType = Context.getPointerType(ExDeclType);
6066
6067  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6068  // The exception-declaration shall not denote a pointer or reference to an
6069  // incomplete type, other than [cv] void*.
6070  // N2844 forbids rvalue references.
6071  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6072    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
6073    Invalid = true;
6074  }
6075
6076  // GCC allows catching pointers and references to incomplete types
6077  // as an extension; so do we, but we warn by default.
6078
6079  QualType BaseType = ExDeclType;
6080  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6081  unsigned DK = diag::err_catch_incomplete;
6082  bool IncompleteCatchIsInvalid = true;
6083  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6084    BaseType = Ptr->getPointeeType();
6085    Mode = 1;
6086    DK = diag::ext_catch_incomplete_ptr;
6087    IncompleteCatchIsInvalid = false;
6088  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6089    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6090    BaseType = Ref->getPointeeType();
6091    Mode = 2;
6092    DK = diag::ext_catch_incomplete_ref;
6093    IncompleteCatchIsInvalid = false;
6094  }
6095  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6096      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6097      IncompleteCatchIsInvalid)
6098    Invalid = true;
6099
6100  if (!Invalid && !ExDeclType->isDependentType() &&
6101      RequireNonAbstractType(Loc, ExDeclType,
6102                             diag::err_abstract_type_in_decl,
6103                             AbstractVariableType))
6104    Invalid = true;
6105
6106  // Only the non-fragile NeXT runtime currently supports C++ catches
6107  // of ObjC types, and no runtime supports catching ObjC types by value.
6108  if (!Invalid && getLangOptions().ObjC1) {
6109    QualType T = ExDeclType;
6110    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6111      T = RT->getPointeeType();
6112
6113    if (T->isObjCObjectType()) {
6114      Diag(Loc, diag::err_objc_object_catch);
6115      Invalid = true;
6116    } else if (T->isObjCObjectPointerType()) {
6117      if (!getLangOptions().NeXTRuntime) {
6118        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6119        Invalid = true;
6120      } else if (!getLangOptions().ObjCNonFragileABI) {
6121        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6122        Invalid = true;
6123      }
6124    }
6125  }
6126
6127  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6128                                    Name, ExDeclType, TInfo, VarDecl::None,
6129                                    VarDecl::None);
6130  ExDecl->setExceptionVariable(true);
6131
6132  if (!Invalid) {
6133    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6134      // C++ [except.handle]p16:
6135      //   The object declared in an exception-declaration or, if the
6136      //   exception-declaration does not specify a name, a temporary (12.2) is
6137      //   copy-initialized (8.5) from the exception object. [...]
6138      //   The object is destroyed when the handler exits, after the destruction
6139      //   of any automatic objects initialized within the handler.
6140      //
6141      // We just pretend to initialize the object with itself, then make sure
6142      // it can be destroyed later.
6143      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6144      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6145                                            Loc, ExDeclType, 0);
6146      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6147                                                               SourceLocation());
6148      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6149      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6150                                         MultiExprArg(*this, &ExDeclRef, 1));
6151      if (Result.isInvalid())
6152        Invalid = true;
6153      else
6154        FinalizeVarWithDestructor(ExDecl, RecordTy);
6155    }
6156  }
6157
6158  if (Invalid)
6159    ExDecl->setInvalidDecl();
6160
6161  return ExDecl;
6162}
6163
6164/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6165/// handler.
6166Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6167  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6168  QualType ExDeclType = TInfo->getType();
6169
6170  bool Invalid = D.isInvalidType();
6171  IdentifierInfo *II = D.getIdentifier();
6172  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6173                                             LookupOrdinaryName,
6174                                             ForRedeclaration)) {
6175    // The scope should be freshly made just for us. There is just no way
6176    // it contains any previous declaration.
6177    assert(!S->isDeclScope(PrevDecl));
6178    if (PrevDecl->isTemplateParameter()) {
6179      // Maybe we will complain about the shadowed template parameter.
6180      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6181    }
6182  }
6183
6184  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6185    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6186      << D.getCXXScopeSpec().getRange();
6187    Invalid = true;
6188  }
6189
6190  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6191                                              D.getIdentifier(),
6192                                              D.getIdentifierLoc(),
6193                                            D.getDeclSpec().getSourceRange());
6194
6195  if (Invalid)
6196    ExDecl->setInvalidDecl();
6197
6198  // Add the exception declaration into this scope.
6199  if (II)
6200    PushOnScopeChains(ExDecl, S);
6201  else
6202    CurContext->addDecl(ExDecl);
6203
6204  ProcessDeclAttributes(S, ExDecl, D);
6205  return ExDecl;
6206}
6207
6208Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6209                                         Expr *AssertExpr,
6210                                         Expr *AssertMessageExpr_) {
6211  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6212
6213  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6214    llvm::APSInt Value(32);
6215    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6216      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6217        AssertExpr->getSourceRange();
6218      return 0;
6219    }
6220
6221    if (Value == 0) {
6222      Diag(AssertLoc, diag::err_static_assert_failed)
6223        << AssertMessage->getString() << AssertExpr->getSourceRange();
6224    }
6225  }
6226
6227  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6228                                        AssertExpr, AssertMessage);
6229
6230  CurContext->addDecl(Decl);
6231  return Decl;
6232}
6233
6234/// \brief Perform semantic analysis of the given friend type declaration.
6235///
6236/// \returns A friend declaration that.
6237FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6238                                      TypeSourceInfo *TSInfo) {
6239  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6240
6241  QualType T = TSInfo->getType();
6242  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6243
6244  if (!getLangOptions().CPlusPlus0x) {
6245    // C++03 [class.friend]p2:
6246    //   An elaborated-type-specifier shall be used in a friend declaration
6247    //   for a class.*
6248    //
6249    //   * The class-key of the elaborated-type-specifier is required.
6250    if (!ActiveTemplateInstantiations.empty()) {
6251      // Do not complain about the form of friend template types during
6252      // template instantiation; we will already have complained when the
6253      // template was declared.
6254    } else if (!T->isElaboratedTypeSpecifier()) {
6255      // If we evaluated the type to a record type, suggest putting
6256      // a tag in front.
6257      if (const RecordType *RT = T->getAs<RecordType>()) {
6258        RecordDecl *RD = RT->getDecl();
6259
6260        std::string InsertionText = std::string(" ") + RD->getKindName();
6261
6262        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6263          << (unsigned) RD->getTagKind()
6264          << T
6265          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6266                                        InsertionText);
6267      } else {
6268        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6269          << T
6270          << SourceRange(FriendLoc, TypeRange.getEnd());
6271      }
6272    } else if (T->getAs<EnumType>()) {
6273      Diag(FriendLoc, diag::ext_enum_friend)
6274        << T
6275        << SourceRange(FriendLoc, TypeRange.getEnd());
6276    }
6277  }
6278
6279  // C++0x [class.friend]p3:
6280  //   If the type specifier in a friend declaration designates a (possibly
6281  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6282  //   the friend declaration is ignored.
6283
6284  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6285  // in [class.friend]p3 that we do not implement.
6286
6287  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6288}
6289
6290/// Handle a friend type declaration.  This works in tandem with
6291/// ActOnTag.
6292///
6293/// Notes on friend class templates:
6294///
6295/// We generally treat friend class declarations as if they were
6296/// declaring a class.  So, for example, the elaborated type specifier
6297/// in a friend declaration is required to obey the restrictions of a
6298/// class-head (i.e. no typedefs in the scope chain), template
6299/// parameters are required to match up with simple template-ids, &c.
6300/// However, unlike when declaring a template specialization, it's
6301/// okay to refer to a template specialization without an empty
6302/// template parameter declaration, e.g.
6303///   friend class A<T>::B<unsigned>;
6304/// We permit this as a special case; if there are any template
6305/// parameters present at all, require proper matching, i.e.
6306///   template <> template <class T> friend class A<int>::B;
6307Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6308                                          MultiTemplateParamsArg TempParams) {
6309  SourceLocation Loc = DS.getSourceRange().getBegin();
6310
6311  assert(DS.isFriendSpecified());
6312  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6313
6314  // Try to convert the decl specifier to a type.  This works for
6315  // friend templates because ActOnTag never produces a ClassTemplateDecl
6316  // for a TUK_Friend.
6317  Declarator TheDeclarator(DS, Declarator::MemberContext);
6318  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6319  QualType T = TSI->getType();
6320  if (TheDeclarator.isInvalidType())
6321    return 0;
6322
6323  // This is definitely an error in C++98.  It's probably meant to
6324  // be forbidden in C++0x, too, but the specification is just
6325  // poorly written.
6326  //
6327  // The problem is with declarations like the following:
6328  //   template <T> friend A<T>::foo;
6329  // where deciding whether a class C is a friend or not now hinges
6330  // on whether there exists an instantiation of A that causes
6331  // 'foo' to equal C.  There are restrictions on class-heads
6332  // (which we declare (by fiat) elaborated friend declarations to
6333  // be) that makes this tractable.
6334  //
6335  // FIXME: handle "template <> friend class A<T>;", which
6336  // is possibly well-formed?  Who even knows?
6337  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6338    Diag(Loc, diag::err_tagless_friend_type_template)
6339      << DS.getSourceRange();
6340    return 0;
6341  }
6342
6343  // C++98 [class.friend]p1: A friend of a class is a function
6344  //   or class that is not a member of the class . . .
6345  // This is fixed in DR77, which just barely didn't make the C++03
6346  // deadline.  It's also a very silly restriction that seriously
6347  // affects inner classes and which nobody else seems to implement;
6348  // thus we never diagnose it, not even in -pedantic.
6349  //
6350  // But note that we could warn about it: it's always useless to
6351  // friend one of your own members (it's not, however, worthless to
6352  // friend a member of an arbitrary specialization of your template).
6353
6354  Decl *D;
6355  if (unsigned NumTempParamLists = TempParams.size())
6356    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6357                                   NumTempParamLists,
6358                                 (TemplateParameterList**) TempParams.release(),
6359                                   TSI,
6360                                   DS.getFriendSpecLoc());
6361  else
6362    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6363
6364  if (!D)
6365    return 0;
6366
6367  D->setAccess(AS_public);
6368  CurContext->addDecl(D);
6369
6370  return D;
6371}
6372
6373Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6374                                         Declarator &D,
6375                                         bool IsDefinition,
6376                              MultiTemplateParamsArg TemplateParams) {
6377  const DeclSpec &DS = D.getDeclSpec();
6378
6379  assert(DS.isFriendSpecified());
6380  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6381
6382  SourceLocation Loc = D.getIdentifierLoc();
6383  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6384  QualType T = TInfo->getType();
6385
6386  // C++ [class.friend]p1
6387  //   A friend of a class is a function or class....
6388  // Note that this sees through typedefs, which is intended.
6389  // It *doesn't* see through dependent types, which is correct
6390  // according to [temp.arg.type]p3:
6391  //   If a declaration acquires a function type through a
6392  //   type dependent on a template-parameter and this causes
6393  //   a declaration that does not use the syntactic form of a
6394  //   function declarator to have a function type, the program
6395  //   is ill-formed.
6396  if (!T->isFunctionType()) {
6397    Diag(Loc, diag::err_unexpected_friend);
6398
6399    // It might be worthwhile to try to recover by creating an
6400    // appropriate declaration.
6401    return 0;
6402  }
6403
6404  // C++ [namespace.memdef]p3
6405  //  - If a friend declaration in a non-local class first declares a
6406  //    class or function, the friend class or function is a member
6407  //    of the innermost enclosing namespace.
6408  //  - The name of the friend is not found by simple name lookup
6409  //    until a matching declaration is provided in that namespace
6410  //    scope (either before or after the class declaration granting
6411  //    friendship).
6412  //  - If a friend function is called, its name may be found by the
6413  //    name lookup that considers functions from namespaces and
6414  //    classes associated with the types of the function arguments.
6415  //  - When looking for a prior declaration of a class or a function
6416  //    declared as a friend, scopes outside the innermost enclosing
6417  //    namespace scope are not considered.
6418
6419  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6420  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6421  DeclarationName Name = NameInfo.getName();
6422  assert(Name);
6423
6424  // The context we found the declaration in, or in which we should
6425  // create the declaration.
6426  DeclContext *DC;
6427
6428  // FIXME: handle local classes
6429
6430  // Recover from invalid scope qualifiers as if they just weren't there.
6431  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6432                        ForRedeclaration);
6433  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6434    DC = computeDeclContext(ScopeQual);
6435
6436    // FIXME: handle dependent contexts
6437    if (!DC) return 0;
6438    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6439
6440    LookupQualifiedName(Previous, DC);
6441
6442    // Ignore things found implicitly in the wrong scope.
6443    // TODO: better diagnostics for this case.  Suggesting the right
6444    // qualified scope would be nice...
6445    LookupResult::Filter F = Previous.makeFilter();
6446    while (F.hasNext()) {
6447      NamedDecl *D = F.next();
6448      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6449        F.erase();
6450    }
6451    F.done();
6452
6453    if (Previous.empty()) {
6454      D.setInvalidType();
6455      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6456      return 0;
6457    }
6458
6459    // C++ [class.friend]p1: A friend of a class is a function or
6460    //   class that is not a member of the class . . .
6461    if (DC->Equals(CurContext))
6462      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6463
6464  // Otherwise walk out to the nearest namespace scope looking for matches.
6465  } else {
6466    // TODO: handle local class contexts.
6467
6468    DC = CurContext;
6469    while (true) {
6470      // Skip class contexts.  If someone can cite chapter and verse
6471      // for this behavior, that would be nice --- it's what GCC and
6472      // EDG do, and it seems like a reasonable intent, but the spec
6473      // really only says that checks for unqualified existing
6474      // declarations should stop at the nearest enclosing namespace,
6475      // not that they should only consider the nearest enclosing
6476      // namespace.
6477      while (DC->isRecord())
6478        DC = DC->getParent();
6479
6480      LookupQualifiedName(Previous, DC);
6481
6482      // TODO: decide what we think about using declarations.
6483      if (!Previous.empty())
6484        break;
6485
6486      if (DC->isFileContext()) break;
6487      DC = DC->getParent();
6488    }
6489
6490    // C++ [class.friend]p1: A friend of a class is a function or
6491    //   class that is not a member of the class . . .
6492    // C++0x changes this for both friend types and functions.
6493    // Most C++ 98 compilers do seem to give an error here, so
6494    // we do, too.
6495    if (!Previous.empty() && DC->Equals(CurContext)
6496        && !getLangOptions().CPlusPlus0x)
6497      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6498  }
6499
6500  if (DC->isFileContext()) {
6501    // This implies that it has to be an operator or function.
6502    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6503        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6504        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6505      Diag(Loc, diag::err_introducing_special_friend) <<
6506        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6507         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6508      return 0;
6509    }
6510  }
6511
6512  bool Redeclaration = false;
6513  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6514                                          move(TemplateParams),
6515                                          IsDefinition,
6516                                          Redeclaration);
6517  if (!ND) return 0;
6518
6519  assert(ND->getDeclContext() == DC);
6520  assert(ND->getLexicalDeclContext() == CurContext);
6521
6522  // Add the function declaration to the appropriate lookup tables,
6523  // adjusting the redeclarations list as necessary.  We don't
6524  // want to do this yet if the friending class is dependent.
6525  //
6526  // Also update the scope-based lookup if the target context's
6527  // lookup context is in lexical scope.
6528  if (!CurContext->isDependentContext()) {
6529    DC = DC->getLookupContext();
6530    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6531    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6532      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6533  }
6534
6535  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6536                                       D.getIdentifierLoc(), ND,
6537                                       DS.getFriendSpecLoc());
6538  FrD->setAccess(AS_public);
6539  CurContext->addDecl(FrD);
6540
6541  return ND;
6542}
6543
6544void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6545  AdjustDeclIfTemplate(Dcl);
6546
6547  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6548  if (!Fn) {
6549    Diag(DelLoc, diag::err_deleted_non_function);
6550    return;
6551  }
6552  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6553    Diag(DelLoc, diag::err_deleted_decl_not_first);
6554    Diag(Prev->getLocation(), diag::note_previous_declaration);
6555    // If the declaration wasn't the first, we delete the function anyway for
6556    // recovery.
6557  }
6558  Fn->setDeleted();
6559}
6560
6561static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6562  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6563       ++CI) {
6564    Stmt *SubStmt = *CI;
6565    if (!SubStmt)
6566      continue;
6567    if (isa<ReturnStmt>(SubStmt))
6568      Self.Diag(SubStmt->getSourceRange().getBegin(),
6569           diag::err_return_in_constructor_handler);
6570    if (!isa<Expr>(SubStmt))
6571      SearchForReturnInStmt(Self, SubStmt);
6572  }
6573}
6574
6575void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6576  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6577    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6578    SearchForReturnInStmt(*this, Handler);
6579  }
6580}
6581
6582bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6583                                             const CXXMethodDecl *Old) {
6584  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6585  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6586
6587  if (Context.hasSameType(NewTy, OldTy) ||
6588      NewTy->isDependentType() || OldTy->isDependentType())
6589    return false;
6590
6591  // Check if the return types are covariant
6592  QualType NewClassTy, OldClassTy;
6593
6594  /// Both types must be pointers or references to classes.
6595  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6596    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6597      NewClassTy = NewPT->getPointeeType();
6598      OldClassTy = OldPT->getPointeeType();
6599    }
6600  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6601    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6602      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6603        NewClassTy = NewRT->getPointeeType();
6604        OldClassTy = OldRT->getPointeeType();
6605      }
6606    }
6607  }
6608
6609  // The return types aren't either both pointers or references to a class type.
6610  if (NewClassTy.isNull()) {
6611    Diag(New->getLocation(),
6612         diag::err_different_return_type_for_overriding_virtual_function)
6613      << New->getDeclName() << NewTy << OldTy;
6614    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6615
6616    return true;
6617  }
6618
6619  // C++ [class.virtual]p6:
6620  //   If the return type of D::f differs from the return type of B::f, the
6621  //   class type in the return type of D::f shall be complete at the point of
6622  //   declaration of D::f or shall be the class type D.
6623  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6624    if (!RT->isBeingDefined() &&
6625        RequireCompleteType(New->getLocation(), NewClassTy,
6626                            PDiag(diag::err_covariant_return_incomplete)
6627                              << New->getDeclName()))
6628    return true;
6629  }
6630
6631  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6632    // Check if the new class derives from the old class.
6633    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6634      Diag(New->getLocation(),
6635           diag::err_covariant_return_not_derived)
6636      << New->getDeclName() << NewTy << OldTy;
6637      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6638      return true;
6639    }
6640
6641    // Check if we the conversion from derived to base is valid.
6642    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6643                    diag::err_covariant_return_inaccessible_base,
6644                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6645                    // FIXME: Should this point to the return type?
6646                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6647      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6648      return true;
6649    }
6650  }
6651
6652  // The qualifiers of the return types must be the same.
6653  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6654    Diag(New->getLocation(),
6655         diag::err_covariant_return_type_different_qualifications)
6656    << New->getDeclName() << NewTy << OldTy;
6657    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6658    return true;
6659  };
6660
6661
6662  // The new class type must have the same or less qualifiers as the old type.
6663  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6664    Diag(New->getLocation(),
6665         diag::err_covariant_return_type_class_type_more_qualified)
6666    << New->getDeclName() << NewTy << OldTy;
6667    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6668    return true;
6669  };
6670
6671  return false;
6672}
6673
6674bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6675                                             const CXXMethodDecl *Old)
6676{
6677  if (Old->hasAttr<FinalAttr>()) {
6678    Diag(New->getLocation(), diag::err_final_function_overridden)
6679      << New->getDeclName();
6680    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6681    return true;
6682  }
6683
6684  return false;
6685}
6686
6687/// \brief Mark the given method pure.
6688///
6689/// \param Method the method to be marked pure.
6690///
6691/// \param InitRange the source range that covers the "0" initializer.
6692bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6693  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6694    Method->setPure();
6695
6696    // A class is abstract if at least one function is pure virtual.
6697    Method->getParent()->setAbstract(true);
6698    return false;
6699  }
6700
6701  if (!Method->isInvalidDecl())
6702    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6703      << Method->getDeclName() << InitRange;
6704  return true;
6705}
6706
6707/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6708/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6709/// is a fresh scope pushed for just this purpose.
6710///
6711/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6712/// static data member of class X, names should be looked up in the scope of
6713/// class X.
6714void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6715  // If there is no declaration, there was an error parsing it.
6716  if (D == 0) return;
6717
6718  // We should only get called for declarations with scope specifiers, like:
6719  //   int foo::bar;
6720  assert(D->isOutOfLine());
6721  EnterDeclaratorContext(S, D->getDeclContext());
6722}
6723
6724/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6725/// initializer for the out-of-line declaration 'D'.
6726void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6727  // If there is no declaration, there was an error parsing it.
6728  if (D == 0) return;
6729
6730  assert(D->isOutOfLine());
6731  ExitDeclaratorContext(S);
6732}
6733
6734/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6735/// C++ if/switch/while/for statement.
6736/// e.g: "if (int x = f()) {...}"
6737DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6738  // C++ 6.4p2:
6739  // The declarator shall not specify a function or an array.
6740  // The type-specifier-seq shall not contain typedef and shall not declare a
6741  // new class or enumeration.
6742  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6743         "Parser allowed 'typedef' as storage class of condition decl.");
6744
6745  TagDecl *OwnedTag = 0;
6746  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6747  QualType Ty = TInfo->getType();
6748
6749  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6750                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6751                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6752    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6753      << D.getSourceRange();
6754    return DeclResult();
6755  } else if (OwnedTag && OwnedTag->isDefinition()) {
6756    // The type-specifier-seq shall not declare a new class or enumeration.
6757    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6758  }
6759
6760  Decl *Dcl = ActOnDeclarator(S, D);
6761  if (!Dcl)
6762    return DeclResult();
6763
6764  return Dcl;
6765}
6766
6767void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6768                          bool DefinitionRequired) {
6769  // Ignore any vtable uses in unevaluated operands or for classes that do
6770  // not have a vtable.
6771  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6772      CurContext->isDependentContext() ||
6773      ExprEvalContexts.back().Context == Unevaluated)
6774    return;
6775
6776  // Try to insert this class into the map.
6777  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6778  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6779    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6780  if (!Pos.second) {
6781    // If we already had an entry, check to see if we are promoting this vtable
6782    // to required a definition. If so, we need to reappend to the VTableUses
6783    // list, since we may have already processed the first entry.
6784    if (DefinitionRequired && !Pos.first->second) {
6785      Pos.first->second = true;
6786    } else {
6787      // Otherwise, we can early exit.
6788      return;
6789    }
6790  }
6791
6792  // Local classes need to have their virtual members marked
6793  // immediately. For all other classes, we mark their virtual members
6794  // at the end of the translation unit.
6795  if (Class->isLocalClass())
6796    MarkVirtualMembersReferenced(Loc, Class);
6797  else
6798    VTableUses.push_back(std::make_pair(Class, Loc));
6799}
6800
6801bool Sema::DefineUsedVTables() {
6802  // If any dynamic classes have their key function defined within
6803  // this translation unit, then those vtables are considered "used" and must
6804  // be emitted.
6805  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6806    if (const CXXMethodDecl *KeyFunction
6807                             = Context.getKeyFunction(DynamicClasses[I])) {
6808      const FunctionDecl *Definition = 0;
6809      if (KeyFunction->hasBody(Definition))
6810        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6811    }
6812  }
6813
6814  if (VTableUses.empty())
6815    return false;
6816
6817  // Note: The VTableUses vector could grow as a result of marking
6818  // the members of a class as "used", so we check the size each
6819  // time through the loop and prefer indices (with are stable) to
6820  // iterators (which are not).
6821  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6822    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6823    if (!Class)
6824      continue;
6825
6826    SourceLocation Loc = VTableUses[I].second;
6827
6828    // If this class has a key function, but that key function is
6829    // defined in another translation unit, we don't need to emit the
6830    // vtable even though we're using it.
6831    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6832    if (KeyFunction && !KeyFunction->hasBody()) {
6833      switch (KeyFunction->getTemplateSpecializationKind()) {
6834      case TSK_Undeclared:
6835      case TSK_ExplicitSpecialization:
6836      case TSK_ExplicitInstantiationDeclaration:
6837        // The key function is in another translation unit.
6838        continue;
6839
6840      case TSK_ExplicitInstantiationDefinition:
6841      case TSK_ImplicitInstantiation:
6842        // We will be instantiating the key function.
6843        break;
6844      }
6845    } else if (!KeyFunction) {
6846      // If we have a class with no key function that is the subject
6847      // of an explicit instantiation declaration, suppress the
6848      // vtable; it will live with the explicit instantiation
6849      // definition.
6850      bool IsExplicitInstantiationDeclaration
6851        = Class->getTemplateSpecializationKind()
6852                                      == TSK_ExplicitInstantiationDeclaration;
6853      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6854                                 REnd = Class->redecls_end();
6855           R != REnd; ++R) {
6856        TemplateSpecializationKind TSK
6857          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6858        if (TSK == TSK_ExplicitInstantiationDeclaration)
6859          IsExplicitInstantiationDeclaration = true;
6860        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6861          IsExplicitInstantiationDeclaration = false;
6862          break;
6863        }
6864      }
6865
6866      if (IsExplicitInstantiationDeclaration)
6867        continue;
6868    }
6869
6870    // Mark all of the virtual members of this class as referenced, so
6871    // that we can build a vtable. Then, tell the AST consumer that a
6872    // vtable for this class is required.
6873    MarkVirtualMembersReferenced(Loc, Class);
6874    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6875    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6876
6877    // Optionally warn if we're emitting a weak vtable.
6878    if (Class->getLinkage() == ExternalLinkage &&
6879        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6880      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6881        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6882    }
6883  }
6884  VTableUses.clear();
6885
6886  return true;
6887}
6888
6889void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6890                                        const CXXRecordDecl *RD) {
6891  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6892       e = RD->method_end(); i != e; ++i) {
6893    CXXMethodDecl *MD = *i;
6894
6895    // C++ [basic.def.odr]p2:
6896    //   [...] A virtual member function is used if it is not pure. [...]
6897    if (MD->isVirtual() && !MD->isPure())
6898      MarkDeclarationReferenced(Loc, MD);
6899  }
6900
6901  // Only classes that have virtual bases need a VTT.
6902  if (RD->getNumVBases() == 0)
6903    return;
6904
6905  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6906           e = RD->bases_end(); i != e; ++i) {
6907    const CXXRecordDecl *Base =
6908        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6909    if (Base->getNumVBases() == 0)
6910      continue;
6911    MarkVirtualMembersReferenced(Loc, Base);
6912  }
6913}
6914
6915/// SetIvarInitializers - This routine builds initialization ASTs for the
6916/// Objective-C implementation whose ivars need be initialized.
6917void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6918  if (!getLangOptions().CPlusPlus)
6919    return;
6920  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6921    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6922    CollectIvarsToConstructOrDestruct(OID, ivars);
6923    if (ivars.empty())
6924      return;
6925    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6926    for (unsigned i = 0; i < ivars.size(); i++) {
6927      FieldDecl *Field = ivars[i];
6928      if (Field->isInvalidDecl())
6929        continue;
6930
6931      CXXBaseOrMemberInitializer *Member;
6932      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6933      InitializationKind InitKind =
6934        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6935
6936      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6937      Sema::OwningExprResult MemberInit =
6938        InitSeq.Perform(*this, InitEntity, InitKind,
6939                        Sema::MultiExprArg(*this, 0, 0));
6940      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
6941      // Note, MemberInit could actually come back empty if no initialization
6942      // is required (e.g., because it would call a trivial default constructor)
6943      if (!MemberInit.get() || MemberInit.isInvalid())
6944        continue;
6945
6946      Member =
6947        new (Context) CXXBaseOrMemberInitializer(Context,
6948                                                 Field, SourceLocation(),
6949                                                 SourceLocation(),
6950                                                 MemberInit.takeAs<Expr>(),
6951                                                 SourceLocation());
6952      AllToInit.push_back(Member);
6953
6954      // Be sure that the destructor is accessible and is marked as referenced.
6955      if (const RecordType *RecordTy
6956                  = Context.getBaseElementType(Field->getType())
6957                                                        ->getAs<RecordType>()) {
6958                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6959        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6960          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6961          CheckDestructorAccess(Field->getLocation(), Destructor,
6962                            PDiag(diag::err_access_dtor_ivar)
6963                              << Context.getBaseElementType(Field->getType()));
6964        }
6965      }
6966    }
6967    ObjCImplementation->setIvarInitializers(Context,
6968                                            AllToInit.data(), AllToInit.size());
6969  }
6970}
6971