SemaDeclCXX.cpp revision 77bb1aa78bcd26e42c0382043e65a2b03242be4d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
714                              CXXBaseSpecifierArray &BasePathArray) {
715  assert(BasePathArray.empty() && "Base path array must be empty!");
716  assert(Paths.isRecordingPaths() && "Must record paths!");
717
718  const CXXBasePath &Path = Paths.front();
719
720  // We first go backward and check if we have a virtual base.
721  // FIXME: It would be better if CXXBasePath had the base specifier for
722  // the nearest virtual base.
723  unsigned Start = 0;
724  for (unsigned I = Path.size(); I != 0; --I) {
725    if (Path[I - 1].Base->isVirtual()) {
726      Start = I - 1;
727      break;
728    }
729  }
730
731  // Now add all bases.
732  for (unsigned I = Start, E = Path.size(); I != E; ++I)
733    BasePathArray.push_back(Path[I].Base);
734}
735
736/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
737/// conversion (where Derived and Base are class types) is
738/// well-formed, meaning that the conversion is unambiguous (and
739/// that all of the base classes are accessible). Returns true
740/// and emits a diagnostic if the code is ill-formed, returns false
741/// otherwise. Loc is the location where this routine should point to
742/// if there is an error, and Range is the source range to highlight
743/// if there is an error.
744bool
745Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
746                                   unsigned InaccessibleBaseID,
747                                   unsigned AmbigiousBaseConvID,
748                                   SourceLocation Loc, SourceRange Range,
749                                   DeclarationName Name,
750                                   CXXBaseSpecifierArray *BasePath) {
751  // First, determine whether the path from Derived to Base is
752  // ambiguous. This is slightly more expensive than checking whether
753  // the Derived to Base conversion exists, because here we need to
754  // explore multiple paths to determine if there is an ambiguity.
755  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
756                     /*DetectVirtual=*/false);
757  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
758  assert(DerivationOkay &&
759         "Can only be used with a derived-to-base conversion");
760  (void)DerivationOkay;
761
762  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
763    if (InaccessibleBaseID) {
764      // Check that the base class can be accessed.
765      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
766                                   InaccessibleBaseID)) {
767        case AR_inaccessible:
768          return true;
769        case AR_accessible:
770        case AR_dependent:
771        case AR_delayed:
772          break;
773      }
774    }
775
776    // Build a base path if necessary.
777    if (BasePath)
778      BuildBasePathArray(Paths, *BasePath);
779    return false;
780  }
781
782  // We know that the derived-to-base conversion is ambiguous, and
783  // we're going to produce a diagnostic. Perform the derived-to-base
784  // search just one more time to compute all of the possible paths so
785  // that we can print them out. This is more expensive than any of
786  // the previous derived-to-base checks we've done, but at this point
787  // performance isn't as much of an issue.
788  Paths.clear();
789  Paths.setRecordingPaths(true);
790  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
791  assert(StillOkay && "Can only be used with a derived-to-base conversion");
792  (void)StillOkay;
793
794  // Build up a textual representation of the ambiguous paths, e.g.,
795  // D -> B -> A, that will be used to illustrate the ambiguous
796  // conversions in the diagnostic. We only print one of the paths
797  // to each base class subobject.
798  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
799
800  Diag(Loc, AmbigiousBaseConvID)
801  << Derived << Base << PathDisplayStr << Range << Name;
802  return true;
803}
804
805bool
806Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
807                                   SourceLocation Loc, SourceRange Range,
808                                   CXXBaseSpecifierArray *BasePath,
809                                   bool IgnoreAccess) {
810  return CheckDerivedToBaseConversion(Derived, Base,
811                                      IgnoreAccess ? 0
812                                       : diag::err_upcast_to_inaccessible_base,
813                                      diag::err_ambiguous_derived_to_base_conv,
814                                      Loc, Range, DeclarationName(),
815                                      BasePath);
816}
817
818
819/// @brief Builds a string representing ambiguous paths from a
820/// specific derived class to different subobjects of the same base
821/// class.
822///
823/// This function builds a string that can be used in error messages
824/// to show the different paths that one can take through the
825/// inheritance hierarchy to go from the derived class to different
826/// subobjects of a base class. The result looks something like this:
827/// @code
828/// struct D -> struct B -> struct A
829/// struct D -> struct C -> struct A
830/// @endcode
831std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
832  std::string PathDisplayStr;
833  std::set<unsigned> DisplayedPaths;
834  for (CXXBasePaths::paths_iterator Path = Paths.begin();
835       Path != Paths.end(); ++Path) {
836    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
837      // We haven't displayed a path to this particular base
838      // class subobject yet.
839      PathDisplayStr += "\n    ";
840      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
841      for (CXXBasePath::const_iterator Element = Path->begin();
842           Element != Path->end(); ++Element)
843        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
844    }
845  }
846
847  return PathDisplayStr;
848}
849
850//===----------------------------------------------------------------------===//
851// C++ class member Handling
852//===----------------------------------------------------------------------===//
853
854/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
855/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
856/// bitfield width if there is one and 'InitExpr' specifies the initializer if
857/// any.
858Sema::DeclPtrTy
859Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
860                               MultiTemplateParamsArg TemplateParameterLists,
861                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
862                               bool Deleted) {
863  const DeclSpec &DS = D.getDeclSpec();
864  DeclarationName Name = GetNameForDeclarator(D);
865  Expr *BitWidth = static_cast<Expr*>(BW);
866  Expr *Init = static_cast<Expr*>(InitExpr);
867  SourceLocation Loc = D.getIdentifierLoc();
868
869  bool isFunc = D.isFunctionDeclarator();
870
871  assert(!DS.isFriendSpecified());
872
873  // C++ 9.2p6: A member shall not be declared to have automatic storage
874  // duration (auto, register) or with the extern storage-class-specifier.
875  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
876  // data members and cannot be applied to names declared const or static,
877  // and cannot be applied to reference members.
878  switch (DS.getStorageClassSpec()) {
879    case DeclSpec::SCS_unspecified:
880    case DeclSpec::SCS_typedef:
881    case DeclSpec::SCS_static:
882      // FALL THROUGH.
883      break;
884    case DeclSpec::SCS_mutable:
885      if (isFunc) {
886        if (DS.getStorageClassSpecLoc().isValid())
887          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
888        else
889          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
890
891        // FIXME: It would be nicer if the keyword was ignored only for this
892        // declarator. Otherwise we could get follow-up errors.
893        D.getMutableDeclSpec().ClearStorageClassSpecs();
894      } else {
895        QualType T = GetTypeForDeclarator(D, S);
896        diag::kind err = static_cast<diag::kind>(0);
897        if (T->isReferenceType())
898          err = diag::err_mutable_reference;
899        else if (T.isConstQualified())
900          err = diag::err_mutable_const;
901        if (err != 0) {
902          if (DS.getStorageClassSpecLoc().isValid())
903            Diag(DS.getStorageClassSpecLoc(), err);
904          else
905            Diag(DS.getThreadSpecLoc(), err);
906          // FIXME: It would be nicer if the keyword was ignored only for this
907          // declarator. Otherwise we could get follow-up errors.
908          D.getMutableDeclSpec().ClearStorageClassSpecs();
909        }
910      }
911      break;
912    default:
913      if (DS.getStorageClassSpecLoc().isValid())
914        Diag(DS.getStorageClassSpecLoc(),
915             diag::err_storageclass_invalid_for_member);
916      else
917        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
918      D.getMutableDeclSpec().ClearStorageClassSpecs();
919  }
920
921  if (!isFunc &&
922      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
923      D.getNumTypeObjects() == 0) {
924    // Check also for this case:
925    //
926    // typedef int f();
927    // f a;
928    //
929    QualType TDType = GetTypeFromParser(DS.getTypeRep());
930    isFunc = TDType->isFunctionType();
931  }
932
933  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
934                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
935                      !isFunc);
936
937  Decl *Member;
938  if (isInstField) {
939    // FIXME: Check for template parameters!
940    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
941                         AS);
942    assert(Member && "HandleField never returns null");
943  } else {
944    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
945               .getAs<Decl>();
946    if (!Member) {
947      if (BitWidth) DeleteExpr(BitWidth);
948      return DeclPtrTy();
949    }
950
951    // Non-instance-fields can't have a bitfield.
952    if (BitWidth) {
953      if (Member->isInvalidDecl()) {
954        // don't emit another diagnostic.
955      } else if (isa<VarDecl>(Member)) {
956        // C++ 9.6p3: A bit-field shall not be a static member.
957        // "static member 'A' cannot be a bit-field"
958        Diag(Loc, diag::err_static_not_bitfield)
959          << Name << BitWidth->getSourceRange();
960      } else if (isa<TypedefDecl>(Member)) {
961        // "typedef member 'x' cannot be a bit-field"
962        Diag(Loc, diag::err_typedef_not_bitfield)
963          << Name << BitWidth->getSourceRange();
964      } else {
965        // A function typedef ("typedef int f(); f a;").
966        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
967        Diag(Loc, diag::err_not_integral_type_bitfield)
968          << Name << cast<ValueDecl>(Member)->getType()
969          << BitWidth->getSourceRange();
970      }
971
972      DeleteExpr(BitWidth);
973      BitWidth = 0;
974      Member->setInvalidDecl();
975    }
976
977    Member->setAccess(AS);
978
979    // If we have declared a member function template, set the access of the
980    // templated declaration as well.
981    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
982      FunTmpl->getTemplatedDecl()->setAccess(AS);
983  }
984
985  assert((Name || isInstField) && "No identifier for non-field ?");
986
987  if (Init)
988    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
989  if (Deleted) // FIXME: Source location is not very good.
990    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
991
992  if (isInstField) {
993    FieldCollector->Add(cast<FieldDecl>(Member));
994    return DeclPtrTy();
995  }
996  return DeclPtrTy::make(Member);
997}
998
999/// \brief Find the direct and/or virtual base specifiers that
1000/// correspond to the given base type, for use in base initialization
1001/// within a constructor.
1002static bool FindBaseInitializer(Sema &SemaRef,
1003                                CXXRecordDecl *ClassDecl,
1004                                QualType BaseType,
1005                                const CXXBaseSpecifier *&DirectBaseSpec,
1006                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1007  // First, check for a direct base class.
1008  DirectBaseSpec = 0;
1009  for (CXXRecordDecl::base_class_const_iterator Base
1010         = ClassDecl->bases_begin();
1011       Base != ClassDecl->bases_end(); ++Base) {
1012    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1013      // We found a direct base of this type. That's what we're
1014      // initializing.
1015      DirectBaseSpec = &*Base;
1016      break;
1017    }
1018  }
1019
1020  // Check for a virtual base class.
1021  // FIXME: We might be able to short-circuit this if we know in advance that
1022  // there are no virtual bases.
1023  VirtualBaseSpec = 0;
1024  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1025    // We haven't found a base yet; search the class hierarchy for a
1026    // virtual base class.
1027    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1028                       /*DetectVirtual=*/false);
1029    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1030                              BaseType, Paths)) {
1031      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1032           Path != Paths.end(); ++Path) {
1033        if (Path->back().Base->isVirtual()) {
1034          VirtualBaseSpec = Path->back().Base;
1035          break;
1036        }
1037      }
1038    }
1039  }
1040
1041  return DirectBaseSpec || VirtualBaseSpec;
1042}
1043
1044/// ActOnMemInitializer - Handle a C++ member initializer.
1045Sema::MemInitResult
1046Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1047                          Scope *S,
1048                          CXXScopeSpec &SS,
1049                          IdentifierInfo *MemberOrBase,
1050                          TypeTy *TemplateTypeTy,
1051                          SourceLocation IdLoc,
1052                          SourceLocation LParenLoc,
1053                          ExprTy **Args, unsigned NumArgs,
1054                          SourceLocation *CommaLocs,
1055                          SourceLocation RParenLoc) {
1056  if (!ConstructorD)
1057    return true;
1058
1059  AdjustDeclIfTemplate(ConstructorD);
1060
1061  CXXConstructorDecl *Constructor
1062    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1063  if (!Constructor) {
1064    // The user wrote a constructor initializer on a function that is
1065    // not a C++ constructor. Ignore the error for now, because we may
1066    // have more member initializers coming; we'll diagnose it just
1067    // once in ActOnMemInitializers.
1068    return true;
1069  }
1070
1071  CXXRecordDecl *ClassDecl = Constructor->getParent();
1072
1073  // C++ [class.base.init]p2:
1074  //   Names in a mem-initializer-id are looked up in the scope of the
1075  //   constructor’s class and, if not found in that scope, are looked
1076  //   up in the scope containing the constructor’s
1077  //   definition. [Note: if the constructor’s class contains a member
1078  //   with the same name as a direct or virtual base class of the
1079  //   class, a mem-initializer-id naming the member or base class and
1080  //   composed of a single identifier refers to the class member. A
1081  //   mem-initializer-id for the hidden base class may be specified
1082  //   using a qualified name. ]
1083  if (!SS.getScopeRep() && !TemplateTypeTy) {
1084    // Look for a member, first.
1085    FieldDecl *Member = 0;
1086    DeclContext::lookup_result Result
1087      = ClassDecl->lookup(MemberOrBase);
1088    if (Result.first != Result.second)
1089      Member = dyn_cast<FieldDecl>(*Result.first);
1090
1091    // FIXME: Handle members of an anonymous union.
1092
1093    if (Member)
1094      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1095                                    LParenLoc, RParenLoc);
1096  }
1097  // It didn't name a member, so see if it names a class.
1098  QualType BaseType;
1099  TypeSourceInfo *TInfo = 0;
1100
1101  if (TemplateTypeTy) {
1102    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1103  } else {
1104    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1105    LookupParsedName(R, S, &SS);
1106
1107    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1108    if (!TyD) {
1109      if (R.isAmbiguous()) return true;
1110
1111      // We don't want access-control diagnostics here.
1112      R.suppressDiagnostics();
1113
1114      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1115        bool NotUnknownSpecialization = false;
1116        DeclContext *DC = computeDeclContext(SS, false);
1117        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1118          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1119
1120        if (!NotUnknownSpecialization) {
1121          // When the scope specifier can refer to a member of an unknown
1122          // specialization, we take it as a type name.
1123          BaseType = CheckTypenameType(ETK_None,
1124                                       (NestedNameSpecifier *)SS.getScopeRep(),
1125                                       *MemberOrBase, SS.getRange());
1126          if (BaseType.isNull())
1127            return true;
1128
1129          R.clear();
1130        }
1131      }
1132
1133      // If no results were found, try to correct typos.
1134      if (R.empty() && BaseType.isNull() &&
1135          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1136          R.isSingleResult()) {
1137        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1138          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1139            // We have found a non-static data member with a similar
1140            // name to what was typed; complain and initialize that
1141            // member.
1142            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1143              << MemberOrBase << true << R.getLookupName()
1144              << FixItHint::CreateReplacement(R.getNameLoc(),
1145                                              R.getLookupName().getAsString());
1146            Diag(Member->getLocation(), diag::note_previous_decl)
1147              << Member->getDeclName();
1148
1149            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1150                                          LParenLoc, RParenLoc);
1151          }
1152        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1153          const CXXBaseSpecifier *DirectBaseSpec;
1154          const CXXBaseSpecifier *VirtualBaseSpec;
1155          if (FindBaseInitializer(*this, ClassDecl,
1156                                  Context.getTypeDeclType(Type),
1157                                  DirectBaseSpec, VirtualBaseSpec)) {
1158            // We have found a direct or virtual base class with a
1159            // similar name to what was typed; complain and initialize
1160            // that base class.
1161            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1162              << MemberOrBase << false << R.getLookupName()
1163              << FixItHint::CreateReplacement(R.getNameLoc(),
1164                                              R.getLookupName().getAsString());
1165
1166            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1167                                                             : VirtualBaseSpec;
1168            Diag(BaseSpec->getSourceRange().getBegin(),
1169                 diag::note_base_class_specified_here)
1170              << BaseSpec->getType()
1171              << BaseSpec->getSourceRange();
1172
1173            TyD = Type;
1174          }
1175        }
1176      }
1177
1178      if (!TyD && BaseType.isNull()) {
1179        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1180          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1181        return true;
1182      }
1183    }
1184
1185    if (BaseType.isNull()) {
1186      BaseType = Context.getTypeDeclType(TyD);
1187      if (SS.isSet()) {
1188        NestedNameSpecifier *Qualifier =
1189          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1190
1191        // FIXME: preserve source range information
1192        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1193      }
1194    }
1195  }
1196
1197  if (!TInfo)
1198    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1199
1200  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1201                              LParenLoc, RParenLoc, ClassDecl);
1202}
1203
1204/// Checks an initializer expression for use of uninitialized fields, such as
1205/// containing the field that is being initialized. Returns true if there is an
1206/// uninitialized field was used an updates the SourceLocation parameter; false
1207/// otherwise.
1208static bool InitExprContainsUninitializedFields(const Stmt* S,
1209                                                const FieldDecl* LhsField,
1210                                                SourceLocation* L) {
1211  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1212  if (ME) {
1213    const NamedDecl* RhsField = ME->getMemberDecl();
1214    if (RhsField == LhsField) {
1215      // Initializing a field with itself. Throw a warning.
1216      // But wait; there are exceptions!
1217      // Exception #1:  The field may not belong to this record.
1218      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1219      const Expr* base = ME->getBase();
1220      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1221        // Even though the field matches, it does not belong to this record.
1222        return false;
1223      }
1224      // None of the exceptions triggered; return true to indicate an
1225      // uninitialized field was used.
1226      *L = ME->getMemberLoc();
1227      return true;
1228    }
1229  }
1230  bool found = false;
1231  for (Stmt::const_child_iterator it = S->child_begin();
1232       it != S->child_end() && found == false;
1233       ++it) {
1234    if (isa<CallExpr>(S)) {
1235      // Do not descend into function calls or constructors, as the use
1236      // of an uninitialized field may be valid. One would have to inspect
1237      // the contents of the function/ctor to determine if it is safe or not.
1238      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1239      // may be safe, depending on what the function/ctor does.
1240      continue;
1241    }
1242    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1243  }
1244  return found;
1245}
1246
1247Sema::MemInitResult
1248Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1249                             unsigned NumArgs, SourceLocation IdLoc,
1250                             SourceLocation LParenLoc,
1251                             SourceLocation RParenLoc) {
1252  // Diagnose value-uses of fields to initialize themselves, e.g.
1253  //   foo(foo)
1254  // where foo is not also a parameter to the constructor.
1255  // TODO: implement -Wuninitialized and fold this into that framework.
1256  for (unsigned i = 0; i < NumArgs; ++i) {
1257    SourceLocation L;
1258    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1259      // FIXME: Return true in the case when other fields are used before being
1260      // uninitialized. For example, let this field be the i'th field. When
1261      // initializing the i'th field, throw a warning if any of the >= i'th
1262      // fields are used, as they are not yet initialized.
1263      // Right now we are only handling the case where the i'th field uses
1264      // itself in its initializer.
1265      Diag(L, diag::warn_field_is_uninit);
1266    }
1267  }
1268
1269  bool HasDependentArg = false;
1270  for (unsigned i = 0; i < NumArgs; i++)
1271    HasDependentArg |= Args[i]->isTypeDependent();
1272
1273  QualType FieldType = Member->getType();
1274  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1275    FieldType = Array->getElementType();
1276  if (FieldType->isDependentType() || HasDependentArg) {
1277    // Can't check initialization for a member of dependent type or when
1278    // any of the arguments are type-dependent expressions.
1279    OwningExprResult Init
1280      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1281                                          RParenLoc));
1282
1283    // Erase any temporaries within this evaluation context; we're not
1284    // going to track them in the AST, since we'll be rebuilding the
1285    // ASTs during template instantiation.
1286    ExprTemporaries.erase(
1287              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1288                          ExprTemporaries.end());
1289
1290    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1291                                                    LParenLoc,
1292                                                    Init.takeAs<Expr>(),
1293                                                    RParenLoc);
1294
1295  }
1296
1297  if (Member->isInvalidDecl())
1298    return true;
1299
1300  // Initialize the member.
1301  InitializedEntity MemberEntity =
1302    InitializedEntity::InitializeMember(Member, 0);
1303  InitializationKind Kind =
1304    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1305
1306  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1307
1308  OwningExprResult MemberInit =
1309    InitSeq.Perform(*this, MemberEntity, Kind,
1310                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1311  if (MemberInit.isInvalid())
1312    return true;
1313
1314  // C++0x [class.base.init]p7:
1315  //   The initialization of each base and member constitutes a
1316  //   full-expression.
1317  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1318  if (MemberInit.isInvalid())
1319    return true;
1320
1321  // If we are in a dependent context, template instantiation will
1322  // perform this type-checking again. Just save the arguments that we
1323  // received in a ParenListExpr.
1324  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1325  // of the information that we have about the member
1326  // initializer. However, deconstructing the ASTs is a dicey process,
1327  // and this approach is far more likely to get the corner cases right.
1328  if (CurContext->isDependentContext()) {
1329    // Bump the reference count of all of the arguments.
1330    for (unsigned I = 0; I != NumArgs; ++I)
1331      Args[I]->Retain();
1332
1333    OwningExprResult Init
1334      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1335                                          RParenLoc));
1336    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1337                                                    LParenLoc,
1338                                                    Init.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1343                                                  LParenLoc,
1344                                                  MemberInit.takeAs<Expr>(),
1345                                                  RParenLoc);
1346}
1347
1348Sema::MemInitResult
1349Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1350                           Expr **Args, unsigned NumArgs,
1351                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1352                           CXXRecordDecl *ClassDecl) {
1353  bool HasDependentArg = false;
1354  for (unsigned i = 0; i < NumArgs; i++)
1355    HasDependentArg |= Args[i]->isTypeDependent();
1356
1357  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1358  if (BaseType->isDependentType() || HasDependentArg) {
1359    // Can't check initialization for a base of dependent type or when
1360    // any of the arguments are type-dependent expressions.
1361    OwningExprResult BaseInit
1362      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1363                                          RParenLoc));
1364
1365    // Erase any temporaries within this evaluation context; we're not
1366    // going to track them in the AST, since we'll be rebuilding the
1367    // ASTs during template instantiation.
1368    ExprTemporaries.erase(
1369              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1370                          ExprTemporaries.end());
1371
1372    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1373                                                    /*IsVirtual=*/false,
1374                                                    LParenLoc,
1375                                                    BaseInit.takeAs<Expr>(),
1376                                                    RParenLoc);
1377  }
1378
1379  if (!BaseType->isRecordType())
1380    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1381             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1382
1383  // C++ [class.base.init]p2:
1384  //   [...] Unless the mem-initializer-id names a nonstatic data
1385  //   member of the constructor’s class or a direct or virtual base
1386  //   of that class, the mem-initializer is ill-formed. A
1387  //   mem-initializer-list can initialize a base class using any
1388  //   name that denotes that base class type.
1389
1390  // Check for direct and virtual base classes.
1391  const CXXBaseSpecifier *DirectBaseSpec = 0;
1392  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1393  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1394                      VirtualBaseSpec);
1395
1396  // C++ [base.class.init]p2:
1397  //   If a mem-initializer-id is ambiguous because it designates both
1398  //   a direct non-virtual base class and an inherited virtual base
1399  //   class, the mem-initializer is ill-formed.
1400  if (DirectBaseSpec && VirtualBaseSpec)
1401    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1402      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1403  // C++ [base.class.init]p2:
1404  // Unless the mem-initializer-id names a nonstatic data membeer of the
1405  // constructor's class ot a direst or virtual base of that class, the
1406  // mem-initializer is ill-formed.
1407  if (!DirectBaseSpec && !VirtualBaseSpec)
1408    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1409      << BaseType << Context.getTypeDeclType(ClassDecl)
1410      << BaseTInfo->getTypeLoc().getSourceRange();
1411
1412  CXXBaseSpecifier *BaseSpec
1413    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1414  if (!BaseSpec)
1415    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1416
1417  // Initialize the base.
1418  InitializedEntity BaseEntity =
1419    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1420  InitializationKind Kind =
1421    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1422
1423  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1424
1425  OwningExprResult BaseInit =
1426    InitSeq.Perform(*this, BaseEntity, Kind,
1427                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1428  if (BaseInit.isInvalid())
1429    return true;
1430
1431  // C++0x [class.base.init]p7:
1432  //   The initialization of each base and member constitutes a
1433  //   full-expression.
1434  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1435  if (BaseInit.isInvalid())
1436    return true;
1437
1438  // If we are in a dependent context, template instantiation will
1439  // perform this type-checking again. Just save the arguments that we
1440  // received in a ParenListExpr.
1441  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1442  // of the information that we have about the base
1443  // initializer. However, deconstructing the ASTs is a dicey process,
1444  // and this approach is far more likely to get the corner cases right.
1445  if (CurContext->isDependentContext()) {
1446    // Bump the reference count of all of the arguments.
1447    for (unsigned I = 0; I != NumArgs; ++I)
1448      Args[I]->Retain();
1449
1450    OwningExprResult Init
1451      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1452                                          RParenLoc));
1453    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1454                                                    BaseSpec->isVirtual(),
1455                                                    LParenLoc,
1456                                                    Init.takeAs<Expr>(),
1457                                                    RParenLoc);
1458  }
1459
1460  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1461                                                  BaseSpec->isVirtual(),
1462                                                  LParenLoc,
1463                                                  BaseInit.takeAs<Expr>(),
1464                                                  RParenLoc);
1465}
1466
1467/// ImplicitInitializerKind - How an implicit base or member initializer should
1468/// initialize its base or member.
1469enum ImplicitInitializerKind {
1470  IIK_Default,
1471  IIK_Copy,
1472  IIK_Move
1473};
1474
1475static bool
1476BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1477                             ImplicitInitializerKind ImplicitInitKind,
1478                             CXXBaseSpecifier *BaseSpec,
1479                             bool IsInheritedVirtualBase,
1480                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1481  InitializedEntity InitEntity
1482    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1483                                        IsInheritedVirtualBase);
1484
1485  Sema::OwningExprResult BaseInit(SemaRef);
1486
1487  switch (ImplicitInitKind) {
1488  case IIK_Default: {
1489    InitializationKind InitKind
1490      = InitializationKind::CreateDefault(Constructor->getLocation());
1491    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1492    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1493                               Sema::MultiExprArg(SemaRef, 0, 0));
1494    break;
1495  }
1496
1497  case IIK_Copy: {
1498    ParmVarDecl *Param = Constructor->getParamDecl(0);
1499    QualType ParamType = Param->getType().getNonReferenceType();
1500
1501    Expr *CopyCtorArg =
1502      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1503                          SourceLocation(), ParamType, 0);
1504
1505    // Cast to the base class to avoid ambiguities.
1506    SemaRef.ImpCastExprToType(CopyCtorArg, BaseSpec->getType(),
1507                              CastExpr::CK_UncheckedDerivedToBase,
1508                              /*isLvalue=*/true,
1509                              CXXBaseSpecifierArray(BaseSpec));
1510
1511    InitializationKind InitKind
1512      = InitializationKind::CreateDirect(Constructor->getLocation(),
1513                                         SourceLocation(), SourceLocation());
1514    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1515                                   &CopyCtorArg, 1);
1516    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1517                               Sema::MultiExprArg(SemaRef,
1518                                                  (void**)&CopyCtorArg, 1));
1519    break;
1520  }
1521
1522  case IIK_Move:
1523    assert(false && "Unhandled initializer kind!");
1524  }
1525
1526  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1527  if (BaseInit.isInvalid())
1528    return true;
1529
1530  CXXBaseInit =
1531    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1532               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1533                                                        SourceLocation()),
1534                                             BaseSpec->isVirtual(),
1535                                             SourceLocation(),
1536                                             BaseInit.takeAs<Expr>(),
1537                                             SourceLocation());
1538
1539  return false;
1540}
1541
1542static bool
1543BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1544                               ImplicitInitializerKind ImplicitInitKind,
1545                               FieldDecl *Field,
1546                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1547  if (ImplicitInitKind == IIK_Copy) {
1548    ParmVarDecl *Param = Constructor->getParamDecl(0);
1549    QualType ParamType = Param->getType().getNonReferenceType();
1550
1551    Expr *MemberExprBase =
1552      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1553                          SourceLocation(), ParamType, 0);
1554
1555
1556    Expr *CopyCtorArg =
1557      MemberExpr::Create(SemaRef.Context, MemberExprBase, /*IsArrow=*/false,
1558                         0, SourceRange(), Field,
1559                         DeclAccessPair::make(Field, Field->getAccess()),
1560                         SourceLocation(), 0,
1561                         Field->getType().getNonReferenceType());
1562
1563    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1564    InitializationKind InitKind =
1565      InitializationKind::CreateDirect(Constructor->getLocation(),
1566                                       SourceLocation(), SourceLocation());
1567
1568    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1569                                   &CopyCtorArg, 1);
1570
1571    Sema::OwningExprResult MemberInit =
1572      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1573                      Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArg, 1), 0);
1574    if (MemberInit.isInvalid())
1575      return true;
1576
1577    CXXMemberInit = 0;
1578    return false;
1579  }
1580
1581  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1582
1583  QualType FieldBaseElementType =
1584    SemaRef.Context.getBaseElementType(Field->getType());
1585
1586  if (FieldBaseElementType->isRecordType()) {
1587    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1588    InitializationKind InitKind =
1589      InitializationKind::CreateDefault(Constructor->getLocation());
1590
1591    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1592    Sema::OwningExprResult MemberInit =
1593      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1594                      Sema::MultiExprArg(SemaRef, 0, 0));
1595    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1596    if (MemberInit.isInvalid())
1597      return true;
1598
1599    CXXMemberInit =
1600      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1601                                                       Field, SourceLocation(),
1602                                                       SourceLocation(),
1603                                                      MemberInit.takeAs<Expr>(),
1604                                                       SourceLocation());
1605    return false;
1606  }
1607
1608  if (FieldBaseElementType->isReferenceType()) {
1609    SemaRef.Diag(Constructor->getLocation(),
1610                 diag::err_uninitialized_member_in_ctor)
1611    << (int)Constructor->isImplicit()
1612    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1613    << 0 << Field->getDeclName();
1614    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1615    return true;
1616  }
1617
1618  if (FieldBaseElementType.isConstQualified()) {
1619    SemaRef.Diag(Constructor->getLocation(),
1620                 diag::err_uninitialized_member_in_ctor)
1621    << (int)Constructor->isImplicit()
1622    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1623    << 1 << Field->getDeclName();
1624    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1625    return true;
1626  }
1627
1628  // Nothing to initialize.
1629  CXXMemberInit = 0;
1630  return false;
1631}
1632
1633bool
1634Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1635                                  CXXBaseOrMemberInitializer **Initializers,
1636                                  unsigned NumInitializers,
1637                                  bool AnyErrors) {
1638  if (Constructor->getDeclContext()->isDependentContext()) {
1639    // Just store the initializers as written, they will be checked during
1640    // instantiation.
1641    if (NumInitializers > 0) {
1642      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1643      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1644        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1645      memcpy(baseOrMemberInitializers, Initializers,
1646             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1647      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1648    }
1649
1650    return false;
1651  }
1652
1653  ImplicitInitializerKind ImplicitInitKind = IIK_Default;
1654
1655  // FIXME: Handle implicit move constructors.
1656  if (Constructor->isImplicit() && Constructor->isCopyConstructor())
1657    ImplicitInitKind = IIK_Copy;
1658
1659  // We need to build the initializer AST according to order of construction
1660  // and not what user specified in the Initializers list.
1661  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1662  if (!ClassDecl)
1663    return true;
1664
1665  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1666  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1667  bool HadError = false;
1668
1669  for (unsigned i = 0; i < NumInitializers; i++) {
1670    CXXBaseOrMemberInitializer *Member = Initializers[i];
1671
1672    if (Member->isBaseInitializer())
1673      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1674    else
1675      AllBaseFields[Member->getMember()] = Member;
1676  }
1677
1678  // Keep track of the direct virtual bases.
1679  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1680  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1681       E = ClassDecl->bases_end(); I != E; ++I) {
1682    if (I->isVirtual())
1683      DirectVBases.insert(I);
1684  }
1685
1686  // Push virtual bases before others.
1687  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1688       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1689
1690    if (CXXBaseOrMemberInitializer *Value
1691        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1692      AllToInit.push_back(Value);
1693    } else if (!AnyErrors) {
1694      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1695      CXXBaseOrMemberInitializer *CXXBaseInit;
1696      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1697                                       VBase, IsInheritedVirtualBase,
1698                                       CXXBaseInit)) {
1699        HadError = true;
1700        continue;
1701      }
1702
1703      AllToInit.push_back(CXXBaseInit);
1704    }
1705  }
1706
1707  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1708       E = ClassDecl->bases_end(); Base != E; ++Base) {
1709    // Virtuals are in the virtual base list and already constructed.
1710    if (Base->isVirtual())
1711      continue;
1712
1713    if (CXXBaseOrMemberInitializer *Value
1714          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1715      AllToInit.push_back(Value);
1716    } else if (!AnyErrors) {
1717      CXXBaseOrMemberInitializer *CXXBaseInit;
1718      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1719                                       Base, /*IsInheritedVirtualBase=*/false,
1720                                       CXXBaseInit)) {
1721        HadError = true;
1722        continue;
1723      }
1724
1725      AllToInit.push_back(CXXBaseInit);
1726    }
1727  }
1728
1729  // non-static data members.
1730  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1731       E = ClassDecl->field_end(); Field != E; ++Field) {
1732    if ((*Field)->isAnonymousStructOrUnion()) {
1733      if (const RecordType *FieldClassType =
1734          Field->getType()->getAs<RecordType>()) {
1735        CXXRecordDecl *FieldClassDecl
1736          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1737        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1738            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1739          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1740            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1741            // set to the anonymous union data member used in the initializer
1742            // list.
1743            Value->setMember(*Field);
1744            Value->setAnonUnionMember(*FA);
1745            AllToInit.push_back(Value);
1746            break;
1747          }
1748        }
1749      }
1750      continue;
1751    }
1752    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1753      AllToInit.push_back(Value);
1754      continue;
1755    }
1756
1757    if (AnyErrors)
1758      continue;
1759
1760    CXXBaseOrMemberInitializer *Member;
1761    if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
1762                                       *Field, Member)) {
1763      HadError = true;
1764      continue;
1765    }
1766
1767    // If the member doesn't need to be initialized, it will be null.
1768    if (Member)
1769      AllToInit.push_back(Member);
1770  }
1771
1772  NumInitializers = AllToInit.size();
1773  if (NumInitializers > 0) {
1774    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1775    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1776      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1777    memcpy(baseOrMemberInitializers, AllToInit.data(),
1778           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1779    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1780
1781    // Constructors implicitly reference the base and member
1782    // destructors.
1783    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1784                                           Constructor->getParent());
1785  }
1786
1787  return HadError;
1788}
1789
1790static void *GetKeyForTopLevelField(FieldDecl *Field) {
1791  // For anonymous unions, use the class declaration as the key.
1792  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1793    if (RT->getDecl()->isAnonymousStructOrUnion())
1794      return static_cast<void *>(RT->getDecl());
1795  }
1796  return static_cast<void *>(Field);
1797}
1798
1799static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1800  return Context.getCanonicalType(BaseType).getTypePtr();
1801}
1802
1803static void *GetKeyForMember(ASTContext &Context,
1804                             CXXBaseOrMemberInitializer *Member,
1805                             bool MemberMaybeAnon = false) {
1806  if (!Member->isMemberInitializer())
1807    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1808
1809  // For fields injected into the class via declaration of an anonymous union,
1810  // use its anonymous union class declaration as the unique key.
1811  FieldDecl *Field = Member->getMember();
1812
1813  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1814  // data member of the class. Data member used in the initializer list is
1815  // in AnonUnionMember field.
1816  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1817    Field = Member->getAnonUnionMember();
1818
1819  // If the field is a member of an anonymous struct or union, our key
1820  // is the anonymous record decl that's a direct child of the class.
1821  RecordDecl *RD = Field->getParent();
1822  if (RD->isAnonymousStructOrUnion()) {
1823    while (true) {
1824      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1825      if (Parent->isAnonymousStructOrUnion())
1826        RD = Parent;
1827      else
1828        break;
1829    }
1830
1831    return static_cast<void *>(RD);
1832  }
1833
1834  return static_cast<void *>(Field);
1835}
1836
1837static void
1838DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1839                                  const CXXConstructorDecl *Constructor,
1840                                  CXXBaseOrMemberInitializer **Inits,
1841                                  unsigned NumInits) {
1842  if (Constructor->getDeclContext()->isDependentContext())
1843    return;
1844
1845  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1846        == Diagnostic::Ignored)
1847    return;
1848
1849  // Build the list of bases and members in the order that they'll
1850  // actually be initialized.  The explicit initializers should be in
1851  // this same order but may be missing things.
1852  llvm::SmallVector<const void*, 32> IdealInitKeys;
1853
1854  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1855
1856  // 1. Virtual bases.
1857  for (CXXRecordDecl::base_class_const_iterator VBase =
1858       ClassDecl->vbases_begin(),
1859       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1860    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1861
1862  // 2. Non-virtual bases.
1863  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1864       E = ClassDecl->bases_end(); Base != E; ++Base) {
1865    if (Base->isVirtual())
1866      continue;
1867    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1868  }
1869
1870  // 3. Direct fields.
1871  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1872       E = ClassDecl->field_end(); Field != E; ++Field)
1873    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1874
1875  unsigned NumIdealInits = IdealInitKeys.size();
1876  unsigned IdealIndex = 0;
1877
1878  CXXBaseOrMemberInitializer *PrevInit = 0;
1879  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1880    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1881    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1882
1883    // Scan forward to try to find this initializer in the idealized
1884    // initializers list.
1885    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1886      if (InitKey == IdealInitKeys[IdealIndex])
1887        break;
1888
1889    // If we didn't find this initializer, it must be because we
1890    // scanned past it on a previous iteration.  That can only
1891    // happen if we're out of order;  emit a warning.
1892    if (IdealIndex == NumIdealInits) {
1893      assert(PrevInit && "initializer not found in initializer list");
1894
1895      Sema::SemaDiagnosticBuilder D =
1896        SemaRef.Diag(PrevInit->getSourceLocation(),
1897                     diag::warn_initializer_out_of_order);
1898
1899      if (PrevInit->isMemberInitializer())
1900        D << 0 << PrevInit->getMember()->getDeclName();
1901      else
1902        D << 1 << PrevInit->getBaseClassInfo()->getType();
1903
1904      if (Init->isMemberInitializer())
1905        D << 0 << Init->getMember()->getDeclName();
1906      else
1907        D << 1 << Init->getBaseClassInfo()->getType();
1908
1909      // Move back to the initializer's location in the ideal list.
1910      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1911        if (InitKey == IdealInitKeys[IdealIndex])
1912          break;
1913
1914      assert(IdealIndex != NumIdealInits &&
1915             "initializer not found in initializer list");
1916    }
1917
1918    PrevInit = Init;
1919  }
1920}
1921
1922namespace {
1923bool CheckRedundantInit(Sema &S,
1924                        CXXBaseOrMemberInitializer *Init,
1925                        CXXBaseOrMemberInitializer *&PrevInit) {
1926  if (!PrevInit) {
1927    PrevInit = Init;
1928    return false;
1929  }
1930
1931  if (FieldDecl *Field = Init->getMember())
1932    S.Diag(Init->getSourceLocation(),
1933           diag::err_multiple_mem_initialization)
1934      << Field->getDeclName()
1935      << Init->getSourceRange();
1936  else {
1937    Type *BaseClass = Init->getBaseClass();
1938    assert(BaseClass && "neither field nor base");
1939    S.Diag(Init->getSourceLocation(),
1940           diag::err_multiple_base_initialization)
1941      << QualType(BaseClass, 0)
1942      << Init->getSourceRange();
1943  }
1944  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1945    << 0 << PrevInit->getSourceRange();
1946
1947  return true;
1948}
1949
1950typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1951typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1952
1953bool CheckRedundantUnionInit(Sema &S,
1954                             CXXBaseOrMemberInitializer *Init,
1955                             RedundantUnionMap &Unions) {
1956  FieldDecl *Field = Init->getMember();
1957  RecordDecl *Parent = Field->getParent();
1958  if (!Parent->isAnonymousStructOrUnion())
1959    return false;
1960
1961  NamedDecl *Child = Field;
1962  do {
1963    if (Parent->isUnion()) {
1964      UnionEntry &En = Unions[Parent];
1965      if (En.first && En.first != Child) {
1966        S.Diag(Init->getSourceLocation(),
1967               diag::err_multiple_mem_union_initialization)
1968          << Field->getDeclName()
1969          << Init->getSourceRange();
1970        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1971          << 0 << En.second->getSourceRange();
1972        return true;
1973      } else if (!En.first) {
1974        En.first = Child;
1975        En.second = Init;
1976      }
1977    }
1978
1979    Child = Parent;
1980    Parent = cast<RecordDecl>(Parent->getDeclContext());
1981  } while (Parent->isAnonymousStructOrUnion());
1982
1983  return false;
1984}
1985}
1986
1987/// ActOnMemInitializers - Handle the member initializers for a constructor.
1988void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1989                                SourceLocation ColonLoc,
1990                                MemInitTy **meminits, unsigned NumMemInits,
1991                                bool AnyErrors) {
1992  if (!ConstructorDecl)
1993    return;
1994
1995  AdjustDeclIfTemplate(ConstructorDecl);
1996
1997  CXXConstructorDecl *Constructor
1998    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1999
2000  if (!Constructor) {
2001    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2002    return;
2003  }
2004
2005  CXXBaseOrMemberInitializer **MemInits =
2006    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2007
2008  // Mapping for the duplicate initializers check.
2009  // For member initializers, this is keyed with a FieldDecl*.
2010  // For base initializers, this is keyed with a Type*.
2011  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2012
2013  // Mapping for the inconsistent anonymous-union initializers check.
2014  RedundantUnionMap MemberUnions;
2015
2016  bool HadError = false;
2017  for (unsigned i = 0; i < NumMemInits; i++) {
2018    CXXBaseOrMemberInitializer *Init = MemInits[i];
2019
2020    if (Init->isMemberInitializer()) {
2021      FieldDecl *Field = Init->getMember();
2022      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2023          CheckRedundantUnionInit(*this, Init, MemberUnions))
2024        HadError = true;
2025    } else {
2026      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2027      if (CheckRedundantInit(*this, Init, Members[Key]))
2028        HadError = true;
2029    }
2030  }
2031
2032  if (HadError)
2033    return;
2034
2035  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2036
2037  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2038}
2039
2040void
2041Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2042                                             CXXRecordDecl *ClassDecl) {
2043  // Ignore dependent contexts.
2044  if (ClassDecl->isDependentContext())
2045    return;
2046
2047  // FIXME: all the access-control diagnostics are positioned on the
2048  // field/base declaration.  That's probably good; that said, the
2049  // user might reasonably want to know why the destructor is being
2050  // emitted, and we currently don't say.
2051
2052  // Non-static data members.
2053  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2054       E = ClassDecl->field_end(); I != E; ++I) {
2055    FieldDecl *Field = *I;
2056
2057    QualType FieldType = Context.getBaseElementType(Field->getType());
2058
2059    const RecordType* RT = FieldType->getAs<RecordType>();
2060    if (!RT)
2061      continue;
2062
2063    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2064    if (FieldClassDecl->hasTrivialDestructor())
2065      continue;
2066
2067    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2068    CheckDestructorAccess(Field->getLocation(), Dtor,
2069                          PDiag(diag::err_access_dtor_field)
2070                            << Field->getDeclName()
2071                            << FieldType);
2072
2073    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2074  }
2075
2076  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2077
2078  // Bases.
2079  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2080       E = ClassDecl->bases_end(); Base != E; ++Base) {
2081    // Bases are always records in a well-formed non-dependent class.
2082    const RecordType *RT = Base->getType()->getAs<RecordType>();
2083
2084    // Remember direct virtual bases.
2085    if (Base->isVirtual())
2086      DirectVirtualBases.insert(RT);
2087
2088    // Ignore trivial destructors.
2089    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2090    if (BaseClassDecl->hasTrivialDestructor())
2091      continue;
2092
2093    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2094
2095    // FIXME: caret should be on the start of the class name
2096    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2097                          PDiag(diag::err_access_dtor_base)
2098                            << Base->getType()
2099                            << Base->getSourceRange());
2100
2101    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2102  }
2103
2104  // Virtual bases.
2105  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2106       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2107
2108    // Bases are always records in a well-formed non-dependent class.
2109    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2110
2111    // Ignore direct virtual bases.
2112    if (DirectVirtualBases.count(RT))
2113      continue;
2114
2115    // Ignore trivial destructors.
2116    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2117    if (BaseClassDecl->hasTrivialDestructor())
2118      continue;
2119
2120    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2121    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2122                          PDiag(diag::err_access_dtor_vbase)
2123                            << VBase->getType());
2124
2125    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2126  }
2127}
2128
2129void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2130  if (!CDtorDecl)
2131    return;
2132
2133  if (CXXConstructorDecl *Constructor
2134      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2135    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2136}
2137
2138bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2139                                  unsigned DiagID, AbstractDiagSelID SelID,
2140                                  const CXXRecordDecl *CurrentRD) {
2141  if (SelID == -1)
2142    return RequireNonAbstractType(Loc, T,
2143                                  PDiag(DiagID), CurrentRD);
2144  else
2145    return RequireNonAbstractType(Loc, T,
2146                                  PDiag(DiagID) << SelID, CurrentRD);
2147}
2148
2149bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2150                                  const PartialDiagnostic &PD,
2151                                  const CXXRecordDecl *CurrentRD) {
2152  if (!getLangOptions().CPlusPlus)
2153    return false;
2154
2155  if (const ArrayType *AT = Context.getAsArrayType(T))
2156    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2157                                  CurrentRD);
2158
2159  if (const PointerType *PT = T->getAs<PointerType>()) {
2160    // Find the innermost pointer type.
2161    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2162      PT = T;
2163
2164    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2165      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2166  }
2167
2168  const RecordType *RT = T->getAs<RecordType>();
2169  if (!RT)
2170    return false;
2171
2172  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2173
2174  if (CurrentRD && CurrentRD != RD)
2175    return false;
2176
2177  // FIXME: is this reasonable?  It matches current behavior, but....
2178  if (!RD->getDefinition())
2179    return false;
2180
2181  if (!RD->isAbstract())
2182    return false;
2183
2184  Diag(Loc, PD) << RD->getDeclName();
2185
2186  // Check if we've already emitted the list of pure virtual functions for this
2187  // class.
2188  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2189    return true;
2190
2191  CXXFinalOverriderMap FinalOverriders;
2192  RD->getFinalOverriders(FinalOverriders);
2193
2194  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2195                                   MEnd = FinalOverriders.end();
2196       M != MEnd;
2197       ++M) {
2198    for (OverridingMethods::iterator SO = M->second.begin(),
2199                                  SOEnd = M->second.end();
2200         SO != SOEnd; ++SO) {
2201      // C++ [class.abstract]p4:
2202      //   A class is abstract if it contains or inherits at least one
2203      //   pure virtual function for which the final overrider is pure
2204      //   virtual.
2205
2206      //
2207      if (SO->second.size() != 1)
2208        continue;
2209
2210      if (!SO->second.front().Method->isPure())
2211        continue;
2212
2213      Diag(SO->second.front().Method->getLocation(),
2214           diag::note_pure_virtual_function)
2215        << SO->second.front().Method->getDeclName();
2216    }
2217  }
2218
2219  if (!PureVirtualClassDiagSet)
2220    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2221  PureVirtualClassDiagSet->insert(RD);
2222
2223  return true;
2224}
2225
2226namespace {
2227  class AbstractClassUsageDiagnoser
2228    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2229    Sema &SemaRef;
2230    CXXRecordDecl *AbstractClass;
2231
2232    bool VisitDeclContext(const DeclContext *DC) {
2233      bool Invalid = false;
2234
2235      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2236           E = DC->decls_end(); I != E; ++I)
2237        Invalid |= Visit(*I);
2238
2239      return Invalid;
2240    }
2241
2242  public:
2243    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2244      : SemaRef(SemaRef), AbstractClass(ac) {
2245        Visit(SemaRef.Context.getTranslationUnitDecl());
2246    }
2247
2248    bool VisitFunctionDecl(const FunctionDecl *FD) {
2249      if (FD->isThisDeclarationADefinition()) {
2250        // No need to do the check if we're in a definition, because it requires
2251        // that the return/param types are complete.
2252        // because that requires
2253        return VisitDeclContext(FD);
2254      }
2255
2256      // Check the return type.
2257      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2258      bool Invalid =
2259        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2260                                       diag::err_abstract_type_in_decl,
2261                                       Sema::AbstractReturnType,
2262                                       AbstractClass);
2263
2264      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2265           E = FD->param_end(); I != E; ++I) {
2266        const ParmVarDecl *VD = *I;
2267        Invalid |=
2268          SemaRef.RequireNonAbstractType(VD->getLocation(),
2269                                         VD->getOriginalType(),
2270                                         diag::err_abstract_type_in_decl,
2271                                         Sema::AbstractParamType,
2272                                         AbstractClass);
2273      }
2274
2275      return Invalid;
2276    }
2277
2278    bool VisitDecl(const Decl* D) {
2279      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2280        return VisitDeclContext(DC);
2281
2282      return false;
2283    }
2284  };
2285}
2286
2287/// \brief Perform semantic checks on a class definition that has been
2288/// completing, introducing implicitly-declared members, checking for
2289/// abstract types, etc.
2290void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2291  if (!Record || Record->isInvalidDecl())
2292    return;
2293
2294  if (!Record->isDependentType())
2295    AddImplicitlyDeclaredMembersToClass(S, Record);
2296
2297  if (Record->isInvalidDecl())
2298    return;
2299
2300  // Set access bits correctly on the directly-declared conversions.
2301  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2302  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2303    Convs->setAccess(I, (*I)->getAccess());
2304
2305  // Determine whether we need to check for final overriders. We do
2306  // this either when there are virtual base classes (in which case we
2307  // may end up finding multiple final overriders for a given virtual
2308  // function) or any of the base classes is abstract (in which case
2309  // we might detect that this class is abstract).
2310  bool CheckFinalOverriders = false;
2311  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2312      !Record->isDependentType()) {
2313    if (Record->getNumVBases())
2314      CheckFinalOverriders = true;
2315    else if (!Record->isAbstract()) {
2316      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2317                                                 BEnd = Record->bases_end();
2318           B != BEnd; ++B) {
2319        CXXRecordDecl *BaseDecl
2320          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2321        if (BaseDecl->isAbstract()) {
2322          CheckFinalOverriders = true;
2323          break;
2324        }
2325      }
2326    }
2327  }
2328
2329  if (CheckFinalOverriders) {
2330    CXXFinalOverriderMap FinalOverriders;
2331    Record->getFinalOverriders(FinalOverriders);
2332
2333    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2334                                     MEnd = FinalOverriders.end();
2335         M != MEnd; ++M) {
2336      for (OverridingMethods::iterator SO = M->second.begin(),
2337                                    SOEnd = M->second.end();
2338           SO != SOEnd; ++SO) {
2339        assert(SO->second.size() > 0 &&
2340               "All virtual functions have overridding virtual functions");
2341        if (SO->second.size() == 1) {
2342          // C++ [class.abstract]p4:
2343          //   A class is abstract if it contains or inherits at least one
2344          //   pure virtual function for which the final overrider is pure
2345          //   virtual.
2346          if (SO->second.front().Method->isPure())
2347            Record->setAbstract(true);
2348          continue;
2349        }
2350
2351        // C++ [class.virtual]p2:
2352        //   In a derived class, if a virtual member function of a base
2353        //   class subobject has more than one final overrider the
2354        //   program is ill-formed.
2355        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2356          << (NamedDecl *)M->first << Record;
2357        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2358        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2359                                                 OMEnd = SO->second.end();
2360             OM != OMEnd; ++OM)
2361          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2362            << (NamedDecl *)M->first << OM->Method->getParent();
2363
2364        Record->setInvalidDecl();
2365      }
2366    }
2367  }
2368
2369  if (Record->isAbstract() && !Record->isInvalidDecl())
2370    (void)AbstractClassUsageDiagnoser(*this, Record);
2371
2372  // If this is not an aggregate type and has no user-declared constructor,
2373  // complain about any non-static data members of reference or const scalar
2374  // type, since they will never get initializers.
2375  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2376      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2377    bool Complained = false;
2378    for (RecordDecl::field_iterator F = Record->field_begin(),
2379                                 FEnd = Record->field_end();
2380         F != FEnd; ++F) {
2381      if (F->getType()->isReferenceType() ||
2382          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2383        if (!Complained) {
2384          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2385            << Record->getTagKind() << Record;
2386          Complained = true;
2387        }
2388
2389        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2390          << F->getType()->isReferenceType()
2391          << F->getDeclName();
2392      }
2393    }
2394  }
2395}
2396
2397void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2398                                             DeclPtrTy TagDecl,
2399                                             SourceLocation LBrac,
2400                                             SourceLocation RBrac,
2401                                             AttributeList *AttrList) {
2402  if (!TagDecl)
2403    return;
2404
2405  AdjustDeclIfTemplate(TagDecl);
2406
2407  ActOnFields(S, RLoc, TagDecl,
2408              (DeclPtrTy*)FieldCollector->getCurFields(),
2409              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2410
2411  CheckCompletedCXXClass(S,
2412                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2413}
2414
2415/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2416/// special functions, such as the default constructor, copy
2417/// constructor, or destructor, to the given C++ class (C++
2418/// [special]p1).  This routine can only be executed just before the
2419/// definition of the class is complete.
2420///
2421/// The scope, if provided, is the class scope.
2422void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2423                                               CXXRecordDecl *ClassDecl) {
2424  CanQualType ClassType
2425    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2426
2427  // FIXME: Implicit declarations have exception specifications, which are
2428  // the union of the specifications of the implicitly called functions.
2429
2430  if (!ClassDecl->hasUserDeclaredConstructor()) {
2431    // C++ [class.ctor]p5:
2432    //   A default constructor for a class X is a constructor of class X
2433    //   that can be called without an argument. If there is no
2434    //   user-declared constructor for class X, a default constructor is
2435    //   implicitly declared. An implicitly-declared default constructor
2436    //   is an inline public member of its class.
2437    DeclarationName Name
2438      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2439    CXXConstructorDecl *DefaultCon =
2440      CXXConstructorDecl::Create(Context, ClassDecl,
2441                                 ClassDecl->getLocation(), Name,
2442                                 Context.getFunctionType(Context.VoidTy,
2443                                                         0, 0, false, 0,
2444                                                         /*FIXME*/false, false,
2445                                                         0, 0,
2446                                                       FunctionType::ExtInfo()),
2447                                 /*TInfo=*/0,
2448                                 /*isExplicit=*/false,
2449                                 /*isInline=*/true,
2450                                 /*isImplicitlyDeclared=*/true);
2451    DefaultCon->setAccess(AS_public);
2452    DefaultCon->setImplicit();
2453    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2454    if (S)
2455      PushOnScopeChains(DefaultCon, S, true);
2456    else
2457      ClassDecl->addDecl(DefaultCon);
2458  }
2459
2460  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2461    // C++ [class.copy]p4:
2462    //   If the class definition does not explicitly declare a copy
2463    //   constructor, one is declared implicitly.
2464
2465    // C++ [class.copy]p5:
2466    //   The implicitly-declared copy constructor for a class X will
2467    //   have the form
2468    //
2469    //       X::X(const X&)
2470    //
2471    //   if
2472    bool HasConstCopyConstructor = true;
2473
2474    //     -- each direct or virtual base class B of X has a copy
2475    //        constructor whose first parameter is of type const B& or
2476    //        const volatile B&, and
2477    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2478         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2479      const CXXRecordDecl *BaseClassDecl
2480        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2481      HasConstCopyConstructor
2482        = BaseClassDecl->hasConstCopyConstructor(Context);
2483    }
2484
2485    //     -- for all the nonstatic data members of X that are of a
2486    //        class type M (or array thereof), each such class type
2487    //        has a copy constructor whose first parameter is of type
2488    //        const M& or const volatile M&.
2489    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2490         HasConstCopyConstructor && Field != ClassDecl->field_end();
2491         ++Field) {
2492      QualType FieldType = (*Field)->getType();
2493      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2494        FieldType = Array->getElementType();
2495      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2496        const CXXRecordDecl *FieldClassDecl
2497          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2498        HasConstCopyConstructor
2499          = FieldClassDecl->hasConstCopyConstructor(Context);
2500      }
2501    }
2502
2503    //   Otherwise, the implicitly declared copy constructor will have
2504    //   the form
2505    //
2506    //       X::X(X&)
2507    QualType ArgType = ClassType;
2508    if (HasConstCopyConstructor)
2509      ArgType = ArgType.withConst();
2510    ArgType = Context.getLValueReferenceType(ArgType);
2511
2512    //   An implicitly-declared copy constructor is an inline public
2513    //   member of its class.
2514    DeclarationName Name
2515      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2516    CXXConstructorDecl *CopyConstructor
2517      = CXXConstructorDecl::Create(Context, ClassDecl,
2518                                   ClassDecl->getLocation(), Name,
2519                                   Context.getFunctionType(Context.VoidTy,
2520                                                           &ArgType, 1,
2521                                                           false, 0,
2522                                                           /*FIXME:*/false,
2523                                                           false, 0, 0,
2524                                                       FunctionType::ExtInfo()),
2525                                   /*TInfo=*/0,
2526                                   /*isExplicit=*/false,
2527                                   /*isInline=*/true,
2528                                   /*isImplicitlyDeclared=*/true);
2529    CopyConstructor->setAccess(AS_public);
2530    CopyConstructor->setImplicit();
2531    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2532
2533    // Add the parameter to the constructor.
2534    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2535                                                 ClassDecl->getLocation(),
2536                                                 /*IdentifierInfo=*/0,
2537                                                 ArgType, /*TInfo=*/0,
2538                                                 VarDecl::None,
2539                                                 VarDecl::None, 0);
2540    CopyConstructor->setParams(&FromParam, 1);
2541    if (S)
2542      PushOnScopeChains(CopyConstructor, S, true);
2543    else
2544      ClassDecl->addDecl(CopyConstructor);
2545  }
2546
2547  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2548    // Note: The following rules are largely analoguous to the copy
2549    // constructor rules. Note that virtual bases are not taken into account
2550    // for determining the argument type of the operator. Note also that
2551    // operators taking an object instead of a reference are allowed.
2552    //
2553    // C++ [class.copy]p10:
2554    //   If the class definition does not explicitly declare a copy
2555    //   assignment operator, one is declared implicitly.
2556    //   The implicitly-defined copy assignment operator for a class X
2557    //   will have the form
2558    //
2559    //       X& X::operator=(const X&)
2560    //
2561    //   if
2562    bool HasConstCopyAssignment = true;
2563
2564    //       -- each direct base class B of X has a copy assignment operator
2565    //          whose parameter is of type const B&, const volatile B& or B,
2566    //          and
2567    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2568         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2569      assert(!Base->getType()->isDependentType() &&
2570            "Cannot generate implicit members for class with dependent bases.");
2571      const CXXRecordDecl *BaseClassDecl
2572        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2573      const CXXMethodDecl *MD = 0;
2574      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2575                                                                     MD);
2576    }
2577
2578    //       -- for all the nonstatic data members of X that are of a class
2579    //          type M (or array thereof), each such class type has a copy
2580    //          assignment operator whose parameter is of type const M&,
2581    //          const volatile M& or M.
2582    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2583         HasConstCopyAssignment && Field != ClassDecl->field_end();
2584         ++Field) {
2585      QualType FieldType = (*Field)->getType();
2586      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2587        FieldType = Array->getElementType();
2588      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2589        const CXXRecordDecl *FieldClassDecl
2590          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2591        const CXXMethodDecl *MD = 0;
2592        HasConstCopyAssignment
2593          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2594      }
2595    }
2596
2597    //   Otherwise, the implicitly declared copy assignment operator will
2598    //   have the form
2599    //
2600    //       X& X::operator=(X&)
2601    QualType ArgType = ClassType;
2602    QualType RetType = Context.getLValueReferenceType(ArgType);
2603    if (HasConstCopyAssignment)
2604      ArgType = ArgType.withConst();
2605    ArgType = Context.getLValueReferenceType(ArgType);
2606
2607    //   An implicitly-declared copy assignment operator is an inline public
2608    //   member of its class.
2609    DeclarationName Name =
2610      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2611    CXXMethodDecl *CopyAssignment =
2612      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2613                            Context.getFunctionType(RetType, &ArgType, 1,
2614                                                    false, 0,
2615                                                    /*FIXME:*/false,
2616                                                    false, 0, 0,
2617                                                    FunctionType::ExtInfo()),
2618                            /*TInfo=*/0, /*isStatic=*/false,
2619                            /*StorageClassAsWritten=*/FunctionDecl::None,
2620                            /*isInline=*/true);
2621    CopyAssignment->setAccess(AS_public);
2622    CopyAssignment->setImplicit();
2623    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2624    CopyAssignment->setCopyAssignment(true);
2625
2626    // Add the parameter to the operator.
2627    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2628                                                 ClassDecl->getLocation(),
2629                                                 /*IdentifierInfo=*/0,
2630                                                 ArgType, /*TInfo=*/0,
2631                                                 VarDecl::None,
2632                                                 VarDecl::None, 0);
2633    CopyAssignment->setParams(&FromParam, 1);
2634
2635    // Don't call addedAssignmentOperator. There is no way to distinguish an
2636    // implicit from an explicit assignment operator.
2637    if (S)
2638      PushOnScopeChains(CopyAssignment, S, true);
2639    else
2640      ClassDecl->addDecl(CopyAssignment);
2641    AddOverriddenMethods(ClassDecl, CopyAssignment);
2642  }
2643
2644  if (!ClassDecl->hasUserDeclaredDestructor()) {
2645    // C++ [class.dtor]p2:
2646    //   If a class has no user-declared destructor, a destructor is
2647    //   declared implicitly. An implicitly-declared destructor is an
2648    //   inline public member of its class.
2649    QualType Ty = Context.getFunctionType(Context.VoidTy,
2650                                          0, 0, false, 0,
2651                                          /*FIXME:*/false,
2652                                          false, 0, 0, FunctionType::ExtInfo());
2653
2654    DeclarationName Name
2655      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2656    CXXDestructorDecl *Destructor
2657      = CXXDestructorDecl::Create(Context, ClassDecl,
2658                                  ClassDecl->getLocation(), Name, Ty,
2659                                  /*isInline=*/true,
2660                                  /*isImplicitlyDeclared=*/true);
2661    Destructor->setAccess(AS_public);
2662    Destructor->setImplicit();
2663    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2664    if (S)
2665      PushOnScopeChains(Destructor, S, true);
2666    else
2667      ClassDecl->addDecl(Destructor);
2668
2669    // This could be uniqued if it ever proves significant.
2670    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2671
2672    AddOverriddenMethods(ClassDecl, Destructor);
2673  }
2674}
2675
2676void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2677  Decl *D = TemplateD.getAs<Decl>();
2678  if (!D)
2679    return;
2680
2681  TemplateParameterList *Params = 0;
2682  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2683    Params = Template->getTemplateParameters();
2684  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2685           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2686    Params = PartialSpec->getTemplateParameters();
2687  else
2688    return;
2689
2690  for (TemplateParameterList::iterator Param = Params->begin(),
2691                                    ParamEnd = Params->end();
2692       Param != ParamEnd; ++Param) {
2693    NamedDecl *Named = cast<NamedDecl>(*Param);
2694    if (Named->getDeclName()) {
2695      S->AddDecl(DeclPtrTy::make(Named));
2696      IdResolver.AddDecl(Named);
2697    }
2698  }
2699}
2700
2701void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2702  if (!RecordD) return;
2703  AdjustDeclIfTemplate(RecordD);
2704  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2705  PushDeclContext(S, Record);
2706}
2707
2708void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2709  if (!RecordD) return;
2710  PopDeclContext();
2711}
2712
2713/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2714/// parsing a top-level (non-nested) C++ class, and we are now
2715/// parsing those parts of the given Method declaration that could
2716/// not be parsed earlier (C++ [class.mem]p2), such as default
2717/// arguments. This action should enter the scope of the given
2718/// Method declaration as if we had just parsed the qualified method
2719/// name. However, it should not bring the parameters into scope;
2720/// that will be performed by ActOnDelayedCXXMethodParameter.
2721void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2722}
2723
2724/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2725/// C++ method declaration. We're (re-)introducing the given
2726/// function parameter into scope for use in parsing later parts of
2727/// the method declaration. For example, we could see an
2728/// ActOnParamDefaultArgument event for this parameter.
2729void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2730  if (!ParamD)
2731    return;
2732
2733  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2734
2735  // If this parameter has an unparsed default argument, clear it out
2736  // to make way for the parsed default argument.
2737  if (Param->hasUnparsedDefaultArg())
2738    Param->setDefaultArg(0);
2739
2740  S->AddDecl(DeclPtrTy::make(Param));
2741  if (Param->getDeclName())
2742    IdResolver.AddDecl(Param);
2743}
2744
2745/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2746/// processing the delayed method declaration for Method. The method
2747/// declaration is now considered finished. There may be a separate
2748/// ActOnStartOfFunctionDef action later (not necessarily
2749/// immediately!) for this method, if it was also defined inside the
2750/// class body.
2751void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2752  if (!MethodD)
2753    return;
2754
2755  AdjustDeclIfTemplate(MethodD);
2756
2757  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2758
2759  // Now that we have our default arguments, check the constructor
2760  // again. It could produce additional diagnostics or affect whether
2761  // the class has implicitly-declared destructors, among other
2762  // things.
2763  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2764    CheckConstructor(Constructor);
2765
2766  // Check the default arguments, which we may have added.
2767  if (!Method->isInvalidDecl())
2768    CheckCXXDefaultArguments(Method);
2769}
2770
2771/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2772/// the well-formedness of the constructor declarator @p D with type @p
2773/// R. If there are any errors in the declarator, this routine will
2774/// emit diagnostics and set the invalid bit to true.  In any case, the type
2775/// will be updated to reflect a well-formed type for the constructor and
2776/// returned.
2777QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2778                                          FunctionDecl::StorageClass &SC) {
2779  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2780
2781  // C++ [class.ctor]p3:
2782  //   A constructor shall not be virtual (10.3) or static (9.4). A
2783  //   constructor can be invoked for a const, volatile or const
2784  //   volatile object. A constructor shall not be declared const,
2785  //   volatile, or const volatile (9.3.2).
2786  if (isVirtual) {
2787    if (!D.isInvalidType())
2788      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2789        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2790        << SourceRange(D.getIdentifierLoc());
2791    D.setInvalidType();
2792  }
2793  if (SC == FunctionDecl::Static) {
2794    if (!D.isInvalidType())
2795      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2796        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2797        << SourceRange(D.getIdentifierLoc());
2798    D.setInvalidType();
2799    SC = FunctionDecl::None;
2800  }
2801
2802  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2803  if (FTI.TypeQuals != 0) {
2804    if (FTI.TypeQuals & Qualifiers::Const)
2805      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2806        << "const" << SourceRange(D.getIdentifierLoc());
2807    if (FTI.TypeQuals & Qualifiers::Volatile)
2808      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2809        << "volatile" << SourceRange(D.getIdentifierLoc());
2810    if (FTI.TypeQuals & Qualifiers::Restrict)
2811      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2812        << "restrict" << SourceRange(D.getIdentifierLoc());
2813  }
2814
2815  // Rebuild the function type "R" without any type qualifiers (in
2816  // case any of the errors above fired) and with "void" as the
2817  // return type, since constructors don't have return types. We
2818  // *always* have to do this, because GetTypeForDeclarator will
2819  // put in a result type of "int" when none was specified.
2820  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2821  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2822                                 Proto->getNumArgs(),
2823                                 Proto->isVariadic(), 0,
2824                                 Proto->hasExceptionSpec(),
2825                                 Proto->hasAnyExceptionSpec(),
2826                                 Proto->getNumExceptions(),
2827                                 Proto->exception_begin(),
2828                                 Proto->getExtInfo());
2829}
2830
2831/// CheckConstructor - Checks a fully-formed constructor for
2832/// well-formedness, issuing any diagnostics required. Returns true if
2833/// the constructor declarator is invalid.
2834void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2835  CXXRecordDecl *ClassDecl
2836    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2837  if (!ClassDecl)
2838    return Constructor->setInvalidDecl();
2839
2840  // C++ [class.copy]p3:
2841  //   A declaration of a constructor for a class X is ill-formed if
2842  //   its first parameter is of type (optionally cv-qualified) X and
2843  //   either there are no other parameters or else all other
2844  //   parameters have default arguments.
2845  if (!Constructor->isInvalidDecl() &&
2846      ((Constructor->getNumParams() == 1) ||
2847       (Constructor->getNumParams() > 1 &&
2848        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2849      Constructor->getTemplateSpecializationKind()
2850                                              != TSK_ImplicitInstantiation) {
2851    QualType ParamType = Constructor->getParamDecl(0)->getType();
2852    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2853    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2854      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2855      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2856        << FixItHint::CreateInsertion(ParamLoc, " const &");
2857
2858      // FIXME: Rather that making the constructor invalid, we should endeavor
2859      // to fix the type.
2860      Constructor->setInvalidDecl();
2861    }
2862  }
2863
2864  // Notify the class that we've added a constructor.  In principle we
2865  // don't need to do this for out-of-line declarations; in practice
2866  // we only instantiate the most recent declaration of a method, so
2867  // we have to call this for everything but friends.
2868  if (!Constructor->getFriendObjectKind())
2869    ClassDecl->addedConstructor(Context, Constructor);
2870}
2871
2872/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2873/// issuing any diagnostics required. Returns true on error.
2874bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2875  CXXRecordDecl *RD = Destructor->getParent();
2876
2877  if (Destructor->isVirtual()) {
2878    SourceLocation Loc;
2879
2880    if (!Destructor->isImplicit())
2881      Loc = Destructor->getLocation();
2882    else
2883      Loc = RD->getLocation();
2884
2885    // If we have a virtual destructor, look up the deallocation function
2886    FunctionDecl *OperatorDelete = 0;
2887    DeclarationName Name =
2888    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2889    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2890      return true;
2891
2892    Destructor->setOperatorDelete(OperatorDelete);
2893  }
2894
2895  return false;
2896}
2897
2898static inline bool
2899FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2900  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2901          FTI.ArgInfo[0].Param &&
2902          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2903}
2904
2905/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2906/// the well-formednes of the destructor declarator @p D with type @p
2907/// R. If there are any errors in the declarator, this routine will
2908/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2909/// will be updated to reflect a well-formed type for the destructor and
2910/// returned.
2911QualType Sema::CheckDestructorDeclarator(Declarator &D,
2912                                         FunctionDecl::StorageClass& SC) {
2913  // C++ [class.dtor]p1:
2914  //   [...] A typedef-name that names a class is a class-name
2915  //   (7.1.3); however, a typedef-name that names a class shall not
2916  //   be used as the identifier in the declarator for a destructor
2917  //   declaration.
2918  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2919  if (isa<TypedefType>(DeclaratorType)) {
2920    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2921      << DeclaratorType;
2922    D.setInvalidType();
2923  }
2924
2925  // C++ [class.dtor]p2:
2926  //   A destructor is used to destroy objects of its class type. A
2927  //   destructor takes no parameters, and no return type can be
2928  //   specified for it (not even void). The address of a destructor
2929  //   shall not be taken. A destructor shall not be static. A
2930  //   destructor can be invoked for a const, volatile or const
2931  //   volatile object. A destructor shall not be declared const,
2932  //   volatile or const volatile (9.3.2).
2933  if (SC == FunctionDecl::Static) {
2934    if (!D.isInvalidType())
2935      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2936        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2937        << SourceRange(D.getIdentifierLoc());
2938    SC = FunctionDecl::None;
2939    D.setInvalidType();
2940  }
2941  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2942    // Destructors don't have return types, but the parser will
2943    // happily parse something like:
2944    //
2945    //   class X {
2946    //     float ~X();
2947    //   };
2948    //
2949    // The return type will be eliminated later.
2950    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2951      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2952      << SourceRange(D.getIdentifierLoc());
2953  }
2954
2955  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2956  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2957    if (FTI.TypeQuals & Qualifiers::Const)
2958      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2959        << "const" << SourceRange(D.getIdentifierLoc());
2960    if (FTI.TypeQuals & Qualifiers::Volatile)
2961      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2962        << "volatile" << SourceRange(D.getIdentifierLoc());
2963    if (FTI.TypeQuals & Qualifiers::Restrict)
2964      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2965        << "restrict" << SourceRange(D.getIdentifierLoc());
2966    D.setInvalidType();
2967  }
2968
2969  // Make sure we don't have any parameters.
2970  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2971    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2972
2973    // Delete the parameters.
2974    FTI.freeArgs();
2975    D.setInvalidType();
2976  }
2977
2978  // Make sure the destructor isn't variadic.
2979  if (FTI.isVariadic) {
2980    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2981    D.setInvalidType();
2982  }
2983
2984  // Rebuild the function type "R" without any type qualifiers or
2985  // parameters (in case any of the errors above fired) and with
2986  // "void" as the return type, since destructors don't have return
2987  // types. We *always* have to do this, because GetTypeForDeclarator
2988  // will put in a result type of "int" when none was specified.
2989  // FIXME: Exceptions!
2990  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2991                                 false, false, 0, 0, FunctionType::ExtInfo());
2992}
2993
2994/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2995/// well-formednes of the conversion function declarator @p D with
2996/// type @p R. If there are any errors in the declarator, this routine
2997/// will emit diagnostics and return true. Otherwise, it will return
2998/// false. Either way, the type @p R will be updated to reflect a
2999/// well-formed type for the conversion operator.
3000void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3001                                     FunctionDecl::StorageClass& SC) {
3002  // C++ [class.conv.fct]p1:
3003  //   Neither parameter types nor return type can be specified. The
3004  //   type of a conversion function (8.3.5) is "function taking no
3005  //   parameter returning conversion-type-id."
3006  if (SC == FunctionDecl::Static) {
3007    if (!D.isInvalidType())
3008      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3009        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3010        << SourceRange(D.getIdentifierLoc());
3011    D.setInvalidType();
3012    SC = FunctionDecl::None;
3013  }
3014
3015  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3016
3017  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3018    // Conversion functions don't have return types, but the parser will
3019    // happily parse something like:
3020    //
3021    //   class X {
3022    //     float operator bool();
3023    //   };
3024    //
3025    // The return type will be changed later anyway.
3026    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3027      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3028      << SourceRange(D.getIdentifierLoc());
3029    D.setInvalidType();
3030  }
3031
3032  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3033
3034  // Make sure we don't have any parameters.
3035  if (Proto->getNumArgs() > 0) {
3036    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3037
3038    // Delete the parameters.
3039    D.getTypeObject(0).Fun.freeArgs();
3040    D.setInvalidType();
3041  } else if (Proto->isVariadic()) {
3042    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3043    D.setInvalidType();
3044  }
3045
3046  // Diagnose "&operator bool()" and other such nonsense.  This
3047  // is actually a gcc extension which we don't support.
3048  if (Proto->getResultType() != ConvType) {
3049    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3050      << Proto->getResultType();
3051    D.setInvalidType();
3052    ConvType = Proto->getResultType();
3053  }
3054
3055  // C++ [class.conv.fct]p4:
3056  //   The conversion-type-id shall not represent a function type nor
3057  //   an array type.
3058  if (ConvType->isArrayType()) {
3059    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3060    ConvType = Context.getPointerType(ConvType);
3061    D.setInvalidType();
3062  } else if (ConvType->isFunctionType()) {
3063    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3064    ConvType = Context.getPointerType(ConvType);
3065    D.setInvalidType();
3066  }
3067
3068  // Rebuild the function type "R" without any parameters (in case any
3069  // of the errors above fired) and with the conversion type as the
3070  // return type.
3071  if (D.isInvalidType()) {
3072    R = Context.getFunctionType(ConvType, 0, 0, false,
3073                                Proto->getTypeQuals(),
3074                                Proto->hasExceptionSpec(),
3075                                Proto->hasAnyExceptionSpec(),
3076                                Proto->getNumExceptions(),
3077                                Proto->exception_begin(),
3078                                Proto->getExtInfo());
3079  }
3080
3081  // C++0x explicit conversion operators.
3082  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3083    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3084         diag::warn_explicit_conversion_functions)
3085      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3086}
3087
3088/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3089/// the declaration of the given C++ conversion function. This routine
3090/// is responsible for recording the conversion function in the C++
3091/// class, if possible.
3092Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3093  assert(Conversion && "Expected to receive a conversion function declaration");
3094
3095  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3096
3097  // Make sure we aren't redeclaring the conversion function.
3098  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3099
3100  // C++ [class.conv.fct]p1:
3101  //   [...] A conversion function is never used to convert a
3102  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3103  //   same object type (or a reference to it), to a (possibly
3104  //   cv-qualified) base class of that type (or a reference to it),
3105  //   or to (possibly cv-qualified) void.
3106  // FIXME: Suppress this warning if the conversion function ends up being a
3107  // virtual function that overrides a virtual function in a base class.
3108  QualType ClassType
3109    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3110  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3111    ConvType = ConvTypeRef->getPointeeType();
3112  if (ConvType->isRecordType()) {
3113    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3114    if (ConvType == ClassType)
3115      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3116        << ClassType;
3117    else if (IsDerivedFrom(ClassType, ConvType))
3118      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3119        <<  ClassType << ConvType;
3120  } else if (ConvType->isVoidType()) {
3121    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3122      << ClassType << ConvType;
3123  }
3124
3125  if (Conversion->getPrimaryTemplate()) {
3126    // ignore specializations
3127  } else if (Conversion->getPreviousDeclaration()) {
3128    if (FunctionTemplateDecl *ConversionTemplate
3129                                  = Conversion->getDescribedFunctionTemplate()) {
3130      if (ClassDecl->replaceConversion(
3131                                   ConversionTemplate->getPreviousDeclaration(),
3132                                       ConversionTemplate))
3133        return DeclPtrTy::make(ConversionTemplate);
3134    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3135                                            Conversion))
3136      return DeclPtrTy::make(Conversion);
3137    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3138  } else if (FunctionTemplateDecl *ConversionTemplate
3139               = Conversion->getDescribedFunctionTemplate())
3140    ClassDecl->addConversionFunction(ConversionTemplate);
3141  else
3142    ClassDecl->addConversionFunction(Conversion);
3143
3144  return DeclPtrTy::make(Conversion);
3145}
3146
3147//===----------------------------------------------------------------------===//
3148// Namespace Handling
3149//===----------------------------------------------------------------------===//
3150
3151/// ActOnStartNamespaceDef - This is called at the start of a namespace
3152/// definition.
3153Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3154                                             SourceLocation IdentLoc,
3155                                             IdentifierInfo *II,
3156                                             SourceLocation LBrace,
3157                                             AttributeList *AttrList) {
3158  NamespaceDecl *Namespc =
3159      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3160  Namespc->setLBracLoc(LBrace);
3161
3162  Scope *DeclRegionScope = NamespcScope->getParent();
3163
3164  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3165
3166  if (II) {
3167    // C++ [namespace.def]p2:
3168    // The identifier in an original-namespace-definition shall not have been
3169    // previously defined in the declarative region in which the
3170    // original-namespace-definition appears. The identifier in an
3171    // original-namespace-definition is the name of the namespace. Subsequently
3172    // in that declarative region, it is treated as an original-namespace-name.
3173
3174    NamedDecl *PrevDecl
3175      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3176                         ForRedeclaration);
3177
3178    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3179      // This is an extended namespace definition.
3180      // Attach this namespace decl to the chain of extended namespace
3181      // definitions.
3182      OrigNS->setNextNamespace(Namespc);
3183      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3184
3185      // Remove the previous declaration from the scope.
3186      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3187        IdResolver.RemoveDecl(OrigNS);
3188        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3189      }
3190    } else if (PrevDecl) {
3191      // This is an invalid name redefinition.
3192      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3193       << Namespc->getDeclName();
3194      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3195      Namespc->setInvalidDecl();
3196      // Continue on to push Namespc as current DeclContext and return it.
3197    } else if (II->isStr("std") &&
3198               CurContext->getLookupContext()->isTranslationUnit()) {
3199      // This is the first "real" definition of the namespace "std", so update
3200      // our cache of the "std" namespace to point at this definition.
3201      if (StdNamespace) {
3202        // We had already defined a dummy namespace "std". Link this new
3203        // namespace definition to the dummy namespace "std".
3204        StdNamespace->setNextNamespace(Namespc);
3205        StdNamespace->setLocation(IdentLoc);
3206        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3207      }
3208
3209      // Make our StdNamespace cache point at the first real definition of the
3210      // "std" namespace.
3211      StdNamespace = Namespc;
3212    }
3213
3214    PushOnScopeChains(Namespc, DeclRegionScope);
3215  } else {
3216    // Anonymous namespaces.
3217    assert(Namespc->isAnonymousNamespace());
3218
3219    // Link the anonymous namespace into its parent.
3220    NamespaceDecl *PrevDecl;
3221    DeclContext *Parent = CurContext->getLookupContext();
3222    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3223      PrevDecl = TU->getAnonymousNamespace();
3224      TU->setAnonymousNamespace(Namespc);
3225    } else {
3226      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3227      PrevDecl = ND->getAnonymousNamespace();
3228      ND->setAnonymousNamespace(Namespc);
3229    }
3230
3231    // Link the anonymous namespace with its previous declaration.
3232    if (PrevDecl) {
3233      assert(PrevDecl->isAnonymousNamespace());
3234      assert(!PrevDecl->getNextNamespace());
3235      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3236      PrevDecl->setNextNamespace(Namespc);
3237    }
3238
3239    CurContext->addDecl(Namespc);
3240
3241    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3242    //   behaves as if it were replaced by
3243    //     namespace unique { /* empty body */ }
3244    //     using namespace unique;
3245    //     namespace unique { namespace-body }
3246    //   where all occurrences of 'unique' in a translation unit are
3247    //   replaced by the same identifier and this identifier differs
3248    //   from all other identifiers in the entire program.
3249
3250    // We just create the namespace with an empty name and then add an
3251    // implicit using declaration, just like the standard suggests.
3252    //
3253    // CodeGen enforces the "universally unique" aspect by giving all
3254    // declarations semantically contained within an anonymous
3255    // namespace internal linkage.
3256
3257    if (!PrevDecl) {
3258      UsingDirectiveDecl* UD
3259        = UsingDirectiveDecl::Create(Context, CurContext,
3260                                     /* 'using' */ LBrace,
3261                                     /* 'namespace' */ SourceLocation(),
3262                                     /* qualifier */ SourceRange(),
3263                                     /* NNS */ NULL,
3264                                     /* identifier */ SourceLocation(),
3265                                     Namespc,
3266                                     /* Ancestor */ CurContext);
3267      UD->setImplicit();
3268      CurContext->addDecl(UD);
3269    }
3270  }
3271
3272  // Although we could have an invalid decl (i.e. the namespace name is a
3273  // redefinition), push it as current DeclContext and try to continue parsing.
3274  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3275  // for the namespace has the declarations that showed up in that particular
3276  // namespace definition.
3277  PushDeclContext(NamespcScope, Namespc);
3278  return DeclPtrTy::make(Namespc);
3279}
3280
3281/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3282/// is a namespace alias, returns the namespace it points to.
3283static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3284  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3285    return AD->getNamespace();
3286  return dyn_cast_or_null<NamespaceDecl>(D);
3287}
3288
3289/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3290/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3291void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3292  Decl *Dcl = D.getAs<Decl>();
3293  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3294  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3295  Namespc->setRBracLoc(RBrace);
3296  PopDeclContext();
3297}
3298
3299Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3300                                          SourceLocation UsingLoc,
3301                                          SourceLocation NamespcLoc,
3302                                          CXXScopeSpec &SS,
3303                                          SourceLocation IdentLoc,
3304                                          IdentifierInfo *NamespcName,
3305                                          AttributeList *AttrList) {
3306  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3307  assert(NamespcName && "Invalid NamespcName.");
3308  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3309  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3310
3311  UsingDirectiveDecl *UDir = 0;
3312
3313  // Lookup namespace name.
3314  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3315  LookupParsedName(R, S, &SS);
3316  if (R.isAmbiguous())
3317    return DeclPtrTy();
3318
3319  if (!R.empty()) {
3320    NamedDecl *Named = R.getFoundDecl();
3321    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3322        && "expected namespace decl");
3323    // C++ [namespace.udir]p1:
3324    //   A using-directive specifies that the names in the nominated
3325    //   namespace can be used in the scope in which the
3326    //   using-directive appears after the using-directive. During
3327    //   unqualified name lookup (3.4.1), the names appear as if they
3328    //   were declared in the nearest enclosing namespace which
3329    //   contains both the using-directive and the nominated
3330    //   namespace. [Note: in this context, "contains" means "contains
3331    //   directly or indirectly". ]
3332
3333    // Find enclosing context containing both using-directive and
3334    // nominated namespace.
3335    NamespaceDecl *NS = getNamespaceDecl(Named);
3336    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3337    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3338      CommonAncestor = CommonAncestor->getParent();
3339
3340    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3341                                      SS.getRange(),
3342                                      (NestedNameSpecifier *)SS.getScopeRep(),
3343                                      IdentLoc, Named, CommonAncestor);
3344    PushUsingDirective(S, UDir);
3345  } else {
3346    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3347  }
3348
3349  // FIXME: We ignore attributes for now.
3350  delete AttrList;
3351  return DeclPtrTy::make(UDir);
3352}
3353
3354void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3355  // If scope has associated entity, then using directive is at namespace
3356  // or translation unit scope. We add UsingDirectiveDecls, into
3357  // it's lookup structure.
3358  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3359    Ctx->addDecl(UDir);
3360  else
3361    // Otherwise it is block-sope. using-directives will affect lookup
3362    // only to the end of scope.
3363    S->PushUsingDirective(DeclPtrTy::make(UDir));
3364}
3365
3366
3367Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3368                                            AccessSpecifier AS,
3369                                            bool HasUsingKeyword,
3370                                            SourceLocation UsingLoc,
3371                                            CXXScopeSpec &SS,
3372                                            UnqualifiedId &Name,
3373                                            AttributeList *AttrList,
3374                                            bool IsTypeName,
3375                                            SourceLocation TypenameLoc) {
3376  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3377
3378  switch (Name.getKind()) {
3379  case UnqualifiedId::IK_Identifier:
3380  case UnqualifiedId::IK_OperatorFunctionId:
3381  case UnqualifiedId::IK_LiteralOperatorId:
3382  case UnqualifiedId::IK_ConversionFunctionId:
3383    break;
3384
3385  case UnqualifiedId::IK_ConstructorName:
3386  case UnqualifiedId::IK_ConstructorTemplateId:
3387    // C++0x inherited constructors.
3388    if (getLangOptions().CPlusPlus0x) break;
3389
3390    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3391      << SS.getRange();
3392    return DeclPtrTy();
3393
3394  case UnqualifiedId::IK_DestructorName:
3395    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3396      << SS.getRange();
3397    return DeclPtrTy();
3398
3399  case UnqualifiedId::IK_TemplateId:
3400    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3401      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3402    return DeclPtrTy();
3403  }
3404
3405  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3406  if (!TargetName)
3407    return DeclPtrTy();
3408
3409  // Warn about using declarations.
3410  // TODO: store that the declaration was written without 'using' and
3411  // talk about access decls instead of using decls in the
3412  // diagnostics.
3413  if (!HasUsingKeyword) {
3414    UsingLoc = Name.getSourceRange().getBegin();
3415
3416    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3417      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3418  }
3419
3420  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3421                                        Name.getSourceRange().getBegin(),
3422                                        TargetName, AttrList,
3423                                        /* IsInstantiation */ false,
3424                                        IsTypeName, TypenameLoc);
3425  if (UD)
3426    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3427
3428  return DeclPtrTy::make(UD);
3429}
3430
3431/// Determines whether to create a using shadow decl for a particular
3432/// decl, given the set of decls existing prior to this using lookup.
3433bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3434                                const LookupResult &Previous) {
3435  // Diagnose finding a decl which is not from a base class of the
3436  // current class.  We do this now because there are cases where this
3437  // function will silently decide not to build a shadow decl, which
3438  // will pre-empt further diagnostics.
3439  //
3440  // We don't need to do this in C++0x because we do the check once on
3441  // the qualifier.
3442  //
3443  // FIXME: diagnose the following if we care enough:
3444  //   struct A { int foo; };
3445  //   struct B : A { using A::foo; };
3446  //   template <class T> struct C : A {};
3447  //   template <class T> struct D : C<T> { using B::foo; } // <---
3448  // This is invalid (during instantiation) in C++03 because B::foo
3449  // resolves to the using decl in B, which is not a base class of D<T>.
3450  // We can't diagnose it immediately because C<T> is an unknown
3451  // specialization.  The UsingShadowDecl in D<T> then points directly
3452  // to A::foo, which will look well-formed when we instantiate.
3453  // The right solution is to not collapse the shadow-decl chain.
3454  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3455    DeclContext *OrigDC = Orig->getDeclContext();
3456
3457    // Handle enums and anonymous structs.
3458    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3459    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3460    while (OrigRec->isAnonymousStructOrUnion())
3461      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3462
3463    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3464      if (OrigDC == CurContext) {
3465        Diag(Using->getLocation(),
3466             diag::err_using_decl_nested_name_specifier_is_current_class)
3467          << Using->getNestedNameRange();
3468        Diag(Orig->getLocation(), diag::note_using_decl_target);
3469        return true;
3470      }
3471
3472      Diag(Using->getNestedNameRange().getBegin(),
3473           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3474        << Using->getTargetNestedNameDecl()
3475        << cast<CXXRecordDecl>(CurContext)
3476        << Using->getNestedNameRange();
3477      Diag(Orig->getLocation(), diag::note_using_decl_target);
3478      return true;
3479    }
3480  }
3481
3482  if (Previous.empty()) return false;
3483
3484  NamedDecl *Target = Orig;
3485  if (isa<UsingShadowDecl>(Target))
3486    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3487
3488  // If the target happens to be one of the previous declarations, we
3489  // don't have a conflict.
3490  //
3491  // FIXME: but we might be increasing its access, in which case we
3492  // should redeclare it.
3493  NamedDecl *NonTag = 0, *Tag = 0;
3494  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3495         I != E; ++I) {
3496    NamedDecl *D = (*I)->getUnderlyingDecl();
3497    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3498      return false;
3499
3500    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3501  }
3502
3503  if (Target->isFunctionOrFunctionTemplate()) {
3504    FunctionDecl *FD;
3505    if (isa<FunctionTemplateDecl>(Target))
3506      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3507    else
3508      FD = cast<FunctionDecl>(Target);
3509
3510    NamedDecl *OldDecl = 0;
3511    switch (CheckOverload(FD, Previous, OldDecl)) {
3512    case Ovl_Overload:
3513      return false;
3514
3515    case Ovl_NonFunction:
3516      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3517      break;
3518
3519    // We found a decl with the exact signature.
3520    case Ovl_Match:
3521      if (isa<UsingShadowDecl>(OldDecl)) {
3522        // Silently ignore the possible conflict.
3523        return false;
3524      }
3525
3526      // If we're in a record, we want to hide the target, so we
3527      // return true (without a diagnostic) to tell the caller not to
3528      // build a shadow decl.
3529      if (CurContext->isRecord())
3530        return true;
3531
3532      // If we're not in a record, this is an error.
3533      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3534      break;
3535    }
3536
3537    Diag(Target->getLocation(), diag::note_using_decl_target);
3538    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3539    return true;
3540  }
3541
3542  // Target is not a function.
3543
3544  if (isa<TagDecl>(Target)) {
3545    // No conflict between a tag and a non-tag.
3546    if (!Tag) return false;
3547
3548    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3549    Diag(Target->getLocation(), diag::note_using_decl_target);
3550    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3551    return true;
3552  }
3553
3554  // No conflict between a tag and a non-tag.
3555  if (!NonTag) return false;
3556
3557  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3558  Diag(Target->getLocation(), diag::note_using_decl_target);
3559  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3560  return true;
3561}
3562
3563/// Builds a shadow declaration corresponding to a 'using' declaration.
3564UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3565                                            UsingDecl *UD,
3566                                            NamedDecl *Orig) {
3567
3568  // If we resolved to another shadow declaration, just coalesce them.
3569  NamedDecl *Target = Orig;
3570  if (isa<UsingShadowDecl>(Target)) {
3571    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3572    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3573  }
3574
3575  UsingShadowDecl *Shadow
3576    = UsingShadowDecl::Create(Context, CurContext,
3577                              UD->getLocation(), UD, Target);
3578  UD->addShadowDecl(Shadow);
3579
3580  if (S)
3581    PushOnScopeChains(Shadow, S);
3582  else
3583    CurContext->addDecl(Shadow);
3584  Shadow->setAccess(UD->getAccess());
3585
3586  // Register it as a conversion if appropriate.
3587  if (Shadow->getDeclName().getNameKind()
3588        == DeclarationName::CXXConversionFunctionName)
3589    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3590
3591  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3592    Shadow->setInvalidDecl();
3593
3594  return Shadow;
3595}
3596
3597/// Hides a using shadow declaration.  This is required by the current
3598/// using-decl implementation when a resolvable using declaration in a
3599/// class is followed by a declaration which would hide or override
3600/// one or more of the using decl's targets; for example:
3601///
3602///   struct Base { void foo(int); };
3603///   struct Derived : Base {
3604///     using Base::foo;
3605///     void foo(int);
3606///   };
3607///
3608/// The governing language is C++03 [namespace.udecl]p12:
3609///
3610///   When a using-declaration brings names from a base class into a
3611///   derived class scope, member functions in the derived class
3612///   override and/or hide member functions with the same name and
3613///   parameter types in a base class (rather than conflicting).
3614///
3615/// There are two ways to implement this:
3616///   (1) optimistically create shadow decls when they're not hidden
3617///       by existing declarations, or
3618///   (2) don't create any shadow decls (or at least don't make them
3619///       visible) until we've fully parsed/instantiated the class.
3620/// The problem with (1) is that we might have to retroactively remove
3621/// a shadow decl, which requires several O(n) operations because the
3622/// decl structures are (very reasonably) not designed for removal.
3623/// (2) avoids this but is very fiddly and phase-dependent.
3624void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3625  if (Shadow->getDeclName().getNameKind() ==
3626        DeclarationName::CXXConversionFunctionName)
3627    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3628
3629  // Remove it from the DeclContext...
3630  Shadow->getDeclContext()->removeDecl(Shadow);
3631
3632  // ...and the scope, if applicable...
3633  if (S) {
3634    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3635    IdResolver.RemoveDecl(Shadow);
3636  }
3637
3638  // ...and the using decl.
3639  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3640
3641  // TODO: complain somehow if Shadow was used.  It shouldn't
3642  // be possible for this to happen, because...?
3643}
3644
3645/// Builds a using declaration.
3646///
3647/// \param IsInstantiation - Whether this call arises from an
3648///   instantiation of an unresolved using declaration.  We treat
3649///   the lookup differently for these declarations.
3650NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3651                                       SourceLocation UsingLoc,
3652                                       CXXScopeSpec &SS,
3653                                       SourceLocation IdentLoc,
3654                                       DeclarationName Name,
3655                                       AttributeList *AttrList,
3656                                       bool IsInstantiation,
3657                                       bool IsTypeName,
3658                                       SourceLocation TypenameLoc) {
3659  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3660  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3661
3662  // FIXME: We ignore attributes for now.
3663  delete AttrList;
3664
3665  if (SS.isEmpty()) {
3666    Diag(IdentLoc, diag::err_using_requires_qualname);
3667    return 0;
3668  }
3669
3670  // Do the redeclaration lookup in the current scope.
3671  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3672                        ForRedeclaration);
3673  Previous.setHideTags(false);
3674  if (S) {
3675    LookupName(Previous, S);
3676
3677    // It is really dumb that we have to do this.
3678    LookupResult::Filter F = Previous.makeFilter();
3679    while (F.hasNext()) {
3680      NamedDecl *D = F.next();
3681      if (!isDeclInScope(D, CurContext, S))
3682        F.erase();
3683    }
3684    F.done();
3685  } else {
3686    assert(IsInstantiation && "no scope in non-instantiation");
3687    assert(CurContext->isRecord() && "scope not record in instantiation");
3688    LookupQualifiedName(Previous, CurContext);
3689  }
3690
3691  NestedNameSpecifier *NNS =
3692    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3693
3694  // Check for invalid redeclarations.
3695  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3696    return 0;
3697
3698  // Check for bad qualifiers.
3699  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3700    return 0;
3701
3702  DeclContext *LookupContext = computeDeclContext(SS);
3703  NamedDecl *D;
3704  if (!LookupContext) {
3705    if (IsTypeName) {
3706      // FIXME: not all declaration name kinds are legal here
3707      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3708                                              UsingLoc, TypenameLoc,
3709                                              SS.getRange(), NNS,
3710                                              IdentLoc, Name);
3711    } else {
3712      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3713                                           UsingLoc, SS.getRange(), NNS,
3714                                           IdentLoc, Name);
3715    }
3716  } else {
3717    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3718                          SS.getRange(), UsingLoc, NNS, Name,
3719                          IsTypeName);
3720  }
3721  D->setAccess(AS);
3722  CurContext->addDecl(D);
3723
3724  if (!LookupContext) return D;
3725  UsingDecl *UD = cast<UsingDecl>(D);
3726
3727  if (RequireCompleteDeclContext(SS, LookupContext)) {
3728    UD->setInvalidDecl();
3729    return UD;
3730  }
3731
3732  // Look up the target name.
3733
3734  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3735
3736  // Unlike most lookups, we don't always want to hide tag
3737  // declarations: tag names are visible through the using declaration
3738  // even if hidden by ordinary names, *except* in a dependent context
3739  // where it's important for the sanity of two-phase lookup.
3740  if (!IsInstantiation)
3741    R.setHideTags(false);
3742
3743  LookupQualifiedName(R, LookupContext);
3744
3745  if (R.empty()) {
3746    Diag(IdentLoc, diag::err_no_member)
3747      << Name << LookupContext << SS.getRange();
3748    UD->setInvalidDecl();
3749    return UD;
3750  }
3751
3752  if (R.isAmbiguous()) {
3753    UD->setInvalidDecl();
3754    return UD;
3755  }
3756
3757  if (IsTypeName) {
3758    // If we asked for a typename and got a non-type decl, error out.
3759    if (!R.getAsSingle<TypeDecl>()) {
3760      Diag(IdentLoc, diag::err_using_typename_non_type);
3761      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3762        Diag((*I)->getUnderlyingDecl()->getLocation(),
3763             diag::note_using_decl_target);
3764      UD->setInvalidDecl();
3765      return UD;
3766    }
3767  } else {
3768    // If we asked for a non-typename and we got a type, error out,
3769    // but only if this is an instantiation of an unresolved using
3770    // decl.  Otherwise just silently find the type name.
3771    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3772      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3773      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3774      UD->setInvalidDecl();
3775      return UD;
3776    }
3777  }
3778
3779  // C++0x N2914 [namespace.udecl]p6:
3780  // A using-declaration shall not name a namespace.
3781  if (R.getAsSingle<NamespaceDecl>()) {
3782    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3783      << SS.getRange();
3784    UD->setInvalidDecl();
3785    return UD;
3786  }
3787
3788  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3789    if (!CheckUsingShadowDecl(UD, *I, Previous))
3790      BuildUsingShadowDecl(S, UD, *I);
3791  }
3792
3793  return UD;
3794}
3795
3796/// Checks that the given using declaration is not an invalid
3797/// redeclaration.  Note that this is checking only for the using decl
3798/// itself, not for any ill-formedness among the UsingShadowDecls.
3799bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3800                                       bool isTypeName,
3801                                       const CXXScopeSpec &SS,
3802                                       SourceLocation NameLoc,
3803                                       const LookupResult &Prev) {
3804  // C++03 [namespace.udecl]p8:
3805  // C++0x [namespace.udecl]p10:
3806  //   A using-declaration is a declaration and can therefore be used
3807  //   repeatedly where (and only where) multiple declarations are
3808  //   allowed.
3809  // That's only in file contexts.
3810  if (CurContext->getLookupContext()->isFileContext())
3811    return false;
3812
3813  NestedNameSpecifier *Qual
3814    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3815
3816  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3817    NamedDecl *D = *I;
3818
3819    bool DTypename;
3820    NestedNameSpecifier *DQual;
3821    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3822      DTypename = UD->isTypeName();
3823      DQual = UD->getTargetNestedNameDecl();
3824    } else if (UnresolvedUsingValueDecl *UD
3825                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3826      DTypename = false;
3827      DQual = UD->getTargetNestedNameSpecifier();
3828    } else if (UnresolvedUsingTypenameDecl *UD
3829                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3830      DTypename = true;
3831      DQual = UD->getTargetNestedNameSpecifier();
3832    } else continue;
3833
3834    // using decls differ if one says 'typename' and the other doesn't.
3835    // FIXME: non-dependent using decls?
3836    if (isTypeName != DTypename) continue;
3837
3838    // using decls differ if they name different scopes (but note that
3839    // template instantiation can cause this check to trigger when it
3840    // didn't before instantiation).
3841    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3842        Context.getCanonicalNestedNameSpecifier(DQual))
3843      continue;
3844
3845    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3846    Diag(D->getLocation(), diag::note_using_decl) << 1;
3847    return true;
3848  }
3849
3850  return false;
3851}
3852
3853
3854/// Checks that the given nested-name qualifier used in a using decl
3855/// in the current context is appropriately related to the current
3856/// scope.  If an error is found, diagnoses it and returns true.
3857bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3858                                   const CXXScopeSpec &SS,
3859                                   SourceLocation NameLoc) {
3860  DeclContext *NamedContext = computeDeclContext(SS);
3861
3862  if (!CurContext->isRecord()) {
3863    // C++03 [namespace.udecl]p3:
3864    // C++0x [namespace.udecl]p8:
3865    //   A using-declaration for a class member shall be a member-declaration.
3866
3867    // If we weren't able to compute a valid scope, it must be a
3868    // dependent class scope.
3869    if (!NamedContext || NamedContext->isRecord()) {
3870      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3871        << SS.getRange();
3872      return true;
3873    }
3874
3875    // Otherwise, everything is known to be fine.
3876    return false;
3877  }
3878
3879  // The current scope is a record.
3880
3881  // If the named context is dependent, we can't decide much.
3882  if (!NamedContext) {
3883    // FIXME: in C++0x, we can diagnose if we can prove that the
3884    // nested-name-specifier does not refer to a base class, which is
3885    // still possible in some cases.
3886
3887    // Otherwise we have to conservatively report that things might be
3888    // okay.
3889    return false;
3890  }
3891
3892  if (!NamedContext->isRecord()) {
3893    // Ideally this would point at the last name in the specifier,
3894    // but we don't have that level of source info.
3895    Diag(SS.getRange().getBegin(),
3896         diag::err_using_decl_nested_name_specifier_is_not_class)
3897      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3898    return true;
3899  }
3900
3901  if (getLangOptions().CPlusPlus0x) {
3902    // C++0x [namespace.udecl]p3:
3903    //   In a using-declaration used as a member-declaration, the
3904    //   nested-name-specifier shall name a base class of the class
3905    //   being defined.
3906
3907    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3908                                 cast<CXXRecordDecl>(NamedContext))) {
3909      if (CurContext == NamedContext) {
3910        Diag(NameLoc,
3911             diag::err_using_decl_nested_name_specifier_is_current_class)
3912          << SS.getRange();
3913        return true;
3914      }
3915
3916      Diag(SS.getRange().getBegin(),
3917           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3918        << (NestedNameSpecifier*) SS.getScopeRep()
3919        << cast<CXXRecordDecl>(CurContext)
3920        << SS.getRange();
3921      return true;
3922    }
3923
3924    return false;
3925  }
3926
3927  // C++03 [namespace.udecl]p4:
3928  //   A using-declaration used as a member-declaration shall refer
3929  //   to a member of a base class of the class being defined [etc.].
3930
3931  // Salient point: SS doesn't have to name a base class as long as
3932  // lookup only finds members from base classes.  Therefore we can
3933  // diagnose here only if we can prove that that can't happen,
3934  // i.e. if the class hierarchies provably don't intersect.
3935
3936  // TODO: it would be nice if "definitely valid" results were cached
3937  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3938  // need to be repeated.
3939
3940  struct UserData {
3941    llvm::DenseSet<const CXXRecordDecl*> Bases;
3942
3943    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3944      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3945      Data->Bases.insert(Base);
3946      return true;
3947    }
3948
3949    bool hasDependentBases(const CXXRecordDecl *Class) {
3950      return !Class->forallBases(collect, this);
3951    }
3952
3953    /// Returns true if the base is dependent or is one of the
3954    /// accumulated base classes.
3955    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3956      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3957      return !Data->Bases.count(Base);
3958    }
3959
3960    bool mightShareBases(const CXXRecordDecl *Class) {
3961      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3962    }
3963  };
3964
3965  UserData Data;
3966
3967  // Returns false if we find a dependent base.
3968  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3969    return false;
3970
3971  // Returns false if the class has a dependent base or if it or one
3972  // of its bases is present in the base set of the current context.
3973  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3974    return false;
3975
3976  Diag(SS.getRange().getBegin(),
3977       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3978    << (NestedNameSpecifier*) SS.getScopeRep()
3979    << cast<CXXRecordDecl>(CurContext)
3980    << SS.getRange();
3981
3982  return true;
3983}
3984
3985Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3986                                             SourceLocation NamespaceLoc,
3987                                             SourceLocation AliasLoc,
3988                                             IdentifierInfo *Alias,
3989                                             CXXScopeSpec &SS,
3990                                             SourceLocation IdentLoc,
3991                                             IdentifierInfo *Ident) {
3992
3993  // Lookup the namespace name.
3994  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3995  LookupParsedName(R, S, &SS);
3996
3997  // Check if we have a previous declaration with the same name.
3998  if (NamedDecl *PrevDecl
3999        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4000                           ForRedeclaration)) {
4001    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4002      // We already have an alias with the same name that points to the same
4003      // namespace, so don't create a new one.
4004      // FIXME: At some point, we'll want to create the (redundant)
4005      // declaration to maintain better source information.
4006      if (!R.isAmbiguous() && !R.empty() &&
4007          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4008        return DeclPtrTy();
4009    }
4010
4011    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4012      diag::err_redefinition_different_kind;
4013    Diag(AliasLoc, DiagID) << Alias;
4014    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4015    return DeclPtrTy();
4016  }
4017
4018  if (R.isAmbiguous())
4019    return DeclPtrTy();
4020
4021  if (R.empty()) {
4022    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4023    return DeclPtrTy();
4024  }
4025
4026  NamespaceAliasDecl *AliasDecl =
4027    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4028                               Alias, SS.getRange(),
4029                               (NestedNameSpecifier *)SS.getScopeRep(),
4030                               IdentLoc, R.getFoundDecl());
4031
4032  PushOnScopeChains(AliasDecl, S);
4033  return DeclPtrTy::make(AliasDecl);
4034}
4035
4036void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4037                                            CXXConstructorDecl *Constructor) {
4038  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4039          !Constructor->isUsed()) &&
4040    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4041
4042  CXXRecordDecl *ClassDecl = Constructor->getParent();
4043  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4044
4045  DeclContext *PreviousContext = CurContext;
4046  CurContext = Constructor;
4047  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
4048    Diag(CurrentLocation, diag::note_member_synthesized_at)
4049      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4050    Constructor->setInvalidDecl();
4051  } else {
4052    Constructor->setUsed();
4053  }
4054  CurContext = PreviousContext;
4055}
4056
4057void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4058                                    CXXDestructorDecl *Destructor) {
4059  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4060         "DefineImplicitDestructor - call it for implicit default dtor");
4061  CXXRecordDecl *ClassDecl = Destructor->getParent();
4062  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4063
4064  DeclContext *PreviousContext = CurContext;
4065  CurContext = Destructor;
4066
4067  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4068                                         Destructor->getParent());
4069
4070  // FIXME: If CheckDestructor fails, we should emit a note about where the
4071  // implicit destructor was needed.
4072  if (CheckDestructor(Destructor)) {
4073    Diag(CurrentLocation, diag::note_member_synthesized_at)
4074      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4075
4076    Destructor->setInvalidDecl();
4077    CurContext = PreviousContext;
4078
4079    return;
4080  }
4081  CurContext = PreviousContext;
4082
4083  Destructor->setUsed();
4084}
4085
4086void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
4087                                          CXXMethodDecl *MethodDecl) {
4088  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
4089          MethodDecl->getOverloadedOperator() == OO_Equal &&
4090          !MethodDecl->isUsed()) &&
4091         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
4092
4093  CXXRecordDecl *ClassDecl
4094    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
4095
4096  DeclContext *PreviousContext = CurContext;
4097  CurContext = MethodDecl;
4098
4099  // C++[class.copy] p12
4100  // Before the implicitly-declared copy assignment operator for a class is
4101  // implicitly defined, all implicitly-declared copy assignment operators
4102  // for its direct base classes and its nonstatic data members shall have
4103  // been implicitly defined.
4104  bool err = false;
4105  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4106       E = ClassDecl->bases_end(); Base != E; ++Base) {
4107    CXXRecordDecl *BaseClassDecl
4108      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4109    if (CXXMethodDecl *BaseAssignOpMethod =
4110          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4111                                  BaseClassDecl)) {
4112      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4113                              BaseAssignOpMethod,
4114                              PDiag(diag::err_access_assign_base)
4115                                << Base->getType());
4116
4117      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
4118    }
4119  }
4120  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4121       E = ClassDecl->field_end(); Field != E; ++Field) {
4122    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4123    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4124      FieldType = Array->getElementType();
4125    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4126      CXXRecordDecl *FieldClassDecl
4127        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4128      if (CXXMethodDecl *FieldAssignOpMethod =
4129          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4130                                  FieldClassDecl)) {
4131        CheckDirectMemberAccess(Field->getLocation(),
4132                                FieldAssignOpMethod,
4133                                PDiag(diag::err_access_assign_field)
4134                                  << Field->getDeclName() << Field->getType());
4135
4136        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
4137      }
4138    } else if (FieldType->isReferenceType()) {
4139      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4140      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4141      Diag(Field->getLocation(), diag::note_declared_at);
4142      Diag(CurrentLocation, diag::note_first_required_here);
4143      err = true;
4144    } else if (FieldType.isConstQualified()) {
4145      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4146      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4147      Diag(Field->getLocation(), diag::note_declared_at);
4148      Diag(CurrentLocation, diag::note_first_required_here);
4149      err = true;
4150    }
4151  }
4152  if (!err)
4153    MethodDecl->setUsed();
4154
4155  CurContext = PreviousContext;
4156}
4157
4158CXXMethodDecl *
4159Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4160                              ParmVarDecl *ParmDecl,
4161                              CXXRecordDecl *ClassDecl) {
4162  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4163  QualType RHSType(LHSType);
4164  // If class's assignment operator argument is const/volatile qualified,
4165  // look for operator = (const/volatile B&). Otherwise, look for
4166  // operator = (B&).
4167  RHSType = Context.getCVRQualifiedType(RHSType,
4168                                     ParmDecl->getType().getCVRQualifiers());
4169  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4170                                                           LHSType,
4171                                                           SourceLocation()));
4172  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4173                                                           RHSType,
4174                                                           CurrentLocation));
4175  Expr *Args[2] = { &*LHS, &*RHS };
4176  OverloadCandidateSet CandidateSet(CurrentLocation);
4177  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4178                              CandidateSet);
4179  OverloadCandidateSet::iterator Best;
4180  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4181    return cast<CXXMethodDecl>(Best->Function);
4182  assert(false &&
4183         "getAssignOperatorMethod - copy assignment operator method not found");
4184  return 0;
4185}
4186
4187void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4188                                   CXXConstructorDecl *CopyConstructor,
4189                                   unsigned TypeQuals) {
4190  assert((CopyConstructor->isImplicit() &&
4191          CopyConstructor->isCopyConstructor(TypeQuals) &&
4192          !CopyConstructor->isUsed()) &&
4193         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4194
4195  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4196  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4197
4198  DeclContext *PreviousContext = CurContext;
4199  CurContext = CopyConstructor;
4200
4201  // C++ [class.copy] p209
4202  // Before the implicitly-declared copy constructor for a class is
4203  // implicitly defined, all the implicitly-declared copy constructors
4204  // for its base class and its non-static data members shall have been
4205  // implicitly defined.
4206  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4207       Base != ClassDecl->bases_end(); ++Base) {
4208    CXXRecordDecl *BaseClassDecl
4209      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4210    if (CXXConstructorDecl *BaseCopyCtor =
4211        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4212      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4213                              BaseCopyCtor,
4214                              PDiag(diag::err_access_copy_base)
4215                                << Base->getType());
4216
4217      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4218    }
4219  }
4220  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4221                                  FieldEnd = ClassDecl->field_end();
4222       Field != FieldEnd; ++Field) {
4223    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4224    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4225      FieldType = Array->getElementType();
4226    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4227      CXXRecordDecl *FieldClassDecl
4228        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4229      if (CXXConstructorDecl *FieldCopyCtor =
4230          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4231        CheckDirectMemberAccess(Field->getLocation(),
4232                                FieldCopyCtor,
4233                                PDiag(diag::err_access_copy_field)
4234                                  << Field->getDeclName() << Field->getType());
4235
4236        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4237      }
4238    }
4239  }
4240  CopyConstructor->setUsed();
4241
4242  CurContext = PreviousContext;
4243}
4244
4245Sema::OwningExprResult
4246Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4247                            CXXConstructorDecl *Constructor,
4248                            MultiExprArg ExprArgs,
4249                            bool RequiresZeroInit,
4250                            bool BaseInitialization) {
4251  bool Elidable = false;
4252
4253  // C++0x [class.copy]p34:
4254  //   When certain criteria are met, an implementation is allowed to
4255  //   omit the copy/move construction of a class object, even if the
4256  //   copy/move constructor and/or destructor for the object have
4257  //   side effects. [...]
4258  //     - when a temporary class object that has not been bound to a
4259  //       reference (12.2) would be copied/moved to a class object
4260  //       with the same cv-unqualified type, the copy/move operation
4261  //       can be omitted by constructing the temporary object
4262  //       directly into the target of the omitted copy/move
4263  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4264    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4265    Elidable = SubExpr->isTemporaryObject() &&
4266      Context.hasSameUnqualifiedType(SubExpr->getType(),
4267                           Context.getTypeDeclType(Constructor->getParent()));
4268  }
4269
4270  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4271                               Elidable, move(ExprArgs), RequiresZeroInit,
4272                               BaseInitialization);
4273}
4274
4275/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4276/// including handling of its default argument expressions.
4277Sema::OwningExprResult
4278Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4279                            CXXConstructorDecl *Constructor, bool Elidable,
4280                            MultiExprArg ExprArgs,
4281                            bool RequiresZeroInit,
4282                            bool BaseInitialization) {
4283  unsigned NumExprs = ExprArgs.size();
4284  Expr **Exprs = (Expr **)ExprArgs.release();
4285
4286  MarkDeclarationReferenced(ConstructLoc, Constructor);
4287  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4288                                        Constructor, Elidable, Exprs, NumExprs,
4289                                        RequiresZeroInit, BaseInitialization));
4290}
4291
4292bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4293                                        CXXConstructorDecl *Constructor,
4294                                        MultiExprArg Exprs) {
4295  OwningExprResult TempResult =
4296    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4297                          move(Exprs));
4298  if (TempResult.isInvalid())
4299    return true;
4300
4301  Expr *Temp = TempResult.takeAs<Expr>();
4302  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4303  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4304  VD->setInit(Temp);
4305
4306  return false;
4307}
4308
4309void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4310  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4311  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4312      !ClassDecl->hasTrivialDestructor()) {
4313    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4314    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4315    CheckDestructorAccess(VD->getLocation(), Destructor,
4316                          PDiag(diag::err_access_dtor_var)
4317                            << VD->getDeclName()
4318                            << VD->getType());
4319  }
4320}
4321
4322/// AddCXXDirectInitializerToDecl - This action is called immediately after
4323/// ActOnDeclarator, when a C++ direct initializer is present.
4324/// e.g: "int x(1);"
4325void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4326                                         SourceLocation LParenLoc,
4327                                         MultiExprArg Exprs,
4328                                         SourceLocation *CommaLocs,
4329                                         SourceLocation RParenLoc) {
4330  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4331  Decl *RealDecl = Dcl.getAs<Decl>();
4332
4333  // If there is no declaration, there was an error parsing it.  Just ignore
4334  // the initializer.
4335  if (RealDecl == 0)
4336    return;
4337
4338  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4339  if (!VDecl) {
4340    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4341    RealDecl->setInvalidDecl();
4342    return;
4343  }
4344
4345  // We will represent direct-initialization similarly to copy-initialization:
4346  //    int x(1);  -as-> int x = 1;
4347  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4348  //
4349  // Clients that want to distinguish between the two forms, can check for
4350  // direct initializer using VarDecl::hasCXXDirectInitializer().
4351  // A major benefit is that clients that don't particularly care about which
4352  // exactly form was it (like the CodeGen) can handle both cases without
4353  // special case code.
4354
4355  // C++ 8.5p11:
4356  // The form of initialization (using parentheses or '=') is generally
4357  // insignificant, but does matter when the entity being initialized has a
4358  // class type.
4359  QualType DeclInitType = VDecl->getType();
4360  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4361    DeclInitType = Context.getBaseElementType(Array);
4362
4363  if (!VDecl->getType()->isDependentType() &&
4364      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4365                          diag::err_typecheck_decl_incomplete_type)) {
4366    VDecl->setInvalidDecl();
4367    return;
4368  }
4369
4370  // The variable can not have an abstract class type.
4371  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4372                             diag::err_abstract_type_in_decl,
4373                             AbstractVariableType))
4374    VDecl->setInvalidDecl();
4375
4376  const VarDecl *Def;
4377  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4378    Diag(VDecl->getLocation(), diag::err_redefinition)
4379    << VDecl->getDeclName();
4380    Diag(Def->getLocation(), diag::note_previous_definition);
4381    VDecl->setInvalidDecl();
4382    return;
4383  }
4384
4385  // If either the declaration has a dependent type or if any of the
4386  // expressions is type-dependent, we represent the initialization
4387  // via a ParenListExpr for later use during template instantiation.
4388  if (VDecl->getType()->isDependentType() ||
4389      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4390    // Let clients know that initialization was done with a direct initializer.
4391    VDecl->setCXXDirectInitializer(true);
4392
4393    // Store the initialization expressions as a ParenListExpr.
4394    unsigned NumExprs = Exprs.size();
4395    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4396                                               (Expr **)Exprs.release(),
4397                                               NumExprs, RParenLoc));
4398    return;
4399  }
4400
4401  // Capture the variable that is being initialized and the style of
4402  // initialization.
4403  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4404
4405  // FIXME: Poor source location information.
4406  InitializationKind Kind
4407    = InitializationKind::CreateDirect(VDecl->getLocation(),
4408                                       LParenLoc, RParenLoc);
4409
4410  InitializationSequence InitSeq(*this, Entity, Kind,
4411                                 (Expr**)Exprs.get(), Exprs.size());
4412  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4413  if (Result.isInvalid()) {
4414    VDecl->setInvalidDecl();
4415    return;
4416  }
4417
4418  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4419  VDecl->setInit(Result.takeAs<Expr>());
4420  VDecl->setCXXDirectInitializer(true);
4421
4422  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4423    FinalizeVarWithDestructor(VDecl, Record);
4424}
4425
4426/// \brief Given a constructor and the set of arguments provided for the
4427/// constructor, convert the arguments and add any required default arguments
4428/// to form a proper call to this constructor.
4429///
4430/// \returns true if an error occurred, false otherwise.
4431bool
4432Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4433                              MultiExprArg ArgsPtr,
4434                              SourceLocation Loc,
4435                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4436  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4437  unsigned NumArgs = ArgsPtr.size();
4438  Expr **Args = (Expr **)ArgsPtr.get();
4439
4440  const FunctionProtoType *Proto
4441    = Constructor->getType()->getAs<FunctionProtoType>();
4442  assert(Proto && "Constructor without a prototype?");
4443  unsigned NumArgsInProto = Proto->getNumArgs();
4444
4445  // If too few arguments are available, we'll fill in the rest with defaults.
4446  if (NumArgs < NumArgsInProto)
4447    ConvertedArgs.reserve(NumArgsInProto);
4448  else
4449    ConvertedArgs.reserve(NumArgs);
4450
4451  VariadicCallType CallType =
4452    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4453  llvm::SmallVector<Expr *, 8> AllArgs;
4454  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4455                                        Proto, 0, Args, NumArgs, AllArgs,
4456                                        CallType);
4457  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4458    ConvertedArgs.push_back(AllArgs[i]);
4459  return Invalid;
4460}
4461
4462static inline bool
4463CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4464                                       const FunctionDecl *FnDecl) {
4465  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4466  if (isa<NamespaceDecl>(DC)) {
4467    return SemaRef.Diag(FnDecl->getLocation(),
4468                        diag::err_operator_new_delete_declared_in_namespace)
4469      << FnDecl->getDeclName();
4470  }
4471
4472  if (isa<TranslationUnitDecl>(DC) &&
4473      FnDecl->getStorageClass() == FunctionDecl::Static) {
4474    return SemaRef.Diag(FnDecl->getLocation(),
4475                        diag::err_operator_new_delete_declared_static)
4476      << FnDecl->getDeclName();
4477  }
4478
4479  return false;
4480}
4481
4482static inline bool
4483CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4484                            CanQualType ExpectedResultType,
4485                            CanQualType ExpectedFirstParamType,
4486                            unsigned DependentParamTypeDiag,
4487                            unsigned InvalidParamTypeDiag) {
4488  QualType ResultType =
4489    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4490
4491  // Check that the result type is not dependent.
4492  if (ResultType->isDependentType())
4493    return SemaRef.Diag(FnDecl->getLocation(),
4494                        diag::err_operator_new_delete_dependent_result_type)
4495    << FnDecl->getDeclName() << ExpectedResultType;
4496
4497  // Check that the result type is what we expect.
4498  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4499    return SemaRef.Diag(FnDecl->getLocation(),
4500                        diag::err_operator_new_delete_invalid_result_type)
4501    << FnDecl->getDeclName() << ExpectedResultType;
4502
4503  // A function template must have at least 2 parameters.
4504  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4505    return SemaRef.Diag(FnDecl->getLocation(),
4506                      diag::err_operator_new_delete_template_too_few_parameters)
4507        << FnDecl->getDeclName();
4508
4509  // The function decl must have at least 1 parameter.
4510  if (FnDecl->getNumParams() == 0)
4511    return SemaRef.Diag(FnDecl->getLocation(),
4512                        diag::err_operator_new_delete_too_few_parameters)
4513      << FnDecl->getDeclName();
4514
4515  // Check the the first parameter type is not dependent.
4516  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4517  if (FirstParamType->isDependentType())
4518    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4519      << FnDecl->getDeclName() << ExpectedFirstParamType;
4520
4521  // Check that the first parameter type is what we expect.
4522  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4523      ExpectedFirstParamType)
4524    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4525    << FnDecl->getDeclName() << ExpectedFirstParamType;
4526
4527  return false;
4528}
4529
4530static bool
4531CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4532  // C++ [basic.stc.dynamic.allocation]p1:
4533  //   A program is ill-formed if an allocation function is declared in a
4534  //   namespace scope other than global scope or declared static in global
4535  //   scope.
4536  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4537    return true;
4538
4539  CanQualType SizeTy =
4540    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4541
4542  // C++ [basic.stc.dynamic.allocation]p1:
4543  //  The return type shall be void*. The first parameter shall have type
4544  //  std::size_t.
4545  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4546                                  SizeTy,
4547                                  diag::err_operator_new_dependent_param_type,
4548                                  diag::err_operator_new_param_type))
4549    return true;
4550
4551  // C++ [basic.stc.dynamic.allocation]p1:
4552  //  The first parameter shall not have an associated default argument.
4553  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4554    return SemaRef.Diag(FnDecl->getLocation(),
4555                        diag::err_operator_new_default_arg)
4556      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4557
4558  return false;
4559}
4560
4561static bool
4562CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4563  // C++ [basic.stc.dynamic.deallocation]p1:
4564  //   A program is ill-formed if deallocation functions are declared in a
4565  //   namespace scope other than global scope or declared static in global
4566  //   scope.
4567  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4568    return true;
4569
4570  // C++ [basic.stc.dynamic.deallocation]p2:
4571  //   Each deallocation function shall return void and its first parameter
4572  //   shall be void*.
4573  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4574                                  SemaRef.Context.VoidPtrTy,
4575                                 diag::err_operator_delete_dependent_param_type,
4576                                 diag::err_operator_delete_param_type))
4577    return true;
4578
4579  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4580  if (FirstParamType->isDependentType())
4581    return SemaRef.Diag(FnDecl->getLocation(),
4582                        diag::err_operator_delete_dependent_param_type)
4583    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4584
4585  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4586      SemaRef.Context.VoidPtrTy)
4587    return SemaRef.Diag(FnDecl->getLocation(),
4588                        diag::err_operator_delete_param_type)
4589      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4590
4591  return false;
4592}
4593
4594/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4595/// of this overloaded operator is well-formed. If so, returns false;
4596/// otherwise, emits appropriate diagnostics and returns true.
4597bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4598  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4599         "Expected an overloaded operator declaration");
4600
4601  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4602
4603  // C++ [over.oper]p5:
4604  //   The allocation and deallocation functions, operator new,
4605  //   operator new[], operator delete and operator delete[], are
4606  //   described completely in 3.7.3. The attributes and restrictions
4607  //   found in the rest of this subclause do not apply to them unless
4608  //   explicitly stated in 3.7.3.
4609  if (Op == OO_Delete || Op == OO_Array_Delete)
4610    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4611
4612  if (Op == OO_New || Op == OO_Array_New)
4613    return CheckOperatorNewDeclaration(*this, FnDecl);
4614
4615  // C++ [over.oper]p6:
4616  //   An operator function shall either be a non-static member
4617  //   function or be a non-member function and have at least one
4618  //   parameter whose type is a class, a reference to a class, an
4619  //   enumeration, or a reference to an enumeration.
4620  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4621    if (MethodDecl->isStatic())
4622      return Diag(FnDecl->getLocation(),
4623                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4624  } else {
4625    bool ClassOrEnumParam = false;
4626    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4627                                   ParamEnd = FnDecl->param_end();
4628         Param != ParamEnd; ++Param) {
4629      QualType ParamType = (*Param)->getType().getNonReferenceType();
4630      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4631          ParamType->isEnumeralType()) {
4632        ClassOrEnumParam = true;
4633        break;
4634      }
4635    }
4636
4637    if (!ClassOrEnumParam)
4638      return Diag(FnDecl->getLocation(),
4639                  diag::err_operator_overload_needs_class_or_enum)
4640        << FnDecl->getDeclName();
4641  }
4642
4643  // C++ [over.oper]p8:
4644  //   An operator function cannot have default arguments (8.3.6),
4645  //   except where explicitly stated below.
4646  //
4647  // Only the function-call operator allows default arguments
4648  // (C++ [over.call]p1).
4649  if (Op != OO_Call) {
4650    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4651         Param != FnDecl->param_end(); ++Param) {
4652      if ((*Param)->hasDefaultArg())
4653        return Diag((*Param)->getLocation(),
4654                    diag::err_operator_overload_default_arg)
4655          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4656    }
4657  }
4658
4659  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4660    { false, false, false }
4661#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4662    , { Unary, Binary, MemberOnly }
4663#include "clang/Basic/OperatorKinds.def"
4664  };
4665
4666  bool CanBeUnaryOperator = OperatorUses[Op][0];
4667  bool CanBeBinaryOperator = OperatorUses[Op][1];
4668  bool MustBeMemberOperator = OperatorUses[Op][2];
4669
4670  // C++ [over.oper]p8:
4671  //   [...] Operator functions cannot have more or fewer parameters
4672  //   than the number required for the corresponding operator, as
4673  //   described in the rest of this subclause.
4674  unsigned NumParams = FnDecl->getNumParams()
4675                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4676  if (Op != OO_Call &&
4677      ((NumParams == 1 && !CanBeUnaryOperator) ||
4678       (NumParams == 2 && !CanBeBinaryOperator) ||
4679       (NumParams < 1) || (NumParams > 2))) {
4680    // We have the wrong number of parameters.
4681    unsigned ErrorKind;
4682    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4683      ErrorKind = 2;  // 2 -> unary or binary.
4684    } else if (CanBeUnaryOperator) {
4685      ErrorKind = 0;  // 0 -> unary
4686    } else {
4687      assert(CanBeBinaryOperator &&
4688             "All non-call overloaded operators are unary or binary!");
4689      ErrorKind = 1;  // 1 -> binary
4690    }
4691
4692    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4693      << FnDecl->getDeclName() << NumParams << ErrorKind;
4694  }
4695
4696  // Overloaded operators other than operator() cannot be variadic.
4697  if (Op != OO_Call &&
4698      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4699    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4700      << FnDecl->getDeclName();
4701  }
4702
4703  // Some operators must be non-static member functions.
4704  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4705    return Diag(FnDecl->getLocation(),
4706                diag::err_operator_overload_must_be_member)
4707      << FnDecl->getDeclName();
4708  }
4709
4710  // C++ [over.inc]p1:
4711  //   The user-defined function called operator++ implements the
4712  //   prefix and postfix ++ operator. If this function is a member
4713  //   function with no parameters, or a non-member function with one
4714  //   parameter of class or enumeration type, it defines the prefix
4715  //   increment operator ++ for objects of that type. If the function
4716  //   is a member function with one parameter (which shall be of type
4717  //   int) or a non-member function with two parameters (the second
4718  //   of which shall be of type int), it defines the postfix
4719  //   increment operator ++ for objects of that type.
4720  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4721    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4722    bool ParamIsInt = false;
4723    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4724      ParamIsInt = BT->getKind() == BuiltinType::Int;
4725
4726    if (!ParamIsInt)
4727      return Diag(LastParam->getLocation(),
4728                  diag::err_operator_overload_post_incdec_must_be_int)
4729        << LastParam->getType() << (Op == OO_MinusMinus);
4730  }
4731
4732  // Notify the class if it got an assignment operator.
4733  if (Op == OO_Equal) {
4734    // Would have returned earlier otherwise.
4735    assert(isa<CXXMethodDecl>(FnDecl) &&
4736      "Overloaded = not member, but not filtered.");
4737    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4738    Method->getParent()->addedAssignmentOperator(Context, Method);
4739  }
4740
4741  return false;
4742}
4743
4744/// CheckLiteralOperatorDeclaration - Check whether the declaration
4745/// of this literal operator function is well-formed. If so, returns
4746/// false; otherwise, emits appropriate diagnostics and returns true.
4747bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4748  DeclContext *DC = FnDecl->getDeclContext();
4749  Decl::Kind Kind = DC->getDeclKind();
4750  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4751      Kind != Decl::LinkageSpec) {
4752    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4753      << FnDecl->getDeclName();
4754    return true;
4755  }
4756
4757  bool Valid = false;
4758
4759  // template <char...> type operator "" name() is the only valid template
4760  // signature, and the only valid signature with no parameters.
4761  if (FnDecl->param_size() == 0) {
4762    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4763      // Must have only one template parameter
4764      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4765      if (Params->size() == 1) {
4766        NonTypeTemplateParmDecl *PmDecl =
4767          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4768
4769        // The template parameter must be a char parameter pack.
4770        // FIXME: This test will always fail because non-type parameter packs
4771        //   have not been implemented.
4772        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4773            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4774          Valid = true;
4775      }
4776    }
4777  } else {
4778    // Check the first parameter
4779    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4780
4781    QualType T = (*Param)->getType();
4782
4783    // unsigned long long int, long double, and any character type are allowed
4784    // as the only parameters.
4785    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4786        Context.hasSameType(T, Context.LongDoubleTy) ||
4787        Context.hasSameType(T, Context.CharTy) ||
4788        Context.hasSameType(T, Context.WCharTy) ||
4789        Context.hasSameType(T, Context.Char16Ty) ||
4790        Context.hasSameType(T, Context.Char32Ty)) {
4791      if (++Param == FnDecl->param_end())
4792        Valid = true;
4793      goto FinishedParams;
4794    }
4795
4796    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4797    const PointerType *PT = T->getAs<PointerType>();
4798    if (!PT)
4799      goto FinishedParams;
4800    T = PT->getPointeeType();
4801    if (!T.isConstQualified())
4802      goto FinishedParams;
4803    T = T.getUnqualifiedType();
4804
4805    // Move on to the second parameter;
4806    ++Param;
4807
4808    // If there is no second parameter, the first must be a const char *
4809    if (Param == FnDecl->param_end()) {
4810      if (Context.hasSameType(T, Context.CharTy))
4811        Valid = true;
4812      goto FinishedParams;
4813    }
4814
4815    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4816    // are allowed as the first parameter to a two-parameter function
4817    if (!(Context.hasSameType(T, Context.CharTy) ||
4818          Context.hasSameType(T, Context.WCharTy) ||
4819          Context.hasSameType(T, Context.Char16Ty) ||
4820          Context.hasSameType(T, Context.Char32Ty)))
4821      goto FinishedParams;
4822
4823    // The second and final parameter must be an std::size_t
4824    T = (*Param)->getType().getUnqualifiedType();
4825    if (Context.hasSameType(T, Context.getSizeType()) &&
4826        ++Param == FnDecl->param_end())
4827      Valid = true;
4828  }
4829
4830  // FIXME: This diagnostic is absolutely terrible.
4831FinishedParams:
4832  if (!Valid) {
4833    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4834      << FnDecl->getDeclName();
4835    return true;
4836  }
4837
4838  return false;
4839}
4840
4841/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4842/// linkage specification, including the language and (if present)
4843/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4844/// the location of the language string literal, which is provided
4845/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4846/// the '{' brace. Otherwise, this linkage specification does not
4847/// have any braces.
4848Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4849                                                     SourceLocation ExternLoc,
4850                                                     SourceLocation LangLoc,
4851                                                     const char *Lang,
4852                                                     unsigned StrSize,
4853                                                     SourceLocation LBraceLoc) {
4854  LinkageSpecDecl::LanguageIDs Language;
4855  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4856    Language = LinkageSpecDecl::lang_c;
4857  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4858    Language = LinkageSpecDecl::lang_cxx;
4859  else {
4860    Diag(LangLoc, diag::err_bad_language);
4861    return DeclPtrTy();
4862  }
4863
4864  // FIXME: Add all the various semantics of linkage specifications
4865
4866  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4867                                               LangLoc, Language,
4868                                               LBraceLoc.isValid());
4869  CurContext->addDecl(D);
4870  PushDeclContext(S, D);
4871  return DeclPtrTy::make(D);
4872}
4873
4874/// ActOnFinishLinkageSpecification - Completely the definition of
4875/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4876/// valid, it's the position of the closing '}' brace in a linkage
4877/// specification that uses braces.
4878Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4879                                                      DeclPtrTy LinkageSpec,
4880                                                      SourceLocation RBraceLoc) {
4881  if (LinkageSpec)
4882    PopDeclContext();
4883  return LinkageSpec;
4884}
4885
4886/// \brief Perform semantic analysis for the variable declaration that
4887/// occurs within a C++ catch clause, returning the newly-created
4888/// variable.
4889VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4890                                         TypeSourceInfo *TInfo,
4891                                         IdentifierInfo *Name,
4892                                         SourceLocation Loc,
4893                                         SourceRange Range) {
4894  bool Invalid = false;
4895
4896  // Arrays and functions decay.
4897  if (ExDeclType->isArrayType())
4898    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4899  else if (ExDeclType->isFunctionType())
4900    ExDeclType = Context.getPointerType(ExDeclType);
4901
4902  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4903  // The exception-declaration shall not denote a pointer or reference to an
4904  // incomplete type, other than [cv] void*.
4905  // N2844 forbids rvalue references.
4906  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4907    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4908    Invalid = true;
4909  }
4910
4911  // GCC allows catching pointers and references to incomplete types
4912  // as an extension; so do we, but we warn by default.
4913
4914  QualType BaseType = ExDeclType;
4915  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4916  unsigned DK = diag::err_catch_incomplete;
4917  bool IncompleteCatchIsInvalid = true;
4918  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4919    BaseType = Ptr->getPointeeType();
4920    Mode = 1;
4921    DK = diag::ext_catch_incomplete_ptr;
4922    IncompleteCatchIsInvalid = false;
4923  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4924    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4925    BaseType = Ref->getPointeeType();
4926    Mode = 2;
4927    DK = diag::ext_catch_incomplete_ref;
4928    IncompleteCatchIsInvalid = false;
4929  }
4930  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4931      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4932      IncompleteCatchIsInvalid)
4933    Invalid = true;
4934
4935  if (!Invalid && !ExDeclType->isDependentType() &&
4936      RequireNonAbstractType(Loc, ExDeclType,
4937                             diag::err_abstract_type_in_decl,
4938                             AbstractVariableType))
4939    Invalid = true;
4940
4941  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4942                                    Name, ExDeclType, TInfo, VarDecl::None,
4943                                    VarDecl::None);
4944
4945  if (!Invalid) {
4946    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4947      // C++ [except.handle]p16:
4948      //   The object declared in an exception-declaration or, if the
4949      //   exception-declaration does not specify a name, a temporary (12.2) is
4950      //   copy-initialized (8.5) from the exception object. [...]
4951      //   The object is destroyed when the handler exits, after the destruction
4952      //   of any automatic objects initialized within the handler.
4953      //
4954      // We just pretend to initialize the object with itself, then make sure
4955      // it can be destroyed later.
4956      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4957      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4958                                            Loc, ExDeclType, 0);
4959      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4960                                                               SourceLocation());
4961      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4962      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4963                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4964      if (Result.isInvalid())
4965        Invalid = true;
4966      else
4967        FinalizeVarWithDestructor(ExDecl, RecordTy);
4968    }
4969  }
4970
4971  if (Invalid)
4972    ExDecl->setInvalidDecl();
4973
4974  return ExDecl;
4975}
4976
4977/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4978/// handler.
4979Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4980  TypeSourceInfo *TInfo = 0;
4981  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4982
4983  bool Invalid = D.isInvalidType();
4984  IdentifierInfo *II = D.getIdentifier();
4985  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4986                                             LookupOrdinaryName,
4987                                             ForRedeclaration)) {
4988    // The scope should be freshly made just for us. There is just no way
4989    // it contains any previous declaration.
4990    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4991    if (PrevDecl->isTemplateParameter()) {
4992      // Maybe we will complain about the shadowed template parameter.
4993      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4994    }
4995  }
4996
4997  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4998    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4999      << D.getCXXScopeSpec().getRange();
5000    Invalid = true;
5001  }
5002
5003  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5004                                              D.getIdentifier(),
5005                                              D.getIdentifierLoc(),
5006                                            D.getDeclSpec().getSourceRange());
5007
5008  if (Invalid)
5009    ExDecl->setInvalidDecl();
5010
5011  // Add the exception declaration into this scope.
5012  if (II)
5013    PushOnScopeChains(ExDecl, S);
5014  else
5015    CurContext->addDecl(ExDecl);
5016
5017  ProcessDeclAttributes(S, ExDecl, D);
5018  return DeclPtrTy::make(ExDecl);
5019}
5020
5021Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5022                                                   ExprArg assertexpr,
5023                                                   ExprArg assertmessageexpr) {
5024  Expr *AssertExpr = (Expr *)assertexpr.get();
5025  StringLiteral *AssertMessage =
5026    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5027
5028  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5029    llvm::APSInt Value(32);
5030    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5031      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5032        AssertExpr->getSourceRange();
5033      return DeclPtrTy();
5034    }
5035
5036    if (Value == 0) {
5037      Diag(AssertLoc, diag::err_static_assert_failed)
5038        << AssertMessage->getString() << AssertExpr->getSourceRange();
5039    }
5040  }
5041
5042  assertexpr.release();
5043  assertmessageexpr.release();
5044  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5045                                        AssertExpr, AssertMessage);
5046
5047  CurContext->addDecl(Decl);
5048  return DeclPtrTy::make(Decl);
5049}
5050
5051/// \brief Perform semantic analysis of the given friend type declaration.
5052///
5053/// \returns A friend declaration that.
5054FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5055                                      TypeSourceInfo *TSInfo) {
5056  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5057
5058  QualType T = TSInfo->getType();
5059  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5060
5061  if (!getLangOptions().CPlusPlus0x) {
5062    // C++03 [class.friend]p2:
5063    //   An elaborated-type-specifier shall be used in a friend declaration
5064    //   for a class.*
5065    //
5066    //   * The class-key of the elaborated-type-specifier is required.
5067    if (!ActiveTemplateInstantiations.empty()) {
5068      // Do not complain about the form of friend template types during
5069      // template instantiation; we will already have complained when the
5070      // template was declared.
5071    } else if (!T->isElaboratedTypeSpecifier()) {
5072      // If we evaluated the type to a record type, suggest putting
5073      // a tag in front.
5074      if (const RecordType *RT = T->getAs<RecordType>()) {
5075        RecordDecl *RD = RT->getDecl();
5076
5077        std::string InsertionText = std::string(" ") + RD->getKindName();
5078
5079        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5080          << (unsigned) RD->getTagKind()
5081          << T
5082          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5083                                        InsertionText);
5084      } else {
5085        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5086          << T
5087          << SourceRange(FriendLoc, TypeRange.getEnd());
5088      }
5089    } else if (T->getAs<EnumType>()) {
5090      Diag(FriendLoc, diag::ext_enum_friend)
5091        << T
5092        << SourceRange(FriendLoc, TypeRange.getEnd());
5093    }
5094  }
5095
5096  // C++0x [class.friend]p3:
5097  //   If the type specifier in a friend declaration designates a (possibly
5098  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5099  //   the friend declaration is ignored.
5100
5101  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5102  // in [class.friend]p3 that we do not implement.
5103
5104  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5105}
5106
5107/// Handle a friend type declaration.  This works in tandem with
5108/// ActOnTag.
5109///
5110/// Notes on friend class templates:
5111///
5112/// We generally treat friend class declarations as if they were
5113/// declaring a class.  So, for example, the elaborated type specifier
5114/// in a friend declaration is required to obey the restrictions of a
5115/// class-head (i.e. no typedefs in the scope chain), template
5116/// parameters are required to match up with simple template-ids, &c.
5117/// However, unlike when declaring a template specialization, it's
5118/// okay to refer to a template specialization without an empty
5119/// template parameter declaration, e.g.
5120///   friend class A<T>::B<unsigned>;
5121/// We permit this as a special case; if there are any template
5122/// parameters present at all, require proper matching, i.e.
5123///   template <> template <class T> friend class A<int>::B;
5124Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5125                                          MultiTemplateParamsArg TempParams) {
5126  SourceLocation Loc = DS.getSourceRange().getBegin();
5127
5128  assert(DS.isFriendSpecified());
5129  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5130
5131  // Try to convert the decl specifier to a type.  This works for
5132  // friend templates because ActOnTag never produces a ClassTemplateDecl
5133  // for a TUK_Friend.
5134  Declarator TheDeclarator(DS, Declarator::MemberContext);
5135  TypeSourceInfo *TSI;
5136  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5137  if (TheDeclarator.isInvalidType())
5138    return DeclPtrTy();
5139
5140  if (!TSI)
5141    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5142
5143  // This is definitely an error in C++98.  It's probably meant to
5144  // be forbidden in C++0x, too, but the specification is just
5145  // poorly written.
5146  //
5147  // The problem is with declarations like the following:
5148  //   template <T> friend A<T>::foo;
5149  // where deciding whether a class C is a friend or not now hinges
5150  // on whether there exists an instantiation of A that causes
5151  // 'foo' to equal C.  There are restrictions on class-heads
5152  // (which we declare (by fiat) elaborated friend declarations to
5153  // be) that makes this tractable.
5154  //
5155  // FIXME: handle "template <> friend class A<T>;", which
5156  // is possibly well-formed?  Who even knows?
5157  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5158    Diag(Loc, diag::err_tagless_friend_type_template)
5159      << DS.getSourceRange();
5160    return DeclPtrTy();
5161  }
5162
5163  // C++98 [class.friend]p1: A friend of a class is a function
5164  //   or class that is not a member of the class . . .
5165  // This is fixed in DR77, which just barely didn't make the C++03
5166  // deadline.  It's also a very silly restriction that seriously
5167  // affects inner classes and which nobody else seems to implement;
5168  // thus we never diagnose it, not even in -pedantic.
5169  //
5170  // But note that we could warn about it: it's always useless to
5171  // friend one of your own members (it's not, however, worthless to
5172  // friend a member of an arbitrary specialization of your template).
5173
5174  Decl *D;
5175  if (unsigned NumTempParamLists = TempParams.size())
5176    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5177                                   NumTempParamLists,
5178                                 (TemplateParameterList**) TempParams.release(),
5179                                   TSI,
5180                                   DS.getFriendSpecLoc());
5181  else
5182    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5183
5184  if (!D)
5185    return DeclPtrTy();
5186
5187  D->setAccess(AS_public);
5188  CurContext->addDecl(D);
5189
5190  return DeclPtrTy::make(D);
5191}
5192
5193Sema::DeclPtrTy
5194Sema::ActOnFriendFunctionDecl(Scope *S,
5195                              Declarator &D,
5196                              bool IsDefinition,
5197                              MultiTemplateParamsArg TemplateParams) {
5198  const DeclSpec &DS = D.getDeclSpec();
5199
5200  assert(DS.isFriendSpecified());
5201  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5202
5203  SourceLocation Loc = D.getIdentifierLoc();
5204  TypeSourceInfo *TInfo = 0;
5205  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5206
5207  // C++ [class.friend]p1
5208  //   A friend of a class is a function or class....
5209  // Note that this sees through typedefs, which is intended.
5210  // It *doesn't* see through dependent types, which is correct
5211  // according to [temp.arg.type]p3:
5212  //   If a declaration acquires a function type through a
5213  //   type dependent on a template-parameter and this causes
5214  //   a declaration that does not use the syntactic form of a
5215  //   function declarator to have a function type, the program
5216  //   is ill-formed.
5217  if (!T->isFunctionType()) {
5218    Diag(Loc, diag::err_unexpected_friend);
5219
5220    // It might be worthwhile to try to recover by creating an
5221    // appropriate declaration.
5222    return DeclPtrTy();
5223  }
5224
5225  // C++ [namespace.memdef]p3
5226  //  - If a friend declaration in a non-local class first declares a
5227  //    class or function, the friend class or function is a member
5228  //    of the innermost enclosing namespace.
5229  //  - The name of the friend is not found by simple name lookup
5230  //    until a matching declaration is provided in that namespace
5231  //    scope (either before or after the class declaration granting
5232  //    friendship).
5233  //  - If a friend function is called, its name may be found by the
5234  //    name lookup that considers functions from namespaces and
5235  //    classes associated with the types of the function arguments.
5236  //  - When looking for a prior declaration of a class or a function
5237  //    declared as a friend, scopes outside the innermost enclosing
5238  //    namespace scope are not considered.
5239
5240  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5241  DeclarationName Name = GetNameForDeclarator(D);
5242  assert(Name);
5243
5244  // The context we found the declaration in, or in which we should
5245  // create the declaration.
5246  DeclContext *DC;
5247
5248  // FIXME: handle local classes
5249
5250  // Recover from invalid scope qualifiers as if they just weren't there.
5251  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5252                        ForRedeclaration);
5253  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5254    DC = computeDeclContext(ScopeQual);
5255
5256    // FIXME: handle dependent contexts
5257    if (!DC) return DeclPtrTy();
5258    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5259
5260    LookupQualifiedName(Previous, DC);
5261
5262    // If searching in that context implicitly found a declaration in
5263    // a different context, treat it like it wasn't found at all.
5264    // TODO: better diagnostics for this case.  Suggesting the right
5265    // qualified scope would be nice...
5266    // FIXME: getRepresentativeDecl() is not right here at all
5267    if (Previous.empty() ||
5268        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5269      D.setInvalidType();
5270      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5271      return DeclPtrTy();
5272    }
5273
5274    // C++ [class.friend]p1: A friend of a class is a function or
5275    //   class that is not a member of the class . . .
5276    if (DC->Equals(CurContext))
5277      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5278
5279  // Otherwise walk out to the nearest namespace scope looking for matches.
5280  } else {
5281    // TODO: handle local class contexts.
5282
5283    DC = CurContext;
5284    while (true) {
5285      // Skip class contexts.  If someone can cite chapter and verse
5286      // for this behavior, that would be nice --- it's what GCC and
5287      // EDG do, and it seems like a reasonable intent, but the spec
5288      // really only says that checks for unqualified existing
5289      // declarations should stop at the nearest enclosing namespace,
5290      // not that they should only consider the nearest enclosing
5291      // namespace.
5292      while (DC->isRecord())
5293        DC = DC->getParent();
5294
5295      LookupQualifiedName(Previous, DC);
5296
5297      // TODO: decide what we think about using declarations.
5298      if (!Previous.empty())
5299        break;
5300
5301      if (DC->isFileContext()) break;
5302      DC = DC->getParent();
5303    }
5304
5305    // C++ [class.friend]p1: A friend of a class is a function or
5306    //   class that is not a member of the class . . .
5307    // C++0x changes this for both friend types and functions.
5308    // Most C++ 98 compilers do seem to give an error here, so
5309    // we do, too.
5310    if (!Previous.empty() && DC->Equals(CurContext)
5311        && !getLangOptions().CPlusPlus0x)
5312      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5313  }
5314
5315  if (DC->isFileContext()) {
5316    // This implies that it has to be an operator or function.
5317    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5318        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5319        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5320      Diag(Loc, diag::err_introducing_special_friend) <<
5321        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5322         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5323      return DeclPtrTy();
5324    }
5325  }
5326
5327  bool Redeclaration = false;
5328  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5329                                          move(TemplateParams),
5330                                          IsDefinition,
5331                                          Redeclaration);
5332  if (!ND) return DeclPtrTy();
5333
5334  assert(ND->getDeclContext() == DC);
5335  assert(ND->getLexicalDeclContext() == CurContext);
5336
5337  // Add the function declaration to the appropriate lookup tables,
5338  // adjusting the redeclarations list as necessary.  We don't
5339  // want to do this yet if the friending class is dependent.
5340  //
5341  // Also update the scope-based lookup if the target context's
5342  // lookup context is in lexical scope.
5343  if (!CurContext->isDependentContext()) {
5344    DC = DC->getLookupContext();
5345    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5346    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5347      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5348  }
5349
5350  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5351                                       D.getIdentifierLoc(), ND,
5352                                       DS.getFriendSpecLoc());
5353  FrD->setAccess(AS_public);
5354  CurContext->addDecl(FrD);
5355
5356  return DeclPtrTy::make(ND);
5357}
5358
5359void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5360  AdjustDeclIfTemplate(dcl);
5361
5362  Decl *Dcl = dcl.getAs<Decl>();
5363  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5364  if (!Fn) {
5365    Diag(DelLoc, diag::err_deleted_non_function);
5366    return;
5367  }
5368  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5369    Diag(DelLoc, diag::err_deleted_decl_not_first);
5370    Diag(Prev->getLocation(), diag::note_previous_declaration);
5371    // If the declaration wasn't the first, we delete the function anyway for
5372    // recovery.
5373  }
5374  Fn->setDeleted();
5375}
5376
5377static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5378  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5379       ++CI) {
5380    Stmt *SubStmt = *CI;
5381    if (!SubStmt)
5382      continue;
5383    if (isa<ReturnStmt>(SubStmt))
5384      Self.Diag(SubStmt->getSourceRange().getBegin(),
5385           diag::err_return_in_constructor_handler);
5386    if (!isa<Expr>(SubStmt))
5387      SearchForReturnInStmt(Self, SubStmt);
5388  }
5389}
5390
5391void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5392  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5393    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5394    SearchForReturnInStmt(*this, Handler);
5395  }
5396}
5397
5398bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5399                                             const CXXMethodDecl *Old) {
5400  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5401  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5402
5403  if (Context.hasSameType(NewTy, OldTy) ||
5404      NewTy->isDependentType() || OldTy->isDependentType())
5405    return false;
5406
5407  // Check if the return types are covariant
5408  QualType NewClassTy, OldClassTy;
5409
5410  /// Both types must be pointers or references to classes.
5411  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5412    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5413      NewClassTy = NewPT->getPointeeType();
5414      OldClassTy = OldPT->getPointeeType();
5415    }
5416  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5417    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5418      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5419        NewClassTy = NewRT->getPointeeType();
5420        OldClassTy = OldRT->getPointeeType();
5421      }
5422    }
5423  }
5424
5425  // The return types aren't either both pointers or references to a class type.
5426  if (NewClassTy.isNull()) {
5427    Diag(New->getLocation(),
5428         diag::err_different_return_type_for_overriding_virtual_function)
5429      << New->getDeclName() << NewTy << OldTy;
5430    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5431
5432    return true;
5433  }
5434
5435  // C++ [class.virtual]p6:
5436  //   If the return type of D::f differs from the return type of B::f, the
5437  //   class type in the return type of D::f shall be complete at the point of
5438  //   declaration of D::f or shall be the class type D.
5439  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5440    if (!RT->isBeingDefined() &&
5441        RequireCompleteType(New->getLocation(), NewClassTy,
5442                            PDiag(diag::err_covariant_return_incomplete)
5443                              << New->getDeclName()))
5444    return true;
5445  }
5446
5447  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5448    // Check if the new class derives from the old class.
5449    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5450      Diag(New->getLocation(),
5451           diag::err_covariant_return_not_derived)
5452      << New->getDeclName() << NewTy << OldTy;
5453      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5454      return true;
5455    }
5456
5457    // Check if we the conversion from derived to base is valid.
5458    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5459                    diag::err_covariant_return_inaccessible_base,
5460                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5461                    // FIXME: Should this point to the return type?
5462                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5463      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5464      return true;
5465    }
5466  }
5467
5468  // The qualifiers of the return types must be the same.
5469  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5470    Diag(New->getLocation(),
5471         diag::err_covariant_return_type_different_qualifications)
5472    << New->getDeclName() << NewTy << OldTy;
5473    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5474    return true;
5475  };
5476
5477
5478  // The new class type must have the same or less qualifiers as the old type.
5479  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5480    Diag(New->getLocation(),
5481         diag::err_covariant_return_type_class_type_more_qualified)
5482    << New->getDeclName() << NewTy << OldTy;
5483    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5484    return true;
5485  };
5486
5487  return false;
5488}
5489
5490bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5491                                             const CXXMethodDecl *Old)
5492{
5493  if (Old->hasAttr<FinalAttr>()) {
5494    Diag(New->getLocation(), diag::err_final_function_overridden)
5495      << New->getDeclName();
5496    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5497    return true;
5498  }
5499
5500  return false;
5501}
5502
5503/// \brief Mark the given method pure.
5504///
5505/// \param Method the method to be marked pure.
5506///
5507/// \param InitRange the source range that covers the "0" initializer.
5508bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5509  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5510    Method->setPure();
5511
5512    // A class is abstract if at least one function is pure virtual.
5513    Method->getParent()->setAbstract(true);
5514    return false;
5515  }
5516
5517  if (!Method->isInvalidDecl())
5518    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5519      << Method->getDeclName() << InitRange;
5520  return true;
5521}
5522
5523/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5524/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5525/// is a fresh scope pushed for just this purpose.
5526///
5527/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5528/// static data member of class X, names should be looked up in the scope of
5529/// class X.
5530void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5531  // If there is no declaration, there was an error parsing it.
5532  Decl *D = Dcl.getAs<Decl>();
5533  if (D == 0) return;
5534
5535  // We should only get called for declarations with scope specifiers, like:
5536  //   int foo::bar;
5537  assert(D->isOutOfLine());
5538  EnterDeclaratorContext(S, D->getDeclContext());
5539}
5540
5541/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5542/// initializer for the out-of-line declaration 'Dcl'.
5543void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5544  // If there is no declaration, there was an error parsing it.
5545  Decl *D = Dcl.getAs<Decl>();
5546  if (D == 0) return;
5547
5548  assert(D->isOutOfLine());
5549  ExitDeclaratorContext(S);
5550}
5551
5552/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5553/// C++ if/switch/while/for statement.
5554/// e.g: "if (int x = f()) {...}"
5555Action::DeclResult
5556Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5557  // C++ 6.4p2:
5558  // The declarator shall not specify a function or an array.
5559  // The type-specifier-seq shall not contain typedef and shall not declare a
5560  // new class or enumeration.
5561  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5562         "Parser allowed 'typedef' as storage class of condition decl.");
5563
5564  TypeSourceInfo *TInfo = 0;
5565  TagDecl *OwnedTag = 0;
5566  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5567
5568  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5569                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5570                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5571    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5572      << D.getSourceRange();
5573    return DeclResult();
5574  } else if (OwnedTag && OwnedTag->isDefinition()) {
5575    // The type-specifier-seq shall not declare a new class or enumeration.
5576    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5577  }
5578
5579  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5580  if (!Dcl)
5581    return DeclResult();
5582
5583  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5584  VD->setDeclaredInCondition(true);
5585  return Dcl;
5586}
5587
5588static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
5589  // Ignore dependent types.
5590  if (MD->isDependentContext())
5591    return false;
5592
5593  // Ignore declarations that are not definitions.
5594  if (!MD->isThisDeclarationADefinition())
5595    return false;
5596
5597  CXXRecordDecl *RD = MD->getParent();
5598
5599  // Ignore classes without a vtable.
5600  if (!RD->isDynamicClass())
5601    return false;
5602
5603  switch (MD->getParent()->getTemplateSpecializationKind()) {
5604  case TSK_Undeclared:
5605  case TSK_ExplicitSpecialization:
5606    // Classes that aren't instantiations of templates don't need their
5607    // virtual methods marked until we see the definition of the key
5608    // function.
5609    break;
5610
5611  case TSK_ImplicitInstantiation:
5612    // This is a constructor of a class template; mark all of the virtual
5613    // members as referenced to ensure that they get instantiatied.
5614    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5615      return true;
5616    break;
5617
5618  case TSK_ExplicitInstantiationDeclaration:
5619    return false;
5620
5621  case TSK_ExplicitInstantiationDefinition:
5622    // This is method of a explicit instantiation; mark all of the virtual
5623    // members as referenced to ensure that they get instantiatied.
5624    return true;
5625  }
5626
5627  // Consider only out-of-line definitions of member functions. When we see
5628  // an inline definition, it's too early to compute the key function.
5629  if (!MD->isOutOfLine())
5630    return false;
5631
5632  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5633
5634  // If there is no key function, we will need a copy of the vtable.
5635  if (!KeyFunction)
5636    return true;
5637
5638  // If this is the key function, we need to mark virtual members.
5639  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5640    return true;
5641
5642  return false;
5643}
5644
5645void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5646                                             CXXMethodDecl *MD) {
5647  CXXRecordDecl *RD = MD->getParent();
5648
5649  // We will need to mark all of the virtual members as referenced to build the
5650  // vtable.
5651  if (!needsVTable(MD, Context))
5652    return;
5653
5654  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5655  if (kind == TSK_ImplicitInstantiation)
5656    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5657  else
5658    MarkVirtualMembersReferenced(Loc, RD);
5659}
5660
5661bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5662  if (ClassesWithUnmarkedVirtualMembers.empty())
5663    return false;
5664
5665  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5666    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5667    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5668    ClassesWithUnmarkedVirtualMembers.pop_back();
5669    MarkVirtualMembersReferenced(Loc, RD);
5670  }
5671
5672  return true;
5673}
5674
5675void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5676                                        const CXXRecordDecl *RD) {
5677  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5678       e = RD->method_end(); i != e; ++i) {
5679    CXXMethodDecl *MD = *i;
5680
5681    // C++ [basic.def.odr]p2:
5682    //   [...] A virtual member function is used if it is not pure. [...]
5683    if (MD->isVirtual() && !MD->isPure())
5684      MarkDeclarationReferenced(Loc, MD);
5685  }
5686
5687  // Only classes that have virtual bases need a VTT.
5688  if (RD->getNumVBases() == 0)
5689    return;
5690
5691  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5692           e = RD->bases_end(); i != e; ++i) {
5693    const CXXRecordDecl *Base =
5694        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5695    if (i->isVirtual())
5696      continue;
5697    if (Base->getNumVBases() == 0)
5698      continue;
5699    MarkVirtualMembersReferenced(Loc, Base);
5700  }
5701}
5702
5703/// SetIvarInitializers - This routine builds initialization ASTs for the
5704/// Objective-C implementation whose ivars need be initialized.
5705void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
5706  if (!getLangOptions().CPlusPlus)
5707    return;
5708  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
5709    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
5710    CollectIvarsToConstructOrDestruct(OID, ivars);
5711    if (ivars.empty())
5712      return;
5713    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
5714    for (unsigned i = 0; i < ivars.size(); i++) {
5715      FieldDecl *Field = ivars[i];
5716      CXXBaseOrMemberInitializer *Member;
5717      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
5718      InitializationKind InitKind =
5719        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
5720
5721      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
5722      Sema::OwningExprResult MemberInit =
5723        InitSeq.Perform(*this, InitEntity, InitKind,
5724                        Sema::MultiExprArg(*this, 0, 0));
5725      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
5726      // Note, MemberInit could actually come back empty if no initialization
5727      // is required (e.g., because it would call a trivial default constructor)
5728      if (!MemberInit.get() || MemberInit.isInvalid())
5729        continue;
5730
5731      Member =
5732        new (Context) CXXBaseOrMemberInitializer(Context,
5733                                                 Field, SourceLocation(),
5734                                                 SourceLocation(),
5735                                                 MemberInit.takeAs<Expr>(),
5736                                                 SourceLocation());
5737      AllToInit.push_back(Member);
5738    }
5739    ObjCImplementation->setIvarInitializers(Context,
5740                                            AllToInit.data(), AllToInit.size());
5741  }
5742}
5743