SemaDeclCXX.cpp revision 7881a0565893f1da6faafbd86377f5b50e4376a5
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          IdentifierInfo *MemberOrBase,
650                          SourceLocation IdLoc,
651                          SourceLocation LParenLoc,
652                          ExprTy **Args, unsigned NumArgs,
653                          SourceLocation *CommaLocs,
654                          SourceLocation RParenLoc) {
655  if (!ConstructorD)
656    return true;
657
658  CXXConstructorDecl *Constructor
659    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
660  if (!Constructor) {
661    // The user wrote a constructor initializer on a function that is
662    // not a C++ constructor. Ignore the error for now, because we may
663    // have more member initializers coming; we'll diagnose it just
664    // once in ActOnMemInitializers.
665    return true;
666  }
667
668  CXXRecordDecl *ClassDecl = Constructor->getParent();
669
670  // C++ [class.base.init]p2:
671  //   Names in a mem-initializer-id are looked up in the scope of the
672  //   constructor’s class and, if not found in that scope, are looked
673  //   up in the scope containing the constructor’s
674  //   definition. [Note: if the constructor’s class contains a member
675  //   with the same name as a direct or virtual base class of the
676  //   class, a mem-initializer-id naming the member or base class and
677  //   composed of a single identifier refers to the class member. A
678  //   mem-initializer-id for the hidden base class may be specified
679  //   using a qualified name. ]
680  // Look for a member, first.
681  FieldDecl *Member = 0;
682  DeclContext::lookup_result Result
683    = ClassDecl->lookup(Context, MemberOrBase);
684  if (Result.first != Result.second)
685    Member = dyn_cast<FieldDecl>(*Result.first);
686
687  // FIXME: Handle members of an anonymous union.
688
689  if (Member) {
690    // FIXME: Perform direct initialization of the member.
691    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
692  }
693
694  // It didn't name a member, so see if it names a class.
695  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
696  if (!BaseTy)
697    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
698      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
699
700  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
701  if (!BaseType->isRecordType())
702    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
703      << BaseType << SourceRange(IdLoc, RParenLoc);
704
705  // C++ [class.base.init]p2:
706  //   [...] Unless the mem-initializer-id names a nonstatic data
707  //   member of the constructor’s class or a direct or virtual base
708  //   of that class, the mem-initializer is ill-formed. A
709  //   mem-initializer-list can initialize a base class using any
710  //   name that denotes that base class type.
711
712  // First, check for a direct base class.
713  const CXXBaseSpecifier *DirectBaseSpec = 0;
714  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
715       Base != ClassDecl->bases_end(); ++Base) {
716    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
717        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
718      // We found a direct base of this type. That's what we're
719      // initializing.
720      DirectBaseSpec = &*Base;
721      break;
722    }
723  }
724
725  // Check for a virtual base class.
726  // FIXME: We might be able to short-circuit this if we know in advance that
727  // there are no virtual bases.
728  const CXXBaseSpecifier *VirtualBaseSpec = 0;
729  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
730    // We haven't found a base yet; search the class hierarchy for a
731    // virtual base class.
732    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
733                    /*DetectVirtual=*/false);
734    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
735      for (BasePaths::paths_iterator Path = Paths.begin();
736           Path != Paths.end(); ++Path) {
737        if (Path->back().Base->isVirtual()) {
738          VirtualBaseSpec = Path->back().Base;
739          break;
740        }
741      }
742    }
743  }
744
745  // C++ [base.class.init]p2:
746  //   If a mem-initializer-id is ambiguous because it designates both
747  //   a direct non-virtual base class and an inherited virtual base
748  //   class, the mem-initializer is ill-formed.
749  if (DirectBaseSpec && VirtualBaseSpec)
750    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
751      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
752
753  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
754}
755
756void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
757                                SourceLocation ColonLoc,
758                                MemInitTy **MemInits, unsigned NumMemInits) {
759  if (!ConstructorDecl)
760    return;
761
762  CXXConstructorDecl *Constructor
763    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
764
765  if (!Constructor) {
766    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
767    return;
768  }
769  llvm::DenseSet<uintptr_t>Members;
770
771  for (unsigned i = 0; i < NumMemInits; i++) {
772    CXXBaseOrMemberInitializer *Member =
773      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
774    if (Members.count(Member->getBaseOrMember()) == 0)
775      Members.insert(Member->getBaseOrMember());
776    else {
777      if (FieldDecl *Field = Member->getMember())
778        Diag(ColonLoc, diag::error_multiple_mem_initialization)
779          << Field->getNameAsString();
780      else if (Type *BaseClass = Member->getBaseClass())
781        Diag(ColonLoc, diag::error_multiple_base_initialization)
782          << BaseClass->getDesugaredType(true);
783      else
784        assert(false && "ActOnMemInitializers - neither field or base");
785    }
786  }
787}
788
789namespace {
790  /// PureVirtualMethodCollector - traverses a class and its superclasses
791  /// and determines if it has any pure virtual methods.
792  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
793    ASTContext &Context;
794
795  public:
796    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
797
798  private:
799    MethodList Methods;
800
801    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
802
803  public:
804    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
805      : Context(Ctx) {
806
807      MethodList List;
808      Collect(RD, List);
809
810      // Copy the temporary list to methods, and make sure to ignore any
811      // null entries.
812      for (size_t i = 0, e = List.size(); i != e; ++i) {
813        if (List[i])
814          Methods.push_back(List[i]);
815      }
816    }
817
818    bool empty() const { return Methods.empty(); }
819
820    MethodList::const_iterator methods_begin() { return Methods.begin(); }
821    MethodList::const_iterator methods_end() { return Methods.end(); }
822  };
823
824  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
825                                           MethodList& Methods) {
826    // First, collect the pure virtual methods for the base classes.
827    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
828         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
829      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
830        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
831        if (BaseDecl && BaseDecl->isAbstract())
832          Collect(BaseDecl, Methods);
833      }
834    }
835
836    // Next, zero out any pure virtual methods that this class overrides.
837    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
838
839    MethodSetTy OverriddenMethods;
840    size_t MethodsSize = Methods.size();
841
842    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
843         e = RD->decls_end(Context);
844         i != e; ++i) {
845      // Traverse the record, looking for methods.
846      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
847        // If the method is pre virtual, add it to the methods vector.
848        if (MD->isPure()) {
849          Methods.push_back(MD);
850          continue;
851        }
852
853        // Otherwise, record all the overridden methods in our set.
854        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
855             E = MD->end_overridden_methods(); I != E; ++I) {
856          // Keep track of the overridden methods.
857          OverriddenMethods.insert(*I);
858        }
859      }
860    }
861
862    // Now go through the methods and zero out all the ones we know are
863    // overridden.
864    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
865      if (OverriddenMethods.count(Methods[i]))
866        Methods[i] = 0;
867    }
868
869  }
870}
871
872bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
873                                  unsigned DiagID, AbstractDiagSelID SelID,
874                                  const CXXRecordDecl *CurrentRD) {
875
876  if (!getLangOptions().CPlusPlus)
877    return false;
878
879  if (const ArrayType *AT = Context.getAsArrayType(T))
880    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
881                                  CurrentRD);
882
883  if (const PointerType *PT = T->getAsPointerType()) {
884    // Find the innermost pointer type.
885    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
886      PT = T;
887
888    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
889      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
890                                    CurrentRD);
891  }
892
893  const RecordType *RT = T->getAsRecordType();
894  if (!RT)
895    return false;
896
897  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
898  if (!RD)
899    return false;
900
901  if (CurrentRD && CurrentRD != RD)
902    return false;
903
904  if (!RD->isAbstract())
905    return false;
906
907  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
908
909  // Check if we've already emitted the list of pure virtual functions for this
910  // class.
911  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
912    return true;
913
914  PureVirtualMethodCollector Collector(Context, RD);
915
916  for (PureVirtualMethodCollector::MethodList::const_iterator I =
917       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
918    const CXXMethodDecl *MD = *I;
919
920    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
921      MD->getDeclName();
922  }
923
924  if (!PureVirtualClassDiagSet)
925    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
926  PureVirtualClassDiagSet->insert(RD);
927
928  return true;
929}
930
931namespace {
932  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
933    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
934    Sema &SemaRef;
935    CXXRecordDecl *AbstractClass;
936
937    bool VisitDeclContext(const DeclContext *DC) {
938      bool Invalid = false;
939
940      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
941           E = DC->decls_end(SemaRef.Context); I != E; ++I)
942        Invalid |= Visit(*I);
943
944      return Invalid;
945    }
946
947  public:
948    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
949      : SemaRef(SemaRef), AbstractClass(ac) {
950        Visit(SemaRef.Context.getTranslationUnitDecl());
951    }
952
953    bool VisitFunctionDecl(const FunctionDecl *FD) {
954      if (FD->isThisDeclarationADefinition()) {
955        // No need to do the check if we're in a definition, because it requires
956        // that the return/param types are complete.
957        // because that requires
958        return VisitDeclContext(FD);
959      }
960
961      // Check the return type.
962      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
963      bool Invalid =
964        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
965                                       diag::err_abstract_type_in_decl,
966                                       Sema::AbstractReturnType,
967                                       AbstractClass);
968
969      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
970           E = FD->param_end(); I != E; ++I) {
971        const ParmVarDecl *VD = *I;
972        Invalid |=
973          SemaRef.RequireNonAbstractType(VD->getLocation(),
974                                         VD->getOriginalType(),
975                                         diag::err_abstract_type_in_decl,
976                                         Sema::AbstractParamType,
977                                         AbstractClass);
978      }
979
980      return Invalid;
981    }
982
983    bool VisitDecl(const Decl* D) {
984      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
985        return VisitDeclContext(DC);
986
987      return false;
988    }
989  };
990}
991
992void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
993                                             DeclPtrTy TagDecl,
994                                             SourceLocation LBrac,
995                                             SourceLocation RBrac) {
996  if (!TagDecl)
997    return;
998
999  AdjustDeclIfTemplate(TagDecl);
1000  ActOnFields(S, RLoc, TagDecl,
1001              (DeclPtrTy*)FieldCollector->getCurFields(),
1002              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1003
1004  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1005  if (!RD->isAbstract()) {
1006    // Collect all the pure virtual methods and see if this is an abstract
1007    // class after all.
1008    PureVirtualMethodCollector Collector(Context, RD);
1009    if (!Collector.empty())
1010      RD->setAbstract(true);
1011  }
1012
1013  if (RD->isAbstract())
1014    AbstractClassUsageDiagnoser(*this, RD);
1015
1016  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1017    for (RecordDecl::field_iterator i = RD->field_begin(Context),
1018         e = RD->field_end(Context); i != e; ++i) {
1019      // All the nonstatic data members must have trivial constructors.
1020      QualType FTy = i->getType();
1021      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1022        FTy = AT->getElementType();
1023
1024      if (const RecordType *RT = FTy->getAsRecordType()) {
1025        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1026
1027        if (!FieldRD->hasTrivialConstructor())
1028          RD->setHasTrivialConstructor(false);
1029        if (!FieldRD->hasTrivialDestructor())
1030          RD->setHasTrivialDestructor(false);
1031
1032        // If RD has neither a trivial constructor nor a trivial destructor
1033        // we don't need to continue checking.
1034        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1035          break;
1036      }
1037    }
1038  }
1039
1040  if (!RD->isDependentType())
1041    AddImplicitlyDeclaredMembersToClass(RD);
1042}
1043
1044/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1045/// special functions, such as the default constructor, copy
1046/// constructor, or destructor, to the given C++ class (C++
1047/// [special]p1).  This routine can only be executed just before the
1048/// definition of the class is complete.
1049void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1050  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1051  ClassType = Context.getCanonicalType(ClassType);
1052
1053  // FIXME: Implicit declarations have exception specifications, which are
1054  // the union of the specifications of the implicitly called functions.
1055
1056  if (!ClassDecl->hasUserDeclaredConstructor()) {
1057    // C++ [class.ctor]p5:
1058    //   A default constructor for a class X is a constructor of class X
1059    //   that can be called without an argument. If there is no
1060    //   user-declared constructor for class X, a default constructor is
1061    //   implicitly declared. An implicitly-declared default constructor
1062    //   is an inline public member of its class.
1063    DeclarationName Name
1064      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1065    CXXConstructorDecl *DefaultCon =
1066      CXXConstructorDecl::Create(Context, ClassDecl,
1067                                 ClassDecl->getLocation(), Name,
1068                                 Context.getFunctionType(Context.VoidTy,
1069                                                         0, 0, false, 0),
1070                                 /*isExplicit=*/false,
1071                                 /*isInline=*/true,
1072                                 /*isImplicitlyDeclared=*/true);
1073    DefaultCon->setAccess(AS_public);
1074    DefaultCon->setImplicit();
1075    ClassDecl->addDecl(Context, DefaultCon);
1076  }
1077
1078  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1079    // C++ [class.copy]p4:
1080    //   If the class definition does not explicitly declare a copy
1081    //   constructor, one is declared implicitly.
1082
1083    // C++ [class.copy]p5:
1084    //   The implicitly-declared copy constructor for a class X will
1085    //   have the form
1086    //
1087    //       X::X(const X&)
1088    //
1089    //   if
1090    bool HasConstCopyConstructor = true;
1091
1092    //     -- each direct or virtual base class B of X has a copy
1093    //        constructor whose first parameter is of type const B& or
1094    //        const volatile B&, and
1095    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1096         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1097      const CXXRecordDecl *BaseClassDecl
1098        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1099      HasConstCopyConstructor
1100        = BaseClassDecl->hasConstCopyConstructor(Context);
1101    }
1102
1103    //     -- for all the nonstatic data members of X that are of a
1104    //        class type M (or array thereof), each such class type
1105    //        has a copy constructor whose first parameter is of type
1106    //        const M& or const volatile M&.
1107    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1108         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1109         ++Field) {
1110      QualType FieldType = (*Field)->getType();
1111      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1112        FieldType = Array->getElementType();
1113      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1114        const CXXRecordDecl *FieldClassDecl
1115          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1116        HasConstCopyConstructor
1117          = FieldClassDecl->hasConstCopyConstructor(Context);
1118      }
1119    }
1120
1121    //   Otherwise, the implicitly declared copy constructor will have
1122    //   the form
1123    //
1124    //       X::X(X&)
1125    QualType ArgType = ClassType;
1126    if (HasConstCopyConstructor)
1127      ArgType = ArgType.withConst();
1128    ArgType = Context.getLValueReferenceType(ArgType);
1129
1130    //   An implicitly-declared copy constructor is an inline public
1131    //   member of its class.
1132    DeclarationName Name
1133      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1134    CXXConstructorDecl *CopyConstructor
1135      = CXXConstructorDecl::Create(Context, ClassDecl,
1136                                   ClassDecl->getLocation(), Name,
1137                                   Context.getFunctionType(Context.VoidTy,
1138                                                           &ArgType, 1,
1139                                                           false, 0),
1140                                   /*isExplicit=*/false,
1141                                   /*isInline=*/true,
1142                                   /*isImplicitlyDeclared=*/true);
1143    CopyConstructor->setAccess(AS_public);
1144    CopyConstructor->setImplicit();
1145
1146    // Add the parameter to the constructor.
1147    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1148                                                 ClassDecl->getLocation(),
1149                                                 /*IdentifierInfo=*/0,
1150                                                 ArgType, VarDecl::None, 0);
1151    CopyConstructor->setParams(Context, &FromParam, 1);
1152    ClassDecl->addDecl(Context, CopyConstructor);
1153  }
1154
1155  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1156    // Note: The following rules are largely analoguous to the copy
1157    // constructor rules. Note that virtual bases are not taken into account
1158    // for determining the argument type of the operator. Note also that
1159    // operators taking an object instead of a reference are allowed.
1160    //
1161    // C++ [class.copy]p10:
1162    //   If the class definition does not explicitly declare a copy
1163    //   assignment operator, one is declared implicitly.
1164    //   The implicitly-defined copy assignment operator for a class X
1165    //   will have the form
1166    //
1167    //       X& X::operator=(const X&)
1168    //
1169    //   if
1170    bool HasConstCopyAssignment = true;
1171
1172    //       -- each direct base class B of X has a copy assignment operator
1173    //          whose parameter is of type const B&, const volatile B& or B,
1174    //          and
1175    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1176         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1177      const CXXRecordDecl *BaseClassDecl
1178        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1179      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1180    }
1181
1182    //       -- for all the nonstatic data members of X that are of a class
1183    //          type M (or array thereof), each such class type has a copy
1184    //          assignment operator whose parameter is of type const M&,
1185    //          const volatile M& or M.
1186    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1187         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1188         ++Field) {
1189      QualType FieldType = (*Field)->getType();
1190      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1191        FieldType = Array->getElementType();
1192      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1193        const CXXRecordDecl *FieldClassDecl
1194          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1195        HasConstCopyAssignment
1196          = FieldClassDecl->hasConstCopyAssignment(Context);
1197      }
1198    }
1199
1200    //   Otherwise, the implicitly declared copy assignment operator will
1201    //   have the form
1202    //
1203    //       X& X::operator=(X&)
1204    QualType ArgType = ClassType;
1205    QualType RetType = Context.getLValueReferenceType(ArgType);
1206    if (HasConstCopyAssignment)
1207      ArgType = ArgType.withConst();
1208    ArgType = Context.getLValueReferenceType(ArgType);
1209
1210    //   An implicitly-declared copy assignment operator is an inline public
1211    //   member of its class.
1212    DeclarationName Name =
1213      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1214    CXXMethodDecl *CopyAssignment =
1215      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1216                            Context.getFunctionType(RetType, &ArgType, 1,
1217                                                    false, 0),
1218                            /*isStatic=*/false, /*isInline=*/true);
1219    CopyAssignment->setAccess(AS_public);
1220    CopyAssignment->setImplicit();
1221
1222    // Add the parameter to the operator.
1223    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1224                                                 ClassDecl->getLocation(),
1225                                                 /*IdentifierInfo=*/0,
1226                                                 ArgType, VarDecl::None, 0);
1227    CopyAssignment->setParams(Context, &FromParam, 1);
1228
1229    // Don't call addedAssignmentOperator. There is no way to distinguish an
1230    // implicit from an explicit assignment operator.
1231    ClassDecl->addDecl(Context, CopyAssignment);
1232  }
1233
1234  if (!ClassDecl->hasUserDeclaredDestructor()) {
1235    // C++ [class.dtor]p2:
1236    //   If a class has no user-declared destructor, a destructor is
1237    //   declared implicitly. An implicitly-declared destructor is an
1238    //   inline public member of its class.
1239    DeclarationName Name
1240      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1241    CXXDestructorDecl *Destructor
1242      = CXXDestructorDecl::Create(Context, ClassDecl,
1243                                  ClassDecl->getLocation(), Name,
1244                                  Context.getFunctionType(Context.VoidTy,
1245                                                          0, 0, false, 0),
1246                                  /*isInline=*/true,
1247                                  /*isImplicitlyDeclared=*/true);
1248    Destructor->setAccess(AS_public);
1249    Destructor->setImplicit();
1250    ClassDecl->addDecl(Context, Destructor);
1251  }
1252}
1253
1254void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1255  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1256  if (!Template)
1257    return;
1258
1259  TemplateParameterList *Params = Template->getTemplateParameters();
1260  for (TemplateParameterList::iterator Param = Params->begin(),
1261                                    ParamEnd = Params->end();
1262       Param != ParamEnd; ++Param) {
1263    NamedDecl *Named = cast<NamedDecl>(*Param);
1264    if (Named->getDeclName()) {
1265      S->AddDecl(DeclPtrTy::make(Named));
1266      IdResolver.AddDecl(Named);
1267    }
1268  }
1269}
1270
1271/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1272/// parsing a top-level (non-nested) C++ class, and we are now
1273/// parsing those parts of the given Method declaration that could
1274/// not be parsed earlier (C++ [class.mem]p2), such as default
1275/// arguments. This action should enter the scope of the given
1276/// Method declaration as if we had just parsed the qualified method
1277/// name. However, it should not bring the parameters into scope;
1278/// that will be performed by ActOnDelayedCXXMethodParameter.
1279void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1280  if (!MethodD)
1281    return;
1282
1283  CXXScopeSpec SS;
1284  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1285  QualType ClassTy
1286    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1287  SS.setScopeRep(
1288    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1289  ActOnCXXEnterDeclaratorScope(S, SS);
1290}
1291
1292/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1293/// C++ method declaration. We're (re-)introducing the given
1294/// function parameter into scope for use in parsing later parts of
1295/// the method declaration. For example, we could see an
1296/// ActOnParamDefaultArgument event for this parameter.
1297void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1298  if (!ParamD)
1299    return;
1300
1301  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1302
1303  // If this parameter has an unparsed default argument, clear it out
1304  // to make way for the parsed default argument.
1305  if (Param->hasUnparsedDefaultArg())
1306    Param->setDefaultArg(0);
1307
1308  S->AddDecl(DeclPtrTy::make(Param));
1309  if (Param->getDeclName())
1310    IdResolver.AddDecl(Param);
1311}
1312
1313/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1314/// processing the delayed method declaration for Method. The method
1315/// declaration is now considered finished. There may be a separate
1316/// ActOnStartOfFunctionDef action later (not necessarily
1317/// immediately!) for this method, if it was also defined inside the
1318/// class body.
1319void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1320  if (!MethodD)
1321    return;
1322
1323  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1324  CXXScopeSpec SS;
1325  QualType ClassTy
1326    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1327  SS.setScopeRep(
1328    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1329  ActOnCXXExitDeclaratorScope(S, SS);
1330
1331  // Now that we have our default arguments, check the constructor
1332  // again. It could produce additional diagnostics or affect whether
1333  // the class has implicitly-declared destructors, among other
1334  // things.
1335  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1336    CheckConstructor(Constructor);
1337
1338  // Check the default arguments, which we may have added.
1339  if (!Method->isInvalidDecl())
1340    CheckCXXDefaultArguments(Method);
1341}
1342
1343/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1344/// the well-formedness of the constructor declarator @p D with type @p
1345/// R. If there are any errors in the declarator, this routine will
1346/// emit diagnostics and set the invalid bit to true.  In any case, the type
1347/// will be updated to reflect a well-formed type for the constructor and
1348/// returned.
1349QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1350                                          FunctionDecl::StorageClass &SC) {
1351  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1352
1353  // C++ [class.ctor]p3:
1354  //   A constructor shall not be virtual (10.3) or static (9.4). A
1355  //   constructor can be invoked for a const, volatile or const
1356  //   volatile object. A constructor shall not be declared const,
1357  //   volatile, or const volatile (9.3.2).
1358  if (isVirtual) {
1359    if (!D.isInvalidType())
1360      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1361        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1362        << SourceRange(D.getIdentifierLoc());
1363    D.setInvalidType();
1364  }
1365  if (SC == FunctionDecl::Static) {
1366    if (!D.isInvalidType())
1367      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1368        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1369        << SourceRange(D.getIdentifierLoc());
1370    D.setInvalidType();
1371    SC = FunctionDecl::None;
1372  }
1373
1374  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1375  if (FTI.TypeQuals != 0) {
1376    if (FTI.TypeQuals & QualType::Const)
1377      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1378        << "const" << SourceRange(D.getIdentifierLoc());
1379    if (FTI.TypeQuals & QualType::Volatile)
1380      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1381        << "volatile" << SourceRange(D.getIdentifierLoc());
1382    if (FTI.TypeQuals & QualType::Restrict)
1383      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1384        << "restrict" << SourceRange(D.getIdentifierLoc());
1385  }
1386
1387  // Rebuild the function type "R" without any type qualifiers (in
1388  // case any of the errors above fired) and with "void" as the
1389  // return type, since constructors don't have return types. We
1390  // *always* have to do this, because GetTypeForDeclarator will
1391  // put in a result type of "int" when none was specified.
1392  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1393  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1394                                 Proto->getNumArgs(),
1395                                 Proto->isVariadic(), 0);
1396}
1397
1398/// CheckConstructor - Checks a fully-formed constructor for
1399/// well-formedness, issuing any diagnostics required. Returns true if
1400/// the constructor declarator is invalid.
1401void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1402  CXXRecordDecl *ClassDecl
1403    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1404  if (!ClassDecl)
1405    return Constructor->setInvalidDecl();
1406
1407  // C++ [class.copy]p3:
1408  //   A declaration of a constructor for a class X is ill-formed if
1409  //   its first parameter is of type (optionally cv-qualified) X and
1410  //   either there are no other parameters or else all other
1411  //   parameters have default arguments.
1412  if (!Constructor->isInvalidDecl() &&
1413      ((Constructor->getNumParams() == 1) ||
1414       (Constructor->getNumParams() > 1 &&
1415        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1416    QualType ParamType = Constructor->getParamDecl(0)->getType();
1417    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1418    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1419      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1420      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1421        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1422      Constructor->setInvalidDecl();
1423    }
1424  }
1425
1426  // Notify the class that we've added a constructor.
1427  ClassDecl->addedConstructor(Context, Constructor);
1428}
1429
1430static inline bool
1431FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1432  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1433          FTI.ArgInfo[0].Param &&
1434          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1435}
1436
1437/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1438/// the well-formednes of the destructor declarator @p D with type @p
1439/// R. If there are any errors in the declarator, this routine will
1440/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1441/// will be updated to reflect a well-formed type for the destructor and
1442/// returned.
1443QualType Sema::CheckDestructorDeclarator(Declarator &D,
1444                                         FunctionDecl::StorageClass& SC) {
1445  // C++ [class.dtor]p1:
1446  //   [...] A typedef-name that names a class is a class-name
1447  //   (7.1.3); however, a typedef-name that names a class shall not
1448  //   be used as the identifier in the declarator for a destructor
1449  //   declaration.
1450  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1451  if (isa<TypedefType>(DeclaratorType)) {
1452    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1453      << DeclaratorType;
1454    D.setInvalidType();
1455  }
1456
1457  // C++ [class.dtor]p2:
1458  //   A destructor is used to destroy objects of its class type. A
1459  //   destructor takes no parameters, and no return type can be
1460  //   specified for it (not even void). The address of a destructor
1461  //   shall not be taken. A destructor shall not be static. A
1462  //   destructor can be invoked for a const, volatile or const
1463  //   volatile object. A destructor shall not be declared const,
1464  //   volatile or const volatile (9.3.2).
1465  if (SC == FunctionDecl::Static) {
1466    if (!D.isInvalidType())
1467      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1468        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1469        << SourceRange(D.getIdentifierLoc());
1470    SC = FunctionDecl::None;
1471    D.setInvalidType();
1472  }
1473  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1474    // Destructors don't have return types, but the parser will
1475    // happily parse something like:
1476    //
1477    //   class X {
1478    //     float ~X();
1479    //   };
1480    //
1481    // The return type will be eliminated later.
1482    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1483      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1484      << SourceRange(D.getIdentifierLoc());
1485  }
1486
1487  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1488  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1489    if (FTI.TypeQuals & QualType::Const)
1490      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1491        << "const" << SourceRange(D.getIdentifierLoc());
1492    if (FTI.TypeQuals & QualType::Volatile)
1493      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1494        << "volatile" << SourceRange(D.getIdentifierLoc());
1495    if (FTI.TypeQuals & QualType::Restrict)
1496      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1497        << "restrict" << SourceRange(D.getIdentifierLoc());
1498    D.setInvalidType();
1499  }
1500
1501  // Make sure we don't have any parameters.
1502  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1503    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1504
1505    // Delete the parameters.
1506    FTI.freeArgs();
1507    D.setInvalidType();
1508  }
1509
1510  // Make sure the destructor isn't variadic.
1511  if (FTI.isVariadic) {
1512    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1513    D.setInvalidType();
1514  }
1515
1516  // Rebuild the function type "R" without any type qualifiers or
1517  // parameters (in case any of the errors above fired) and with
1518  // "void" as the return type, since destructors don't have return
1519  // types. We *always* have to do this, because GetTypeForDeclarator
1520  // will put in a result type of "int" when none was specified.
1521  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1522}
1523
1524/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1525/// well-formednes of the conversion function declarator @p D with
1526/// type @p R. If there are any errors in the declarator, this routine
1527/// will emit diagnostics and return true. Otherwise, it will return
1528/// false. Either way, the type @p R will be updated to reflect a
1529/// well-formed type for the conversion operator.
1530void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1531                                     FunctionDecl::StorageClass& SC) {
1532  // C++ [class.conv.fct]p1:
1533  //   Neither parameter types nor return type can be specified. The
1534  //   type of a conversion function (8.3.5) is “function taking no
1535  //   parameter returning conversion-type-id.”
1536  if (SC == FunctionDecl::Static) {
1537    if (!D.isInvalidType())
1538      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1539        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1540        << SourceRange(D.getIdentifierLoc());
1541    D.setInvalidType();
1542    SC = FunctionDecl::None;
1543  }
1544  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1545    // Conversion functions don't have return types, but the parser will
1546    // happily parse something like:
1547    //
1548    //   class X {
1549    //     float operator bool();
1550    //   };
1551    //
1552    // The return type will be changed later anyway.
1553    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1554      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1555      << SourceRange(D.getIdentifierLoc());
1556  }
1557
1558  // Make sure we don't have any parameters.
1559  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1560    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1561
1562    // Delete the parameters.
1563    D.getTypeObject(0).Fun.freeArgs();
1564    D.setInvalidType();
1565  }
1566
1567  // Make sure the conversion function isn't variadic.
1568  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1569    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1570    D.setInvalidType();
1571  }
1572
1573  // C++ [class.conv.fct]p4:
1574  //   The conversion-type-id shall not represent a function type nor
1575  //   an array type.
1576  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1577  if (ConvType->isArrayType()) {
1578    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1579    ConvType = Context.getPointerType(ConvType);
1580    D.setInvalidType();
1581  } else if (ConvType->isFunctionType()) {
1582    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1583    ConvType = Context.getPointerType(ConvType);
1584    D.setInvalidType();
1585  }
1586
1587  // Rebuild the function type "R" without any parameters (in case any
1588  // of the errors above fired) and with the conversion type as the
1589  // return type.
1590  R = Context.getFunctionType(ConvType, 0, 0, false,
1591                              R->getAsFunctionProtoType()->getTypeQuals());
1592
1593  // C++0x explicit conversion operators.
1594  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1595    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1596         diag::warn_explicit_conversion_functions)
1597      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1598}
1599
1600/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1601/// the declaration of the given C++ conversion function. This routine
1602/// is responsible for recording the conversion function in the C++
1603/// class, if possible.
1604Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1605  assert(Conversion && "Expected to receive a conversion function declaration");
1606
1607  // Set the lexical context of this conversion function
1608  Conversion->setLexicalDeclContext(CurContext);
1609
1610  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1611
1612  // Make sure we aren't redeclaring the conversion function.
1613  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1614
1615  // C++ [class.conv.fct]p1:
1616  //   [...] A conversion function is never used to convert a
1617  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1618  //   same object type (or a reference to it), to a (possibly
1619  //   cv-qualified) base class of that type (or a reference to it),
1620  //   or to (possibly cv-qualified) void.
1621  // FIXME: Suppress this warning if the conversion function ends up being a
1622  // virtual function that overrides a virtual function in a base class.
1623  QualType ClassType
1624    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1625  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1626    ConvType = ConvTypeRef->getPointeeType();
1627  if (ConvType->isRecordType()) {
1628    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1629    if (ConvType == ClassType)
1630      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1631        << ClassType;
1632    else if (IsDerivedFrom(ClassType, ConvType))
1633      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1634        <<  ClassType << ConvType;
1635  } else if (ConvType->isVoidType()) {
1636    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1637      << ClassType << ConvType;
1638  }
1639
1640  if (Conversion->getPreviousDeclaration()) {
1641    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1642    for (OverloadedFunctionDecl::function_iterator
1643           Conv = Conversions->function_begin(),
1644           ConvEnd = Conversions->function_end();
1645         Conv != ConvEnd; ++Conv) {
1646      if (*Conv
1647            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1648        *Conv = Conversion;
1649        return DeclPtrTy::make(Conversion);
1650      }
1651    }
1652    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1653  } else
1654    ClassDecl->addConversionFunction(Context, Conversion);
1655
1656  return DeclPtrTy::make(Conversion);
1657}
1658
1659//===----------------------------------------------------------------------===//
1660// Namespace Handling
1661//===----------------------------------------------------------------------===//
1662
1663/// ActOnStartNamespaceDef - This is called at the start of a namespace
1664/// definition.
1665Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1666                                             SourceLocation IdentLoc,
1667                                             IdentifierInfo *II,
1668                                             SourceLocation LBrace) {
1669  NamespaceDecl *Namespc =
1670      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1671  Namespc->setLBracLoc(LBrace);
1672
1673  Scope *DeclRegionScope = NamespcScope->getParent();
1674
1675  if (II) {
1676    // C++ [namespace.def]p2:
1677    // The identifier in an original-namespace-definition shall not have been
1678    // previously defined in the declarative region in which the
1679    // original-namespace-definition appears. The identifier in an
1680    // original-namespace-definition is the name of the namespace. Subsequently
1681    // in that declarative region, it is treated as an original-namespace-name.
1682
1683    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1684                                     true);
1685
1686    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1687      // This is an extended namespace definition.
1688      // Attach this namespace decl to the chain of extended namespace
1689      // definitions.
1690      OrigNS->setNextNamespace(Namespc);
1691      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1692
1693      // Remove the previous declaration from the scope.
1694      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1695        IdResolver.RemoveDecl(OrigNS);
1696        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1697      }
1698    } else if (PrevDecl) {
1699      // This is an invalid name redefinition.
1700      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1701       << Namespc->getDeclName();
1702      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1703      Namespc->setInvalidDecl();
1704      // Continue on to push Namespc as current DeclContext and return it.
1705    }
1706
1707    PushOnScopeChains(Namespc, DeclRegionScope);
1708  } else {
1709    // FIXME: Handle anonymous namespaces
1710  }
1711
1712  // Although we could have an invalid decl (i.e. the namespace name is a
1713  // redefinition), push it as current DeclContext and try to continue parsing.
1714  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1715  // for the namespace has the declarations that showed up in that particular
1716  // namespace definition.
1717  PushDeclContext(NamespcScope, Namespc);
1718  return DeclPtrTy::make(Namespc);
1719}
1720
1721/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1722/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1723void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1724  Decl *Dcl = D.getAs<Decl>();
1725  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1726  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1727  Namespc->setRBracLoc(RBrace);
1728  PopDeclContext();
1729}
1730
1731Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1732                                          SourceLocation UsingLoc,
1733                                          SourceLocation NamespcLoc,
1734                                          const CXXScopeSpec &SS,
1735                                          SourceLocation IdentLoc,
1736                                          IdentifierInfo *NamespcName,
1737                                          AttributeList *AttrList) {
1738  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1739  assert(NamespcName && "Invalid NamespcName.");
1740  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1741  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1742
1743  UsingDirectiveDecl *UDir = 0;
1744
1745  // Lookup namespace name.
1746  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1747                                    LookupNamespaceName, false);
1748  if (R.isAmbiguous()) {
1749    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1750    return DeclPtrTy();
1751  }
1752  if (NamedDecl *NS = R) {
1753    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1754    // C++ [namespace.udir]p1:
1755    //   A using-directive specifies that the names in the nominated
1756    //   namespace can be used in the scope in which the
1757    //   using-directive appears after the using-directive. During
1758    //   unqualified name lookup (3.4.1), the names appear as if they
1759    //   were declared in the nearest enclosing namespace which
1760    //   contains both the using-directive and the nominated
1761    //   namespace. [Note: in this context, “contains” means “contains
1762    //   directly or indirectly”. ]
1763
1764    // Find enclosing context containing both using-directive and
1765    // nominated namespace.
1766    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1767    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1768      CommonAncestor = CommonAncestor->getParent();
1769
1770    UDir = UsingDirectiveDecl::Create(Context,
1771                                      CurContext, UsingLoc,
1772                                      NamespcLoc,
1773                                      SS.getRange(),
1774                                      (NestedNameSpecifier *)SS.getScopeRep(),
1775                                      IdentLoc,
1776                                      cast<NamespaceDecl>(NS),
1777                                      CommonAncestor);
1778    PushUsingDirective(S, UDir);
1779  } else {
1780    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1781  }
1782
1783  // FIXME: We ignore attributes for now.
1784  delete AttrList;
1785  return DeclPtrTy::make(UDir);
1786}
1787
1788void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1789  // If scope has associated entity, then using directive is at namespace
1790  // or translation unit scope. We add UsingDirectiveDecls, into
1791  // it's lookup structure.
1792  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1793    Ctx->addDecl(Context, UDir);
1794  else
1795    // Otherwise it is block-sope. using-directives will affect lookup
1796    // only to the end of scope.
1797    S->PushUsingDirective(DeclPtrTy::make(UDir));
1798}
1799
1800
1801Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1802                                          SourceLocation UsingLoc,
1803                                          const CXXScopeSpec &SS,
1804                                          SourceLocation IdentLoc,
1805                                          IdentifierInfo *TargetName,
1806                                          OverloadedOperatorKind Op,
1807                                          AttributeList *AttrList,
1808                                          bool IsTypeName) {
1809  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1810  assert((TargetName || Op) && "Invalid TargetName.");
1811  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1812  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1813
1814  UsingDecl *UsingAlias = 0;
1815
1816  DeclarationName Name;
1817  if (TargetName)
1818    Name = TargetName;
1819  else
1820    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1821
1822  // Lookup target name.
1823  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1824
1825  if (NamedDecl *NS = R) {
1826    if (IsTypeName && !isa<TypeDecl>(NS)) {
1827      Diag(IdentLoc, diag::err_using_typename_non_type);
1828    }
1829    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1830        NS->getLocation(), UsingLoc, NS,
1831        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1832        IsTypeName);
1833    PushOnScopeChains(UsingAlias, S);
1834  } else {
1835    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1836  }
1837
1838  // FIXME: We ignore attributes for now.
1839  delete AttrList;
1840  return DeclPtrTy::make(UsingAlias);
1841}
1842
1843/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1844/// is a namespace alias, returns the namespace it points to.
1845static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1846  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1847    return AD->getNamespace();
1848  return dyn_cast_or_null<NamespaceDecl>(D);
1849}
1850
1851Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1852                                             SourceLocation NamespaceLoc,
1853                                             SourceLocation AliasLoc,
1854                                             IdentifierInfo *Alias,
1855                                             const CXXScopeSpec &SS,
1856                                             SourceLocation IdentLoc,
1857                                             IdentifierInfo *Ident) {
1858
1859  // Lookup the namespace name.
1860  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1861
1862  // Check if we have a previous declaration with the same name.
1863  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1864    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1865      // We already have an alias with the same name that points to the same
1866      // namespace, so don't create a new one.
1867      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1868        return DeclPtrTy();
1869    }
1870
1871    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1872      diag::err_redefinition_different_kind;
1873    Diag(AliasLoc, DiagID) << Alias;
1874    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1875    return DeclPtrTy();
1876  }
1877
1878  if (R.isAmbiguous()) {
1879    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1880    return DeclPtrTy();
1881  }
1882
1883  if (!R) {
1884    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1885    return DeclPtrTy();
1886  }
1887
1888  NamespaceAliasDecl *AliasDecl =
1889    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1890                               Alias, SS.getRange(),
1891                               (NestedNameSpecifier *)SS.getScopeRep(),
1892                               IdentLoc, R);
1893
1894  CurContext->addDecl(Context, AliasDecl);
1895  return DeclPtrTy::make(AliasDecl);
1896}
1897
1898void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1899                                            CXXConstructorDecl *Constructor) {
1900  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1901          !Constructor->isUsed()) &&
1902    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1903
1904  CXXRecordDecl *ClassDecl
1905    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1906  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1907  // Before the implicitly-declared default constructor for a class is
1908  // implicitly defined, all the implicitly-declared default constructors
1909  // for its base class and its non-static data members shall have been
1910  // implicitly defined.
1911  bool err = false;
1912  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1913       Base != ClassDecl->bases_end(); ++Base) {
1914    CXXRecordDecl *BaseClassDecl
1915      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1916    if (!BaseClassDecl->hasTrivialConstructor()) {
1917      if (CXXConstructorDecl *BaseCtor =
1918            BaseClassDecl->getDefaultConstructor(Context))
1919        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1920      else {
1921        Diag(CurrentLocation, diag::err_defining_default_ctor)
1922          << Context.getTagDeclType(ClassDecl) << 1
1923          << Context.getTagDeclType(BaseClassDecl);
1924        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1925              << Context.getTagDeclType(BaseClassDecl);
1926        err = true;
1927      }
1928    }
1929  }
1930  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1931       Field != ClassDecl->field_end(Context);
1932       ++Field) {
1933    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1934    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1935      FieldType = Array->getElementType();
1936    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1937      CXXRecordDecl *FieldClassDecl
1938        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1939      if (!FieldClassDecl->hasTrivialConstructor()) {
1940        if (CXXConstructorDecl *FieldCtor =
1941            FieldClassDecl->getDefaultConstructor(Context))
1942          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1943        else {
1944          Diag(CurrentLocation, diag::err_defining_default_ctor)
1945          << Context.getTagDeclType(ClassDecl) << 0 <<
1946              Context.getTagDeclType(FieldClassDecl);
1947          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1948          << Context.getTagDeclType(FieldClassDecl);
1949          err = true;
1950        }
1951      }
1952    }
1953    else if (FieldType->isReferenceType()) {
1954      Diag(CurrentLocation, diag::err_unintialized_member)
1955        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1956      Diag((*Field)->getLocation(), diag::note_declared_at);
1957      err = true;
1958    }
1959    else if (FieldType.isConstQualified()) {
1960      Diag(CurrentLocation, diag::err_unintialized_member)
1961        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1962       Diag((*Field)->getLocation(), diag::note_declared_at);
1963      err = true;
1964    }
1965  }
1966  if (!err)
1967    Constructor->setUsed();
1968  else
1969    Constructor->setInvalidDecl();
1970}
1971
1972void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
1973                                            CXXDestructorDecl *Destructor) {
1974  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
1975         "DefineImplicitDestructor - call it for implicit default dtor");
1976
1977  CXXRecordDecl *ClassDecl
1978  = cast<CXXRecordDecl>(Destructor->getDeclContext());
1979  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
1980  // C++ [class.dtor] p5
1981  // Before the implicitly-declared default destructor for a class is
1982  // implicitly defined, all the implicitly-declared default destructors
1983  // for its base class and its non-static data members shall have been
1984  // implicitly defined.
1985  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1986       Base != ClassDecl->bases_end(); ++Base) {
1987    CXXRecordDecl *BaseClassDecl
1988      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1989    if (!BaseClassDecl->hasTrivialDestructor()) {
1990      if (CXXDestructorDecl *BaseDtor =
1991          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
1992        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
1993      else
1994        assert(false &&
1995               "DefineImplicitDestructor - missing dtor in a base class");
1996    }
1997  }
1998
1999  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2000       Field != ClassDecl->field_end(Context);
2001       ++Field) {
2002    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2003    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2004      FieldType = Array->getElementType();
2005    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2006      CXXRecordDecl *FieldClassDecl
2007        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2008      if (!FieldClassDecl->hasTrivialDestructor()) {
2009        if (CXXDestructorDecl *FieldDtor =
2010            const_cast<CXXDestructorDecl*>(
2011                                        FieldClassDecl->getDestructor(Context)))
2012          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2013        else
2014          assert(false &&
2015          "DefineImplicitDestructor - missing dtor in class of a data member");
2016      }
2017    }
2018  }
2019  Destructor->setUsed();
2020}
2021
2022void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2023                                          CXXMethodDecl *MethodDecl) {
2024  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2025          MethodDecl->getOverloadedOperator() == OO_Equal &&
2026          !MethodDecl->isUsed()) &&
2027         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2028
2029  CXXRecordDecl *ClassDecl
2030    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2031  assert(ClassDecl && "DefineImplicitOverloadedAssign - invalid constructor");
2032
2033  // C++[class.copy] p12
2034  // Before the implicitly-declared copy assignment operator for a class is
2035  // implicitly defined, all implicitly-declared copy assignment operators
2036  // for its direct base classes and its nonstatic data members shall have
2037  // been implicitly defined.
2038  bool err = false;
2039  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2040       Base != ClassDecl->bases_end(); ++Base) {
2041    CXXRecordDecl *BaseClassDecl
2042      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2043    if (CXXMethodDecl *BaseAssignOpMethod =
2044          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2045      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2046  }
2047  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2048       Field != ClassDecl->field_end(Context);
2049       ++Field) {
2050    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2051    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2052      FieldType = Array->getElementType();
2053    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2054      CXXRecordDecl *FieldClassDecl
2055        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2056      if (CXXMethodDecl *FieldAssignOpMethod =
2057          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2058        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2059    }
2060    else if (FieldType->isReferenceType()) {
2061      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2062      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2063      Diag((*Field)->getLocation(), diag::note_declared_at);
2064      Diag(CurrentLocation, diag::note_first_required_here);
2065      err = true;
2066    }
2067    else if (FieldType.isConstQualified()) {
2068      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2069      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2070      Diag((*Field)->getLocation(), diag::note_declared_at);
2071      Diag(CurrentLocation, diag::note_first_required_here);
2072      err = true;
2073    }
2074  }
2075  if (!err)
2076    MethodDecl->setUsed();
2077}
2078
2079CXXMethodDecl *
2080Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2081                              CXXRecordDecl *ClassDecl) {
2082  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2083  QualType RHSType(LHSType);
2084  // If class's assignment operator argument is const/volatile qualified,
2085  // look for operator = (const/volatile B&). Otherwise, look for
2086  // operator = (B&).
2087  if (ParmDecl->getType().isConstQualified())
2088    RHSType.addConst();
2089  if (ParmDecl->getType().isVolatileQualified())
2090    RHSType.addVolatile();
2091  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2092                                                          LHSType,
2093                                                          SourceLocation()));
2094  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2095                                                          RHSType,
2096                                                          SourceLocation()));
2097  Expr *Args[2] = { &*LHS, &*RHS };
2098  OverloadCandidateSet CandidateSet;
2099  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2100                              CandidateSet);
2101  OverloadCandidateSet::iterator Best;
2102  if (BestViableFunction(CandidateSet,
2103                         ClassDecl->getLocation(), Best) == OR_Success)
2104    return cast<CXXMethodDecl>(Best->Function);
2105  assert(false &&
2106         "getAssignOperatorMethod - copy assignment operator method not found");
2107  return 0;
2108}
2109
2110void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2111                                   CXXConstructorDecl *CopyConstructor,
2112                                   unsigned TypeQuals) {
2113  assert((CopyConstructor->isImplicit() &&
2114          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2115          !CopyConstructor->isUsed()) &&
2116         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2117
2118  CXXRecordDecl *ClassDecl
2119    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2120  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2121  // C++ [class.copy] p209
2122  // Before the implicitly-declared copy constructor for a class is
2123  // implicitly defined, all the implicitly-declared copy constructors
2124  // for its base class and its non-static data members shall have been
2125  // implicitly defined.
2126  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2127       Base != ClassDecl->bases_end(); ++Base) {
2128    CXXRecordDecl *BaseClassDecl
2129      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2130    if (CXXConstructorDecl *BaseCopyCtor =
2131        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2132      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2133  }
2134  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
2135       Field != ClassDecl->field_end(Context);
2136       ++Field) {
2137    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2138    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2139      FieldType = Array->getElementType();
2140    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2141      CXXRecordDecl *FieldClassDecl
2142        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2143      if (CXXConstructorDecl *FieldCopyCtor =
2144          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2145        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2146    }
2147  }
2148  CopyConstructor->setUsed();
2149}
2150
2151void Sema::InitializeVarWithConstructor(VarDecl *VD,
2152                                        CXXConstructorDecl *Constructor,
2153                                        QualType DeclInitType,
2154                                        Expr **Exprs, unsigned NumExprs) {
2155  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2156                                        false, Exprs, NumExprs);
2157  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2158  VD->setInit(Context, Temp);
2159}
2160
2161void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2162{
2163  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2164                                  DeclInitType->getAsRecordType()->getDecl());
2165  if (!ClassDecl->hasTrivialDestructor())
2166    if (CXXDestructorDecl *Destructor =
2167        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2168      MarkDeclarationReferenced(Loc, Destructor);
2169}
2170
2171/// AddCXXDirectInitializerToDecl - This action is called immediately after
2172/// ActOnDeclarator, when a C++ direct initializer is present.
2173/// e.g: "int x(1);"
2174void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2175                                         SourceLocation LParenLoc,
2176                                         MultiExprArg Exprs,
2177                                         SourceLocation *CommaLocs,
2178                                         SourceLocation RParenLoc) {
2179  unsigned NumExprs = Exprs.size();
2180  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2181  Decl *RealDecl = Dcl.getAs<Decl>();
2182
2183  // If there is no declaration, there was an error parsing it.  Just ignore
2184  // the initializer.
2185  if (RealDecl == 0)
2186    return;
2187
2188  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2189  if (!VDecl) {
2190    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2191    RealDecl->setInvalidDecl();
2192    return;
2193  }
2194
2195  // FIXME: Need to handle dependent types and expressions here.
2196
2197  // We will treat direct-initialization as a copy-initialization:
2198  //    int x(1);  -as-> int x = 1;
2199  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2200  //
2201  // Clients that want to distinguish between the two forms, can check for
2202  // direct initializer using VarDecl::hasCXXDirectInitializer().
2203  // A major benefit is that clients that don't particularly care about which
2204  // exactly form was it (like the CodeGen) can handle both cases without
2205  // special case code.
2206
2207  // C++ 8.5p11:
2208  // The form of initialization (using parentheses or '=') is generally
2209  // insignificant, but does matter when the entity being initialized has a
2210  // class type.
2211  QualType DeclInitType = VDecl->getType();
2212  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2213    DeclInitType = Array->getElementType();
2214
2215  // FIXME: This isn't the right place to complete the type.
2216  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2217                          diag::err_typecheck_decl_incomplete_type)) {
2218    VDecl->setInvalidDecl();
2219    return;
2220  }
2221
2222  if (VDecl->getType()->isRecordType()) {
2223    CXXConstructorDecl *Constructor
2224      = PerformInitializationByConstructor(DeclInitType,
2225                                           (Expr **)Exprs.get(), NumExprs,
2226                                           VDecl->getLocation(),
2227                                           SourceRange(VDecl->getLocation(),
2228                                                       RParenLoc),
2229                                           VDecl->getDeclName(),
2230                                           IK_Direct);
2231    if (!Constructor)
2232      RealDecl->setInvalidDecl();
2233    else {
2234      VDecl->setCXXDirectInitializer(true);
2235      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2236                                   (Expr**)Exprs.release(), NumExprs);
2237      // FIXME. Must do all that is needed to destroy the object
2238      // on scope exit. For now, just mark the destructor as used.
2239      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2240    }
2241    return;
2242  }
2243
2244  if (NumExprs > 1) {
2245    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2246      << SourceRange(VDecl->getLocation(), RParenLoc);
2247    RealDecl->setInvalidDecl();
2248    return;
2249  }
2250
2251  // Let clients know that initialization was done with a direct initializer.
2252  VDecl->setCXXDirectInitializer(true);
2253
2254  assert(NumExprs == 1 && "Expected 1 expression");
2255  // Set the init expression, handles conversions.
2256  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2257                       /*DirectInit=*/true);
2258}
2259
2260/// PerformInitializationByConstructor - Perform initialization by
2261/// constructor (C++ [dcl.init]p14), which may occur as part of
2262/// direct-initialization or copy-initialization. We are initializing
2263/// an object of type @p ClassType with the given arguments @p
2264/// Args. @p Loc is the location in the source code where the
2265/// initializer occurs (e.g., a declaration, member initializer,
2266/// functional cast, etc.) while @p Range covers the whole
2267/// initialization. @p InitEntity is the entity being initialized,
2268/// which may by the name of a declaration or a type. @p Kind is the
2269/// kind of initialization we're performing, which affects whether
2270/// explicit constructors will be considered. When successful, returns
2271/// the constructor that will be used to perform the initialization;
2272/// when the initialization fails, emits a diagnostic and returns
2273/// null.
2274CXXConstructorDecl *
2275Sema::PerformInitializationByConstructor(QualType ClassType,
2276                                         Expr **Args, unsigned NumArgs,
2277                                         SourceLocation Loc, SourceRange Range,
2278                                         DeclarationName InitEntity,
2279                                         InitializationKind Kind) {
2280  const RecordType *ClassRec = ClassType->getAsRecordType();
2281  assert(ClassRec && "Can only initialize a class type here");
2282
2283  // C++ [dcl.init]p14:
2284  //
2285  //   If the initialization is direct-initialization, or if it is
2286  //   copy-initialization where the cv-unqualified version of the
2287  //   source type is the same class as, or a derived class of, the
2288  //   class of the destination, constructors are considered. The
2289  //   applicable constructors are enumerated (13.3.1.3), and the
2290  //   best one is chosen through overload resolution (13.3). The
2291  //   constructor so selected is called to initialize the object,
2292  //   with the initializer expression(s) as its argument(s). If no
2293  //   constructor applies, or the overload resolution is ambiguous,
2294  //   the initialization is ill-formed.
2295  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2296  OverloadCandidateSet CandidateSet;
2297
2298  // Add constructors to the overload set.
2299  DeclarationName ConstructorName
2300    = Context.DeclarationNames.getCXXConstructorName(
2301                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2302  DeclContext::lookup_const_iterator Con, ConEnd;
2303  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
2304       Con != ConEnd; ++Con) {
2305    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2306    if ((Kind == IK_Direct) ||
2307        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2308        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2309      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2310  }
2311
2312  // FIXME: When we decide not to synthesize the implicitly-declared
2313  // constructors, we'll need to make them appear here.
2314
2315  OverloadCandidateSet::iterator Best;
2316  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2317  case OR_Success:
2318    // We found a constructor. Return it.
2319    return cast<CXXConstructorDecl>(Best->Function);
2320
2321  case OR_No_Viable_Function:
2322    if (InitEntity)
2323      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2324        << InitEntity << Range;
2325    else
2326      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2327        << ClassType << Range;
2328    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2329    return 0;
2330
2331  case OR_Ambiguous:
2332    if (InitEntity)
2333      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2334    else
2335      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2336    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2337    return 0;
2338
2339  case OR_Deleted:
2340    if (InitEntity)
2341      Diag(Loc, diag::err_ovl_deleted_init)
2342        << Best->Function->isDeleted()
2343        << InitEntity << Range;
2344    else
2345      Diag(Loc, diag::err_ovl_deleted_init)
2346        << Best->Function->isDeleted()
2347        << InitEntity << Range;
2348    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2349    return 0;
2350  }
2351
2352  return 0;
2353}
2354
2355/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2356/// determine whether they are reference-related,
2357/// reference-compatible, reference-compatible with added
2358/// qualification, or incompatible, for use in C++ initialization by
2359/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2360/// type, and the first type (T1) is the pointee type of the reference
2361/// type being initialized.
2362Sema::ReferenceCompareResult
2363Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2364                                   bool& DerivedToBase) {
2365  assert(!T1->isReferenceType() &&
2366    "T1 must be the pointee type of the reference type");
2367  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2368
2369  T1 = Context.getCanonicalType(T1);
2370  T2 = Context.getCanonicalType(T2);
2371  QualType UnqualT1 = T1.getUnqualifiedType();
2372  QualType UnqualT2 = T2.getUnqualifiedType();
2373
2374  // C++ [dcl.init.ref]p4:
2375  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2376  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2377  //   T1 is a base class of T2.
2378  if (UnqualT1 == UnqualT2)
2379    DerivedToBase = false;
2380  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2381    DerivedToBase = true;
2382  else
2383    return Ref_Incompatible;
2384
2385  // At this point, we know that T1 and T2 are reference-related (at
2386  // least).
2387
2388  // C++ [dcl.init.ref]p4:
2389  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2390  //   reference-related to T2 and cv1 is the same cv-qualification
2391  //   as, or greater cv-qualification than, cv2. For purposes of
2392  //   overload resolution, cases for which cv1 is greater
2393  //   cv-qualification than cv2 are identified as
2394  //   reference-compatible with added qualification (see 13.3.3.2).
2395  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2396    return Ref_Compatible;
2397  else if (T1.isMoreQualifiedThan(T2))
2398    return Ref_Compatible_With_Added_Qualification;
2399  else
2400    return Ref_Related;
2401}
2402
2403/// CheckReferenceInit - Check the initialization of a reference
2404/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2405/// the initializer (either a simple initializer or an initializer
2406/// list), and DeclType is the type of the declaration. When ICS is
2407/// non-null, this routine will compute the implicit conversion
2408/// sequence according to C++ [over.ics.ref] and will not produce any
2409/// diagnostics; when ICS is null, it will emit diagnostics when any
2410/// errors are found. Either way, a return value of true indicates
2411/// that there was a failure, a return value of false indicates that
2412/// the reference initialization succeeded.
2413///
2414/// When @p SuppressUserConversions, user-defined conversions are
2415/// suppressed.
2416/// When @p AllowExplicit, we also permit explicit user-defined
2417/// conversion functions.
2418/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2419bool
2420Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2421                         ImplicitConversionSequence *ICS,
2422                         bool SuppressUserConversions,
2423                         bool AllowExplicit, bool ForceRValue) {
2424  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2425
2426  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2427  QualType T2 = Init->getType();
2428
2429  // If the initializer is the address of an overloaded function, try
2430  // to resolve the overloaded function. If all goes well, T2 is the
2431  // type of the resulting function.
2432  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2433    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2434                                                          ICS != 0);
2435    if (Fn) {
2436      // Since we're performing this reference-initialization for
2437      // real, update the initializer with the resulting function.
2438      if (!ICS) {
2439        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2440          return true;
2441
2442        FixOverloadedFunctionReference(Init, Fn);
2443      }
2444
2445      T2 = Fn->getType();
2446    }
2447  }
2448
2449  // Compute some basic properties of the types and the initializer.
2450  bool isRValRef = DeclType->isRValueReferenceType();
2451  bool DerivedToBase = false;
2452  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2453                                                  Init->isLvalue(Context);
2454  ReferenceCompareResult RefRelationship
2455    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2456
2457  // Most paths end in a failed conversion.
2458  if (ICS)
2459    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2460
2461  // C++ [dcl.init.ref]p5:
2462  //   A reference to type “cv1 T1” is initialized by an expression
2463  //   of type “cv2 T2” as follows:
2464
2465  //     -- If the initializer expression
2466
2467  // Rvalue references cannot bind to lvalues (N2812).
2468  // There is absolutely no situation where they can. In particular, note that
2469  // this is ill-formed, even if B has a user-defined conversion to A&&:
2470  //   B b;
2471  //   A&& r = b;
2472  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2473    if (!ICS)
2474      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2475        << Init->getSourceRange();
2476    return true;
2477  }
2478
2479  bool BindsDirectly = false;
2480  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2481  //          reference-compatible with “cv2 T2,” or
2482  //
2483  // Note that the bit-field check is skipped if we are just computing
2484  // the implicit conversion sequence (C++ [over.best.ics]p2).
2485  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2486      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2487    BindsDirectly = true;
2488
2489    if (ICS) {
2490      // C++ [over.ics.ref]p1:
2491      //   When a parameter of reference type binds directly (8.5.3)
2492      //   to an argument expression, the implicit conversion sequence
2493      //   is the identity conversion, unless the argument expression
2494      //   has a type that is a derived class of the parameter type,
2495      //   in which case the implicit conversion sequence is a
2496      //   derived-to-base Conversion (13.3.3.1).
2497      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2498      ICS->Standard.First = ICK_Identity;
2499      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2500      ICS->Standard.Third = ICK_Identity;
2501      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2502      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2503      ICS->Standard.ReferenceBinding = true;
2504      ICS->Standard.DirectBinding = true;
2505      ICS->Standard.RRefBinding = false;
2506      ICS->Standard.CopyConstructor = 0;
2507
2508      // Nothing more to do: the inaccessibility/ambiguity check for
2509      // derived-to-base conversions is suppressed when we're
2510      // computing the implicit conversion sequence (C++
2511      // [over.best.ics]p2).
2512      return false;
2513    } else {
2514      // Perform the conversion.
2515      // FIXME: Binding to a subobject of the lvalue is going to require more
2516      // AST annotation than this.
2517      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2518    }
2519  }
2520
2521  //       -- has a class type (i.e., T2 is a class type) and can be
2522  //          implicitly converted to an lvalue of type “cv3 T3,”
2523  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2524  //          92) (this conversion is selected by enumerating the
2525  //          applicable conversion functions (13.3.1.6) and choosing
2526  //          the best one through overload resolution (13.3)),
2527  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2528    // FIXME: Look for conversions in base classes!
2529    CXXRecordDecl *T2RecordDecl
2530      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2531
2532    OverloadCandidateSet CandidateSet;
2533    OverloadedFunctionDecl *Conversions
2534      = T2RecordDecl->getConversionFunctions();
2535    for (OverloadedFunctionDecl::function_iterator Func
2536           = Conversions->function_begin();
2537         Func != Conversions->function_end(); ++Func) {
2538      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2539
2540      // If the conversion function doesn't return a reference type,
2541      // it can't be considered for this conversion.
2542      if (Conv->getConversionType()->isLValueReferenceType() &&
2543          (AllowExplicit || !Conv->isExplicit()))
2544        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2545    }
2546
2547    OverloadCandidateSet::iterator Best;
2548    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2549    case OR_Success:
2550      // This is a direct binding.
2551      BindsDirectly = true;
2552
2553      if (ICS) {
2554        // C++ [over.ics.ref]p1:
2555        //
2556        //   [...] If the parameter binds directly to the result of
2557        //   applying a conversion function to the argument
2558        //   expression, the implicit conversion sequence is a
2559        //   user-defined conversion sequence (13.3.3.1.2), with the
2560        //   second standard conversion sequence either an identity
2561        //   conversion or, if the conversion function returns an
2562        //   entity of a type that is a derived class of the parameter
2563        //   type, a derived-to-base Conversion.
2564        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2565        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2566        ICS->UserDefined.After = Best->FinalConversion;
2567        ICS->UserDefined.ConversionFunction = Best->Function;
2568        assert(ICS->UserDefined.After.ReferenceBinding &&
2569               ICS->UserDefined.After.DirectBinding &&
2570               "Expected a direct reference binding!");
2571        return false;
2572      } else {
2573        // Perform the conversion.
2574        // FIXME: Binding to a subobject of the lvalue is going to require more
2575        // AST annotation than this.
2576        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2577      }
2578      break;
2579
2580    case OR_Ambiguous:
2581      assert(false && "Ambiguous reference binding conversions not implemented.");
2582      return true;
2583
2584    case OR_No_Viable_Function:
2585    case OR_Deleted:
2586      // There was no suitable conversion, or we found a deleted
2587      // conversion; continue with other checks.
2588      break;
2589    }
2590  }
2591
2592  if (BindsDirectly) {
2593    // C++ [dcl.init.ref]p4:
2594    //   [...] In all cases where the reference-related or
2595    //   reference-compatible relationship of two types is used to
2596    //   establish the validity of a reference binding, and T1 is a
2597    //   base class of T2, a program that necessitates such a binding
2598    //   is ill-formed if T1 is an inaccessible (clause 11) or
2599    //   ambiguous (10.2) base class of T2.
2600    //
2601    // Note that we only check this condition when we're allowed to
2602    // complain about errors, because we should not be checking for
2603    // ambiguity (or inaccessibility) unless the reference binding
2604    // actually happens.
2605    if (DerivedToBase)
2606      return CheckDerivedToBaseConversion(T2, T1,
2607                                          Init->getSourceRange().getBegin(),
2608                                          Init->getSourceRange());
2609    else
2610      return false;
2611  }
2612
2613  //     -- Otherwise, the reference shall be to a non-volatile const
2614  //        type (i.e., cv1 shall be const), or the reference shall be an
2615  //        rvalue reference and the initializer expression shall be an rvalue.
2616  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2617    if (!ICS)
2618      Diag(Init->getSourceRange().getBegin(),
2619           diag::err_not_reference_to_const_init)
2620        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2621        << T2 << Init->getSourceRange();
2622    return true;
2623  }
2624
2625  //       -- If the initializer expression is an rvalue, with T2 a
2626  //          class type, and “cv1 T1” is reference-compatible with
2627  //          “cv2 T2,” the reference is bound in one of the
2628  //          following ways (the choice is implementation-defined):
2629  //
2630  //          -- The reference is bound to the object represented by
2631  //             the rvalue (see 3.10) or to a sub-object within that
2632  //             object.
2633  //
2634  //          -- A temporary of type “cv1 T2” [sic] is created, and
2635  //             a constructor is called to copy the entire rvalue
2636  //             object into the temporary. The reference is bound to
2637  //             the temporary or to a sub-object within the
2638  //             temporary.
2639  //
2640  //          The constructor that would be used to make the copy
2641  //          shall be callable whether or not the copy is actually
2642  //          done.
2643  //
2644  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2645  // freedom, so we will always take the first option and never build
2646  // a temporary in this case. FIXME: We will, however, have to check
2647  // for the presence of a copy constructor in C++98/03 mode.
2648  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2649      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2650    if (ICS) {
2651      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2652      ICS->Standard.First = ICK_Identity;
2653      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2654      ICS->Standard.Third = ICK_Identity;
2655      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2656      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2657      ICS->Standard.ReferenceBinding = true;
2658      ICS->Standard.DirectBinding = false;
2659      ICS->Standard.RRefBinding = isRValRef;
2660      ICS->Standard.CopyConstructor = 0;
2661    } else {
2662      // FIXME: Binding to a subobject of the rvalue is going to require more
2663      // AST annotation than this.
2664      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2665    }
2666    return false;
2667  }
2668
2669  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2670  //          initialized from the initializer expression using the
2671  //          rules for a non-reference copy initialization (8.5). The
2672  //          reference is then bound to the temporary. If T1 is
2673  //          reference-related to T2, cv1 must be the same
2674  //          cv-qualification as, or greater cv-qualification than,
2675  //          cv2; otherwise, the program is ill-formed.
2676  if (RefRelationship == Ref_Related) {
2677    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2678    // we would be reference-compatible or reference-compatible with
2679    // added qualification. But that wasn't the case, so the reference
2680    // initialization fails.
2681    if (!ICS)
2682      Diag(Init->getSourceRange().getBegin(),
2683           diag::err_reference_init_drops_quals)
2684        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2685        << T2 << Init->getSourceRange();
2686    return true;
2687  }
2688
2689  // If at least one of the types is a class type, the types are not
2690  // related, and we aren't allowed any user conversions, the
2691  // reference binding fails. This case is important for breaking
2692  // recursion, since TryImplicitConversion below will attempt to
2693  // create a temporary through the use of a copy constructor.
2694  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2695      (T1->isRecordType() || T2->isRecordType())) {
2696    if (!ICS)
2697      Diag(Init->getSourceRange().getBegin(),
2698           diag::err_typecheck_convert_incompatible)
2699        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2700    return true;
2701  }
2702
2703  // Actually try to convert the initializer to T1.
2704  if (ICS) {
2705    // C++ [over.ics.ref]p2:
2706    //
2707    //   When a parameter of reference type is not bound directly to
2708    //   an argument expression, the conversion sequence is the one
2709    //   required to convert the argument expression to the
2710    //   underlying type of the reference according to
2711    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2712    //   to copy-initializing a temporary of the underlying type with
2713    //   the argument expression. Any difference in top-level
2714    //   cv-qualification is subsumed by the initialization itself
2715    //   and does not constitute a conversion.
2716    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2717    // Of course, that's still a reference binding.
2718    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2719      ICS->Standard.ReferenceBinding = true;
2720      ICS->Standard.RRefBinding = isRValRef;
2721    } else if(ICS->ConversionKind ==
2722              ImplicitConversionSequence::UserDefinedConversion) {
2723      ICS->UserDefined.After.ReferenceBinding = true;
2724      ICS->UserDefined.After.RRefBinding = isRValRef;
2725    }
2726    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2727  } else {
2728    return PerformImplicitConversion(Init, T1, "initializing");
2729  }
2730}
2731
2732/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2733/// of this overloaded operator is well-formed. If so, returns false;
2734/// otherwise, emits appropriate diagnostics and returns true.
2735bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2736  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2737         "Expected an overloaded operator declaration");
2738
2739  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2740
2741  // C++ [over.oper]p5:
2742  //   The allocation and deallocation functions, operator new,
2743  //   operator new[], operator delete and operator delete[], are
2744  //   described completely in 3.7.3. The attributes and restrictions
2745  //   found in the rest of this subclause do not apply to them unless
2746  //   explicitly stated in 3.7.3.
2747  // FIXME: Write a separate routine for checking this. For now, just allow it.
2748  if (Op == OO_New || Op == OO_Array_New ||
2749      Op == OO_Delete || Op == OO_Array_Delete)
2750    return false;
2751
2752  // C++ [over.oper]p6:
2753  //   An operator function shall either be a non-static member
2754  //   function or be a non-member function and have at least one
2755  //   parameter whose type is a class, a reference to a class, an
2756  //   enumeration, or a reference to an enumeration.
2757  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2758    if (MethodDecl->isStatic())
2759      return Diag(FnDecl->getLocation(),
2760                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2761  } else {
2762    bool ClassOrEnumParam = false;
2763    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2764                                   ParamEnd = FnDecl->param_end();
2765         Param != ParamEnd; ++Param) {
2766      QualType ParamType = (*Param)->getType().getNonReferenceType();
2767      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2768          ParamType->isEnumeralType()) {
2769        ClassOrEnumParam = true;
2770        break;
2771      }
2772    }
2773
2774    if (!ClassOrEnumParam)
2775      return Diag(FnDecl->getLocation(),
2776                  diag::err_operator_overload_needs_class_or_enum)
2777        << FnDecl->getDeclName();
2778  }
2779
2780  // C++ [over.oper]p8:
2781  //   An operator function cannot have default arguments (8.3.6),
2782  //   except where explicitly stated below.
2783  //
2784  // Only the function-call operator allows default arguments
2785  // (C++ [over.call]p1).
2786  if (Op != OO_Call) {
2787    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2788         Param != FnDecl->param_end(); ++Param) {
2789      if ((*Param)->hasUnparsedDefaultArg())
2790        return Diag((*Param)->getLocation(),
2791                    diag::err_operator_overload_default_arg)
2792          << FnDecl->getDeclName();
2793      else if (Expr *DefArg = (*Param)->getDefaultArg())
2794        return Diag((*Param)->getLocation(),
2795                    diag::err_operator_overload_default_arg)
2796          << FnDecl->getDeclName() << DefArg->getSourceRange();
2797    }
2798  }
2799
2800  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2801    { false, false, false }
2802#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2803    , { Unary, Binary, MemberOnly }
2804#include "clang/Basic/OperatorKinds.def"
2805  };
2806
2807  bool CanBeUnaryOperator = OperatorUses[Op][0];
2808  bool CanBeBinaryOperator = OperatorUses[Op][1];
2809  bool MustBeMemberOperator = OperatorUses[Op][2];
2810
2811  // C++ [over.oper]p8:
2812  //   [...] Operator functions cannot have more or fewer parameters
2813  //   than the number required for the corresponding operator, as
2814  //   described in the rest of this subclause.
2815  unsigned NumParams = FnDecl->getNumParams()
2816                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2817  if (Op != OO_Call &&
2818      ((NumParams == 1 && !CanBeUnaryOperator) ||
2819       (NumParams == 2 && !CanBeBinaryOperator) ||
2820       (NumParams < 1) || (NumParams > 2))) {
2821    // We have the wrong number of parameters.
2822    unsigned ErrorKind;
2823    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2824      ErrorKind = 2;  // 2 -> unary or binary.
2825    } else if (CanBeUnaryOperator) {
2826      ErrorKind = 0;  // 0 -> unary
2827    } else {
2828      assert(CanBeBinaryOperator &&
2829             "All non-call overloaded operators are unary or binary!");
2830      ErrorKind = 1;  // 1 -> binary
2831    }
2832
2833    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2834      << FnDecl->getDeclName() << NumParams << ErrorKind;
2835  }
2836
2837  // Overloaded operators other than operator() cannot be variadic.
2838  if (Op != OO_Call &&
2839      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2840    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2841      << FnDecl->getDeclName();
2842  }
2843
2844  // Some operators must be non-static member functions.
2845  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2846    return Diag(FnDecl->getLocation(),
2847                diag::err_operator_overload_must_be_member)
2848      << FnDecl->getDeclName();
2849  }
2850
2851  // C++ [over.inc]p1:
2852  //   The user-defined function called operator++ implements the
2853  //   prefix and postfix ++ operator. If this function is a member
2854  //   function with no parameters, or a non-member function with one
2855  //   parameter of class or enumeration type, it defines the prefix
2856  //   increment operator ++ for objects of that type. If the function
2857  //   is a member function with one parameter (which shall be of type
2858  //   int) or a non-member function with two parameters (the second
2859  //   of which shall be of type int), it defines the postfix
2860  //   increment operator ++ for objects of that type.
2861  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2862    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2863    bool ParamIsInt = false;
2864    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2865      ParamIsInt = BT->getKind() == BuiltinType::Int;
2866
2867    if (!ParamIsInt)
2868      return Diag(LastParam->getLocation(),
2869                  diag::err_operator_overload_post_incdec_must_be_int)
2870        << LastParam->getType() << (Op == OO_MinusMinus);
2871  }
2872
2873  // Notify the class if it got an assignment operator.
2874  if (Op == OO_Equal) {
2875    // Would have returned earlier otherwise.
2876    assert(isa<CXXMethodDecl>(FnDecl) &&
2877      "Overloaded = not member, but not filtered.");
2878    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2879    Method->getParent()->addedAssignmentOperator(Context, Method);
2880  }
2881
2882  return false;
2883}
2884
2885/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2886/// linkage specification, including the language and (if present)
2887/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2888/// the location of the language string literal, which is provided
2889/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2890/// the '{' brace. Otherwise, this linkage specification does not
2891/// have any braces.
2892Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2893                                                     SourceLocation ExternLoc,
2894                                                     SourceLocation LangLoc,
2895                                                     const char *Lang,
2896                                                     unsigned StrSize,
2897                                                     SourceLocation LBraceLoc) {
2898  LinkageSpecDecl::LanguageIDs Language;
2899  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2900    Language = LinkageSpecDecl::lang_c;
2901  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2902    Language = LinkageSpecDecl::lang_cxx;
2903  else {
2904    Diag(LangLoc, diag::err_bad_language);
2905    return DeclPtrTy();
2906  }
2907
2908  // FIXME: Add all the various semantics of linkage specifications
2909
2910  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2911                                               LangLoc, Language,
2912                                               LBraceLoc.isValid());
2913  CurContext->addDecl(Context, D);
2914  PushDeclContext(S, D);
2915  return DeclPtrTy::make(D);
2916}
2917
2918/// ActOnFinishLinkageSpecification - Completely the definition of
2919/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2920/// valid, it's the position of the closing '}' brace in a linkage
2921/// specification that uses braces.
2922Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2923                                                      DeclPtrTy LinkageSpec,
2924                                                      SourceLocation RBraceLoc) {
2925  if (LinkageSpec)
2926    PopDeclContext();
2927  return LinkageSpec;
2928}
2929
2930/// \brief Perform semantic analysis for the variable declaration that
2931/// occurs within a C++ catch clause, returning the newly-created
2932/// variable.
2933VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2934                                         IdentifierInfo *Name,
2935                                         SourceLocation Loc,
2936                                         SourceRange Range) {
2937  bool Invalid = false;
2938
2939  // Arrays and functions decay.
2940  if (ExDeclType->isArrayType())
2941    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2942  else if (ExDeclType->isFunctionType())
2943    ExDeclType = Context.getPointerType(ExDeclType);
2944
2945  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2946  // The exception-declaration shall not denote a pointer or reference to an
2947  // incomplete type, other than [cv] void*.
2948  // N2844 forbids rvalue references.
2949  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2950    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2951    Invalid = true;
2952  }
2953
2954  QualType BaseType = ExDeclType;
2955  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2956  unsigned DK = diag::err_catch_incomplete;
2957  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2958    BaseType = Ptr->getPointeeType();
2959    Mode = 1;
2960    DK = diag::err_catch_incomplete_ptr;
2961  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2962    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2963    BaseType = Ref->getPointeeType();
2964    Mode = 2;
2965    DK = diag::err_catch_incomplete_ref;
2966  }
2967  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2968      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2969    Invalid = true;
2970
2971  if (!Invalid && !ExDeclType->isDependentType() &&
2972      RequireNonAbstractType(Loc, ExDeclType,
2973                             diag::err_abstract_type_in_decl,
2974                             AbstractVariableType))
2975    Invalid = true;
2976
2977  // FIXME: Need to test for ability to copy-construct and destroy the
2978  // exception variable.
2979
2980  // FIXME: Need to check for abstract classes.
2981
2982  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2983                                    Name, ExDeclType, VarDecl::None,
2984                                    Range.getBegin());
2985
2986  if (Invalid)
2987    ExDecl->setInvalidDecl();
2988
2989  return ExDecl;
2990}
2991
2992/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2993/// handler.
2994Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2995  QualType ExDeclType = GetTypeForDeclarator(D, S);
2996
2997  bool Invalid = D.isInvalidType();
2998  IdentifierInfo *II = D.getIdentifier();
2999  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3000    // The scope should be freshly made just for us. There is just no way
3001    // it contains any previous declaration.
3002    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3003    if (PrevDecl->isTemplateParameter()) {
3004      // Maybe we will complain about the shadowed template parameter.
3005      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3006    }
3007  }
3008
3009  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3010    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3011      << D.getCXXScopeSpec().getRange();
3012    Invalid = true;
3013  }
3014
3015  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3016                                              D.getIdentifier(),
3017                                              D.getIdentifierLoc(),
3018                                            D.getDeclSpec().getSourceRange());
3019
3020  if (Invalid)
3021    ExDecl->setInvalidDecl();
3022
3023  // Add the exception declaration into this scope.
3024  if (II)
3025    PushOnScopeChains(ExDecl, S);
3026  else
3027    CurContext->addDecl(Context, ExDecl);
3028
3029  ProcessDeclAttributes(S, ExDecl, D);
3030  return DeclPtrTy::make(ExDecl);
3031}
3032
3033Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3034                                                   ExprArg assertexpr,
3035                                                   ExprArg assertmessageexpr) {
3036  Expr *AssertExpr = (Expr *)assertexpr.get();
3037  StringLiteral *AssertMessage =
3038    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3039
3040  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3041    llvm::APSInt Value(32);
3042    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3043      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3044        AssertExpr->getSourceRange();
3045      return DeclPtrTy();
3046    }
3047
3048    if (Value == 0) {
3049      std::string str(AssertMessage->getStrData(),
3050                      AssertMessage->getByteLength());
3051      Diag(AssertLoc, diag::err_static_assert_failed)
3052        << str << AssertExpr->getSourceRange();
3053    }
3054  }
3055
3056  assertexpr.release();
3057  assertmessageexpr.release();
3058  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3059                                        AssertExpr, AssertMessage);
3060
3061  CurContext->addDecl(Context, Decl);
3062  return DeclPtrTy::make(Decl);
3063}
3064
3065bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3066  if (!(S->getFlags() & Scope::ClassScope)) {
3067    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3068    return true;
3069  }
3070
3071  return false;
3072}
3073
3074void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3075  Decl *Dcl = dcl.getAs<Decl>();
3076  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3077  if (!Fn) {
3078    Diag(DelLoc, diag::err_deleted_non_function);
3079    return;
3080  }
3081  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3082    Diag(DelLoc, diag::err_deleted_decl_not_first);
3083    Diag(Prev->getLocation(), diag::note_previous_declaration);
3084    // If the declaration wasn't the first, we delete the function anyway for
3085    // recovery.
3086  }
3087  Fn->setDeleted();
3088}
3089
3090static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3091  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3092       ++CI) {
3093    Stmt *SubStmt = *CI;
3094    if (!SubStmt)
3095      continue;
3096    if (isa<ReturnStmt>(SubStmt))
3097      Self.Diag(SubStmt->getSourceRange().getBegin(),
3098           diag::err_return_in_constructor_handler);
3099    if (!isa<Expr>(SubStmt))
3100      SearchForReturnInStmt(Self, SubStmt);
3101  }
3102}
3103
3104void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3105  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3106    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3107    SearchForReturnInStmt(*this, Handler);
3108  }
3109}
3110
3111bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3112                                             const CXXMethodDecl *Old) {
3113  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3114  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3115
3116  QualType CNewTy = Context.getCanonicalType(NewTy);
3117  QualType COldTy = Context.getCanonicalType(OldTy);
3118
3119  if (CNewTy == COldTy &&
3120      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3121    return false;
3122
3123  // Check if the return types are covariant
3124  QualType NewClassTy, OldClassTy;
3125
3126  /// Both types must be pointers or references to classes.
3127  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3128    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3129      NewClassTy = NewPT->getPointeeType();
3130      OldClassTy = OldPT->getPointeeType();
3131    }
3132  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3133    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3134      NewClassTy = NewRT->getPointeeType();
3135      OldClassTy = OldRT->getPointeeType();
3136    }
3137  }
3138
3139  // The return types aren't either both pointers or references to a class type.
3140  if (NewClassTy.isNull()) {
3141    Diag(New->getLocation(),
3142         diag::err_different_return_type_for_overriding_virtual_function)
3143      << New->getDeclName() << NewTy << OldTy;
3144    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3145
3146    return true;
3147  }
3148
3149  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3150    // Check if the new class derives from the old class.
3151    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3152      Diag(New->getLocation(),
3153           diag::err_covariant_return_not_derived)
3154      << New->getDeclName() << NewTy << OldTy;
3155      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3156      return true;
3157    }
3158
3159    // Check if we the conversion from derived to base is valid.
3160    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3161                      diag::err_covariant_return_inaccessible_base,
3162                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3163                      // FIXME: Should this point to the return type?
3164                      New->getLocation(), SourceRange(), New->getDeclName())) {
3165      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3166      return true;
3167    }
3168  }
3169
3170  // The qualifiers of the return types must be the same.
3171  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3172    Diag(New->getLocation(),
3173         diag::err_covariant_return_type_different_qualifications)
3174    << New->getDeclName() << NewTy << OldTy;
3175    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3176    return true;
3177  };
3178
3179
3180  // The new class type must have the same or less qualifiers as the old type.
3181  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3182    Diag(New->getLocation(),
3183         diag::err_covariant_return_type_class_type_more_qualified)
3184    << New->getDeclName() << NewTy << OldTy;
3185    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3186    return true;
3187  };
3188
3189  return false;
3190}
3191
3192/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3193/// initializer for the declaration 'Dcl'.
3194/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3195/// static data member of class X, names should be looked up in the scope of
3196/// class X.
3197void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3198  Decl *D = Dcl.getAs<Decl>();
3199  // If there is no declaration, there was an error parsing it.
3200  if (D == 0)
3201    return;
3202
3203  // Check whether it is a declaration with a nested name specifier like
3204  // int foo::bar;
3205  if (!D->isOutOfLine())
3206    return;
3207
3208  // C++ [basic.lookup.unqual]p13
3209  //
3210  // A name used in the definition of a static data member of class X
3211  // (after the qualified-id of the static member) is looked up as if the name
3212  // was used in a member function of X.
3213
3214  // Change current context into the context of the initializing declaration.
3215  EnterDeclaratorContext(S, D->getDeclContext());
3216}
3217
3218/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3219/// initializer for the declaration 'Dcl'.
3220void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3221  Decl *D = Dcl.getAs<Decl>();
3222  // If there is no declaration, there was an error parsing it.
3223  if (D == 0)
3224    return;
3225
3226  // Check whether it is a declaration with a nested name specifier like
3227  // int foo::bar;
3228  if (!D->isOutOfLine())
3229    return;
3230
3231  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3232  ExitDeclaratorContext(S);
3233}
3234