SemaDeclCXX.cpp revision 7974c60375b2b9dfc20defc77c9ed8c3d6d241a1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
637                  isa<CXXMethodDecl>(FD) &&
638                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
639
640  // Find first parameter with a default argument
641  for (p = 0; p < NumParams; ++p) {
642    ParmVarDecl *Param = FD->getParamDecl(p);
643    if (Param->hasDefaultArg())
644      break;
645  }
646
647  // C++ [dcl.fct.default]p4:
648  //   In a given function declaration, all parameters
649  //   subsequent to a parameter with a default argument shall
650  //   have default arguments supplied in this or previous
651  //   declarations. A default argument shall not be redefined
652  //   by a later declaration (not even to the same value).
653  unsigned LastMissingDefaultArg = 0;
654  for (; p < NumParams; ++p) {
655    ParmVarDecl *Param = FD->getParamDecl(p);
656    if (!Param->hasDefaultArg()) {
657      if (Param->isInvalidDecl())
658        /* We already complained about this parameter. */;
659      else if (Param->getIdentifier())
660        Diag(Param->getLocation(),
661             diag::err_param_default_argument_missing_name)
662          << Param->getIdentifier();
663      else
664        Diag(Param->getLocation(),
665             diag::err_param_default_argument_missing);
666
667      LastMissingDefaultArg = p;
668    }
669  }
670
671  if (LastMissingDefaultArg > 0) {
672    // Some default arguments were missing. Clear out all of the
673    // default arguments up to (and including) the last missing
674    // default argument, so that we leave the function parameters
675    // in a semantically valid state.
676    for (p = 0; p <= LastMissingDefaultArg; ++p) {
677      ParmVarDecl *Param = FD->getParamDecl(p);
678      if (Param->hasDefaultArg()) {
679        Param->setDefaultArg(0);
680      }
681    }
682  }
683}
684
685// CheckConstexprParameterTypes - Check whether a function's parameter types
686// are all literal types. If so, return true. If not, produce a suitable
687// diagnostic and return false.
688static bool CheckConstexprParameterTypes(Sema &SemaRef,
689                                         const FunctionDecl *FD) {
690  unsigned ArgIndex = 0;
691  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
692  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
693       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
694    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
695    SourceLocation ParamLoc = PD->getLocation();
696    if (!(*i)->isDependentType() &&
697        SemaRef.RequireLiteralType(ParamLoc, *i,
698                                   diag::err_constexpr_non_literal_param,
699                                   ArgIndex+1, PD->getSourceRange(),
700                                   isa<CXXConstructorDecl>(FD)))
701      return false;
702  }
703  return true;
704}
705
706/// \brief Get diagnostic %select index for tag kind for
707/// record diagnostic message.
708/// WARNING: Indexes apply to particular diagnostics only!
709///
710/// \returns diagnostic %select index.
711static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
712  switch (Tag) {
713  case TTK_Struct: return 0;
714  case TTK_Interface: return 1;
715  case TTK_Class:  return 2;
716  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
717  }
718}
719
720// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
721// the requirements of a constexpr function definition or a constexpr
722// constructor definition. If so, return true. If not, produce appropriate
723// diagnostics and return false.
724//
725// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
726bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
727  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
728  if (MD && MD->isInstance()) {
729    // C++11 [dcl.constexpr]p4:
730    //  The definition of a constexpr constructor shall satisfy the following
731    //  constraints:
732    //  - the class shall not have any virtual base classes;
733    const CXXRecordDecl *RD = MD->getParent();
734    if (RD->getNumVBases()) {
735      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
736        << isa<CXXConstructorDecl>(NewFD)
737        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
738      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
739             E = RD->vbases_end(); I != E; ++I)
740        Diag(I->getLocStart(),
741             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
742      return false;
743    }
744  }
745
746  if (!isa<CXXConstructorDecl>(NewFD)) {
747    // C++11 [dcl.constexpr]p3:
748    //  The definition of a constexpr function shall satisfy the following
749    //  constraints:
750    // - it shall not be virtual;
751    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
752    if (Method && Method->isVirtual()) {
753      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
754
755      // If it's not obvious why this function is virtual, find an overridden
756      // function which uses the 'virtual' keyword.
757      const CXXMethodDecl *WrittenVirtual = Method;
758      while (!WrittenVirtual->isVirtualAsWritten())
759        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
760      if (WrittenVirtual != Method)
761        Diag(WrittenVirtual->getLocation(),
762             diag::note_overridden_virtual_function);
763      return false;
764    }
765
766    // - its return type shall be a literal type;
767    QualType RT = NewFD->getResultType();
768    if (!RT->isDependentType() &&
769        RequireLiteralType(NewFD->getLocation(), RT,
770                           diag::err_constexpr_non_literal_return))
771      return false;
772  }
773
774  // - each of its parameter types shall be a literal type;
775  if (!CheckConstexprParameterTypes(*this, NewFD))
776    return false;
777
778  return true;
779}
780
781/// Check the given declaration statement is legal within a constexpr function
782/// body. C++0x [dcl.constexpr]p3,p4.
783///
784/// \return true if the body is OK, false if we have diagnosed a problem.
785static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
786                                   DeclStmt *DS) {
787  // C++0x [dcl.constexpr]p3 and p4:
788  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
789  //  contain only
790  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
791         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
792    switch ((*DclIt)->getKind()) {
793    case Decl::StaticAssert:
794    case Decl::Using:
795    case Decl::UsingShadow:
796    case Decl::UsingDirective:
797    case Decl::UnresolvedUsingTypename:
798      //   - static_assert-declarations
799      //   - using-declarations,
800      //   - using-directives,
801      continue;
802
803    case Decl::Typedef:
804    case Decl::TypeAlias: {
805      //   - typedef declarations and alias-declarations that do not define
806      //     classes or enumerations,
807      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
808      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
809        // Don't allow variably-modified types in constexpr functions.
810        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
811        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
812          << TL.getSourceRange() << TL.getType()
813          << isa<CXXConstructorDecl>(Dcl);
814        return false;
815      }
816      continue;
817    }
818
819    case Decl::Enum:
820    case Decl::CXXRecord:
821      // As an extension, we allow the declaration (but not the definition) of
822      // classes and enumerations in all declarations, not just in typedef and
823      // alias declarations.
824      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
825        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
826          << isa<CXXConstructorDecl>(Dcl);
827        return false;
828      }
829      continue;
830
831    case Decl::Var:
832      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
833        << isa<CXXConstructorDecl>(Dcl);
834      return false;
835
836    default:
837      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
838        << isa<CXXConstructorDecl>(Dcl);
839      return false;
840    }
841  }
842
843  return true;
844}
845
846/// Check that the given field is initialized within a constexpr constructor.
847///
848/// \param Dcl The constexpr constructor being checked.
849/// \param Field The field being checked. This may be a member of an anonymous
850///        struct or union nested within the class being checked.
851/// \param Inits All declarations, including anonymous struct/union members and
852///        indirect members, for which any initialization was provided.
853/// \param Diagnosed Set to true if an error is produced.
854static void CheckConstexprCtorInitializer(Sema &SemaRef,
855                                          const FunctionDecl *Dcl,
856                                          FieldDecl *Field,
857                                          llvm::SmallSet<Decl*, 16> &Inits,
858                                          bool &Diagnosed) {
859  if (Field->isUnnamedBitfield())
860    return;
861
862  if (Field->isAnonymousStructOrUnion() &&
863      Field->getType()->getAsCXXRecordDecl()->isEmpty())
864    return;
865
866  if (!Inits.count(Field)) {
867    if (!Diagnosed) {
868      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
869      Diagnosed = true;
870    }
871    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
872  } else if (Field->isAnonymousStructOrUnion()) {
873    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
874    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
875         I != E; ++I)
876      // If an anonymous union contains an anonymous struct of which any member
877      // is initialized, all members must be initialized.
878      if (!RD->isUnion() || Inits.count(*I))
879        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
880  }
881}
882
883/// Check the body for the given constexpr function declaration only contains
884/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
885///
886/// \return true if the body is OK, false if we have diagnosed a problem.
887bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
888  if (isa<CXXTryStmt>(Body)) {
889    // C++11 [dcl.constexpr]p3:
890    //  The definition of a constexpr function shall satisfy the following
891    //  constraints: [...]
892    // - its function-body shall be = delete, = default, or a
893    //   compound-statement
894    //
895    // C++11 [dcl.constexpr]p4:
896    //  In the definition of a constexpr constructor, [...]
897    // - its function-body shall not be a function-try-block;
898    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
899      << isa<CXXConstructorDecl>(Dcl);
900    return false;
901  }
902
903  // - its function-body shall be [...] a compound-statement that contains only
904  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
905
906  SmallVector<SourceLocation, 4> ReturnStmts;
907  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
908         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
909    switch ((*BodyIt)->getStmtClass()) {
910    case Stmt::NullStmtClass:
911      //   - null statements,
912      continue;
913
914    case Stmt::DeclStmtClass:
915      //   - static_assert-declarations
916      //   - using-declarations,
917      //   - using-directives,
918      //   - typedef declarations and alias-declarations that do not define
919      //     classes or enumerations,
920      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
921        return false;
922      continue;
923
924    case Stmt::ReturnStmtClass:
925      //   - and exactly one return statement;
926      if (isa<CXXConstructorDecl>(Dcl))
927        break;
928
929      ReturnStmts.push_back((*BodyIt)->getLocStart());
930      continue;
931
932    default:
933      break;
934    }
935
936    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
937      << isa<CXXConstructorDecl>(Dcl);
938    return false;
939  }
940
941  if (const CXXConstructorDecl *Constructor
942        = dyn_cast<CXXConstructorDecl>(Dcl)) {
943    const CXXRecordDecl *RD = Constructor->getParent();
944    // DR1359:
945    // - every non-variant non-static data member and base class sub-object
946    //   shall be initialized;
947    // - if the class is a non-empty union, or for each non-empty anonymous
948    //   union member of a non-union class, exactly one non-static data member
949    //   shall be initialized;
950    if (RD->isUnion()) {
951      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
952        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
953        return false;
954      }
955    } else if (!Constructor->isDependentContext() &&
956               !Constructor->isDelegatingConstructor()) {
957      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
958
959      // Skip detailed checking if we have enough initializers, and we would
960      // allow at most one initializer per member.
961      bool AnyAnonStructUnionMembers = false;
962      unsigned Fields = 0;
963      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
964           E = RD->field_end(); I != E; ++I, ++Fields) {
965        if (I->isAnonymousStructOrUnion()) {
966          AnyAnonStructUnionMembers = true;
967          break;
968        }
969      }
970      if (AnyAnonStructUnionMembers ||
971          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
972        // Check initialization of non-static data members. Base classes are
973        // always initialized so do not need to be checked. Dependent bases
974        // might not have initializers in the member initializer list.
975        llvm::SmallSet<Decl*, 16> Inits;
976        for (CXXConstructorDecl::init_const_iterator
977               I = Constructor->init_begin(), E = Constructor->init_end();
978             I != E; ++I) {
979          if (FieldDecl *FD = (*I)->getMember())
980            Inits.insert(FD);
981          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
982            Inits.insert(ID->chain_begin(), ID->chain_end());
983        }
984
985        bool Diagnosed = false;
986        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
987             E = RD->field_end(); I != E; ++I)
988          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
989        if (Diagnosed)
990          return false;
991      }
992    }
993  } else {
994    if (ReturnStmts.empty()) {
995      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
996      return false;
997    }
998    if (ReturnStmts.size() > 1) {
999      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
1000      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1001        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1002      return false;
1003    }
1004  }
1005
1006  // C++11 [dcl.constexpr]p5:
1007  //   if no function argument values exist such that the function invocation
1008  //   substitution would produce a constant expression, the program is
1009  //   ill-formed; no diagnostic required.
1010  // C++11 [dcl.constexpr]p3:
1011  //   - every constructor call and implicit conversion used in initializing the
1012  //     return value shall be one of those allowed in a constant expression.
1013  // C++11 [dcl.constexpr]p4:
1014  //   - every constructor involved in initializing non-static data members and
1015  //     base class sub-objects shall be a constexpr constructor.
1016  SmallVector<PartialDiagnosticAt, 8> Diags;
1017  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1018    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1019      << isa<CXXConstructorDecl>(Dcl);
1020    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1021      Diag(Diags[I].first, Diags[I].second);
1022    // Don't return false here: we allow this for compatibility in
1023    // system headers.
1024  }
1025
1026  return true;
1027}
1028
1029/// isCurrentClassName - Determine whether the identifier II is the
1030/// name of the class type currently being defined. In the case of
1031/// nested classes, this will only return true if II is the name of
1032/// the innermost class.
1033bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1034                              const CXXScopeSpec *SS) {
1035  assert(getLangOpts().CPlusPlus && "No class names in C!");
1036
1037  CXXRecordDecl *CurDecl;
1038  if (SS && SS->isSet() && !SS->isInvalid()) {
1039    DeclContext *DC = computeDeclContext(*SS, true);
1040    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1041  } else
1042    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1043
1044  if (CurDecl && CurDecl->getIdentifier())
1045    return &II == CurDecl->getIdentifier();
1046  else
1047    return false;
1048}
1049
1050/// \brief Determine whether the given class is a base class of the given
1051/// class, including looking at dependent bases.
1052static bool findCircularInheritance(const CXXRecordDecl *Class,
1053                                    const CXXRecordDecl *Current) {
1054  SmallVector<const CXXRecordDecl*, 8> Queue;
1055
1056  Class = Class->getCanonicalDecl();
1057  while (true) {
1058    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1059                                                  E = Current->bases_end();
1060         I != E; ++I) {
1061      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1062      if (!Base)
1063        continue;
1064
1065      Base = Base->getDefinition();
1066      if (!Base)
1067        continue;
1068
1069      if (Base->getCanonicalDecl() == Class)
1070        return true;
1071
1072      Queue.push_back(Base);
1073    }
1074
1075    if (Queue.empty())
1076      return false;
1077
1078    Current = Queue.back();
1079    Queue.pop_back();
1080  }
1081
1082  return false;
1083}
1084
1085/// \brief Check the validity of a C++ base class specifier.
1086///
1087/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1088/// and returns NULL otherwise.
1089CXXBaseSpecifier *
1090Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1091                         SourceRange SpecifierRange,
1092                         bool Virtual, AccessSpecifier Access,
1093                         TypeSourceInfo *TInfo,
1094                         SourceLocation EllipsisLoc) {
1095  QualType BaseType = TInfo->getType();
1096
1097  // C++ [class.union]p1:
1098  //   A union shall not have base classes.
1099  if (Class->isUnion()) {
1100    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1101      << SpecifierRange;
1102    return 0;
1103  }
1104
1105  if (EllipsisLoc.isValid() &&
1106      !TInfo->getType()->containsUnexpandedParameterPack()) {
1107    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1108      << TInfo->getTypeLoc().getSourceRange();
1109    EllipsisLoc = SourceLocation();
1110  }
1111
1112  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1113
1114  if (BaseType->isDependentType()) {
1115    // Make sure that we don't have circular inheritance among our dependent
1116    // bases. For non-dependent bases, the check for completeness below handles
1117    // this.
1118    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1119      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1120          ((BaseDecl = BaseDecl->getDefinition()) &&
1121           findCircularInheritance(Class, BaseDecl))) {
1122        Diag(BaseLoc, diag::err_circular_inheritance)
1123          << BaseType << Context.getTypeDeclType(Class);
1124
1125        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1126          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1127            << BaseType;
1128
1129        return 0;
1130      }
1131    }
1132
1133    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1134                                          Class->getTagKind() == TTK_Class,
1135                                          Access, TInfo, EllipsisLoc);
1136  }
1137
1138  // Base specifiers must be record types.
1139  if (!BaseType->isRecordType()) {
1140    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1141    return 0;
1142  }
1143
1144  // C++ [class.union]p1:
1145  //   A union shall not be used as a base class.
1146  if (BaseType->isUnionType()) {
1147    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1148    return 0;
1149  }
1150
1151  // C++ [class.derived]p2:
1152  //   The class-name in a base-specifier shall not be an incompletely
1153  //   defined class.
1154  if (RequireCompleteType(BaseLoc, BaseType,
1155                          diag::err_incomplete_base_class, SpecifierRange)) {
1156    Class->setInvalidDecl();
1157    return 0;
1158  }
1159
1160  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1161  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1162  assert(BaseDecl && "Record type has no declaration");
1163  BaseDecl = BaseDecl->getDefinition();
1164  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1165  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1166  assert(CXXBaseDecl && "Base type is not a C++ type");
1167
1168  // C++ [class]p3:
1169  //   If a class is marked final and it appears as a base-type-specifier in
1170  //   base-clause, the program is ill-formed.
1171  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1172    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1173      << CXXBaseDecl->getDeclName();
1174    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1175      << CXXBaseDecl->getDeclName();
1176    return 0;
1177  }
1178
1179  if (BaseDecl->isInvalidDecl())
1180    Class->setInvalidDecl();
1181
1182  // Create the base specifier.
1183  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1184                                        Class->getTagKind() == TTK_Class,
1185                                        Access, TInfo, EllipsisLoc);
1186}
1187
1188/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1189/// one entry in the base class list of a class specifier, for
1190/// example:
1191///    class foo : public bar, virtual private baz {
1192/// 'public bar' and 'virtual private baz' are each base-specifiers.
1193BaseResult
1194Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1195                         ParsedAttributes &Attributes,
1196                         bool Virtual, AccessSpecifier Access,
1197                         ParsedType basetype, SourceLocation BaseLoc,
1198                         SourceLocation EllipsisLoc) {
1199  if (!classdecl)
1200    return true;
1201
1202  AdjustDeclIfTemplate(classdecl);
1203  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1204  if (!Class)
1205    return true;
1206
1207  // We do not support any C++11 attributes on base-specifiers yet.
1208  // Diagnose any attributes we see.
1209  if (!Attributes.empty()) {
1210    for (AttributeList *Attr = Attributes.getList(); Attr;
1211         Attr = Attr->getNext()) {
1212      if (Attr->isInvalid() ||
1213          Attr->getKind() == AttributeList::IgnoredAttribute)
1214        continue;
1215      Diag(Attr->getLoc(),
1216           Attr->getKind() == AttributeList::UnknownAttribute
1217             ? diag::warn_unknown_attribute_ignored
1218             : diag::err_base_specifier_attribute)
1219        << Attr->getName();
1220    }
1221  }
1222
1223  TypeSourceInfo *TInfo = 0;
1224  GetTypeFromParser(basetype, &TInfo);
1225
1226  if (EllipsisLoc.isInvalid() &&
1227      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1228                                      UPPC_BaseType))
1229    return true;
1230
1231  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1232                                                      Virtual, Access, TInfo,
1233                                                      EllipsisLoc))
1234    return BaseSpec;
1235  else
1236    Class->setInvalidDecl();
1237
1238  return true;
1239}
1240
1241/// \brief Performs the actual work of attaching the given base class
1242/// specifiers to a C++ class.
1243bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1244                                unsigned NumBases) {
1245 if (NumBases == 0)
1246    return false;
1247
1248  // Used to keep track of which base types we have already seen, so
1249  // that we can properly diagnose redundant direct base types. Note
1250  // that the key is always the unqualified canonical type of the base
1251  // class.
1252  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1253
1254  // Copy non-redundant base specifiers into permanent storage.
1255  unsigned NumGoodBases = 0;
1256  bool Invalid = false;
1257  for (unsigned idx = 0; idx < NumBases; ++idx) {
1258    QualType NewBaseType
1259      = Context.getCanonicalType(Bases[idx]->getType());
1260    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1261
1262    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1263    if (KnownBase) {
1264      // C++ [class.mi]p3:
1265      //   A class shall not be specified as a direct base class of a
1266      //   derived class more than once.
1267      Diag(Bases[idx]->getLocStart(),
1268           diag::err_duplicate_base_class)
1269        << KnownBase->getType()
1270        << Bases[idx]->getSourceRange();
1271
1272      // Delete the duplicate base class specifier; we're going to
1273      // overwrite its pointer later.
1274      Context.Deallocate(Bases[idx]);
1275
1276      Invalid = true;
1277    } else {
1278      // Okay, add this new base class.
1279      KnownBase = Bases[idx];
1280      Bases[NumGoodBases++] = Bases[idx];
1281      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1282        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1283        if (Class->isInterface() &&
1284              (!RD->isInterface() ||
1285               KnownBase->getAccessSpecifier() != AS_public)) {
1286          // The Microsoft extension __interface does not permit bases that
1287          // are not themselves public interfaces.
1288          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1289            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1290            << RD->getSourceRange();
1291          Invalid = true;
1292        }
1293        if (RD->hasAttr<WeakAttr>())
1294          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1295      }
1296    }
1297  }
1298
1299  // Attach the remaining base class specifiers to the derived class.
1300  Class->setBases(Bases, NumGoodBases);
1301
1302  // Delete the remaining (good) base class specifiers, since their
1303  // data has been copied into the CXXRecordDecl.
1304  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1305    Context.Deallocate(Bases[idx]);
1306
1307  return Invalid;
1308}
1309
1310/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1311/// class, after checking whether there are any duplicate base
1312/// classes.
1313void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1314                               unsigned NumBases) {
1315  if (!ClassDecl || !Bases || !NumBases)
1316    return;
1317
1318  AdjustDeclIfTemplate(ClassDecl);
1319  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1320                       (CXXBaseSpecifier**)(Bases), NumBases);
1321}
1322
1323/// \brief Determine whether the type \p Derived is a C++ class that is
1324/// derived from the type \p Base.
1325bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1326  if (!getLangOpts().CPlusPlus)
1327    return false;
1328
1329  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1330  if (!DerivedRD)
1331    return false;
1332
1333  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1334  if (!BaseRD)
1335    return false;
1336
1337  // If either the base or the derived type is invalid, don't try to
1338  // check whether one is derived from the other.
1339  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1340    return false;
1341
1342  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1343  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1344}
1345
1346/// \brief Determine whether the type \p Derived is a C++ class that is
1347/// derived from the type \p Base.
1348bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1349  if (!getLangOpts().CPlusPlus)
1350    return false;
1351
1352  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1353  if (!DerivedRD)
1354    return false;
1355
1356  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1357  if (!BaseRD)
1358    return false;
1359
1360  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1361}
1362
1363void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1364                              CXXCastPath &BasePathArray) {
1365  assert(BasePathArray.empty() && "Base path array must be empty!");
1366  assert(Paths.isRecordingPaths() && "Must record paths!");
1367
1368  const CXXBasePath &Path = Paths.front();
1369
1370  // We first go backward and check if we have a virtual base.
1371  // FIXME: It would be better if CXXBasePath had the base specifier for
1372  // the nearest virtual base.
1373  unsigned Start = 0;
1374  for (unsigned I = Path.size(); I != 0; --I) {
1375    if (Path[I - 1].Base->isVirtual()) {
1376      Start = I - 1;
1377      break;
1378    }
1379  }
1380
1381  // Now add all bases.
1382  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1383    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1384}
1385
1386/// \brief Determine whether the given base path includes a virtual
1387/// base class.
1388bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1389  for (CXXCastPath::const_iterator B = BasePath.begin(),
1390                                BEnd = BasePath.end();
1391       B != BEnd; ++B)
1392    if ((*B)->isVirtual())
1393      return true;
1394
1395  return false;
1396}
1397
1398/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1399/// conversion (where Derived and Base are class types) is
1400/// well-formed, meaning that the conversion is unambiguous (and
1401/// that all of the base classes are accessible). Returns true
1402/// and emits a diagnostic if the code is ill-formed, returns false
1403/// otherwise. Loc is the location where this routine should point to
1404/// if there is an error, and Range is the source range to highlight
1405/// if there is an error.
1406bool
1407Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1408                                   unsigned InaccessibleBaseID,
1409                                   unsigned AmbigiousBaseConvID,
1410                                   SourceLocation Loc, SourceRange Range,
1411                                   DeclarationName Name,
1412                                   CXXCastPath *BasePath) {
1413  // First, determine whether the path from Derived to Base is
1414  // ambiguous. This is slightly more expensive than checking whether
1415  // the Derived to Base conversion exists, because here we need to
1416  // explore multiple paths to determine if there is an ambiguity.
1417  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1418                     /*DetectVirtual=*/false);
1419  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1420  assert(DerivationOkay &&
1421         "Can only be used with a derived-to-base conversion");
1422  (void)DerivationOkay;
1423
1424  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1425    if (InaccessibleBaseID) {
1426      // Check that the base class can be accessed.
1427      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1428                                   InaccessibleBaseID)) {
1429        case AR_inaccessible:
1430          return true;
1431        case AR_accessible:
1432        case AR_dependent:
1433        case AR_delayed:
1434          break;
1435      }
1436    }
1437
1438    // Build a base path if necessary.
1439    if (BasePath)
1440      BuildBasePathArray(Paths, *BasePath);
1441    return false;
1442  }
1443
1444  // We know that the derived-to-base conversion is ambiguous, and
1445  // we're going to produce a diagnostic. Perform the derived-to-base
1446  // search just one more time to compute all of the possible paths so
1447  // that we can print them out. This is more expensive than any of
1448  // the previous derived-to-base checks we've done, but at this point
1449  // performance isn't as much of an issue.
1450  Paths.clear();
1451  Paths.setRecordingPaths(true);
1452  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1453  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1454  (void)StillOkay;
1455
1456  // Build up a textual representation of the ambiguous paths, e.g.,
1457  // D -> B -> A, that will be used to illustrate the ambiguous
1458  // conversions in the diagnostic. We only print one of the paths
1459  // to each base class subobject.
1460  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1461
1462  Diag(Loc, AmbigiousBaseConvID)
1463  << Derived << Base << PathDisplayStr << Range << Name;
1464  return true;
1465}
1466
1467bool
1468Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1469                                   SourceLocation Loc, SourceRange Range,
1470                                   CXXCastPath *BasePath,
1471                                   bool IgnoreAccess) {
1472  return CheckDerivedToBaseConversion(Derived, Base,
1473                                      IgnoreAccess ? 0
1474                                       : diag::err_upcast_to_inaccessible_base,
1475                                      diag::err_ambiguous_derived_to_base_conv,
1476                                      Loc, Range, DeclarationName(),
1477                                      BasePath);
1478}
1479
1480
1481/// @brief Builds a string representing ambiguous paths from a
1482/// specific derived class to different subobjects of the same base
1483/// class.
1484///
1485/// This function builds a string that can be used in error messages
1486/// to show the different paths that one can take through the
1487/// inheritance hierarchy to go from the derived class to different
1488/// subobjects of a base class. The result looks something like this:
1489/// @code
1490/// struct D -> struct B -> struct A
1491/// struct D -> struct C -> struct A
1492/// @endcode
1493std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1494  std::string PathDisplayStr;
1495  std::set<unsigned> DisplayedPaths;
1496  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1497       Path != Paths.end(); ++Path) {
1498    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1499      // We haven't displayed a path to this particular base
1500      // class subobject yet.
1501      PathDisplayStr += "\n    ";
1502      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1503      for (CXXBasePath::const_iterator Element = Path->begin();
1504           Element != Path->end(); ++Element)
1505        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1506    }
1507  }
1508
1509  return PathDisplayStr;
1510}
1511
1512//===----------------------------------------------------------------------===//
1513// C++ class member Handling
1514//===----------------------------------------------------------------------===//
1515
1516/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1517bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1518                                SourceLocation ASLoc,
1519                                SourceLocation ColonLoc,
1520                                AttributeList *Attrs) {
1521  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1522  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1523                                                  ASLoc, ColonLoc);
1524  CurContext->addHiddenDecl(ASDecl);
1525  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1526}
1527
1528/// CheckOverrideControl - Check C++11 override control semantics.
1529void Sema::CheckOverrideControl(Decl *D) {
1530  if (D->isInvalidDecl())
1531    return;
1532
1533  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1534
1535  // Do we know which functions this declaration might be overriding?
1536  bool OverridesAreKnown = !MD ||
1537      (!MD->getParent()->hasAnyDependentBases() &&
1538       !MD->getType()->isDependentType());
1539
1540  if (!MD || !MD->isVirtual()) {
1541    if (OverridesAreKnown) {
1542      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1543        Diag(OA->getLocation(),
1544             diag::override_keyword_only_allowed_on_virtual_member_functions)
1545          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1546        D->dropAttr<OverrideAttr>();
1547      }
1548      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1549        Diag(FA->getLocation(),
1550             diag::override_keyword_only_allowed_on_virtual_member_functions)
1551          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1552        D->dropAttr<FinalAttr>();
1553      }
1554    }
1555    return;
1556  }
1557
1558  if (!OverridesAreKnown)
1559    return;
1560
1561  // C++11 [class.virtual]p5:
1562  //   If a virtual function is marked with the virt-specifier override and
1563  //   does not override a member function of a base class, the program is
1564  //   ill-formed.
1565  bool HasOverriddenMethods =
1566    MD->begin_overridden_methods() != MD->end_overridden_methods();
1567  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1568    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1569      << MD->getDeclName();
1570}
1571
1572/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1573/// function overrides a virtual member function marked 'final', according to
1574/// C++11 [class.virtual]p4.
1575bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1576                                                  const CXXMethodDecl *Old) {
1577  if (!Old->hasAttr<FinalAttr>())
1578    return false;
1579
1580  Diag(New->getLocation(), diag::err_final_function_overridden)
1581    << New->getDeclName();
1582  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1583  return true;
1584}
1585
1586static bool InitializationHasSideEffects(const FieldDecl &FD) {
1587  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1588  // FIXME: Destruction of ObjC lifetime types has side-effects.
1589  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1590    return !RD->isCompleteDefinition() ||
1591           !RD->hasTrivialDefaultConstructor() ||
1592           !RD->hasTrivialDestructor();
1593  return false;
1594}
1595
1596static AttributeList *getMSPropertyAttr(AttributeList *list) {
1597  for (AttributeList* it = list; it != 0; it = it->getNext())
1598    if (it->isDeclspecPropertyAttribute())
1599      return it;
1600  return 0;
1601}
1602
1603/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1604/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1605/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1606/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1607/// present (but parsing it has been deferred).
1608NamedDecl *
1609Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1610                               MultiTemplateParamsArg TemplateParameterLists,
1611                               Expr *BW, const VirtSpecifiers &VS,
1612                               InClassInitStyle InitStyle) {
1613  const DeclSpec &DS = D.getDeclSpec();
1614  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1615  DeclarationName Name = NameInfo.getName();
1616  SourceLocation Loc = NameInfo.getLoc();
1617
1618  // For anonymous bitfields, the location should point to the type.
1619  if (Loc.isInvalid())
1620    Loc = D.getLocStart();
1621
1622  Expr *BitWidth = static_cast<Expr*>(BW);
1623
1624  assert(isa<CXXRecordDecl>(CurContext));
1625  assert(!DS.isFriendSpecified());
1626
1627  bool isFunc = D.isDeclarationOfFunction();
1628
1629  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1630    // The Microsoft extension __interface only permits public member functions
1631    // and prohibits constructors, destructors, operators, non-public member
1632    // functions, static methods and data members.
1633    unsigned InvalidDecl;
1634    bool ShowDeclName = true;
1635    if (!isFunc)
1636      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1637    else if (AS != AS_public)
1638      InvalidDecl = 2;
1639    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1640      InvalidDecl = 3;
1641    else switch (Name.getNameKind()) {
1642      case DeclarationName::CXXConstructorName:
1643        InvalidDecl = 4;
1644        ShowDeclName = false;
1645        break;
1646
1647      case DeclarationName::CXXDestructorName:
1648        InvalidDecl = 5;
1649        ShowDeclName = false;
1650        break;
1651
1652      case DeclarationName::CXXOperatorName:
1653      case DeclarationName::CXXConversionFunctionName:
1654        InvalidDecl = 6;
1655        break;
1656
1657      default:
1658        InvalidDecl = 0;
1659        break;
1660    }
1661
1662    if (InvalidDecl) {
1663      if (ShowDeclName)
1664        Diag(Loc, diag::err_invalid_member_in_interface)
1665          << (InvalidDecl-1) << Name;
1666      else
1667        Diag(Loc, diag::err_invalid_member_in_interface)
1668          << (InvalidDecl-1) << "";
1669      return 0;
1670    }
1671  }
1672
1673  // C++ 9.2p6: A member shall not be declared to have automatic storage
1674  // duration (auto, register) or with the extern storage-class-specifier.
1675  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1676  // data members and cannot be applied to names declared const or static,
1677  // and cannot be applied to reference members.
1678  switch (DS.getStorageClassSpec()) {
1679  case DeclSpec::SCS_unspecified:
1680  case DeclSpec::SCS_typedef:
1681  case DeclSpec::SCS_static:
1682    break;
1683  case DeclSpec::SCS_mutable:
1684    if (isFunc) {
1685      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1686
1687      // FIXME: It would be nicer if the keyword was ignored only for this
1688      // declarator. Otherwise we could get follow-up errors.
1689      D.getMutableDeclSpec().ClearStorageClassSpecs();
1690    }
1691    break;
1692  default:
1693    Diag(DS.getStorageClassSpecLoc(),
1694         diag::err_storageclass_invalid_for_member);
1695    D.getMutableDeclSpec().ClearStorageClassSpecs();
1696    break;
1697  }
1698
1699  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1700                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1701                      !isFunc);
1702
1703  if (DS.isConstexprSpecified() && isInstField) {
1704    SemaDiagnosticBuilder B =
1705        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1706    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1707    if (InitStyle == ICIS_NoInit) {
1708      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1709      D.getMutableDeclSpec().ClearConstexprSpec();
1710      const char *PrevSpec;
1711      unsigned DiagID;
1712      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1713                                         PrevSpec, DiagID, getLangOpts());
1714      (void)Failed;
1715      assert(!Failed && "Making a constexpr member const shouldn't fail");
1716    } else {
1717      B << 1;
1718      const char *PrevSpec;
1719      unsigned DiagID;
1720      if (D.getMutableDeclSpec().SetStorageClassSpec(
1721          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1722        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1723               "This is the only DeclSpec that should fail to be applied");
1724        B << 1;
1725      } else {
1726        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1727        isInstField = false;
1728      }
1729    }
1730  }
1731
1732  NamedDecl *Member;
1733  if (isInstField) {
1734    CXXScopeSpec &SS = D.getCXXScopeSpec();
1735
1736    // Data members must have identifiers for names.
1737    if (!Name.isIdentifier()) {
1738      Diag(Loc, diag::err_bad_variable_name)
1739        << Name;
1740      return 0;
1741    }
1742
1743    IdentifierInfo *II = Name.getAsIdentifierInfo();
1744
1745    // Member field could not be with "template" keyword.
1746    // So TemplateParameterLists should be empty in this case.
1747    if (TemplateParameterLists.size()) {
1748      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1749      if (TemplateParams->size()) {
1750        // There is no such thing as a member field template.
1751        Diag(D.getIdentifierLoc(), diag::err_template_member)
1752            << II
1753            << SourceRange(TemplateParams->getTemplateLoc(),
1754                TemplateParams->getRAngleLoc());
1755      } else {
1756        // There is an extraneous 'template<>' for this member.
1757        Diag(TemplateParams->getTemplateLoc(),
1758            diag::err_template_member_noparams)
1759            << II
1760            << SourceRange(TemplateParams->getTemplateLoc(),
1761                TemplateParams->getRAngleLoc());
1762      }
1763      return 0;
1764    }
1765
1766    if (SS.isSet() && !SS.isInvalid()) {
1767      // The user provided a superfluous scope specifier inside a class
1768      // definition:
1769      //
1770      // class X {
1771      //   int X::member;
1772      // };
1773      if (DeclContext *DC = computeDeclContext(SS, false))
1774        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1775      else
1776        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1777          << Name << SS.getRange();
1778
1779      SS.clear();
1780    }
1781
1782    AttributeList *MSPropertyAttr =
1783      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1784    if (MSPropertyAttr) {
1785      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1786                                BitWidth, InitStyle, AS, MSPropertyAttr);
1787      isInstField = false;
1788    } else {
1789      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1790                                BitWidth, InitStyle, AS);
1791    }
1792    assert(Member && "HandleField never returns null");
1793  } else {
1794    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1795
1796    Member = HandleDeclarator(S, D, TemplateParameterLists);
1797    if (!Member) {
1798      return 0;
1799    }
1800
1801    // Non-instance-fields can't have a bitfield.
1802    if (BitWidth) {
1803      if (Member->isInvalidDecl()) {
1804        // don't emit another diagnostic.
1805      } else if (isa<VarDecl>(Member)) {
1806        // C++ 9.6p3: A bit-field shall not be a static member.
1807        // "static member 'A' cannot be a bit-field"
1808        Diag(Loc, diag::err_static_not_bitfield)
1809          << Name << BitWidth->getSourceRange();
1810      } else if (isa<TypedefDecl>(Member)) {
1811        // "typedef member 'x' cannot be a bit-field"
1812        Diag(Loc, diag::err_typedef_not_bitfield)
1813          << Name << BitWidth->getSourceRange();
1814      } else {
1815        // A function typedef ("typedef int f(); f a;").
1816        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1817        Diag(Loc, diag::err_not_integral_type_bitfield)
1818          << Name << cast<ValueDecl>(Member)->getType()
1819          << BitWidth->getSourceRange();
1820      }
1821
1822      BitWidth = 0;
1823      Member->setInvalidDecl();
1824    }
1825
1826    Member->setAccess(AS);
1827
1828    // If we have declared a member function template, set the access of the
1829    // templated declaration as well.
1830    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1831      FunTmpl->getTemplatedDecl()->setAccess(AS);
1832  }
1833
1834  if (VS.isOverrideSpecified())
1835    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1836  if (VS.isFinalSpecified())
1837    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1838
1839  if (VS.getLastLocation().isValid()) {
1840    // Update the end location of a method that has a virt-specifiers.
1841    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1842      MD->setRangeEnd(VS.getLastLocation());
1843  }
1844
1845  CheckOverrideControl(Member);
1846
1847  assert((Name || isInstField) && "No identifier for non-field ?");
1848
1849  if (isInstField) {
1850    FieldDecl *FD = cast<FieldDecl>(Member);
1851    FieldCollector->Add(FD);
1852
1853    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1854                                 FD->getLocation())
1855          != DiagnosticsEngine::Ignored) {
1856      // Remember all explicit private FieldDecls that have a name, no side
1857      // effects and are not part of a dependent type declaration.
1858      if (!FD->isImplicit() && FD->getDeclName() &&
1859          FD->getAccess() == AS_private &&
1860          !FD->hasAttr<UnusedAttr>() &&
1861          !FD->getParent()->isDependentContext() &&
1862          !InitializationHasSideEffects(*FD))
1863        UnusedPrivateFields.insert(FD);
1864    }
1865  }
1866
1867  return Member;
1868}
1869
1870namespace {
1871  class UninitializedFieldVisitor
1872      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1873    Sema &S;
1874    ValueDecl *VD;
1875  public:
1876    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1877    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1878                                                        S(S) {
1879      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1880        this->VD = IFD->getAnonField();
1881      else
1882        this->VD = VD;
1883    }
1884
1885    void HandleExpr(Expr *E) {
1886      if (!E) return;
1887
1888      // Expressions like x(x) sometimes lack the surrounding expressions
1889      // but need to be checked anyways.
1890      HandleValue(E);
1891      Visit(E);
1892    }
1893
1894    void HandleValue(Expr *E) {
1895      E = E->IgnoreParens();
1896
1897      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1898        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1899          return;
1900
1901        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1902        // or union.
1903        MemberExpr *FieldME = ME;
1904
1905        Expr *Base = E;
1906        while (isa<MemberExpr>(Base)) {
1907          ME = cast<MemberExpr>(Base);
1908
1909          if (isa<VarDecl>(ME->getMemberDecl()))
1910            return;
1911
1912          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1913            if (!FD->isAnonymousStructOrUnion())
1914              FieldME = ME;
1915
1916          Base = ME->getBase();
1917        }
1918
1919        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1920          unsigned diag = VD->getType()->isReferenceType()
1921              ? diag::warn_reference_field_is_uninit
1922              : diag::warn_field_is_uninit;
1923          S.Diag(FieldME->getExprLoc(), diag) << VD;
1924        }
1925        return;
1926      }
1927
1928      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1929        HandleValue(CO->getTrueExpr());
1930        HandleValue(CO->getFalseExpr());
1931        return;
1932      }
1933
1934      if (BinaryConditionalOperator *BCO =
1935              dyn_cast<BinaryConditionalOperator>(E)) {
1936        HandleValue(BCO->getCommon());
1937        HandleValue(BCO->getFalseExpr());
1938        return;
1939      }
1940
1941      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1942        switch (BO->getOpcode()) {
1943        default:
1944          return;
1945        case(BO_PtrMemD):
1946        case(BO_PtrMemI):
1947          HandleValue(BO->getLHS());
1948          return;
1949        case(BO_Comma):
1950          HandleValue(BO->getRHS());
1951          return;
1952        }
1953      }
1954    }
1955
1956    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1957      if (E->getCastKind() == CK_LValueToRValue)
1958        HandleValue(E->getSubExpr());
1959
1960      Inherited::VisitImplicitCastExpr(E);
1961    }
1962
1963    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1964      Expr *Callee = E->getCallee();
1965      if (isa<MemberExpr>(Callee))
1966        HandleValue(Callee);
1967
1968      Inherited::VisitCXXMemberCallExpr(E);
1969    }
1970  };
1971  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1972                                                       ValueDecl *VD) {
1973    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1974  }
1975} // namespace
1976
1977/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1978/// in-class initializer for a non-static C++ class member, and after
1979/// instantiating an in-class initializer in a class template. Such actions
1980/// are deferred until the class is complete.
1981void
1982Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1983                                       Expr *InitExpr) {
1984  FieldDecl *FD = cast<FieldDecl>(D);
1985  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1986         "must set init style when field is created");
1987
1988  if (!InitExpr) {
1989    FD->setInvalidDecl();
1990    FD->removeInClassInitializer();
1991    return;
1992  }
1993
1994  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1995    FD->setInvalidDecl();
1996    FD->removeInClassInitializer();
1997    return;
1998  }
1999
2000  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2001      != DiagnosticsEngine::Ignored) {
2002    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2003  }
2004
2005  ExprResult Init = InitExpr;
2006  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2007    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2008      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2009        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2010    }
2011    Expr **Inits = &InitExpr;
2012    unsigned NumInits = 1;
2013    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2014    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2015        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2016        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2017    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2018    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2019    if (Init.isInvalid()) {
2020      FD->setInvalidDecl();
2021      return;
2022    }
2023  }
2024
2025  // C++11 [class.base.init]p7:
2026  //   The initialization of each base and member constitutes a
2027  //   full-expression.
2028  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2029  if (Init.isInvalid()) {
2030    FD->setInvalidDecl();
2031    return;
2032  }
2033
2034  InitExpr = Init.release();
2035
2036  FD->setInClassInitializer(InitExpr);
2037}
2038
2039/// \brief Find the direct and/or virtual base specifiers that
2040/// correspond to the given base type, for use in base initialization
2041/// within a constructor.
2042static bool FindBaseInitializer(Sema &SemaRef,
2043                                CXXRecordDecl *ClassDecl,
2044                                QualType BaseType,
2045                                const CXXBaseSpecifier *&DirectBaseSpec,
2046                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2047  // First, check for a direct base class.
2048  DirectBaseSpec = 0;
2049  for (CXXRecordDecl::base_class_const_iterator Base
2050         = ClassDecl->bases_begin();
2051       Base != ClassDecl->bases_end(); ++Base) {
2052    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2053      // We found a direct base of this type. That's what we're
2054      // initializing.
2055      DirectBaseSpec = &*Base;
2056      break;
2057    }
2058  }
2059
2060  // Check for a virtual base class.
2061  // FIXME: We might be able to short-circuit this if we know in advance that
2062  // there are no virtual bases.
2063  VirtualBaseSpec = 0;
2064  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2065    // We haven't found a base yet; search the class hierarchy for a
2066    // virtual base class.
2067    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2068                       /*DetectVirtual=*/false);
2069    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2070                              BaseType, Paths)) {
2071      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2072           Path != Paths.end(); ++Path) {
2073        if (Path->back().Base->isVirtual()) {
2074          VirtualBaseSpec = Path->back().Base;
2075          break;
2076        }
2077      }
2078    }
2079  }
2080
2081  return DirectBaseSpec || VirtualBaseSpec;
2082}
2083
2084/// \brief Handle a C++ member initializer using braced-init-list syntax.
2085MemInitResult
2086Sema::ActOnMemInitializer(Decl *ConstructorD,
2087                          Scope *S,
2088                          CXXScopeSpec &SS,
2089                          IdentifierInfo *MemberOrBase,
2090                          ParsedType TemplateTypeTy,
2091                          const DeclSpec &DS,
2092                          SourceLocation IdLoc,
2093                          Expr *InitList,
2094                          SourceLocation EllipsisLoc) {
2095  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2096                             DS, IdLoc, InitList,
2097                             EllipsisLoc);
2098}
2099
2100/// \brief Handle a C++ member initializer using parentheses syntax.
2101MemInitResult
2102Sema::ActOnMemInitializer(Decl *ConstructorD,
2103                          Scope *S,
2104                          CXXScopeSpec &SS,
2105                          IdentifierInfo *MemberOrBase,
2106                          ParsedType TemplateTypeTy,
2107                          const DeclSpec &DS,
2108                          SourceLocation IdLoc,
2109                          SourceLocation LParenLoc,
2110                          Expr **Args, unsigned NumArgs,
2111                          SourceLocation RParenLoc,
2112                          SourceLocation EllipsisLoc) {
2113  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2114                                           llvm::makeArrayRef(Args, NumArgs),
2115                                           RParenLoc);
2116  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2117                             DS, IdLoc, List, EllipsisLoc);
2118}
2119
2120namespace {
2121
2122// Callback to only accept typo corrections that can be a valid C++ member
2123// intializer: either a non-static field member or a base class.
2124class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2125 public:
2126  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2127      : ClassDecl(ClassDecl) {}
2128
2129  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2130    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2131      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2132        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2133      else
2134        return isa<TypeDecl>(ND);
2135    }
2136    return false;
2137  }
2138
2139 private:
2140  CXXRecordDecl *ClassDecl;
2141};
2142
2143}
2144
2145/// \brief Handle a C++ member initializer.
2146MemInitResult
2147Sema::BuildMemInitializer(Decl *ConstructorD,
2148                          Scope *S,
2149                          CXXScopeSpec &SS,
2150                          IdentifierInfo *MemberOrBase,
2151                          ParsedType TemplateTypeTy,
2152                          const DeclSpec &DS,
2153                          SourceLocation IdLoc,
2154                          Expr *Init,
2155                          SourceLocation EllipsisLoc) {
2156  if (!ConstructorD)
2157    return true;
2158
2159  AdjustDeclIfTemplate(ConstructorD);
2160
2161  CXXConstructorDecl *Constructor
2162    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2163  if (!Constructor) {
2164    // The user wrote a constructor initializer on a function that is
2165    // not a C++ constructor. Ignore the error for now, because we may
2166    // have more member initializers coming; we'll diagnose it just
2167    // once in ActOnMemInitializers.
2168    return true;
2169  }
2170
2171  CXXRecordDecl *ClassDecl = Constructor->getParent();
2172
2173  // C++ [class.base.init]p2:
2174  //   Names in a mem-initializer-id are looked up in the scope of the
2175  //   constructor's class and, if not found in that scope, are looked
2176  //   up in the scope containing the constructor's definition.
2177  //   [Note: if the constructor's class contains a member with the
2178  //   same name as a direct or virtual base class of the class, a
2179  //   mem-initializer-id naming the member or base class and composed
2180  //   of a single identifier refers to the class member. A
2181  //   mem-initializer-id for the hidden base class may be specified
2182  //   using a qualified name. ]
2183  if (!SS.getScopeRep() && !TemplateTypeTy) {
2184    // Look for a member, first.
2185    DeclContext::lookup_result Result
2186      = ClassDecl->lookup(MemberOrBase);
2187    if (!Result.empty()) {
2188      ValueDecl *Member;
2189      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2190          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2191        if (EllipsisLoc.isValid())
2192          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2193            << MemberOrBase
2194            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2195
2196        return BuildMemberInitializer(Member, Init, IdLoc);
2197      }
2198    }
2199  }
2200  // It didn't name a member, so see if it names a class.
2201  QualType BaseType;
2202  TypeSourceInfo *TInfo = 0;
2203
2204  if (TemplateTypeTy) {
2205    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2206  } else if (DS.getTypeSpecType() == TST_decltype) {
2207    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2208  } else {
2209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2210    LookupParsedName(R, S, &SS);
2211
2212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2213    if (!TyD) {
2214      if (R.isAmbiguous()) return true;
2215
2216      // We don't want access-control diagnostics here.
2217      R.suppressDiagnostics();
2218
2219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2220        bool NotUnknownSpecialization = false;
2221        DeclContext *DC = computeDeclContext(SS, false);
2222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2224
2225        if (!NotUnknownSpecialization) {
2226          // When the scope specifier can refer to a member of an unknown
2227          // specialization, we take it as a type name.
2228          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2229                                       SS.getWithLocInContext(Context),
2230                                       *MemberOrBase, IdLoc);
2231          if (BaseType.isNull())
2232            return true;
2233
2234          R.clear();
2235          R.setLookupName(MemberOrBase);
2236        }
2237      }
2238
2239      // If no results were found, try to correct typos.
2240      TypoCorrection Corr;
2241      MemInitializerValidatorCCC Validator(ClassDecl);
2242      if (R.empty() && BaseType.isNull() &&
2243          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2244                              Validator, ClassDecl))) {
2245        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2246        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2247        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2248          // We have found a non-static data member with a similar
2249          // name to what was typed; complain and initialize that
2250          // member.
2251          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2252            << MemberOrBase << true << CorrectedQuotedStr
2253            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2254          Diag(Member->getLocation(), diag::note_previous_decl)
2255            << CorrectedQuotedStr;
2256
2257          return BuildMemberInitializer(Member, Init, IdLoc);
2258        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2259          const CXXBaseSpecifier *DirectBaseSpec;
2260          const CXXBaseSpecifier *VirtualBaseSpec;
2261          if (FindBaseInitializer(*this, ClassDecl,
2262                                  Context.getTypeDeclType(Type),
2263                                  DirectBaseSpec, VirtualBaseSpec)) {
2264            // We have found a direct or virtual base class with a
2265            // similar name to what was typed; complain and initialize
2266            // that base class.
2267            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2268              << MemberOrBase << false << CorrectedQuotedStr
2269              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2270
2271            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2272                                                             : VirtualBaseSpec;
2273            Diag(BaseSpec->getLocStart(),
2274                 diag::note_base_class_specified_here)
2275              << BaseSpec->getType()
2276              << BaseSpec->getSourceRange();
2277
2278            TyD = Type;
2279          }
2280        }
2281      }
2282
2283      if (!TyD && BaseType.isNull()) {
2284        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2285          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2286        return true;
2287      }
2288    }
2289
2290    if (BaseType.isNull()) {
2291      BaseType = Context.getTypeDeclType(TyD);
2292      if (SS.isSet()) {
2293        NestedNameSpecifier *Qualifier =
2294          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2295
2296        // FIXME: preserve source range information
2297        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2298      }
2299    }
2300  }
2301
2302  if (!TInfo)
2303    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2304
2305  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2306}
2307
2308/// Checks a member initializer expression for cases where reference (or
2309/// pointer) members are bound to by-value parameters (or their addresses).
2310static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2311                                               Expr *Init,
2312                                               SourceLocation IdLoc) {
2313  QualType MemberTy = Member->getType();
2314
2315  // We only handle pointers and references currently.
2316  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2317  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2318    return;
2319
2320  const bool IsPointer = MemberTy->isPointerType();
2321  if (IsPointer) {
2322    if (const UnaryOperator *Op
2323          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2324      // The only case we're worried about with pointers requires taking the
2325      // address.
2326      if (Op->getOpcode() != UO_AddrOf)
2327        return;
2328
2329      Init = Op->getSubExpr();
2330    } else {
2331      // We only handle address-of expression initializers for pointers.
2332      return;
2333    }
2334  }
2335
2336  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2337    // Taking the address of a temporary will be diagnosed as a hard error.
2338    if (IsPointer)
2339      return;
2340
2341    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2342      << Member << Init->getSourceRange();
2343  } else if (const DeclRefExpr *DRE
2344               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2345    // We only warn when referring to a non-reference parameter declaration.
2346    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2347    if (!Parameter || Parameter->getType()->isReferenceType())
2348      return;
2349
2350    S.Diag(Init->getExprLoc(),
2351           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2352                     : diag::warn_bind_ref_member_to_parameter)
2353      << Member << Parameter << Init->getSourceRange();
2354  } else {
2355    // Other initializers are fine.
2356    return;
2357  }
2358
2359  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2360    << (unsigned)IsPointer;
2361}
2362
2363MemInitResult
2364Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2365                             SourceLocation IdLoc) {
2366  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2367  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2368  assert((DirectMember || IndirectMember) &&
2369         "Member must be a FieldDecl or IndirectFieldDecl");
2370
2371  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2372    return true;
2373
2374  if (Member->isInvalidDecl())
2375    return true;
2376
2377  // Diagnose value-uses of fields to initialize themselves, e.g.
2378  //   foo(foo)
2379  // where foo is not also a parameter to the constructor.
2380  // TODO: implement -Wuninitialized and fold this into that framework.
2381  Expr **Args;
2382  unsigned NumArgs;
2383  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2384    Args = ParenList->getExprs();
2385    NumArgs = ParenList->getNumExprs();
2386  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2387    Args = InitList->getInits();
2388    NumArgs = InitList->getNumInits();
2389  } else {
2390    // Template instantiation doesn't reconstruct ParenListExprs for us.
2391    Args = &Init;
2392    NumArgs = 1;
2393  }
2394
2395  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2396        != DiagnosticsEngine::Ignored)
2397    for (unsigned i = 0; i < NumArgs; ++i)
2398      // FIXME: Warn about the case when other fields are used before being
2399      // initialized. For example, let this field be the i'th field. When
2400      // initializing the i'th field, throw a warning if any of the >= i'th
2401      // fields are used, as they are not yet initialized.
2402      // Right now we are only handling the case where the i'th field uses
2403      // itself in its initializer.
2404      // Also need to take into account that some fields may be initialized by
2405      // in-class initializers, see C++11 [class.base.init]p9.
2406      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2407
2408  SourceRange InitRange = Init->getSourceRange();
2409
2410  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2411    // Can't check initialization for a member of dependent type or when
2412    // any of the arguments are type-dependent expressions.
2413    DiscardCleanupsInEvaluationContext();
2414  } else {
2415    bool InitList = false;
2416    if (isa<InitListExpr>(Init)) {
2417      InitList = true;
2418      Args = &Init;
2419      NumArgs = 1;
2420
2421      if (isStdInitializerList(Member->getType(), 0)) {
2422        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2423            << /*at end of ctor*/1 << InitRange;
2424      }
2425    }
2426
2427    // Initialize the member.
2428    InitializedEntity MemberEntity =
2429      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2430                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2431    InitializationKind Kind =
2432      InitList ? InitializationKind::CreateDirectList(IdLoc)
2433               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2434                                                  InitRange.getEnd());
2435
2436    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2437    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2438                                            MultiExprArg(Args, NumArgs),
2439                                            0);
2440    if (MemberInit.isInvalid())
2441      return true;
2442
2443    // C++11 [class.base.init]p7:
2444    //   The initialization of each base and member constitutes a
2445    //   full-expression.
2446    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2447    if (MemberInit.isInvalid())
2448      return true;
2449
2450    Init = MemberInit.get();
2451    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2452  }
2453
2454  if (DirectMember) {
2455    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2456                                            InitRange.getBegin(), Init,
2457                                            InitRange.getEnd());
2458  } else {
2459    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2460                                            InitRange.getBegin(), Init,
2461                                            InitRange.getEnd());
2462  }
2463}
2464
2465MemInitResult
2466Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2467                                 CXXRecordDecl *ClassDecl) {
2468  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2469  if (!LangOpts.CPlusPlus11)
2470    return Diag(NameLoc, diag::err_delegating_ctor)
2471      << TInfo->getTypeLoc().getLocalSourceRange();
2472  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2473
2474  bool InitList = true;
2475  Expr **Args = &Init;
2476  unsigned NumArgs = 1;
2477  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2478    InitList = false;
2479    Args = ParenList->getExprs();
2480    NumArgs = ParenList->getNumExprs();
2481  }
2482
2483  SourceRange InitRange = Init->getSourceRange();
2484  // Initialize the object.
2485  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2486                                     QualType(ClassDecl->getTypeForDecl(), 0));
2487  InitializationKind Kind =
2488    InitList ? InitializationKind::CreateDirectList(NameLoc)
2489             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2490                                                InitRange.getEnd());
2491  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2492  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2493                                              MultiExprArg(Args, NumArgs),
2494                                              0);
2495  if (DelegationInit.isInvalid())
2496    return true;
2497
2498  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2499         "Delegating constructor with no target?");
2500
2501  // C++11 [class.base.init]p7:
2502  //   The initialization of each base and member constitutes a
2503  //   full-expression.
2504  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2505                                       InitRange.getBegin());
2506  if (DelegationInit.isInvalid())
2507    return true;
2508
2509  // If we are in a dependent context, template instantiation will
2510  // perform this type-checking again. Just save the arguments that we
2511  // received in a ParenListExpr.
2512  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2513  // of the information that we have about the base
2514  // initializer. However, deconstructing the ASTs is a dicey process,
2515  // and this approach is far more likely to get the corner cases right.
2516  if (CurContext->isDependentContext())
2517    DelegationInit = Owned(Init);
2518
2519  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2520                                          DelegationInit.takeAs<Expr>(),
2521                                          InitRange.getEnd());
2522}
2523
2524MemInitResult
2525Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2526                           Expr *Init, CXXRecordDecl *ClassDecl,
2527                           SourceLocation EllipsisLoc) {
2528  SourceLocation BaseLoc
2529    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2530
2531  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2532    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2533             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2534
2535  // C++ [class.base.init]p2:
2536  //   [...] Unless the mem-initializer-id names a nonstatic data
2537  //   member of the constructor's class or a direct or virtual base
2538  //   of that class, the mem-initializer is ill-formed. A
2539  //   mem-initializer-list can initialize a base class using any
2540  //   name that denotes that base class type.
2541  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2542
2543  SourceRange InitRange = Init->getSourceRange();
2544  if (EllipsisLoc.isValid()) {
2545    // This is a pack expansion.
2546    if (!BaseType->containsUnexpandedParameterPack())  {
2547      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2548        << SourceRange(BaseLoc, InitRange.getEnd());
2549
2550      EllipsisLoc = SourceLocation();
2551    }
2552  } else {
2553    // Check for any unexpanded parameter packs.
2554    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2555      return true;
2556
2557    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2558      return true;
2559  }
2560
2561  // Check for direct and virtual base classes.
2562  const CXXBaseSpecifier *DirectBaseSpec = 0;
2563  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2564  if (!Dependent) {
2565    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2566                                       BaseType))
2567      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2568
2569    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2570                        VirtualBaseSpec);
2571
2572    // C++ [base.class.init]p2:
2573    // Unless the mem-initializer-id names a nonstatic data member of the
2574    // constructor's class or a direct or virtual base of that class, the
2575    // mem-initializer is ill-formed.
2576    if (!DirectBaseSpec && !VirtualBaseSpec) {
2577      // If the class has any dependent bases, then it's possible that
2578      // one of those types will resolve to the same type as
2579      // BaseType. Therefore, just treat this as a dependent base
2580      // class initialization.  FIXME: Should we try to check the
2581      // initialization anyway? It seems odd.
2582      if (ClassDecl->hasAnyDependentBases())
2583        Dependent = true;
2584      else
2585        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2586          << BaseType << Context.getTypeDeclType(ClassDecl)
2587          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2588    }
2589  }
2590
2591  if (Dependent) {
2592    DiscardCleanupsInEvaluationContext();
2593
2594    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2595                                            /*IsVirtual=*/false,
2596                                            InitRange.getBegin(), Init,
2597                                            InitRange.getEnd(), EllipsisLoc);
2598  }
2599
2600  // C++ [base.class.init]p2:
2601  //   If a mem-initializer-id is ambiguous because it designates both
2602  //   a direct non-virtual base class and an inherited virtual base
2603  //   class, the mem-initializer is ill-formed.
2604  if (DirectBaseSpec && VirtualBaseSpec)
2605    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2606      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2607
2608  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2609  if (!BaseSpec)
2610    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2611
2612  // Initialize the base.
2613  bool InitList = true;
2614  Expr **Args = &Init;
2615  unsigned NumArgs = 1;
2616  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2617    InitList = false;
2618    Args = ParenList->getExprs();
2619    NumArgs = ParenList->getNumExprs();
2620  }
2621
2622  InitializedEntity BaseEntity =
2623    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2624  InitializationKind Kind =
2625    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2626             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2627                                                InitRange.getEnd());
2628  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2629  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2630                                        MultiExprArg(Args, NumArgs), 0);
2631  if (BaseInit.isInvalid())
2632    return true;
2633
2634  // C++11 [class.base.init]p7:
2635  //   The initialization of each base and member constitutes a
2636  //   full-expression.
2637  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2638  if (BaseInit.isInvalid())
2639    return true;
2640
2641  // If we are in a dependent context, template instantiation will
2642  // perform this type-checking again. Just save the arguments that we
2643  // received in a ParenListExpr.
2644  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2645  // of the information that we have about the base
2646  // initializer. However, deconstructing the ASTs is a dicey process,
2647  // and this approach is far more likely to get the corner cases right.
2648  if (CurContext->isDependentContext())
2649    BaseInit = Owned(Init);
2650
2651  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2652                                          BaseSpec->isVirtual(),
2653                                          InitRange.getBegin(),
2654                                          BaseInit.takeAs<Expr>(),
2655                                          InitRange.getEnd(), EllipsisLoc);
2656}
2657
2658// Create a static_cast\<T&&>(expr).
2659static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2660  if (T.isNull()) T = E->getType();
2661  QualType TargetType = SemaRef.BuildReferenceType(
2662      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2663  SourceLocation ExprLoc = E->getLocStart();
2664  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2665      TargetType, ExprLoc);
2666
2667  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2668                                   SourceRange(ExprLoc, ExprLoc),
2669                                   E->getSourceRange()).take();
2670}
2671
2672/// ImplicitInitializerKind - How an implicit base or member initializer should
2673/// initialize its base or member.
2674enum ImplicitInitializerKind {
2675  IIK_Default,
2676  IIK_Copy,
2677  IIK_Move,
2678  IIK_Inherit
2679};
2680
2681static bool
2682BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2683                             ImplicitInitializerKind ImplicitInitKind,
2684                             CXXBaseSpecifier *BaseSpec,
2685                             bool IsInheritedVirtualBase,
2686                             CXXCtorInitializer *&CXXBaseInit) {
2687  InitializedEntity InitEntity
2688    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2689                                        IsInheritedVirtualBase);
2690
2691  ExprResult BaseInit;
2692
2693  switch (ImplicitInitKind) {
2694  case IIK_Inherit: {
2695    const CXXRecordDecl *Inherited =
2696        Constructor->getInheritedConstructor()->getParent();
2697    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2698    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2699      // C++11 [class.inhctor]p8:
2700      //   Each expression in the expression-list is of the form
2701      //   static_cast<T&&>(p), where p is the name of the corresponding
2702      //   constructor parameter and T is the declared type of p.
2703      SmallVector<Expr*, 16> Args;
2704      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2705        ParmVarDecl *PD = Constructor->getParamDecl(I);
2706        ExprResult ArgExpr =
2707            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2708                                     VK_LValue, SourceLocation());
2709        if (ArgExpr.isInvalid())
2710          return true;
2711        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2712      }
2713
2714      InitializationKind InitKind = InitializationKind::CreateDirect(
2715          Constructor->getLocation(), SourceLocation(), SourceLocation());
2716      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2717                                     Args.data(), Args.size());
2718      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2719      break;
2720    }
2721  }
2722  // Fall through.
2723  case IIK_Default: {
2724    InitializationKind InitKind
2725      = InitializationKind::CreateDefault(Constructor->getLocation());
2726    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2727    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2728    break;
2729  }
2730
2731  case IIK_Move:
2732  case IIK_Copy: {
2733    bool Moving = ImplicitInitKind == IIK_Move;
2734    ParmVarDecl *Param = Constructor->getParamDecl(0);
2735    QualType ParamType = Param->getType().getNonReferenceType();
2736
2737    Expr *CopyCtorArg =
2738      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2739                          SourceLocation(), Param, false,
2740                          Constructor->getLocation(), ParamType,
2741                          VK_LValue, 0);
2742
2743    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2744
2745    // Cast to the base class to avoid ambiguities.
2746    QualType ArgTy =
2747      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2748                                       ParamType.getQualifiers());
2749
2750    if (Moving) {
2751      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2752    }
2753
2754    CXXCastPath BasePath;
2755    BasePath.push_back(BaseSpec);
2756    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2757                                            CK_UncheckedDerivedToBase,
2758                                            Moving ? VK_XValue : VK_LValue,
2759                                            &BasePath).take();
2760
2761    InitializationKind InitKind
2762      = InitializationKind::CreateDirect(Constructor->getLocation(),
2763                                         SourceLocation(), SourceLocation());
2764    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2765                                   &CopyCtorArg, 1);
2766    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2767                               MultiExprArg(&CopyCtorArg, 1));
2768    break;
2769  }
2770  }
2771
2772  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2773  if (BaseInit.isInvalid())
2774    return true;
2775
2776  CXXBaseInit =
2777    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2778               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2779                                                        SourceLocation()),
2780                                             BaseSpec->isVirtual(),
2781                                             SourceLocation(),
2782                                             BaseInit.takeAs<Expr>(),
2783                                             SourceLocation(),
2784                                             SourceLocation());
2785
2786  return false;
2787}
2788
2789static bool RefersToRValueRef(Expr *MemRef) {
2790  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2791  return Referenced->getType()->isRValueReferenceType();
2792}
2793
2794static bool
2795BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2796                               ImplicitInitializerKind ImplicitInitKind,
2797                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2798                               CXXCtorInitializer *&CXXMemberInit) {
2799  if (Field->isInvalidDecl())
2800    return true;
2801
2802  SourceLocation Loc = Constructor->getLocation();
2803
2804  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2805    bool Moving = ImplicitInitKind == IIK_Move;
2806    ParmVarDecl *Param = Constructor->getParamDecl(0);
2807    QualType ParamType = Param->getType().getNonReferenceType();
2808
2809    // Suppress copying zero-width bitfields.
2810    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2811      return false;
2812
2813    Expr *MemberExprBase =
2814      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2815                          SourceLocation(), Param, false,
2816                          Loc, ParamType, VK_LValue, 0);
2817
2818    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2819
2820    if (Moving) {
2821      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2822    }
2823
2824    // Build a reference to this field within the parameter.
2825    CXXScopeSpec SS;
2826    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2827                              Sema::LookupMemberName);
2828    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2829                                  : cast<ValueDecl>(Field), AS_public);
2830    MemberLookup.resolveKind();
2831    ExprResult CtorArg
2832      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2833                                         ParamType, Loc,
2834                                         /*IsArrow=*/false,
2835                                         SS,
2836                                         /*TemplateKWLoc=*/SourceLocation(),
2837                                         /*FirstQualifierInScope=*/0,
2838                                         MemberLookup,
2839                                         /*TemplateArgs=*/0);
2840    if (CtorArg.isInvalid())
2841      return true;
2842
2843    // C++11 [class.copy]p15:
2844    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2845    //     with static_cast<T&&>(x.m);
2846    if (RefersToRValueRef(CtorArg.get())) {
2847      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2848    }
2849
2850    // When the field we are copying is an array, create index variables for
2851    // each dimension of the array. We use these index variables to subscript
2852    // the source array, and other clients (e.g., CodeGen) will perform the
2853    // necessary iteration with these index variables.
2854    SmallVector<VarDecl *, 4> IndexVariables;
2855    QualType BaseType = Field->getType();
2856    QualType SizeType = SemaRef.Context.getSizeType();
2857    bool InitializingArray = false;
2858    while (const ConstantArrayType *Array
2859                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2860      InitializingArray = true;
2861      // Create the iteration variable for this array index.
2862      IdentifierInfo *IterationVarName = 0;
2863      {
2864        SmallString<8> Str;
2865        llvm::raw_svector_ostream OS(Str);
2866        OS << "__i" << IndexVariables.size();
2867        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2868      }
2869      VarDecl *IterationVar
2870        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2871                          IterationVarName, SizeType,
2872                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2873                          SC_None);
2874      IndexVariables.push_back(IterationVar);
2875
2876      // Create a reference to the iteration variable.
2877      ExprResult IterationVarRef
2878        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2879      assert(!IterationVarRef.isInvalid() &&
2880             "Reference to invented variable cannot fail!");
2881      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2882      assert(!IterationVarRef.isInvalid() &&
2883             "Conversion of invented variable cannot fail!");
2884
2885      // Subscript the array with this iteration variable.
2886      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2887                                                        IterationVarRef.take(),
2888                                                        Loc);
2889      if (CtorArg.isInvalid())
2890        return true;
2891
2892      BaseType = Array->getElementType();
2893    }
2894
2895    // The array subscript expression is an lvalue, which is wrong for moving.
2896    if (Moving && InitializingArray)
2897      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2898
2899    // Construct the entity that we will be initializing. For an array, this
2900    // will be first element in the array, which may require several levels
2901    // of array-subscript entities.
2902    SmallVector<InitializedEntity, 4> Entities;
2903    Entities.reserve(1 + IndexVariables.size());
2904    if (Indirect)
2905      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2906    else
2907      Entities.push_back(InitializedEntity::InitializeMember(Field));
2908    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2909      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2910                                                              0,
2911                                                              Entities.back()));
2912
2913    // Direct-initialize to use the copy constructor.
2914    InitializationKind InitKind =
2915      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2916
2917    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2918    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2919                                   &CtorArgE, 1);
2920
2921    ExprResult MemberInit
2922      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2923                        MultiExprArg(&CtorArgE, 1));
2924    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2925    if (MemberInit.isInvalid())
2926      return true;
2927
2928    if (Indirect) {
2929      assert(IndexVariables.size() == 0 &&
2930             "Indirect field improperly initialized");
2931      CXXMemberInit
2932        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2933                                                   Loc, Loc,
2934                                                   MemberInit.takeAs<Expr>(),
2935                                                   Loc);
2936    } else
2937      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2938                                                 Loc, MemberInit.takeAs<Expr>(),
2939                                                 Loc,
2940                                                 IndexVariables.data(),
2941                                                 IndexVariables.size());
2942    return false;
2943  }
2944
2945  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2946         "Unhandled implicit init kind!");
2947
2948  QualType FieldBaseElementType =
2949    SemaRef.Context.getBaseElementType(Field->getType());
2950
2951  if (FieldBaseElementType->isRecordType()) {
2952    InitializedEntity InitEntity
2953      = Indirect? InitializedEntity::InitializeMember(Indirect)
2954                : InitializedEntity::InitializeMember(Field);
2955    InitializationKind InitKind =
2956      InitializationKind::CreateDefault(Loc);
2957
2958    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2959    ExprResult MemberInit =
2960      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2961
2962    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2963    if (MemberInit.isInvalid())
2964      return true;
2965
2966    if (Indirect)
2967      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2968                                                               Indirect, Loc,
2969                                                               Loc,
2970                                                               MemberInit.get(),
2971                                                               Loc);
2972    else
2973      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2974                                                               Field, Loc, Loc,
2975                                                               MemberInit.get(),
2976                                                               Loc);
2977    return false;
2978  }
2979
2980  if (!Field->getParent()->isUnion()) {
2981    if (FieldBaseElementType->isReferenceType()) {
2982      SemaRef.Diag(Constructor->getLocation(),
2983                   diag::err_uninitialized_member_in_ctor)
2984      << (int)Constructor->isImplicit()
2985      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2986      << 0 << Field->getDeclName();
2987      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2988      return true;
2989    }
2990
2991    if (FieldBaseElementType.isConstQualified()) {
2992      SemaRef.Diag(Constructor->getLocation(),
2993                   diag::err_uninitialized_member_in_ctor)
2994      << (int)Constructor->isImplicit()
2995      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2996      << 1 << Field->getDeclName();
2997      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2998      return true;
2999    }
3000  }
3001
3002  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3003      FieldBaseElementType->isObjCRetainableType() &&
3004      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3005      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3006    // ARC:
3007    //   Default-initialize Objective-C pointers to NULL.
3008    CXXMemberInit
3009      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3010                                                 Loc, Loc,
3011                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3012                                                 Loc);
3013    return false;
3014  }
3015
3016  // Nothing to initialize.
3017  CXXMemberInit = 0;
3018  return false;
3019}
3020
3021namespace {
3022struct BaseAndFieldInfo {
3023  Sema &S;
3024  CXXConstructorDecl *Ctor;
3025  bool AnyErrorsInInits;
3026  ImplicitInitializerKind IIK;
3027  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3028  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3029
3030  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3031    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3032    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3033    if (Generated && Ctor->isCopyConstructor())
3034      IIK = IIK_Copy;
3035    else if (Generated && Ctor->isMoveConstructor())
3036      IIK = IIK_Move;
3037    else if (Ctor->getInheritedConstructor())
3038      IIK = IIK_Inherit;
3039    else
3040      IIK = IIK_Default;
3041  }
3042
3043  bool isImplicitCopyOrMove() const {
3044    switch (IIK) {
3045    case IIK_Copy:
3046    case IIK_Move:
3047      return true;
3048
3049    case IIK_Default:
3050    case IIK_Inherit:
3051      return false;
3052    }
3053
3054    llvm_unreachable("Invalid ImplicitInitializerKind!");
3055  }
3056
3057  bool addFieldInitializer(CXXCtorInitializer *Init) {
3058    AllToInit.push_back(Init);
3059
3060    // Check whether this initializer makes the field "used".
3061    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3062      S.UnusedPrivateFields.remove(Init->getAnyMember());
3063
3064    return false;
3065  }
3066};
3067}
3068
3069/// \brief Determine whether the given indirect field declaration is somewhere
3070/// within an anonymous union.
3071static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3072  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3073                                      CEnd = F->chain_end();
3074       C != CEnd; ++C)
3075    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3076      if (Record->isUnion())
3077        return true;
3078
3079  return false;
3080}
3081
3082/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3083/// array type.
3084static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3085  if (T->isIncompleteArrayType())
3086    return true;
3087
3088  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3089    if (!ArrayT->getSize())
3090      return true;
3091
3092    T = ArrayT->getElementType();
3093  }
3094
3095  return false;
3096}
3097
3098static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3099                                    FieldDecl *Field,
3100                                    IndirectFieldDecl *Indirect = 0) {
3101
3102  // Overwhelmingly common case: we have a direct initializer for this field.
3103  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3104    return Info.addFieldInitializer(Init);
3105
3106  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3107  // has a brace-or-equal-initializer, the entity is initialized as specified
3108  // in [dcl.init].
3109  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3110    CXXCtorInitializer *Init;
3111    if (Indirect)
3112      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3113                                                      SourceLocation(),
3114                                                      SourceLocation(), 0,
3115                                                      SourceLocation());
3116    else
3117      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3118                                                      SourceLocation(),
3119                                                      SourceLocation(), 0,
3120                                                      SourceLocation());
3121    return Info.addFieldInitializer(Init);
3122  }
3123
3124  // Don't build an implicit initializer for union members if none was
3125  // explicitly specified.
3126  if (Field->getParent()->isUnion() ||
3127      (Indirect && isWithinAnonymousUnion(Indirect)))
3128    return false;
3129
3130  // Don't initialize incomplete or zero-length arrays.
3131  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3132    return false;
3133
3134  // Don't try to build an implicit initializer if there were semantic
3135  // errors in any of the initializers (and therefore we might be
3136  // missing some that the user actually wrote).
3137  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3138    return false;
3139
3140  CXXCtorInitializer *Init = 0;
3141  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3142                                     Indirect, Init))
3143    return true;
3144
3145  if (!Init)
3146    return false;
3147
3148  return Info.addFieldInitializer(Init);
3149}
3150
3151bool
3152Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3153                               CXXCtorInitializer *Initializer) {
3154  assert(Initializer->isDelegatingInitializer());
3155  Constructor->setNumCtorInitializers(1);
3156  CXXCtorInitializer **initializer =
3157    new (Context) CXXCtorInitializer*[1];
3158  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3159  Constructor->setCtorInitializers(initializer);
3160
3161  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3162    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3163    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3164  }
3165
3166  DelegatingCtorDecls.push_back(Constructor);
3167
3168  return false;
3169}
3170
3171bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3172                               ArrayRef<CXXCtorInitializer *> Initializers) {
3173  if (Constructor->isDependentContext()) {
3174    // Just store the initializers as written, they will be checked during
3175    // instantiation.
3176    if (!Initializers.empty()) {
3177      Constructor->setNumCtorInitializers(Initializers.size());
3178      CXXCtorInitializer **baseOrMemberInitializers =
3179        new (Context) CXXCtorInitializer*[Initializers.size()];
3180      memcpy(baseOrMemberInitializers, Initializers.data(),
3181             Initializers.size() * sizeof(CXXCtorInitializer*));
3182      Constructor->setCtorInitializers(baseOrMemberInitializers);
3183    }
3184
3185    // Let template instantiation know whether we had errors.
3186    if (AnyErrors)
3187      Constructor->setInvalidDecl();
3188
3189    return false;
3190  }
3191
3192  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3193
3194  // We need to build the initializer AST according to order of construction
3195  // and not what user specified in the Initializers list.
3196  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3197  if (!ClassDecl)
3198    return true;
3199
3200  bool HadError = false;
3201
3202  for (unsigned i = 0; i < Initializers.size(); i++) {
3203    CXXCtorInitializer *Member = Initializers[i];
3204
3205    if (Member->isBaseInitializer())
3206      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3207    else
3208      Info.AllBaseFields[Member->getAnyMember()] = Member;
3209  }
3210
3211  // Keep track of the direct virtual bases.
3212  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3213  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3214       E = ClassDecl->bases_end(); I != E; ++I) {
3215    if (I->isVirtual())
3216      DirectVBases.insert(I);
3217  }
3218
3219  // Push virtual bases before others.
3220  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3221       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3222
3223    if (CXXCtorInitializer *Value
3224        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3225      Info.AllToInit.push_back(Value);
3226    } else if (!AnyErrors) {
3227      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3228      CXXCtorInitializer *CXXBaseInit;
3229      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3230                                       VBase, IsInheritedVirtualBase,
3231                                       CXXBaseInit)) {
3232        HadError = true;
3233        continue;
3234      }
3235
3236      Info.AllToInit.push_back(CXXBaseInit);
3237    }
3238  }
3239
3240  // Non-virtual bases.
3241  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3242       E = ClassDecl->bases_end(); Base != E; ++Base) {
3243    // Virtuals are in the virtual base list and already constructed.
3244    if (Base->isVirtual())
3245      continue;
3246
3247    if (CXXCtorInitializer *Value
3248          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3249      Info.AllToInit.push_back(Value);
3250    } else if (!AnyErrors) {
3251      CXXCtorInitializer *CXXBaseInit;
3252      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3253                                       Base, /*IsInheritedVirtualBase=*/false,
3254                                       CXXBaseInit)) {
3255        HadError = true;
3256        continue;
3257      }
3258
3259      Info.AllToInit.push_back(CXXBaseInit);
3260    }
3261  }
3262
3263  // Fields.
3264  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3265                               MemEnd = ClassDecl->decls_end();
3266       Mem != MemEnd; ++Mem) {
3267    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3268      // C++ [class.bit]p2:
3269      //   A declaration for a bit-field that omits the identifier declares an
3270      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3271      //   initialized.
3272      if (F->isUnnamedBitfield())
3273        continue;
3274
3275      // If we're not generating the implicit copy/move constructor, then we'll
3276      // handle anonymous struct/union fields based on their individual
3277      // indirect fields.
3278      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3279        continue;
3280
3281      if (CollectFieldInitializer(*this, Info, F))
3282        HadError = true;
3283      continue;
3284    }
3285
3286    // Beyond this point, we only consider default initialization.
3287    if (Info.isImplicitCopyOrMove())
3288      continue;
3289
3290    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3291      if (F->getType()->isIncompleteArrayType()) {
3292        assert(ClassDecl->hasFlexibleArrayMember() &&
3293               "Incomplete array type is not valid");
3294        continue;
3295      }
3296
3297      // Initialize each field of an anonymous struct individually.
3298      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3299        HadError = true;
3300
3301      continue;
3302    }
3303  }
3304
3305  unsigned NumInitializers = Info.AllToInit.size();
3306  if (NumInitializers > 0) {
3307    Constructor->setNumCtorInitializers(NumInitializers);
3308    CXXCtorInitializer **baseOrMemberInitializers =
3309      new (Context) CXXCtorInitializer*[NumInitializers];
3310    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3311           NumInitializers * sizeof(CXXCtorInitializer*));
3312    Constructor->setCtorInitializers(baseOrMemberInitializers);
3313
3314    // Constructors implicitly reference the base and member
3315    // destructors.
3316    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3317                                           Constructor->getParent());
3318  }
3319
3320  return HadError;
3321}
3322
3323static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3324  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3325    const RecordDecl *RD = RT->getDecl();
3326    if (RD->isAnonymousStructOrUnion()) {
3327      for (RecordDecl::field_iterator Field = RD->field_begin(),
3328          E = RD->field_end(); Field != E; ++Field)
3329        PopulateKeysForFields(*Field, IdealInits);
3330      return;
3331    }
3332  }
3333  IdealInits.push_back(Field);
3334}
3335
3336static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3337  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3338}
3339
3340static void *GetKeyForMember(ASTContext &Context,
3341                             CXXCtorInitializer *Member) {
3342  if (!Member->isAnyMemberInitializer())
3343    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3344
3345  return Member->getAnyMember();
3346}
3347
3348static void DiagnoseBaseOrMemInitializerOrder(
3349    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3350    ArrayRef<CXXCtorInitializer *> Inits) {
3351  if (Constructor->getDeclContext()->isDependentContext())
3352    return;
3353
3354  // Don't check initializers order unless the warning is enabled at the
3355  // location of at least one initializer.
3356  bool ShouldCheckOrder = false;
3357  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3358    CXXCtorInitializer *Init = Inits[InitIndex];
3359    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3360                                         Init->getSourceLocation())
3361          != DiagnosticsEngine::Ignored) {
3362      ShouldCheckOrder = true;
3363      break;
3364    }
3365  }
3366  if (!ShouldCheckOrder)
3367    return;
3368
3369  // Build the list of bases and members in the order that they'll
3370  // actually be initialized.  The explicit initializers should be in
3371  // this same order but may be missing things.
3372  SmallVector<const void*, 32> IdealInitKeys;
3373
3374  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3375
3376  // 1. Virtual bases.
3377  for (CXXRecordDecl::base_class_const_iterator VBase =
3378       ClassDecl->vbases_begin(),
3379       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3380    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3381
3382  // 2. Non-virtual bases.
3383  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3384       E = ClassDecl->bases_end(); Base != E; ++Base) {
3385    if (Base->isVirtual())
3386      continue;
3387    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3388  }
3389
3390  // 3. Direct fields.
3391  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3392       E = ClassDecl->field_end(); Field != E; ++Field) {
3393    if (Field->isUnnamedBitfield())
3394      continue;
3395
3396    PopulateKeysForFields(*Field, IdealInitKeys);
3397  }
3398
3399  unsigned NumIdealInits = IdealInitKeys.size();
3400  unsigned IdealIndex = 0;
3401
3402  CXXCtorInitializer *PrevInit = 0;
3403  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3404    CXXCtorInitializer *Init = Inits[InitIndex];
3405    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3406
3407    // Scan forward to try to find this initializer in the idealized
3408    // initializers list.
3409    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3410      if (InitKey == IdealInitKeys[IdealIndex])
3411        break;
3412
3413    // If we didn't find this initializer, it must be because we
3414    // scanned past it on a previous iteration.  That can only
3415    // happen if we're out of order;  emit a warning.
3416    if (IdealIndex == NumIdealInits && PrevInit) {
3417      Sema::SemaDiagnosticBuilder D =
3418        SemaRef.Diag(PrevInit->getSourceLocation(),
3419                     diag::warn_initializer_out_of_order);
3420
3421      if (PrevInit->isAnyMemberInitializer())
3422        D << 0 << PrevInit->getAnyMember()->getDeclName();
3423      else
3424        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3425
3426      if (Init->isAnyMemberInitializer())
3427        D << 0 << Init->getAnyMember()->getDeclName();
3428      else
3429        D << 1 << Init->getTypeSourceInfo()->getType();
3430
3431      // Move back to the initializer's location in the ideal list.
3432      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3433        if (InitKey == IdealInitKeys[IdealIndex])
3434          break;
3435
3436      assert(IdealIndex != NumIdealInits &&
3437             "initializer not found in initializer list");
3438    }
3439
3440    PrevInit = Init;
3441  }
3442}
3443
3444namespace {
3445bool CheckRedundantInit(Sema &S,
3446                        CXXCtorInitializer *Init,
3447                        CXXCtorInitializer *&PrevInit) {
3448  if (!PrevInit) {
3449    PrevInit = Init;
3450    return false;
3451  }
3452
3453  if (FieldDecl *Field = Init->getAnyMember())
3454    S.Diag(Init->getSourceLocation(),
3455           diag::err_multiple_mem_initialization)
3456      << Field->getDeclName()
3457      << Init->getSourceRange();
3458  else {
3459    const Type *BaseClass = Init->getBaseClass();
3460    assert(BaseClass && "neither field nor base");
3461    S.Diag(Init->getSourceLocation(),
3462           diag::err_multiple_base_initialization)
3463      << QualType(BaseClass, 0)
3464      << Init->getSourceRange();
3465  }
3466  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3467    << 0 << PrevInit->getSourceRange();
3468
3469  return true;
3470}
3471
3472typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3473typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3474
3475bool CheckRedundantUnionInit(Sema &S,
3476                             CXXCtorInitializer *Init,
3477                             RedundantUnionMap &Unions) {
3478  FieldDecl *Field = Init->getAnyMember();
3479  RecordDecl *Parent = Field->getParent();
3480  NamedDecl *Child = Field;
3481
3482  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3483    if (Parent->isUnion()) {
3484      UnionEntry &En = Unions[Parent];
3485      if (En.first && En.first != Child) {
3486        S.Diag(Init->getSourceLocation(),
3487               diag::err_multiple_mem_union_initialization)
3488          << Field->getDeclName()
3489          << Init->getSourceRange();
3490        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3491          << 0 << En.second->getSourceRange();
3492        return true;
3493      }
3494      if (!En.first) {
3495        En.first = Child;
3496        En.second = Init;
3497      }
3498      if (!Parent->isAnonymousStructOrUnion())
3499        return false;
3500    }
3501
3502    Child = Parent;
3503    Parent = cast<RecordDecl>(Parent->getDeclContext());
3504  }
3505
3506  return false;
3507}
3508}
3509
3510/// ActOnMemInitializers - Handle the member initializers for a constructor.
3511void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3512                                SourceLocation ColonLoc,
3513                                ArrayRef<CXXCtorInitializer*> MemInits,
3514                                bool AnyErrors) {
3515  if (!ConstructorDecl)
3516    return;
3517
3518  AdjustDeclIfTemplate(ConstructorDecl);
3519
3520  CXXConstructorDecl *Constructor
3521    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3522
3523  if (!Constructor) {
3524    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3525    return;
3526  }
3527
3528  // Mapping for the duplicate initializers check.
3529  // For member initializers, this is keyed with a FieldDecl*.
3530  // For base initializers, this is keyed with a Type*.
3531  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3532
3533  // Mapping for the inconsistent anonymous-union initializers check.
3534  RedundantUnionMap MemberUnions;
3535
3536  bool HadError = false;
3537  for (unsigned i = 0; i < MemInits.size(); i++) {
3538    CXXCtorInitializer *Init = MemInits[i];
3539
3540    // Set the source order index.
3541    Init->setSourceOrder(i);
3542
3543    if (Init->isAnyMemberInitializer()) {
3544      FieldDecl *Field = Init->getAnyMember();
3545      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3546          CheckRedundantUnionInit(*this, Init, MemberUnions))
3547        HadError = true;
3548    } else if (Init->isBaseInitializer()) {
3549      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3550      if (CheckRedundantInit(*this, Init, Members[Key]))
3551        HadError = true;
3552    } else {
3553      assert(Init->isDelegatingInitializer());
3554      // This must be the only initializer
3555      if (MemInits.size() != 1) {
3556        Diag(Init->getSourceLocation(),
3557             diag::err_delegating_initializer_alone)
3558          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3559        // We will treat this as being the only initializer.
3560      }
3561      SetDelegatingInitializer(Constructor, MemInits[i]);
3562      // Return immediately as the initializer is set.
3563      return;
3564    }
3565  }
3566
3567  if (HadError)
3568    return;
3569
3570  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3571
3572  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3573}
3574
3575void
3576Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3577                                             CXXRecordDecl *ClassDecl) {
3578  // Ignore dependent contexts. Also ignore unions, since their members never
3579  // have destructors implicitly called.
3580  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3581    return;
3582
3583  // FIXME: all the access-control diagnostics are positioned on the
3584  // field/base declaration.  That's probably good; that said, the
3585  // user might reasonably want to know why the destructor is being
3586  // emitted, and we currently don't say.
3587
3588  // Non-static data members.
3589  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3590       E = ClassDecl->field_end(); I != E; ++I) {
3591    FieldDecl *Field = *I;
3592    if (Field->isInvalidDecl())
3593      continue;
3594
3595    // Don't destroy incomplete or zero-length arrays.
3596    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3597      continue;
3598
3599    QualType FieldType = Context.getBaseElementType(Field->getType());
3600
3601    const RecordType* RT = FieldType->getAs<RecordType>();
3602    if (!RT)
3603      continue;
3604
3605    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3606    if (FieldClassDecl->isInvalidDecl())
3607      continue;
3608    if (FieldClassDecl->hasIrrelevantDestructor())
3609      continue;
3610    // The destructor for an implicit anonymous union member is never invoked.
3611    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3612      continue;
3613
3614    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3615    assert(Dtor && "No dtor found for FieldClassDecl!");
3616    CheckDestructorAccess(Field->getLocation(), Dtor,
3617                          PDiag(diag::err_access_dtor_field)
3618                            << Field->getDeclName()
3619                            << FieldType);
3620
3621    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3622    DiagnoseUseOfDecl(Dtor, Location);
3623  }
3624
3625  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3626
3627  // Bases.
3628  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3629       E = ClassDecl->bases_end(); Base != E; ++Base) {
3630    // Bases are always records in a well-formed non-dependent class.
3631    const RecordType *RT = Base->getType()->getAs<RecordType>();
3632
3633    // Remember direct virtual bases.
3634    if (Base->isVirtual())
3635      DirectVirtualBases.insert(RT);
3636
3637    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3638    // If our base class is invalid, we probably can't get its dtor anyway.
3639    if (BaseClassDecl->isInvalidDecl())
3640      continue;
3641    if (BaseClassDecl->hasIrrelevantDestructor())
3642      continue;
3643
3644    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3645    assert(Dtor && "No dtor found for BaseClassDecl!");
3646
3647    // FIXME: caret should be on the start of the class name
3648    CheckDestructorAccess(Base->getLocStart(), Dtor,
3649                          PDiag(diag::err_access_dtor_base)
3650                            << Base->getType()
3651                            << Base->getSourceRange(),
3652                          Context.getTypeDeclType(ClassDecl));
3653
3654    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3655    DiagnoseUseOfDecl(Dtor, Location);
3656  }
3657
3658  // Virtual bases.
3659  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3660       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3661
3662    // Bases are always records in a well-formed non-dependent class.
3663    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3664
3665    // Ignore direct virtual bases.
3666    if (DirectVirtualBases.count(RT))
3667      continue;
3668
3669    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3670    // If our base class is invalid, we probably can't get its dtor anyway.
3671    if (BaseClassDecl->isInvalidDecl())
3672      continue;
3673    if (BaseClassDecl->hasIrrelevantDestructor())
3674      continue;
3675
3676    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3677    assert(Dtor && "No dtor found for BaseClassDecl!");
3678    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3679                          PDiag(diag::err_access_dtor_vbase)
3680                            << VBase->getType(),
3681                          Context.getTypeDeclType(ClassDecl));
3682
3683    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3684    DiagnoseUseOfDecl(Dtor, Location);
3685  }
3686}
3687
3688void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3689  if (!CDtorDecl)
3690    return;
3691
3692  if (CXXConstructorDecl *Constructor
3693      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3694    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3695}
3696
3697bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3698                                  unsigned DiagID, AbstractDiagSelID SelID) {
3699  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3700    unsigned DiagID;
3701    AbstractDiagSelID SelID;
3702
3703  public:
3704    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3705      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3706
3707    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3708      if (Suppressed) return;
3709      if (SelID == -1)
3710        S.Diag(Loc, DiagID) << T;
3711      else
3712        S.Diag(Loc, DiagID) << SelID << T;
3713    }
3714  } Diagnoser(DiagID, SelID);
3715
3716  return RequireNonAbstractType(Loc, T, Diagnoser);
3717}
3718
3719bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3720                                  TypeDiagnoser &Diagnoser) {
3721  if (!getLangOpts().CPlusPlus)
3722    return false;
3723
3724  if (const ArrayType *AT = Context.getAsArrayType(T))
3725    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3726
3727  if (const PointerType *PT = T->getAs<PointerType>()) {
3728    // Find the innermost pointer type.
3729    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3730      PT = T;
3731
3732    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3733      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3734  }
3735
3736  const RecordType *RT = T->getAs<RecordType>();
3737  if (!RT)
3738    return false;
3739
3740  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3741
3742  // We can't answer whether something is abstract until it has a
3743  // definition.  If it's currently being defined, we'll walk back
3744  // over all the declarations when we have a full definition.
3745  const CXXRecordDecl *Def = RD->getDefinition();
3746  if (!Def || Def->isBeingDefined())
3747    return false;
3748
3749  if (!RD->isAbstract())
3750    return false;
3751
3752  Diagnoser.diagnose(*this, Loc, T);
3753  DiagnoseAbstractType(RD);
3754
3755  return true;
3756}
3757
3758void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3759  // Check if we've already emitted the list of pure virtual functions
3760  // for this class.
3761  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3762    return;
3763
3764  CXXFinalOverriderMap FinalOverriders;
3765  RD->getFinalOverriders(FinalOverriders);
3766
3767  // Keep a set of seen pure methods so we won't diagnose the same method
3768  // more than once.
3769  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3770
3771  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3772                                   MEnd = FinalOverriders.end();
3773       M != MEnd;
3774       ++M) {
3775    for (OverridingMethods::iterator SO = M->second.begin(),
3776                                  SOEnd = M->second.end();
3777         SO != SOEnd; ++SO) {
3778      // C++ [class.abstract]p4:
3779      //   A class is abstract if it contains or inherits at least one
3780      //   pure virtual function for which the final overrider is pure
3781      //   virtual.
3782
3783      //
3784      if (SO->second.size() != 1)
3785        continue;
3786
3787      if (!SO->second.front().Method->isPure())
3788        continue;
3789
3790      if (!SeenPureMethods.insert(SO->second.front().Method))
3791        continue;
3792
3793      Diag(SO->second.front().Method->getLocation(),
3794           diag::note_pure_virtual_function)
3795        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3796    }
3797  }
3798
3799  if (!PureVirtualClassDiagSet)
3800    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3801  PureVirtualClassDiagSet->insert(RD);
3802}
3803
3804namespace {
3805struct AbstractUsageInfo {
3806  Sema &S;
3807  CXXRecordDecl *Record;
3808  CanQualType AbstractType;
3809  bool Invalid;
3810
3811  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3812    : S(S), Record(Record),
3813      AbstractType(S.Context.getCanonicalType(
3814                   S.Context.getTypeDeclType(Record))),
3815      Invalid(false) {}
3816
3817  void DiagnoseAbstractType() {
3818    if (Invalid) return;
3819    S.DiagnoseAbstractType(Record);
3820    Invalid = true;
3821  }
3822
3823  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3824};
3825
3826struct CheckAbstractUsage {
3827  AbstractUsageInfo &Info;
3828  const NamedDecl *Ctx;
3829
3830  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3831    : Info(Info), Ctx(Ctx) {}
3832
3833  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3834    switch (TL.getTypeLocClass()) {
3835#define ABSTRACT_TYPELOC(CLASS, PARENT)
3836#define TYPELOC(CLASS, PARENT) \
3837    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3838#include "clang/AST/TypeLocNodes.def"
3839    }
3840  }
3841
3842  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3843    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3844    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3845      if (!TL.getArg(I))
3846        continue;
3847
3848      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3849      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3850    }
3851  }
3852
3853  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3854    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3855  }
3856
3857  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3858    // Visit the type parameters from a permissive context.
3859    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3860      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3861      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3862        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3863          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3864      // TODO: other template argument types?
3865    }
3866  }
3867
3868  // Visit pointee types from a permissive context.
3869#define CheckPolymorphic(Type) \
3870  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3871    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3872  }
3873  CheckPolymorphic(PointerTypeLoc)
3874  CheckPolymorphic(ReferenceTypeLoc)
3875  CheckPolymorphic(MemberPointerTypeLoc)
3876  CheckPolymorphic(BlockPointerTypeLoc)
3877  CheckPolymorphic(AtomicTypeLoc)
3878
3879  /// Handle all the types we haven't given a more specific
3880  /// implementation for above.
3881  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3882    // Every other kind of type that we haven't called out already
3883    // that has an inner type is either (1) sugar or (2) contains that
3884    // inner type in some way as a subobject.
3885    if (TypeLoc Next = TL.getNextTypeLoc())
3886      return Visit(Next, Sel);
3887
3888    // If there's no inner type and we're in a permissive context,
3889    // don't diagnose.
3890    if (Sel == Sema::AbstractNone) return;
3891
3892    // Check whether the type matches the abstract type.
3893    QualType T = TL.getType();
3894    if (T->isArrayType()) {
3895      Sel = Sema::AbstractArrayType;
3896      T = Info.S.Context.getBaseElementType(T);
3897    }
3898    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3899    if (CT != Info.AbstractType) return;
3900
3901    // It matched; do some magic.
3902    if (Sel == Sema::AbstractArrayType) {
3903      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3904        << T << TL.getSourceRange();
3905    } else {
3906      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3907        << Sel << T << TL.getSourceRange();
3908    }
3909    Info.DiagnoseAbstractType();
3910  }
3911};
3912
3913void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3914                                  Sema::AbstractDiagSelID Sel) {
3915  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3916}
3917
3918}
3919
3920/// Check for invalid uses of an abstract type in a method declaration.
3921static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3922                                    CXXMethodDecl *MD) {
3923  // No need to do the check on definitions, which require that
3924  // the return/param types be complete.
3925  if (MD->doesThisDeclarationHaveABody())
3926    return;
3927
3928  // For safety's sake, just ignore it if we don't have type source
3929  // information.  This should never happen for non-implicit methods,
3930  // but...
3931  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3932    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3933}
3934
3935/// Check for invalid uses of an abstract type within a class definition.
3936static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3937                                    CXXRecordDecl *RD) {
3938  for (CXXRecordDecl::decl_iterator
3939         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3940    Decl *D = *I;
3941    if (D->isImplicit()) continue;
3942
3943    // Methods and method templates.
3944    if (isa<CXXMethodDecl>(D)) {
3945      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3946    } else if (isa<FunctionTemplateDecl>(D)) {
3947      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3948      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3949
3950    // Fields and static variables.
3951    } else if (isa<FieldDecl>(D)) {
3952      FieldDecl *FD = cast<FieldDecl>(D);
3953      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3954        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3955    } else if (isa<VarDecl>(D)) {
3956      VarDecl *VD = cast<VarDecl>(D);
3957      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3958        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3959
3960    // Nested classes and class templates.
3961    } else if (isa<CXXRecordDecl>(D)) {
3962      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3963    } else if (isa<ClassTemplateDecl>(D)) {
3964      CheckAbstractClassUsage(Info,
3965                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3966    }
3967  }
3968}
3969
3970/// \brief Perform semantic checks on a class definition that has been
3971/// completing, introducing implicitly-declared members, checking for
3972/// abstract types, etc.
3973void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3974  if (!Record)
3975    return;
3976
3977  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3978    AbstractUsageInfo Info(*this, Record);
3979    CheckAbstractClassUsage(Info, Record);
3980  }
3981
3982  // If this is not an aggregate type and has no user-declared constructor,
3983  // complain about any non-static data members of reference or const scalar
3984  // type, since they will never get initializers.
3985  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3986      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3987      !Record->isLambda()) {
3988    bool Complained = false;
3989    for (RecordDecl::field_iterator F = Record->field_begin(),
3990                                 FEnd = Record->field_end();
3991         F != FEnd; ++F) {
3992      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3993        continue;
3994
3995      if (F->getType()->isReferenceType() ||
3996          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3997        if (!Complained) {
3998          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3999            << Record->getTagKind() << Record;
4000          Complained = true;
4001        }
4002
4003        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4004          << F->getType()->isReferenceType()
4005          << F->getDeclName();
4006      }
4007    }
4008  }
4009
4010  if (Record->isDynamicClass() && !Record->isDependentType())
4011    DynamicClasses.push_back(Record);
4012
4013  if (Record->getIdentifier()) {
4014    // C++ [class.mem]p13:
4015    //   If T is the name of a class, then each of the following shall have a
4016    //   name different from T:
4017    //     - every member of every anonymous union that is a member of class T.
4018    //
4019    // C++ [class.mem]p14:
4020    //   In addition, if class T has a user-declared constructor (12.1), every
4021    //   non-static data member of class T shall have a name different from T.
4022    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4023    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4024         ++I) {
4025      NamedDecl *D = *I;
4026      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4027          isa<IndirectFieldDecl>(D)) {
4028        Diag(D->getLocation(), diag::err_member_name_of_class)
4029          << D->getDeclName();
4030        break;
4031      }
4032    }
4033  }
4034
4035  // Warn if the class has virtual methods but non-virtual public destructor.
4036  if (Record->isPolymorphic() && !Record->isDependentType()) {
4037    CXXDestructorDecl *dtor = Record->getDestructor();
4038    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4039      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4040           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4041  }
4042
4043  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4044    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4045    DiagnoseAbstractType(Record);
4046  }
4047
4048  if (!Record->isDependentType()) {
4049    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4050                                     MEnd = Record->method_end();
4051         M != MEnd; ++M) {
4052      // See if a method overloads virtual methods in a base
4053      // class without overriding any.
4054      if (!M->isStatic())
4055        DiagnoseHiddenVirtualMethods(Record, *M);
4056
4057      // Check whether the explicitly-defaulted special members are valid.
4058      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4059        CheckExplicitlyDefaultedSpecialMember(*M);
4060
4061      // For an explicitly defaulted or deleted special member, we defer
4062      // determining triviality until the class is complete. That time is now!
4063      if (!M->isImplicit() && !M->isUserProvided()) {
4064        CXXSpecialMember CSM = getSpecialMember(*M);
4065        if (CSM != CXXInvalid) {
4066          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4067
4068          // Inform the class that we've finished declaring this member.
4069          Record->finishedDefaultedOrDeletedMember(*M);
4070        }
4071      }
4072    }
4073  }
4074
4075  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4076  // function that is not a constructor declares that member function to be
4077  // const. [...] The class of which that function is a member shall be
4078  // a literal type.
4079  //
4080  // If the class has virtual bases, any constexpr members will already have
4081  // been diagnosed by the checks performed on the member declaration, so
4082  // suppress this (less useful) diagnostic.
4083  //
4084  // We delay this until we know whether an explicitly-defaulted (or deleted)
4085  // destructor for the class is trivial.
4086  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4087      !Record->isLiteral() && !Record->getNumVBases()) {
4088    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4089                                     MEnd = Record->method_end();
4090         M != MEnd; ++M) {
4091      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4092        switch (Record->getTemplateSpecializationKind()) {
4093        case TSK_ImplicitInstantiation:
4094        case TSK_ExplicitInstantiationDeclaration:
4095        case TSK_ExplicitInstantiationDefinition:
4096          // If a template instantiates to a non-literal type, but its members
4097          // instantiate to constexpr functions, the template is technically
4098          // ill-formed, but we allow it for sanity.
4099          continue;
4100
4101        case TSK_Undeclared:
4102        case TSK_ExplicitSpecialization:
4103          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4104                             diag::err_constexpr_method_non_literal);
4105          break;
4106        }
4107
4108        // Only produce one error per class.
4109        break;
4110      }
4111    }
4112  }
4113
4114  // Declare inheriting constructors. We do this eagerly here because:
4115  // - The standard requires an eager diagnostic for conflicting inheriting
4116  //   constructors from different classes.
4117  // - The lazy declaration of the other implicit constructors is so as to not
4118  //   waste space and performance on classes that are not meant to be
4119  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4120  //   have inheriting constructors.
4121  DeclareInheritingConstructors(Record);
4122}
4123
4124/// Is the special member function which would be selected to perform the
4125/// specified operation on the specified class type a constexpr constructor?
4126static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4127                                     Sema::CXXSpecialMember CSM,
4128                                     bool ConstArg) {
4129  Sema::SpecialMemberOverloadResult *SMOR =
4130      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4131                            false, false, false, false);
4132  if (!SMOR || !SMOR->getMethod())
4133    // A constructor we wouldn't select can't be "involved in initializing"
4134    // anything.
4135    return true;
4136  return SMOR->getMethod()->isConstexpr();
4137}
4138
4139/// Determine whether the specified special member function would be constexpr
4140/// if it were implicitly defined.
4141static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4142                                              Sema::CXXSpecialMember CSM,
4143                                              bool ConstArg) {
4144  if (!S.getLangOpts().CPlusPlus11)
4145    return false;
4146
4147  // C++11 [dcl.constexpr]p4:
4148  // In the definition of a constexpr constructor [...]
4149  switch (CSM) {
4150  case Sema::CXXDefaultConstructor:
4151    // Since default constructor lookup is essentially trivial (and cannot
4152    // involve, for instance, template instantiation), we compute whether a
4153    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4154    //
4155    // This is important for performance; we need to know whether the default
4156    // constructor is constexpr to determine whether the type is a literal type.
4157    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4158
4159  case Sema::CXXCopyConstructor:
4160  case Sema::CXXMoveConstructor:
4161    // For copy or move constructors, we need to perform overload resolution.
4162    break;
4163
4164  case Sema::CXXCopyAssignment:
4165  case Sema::CXXMoveAssignment:
4166  case Sema::CXXDestructor:
4167  case Sema::CXXInvalid:
4168    return false;
4169  }
4170
4171  //   -- if the class is a non-empty union, or for each non-empty anonymous
4172  //      union member of a non-union class, exactly one non-static data member
4173  //      shall be initialized; [DR1359]
4174  //
4175  // If we squint, this is guaranteed, since exactly one non-static data member
4176  // will be initialized (if the constructor isn't deleted), we just don't know
4177  // which one.
4178  if (ClassDecl->isUnion())
4179    return true;
4180
4181  //   -- the class shall not have any virtual base classes;
4182  if (ClassDecl->getNumVBases())
4183    return false;
4184
4185  //   -- every constructor involved in initializing [...] base class
4186  //      sub-objects shall be a constexpr constructor;
4187  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4188                                       BEnd = ClassDecl->bases_end();
4189       B != BEnd; ++B) {
4190    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4191    if (!BaseType) continue;
4192
4193    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4194    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4195      return false;
4196  }
4197
4198  //   -- every constructor involved in initializing non-static data members
4199  //      [...] shall be a constexpr constructor;
4200  //   -- every non-static data member and base class sub-object shall be
4201  //      initialized
4202  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4203                               FEnd = ClassDecl->field_end();
4204       F != FEnd; ++F) {
4205    if (F->isInvalidDecl())
4206      continue;
4207    if (const RecordType *RecordTy =
4208            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4209      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4210      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4211        return false;
4212    }
4213  }
4214
4215  // All OK, it's constexpr!
4216  return true;
4217}
4218
4219static Sema::ImplicitExceptionSpecification
4220computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4221  switch (S.getSpecialMember(MD)) {
4222  case Sema::CXXDefaultConstructor:
4223    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4224  case Sema::CXXCopyConstructor:
4225    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4226  case Sema::CXXCopyAssignment:
4227    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4228  case Sema::CXXMoveConstructor:
4229    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4230  case Sema::CXXMoveAssignment:
4231    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4232  case Sema::CXXDestructor:
4233    return S.ComputeDefaultedDtorExceptionSpec(MD);
4234  case Sema::CXXInvalid:
4235    break;
4236  }
4237  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4238         "only special members have implicit exception specs");
4239  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4240}
4241
4242static void
4243updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4244                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4245  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4246  ExceptSpec.getEPI(EPI);
4247  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4248                                        FPT->getArgTypes(), EPI));
4249}
4250
4251void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4252  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4253  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4254    return;
4255
4256  // Evaluate the exception specification.
4257  ImplicitExceptionSpecification ExceptSpec =
4258      computeImplicitExceptionSpec(*this, Loc, MD);
4259
4260  // Update the type of the special member to use it.
4261  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4262
4263  // A user-provided destructor can be defined outside the class. When that
4264  // happens, be sure to update the exception specification on both
4265  // declarations.
4266  const FunctionProtoType *CanonicalFPT =
4267    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4268  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4269    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4270                        CanonicalFPT, ExceptSpec);
4271}
4272
4273void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4274  CXXRecordDecl *RD = MD->getParent();
4275  CXXSpecialMember CSM = getSpecialMember(MD);
4276
4277  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4278         "not an explicitly-defaulted special member");
4279
4280  // Whether this was the first-declared instance of the constructor.
4281  // This affects whether we implicitly add an exception spec and constexpr.
4282  bool First = MD == MD->getCanonicalDecl();
4283
4284  bool HadError = false;
4285
4286  // C++11 [dcl.fct.def.default]p1:
4287  //   A function that is explicitly defaulted shall
4288  //     -- be a special member function (checked elsewhere),
4289  //     -- have the same type (except for ref-qualifiers, and except that a
4290  //        copy operation can take a non-const reference) as an implicit
4291  //        declaration, and
4292  //     -- not have default arguments.
4293  unsigned ExpectedParams = 1;
4294  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4295    ExpectedParams = 0;
4296  if (MD->getNumParams() != ExpectedParams) {
4297    // This also checks for default arguments: a copy or move constructor with a
4298    // default argument is classified as a default constructor, and assignment
4299    // operations and destructors can't have default arguments.
4300    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4301      << CSM << MD->getSourceRange();
4302    HadError = true;
4303  } else if (MD->isVariadic()) {
4304    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4305      << CSM << MD->getSourceRange();
4306    HadError = true;
4307  }
4308
4309  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4310
4311  bool CanHaveConstParam = false;
4312  if (CSM == CXXCopyConstructor)
4313    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4314  else if (CSM == CXXCopyAssignment)
4315    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4316
4317  QualType ReturnType = Context.VoidTy;
4318  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4319    // Check for return type matching.
4320    ReturnType = Type->getResultType();
4321    QualType ExpectedReturnType =
4322        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4323    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4324      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4325        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4326      HadError = true;
4327    }
4328
4329    // A defaulted special member cannot have cv-qualifiers.
4330    if (Type->getTypeQuals()) {
4331      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4332        << (CSM == CXXMoveAssignment);
4333      HadError = true;
4334    }
4335  }
4336
4337  // Check for parameter type matching.
4338  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4339  bool HasConstParam = false;
4340  if (ExpectedParams && ArgType->isReferenceType()) {
4341    // Argument must be reference to possibly-const T.
4342    QualType ReferentType = ArgType->getPointeeType();
4343    HasConstParam = ReferentType.isConstQualified();
4344
4345    if (ReferentType.isVolatileQualified()) {
4346      Diag(MD->getLocation(),
4347           diag::err_defaulted_special_member_volatile_param) << CSM;
4348      HadError = true;
4349    }
4350
4351    if (HasConstParam && !CanHaveConstParam) {
4352      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4353        Diag(MD->getLocation(),
4354             diag::err_defaulted_special_member_copy_const_param)
4355          << (CSM == CXXCopyAssignment);
4356        // FIXME: Explain why this special member can't be const.
4357      } else {
4358        Diag(MD->getLocation(),
4359             diag::err_defaulted_special_member_move_const_param)
4360          << (CSM == CXXMoveAssignment);
4361      }
4362      HadError = true;
4363    }
4364  } else if (ExpectedParams) {
4365    // A copy assignment operator can take its argument by value, but a
4366    // defaulted one cannot.
4367    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4368    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4369    HadError = true;
4370  }
4371
4372  // C++11 [dcl.fct.def.default]p2:
4373  //   An explicitly-defaulted function may be declared constexpr only if it
4374  //   would have been implicitly declared as constexpr,
4375  // Do not apply this rule to members of class templates, since core issue 1358
4376  // makes such functions always instantiate to constexpr functions. For
4377  // non-constructors, this is checked elsewhere.
4378  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4379                                                     HasConstParam);
4380  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4381      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4382    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4383    // FIXME: Explain why the constructor can't be constexpr.
4384    HadError = true;
4385  }
4386
4387  //   and may have an explicit exception-specification only if it is compatible
4388  //   with the exception-specification on the implicit declaration.
4389  if (Type->hasExceptionSpec()) {
4390    // Delay the check if this is the first declaration of the special member,
4391    // since we may not have parsed some necessary in-class initializers yet.
4392    if (First) {
4393      // If the exception specification needs to be instantiated, do so now,
4394      // before we clobber it with an EST_Unevaluated specification below.
4395      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4396        InstantiateExceptionSpec(MD->getLocStart(), MD);
4397        Type = MD->getType()->getAs<FunctionProtoType>();
4398      }
4399      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4400    } else
4401      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4402  }
4403
4404  //   If a function is explicitly defaulted on its first declaration,
4405  if (First) {
4406    //  -- it is implicitly considered to be constexpr if the implicit
4407    //     definition would be,
4408    MD->setConstexpr(Constexpr);
4409
4410    //  -- it is implicitly considered to have the same exception-specification
4411    //     as if it had been implicitly declared,
4412    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4413    EPI.ExceptionSpecType = EST_Unevaluated;
4414    EPI.ExceptionSpecDecl = MD;
4415    MD->setType(Context.getFunctionType(ReturnType,
4416                                        ArrayRef<QualType>(&ArgType,
4417                                                           ExpectedParams),
4418                                        EPI));
4419  }
4420
4421  if (ShouldDeleteSpecialMember(MD, CSM)) {
4422    if (First) {
4423      SetDeclDeleted(MD, MD->getLocation());
4424    } else {
4425      // C++11 [dcl.fct.def.default]p4:
4426      //   [For a] user-provided explicitly-defaulted function [...] if such a
4427      //   function is implicitly defined as deleted, the program is ill-formed.
4428      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4429      HadError = true;
4430    }
4431  }
4432
4433  if (HadError)
4434    MD->setInvalidDecl();
4435}
4436
4437/// Check whether the exception specification provided for an
4438/// explicitly-defaulted special member matches the exception specification
4439/// that would have been generated for an implicit special member, per
4440/// C++11 [dcl.fct.def.default]p2.
4441void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4442    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4443  // Compute the implicit exception specification.
4444  FunctionProtoType::ExtProtoInfo EPI;
4445  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4446  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4447    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4448
4449  // Ensure that it matches.
4450  CheckEquivalentExceptionSpec(
4451    PDiag(diag::err_incorrect_defaulted_exception_spec)
4452      << getSpecialMember(MD), PDiag(),
4453    ImplicitType, SourceLocation(),
4454    SpecifiedType, MD->getLocation());
4455}
4456
4457void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4458  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4459       I != N; ++I)
4460    CheckExplicitlyDefaultedMemberExceptionSpec(
4461      DelayedDefaultedMemberExceptionSpecs[I].first,
4462      DelayedDefaultedMemberExceptionSpecs[I].second);
4463
4464  DelayedDefaultedMemberExceptionSpecs.clear();
4465}
4466
4467namespace {
4468struct SpecialMemberDeletionInfo {
4469  Sema &S;
4470  CXXMethodDecl *MD;
4471  Sema::CXXSpecialMember CSM;
4472  bool Diagnose;
4473
4474  // Properties of the special member, computed for convenience.
4475  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4476  SourceLocation Loc;
4477
4478  bool AllFieldsAreConst;
4479
4480  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4481                            Sema::CXXSpecialMember CSM, bool Diagnose)
4482    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4483      IsConstructor(false), IsAssignment(false), IsMove(false),
4484      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4485      AllFieldsAreConst(true) {
4486    switch (CSM) {
4487      case Sema::CXXDefaultConstructor:
4488      case Sema::CXXCopyConstructor:
4489        IsConstructor = true;
4490        break;
4491      case Sema::CXXMoveConstructor:
4492        IsConstructor = true;
4493        IsMove = true;
4494        break;
4495      case Sema::CXXCopyAssignment:
4496        IsAssignment = true;
4497        break;
4498      case Sema::CXXMoveAssignment:
4499        IsAssignment = true;
4500        IsMove = true;
4501        break;
4502      case Sema::CXXDestructor:
4503        break;
4504      case Sema::CXXInvalid:
4505        llvm_unreachable("invalid special member kind");
4506    }
4507
4508    if (MD->getNumParams()) {
4509      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4510      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4511    }
4512  }
4513
4514  bool inUnion() const { return MD->getParent()->isUnion(); }
4515
4516  /// Look up the corresponding special member in the given class.
4517  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4518                                              unsigned Quals) {
4519    unsigned TQ = MD->getTypeQualifiers();
4520    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4521    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4522      Quals = 0;
4523    return S.LookupSpecialMember(Class, CSM,
4524                                 ConstArg || (Quals & Qualifiers::Const),
4525                                 VolatileArg || (Quals & Qualifiers::Volatile),
4526                                 MD->getRefQualifier() == RQ_RValue,
4527                                 TQ & Qualifiers::Const,
4528                                 TQ & Qualifiers::Volatile);
4529  }
4530
4531  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4532
4533  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4534  bool shouldDeleteForField(FieldDecl *FD);
4535  bool shouldDeleteForAllConstMembers();
4536
4537  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4538                                     unsigned Quals);
4539  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4540                                    Sema::SpecialMemberOverloadResult *SMOR,
4541                                    bool IsDtorCallInCtor);
4542
4543  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4544};
4545}
4546
4547/// Is the given special member inaccessible when used on the given
4548/// sub-object.
4549bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4550                                             CXXMethodDecl *target) {
4551  /// If we're operating on a base class, the object type is the
4552  /// type of this special member.
4553  QualType objectTy;
4554  AccessSpecifier access = target->getAccess();
4555  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4556    objectTy = S.Context.getTypeDeclType(MD->getParent());
4557    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4558
4559  // If we're operating on a field, the object type is the type of the field.
4560  } else {
4561    objectTy = S.Context.getTypeDeclType(target->getParent());
4562  }
4563
4564  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4565}
4566
4567/// Check whether we should delete a special member due to the implicit
4568/// definition containing a call to a special member of a subobject.
4569bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4570    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4571    bool IsDtorCallInCtor) {
4572  CXXMethodDecl *Decl = SMOR->getMethod();
4573  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4574
4575  int DiagKind = -1;
4576
4577  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4578    DiagKind = !Decl ? 0 : 1;
4579  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4580    DiagKind = 2;
4581  else if (!isAccessible(Subobj, Decl))
4582    DiagKind = 3;
4583  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4584           !Decl->isTrivial()) {
4585    // A member of a union must have a trivial corresponding special member.
4586    // As a weird special case, a destructor call from a union's constructor
4587    // must be accessible and non-deleted, but need not be trivial. Such a
4588    // destructor is never actually called, but is semantically checked as
4589    // if it were.
4590    DiagKind = 4;
4591  }
4592
4593  if (DiagKind == -1)
4594    return false;
4595
4596  if (Diagnose) {
4597    if (Field) {
4598      S.Diag(Field->getLocation(),
4599             diag::note_deleted_special_member_class_subobject)
4600        << CSM << MD->getParent() << /*IsField*/true
4601        << Field << DiagKind << IsDtorCallInCtor;
4602    } else {
4603      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4604      S.Diag(Base->getLocStart(),
4605             diag::note_deleted_special_member_class_subobject)
4606        << CSM << MD->getParent() << /*IsField*/false
4607        << Base->getType() << DiagKind << IsDtorCallInCtor;
4608    }
4609
4610    if (DiagKind == 1)
4611      S.NoteDeletedFunction(Decl);
4612    // FIXME: Explain inaccessibility if DiagKind == 3.
4613  }
4614
4615  return true;
4616}
4617
4618/// Check whether we should delete a special member function due to having a
4619/// direct or virtual base class or non-static data member of class type M.
4620bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4621    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4622  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4623
4624  // C++11 [class.ctor]p5:
4625  // -- any direct or virtual base class, or non-static data member with no
4626  //    brace-or-equal-initializer, has class type M (or array thereof) and
4627  //    either M has no default constructor or overload resolution as applied
4628  //    to M's default constructor results in an ambiguity or in a function
4629  //    that is deleted or inaccessible
4630  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4631  // -- a direct or virtual base class B that cannot be copied/moved because
4632  //    overload resolution, as applied to B's corresponding special member,
4633  //    results in an ambiguity or a function that is deleted or inaccessible
4634  //    from the defaulted special member
4635  // C++11 [class.dtor]p5:
4636  // -- any direct or virtual base class [...] has a type with a destructor
4637  //    that is deleted or inaccessible
4638  if (!(CSM == Sema::CXXDefaultConstructor &&
4639        Field && Field->hasInClassInitializer()) &&
4640      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4641    return true;
4642
4643  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4644  // -- any direct or virtual base class or non-static data member has a
4645  //    type with a destructor that is deleted or inaccessible
4646  if (IsConstructor) {
4647    Sema::SpecialMemberOverloadResult *SMOR =
4648        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4649                              false, false, false, false, false);
4650    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4651      return true;
4652  }
4653
4654  return false;
4655}
4656
4657/// Check whether we should delete a special member function due to the class
4658/// having a particular direct or virtual base class.
4659bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4660  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4661  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4662}
4663
4664/// Check whether we should delete a special member function due to the class
4665/// having a particular non-static data member.
4666bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4667  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4668  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4669
4670  if (CSM == Sema::CXXDefaultConstructor) {
4671    // For a default constructor, all references must be initialized in-class
4672    // and, if a union, it must have a non-const member.
4673    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4674      if (Diagnose)
4675        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4676          << MD->getParent() << FD << FieldType << /*Reference*/0;
4677      return true;
4678    }
4679    // C++11 [class.ctor]p5: any non-variant non-static data member of
4680    // const-qualified type (or array thereof) with no
4681    // brace-or-equal-initializer does not have a user-provided default
4682    // constructor.
4683    if (!inUnion() && FieldType.isConstQualified() &&
4684        !FD->hasInClassInitializer() &&
4685        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4686      if (Diagnose)
4687        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4688          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4689      return true;
4690    }
4691
4692    if (inUnion() && !FieldType.isConstQualified())
4693      AllFieldsAreConst = false;
4694  } else if (CSM == Sema::CXXCopyConstructor) {
4695    // For a copy constructor, data members must not be of rvalue reference
4696    // type.
4697    if (FieldType->isRValueReferenceType()) {
4698      if (Diagnose)
4699        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4700          << MD->getParent() << FD << FieldType;
4701      return true;
4702    }
4703  } else if (IsAssignment) {
4704    // For an assignment operator, data members must not be of reference type.
4705    if (FieldType->isReferenceType()) {
4706      if (Diagnose)
4707        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4708          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4709      return true;
4710    }
4711    if (!FieldRecord && FieldType.isConstQualified()) {
4712      // C++11 [class.copy]p23:
4713      // -- a non-static data member of const non-class type (or array thereof)
4714      if (Diagnose)
4715        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4716          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4717      return true;
4718    }
4719  }
4720
4721  if (FieldRecord) {
4722    // Some additional restrictions exist on the variant members.
4723    if (!inUnion() && FieldRecord->isUnion() &&
4724        FieldRecord->isAnonymousStructOrUnion()) {
4725      bool AllVariantFieldsAreConst = true;
4726
4727      // FIXME: Handle anonymous unions declared within anonymous unions.
4728      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4729                                         UE = FieldRecord->field_end();
4730           UI != UE; ++UI) {
4731        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4732
4733        if (!UnionFieldType.isConstQualified())
4734          AllVariantFieldsAreConst = false;
4735
4736        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4737        if (UnionFieldRecord &&
4738            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4739                                          UnionFieldType.getCVRQualifiers()))
4740          return true;
4741      }
4742
4743      // At least one member in each anonymous union must be non-const
4744      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4745          FieldRecord->field_begin() != FieldRecord->field_end()) {
4746        if (Diagnose)
4747          S.Diag(FieldRecord->getLocation(),
4748                 diag::note_deleted_default_ctor_all_const)
4749            << MD->getParent() << /*anonymous union*/1;
4750        return true;
4751      }
4752
4753      // Don't check the implicit member of the anonymous union type.
4754      // This is technically non-conformant, but sanity demands it.
4755      return false;
4756    }
4757
4758    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4759                                      FieldType.getCVRQualifiers()))
4760      return true;
4761  }
4762
4763  return false;
4764}
4765
4766/// C++11 [class.ctor] p5:
4767///   A defaulted default constructor for a class X is defined as deleted if
4768/// X is a union and all of its variant members are of const-qualified type.
4769bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4770  // This is a silly definition, because it gives an empty union a deleted
4771  // default constructor. Don't do that.
4772  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4773      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4774    if (Diagnose)
4775      S.Diag(MD->getParent()->getLocation(),
4776             diag::note_deleted_default_ctor_all_const)
4777        << MD->getParent() << /*not anonymous union*/0;
4778    return true;
4779  }
4780  return false;
4781}
4782
4783/// Determine whether a defaulted special member function should be defined as
4784/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4785/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4786bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4787                                     bool Diagnose) {
4788  if (MD->isInvalidDecl())
4789    return false;
4790  CXXRecordDecl *RD = MD->getParent();
4791  assert(!RD->isDependentType() && "do deletion after instantiation");
4792  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4793    return false;
4794
4795  // C++11 [expr.lambda.prim]p19:
4796  //   The closure type associated with a lambda-expression has a
4797  //   deleted (8.4.3) default constructor and a deleted copy
4798  //   assignment operator.
4799  if (RD->isLambda() &&
4800      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4801    if (Diagnose)
4802      Diag(RD->getLocation(), diag::note_lambda_decl);
4803    return true;
4804  }
4805
4806  // For an anonymous struct or union, the copy and assignment special members
4807  // will never be used, so skip the check. For an anonymous union declared at
4808  // namespace scope, the constructor and destructor are used.
4809  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4810      RD->isAnonymousStructOrUnion())
4811    return false;
4812
4813  // C++11 [class.copy]p7, p18:
4814  //   If the class definition declares a move constructor or move assignment
4815  //   operator, an implicitly declared copy constructor or copy assignment
4816  //   operator is defined as deleted.
4817  if (MD->isImplicit() &&
4818      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4819    CXXMethodDecl *UserDeclaredMove = 0;
4820
4821    // In Microsoft mode, a user-declared move only causes the deletion of the
4822    // corresponding copy operation, not both copy operations.
4823    if (RD->hasUserDeclaredMoveConstructor() &&
4824        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4825      if (!Diagnose) return true;
4826
4827      // Find any user-declared move constructor.
4828      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4829                                        E = RD->ctor_end(); I != E; ++I) {
4830        if (I->isMoveConstructor()) {
4831          UserDeclaredMove = *I;
4832          break;
4833        }
4834      }
4835      assert(UserDeclaredMove);
4836    } else if (RD->hasUserDeclaredMoveAssignment() &&
4837               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4838      if (!Diagnose) return true;
4839
4840      // Find any user-declared move assignment operator.
4841      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4842                                          E = RD->method_end(); I != E; ++I) {
4843        if (I->isMoveAssignmentOperator()) {
4844          UserDeclaredMove = *I;
4845          break;
4846        }
4847      }
4848      assert(UserDeclaredMove);
4849    }
4850
4851    if (UserDeclaredMove) {
4852      Diag(UserDeclaredMove->getLocation(),
4853           diag::note_deleted_copy_user_declared_move)
4854        << (CSM == CXXCopyAssignment) << RD
4855        << UserDeclaredMove->isMoveAssignmentOperator();
4856      return true;
4857    }
4858  }
4859
4860  // Do access control from the special member function
4861  ContextRAII MethodContext(*this, MD);
4862
4863  // C++11 [class.dtor]p5:
4864  // -- for a virtual destructor, lookup of the non-array deallocation function
4865  //    results in an ambiguity or in a function that is deleted or inaccessible
4866  if (CSM == CXXDestructor && MD->isVirtual()) {
4867    FunctionDecl *OperatorDelete = 0;
4868    DeclarationName Name =
4869      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4870    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4871                                 OperatorDelete, false)) {
4872      if (Diagnose)
4873        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4874      return true;
4875    }
4876  }
4877
4878  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4879
4880  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4881                                          BE = RD->bases_end(); BI != BE; ++BI)
4882    if (!BI->isVirtual() &&
4883        SMI.shouldDeleteForBase(BI))
4884      return true;
4885
4886  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4887                                          BE = RD->vbases_end(); BI != BE; ++BI)
4888    if (SMI.shouldDeleteForBase(BI))
4889      return true;
4890
4891  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4892                                     FE = RD->field_end(); FI != FE; ++FI)
4893    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4894        SMI.shouldDeleteForField(*FI))
4895      return true;
4896
4897  if (SMI.shouldDeleteForAllConstMembers())
4898    return true;
4899
4900  return false;
4901}
4902
4903/// Perform lookup for a special member of the specified kind, and determine
4904/// whether it is trivial. If the triviality can be determined without the
4905/// lookup, skip it. This is intended for use when determining whether a
4906/// special member of a containing object is trivial, and thus does not ever
4907/// perform overload resolution for default constructors.
4908///
4909/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4910/// member that was most likely to be intended to be trivial, if any.
4911static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4912                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4913                                     CXXMethodDecl **Selected) {
4914  if (Selected)
4915    *Selected = 0;
4916
4917  switch (CSM) {
4918  case Sema::CXXInvalid:
4919    llvm_unreachable("not a special member");
4920
4921  case Sema::CXXDefaultConstructor:
4922    // C++11 [class.ctor]p5:
4923    //   A default constructor is trivial if:
4924    //    - all the [direct subobjects] have trivial default constructors
4925    //
4926    // Note, no overload resolution is performed in this case.
4927    if (RD->hasTrivialDefaultConstructor())
4928      return true;
4929
4930    if (Selected) {
4931      // If there's a default constructor which could have been trivial, dig it
4932      // out. Otherwise, if there's any user-provided default constructor, point
4933      // to that as an example of why there's not a trivial one.
4934      CXXConstructorDecl *DefCtor = 0;
4935      if (RD->needsImplicitDefaultConstructor())
4936        S.DeclareImplicitDefaultConstructor(RD);
4937      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4938                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4939        if (!CI->isDefaultConstructor())
4940          continue;
4941        DefCtor = *CI;
4942        if (!DefCtor->isUserProvided())
4943          break;
4944      }
4945
4946      *Selected = DefCtor;
4947    }
4948
4949    return false;
4950
4951  case Sema::CXXDestructor:
4952    // C++11 [class.dtor]p5:
4953    //   A destructor is trivial if:
4954    //    - all the direct [subobjects] have trivial destructors
4955    if (RD->hasTrivialDestructor())
4956      return true;
4957
4958    if (Selected) {
4959      if (RD->needsImplicitDestructor())
4960        S.DeclareImplicitDestructor(RD);
4961      *Selected = RD->getDestructor();
4962    }
4963
4964    return false;
4965
4966  case Sema::CXXCopyConstructor:
4967    // C++11 [class.copy]p12:
4968    //   A copy constructor is trivial if:
4969    //    - the constructor selected to copy each direct [subobject] is trivial
4970    if (RD->hasTrivialCopyConstructor()) {
4971      if (Quals == Qualifiers::Const)
4972        // We must either select the trivial copy constructor or reach an
4973        // ambiguity; no need to actually perform overload resolution.
4974        return true;
4975    } else if (!Selected) {
4976      return false;
4977    }
4978    // In C++98, we are not supposed to perform overload resolution here, but we
4979    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4980    // cases like B as having a non-trivial copy constructor:
4981    //   struct A { template<typename T> A(T&); };
4982    //   struct B { mutable A a; };
4983    goto NeedOverloadResolution;
4984
4985  case Sema::CXXCopyAssignment:
4986    // C++11 [class.copy]p25:
4987    //   A copy assignment operator is trivial if:
4988    //    - the assignment operator selected to copy each direct [subobject] is
4989    //      trivial
4990    if (RD->hasTrivialCopyAssignment()) {
4991      if (Quals == Qualifiers::Const)
4992        return true;
4993    } else if (!Selected) {
4994      return false;
4995    }
4996    // In C++98, we are not supposed to perform overload resolution here, but we
4997    // treat that as a language defect.
4998    goto NeedOverloadResolution;
4999
5000  case Sema::CXXMoveConstructor:
5001  case Sema::CXXMoveAssignment:
5002  NeedOverloadResolution:
5003    Sema::SpecialMemberOverloadResult *SMOR =
5004      S.LookupSpecialMember(RD, CSM,
5005                            Quals & Qualifiers::Const,
5006                            Quals & Qualifiers::Volatile,
5007                            /*RValueThis*/false, /*ConstThis*/false,
5008                            /*VolatileThis*/false);
5009
5010    // The standard doesn't describe how to behave if the lookup is ambiguous.
5011    // We treat it as not making the member non-trivial, just like the standard
5012    // mandates for the default constructor. This should rarely matter, because
5013    // the member will also be deleted.
5014    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5015      return true;
5016
5017    if (!SMOR->getMethod()) {
5018      assert(SMOR->getKind() ==
5019             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5020      return false;
5021    }
5022
5023    // We deliberately don't check if we found a deleted special member. We're
5024    // not supposed to!
5025    if (Selected)
5026      *Selected = SMOR->getMethod();
5027    return SMOR->getMethod()->isTrivial();
5028  }
5029
5030  llvm_unreachable("unknown special method kind");
5031}
5032
5033static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5034  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5035       CI != CE; ++CI)
5036    if (!CI->isImplicit())
5037      return *CI;
5038
5039  // Look for constructor templates.
5040  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5041  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5042    if (CXXConstructorDecl *CD =
5043          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5044      return CD;
5045  }
5046
5047  return 0;
5048}
5049
5050/// The kind of subobject we are checking for triviality. The values of this
5051/// enumeration are used in diagnostics.
5052enum TrivialSubobjectKind {
5053  /// The subobject is a base class.
5054  TSK_BaseClass,
5055  /// The subobject is a non-static data member.
5056  TSK_Field,
5057  /// The object is actually the complete object.
5058  TSK_CompleteObject
5059};
5060
5061/// Check whether the special member selected for a given type would be trivial.
5062static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5063                                      QualType SubType,
5064                                      Sema::CXXSpecialMember CSM,
5065                                      TrivialSubobjectKind Kind,
5066                                      bool Diagnose) {
5067  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5068  if (!SubRD)
5069    return true;
5070
5071  CXXMethodDecl *Selected;
5072  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5073                               Diagnose ? &Selected : 0))
5074    return true;
5075
5076  if (Diagnose) {
5077    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5078      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5079        << Kind << SubType.getUnqualifiedType();
5080      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5081        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5082    } else if (!Selected)
5083      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5084        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5085    else if (Selected->isUserProvided()) {
5086      if (Kind == TSK_CompleteObject)
5087        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5088          << Kind << SubType.getUnqualifiedType() << CSM;
5089      else {
5090        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5091          << Kind << SubType.getUnqualifiedType() << CSM;
5092        S.Diag(Selected->getLocation(), diag::note_declared_at);
5093      }
5094    } else {
5095      if (Kind != TSK_CompleteObject)
5096        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5097          << Kind << SubType.getUnqualifiedType() << CSM;
5098
5099      // Explain why the defaulted or deleted special member isn't trivial.
5100      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5101    }
5102  }
5103
5104  return false;
5105}
5106
5107/// Check whether the members of a class type allow a special member to be
5108/// trivial.
5109static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5110                                     Sema::CXXSpecialMember CSM,
5111                                     bool ConstArg, bool Diagnose) {
5112  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5113                                     FE = RD->field_end(); FI != FE; ++FI) {
5114    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5115      continue;
5116
5117    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5118
5119    // Pretend anonymous struct or union members are members of this class.
5120    if (FI->isAnonymousStructOrUnion()) {
5121      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5122                                    CSM, ConstArg, Diagnose))
5123        return false;
5124      continue;
5125    }
5126
5127    // C++11 [class.ctor]p5:
5128    //   A default constructor is trivial if [...]
5129    //    -- no non-static data member of its class has a
5130    //       brace-or-equal-initializer
5131    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5132      if (Diagnose)
5133        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5134      return false;
5135    }
5136
5137    // Objective C ARC 4.3.5:
5138    //   [...] nontrivally ownership-qualified types are [...] not trivially
5139    //   default constructible, copy constructible, move constructible, copy
5140    //   assignable, move assignable, or destructible [...]
5141    if (S.getLangOpts().ObjCAutoRefCount &&
5142        FieldType.hasNonTrivialObjCLifetime()) {
5143      if (Diagnose)
5144        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5145          << RD << FieldType.getObjCLifetime();
5146      return false;
5147    }
5148
5149    if (ConstArg && !FI->isMutable())
5150      FieldType.addConst();
5151    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5152                                   TSK_Field, Diagnose))
5153      return false;
5154  }
5155
5156  return true;
5157}
5158
5159/// Diagnose why the specified class does not have a trivial special member of
5160/// the given kind.
5161void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5162  QualType Ty = Context.getRecordType(RD);
5163  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5164    Ty.addConst();
5165
5166  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5167                            TSK_CompleteObject, /*Diagnose*/true);
5168}
5169
5170/// Determine whether a defaulted or deleted special member function is trivial,
5171/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5172/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5173bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5174                                  bool Diagnose) {
5175  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5176
5177  CXXRecordDecl *RD = MD->getParent();
5178
5179  bool ConstArg = false;
5180
5181  // C++11 [class.copy]p12, p25:
5182  //   A [special member] is trivial if its declared parameter type is the same
5183  //   as if it had been implicitly declared [...]
5184  switch (CSM) {
5185  case CXXDefaultConstructor:
5186  case CXXDestructor:
5187    // Trivial default constructors and destructors cannot have parameters.
5188    break;
5189
5190  case CXXCopyConstructor:
5191  case CXXCopyAssignment: {
5192    // Trivial copy operations always have const, non-volatile parameter types.
5193    ConstArg = true;
5194    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5195    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5196    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5197      if (Diagnose)
5198        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5199          << Param0->getSourceRange() << Param0->getType()
5200          << Context.getLValueReferenceType(
5201               Context.getRecordType(RD).withConst());
5202      return false;
5203    }
5204    break;
5205  }
5206
5207  case CXXMoveConstructor:
5208  case CXXMoveAssignment: {
5209    // Trivial move operations always have non-cv-qualified parameters.
5210    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5211    const RValueReferenceType *RT =
5212      Param0->getType()->getAs<RValueReferenceType>();
5213    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5214      if (Diagnose)
5215        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5216          << Param0->getSourceRange() << Param0->getType()
5217          << Context.getRValueReferenceType(Context.getRecordType(RD));
5218      return false;
5219    }
5220    break;
5221  }
5222
5223  case CXXInvalid:
5224    llvm_unreachable("not a special member");
5225  }
5226
5227  // FIXME: We require that the parameter-declaration-clause is equivalent to
5228  // that of an implicit declaration, not just that the declared parameter type
5229  // matches, in order to prevent absuridities like a function simultaneously
5230  // being a trivial copy constructor and a non-trivial default constructor.
5231  // This issue has not yet been assigned a core issue number.
5232  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5233    if (Diagnose)
5234      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5235           diag::note_nontrivial_default_arg)
5236        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5237    return false;
5238  }
5239  if (MD->isVariadic()) {
5240    if (Diagnose)
5241      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5242    return false;
5243  }
5244
5245  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5246  //   A copy/move [constructor or assignment operator] is trivial if
5247  //    -- the [member] selected to copy/move each direct base class subobject
5248  //       is trivial
5249  //
5250  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5251  //   A [default constructor or destructor] is trivial if
5252  //    -- all the direct base classes have trivial [default constructors or
5253  //       destructors]
5254  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5255                                          BE = RD->bases_end(); BI != BE; ++BI)
5256    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5257                                   ConstArg ? BI->getType().withConst()
5258                                            : BI->getType(),
5259                                   CSM, TSK_BaseClass, Diagnose))
5260      return false;
5261
5262  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5263  //   A copy/move [constructor or assignment operator] for a class X is
5264  //   trivial if
5265  //    -- for each non-static data member of X that is of class type (or array
5266  //       thereof), the constructor selected to copy/move that member is
5267  //       trivial
5268  //
5269  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5270  //   A [default constructor or destructor] is trivial if
5271  //    -- for all of the non-static data members of its class that are of class
5272  //       type (or array thereof), each such class has a trivial [default
5273  //       constructor or destructor]
5274  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5275    return false;
5276
5277  // C++11 [class.dtor]p5:
5278  //   A destructor is trivial if [...]
5279  //    -- the destructor is not virtual
5280  if (CSM == CXXDestructor && MD->isVirtual()) {
5281    if (Diagnose)
5282      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5283    return false;
5284  }
5285
5286  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5287  //   A [special member] for class X is trivial if [...]
5288  //    -- class X has no virtual functions and no virtual base classes
5289  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5290    if (!Diagnose)
5291      return false;
5292
5293    if (RD->getNumVBases()) {
5294      // Check for virtual bases. We already know that the corresponding
5295      // member in all bases is trivial, so vbases must all be direct.
5296      CXXBaseSpecifier &BS = *RD->vbases_begin();
5297      assert(BS.isVirtual());
5298      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5299      return false;
5300    }
5301
5302    // Must have a virtual method.
5303    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5304                                        ME = RD->method_end(); MI != ME; ++MI) {
5305      if (MI->isVirtual()) {
5306        SourceLocation MLoc = MI->getLocStart();
5307        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5308        return false;
5309      }
5310    }
5311
5312    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5313  }
5314
5315  // Looks like it's trivial!
5316  return true;
5317}
5318
5319/// \brief Data used with FindHiddenVirtualMethod
5320namespace {
5321  struct FindHiddenVirtualMethodData {
5322    Sema *S;
5323    CXXMethodDecl *Method;
5324    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5325    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5326  };
5327}
5328
5329/// \brief Check whether any most overriden method from MD in Methods
5330static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5331                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5332  if (MD->size_overridden_methods() == 0)
5333    return Methods.count(MD->getCanonicalDecl());
5334  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5335                                      E = MD->end_overridden_methods();
5336       I != E; ++I)
5337    if (CheckMostOverridenMethods(*I, Methods))
5338      return true;
5339  return false;
5340}
5341
5342/// \brief Member lookup function that determines whether a given C++
5343/// method overloads virtual methods in a base class without overriding any,
5344/// to be used with CXXRecordDecl::lookupInBases().
5345static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5346                                    CXXBasePath &Path,
5347                                    void *UserData) {
5348  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5349
5350  FindHiddenVirtualMethodData &Data
5351    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5352
5353  DeclarationName Name = Data.Method->getDeclName();
5354  assert(Name.getNameKind() == DeclarationName::Identifier);
5355
5356  bool foundSameNameMethod = false;
5357  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5358  for (Path.Decls = BaseRecord->lookup(Name);
5359       !Path.Decls.empty();
5360       Path.Decls = Path.Decls.slice(1)) {
5361    NamedDecl *D = Path.Decls.front();
5362    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5363      MD = MD->getCanonicalDecl();
5364      foundSameNameMethod = true;
5365      // Interested only in hidden virtual methods.
5366      if (!MD->isVirtual())
5367        continue;
5368      // If the method we are checking overrides a method from its base
5369      // don't warn about the other overloaded methods.
5370      if (!Data.S->IsOverload(Data.Method, MD, false))
5371        return true;
5372      // Collect the overload only if its hidden.
5373      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5374        overloadedMethods.push_back(MD);
5375    }
5376  }
5377
5378  if (foundSameNameMethod)
5379    Data.OverloadedMethods.append(overloadedMethods.begin(),
5380                                   overloadedMethods.end());
5381  return foundSameNameMethod;
5382}
5383
5384/// \brief Add the most overriden methods from MD to Methods
5385static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5386                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5387  if (MD->size_overridden_methods() == 0)
5388    Methods.insert(MD->getCanonicalDecl());
5389  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5390                                      E = MD->end_overridden_methods();
5391       I != E; ++I)
5392    AddMostOverridenMethods(*I, Methods);
5393}
5394
5395/// \brief See if a method overloads virtual methods in a base class without
5396/// overriding any.
5397void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5398  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5399                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5400    return;
5401  if (!MD->getDeclName().isIdentifier())
5402    return;
5403
5404  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5405                     /*bool RecordPaths=*/false,
5406                     /*bool DetectVirtual=*/false);
5407  FindHiddenVirtualMethodData Data;
5408  Data.Method = MD;
5409  Data.S = this;
5410
5411  // Keep the base methods that were overriden or introduced in the subclass
5412  // by 'using' in a set. A base method not in this set is hidden.
5413  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5414  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5415    NamedDecl *ND = *I;
5416    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5417      ND = shad->getTargetDecl();
5418    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5419      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5420  }
5421
5422  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5423      !Data.OverloadedMethods.empty()) {
5424    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5425      << MD << (Data.OverloadedMethods.size() > 1);
5426
5427    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5428      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5429      PartialDiagnostic PD = PDiag(
5430           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5431      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5432      Diag(overloadedMD->getLocation(), PD);
5433    }
5434  }
5435}
5436
5437void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5438                                             Decl *TagDecl,
5439                                             SourceLocation LBrac,
5440                                             SourceLocation RBrac,
5441                                             AttributeList *AttrList) {
5442  if (!TagDecl)
5443    return;
5444
5445  AdjustDeclIfTemplate(TagDecl);
5446
5447  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5448    if (l->getKind() != AttributeList::AT_Visibility)
5449      continue;
5450    l->setInvalid();
5451    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5452      l->getName();
5453  }
5454
5455  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5456              // strict aliasing violation!
5457              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5458              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5459
5460  CheckCompletedCXXClass(
5461                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5462}
5463
5464/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5465/// special functions, such as the default constructor, copy
5466/// constructor, or destructor, to the given C++ class (C++
5467/// [special]p1).  This routine can only be executed just before the
5468/// definition of the class is complete.
5469void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5470  if (!ClassDecl->hasUserDeclaredConstructor())
5471    ++ASTContext::NumImplicitDefaultConstructors;
5472
5473  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5474    ++ASTContext::NumImplicitCopyConstructors;
5475
5476    // If the properties or semantics of the copy constructor couldn't be
5477    // determined while the class was being declared, force a declaration
5478    // of it now.
5479    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5480      DeclareImplicitCopyConstructor(ClassDecl);
5481  }
5482
5483  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5484    ++ASTContext::NumImplicitMoveConstructors;
5485
5486    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5487      DeclareImplicitMoveConstructor(ClassDecl);
5488  }
5489
5490  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5491    ++ASTContext::NumImplicitCopyAssignmentOperators;
5492
5493    // If we have a dynamic class, then the copy assignment operator may be
5494    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5495    // it shows up in the right place in the vtable and that we diagnose
5496    // problems with the implicit exception specification.
5497    if (ClassDecl->isDynamicClass() ||
5498        ClassDecl->needsOverloadResolutionForCopyAssignment())
5499      DeclareImplicitCopyAssignment(ClassDecl);
5500  }
5501
5502  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5503    ++ASTContext::NumImplicitMoveAssignmentOperators;
5504
5505    // Likewise for the move assignment operator.
5506    if (ClassDecl->isDynamicClass() ||
5507        ClassDecl->needsOverloadResolutionForMoveAssignment())
5508      DeclareImplicitMoveAssignment(ClassDecl);
5509  }
5510
5511  if (!ClassDecl->hasUserDeclaredDestructor()) {
5512    ++ASTContext::NumImplicitDestructors;
5513
5514    // If we have a dynamic class, then the destructor may be virtual, so we
5515    // have to declare the destructor immediately. This ensures that, e.g., it
5516    // shows up in the right place in the vtable and that we diagnose problems
5517    // with the implicit exception specification.
5518    if (ClassDecl->isDynamicClass() ||
5519        ClassDecl->needsOverloadResolutionForDestructor())
5520      DeclareImplicitDestructor(ClassDecl);
5521  }
5522}
5523
5524void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5525  if (!D)
5526    return;
5527
5528  int NumParamList = D->getNumTemplateParameterLists();
5529  for (int i = 0; i < NumParamList; i++) {
5530    TemplateParameterList* Params = D->getTemplateParameterList(i);
5531    for (TemplateParameterList::iterator Param = Params->begin(),
5532                                      ParamEnd = Params->end();
5533          Param != ParamEnd; ++Param) {
5534      NamedDecl *Named = cast<NamedDecl>(*Param);
5535      if (Named->getDeclName()) {
5536        S->AddDecl(Named);
5537        IdResolver.AddDecl(Named);
5538      }
5539    }
5540  }
5541}
5542
5543void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5544  if (!D)
5545    return;
5546
5547  TemplateParameterList *Params = 0;
5548  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5549    Params = Template->getTemplateParameters();
5550  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5551           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5552    Params = PartialSpec->getTemplateParameters();
5553  else
5554    return;
5555
5556  for (TemplateParameterList::iterator Param = Params->begin(),
5557                                    ParamEnd = Params->end();
5558       Param != ParamEnd; ++Param) {
5559    NamedDecl *Named = cast<NamedDecl>(*Param);
5560    if (Named->getDeclName()) {
5561      S->AddDecl(Named);
5562      IdResolver.AddDecl(Named);
5563    }
5564  }
5565}
5566
5567void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5568  if (!RecordD) return;
5569  AdjustDeclIfTemplate(RecordD);
5570  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5571  PushDeclContext(S, Record);
5572}
5573
5574void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5575  if (!RecordD) return;
5576  PopDeclContext();
5577}
5578
5579/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5580/// parsing a top-level (non-nested) C++ class, and we are now
5581/// parsing those parts of the given Method declaration that could
5582/// not be parsed earlier (C++ [class.mem]p2), such as default
5583/// arguments. This action should enter the scope of the given
5584/// Method declaration as if we had just parsed the qualified method
5585/// name. However, it should not bring the parameters into scope;
5586/// that will be performed by ActOnDelayedCXXMethodParameter.
5587void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5588}
5589
5590/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5591/// C++ method declaration. We're (re-)introducing the given
5592/// function parameter into scope for use in parsing later parts of
5593/// the method declaration. For example, we could see an
5594/// ActOnParamDefaultArgument event for this parameter.
5595void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5596  if (!ParamD)
5597    return;
5598
5599  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5600
5601  // If this parameter has an unparsed default argument, clear it out
5602  // to make way for the parsed default argument.
5603  if (Param->hasUnparsedDefaultArg())
5604    Param->setDefaultArg(0);
5605
5606  S->AddDecl(Param);
5607  if (Param->getDeclName())
5608    IdResolver.AddDecl(Param);
5609}
5610
5611/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5612/// processing the delayed method declaration for Method. The method
5613/// declaration is now considered finished. There may be a separate
5614/// ActOnStartOfFunctionDef action later (not necessarily
5615/// immediately!) for this method, if it was also defined inside the
5616/// class body.
5617void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5618  if (!MethodD)
5619    return;
5620
5621  AdjustDeclIfTemplate(MethodD);
5622
5623  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5624
5625  // Now that we have our default arguments, check the constructor
5626  // again. It could produce additional diagnostics or affect whether
5627  // the class has implicitly-declared destructors, among other
5628  // things.
5629  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5630    CheckConstructor(Constructor);
5631
5632  // Check the default arguments, which we may have added.
5633  if (!Method->isInvalidDecl())
5634    CheckCXXDefaultArguments(Method);
5635}
5636
5637/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5638/// the well-formedness of the constructor declarator @p D with type @p
5639/// R. If there are any errors in the declarator, this routine will
5640/// emit diagnostics and set the invalid bit to true.  In any case, the type
5641/// will be updated to reflect a well-formed type for the constructor and
5642/// returned.
5643QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5644                                          StorageClass &SC) {
5645  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5646
5647  // C++ [class.ctor]p3:
5648  //   A constructor shall not be virtual (10.3) or static (9.4). A
5649  //   constructor can be invoked for a const, volatile or const
5650  //   volatile object. A constructor shall not be declared const,
5651  //   volatile, or const volatile (9.3.2).
5652  if (isVirtual) {
5653    if (!D.isInvalidType())
5654      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5655        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5656        << SourceRange(D.getIdentifierLoc());
5657    D.setInvalidType();
5658  }
5659  if (SC == SC_Static) {
5660    if (!D.isInvalidType())
5661      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5662        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5663        << SourceRange(D.getIdentifierLoc());
5664    D.setInvalidType();
5665    SC = SC_None;
5666  }
5667
5668  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5669  if (FTI.TypeQuals != 0) {
5670    if (FTI.TypeQuals & Qualifiers::Const)
5671      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5672        << "const" << SourceRange(D.getIdentifierLoc());
5673    if (FTI.TypeQuals & Qualifiers::Volatile)
5674      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5675        << "volatile" << SourceRange(D.getIdentifierLoc());
5676    if (FTI.TypeQuals & Qualifiers::Restrict)
5677      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5678        << "restrict" << SourceRange(D.getIdentifierLoc());
5679    D.setInvalidType();
5680  }
5681
5682  // C++0x [class.ctor]p4:
5683  //   A constructor shall not be declared with a ref-qualifier.
5684  if (FTI.hasRefQualifier()) {
5685    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5686      << FTI.RefQualifierIsLValueRef
5687      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5688    D.setInvalidType();
5689  }
5690
5691  // Rebuild the function type "R" without any type qualifiers (in
5692  // case any of the errors above fired) and with "void" as the
5693  // return type, since constructors don't have return types.
5694  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5695  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5696    return R;
5697
5698  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5699  EPI.TypeQuals = 0;
5700  EPI.RefQualifier = RQ_None;
5701
5702  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5703}
5704
5705/// CheckConstructor - Checks a fully-formed constructor for
5706/// well-formedness, issuing any diagnostics required. Returns true if
5707/// the constructor declarator is invalid.
5708void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5709  CXXRecordDecl *ClassDecl
5710    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5711  if (!ClassDecl)
5712    return Constructor->setInvalidDecl();
5713
5714  // C++ [class.copy]p3:
5715  //   A declaration of a constructor for a class X is ill-formed if
5716  //   its first parameter is of type (optionally cv-qualified) X and
5717  //   either there are no other parameters or else all other
5718  //   parameters have default arguments.
5719  if (!Constructor->isInvalidDecl() &&
5720      ((Constructor->getNumParams() == 1) ||
5721       (Constructor->getNumParams() > 1 &&
5722        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5723      Constructor->getTemplateSpecializationKind()
5724                                              != TSK_ImplicitInstantiation) {
5725    QualType ParamType = Constructor->getParamDecl(0)->getType();
5726    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5727    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5728      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5729      const char *ConstRef
5730        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5731                                                        : " const &";
5732      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5733        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5734
5735      // FIXME: Rather that making the constructor invalid, we should endeavor
5736      // to fix the type.
5737      Constructor->setInvalidDecl();
5738    }
5739  }
5740}
5741
5742/// CheckDestructor - Checks a fully-formed destructor definition for
5743/// well-formedness, issuing any diagnostics required.  Returns true
5744/// on error.
5745bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5746  CXXRecordDecl *RD = Destructor->getParent();
5747
5748  if (Destructor->isVirtual()) {
5749    SourceLocation Loc;
5750
5751    if (!Destructor->isImplicit())
5752      Loc = Destructor->getLocation();
5753    else
5754      Loc = RD->getLocation();
5755
5756    // If we have a virtual destructor, look up the deallocation function
5757    FunctionDecl *OperatorDelete = 0;
5758    DeclarationName Name =
5759    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5760    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5761      return true;
5762
5763    MarkFunctionReferenced(Loc, OperatorDelete);
5764
5765    Destructor->setOperatorDelete(OperatorDelete);
5766  }
5767
5768  return false;
5769}
5770
5771static inline bool
5772FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5773  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5774          FTI.ArgInfo[0].Param &&
5775          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5776}
5777
5778/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5779/// the well-formednes of the destructor declarator @p D with type @p
5780/// R. If there are any errors in the declarator, this routine will
5781/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5782/// will be updated to reflect a well-formed type for the destructor and
5783/// returned.
5784QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5785                                         StorageClass& SC) {
5786  // C++ [class.dtor]p1:
5787  //   [...] A typedef-name that names a class is a class-name
5788  //   (7.1.3); however, a typedef-name that names a class shall not
5789  //   be used as the identifier in the declarator for a destructor
5790  //   declaration.
5791  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5792  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5793    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5794      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5795  else if (const TemplateSpecializationType *TST =
5796             DeclaratorType->getAs<TemplateSpecializationType>())
5797    if (TST->isTypeAlias())
5798      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5799        << DeclaratorType << 1;
5800
5801  // C++ [class.dtor]p2:
5802  //   A destructor is used to destroy objects of its class type. A
5803  //   destructor takes no parameters, and no return type can be
5804  //   specified for it (not even void). The address of a destructor
5805  //   shall not be taken. A destructor shall not be static. A
5806  //   destructor can be invoked for a const, volatile or const
5807  //   volatile object. A destructor shall not be declared const,
5808  //   volatile or const volatile (9.3.2).
5809  if (SC == SC_Static) {
5810    if (!D.isInvalidType())
5811      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5812        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5813        << SourceRange(D.getIdentifierLoc())
5814        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5815
5816    SC = SC_None;
5817  }
5818  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5819    // Destructors don't have return types, but the parser will
5820    // happily parse something like:
5821    //
5822    //   class X {
5823    //     float ~X();
5824    //   };
5825    //
5826    // The return type will be eliminated later.
5827    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5828      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5829      << SourceRange(D.getIdentifierLoc());
5830  }
5831
5832  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5833  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5834    if (FTI.TypeQuals & Qualifiers::Const)
5835      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5836        << "const" << SourceRange(D.getIdentifierLoc());
5837    if (FTI.TypeQuals & Qualifiers::Volatile)
5838      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5839        << "volatile" << SourceRange(D.getIdentifierLoc());
5840    if (FTI.TypeQuals & Qualifiers::Restrict)
5841      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5842        << "restrict" << SourceRange(D.getIdentifierLoc());
5843    D.setInvalidType();
5844  }
5845
5846  // C++0x [class.dtor]p2:
5847  //   A destructor shall not be declared with a ref-qualifier.
5848  if (FTI.hasRefQualifier()) {
5849    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5850      << FTI.RefQualifierIsLValueRef
5851      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5852    D.setInvalidType();
5853  }
5854
5855  // Make sure we don't have any parameters.
5856  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5857    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5858
5859    // Delete the parameters.
5860    FTI.freeArgs();
5861    D.setInvalidType();
5862  }
5863
5864  // Make sure the destructor isn't variadic.
5865  if (FTI.isVariadic) {
5866    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5867    D.setInvalidType();
5868  }
5869
5870  // Rebuild the function type "R" without any type qualifiers or
5871  // parameters (in case any of the errors above fired) and with
5872  // "void" as the return type, since destructors don't have return
5873  // types.
5874  if (!D.isInvalidType())
5875    return R;
5876
5877  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5878  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5879  EPI.Variadic = false;
5880  EPI.TypeQuals = 0;
5881  EPI.RefQualifier = RQ_None;
5882  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5883}
5884
5885/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5886/// well-formednes of the conversion function declarator @p D with
5887/// type @p R. If there are any errors in the declarator, this routine
5888/// will emit diagnostics and return true. Otherwise, it will return
5889/// false. Either way, the type @p R will be updated to reflect a
5890/// well-formed type for the conversion operator.
5891void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5892                                     StorageClass& SC) {
5893  // C++ [class.conv.fct]p1:
5894  //   Neither parameter types nor return type can be specified. The
5895  //   type of a conversion function (8.3.5) is "function taking no
5896  //   parameter returning conversion-type-id."
5897  if (SC == SC_Static) {
5898    if (!D.isInvalidType())
5899      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5900        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5901        << SourceRange(D.getIdentifierLoc());
5902    D.setInvalidType();
5903    SC = SC_None;
5904  }
5905
5906  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5907
5908  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5909    // Conversion functions don't have return types, but the parser will
5910    // happily parse something like:
5911    //
5912    //   class X {
5913    //     float operator bool();
5914    //   };
5915    //
5916    // The return type will be changed later anyway.
5917    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5918      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5919      << SourceRange(D.getIdentifierLoc());
5920    D.setInvalidType();
5921  }
5922
5923  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5924
5925  // Make sure we don't have any parameters.
5926  if (Proto->getNumArgs() > 0) {
5927    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5928
5929    // Delete the parameters.
5930    D.getFunctionTypeInfo().freeArgs();
5931    D.setInvalidType();
5932  } else if (Proto->isVariadic()) {
5933    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5934    D.setInvalidType();
5935  }
5936
5937  // Diagnose "&operator bool()" and other such nonsense.  This
5938  // is actually a gcc extension which we don't support.
5939  if (Proto->getResultType() != ConvType) {
5940    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5941      << Proto->getResultType();
5942    D.setInvalidType();
5943    ConvType = Proto->getResultType();
5944  }
5945
5946  // C++ [class.conv.fct]p4:
5947  //   The conversion-type-id shall not represent a function type nor
5948  //   an array type.
5949  if (ConvType->isArrayType()) {
5950    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5951    ConvType = Context.getPointerType(ConvType);
5952    D.setInvalidType();
5953  } else if (ConvType->isFunctionType()) {
5954    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5955    ConvType = Context.getPointerType(ConvType);
5956    D.setInvalidType();
5957  }
5958
5959  // Rebuild the function type "R" without any parameters (in case any
5960  // of the errors above fired) and with the conversion type as the
5961  // return type.
5962  if (D.isInvalidType())
5963    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5964                                Proto->getExtProtoInfo());
5965
5966  // C++0x explicit conversion operators.
5967  if (D.getDeclSpec().isExplicitSpecified())
5968    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5969         getLangOpts().CPlusPlus11 ?
5970           diag::warn_cxx98_compat_explicit_conversion_functions :
5971           diag::ext_explicit_conversion_functions)
5972      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5973}
5974
5975/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5976/// the declaration of the given C++ conversion function. This routine
5977/// is responsible for recording the conversion function in the C++
5978/// class, if possible.
5979Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5980  assert(Conversion && "Expected to receive a conversion function declaration");
5981
5982  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5983
5984  // Make sure we aren't redeclaring the conversion function.
5985  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5986
5987  // C++ [class.conv.fct]p1:
5988  //   [...] A conversion function is never used to convert a
5989  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5990  //   same object type (or a reference to it), to a (possibly
5991  //   cv-qualified) base class of that type (or a reference to it),
5992  //   or to (possibly cv-qualified) void.
5993  // FIXME: Suppress this warning if the conversion function ends up being a
5994  // virtual function that overrides a virtual function in a base class.
5995  QualType ClassType
5996    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5997  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5998    ConvType = ConvTypeRef->getPointeeType();
5999  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6000      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6001    /* Suppress diagnostics for instantiations. */;
6002  else if (ConvType->isRecordType()) {
6003    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6004    if (ConvType == ClassType)
6005      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6006        << ClassType;
6007    else if (IsDerivedFrom(ClassType, ConvType))
6008      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6009        <<  ClassType << ConvType;
6010  } else if (ConvType->isVoidType()) {
6011    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6012      << ClassType << ConvType;
6013  }
6014
6015  if (FunctionTemplateDecl *ConversionTemplate
6016                                = Conversion->getDescribedFunctionTemplate())
6017    return ConversionTemplate;
6018
6019  return Conversion;
6020}
6021
6022//===----------------------------------------------------------------------===//
6023// Namespace Handling
6024//===----------------------------------------------------------------------===//
6025
6026/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6027/// reopened.
6028static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6029                                            SourceLocation Loc,
6030                                            IdentifierInfo *II, bool *IsInline,
6031                                            NamespaceDecl *PrevNS) {
6032  assert(*IsInline != PrevNS->isInline());
6033
6034  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6035  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6036  // inline namespaces, with the intention of bringing names into namespace std.
6037  //
6038  // We support this just well enough to get that case working; this is not
6039  // sufficient to support reopening namespaces as inline in general.
6040  if (*IsInline && II && II->getName().startswith("__atomic") &&
6041      S.getSourceManager().isInSystemHeader(Loc)) {
6042    // Mark all prior declarations of the namespace as inline.
6043    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6044         NS = NS->getPreviousDecl())
6045      NS->setInline(*IsInline);
6046    // Patch up the lookup table for the containing namespace. This isn't really
6047    // correct, but it's good enough for this particular case.
6048    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6049                                    E = PrevNS->decls_end(); I != E; ++I)
6050      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6051        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6052    return;
6053  }
6054
6055  if (PrevNS->isInline())
6056    // The user probably just forgot the 'inline', so suggest that it
6057    // be added back.
6058    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6059      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6060  else
6061    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6062      << IsInline;
6063
6064  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6065  *IsInline = PrevNS->isInline();
6066}
6067
6068/// ActOnStartNamespaceDef - This is called at the start of a namespace
6069/// definition.
6070Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6071                                   SourceLocation InlineLoc,
6072                                   SourceLocation NamespaceLoc,
6073                                   SourceLocation IdentLoc,
6074                                   IdentifierInfo *II,
6075                                   SourceLocation LBrace,
6076                                   AttributeList *AttrList) {
6077  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6078  // For anonymous namespace, take the location of the left brace.
6079  SourceLocation Loc = II ? IdentLoc : LBrace;
6080  bool IsInline = InlineLoc.isValid();
6081  bool IsInvalid = false;
6082  bool IsStd = false;
6083  bool AddToKnown = false;
6084  Scope *DeclRegionScope = NamespcScope->getParent();
6085
6086  NamespaceDecl *PrevNS = 0;
6087  if (II) {
6088    // C++ [namespace.def]p2:
6089    //   The identifier in an original-namespace-definition shall not
6090    //   have been previously defined in the declarative region in
6091    //   which the original-namespace-definition appears. The
6092    //   identifier in an original-namespace-definition is the name of
6093    //   the namespace. Subsequently in that declarative region, it is
6094    //   treated as an original-namespace-name.
6095    //
6096    // Since namespace names are unique in their scope, and we don't
6097    // look through using directives, just look for any ordinary names.
6098
6099    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6100    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6101    Decl::IDNS_Namespace;
6102    NamedDecl *PrevDecl = 0;
6103    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6104    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6105         ++I) {
6106      if ((*I)->getIdentifierNamespace() & IDNS) {
6107        PrevDecl = *I;
6108        break;
6109      }
6110    }
6111
6112    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6113
6114    if (PrevNS) {
6115      // This is an extended namespace definition.
6116      if (IsInline != PrevNS->isInline())
6117        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6118                                        &IsInline, PrevNS);
6119    } else if (PrevDecl) {
6120      // This is an invalid name redefinition.
6121      Diag(Loc, diag::err_redefinition_different_kind)
6122        << II;
6123      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6124      IsInvalid = true;
6125      // Continue on to push Namespc as current DeclContext and return it.
6126    } else if (II->isStr("std") &&
6127               CurContext->getRedeclContext()->isTranslationUnit()) {
6128      // This is the first "real" definition of the namespace "std", so update
6129      // our cache of the "std" namespace to point at this definition.
6130      PrevNS = getStdNamespace();
6131      IsStd = true;
6132      AddToKnown = !IsInline;
6133    } else {
6134      // We've seen this namespace for the first time.
6135      AddToKnown = !IsInline;
6136    }
6137  } else {
6138    // Anonymous namespaces.
6139
6140    // Determine whether the parent already has an anonymous namespace.
6141    DeclContext *Parent = CurContext->getRedeclContext();
6142    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6143      PrevNS = TU->getAnonymousNamespace();
6144    } else {
6145      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6146      PrevNS = ND->getAnonymousNamespace();
6147    }
6148
6149    if (PrevNS && IsInline != PrevNS->isInline())
6150      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6151                                      &IsInline, PrevNS);
6152  }
6153
6154  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6155                                                 StartLoc, Loc, II, PrevNS);
6156  if (IsInvalid)
6157    Namespc->setInvalidDecl();
6158
6159  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6160
6161  // FIXME: Should we be merging attributes?
6162  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6163    PushNamespaceVisibilityAttr(Attr, Loc);
6164
6165  if (IsStd)
6166    StdNamespace = Namespc;
6167  if (AddToKnown)
6168    KnownNamespaces[Namespc] = false;
6169
6170  if (II) {
6171    PushOnScopeChains(Namespc, DeclRegionScope);
6172  } else {
6173    // Link the anonymous namespace into its parent.
6174    DeclContext *Parent = CurContext->getRedeclContext();
6175    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6176      TU->setAnonymousNamespace(Namespc);
6177    } else {
6178      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6179    }
6180
6181    CurContext->addDecl(Namespc);
6182
6183    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6184    //   behaves as if it were replaced by
6185    //     namespace unique { /* empty body */ }
6186    //     using namespace unique;
6187    //     namespace unique { namespace-body }
6188    //   where all occurrences of 'unique' in a translation unit are
6189    //   replaced by the same identifier and this identifier differs
6190    //   from all other identifiers in the entire program.
6191
6192    // We just create the namespace with an empty name and then add an
6193    // implicit using declaration, just like the standard suggests.
6194    //
6195    // CodeGen enforces the "universally unique" aspect by giving all
6196    // declarations semantically contained within an anonymous
6197    // namespace internal linkage.
6198
6199    if (!PrevNS) {
6200      UsingDirectiveDecl* UD
6201        = UsingDirectiveDecl::Create(Context, Parent,
6202                                     /* 'using' */ LBrace,
6203                                     /* 'namespace' */ SourceLocation(),
6204                                     /* qualifier */ NestedNameSpecifierLoc(),
6205                                     /* identifier */ SourceLocation(),
6206                                     Namespc,
6207                                     /* Ancestor */ Parent);
6208      UD->setImplicit();
6209      Parent->addDecl(UD);
6210    }
6211  }
6212
6213  ActOnDocumentableDecl(Namespc);
6214
6215  // Although we could have an invalid decl (i.e. the namespace name is a
6216  // redefinition), push it as current DeclContext and try to continue parsing.
6217  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6218  // for the namespace has the declarations that showed up in that particular
6219  // namespace definition.
6220  PushDeclContext(NamespcScope, Namespc);
6221  return Namespc;
6222}
6223
6224/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6225/// is a namespace alias, returns the namespace it points to.
6226static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6227  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6228    return AD->getNamespace();
6229  return dyn_cast_or_null<NamespaceDecl>(D);
6230}
6231
6232/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6233/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6234void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6235  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6236  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6237  Namespc->setRBraceLoc(RBrace);
6238  PopDeclContext();
6239  if (Namespc->hasAttr<VisibilityAttr>())
6240    PopPragmaVisibility(true, RBrace);
6241}
6242
6243CXXRecordDecl *Sema::getStdBadAlloc() const {
6244  return cast_or_null<CXXRecordDecl>(
6245                                  StdBadAlloc.get(Context.getExternalSource()));
6246}
6247
6248NamespaceDecl *Sema::getStdNamespace() const {
6249  return cast_or_null<NamespaceDecl>(
6250                                 StdNamespace.get(Context.getExternalSource()));
6251}
6252
6253/// \brief Retrieve the special "std" namespace, which may require us to
6254/// implicitly define the namespace.
6255NamespaceDecl *Sema::getOrCreateStdNamespace() {
6256  if (!StdNamespace) {
6257    // The "std" namespace has not yet been defined, so build one implicitly.
6258    StdNamespace = NamespaceDecl::Create(Context,
6259                                         Context.getTranslationUnitDecl(),
6260                                         /*Inline=*/false,
6261                                         SourceLocation(), SourceLocation(),
6262                                         &PP.getIdentifierTable().get("std"),
6263                                         /*PrevDecl=*/0);
6264    getStdNamespace()->setImplicit(true);
6265  }
6266
6267  return getStdNamespace();
6268}
6269
6270bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6271  assert(getLangOpts().CPlusPlus &&
6272         "Looking for std::initializer_list outside of C++.");
6273
6274  // We're looking for implicit instantiations of
6275  // template <typename E> class std::initializer_list.
6276
6277  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6278    return false;
6279
6280  ClassTemplateDecl *Template = 0;
6281  const TemplateArgument *Arguments = 0;
6282
6283  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6284
6285    ClassTemplateSpecializationDecl *Specialization =
6286        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6287    if (!Specialization)
6288      return false;
6289
6290    Template = Specialization->getSpecializedTemplate();
6291    Arguments = Specialization->getTemplateArgs().data();
6292  } else if (const TemplateSpecializationType *TST =
6293                 Ty->getAs<TemplateSpecializationType>()) {
6294    Template = dyn_cast_or_null<ClassTemplateDecl>(
6295        TST->getTemplateName().getAsTemplateDecl());
6296    Arguments = TST->getArgs();
6297  }
6298  if (!Template)
6299    return false;
6300
6301  if (!StdInitializerList) {
6302    // Haven't recognized std::initializer_list yet, maybe this is it.
6303    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6304    if (TemplateClass->getIdentifier() !=
6305            &PP.getIdentifierTable().get("initializer_list") ||
6306        !getStdNamespace()->InEnclosingNamespaceSetOf(
6307            TemplateClass->getDeclContext()))
6308      return false;
6309    // This is a template called std::initializer_list, but is it the right
6310    // template?
6311    TemplateParameterList *Params = Template->getTemplateParameters();
6312    if (Params->getMinRequiredArguments() != 1)
6313      return false;
6314    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6315      return false;
6316
6317    // It's the right template.
6318    StdInitializerList = Template;
6319  }
6320
6321  if (Template != StdInitializerList)
6322    return false;
6323
6324  // This is an instance of std::initializer_list. Find the argument type.
6325  if (Element)
6326    *Element = Arguments[0].getAsType();
6327  return true;
6328}
6329
6330static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6331  NamespaceDecl *Std = S.getStdNamespace();
6332  if (!Std) {
6333    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6334    return 0;
6335  }
6336
6337  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6338                      Loc, Sema::LookupOrdinaryName);
6339  if (!S.LookupQualifiedName(Result, Std)) {
6340    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6341    return 0;
6342  }
6343  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6344  if (!Template) {
6345    Result.suppressDiagnostics();
6346    // We found something weird. Complain about the first thing we found.
6347    NamedDecl *Found = *Result.begin();
6348    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6349    return 0;
6350  }
6351
6352  // We found some template called std::initializer_list. Now verify that it's
6353  // correct.
6354  TemplateParameterList *Params = Template->getTemplateParameters();
6355  if (Params->getMinRequiredArguments() != 1 ||
6356      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6357    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6358    return 0;
6359  }
6360
6361  return Template;
6362}
6363
6364QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6365  if (!StdInitializerList) {
6366    StdInitializerList = LookupStdInitializerList(*this, Loc);
6367    if (!StdInitializerList)
6368      return QualType();
6369  }
6370
6371  TemplateArgumentListInfo Args(Loc, Loc);
6372  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6373                                       Context.getTrivialTypeSourceInfo(Element,
6374                                                                        Loc)));
6375  return Context.getCanonicalType(
6376      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6377}
6378
6379bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6380  // C++ [dcl.init.list]p2:
6381  //   A constructor is an initializer-list constructor if its first parameter
6382  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6383  //   std::initializer_list<E> for some type E, and either there are no other
6384  //   parameters or else all other parameters have default arguments.
6385  if (Ctor->getNumParams() < 1 ||
6386      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6387    return false;
6388
6389  QualType ArgType = Ctor->getParamDecl(0)->getType();
6390  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6391    ArgType = RT->getPointeeType().getUnqualifiedType();
6392
6393  return isStdInitializerList(ArgType, 0);
6394}
6395
6396/// \brief Determine whether a using statement is in a context where it will be
6397/// apply in all contexts.
6398static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6399  switch (CurContext->getDeclKind()) {
6400    case Decl::TranslationUnit:
6401      return true;
6402    case Decl::LinkageSpec:
6403      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6404    default:
6405      return false;
6406  }
6407}
6408
6409namespace {
6410
6411// Callback to only accept typo corrections that are namespaces.
6412class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6413 public:
6414  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6415    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6416      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6417    }
6418    return false;
6419  }
6420};
6421
6422}
6423
6424static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6425                                       CXXScopeSpec &SS,
6426                                       SourceLocation IdentLoc,
6427                                       IdentifierInfo *Ident) {
6428  NamespaceValidatorCCC Validator;
6429  R.clear();
6430  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6431                                               R.getLookupKind(), Sc, &SS,
6432                                               Validator)) {
6433    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6434    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6435    if (DeclContext *DC = S.computeDeclContext(SS, false))
6436      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6437        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6438        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6439                                        CorrectedStr);
6440    else
6441      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6442        << Ident << CorrectedQuotedStr
6443        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6444
6445    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6446         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6447
6448    R.addDecl(Corrected.getCorrectionDecl());
6449    return true;
6450  }
6451  return false;
6452}
6453
6454Decl *Sema::ActOnUsingDirective(Scope *S,
6455                                          SourceLocation UsingLoc,
6456                                          SourceLocation NamespcLoc,
6457                                          CXXScopeSpec &SS,
6458                                          SourceLocation IdentLoc,
6459                                          IdentifierInfo *NamespcName,
6460                                          AttributeList *AttrList) {
6461  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6462  assert(NamespcName && "Invalid NamespcName.");
6463  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6464
6465  // This can only happen along a recovery path.
6466  while (S->getFlags() & Scope::TemplateParamScope)
6467    S = S->getParent();
6468  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6469
6470  UsingDirectiveDecl *UDir = 0;
6471  NestedNameSpecifier *Qualifier = 0;
6472  if (SS.isSet())
6473    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6474
6475  // Lookup namespace name.
6476  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6477  LookupParsedName(R, S, &SS);
6478  if (R.isAmbiguous())
6479    return 0;
6480
6481  if (R.empty()) {
6482    R.clear();
6483    // Allow "using namespace std;" or "using namespace ::std;" even if
6484    // "std" hasn't been defined yet, for GCC compatibility.
6485    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6486        NamespcName->isStr("std")) {
6487      Diag(IdentLoc, diag::ext_using_undefined_std);
6488      R.addDecl(getOrCreateStdNamespace());
6489      R.resolveKind();
6490    }
6491    // Otherwise, attempt typo correction.
6492    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6493  }
6494
6495  if (!R.empty()) {
6496    NamedDecl *Named = R.getFoundDecl();
6497    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6498        && "expected namespace decl");
6499    // C++ [namespace.udir]p1:
6500    //   A using-directive specifies that the names in the nominated
6501    //   namespace can be used in the scope in which the
6502    //   using-directive appears after the using-directive. During
6503    //   unqualified name lookup (3.4.1), the names appear as if they
6504    //   were declared in the nearest enclosing namespace which
6505    //   contains both the using-directive and the nominated
6506    //   namespace. [Note: in this context, "contains" means "contains
6507    //   directly or indirectly". ]
6508
6509    // Find enclosing context containing both using-directive and
6510    // nominated namespace.
6511    NamespaceDecl *NS = getNamespaceDecl(Named);
6512    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6513    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6514      CommonAncestor = CommonAncestor->getParent();
6515
6516    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6517                                      SS.getWithLocInContext(Context),
6518                                      IdentLoc, Named, CommonAncestor);
6519
6520    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6521        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6522      Diag(IdentLoc, diag::warn_using_directive_in_header);
6523    }
6524
6525    PushUsingDirective(S, UDir);
6526  } else {
6527    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6528  }
6529
6530  if (UDir)
6531    ProcessDeclAttributeList(S, UDir, AttrList);
6532
6533  return UDir;
6534}
6535
6536void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6537  // If the scope has an associated entity and the using directive is at
6538  // namespace or translation unit scope, add the UsingDirectiveDecl into
6539  // its lookup structure so qualified name lookup can find it.
6540  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6541  if (Ctx && !Ctx->isFunctionOrMethod())
6542    Ctx->addDecl(UDir);
6543  else
6544    // Otherwise, it is at block sope. The using-directives will affect lookup
6545    // only to the end of the scope.
6546    S->PushUsingDirective(UDir);
6547}
6548
6549
6550Decl *Sema::ActOnUsingDeclaration(Scope *S,
6551                                  AccessSpecifier AS,
6552                                  bool HasUsingKeyword,
6553                                  SourceLocation UsingLoc,
6554                                  CXXScopeSpec &SS,
6555                                  UnqualifiedId &Name,
6556                                  AttributeList *AttrList,
6557                                  bool IsTypeName,
6558                                  SourceLocation TypenameLoc) {
6559  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6560
6561  switch (Name.getKind()) {
6562  case UnqualifiedId::IK_ImplicitSelfParam:
6563  case UnqualifiedId::IK_Identifier:
6564  case UnqualifiedId::IK_OperatorFunctionId:
6565  case UnqualifiedId::IK_LiteralOperatorId:
6566  case UnqualifiedId::IK_ConversionFunctionId:
6567    break;
6568
6569  case UnqualifiedId::IK_ConstructorName:
6570  case UnqualifiedId::IK_ConstructorTemplateId:
6571    // C++11 inheriting constructors.
6572    Diag(Name.getLocStart(),
6573         getLangOpts().CPlusPlus11 ?
6574           diag::warn_cxx98_compat_using_decl_constructor :
6575           diag::err_using_decl_constructor)
6576      << SS.getRange();
6577
6578    if (getLangOpts().CPlusPlus11) break;
6579
6580    return 0;
6581
6582  case UnqualifiedId::IK_DestructorName:
6583    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6584      << SS.getRange();
6585    return 0;
6586
6587  case UnqualifiedId::IK_TemplateId:
6588    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6589      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6590    return 0;
6591  }
6592
6593  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6594  DeclarationName TargetName = TargetNameInfo.getName();
6595  if (!TargetName)
6596    return 0;
6597
6598  // Warn about access declarations.
6599  // TODO: store that the declaration was written without 'using' and
6600  // talk about access decls instead of using decls in the
6601  // diagnostics.
6602  if (!HasUsingKeyword) {
6603    UsingLoc = Name.getLocStart();
6604
6605    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6606      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6607  }
6608
6609  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6610      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6611    return 0;
6612
6613  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6614                                        TargetNameInfo, AttrList,
6615                                        /* IsInstantiation */ false,
6616                                        IsTypeName, TypenameLoc);
6617  if (UD)
6618    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6619
6620  return UD;
6621}
6622
6623/// \brief Determine whether a using declaration considers the given
6624/// declarations as "equivalent", e.g., if they are redeclarations of
6625/// the same entity or are both typedefs of the same type.
6626static bool
6627IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6628                         bool &SuppressRedeclaration) {
6629  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6630    SuppressRedeclaration = false;
6631    return true;
6632  }
6633
6634  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6635    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6636      SuppressRedeclaration = true;
6637      return Context.hasSameType(TD1->getUnderlyingType(),
6638                                 TD2->getUnderlyingType());
6639    }
6640
6641  return false;
6642}
6643
6644
6645/// Determines whether to create a using shadow decl for a particular
6646/// decl, given the set of decls existing prior to this using lookup.
6647bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6648                                const LookupResult &Previous) {
6649  // Diagnose finding a decl which is not from a base class of the
6650  // current class.  We do this now because there are cases where this
6651  // function will silently decide not to build a shadow decl, which
6652  // will pre-empt further diagnostics.
6653  //
6654  // We don't need to do this in C++0x because we do the check once on
6655  // the qualifier.
6656  //
6657  // FIXME: diagnose the following if we care enough:
6658  //   struct A { int foo; };
6659  //   struct B : A { using A::foo; };
6660  //   template <class T> struct C : A {};
6661  //   template <class T> struct D : C<T> { using B::foo; } // <---
6662  // This is invalid (during instantiation) in C++03 because B::foo
6663  // resolves to the using decl in B, which is not a base class of D<T>.
6664  // We can't diagnose it immediately because C<T> is an unknown
6665  // specialization.  The UsingShadowDecl in D<T> then points directly
6666  // to A::foo, which will look well-formed when we instantiate.
6667  // The right solution is to not collapse the shadow-decl chain.
6668  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6669    DeclContext *OrigDC = Orig->getDeclContext();
6670
6671    // Handle enums and anonymous structs.
6672    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6673    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6674    while (OrigRec->isAnonymousStructOrUnion())
6675      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6676
6677    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6678      if (OrigDC == CurContext) {
6679        Diag(Using->getLocation(),
6680             diag::err_using_decl_nested_name_specifier_is_current_class)
6681          << Using->getQualifierLoc().getSourceRange();
6682        Diag(Orig->getLocation(), diag::note_using_decl_target);
6683        return true;
6684      }
6685
6686      Diag(Using->getQualifierLoc().getBeginLoc(),
6687           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6688        << Using->getQualifier()
6689        << cast<CXXRecordDecl>(CurContext)
6690        << Using->getQualifierLoc().getSourceRange();
6691      Diag(Orig->getLocation(), diag::note_using_decl_target);
6692      return true;
6693    }
6694  }
6695
6696  if (Previous.empty()) return false;
6697
6698  NamedDecl *Target = Orig;
6699  if (isa<UsingShadowDecl>(Target))
6700    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6701
6702  // If the target happens to be one of the previous declarations, we
6703  // don't have a conflict.
6704  //
6705  // FIXME: but we might be increasing its access, in which case we
6706  // should redeclare it.
6707  NamedDecl *NonTag = 0, *Tag = 0;
6708  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6709         I != E; ++I) {
6710    NamedDecl *D = (*I)->getUnderlyingDecl();
6711    bool Result;
6712    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6713      return Result;
6714
6715    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6716  }
6717
6718  if (Target->isFunctionOrFunctionTemplate()) {
6719    FunctionDecl *FD;
6720    if (isa<FunctionTemplateDecl>(Target))
6721      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6722    else
6723      FD = cast<FunctionDecl>(Target);
6724
6725    NamedDecl *OldDecl = 0;
6726    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6727    case Ovl_Overload:
6728      return false;
6729
6730    case Ovl_NonFunction:
6731      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6732      break;
6733
6734    // We found a decl with the exact signature.
6735    case Ovl_Match:
6736      // If we're in a record, we want to hide the target, so we
6737      // return true (without a diagnostic) to tell the caller not to
6738      // build a shadow decl.
6739      if (CurContext->isRecord())
6740        return true;
6741
6742      // If we're not in a record, this is an error.
6743      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6744      break;
6745    }
6746
6747    Diag(Target->getLocation(), diag::note_using_decl_target);
6748    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6749    return true;
6750  }
6751
6752  // Target is not a function.
6753
6754  if (isa<TagDecl>(Target)) {
6755    // No conflict between a tag and a non-tag.
6756    if (!Tag) return false;
6757
6758    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6759    Diag(Target->getLocation(), diag::note_using_decl_target);
6760    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6761    return true;
6762  }
6763
6764  // No conflict between a tag and a non-tag.
6765  if (!NonTag) return false;
6766
6767  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6768  Diag(Target->getLocation(), diag::note_using_decl_target);
6769  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6770  return true;
6771}
6772
6773/// Builds a shadow declaration corresponding to a 'using' declaration.
6774UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6775                                            UsingDecl *UD,
6776                                            NamedDecl *Orig) {
6777
6778  // If we resolved to another shadow declaration, just coalesce them.
6779  NamedDecl *Target = Orig;
6780  if (isa<UsingShadowDecl>(Target)) {
6781    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6782    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6783  }
6784
6785  UsingShadowDecl *Shadow
6786    = UsingShadowDecl::Create(Context, CurContext,
6787                              UD->getLocation(), UD, Target);
6788  UD->addShadowDecl(Shadow);
6789
6790  Shadow->setAccess(UD->getAccess());
6791  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6792    Shadow->setInvalidDecl();
6793
6794  if (S)
6795    PushOnScopeChains(Shadow, S);
6796  else
6797    CurContext->addDecl(Shadow);
6798
6799
6800  return Shadow;
6801}
6802
6803/// Hides a using shadow declaration.  This is required by the current
6804/// using-decl implementation when a resolvable using declaration in a
6805/// class is followed by a declaration which would hide or override
6806/// one or more of the using decl's targets; for example:
6807///
6808///   struct Base { void foo(int); };
6809///   struct Derived : Base {
6810///     using Base::foo;
6811///     void foo(int);
6812///   };
6813///
6814/// The governing language is C++03 [namespace.udecl]p12:
6815///
6816///   When a using-declaration brings names from a base class into a
6817///   derived class scope, member functions in the derived class
6818///   override and/or hide member functions with the same name and
6819///   parameter types in a base class (rather than conflicting).
6820///
6821/// There are two ways to implement this:
6822///   (1) optimistically create shadow decls when they're not hidden
6823///       by existing declarations, or
6824///   (2) don't create any shadow decls (or at least don't make them
6825///       visible) until we've fully parsed/instantiated the class.
6826/// The problem with (1) is that we might have to retroactively remove
6827/// a shadow decl, which requires several O(n) operations because the
6828/// decl structures are (very reasonably) not designed for removal.
6829/// (2) avoids this but is very fiddly and phase-dependent.
6830void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6831  if (Shadow->getDeclName().getNameKind() ==
6832        DeclarationName::CXXConversionFunctionName)
6833    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6834
6835  // Remove it from the DeclContext...
6836  Shadow->getDeclContext()->removeDecl(Shadow);
6837
6838  // ...and the scope, if applicable...
6839  if (S) {
6840    S->RemoveDecl(Shadow);
6841    IdResolver.RemoveDecl(Shadow);
6842  }
6843
6844  // ...and the using decl.
6845  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6846
6847  // TODO: complain somehow if Shadow was used.  It shouldn't
6848  // be possible for this to happen, because...?
6849}
6850
6851/// Builds a using declaration.
6852///
6853/// \param IsInstantiation - Whether this call arises from an
6854///   instantiation of an unresolved using declaration.  We treat
6855///   the lookup differently for these declarations.
6856NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6857                                       SourceLocation UsingLoc,
6858                                       CXXScopeSpec &SS,
6859                                       const DeclarationNameInfo &NameInfo,
6860                                       AttributeList *AttrList,
6861                                       bool IsInstantiation,
6862                                       bool IsTypeName,
6863                                       SourceLocation TypenameLoc) {
6864  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6865  SourceLocation IdentLoc = NameInfo.getLoc();
6866  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6867
6868  // FIXME: We ignore attributes for now.
6869
6870  if (SS.isEmpty()) {
6871    Diag(IdentLoc, diag::err_using_requires_qualname);
6872    return 0;
6873  }
6874
6875  // Do the redeclaration lookup in the current scope.
6876  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6877                        ForRedeclaration);
6878  Previous.setHideTags(false);
6879  if (S) {
6880    LookupName(Previous, S);
6881
6882    // It is really dumb that we have to do this.
6883    LookupResult::Filter F = Previous.makeFilter();
6884    while (F.hasNext()) {
6885      NamedDecl *D = F.next();
6886      if (!isDeclInScope(D, CurContext, S))
6887        F.erase();
6888    }
6889    F.done();
6890  } else {
6891    assert(IsInstantiation && "no scope in non-instantiation");
6892    assert(CurContext->isRecord() && "scope not record in instantiation");
6893    LookupQualifiedName(Previous, CurContext);
6894  }
6895
6896  // Check for invalid redeclarations.
6897  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6898    return 0;
6899
6900  // Check for bad qualifiers.
6901  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6902    return 0;
6903
6904  DeclContext *LookupContext = computeDeclContext(SS);
6905  NamedDecl *D;
6906  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6907  if (!LookupContext) {
6908    if (IsTypeName) {
6909      // FIXME: not all declaration name kinds are legal here
6910      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6911                                              UsingLoc, TypenameLoc,
6912                                              QualifierLoc,
6913                                              IdentLoc, NameInfo.getName());
6914    } else {
6915      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6916                                           QualifierLoc, NameInfo);
6917    }
6918  } else {
6919    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6920                          NameInfo, IsTypeName);
6921  }
6922  D->setAccess(AS);
6923  CurContext->addDecl(D);
6924
6925  if (!LookupContext) return D;
6926  UsingDecl *UD = cast<UsingDecl>(D);
6927
6928  if (RequireCompleteDeclContext(SS, LookupContext)) {
6929    UD->setInvalidDecl();
6930    return UD;
6931  }
6932
6933  // The normal rules do not apply to inheriting constructor declarations.
6934  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6935    if (CheckInheritingConstructorUsingDecl(UD))
6936      UD->setInvalidDecl();
6937    return UD;
6938  }
6939
6940  // Otherwise, look up the target name.
6941
6942  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6943
6944  // Unlike most lookups, we don't always want to hide tag
6945  // declarations: tag names are visible through the using declaration
6946  // even if hidden by ordinary names, *except* in a dependent context
6947  // where it's important for the sanity of two-phase lookup.
6948  if (!IsInstantiation)
6949    R.setHideTags(false);
6950
6951  // For the purposes of this lookup, we have a base object type
6952  // equal to that of the current context.
6953  if (CurContext->isRecord()) {
6954    R.setBaseObjectType(
6955                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6956  }
6957
6958  LookupQualifiedName(R, LookupContext);
6959
6960  if (R.empty()) {
6961    Diag(IdentLoc, diag::err_no_member)
6962      << NameInfo.getName() << LookupContext << SS.getRange();
6963    UD->setInvalidDecl();
6964    return UD;
6965  }
6966
6967  if (R.isAmbiguous()) {
6968    UD->setInvalidDecl();
6969    return UD;
6970  }
6971
6972  if (IsTypeName) {
6973    // If we asked for a typename and got a non-type decl, error out.
6974    if (!R.getAsSingle<TypeDecl>()) {
6975      Diag(IdentLoc, diag::err_using_typename_non_type);
6976      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6977        Diag((*I)->getUnderlyingDecl()->getLocation(),
6978             diag::note_using_decl_target);
6979      UD->setInvalidDecl();
6980      return UD;
6981    }
6982  } else {
6983    // If we asked for a non-typename and we got a type, error out,
6984    // but only if this is an instantiation of an unresolved using
6985    // decl.  Otherwise just silently find the type name.
6986    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6987      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6988      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6989      UD->setInvalidDecl();
6990      return UD;
6991    }
6992  }
6993
6994  // C++0x N2914 [namespace.udecl]p6:
6995  // A using-declaration shall not name a namespace.
6996  if (R.getAsSingle<NamespaceDecl>()) {
6997    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6998      << SS.getRange();
6999    UD->setInvalidDecl();
7000    return UD;
7001  }
7002
7003  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7004    if (!CheckUsingShadowDecl(UD, *I, Previous))
7005      BuildUsingShadowDecl(S, UD, *I);
7006  }
7007
7008  return UD;
7009}
7010
7011/// Additional checks for a using declaration referring to a constructor name.
7012bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7013  assert(!UD->isTypeName() && "expecting a constructor name");
7014
7015  const Type *SourceType = UD->getQualifier()->getAsType();
7016  assert(SourceType &&
7017         "Using decl naming constructor doesn't have type in scope spec.");
7018  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7019
7020  // Check whether the named type is a direct base class.
7021  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7022  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7023  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7024       BaseIt != BaseE; ++BaseIt) {
7025    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7026    if (CanonicalSourceType == BaseType)
7027      break;
7028    if (BaseIt->getType()->isDependentType())
7029      break;
7030  }
7031
7032  if (BaseIt == BaseE) {
7033    // Did not find SourceType in the bases.
7034    Diag(UD->getUsingLocation(),
7035         diag::err_using_decl_constructor_not_in_direct_base)
7036      << UD->getNameInfo().getSourceRange()
7037      << QualType(SourceType, 0) << TargetClass;
7038    return true;
7039  }
7040
7041  if (!CurContext->isDependentContext())
7042    BaseIt->setInheritConstructors();
7043
7044  return false;
7045}
7046
7047/// Checks that the given using declaration is not an invalid
7048/// redeclaration.  Note that this is checking only for the using decl
7049/// itself, not for any ill-formedness among the UsingShadowDecls.
7050bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7051                                       bool isTypeName,
7052                                       const CXXScopeSpec &SS,
7053                                       SourceLocation NameLoc,
7054                                       const LookupResult &Prev) {
7055  // C++03 [namespace.udecl]p8:
7056  // C++0x [namespace.udecl]p10:
7057  //   A using-declaration is a declaration and can therefore be used
7058  //   repeatedly where (and only where) multiple declarations are
7059  //   allowed.
7060  //
7061  // That's in non-member contexts.
7062  if (!CurContext->getRedeclContext()->isRecord())
7063    return false;
7064
7065  NestedNameSpecifier *Qual
7066    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7067
7068  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7069    NamedDecl *D = *I;
7070
7071    bool DTypename;
7072    NestedNameSpecifier *DQual;
7073    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7074      DTypename = UD->isTypeName();
7075      DQual = UD->getQualifier();
7076    } else if (UnresolvedUsingValueDecl *UD
7077                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7078      DTypename = false;
7079      DQual = UD->getQualifier();
7080    } else if (UnresolvedUsingTypenameDecl *UD
7081                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7082      DTypename = true;
7083      DQual = UD->getQualifier();
7084    } else continue;
7085
7086    // using decls differ if one says 'typename' and the other doesn't.
7087    // FIXME: non-dependent using decls?
7088    if (isTypeName != DTypename) continue;
7089
7090    // using decls differ if they name different scopes (but note that
7091    // template instantiation can cause this check to trigger when it
7092    // didn't before instantiation).
7093    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7094        Context.getCanonicalNestedNameSpecifier(DQual))
7095      continue;
7096
7097    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7098    Diag(D->getLocation(), diag::note_using_decl) << 1;
7099    return true;
7100  }
7101
7102  return false;
7103}
7104
7105
7106/// Checks that the given nested-name qualifier used in a using decl
7107/// in the current context is appropriately related to the current
7108/// scope.  If an error is found, diagnoses it and returns true.
7109bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7110                                   const CXXScopeSpec &SS,
7111                                   SourceLocation NameLoc) {
7112  DeclContext *NamedContext = computeDeclContext(SS);
7113
7114  if (!CurContext->isRecord()) {
7115    // C++03 [namespace.udecl]p3:
7116    // C++0x [namespace.udecl]p8:
7117    //   A using-declaration for a class member shall be a member-declaration.
7118
7119    // If we weren't able to compute a valid scope, it must be a
7120    // dependent class scope.
7121    if (!NamedContext || NamedContext->isRecord()) {
7122      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7123        << SS.getRange();
7124      return true;
7125    }
7126
7127    // Otherwise, everything is known to be fine.
7128    return false;
7129  }
7130
7131  // The current scope is a record.
7132
7133  // If the named context is dependent, we can't decide much.
7134  if (!NamedContext) {
7135    // FIXME: in C++0x, we can diagnose if we can prove that the
7136    // nested-name-specifier does not refer to a base class, which is
7137    // still possible in some cases.
7138
7139    // Otherwise we have to conservatively report that things might be
7140    // okay.
7141    return false;
7142  }
7143
7144  if (!NamedContext->isRecord()) {
7145    // Ideally this would point at the last name in the specifier,
7146    // but we don't have that level of source info.
7147    Diag(SS.getRange().getBegin(),
7148         diag::err_using_decl_nested_name_specifier_is_not_class)
7149      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7150    return true;
7151  }
7152
7153  if (!NamedContext->isDependentContext() &&
7154      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7155    return true;
7156
7157  if (getLangOpts().CPlusPlus11) {
7158    // C++0x [namespace.udecl]p3:
7159    //   In a using-declaration used as a member-declaration, the
7160    //   nested-name-specifier shall name a base class of the class
7161    //   being defined.
7162
7163    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7164                                 cast<CXXRecordDecl>(NamedContext))) {
7165      if (CurContext == NamedContext) {
7166        Diag(NameLoc,
7167             diag::err_using_decl_nested_name_specifier_is_current_class)
7168          << SS.getRange();
7169        return true;
7170      }
7171
7172      Diag(SS.getRange().getBegin(),
7173           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7174        << (NestedNameSpecifier*) SS.getScopeRep()
7175        << cast<CXXRecordDecl>(CurContext)
7176        << SS.getRange();
7177      return true;
7178    }
7179
7180    return false;
7181  }
7182
7183  // C++03 [namespace.udecl]p4:
7184  //   A using-declaration used as a member-declaration shall refer
7185  //   to a member of a base class of the class being defined [etc.].
7186
7187  // Salient point: SS doesn't have to name a base class as long as
7188  // lookup only finds members from base classes.  Therefore we can
7189  // diagnose here only if we can prove that that can't happen,
7190  // i.e. if the class hierarchies provably don't intersect.
7191
7192  // TODO: it would be nice if "definitely valid" results were cached
7193  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7194  // need to be repeated.
7195
7196  struct UserData {
7197    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7198
7199    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7200      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7201      Data->Bases.insert(Base);
7202      return true;
7203    }
7204
7205    bool hasDependentBases(const CXXRecordDecl *Class) {
7206      return !Class->forallBases(collect, this);
7207    }
7208
7209    /// Returns true if the base is dependent or is one of the
7210    /// accumulated base classes.
7211    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7212      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7213      return !Data->Bases.count(Base);
7214    }
7215
7216    bool mightShareBases(const CXXRecordDecl *Class) {
7217      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7218    }
7219  };
7220
7221  UserData Data;
7222
7223  // Returns false if we find a dependent base.
7224  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7225    return false;
7226
7227  // Returns false if the class has a dependent base or if it or one
7228  // of its bases is present in the base set of the current context.
7229  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7230    return false;
7231
7232  Diag(SS.getRange().getBegin(),
7233       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7234    << (NestedNameSpecifier*) SS.getScopeRep()
7235    << cast<CXXRecordDecl>(CurContext)
7236    << SS.getRange();
7237
7238  return true;
7239}
7240
7241Decl *Sema::ActOnAliasDeclaration(Scope *S,
7242                                  AccessSpecifier AS,
7243                                  MultiTemplateParamsArg TemplateParamLists,
7244                                  SourceLocation UsingLoc,
7245                                  UnqualifiedId &Name,
7246                                  AttributeList *AttrList,
7247                                  TypeResult Type) {
7248  // Skip up to the relevant declaration scope.
7249  while (S->getFlags() & Scope::TemplateParamScope)
7250    S = S->getParent();
7251  assert((S->getFlags() & Scope::DeclScope) &&
7252         "got alias-declaration outside of declaration scope");
7253
7254  if (Type.isInvalid())
7255    return 0;
7256
7257  bool Invalid = false;
7258  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7259  TypeSourceInfo *TInfo = 0;
7260  GetTypeFromParser(Type.get(), &TInfo);
7261
7262  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7263    return 0;
7264
7265  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7266                                      UPPC_DeclarationType)) {
7267    Invalid = true;
7268    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7269                                             TInfo->getTypeLoc().getBeginLoc());
7270  }
7271
7272  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7273  LookupName(Previous, S);
7274
7275  // Warn about shadowing the name of a template parameter.
7276  if (Previous.isSingleResult() &&
7277      Previous.getFoundDecl()->isTemplateParameter()) {
7278    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7279    Previous.clear();
7280  }
7281
7282  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7283         "name in alias declaration must be an identifier");
7284  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7285                                               Name.StartLocation,
7286                                               Name.Identifier, TInfo);
7287
7288  NewTD->setAccess(AS);
7289
7290  if (Invalid)
7291    NewTD->setInvalidDecl();
7292
7293  ProcessDeclAttributeList(S, NewTD, AttrList);
7294
7295  CheckTypedefForVariablyModifiedType(S, NewTD);
7296  Invalid |= NewTD->isInvalidDecl();
7297
7298  bool Redeclaration = false;
7299
7300  NamedDecl *NewND;
7301  if (TemplateParamLists.size()) {
7302    TypeAliasTemplateDecl *OldDecl = 0;
7303    TemplateParameterList *OldTemplateParams = 0;
7304
7305    if (TemplateParamLists.size() != 1) {
7306      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7307        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7308         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7309    }
7310    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7311
7312    // Only consider previous declarations in the same scope.
7313    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7314                         /*ExplicitInstantiationOrSpecialization*/false);
7315    if (!Previous.empty()) {
7316      Redeclaration = true;
7317
7318      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7319      if (!OldDecl && !Invalid) {
7320        Diag(UsingLoc, diag::err_redefinition_different_kind)
7321          << Name.Identifier;
7322
7323        NamedDecl *OldD = Previous.getRepresentativeDecl();
7324        if (OldD->getLocation().isValid())
7325          Diag(OldD->getLocation(), diag::note_previous_definition);
7326
7327        Invalid = true;
7328      }
7329
7330      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7331        if (TemplateParameterListsAreEqual(TemplateParams,
7332                                           OldDecl->getTemplateParameters(),
7333                                           /*Complain=*/true,
7334                                           TPL_TemplateMatch))
7335          OldTemplateParams = OldDecl->getTemplateParameters();
7336        else
7337          Invalid = true;
7338
7339        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7340        if (!Invalid &&
7341            !Context.hasSameType(OldTD->getUnderlyingType(),
7342                                 NewTD->getUnderlyingType())) {
7343          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7344          // but we can't reasonably accept it.
7345          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7346            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7347          if (OldTD->getLocation().isValid())
7348            Diag(OldTD->getLocation(), diag::note_previous_definition);
7349          Invalid = true;
7350        }
7351      }
7352    }
7353
7354    // Merge any previous default template arguments into our parameters,
7355    // and check the parameter list.
7356    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7357                                   TPC_TypeAliasTemplate))
7358      return 0;
7359
7360    TypeAliasTemplateDecl *NewDecl =
7361      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7362                                    Name.Identifier, TemplateParams,
7363                                    NewTD);
7364
7365    NewDecl->setAccess(AS);
7366
7367    if (Invalid)
7368      NewDecl->setInvalidDecl();
7369    else if (OldDecl)
7370      NewDecl->setPreviousDeclaration(OldDecl);
7371
7372    NewND = NewDecl;
7373  } else {
7374    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7375    NewND = NewTD;
7376  }
7377
7378  if (!Redeclaration)
7379    PushOnScopeChains(NewND, S);
7380
7381  ActOnDocumentableDecl(NewND);
7382  return NewND;
7383}
7384
7385Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7386                                             SourceLocation NamespaceLoc,
7387                                             SourceLocation AliasLoc,
7388                                             IdentifierInfo *Alias,
7389                                             CXXScopeSpec &SS,
7390                                             SourceLocation IdentLoc,
7391                                             IdentifierInfo *Ident) {
7392
7393  // Lookup the namespace name.
7394  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7395  LookupParsedName(R, S, &SS);
7396
7397  // Check if we have a previous declaration with the same name.
7398  NamedDecl *PrevDecl
7399    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7400                       ForRedeclaration);
7401  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7402    PrevDecl = 0;
7403
7404  if (PrevDecl) {
7405    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7406      // We already have an alias with the same name that points to the same
7407      // namespace, so don't create a new one.
7408      // FIXME: At some point, we'll want to create the (redundant)
7409      // declaration to maintain better source information.
7410      if (!R.isAmbiguous() && !R.empty() &&
7411          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7412        return 0;
7413    }
7414
7415    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7416      diag::err_redefinition_different_kind;
7417    Diag(AliasLoc, DiagID) << Alias;
7418    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7419    return 0;
7420  }
7421
7422  if (R.isAmbiguous())
7423    return 0;
7424
7425  if (R.empty()) {
7426    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7427      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7428      return 0;
7429    }
7430  }
7431
7432  NamespaceAliasDecl *AliasDecl =
7433    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7434                               Alias, SS.getWithLocInContext(Context),
7435                               IdentLoc, R.getFoundDecl());
7436
7437  PushOnScopeChains(AliasDecl, S);
7438  return AliasDecl;
7439}
7440
7441Sema::ImplicitExceptionSpecification
7442Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7443                                               CXXMethodDecl *MD) {
7444  CXXRecordDecl *ClassDecl = MD->getParent();
7445
7446  // C++ [except.spec]p14:
7447  //   An implicitly declared special member function (Clause 12) shall have an
7448  //   exception-specification. [...]
7449  ImplicitExceptionSpecification ExceptSpec(*this);
7450  if (ClassDecl->isInvalidDecl())
7451    return ExceptSpec;
7452
7453  // Direct base-class constructors.
7454  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7455                                       BEnd = ClassDecl->bases_end();
7456       B != BEnd; ++B) {
7457    if (B->isVirtual()) // Handled below.
7458      continue;
7459
7460    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7461      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7462      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7463      // If this is a deleted function, add it anyway. This might be conformant
7464      // with the standard. This might not. I'm not sure. It might not matter.
7465      if (Constructor)
7466        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7467    }
7468  }
7469
7470  // Virtual base-class constructors.
7471  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7472                                       BEnd = ClassDecl->vbases_end();
7473       B != BEnd; ++B) {
7474    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7475      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7476      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7477      // If this is a deleted function, add it anyway. This might be conformant
7478      // with the standard. This might not. I'm not sure. It might not matter.
7479      if (Constructor)
7480        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7481    }
7482  }
7483
7484  // Field constructors.
7485  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7486                               FEnd = ClassDecl->field_end();
7487       F != FEnd; ++F) {
7488    if (F->hasInClassInitializer()) {
7489      if (Expr *E = F->getInClassInitializer())
7490        ExceptSpec.CalledExpr(E);
7491      else if (!F->isInvalidDecl())
7492        // DR1351:
7493        //   If the brace-or-equal-initializer of a non-static data member
7494        //   invokes a defaulted default constructor of its class or of an
7495        //   enclosing class in a potentially evaluated subexpression, the
7496        //   program is ill-formed.
7497        //
7498        // This resolution is unworkable: the exception specification of the
7499        // default constructor can be needed in an unevaluated context, in
7500        // particular, in the operand of a noexcept-expression, and we can be
7501        // unable to compute an exception specification for an enclosed class.
7502        //
7503        // We do not allow an in-class initializer to require the evaluation
7504        // of the exception specification for any in-class initializer whose
7505        // definition is not lexically complete.
7506        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7507    } else if (const RecordType *RecordTy
7508              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7509      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7510      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7511      // If this is a deleted function, add it anyway. This might be conformant
7512      // with the standard. This might not. I'm not sure. It might not matter.
7513      // In particular, the problem is that this function never gets called. It
7514      // might just be ill-formed because this function attempts to refer to
7515      // a deleted function here.
7516      if (Constructor)
7517        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7518    }
7519  }
7520
7521  return ExceptSpec;
7522}
7523
7524Sema::ImplicitExceptionSpecification
7525Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7526  CXXRecordDecl *ClassDecl = CD->getParent();
7527
7528  // C++ [except.spec]p14:
7529  //   An inheriting constructor [...] shall have an exception-specification. [...]
7530  ImplicitExceptionSpecification ExceptSpec(*this);
7531  if (ClassDecl->isInvalidDecl())
7532    return ExceptSpec;
7533
7534  // Inherited constructor.
7535  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7536  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7537  // FIXME: Copying or moving the parameters could add extra exceptions to the
7538  // set, as could the default arguments for the inherited constructor. This
7539  // will be addressed when we implement the resolution of core issue 1351.
7540  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7541
7542  // Direct base-class constructors.
7543  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7544                                       BEnd = ClassDecl->bases_end();
7545       B != BEnd; ++B) {
7546    if (B->isVirtual()) // Handled below.
7547      continue;
7548
7549    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7550      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7551      if (BaseClassDecl == InheritedDecl)
7552        continue;
7553      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7554      if (Constructor)
7555        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7556    }
7557  }
7558
7559  // Virtual base-class constructors.
7560  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7561                                       BEnd = ClassDecl->vbases_end();
7562       B != BEnd; ++B) {
7563    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7564      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7565      if (BaseClassDecl == InheritedDecl)
7566        continue;
7567      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7568      if (Constructor)
7569        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7570    }
7571  }
7572
7573  // Field constructors.
7574  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7575                               FEnd = ClassDecl->field_end();
7576       F != FEnd; ++F) {
7577    if (F->hasInClassInitializer()) {
7578      if (Expr *E = F->getInClassInitializer())
7579        ExceptSpec.CalledExpr(E);
7580      else if (!F->isInvalidDecl())
7581        Diag(CD->getLocation(),
7582             diag::err_in_class_initializer_references_def_ctor) << CD;
7583    } else if (const RecordType *RecordTy
7584              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7585      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7586      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7587      if (Constructor)
7588        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7589    }
7590  }
7591
7592  return ExceptSpec;
7593}
7594
7595namespace {
7596/// RAII object to register a special member as being currently declared.
7597struct DeclaringSpecialMember {
7598  Sema &S;
7599  Sema::SpecialMemberDecl D;
7600  bool WasAlreadyBeingDeclared;
7601
7602  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7603    : S(S), D(RD, CSM) {
7604    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7605    if (WasAlreadyBeingDeclared)
7606      // This almost never happens, but if it does, ensure that our cache
7607      // doesn't contain a stale result.
7608      S.SpecialMemberCache.clear();
7609
7610    // FIXME: Register a note to be produced if we encounter an error while
7611    // declaring the special member.
7612  }
7613  ~DeclaringSpecialMember() {
7614    if (!WasAlreadyBeingDeclared)
7615      S.SpecialMembersBeingDeclared.erase(D);
7616  }
7617
7618  /// \brief Are we already trying to declare this special member?
7619  bool isAlreadyBeingDeclared() const {
7620    return WasAlreadyBeingDeclared;
7621  }
7622};
7623}
7624
7625CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7626                                                     CXXRecordDecl *ClassDecl) {
7627  // C++ [class.ctor]p5:
7628  //   A default constructor for a class X is a constructor of class X
7629  //   that can be called without an argument. If there is no
7630  //   user-declared constructor for class X, a default constructor is
7631  //   implicitly declared. An implicitly-declared default constructor
7632  //   is an inline public member of its class.
7633  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7634         "Should not build implicit default constructor!");
7635
7636  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7637  if (DSM.isAlreadyBeingDeclared())
7638    return 0;
7639
7640  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7641                                                     CXXDefaultConstructor,
7642                                                     false);
7643
7644  // Create the actual constructor declaration.
7645  CanQualType ClassType
7646    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7647  SourceLocation ClassLoc = ClassDecl->getLocation();
7648  DeclarationName Name
7649    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7650  DeclarationNameInfo NameInfo(Name, ClassLoc);
7651  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7652      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7653      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7654      Constexpr);
7655  DefaultCon->setAccess(AS_public);
7656  DefaultCon->setDefaulted();
7657  DefaultCon->setImplicit();
7658
7659  // Build an exception specification pointing back at this constructor.
7660  FunctionProtoType::ExtProtoInfo EPI;
7661  EPI.ExceptionSpecType = EST_Unevaluated;
7662  EPI.ExceptionSpecDecl = DefaultCon;
7663  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7664                                              ArrayRef<QualType>(),
7665                                              EPI));
7666
7667  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7668  // constructors is easy to compute.
7669  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7670
7671  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7672    SetDeclDeleted(DefaultCon, ClassLoc);
7673
7674  // Note that we have declared this constructor.
7675  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7676
7677  if (Scope *S = getScopeForContext(ClassDecl))
7678    PushOnScopeChains(DefaultCon, S, false);
7679  ClassDecl->addDecl(DefaultCon);
7680
7681  return DefaultCon;
7682}
7683
7684void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7685                                            CXXConstructorDecl *Constructor) {
7686  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7687          !Constructor->doesThisDeclarationHaveABody() &&
7688          !Constructor->isDeleted()) &&
7689    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7690
7691  CXXRecordDecl *ClassDecl = Constructor->getParent();
7692  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7693
7694  SynthesizedFunctionScope Scope(*this, Constructor);
7695  DiagnosticErrorTrap Trap(Diags);
7696  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7697      Trap.hasErrorOccurred()) {
7698    Diag(CurrentLocation, diag::note_member_synthesized_at)
7699      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7700    Constructor->setInvalidDecl();
7701    return;
7702  }
7703
7704  SourceLocation Loc = Constructor->getLocation();
7705  Constructor->setBody(new (Context) CompoundStmt(Loc));
7706
7707  Constructor->setUsed();
7708  MarkVTableUsed(CurrentLocation, ClassDecl);
7709
7710  if (ASTMutationListener *L = getASTMutationListener()) {
7711    L->CompletedImplicitDefinition(Constructor);
7712  }
7713}
7714
7715void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7716  // Check that any explicitly-defaulted methods have exception specifications
7717  // compatible with their implicit exception specifications.
7718  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7719}
7720
7721namespace {
7722/// Information on inheriting constructors to declare.
7723class InheritingConstructorInfo {
7724public:
7725  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7726      : SemaRef(SemaRef), Derived(Derived) {
7727    // Mark the constructors that we already have in the derived class.
7728    //
7729    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7730    //   unless there is a user-declared constructor with the same signature in
7731    //   the class where the using-declaration appears.
7732    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7733  }
7734
7735  void inheritAll(CXXRecordDecl *RD) {
7736    visitAll(RD, &InheritingConstructorInfo::inherit);
7737  }
7738
7739private:
7740  /// Information about an inheriting constructor.
7741  struct InheritingConstructor {
7742    InheritingConstructor()
7743      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7744
7745    /// If \c true, a constructor with this signature is already declared
7746    /// in the derived class.
7747    bool DeclaredInDerived;
7748
7749    /// The constructor which is inherited.
7750    const CXXConstructorDecl *BaseCtor;
7751
7752    /// The derived constructor we declared.
7753    CXXConstructorDecl *DerivedCtor;
7754  };
7755
7756  /// Inheriting constructors with a given canonical type. There can be at
7757  /// most one such non-template constructor, and any number of templated
7758  /// constructors.
7759  struct InheritingConstructorsForType {
7760    InheritingConstructor NonTemplate;
7761    llvm::SmallVector<
7762      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7763
7764    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7765      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7766        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7767        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7768          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7769                                               false, S.TPL_TemplateMatch))
7770            return Templates[I].second;
7771        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7772        return Templates.back().second;
7773      }
7774
7775      return NonTemplate;
7776    }
7777  };
7778
7779  /// Get or create the inheriting constructor record for a constructor.
7780  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7781                                  QualType CtorType) {
7782    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7783        .getEntry(SemaRef, Ctor);
7784  }
7785
7786  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7787
7788  /// Process all constructors for a class.
7789  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7790    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7791                                      CtorE = RD->ctor_end();
7792         CtorIt != CtorE; ++CtorIt)
7793      (this->*Callback)(*CtorIt);
7794    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7795             I(RD->decls_begin()), E(RD->decls_end());
7796         I != E; ++I) {
7797      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7798      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7799        (this->*Callback)(CD);
7800    }
7801  }
7802
7803  /// Note that a constructor (or constructor template) was declared in Derived.
7804  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7805    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7806  }
7807
7808  /// Inherit a single constructor.
7809  void inherit(const CXXConstructorDecl *Ctor) {
7810    const FunctionProtoType *CtorType =
7811        Ctor->getType()->castAs<FunctionProtoType>();
7812    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7813    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7814
7815    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7816
7817    // Core issue (no number yet): the ellipsis is always discarded.
7818    if (EPI.Variadic) {
7819      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7820      SemaRef.Diag(Ctor->getLocation(),
7821                   diag::note_using_decl_constructor_ellipsis);
7822      EPI.Variadic = false;
7823    }
7824
7825    // Declare a constructor for each number of parameters.
7826    //
7827    // C++11 [class.inhctor]p1:
7828    //   The candidate set of inherited constructors from the class X named in
7829    //   the using-declaration consists of [... modulo defects ...] for each
7830    //   constructor or constructor template of X, the set of constructors or
7831    //   constructor templates that results from omitting any ellipsis parameter
7832    //   specification and successively omitting parameters with a default
7833    //   argument from the end of the parameter-type-list
7834    for (unsigned Params = std::max(minParamsToInherit(Ctor),
7835                                    Ctor->getMinRequiredArguments()),
7836                  MaxParams = Ctor->getNumParams();
7837         Params <= MaxParams; ++Params)
7838      declareCtor(UsingLoc, Ctor,
7839                  SemaRef.Context.getFunctionType(
7840                      Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7841  }
7842
7843  /// Find the using-declaration which specified that we should inherit the
7844  /// constructors of \p Base.
7845  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
7846    // No fancy lookup required; just look for the base constructor name
7847    // directly within the derived class.
7848    ASTContext &Context = SemaRef.Context;
7849    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7850        Context.getCanonicalType(Context.getRecordType(Base)));
7851    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
7852    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
7853  }
7854
7855  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
7856    // C++11 [class.inhctor]p3:
7857    //   [F]or each constructor template in the candidate set of inherited
7858    //   constructors, a constructor template is implicitly declared
7859    if (Ctor->getDescribedFunctionTemplate())
7860      return 0;
7861
7862    //   For each non-template constructor in the candidate set of inherited
7863    //   constructors other than a constructor having no parameters or a
7864    //   copy/move constructor having a single parameter, a constructor is
7865    //   implicitly declared [...]
7866    if (Ctor->getNumParams() == 0)
7867      return 1;
7868    if (Ctor->isCopyOrMoveConstructor())
7869      return 2;
7870
7871    // Per discussion on core reflector, never inherit a constructor which
7872    // would become a default, copy, or move constructor of Derived either.
7873    const ParmVarDecl *PD = Ctor->getParamDecl(0);
7874    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
7875    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
7876  }
7877
7878  /// Declare a single inheriting constructor, inheriting the specified
7879  /// constructor, with the given type.
7880  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
7881                   QualType DerivedType) {
7882    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
7883
7884    // C++11 [class.inhctor]p3:
7885    //   ... a constructor is implicitly declared with the same constructor
7886    //   characteristics unless there is a user-declared constructor with
7887    //   the same signature in the class where the using-declaration appears
7888    if (Entry.DeclaredInDerived)
7889      return;
7890
7891    // C++11 [class.inhctor]p7:
7892    //   If two using-declarations declare inheriting constructors with the
7893    //   same signature, the program is ill-formed
7894    if (Entry.DerivedCtor) {
7895      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
7896        // Only diagnose this once per constructor.
7897        if (Entry.DerivedCtor->isInvalidDecl())
7898          return;
7899        Entry.DerivedCtor->setInvalidDecl();
7900
7901        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7902        SemaRef.Diag(BaseCtor->getLocation(),
7903                     diag::note_using_decl_constructor_conflict_current_ctor);
7904        SemaRef.Diag(Entry.BaseCtor->getLocation(),
7905                     diag::note_using_decl_constructor_conflict_previous_ctor);
7906        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
7907                     diag::note_using_decl_constructor_conflict_previous_using);
7908      } else {
7909        // Core issue (no number): if the same inheriting constructor is
7910        // produced by multiple base class constructors from the same base
7911        // class, the inheriting constructor is defined as deleted.
7912        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
7913      }
7914
7915      return;
7916    }
7917
7918    ASTContext &Context = SemaRef.Context;
7919    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7920        Context.getCanonicalType(Context.getRecordType(Derived)));
7921    DeclarationNameInfo NameInfo(Name, UsingLoc);
7922
7923    TemplateParameterList *TemplateParams = 0;
7924    if (const FunctionTemplateDecl *FTD =
7925            BaseCtor->getDescribedFunctionTemplate()) {
7926      TemplateParams = FTD->getTemplateParameters();
7927      // We're reusing template parameters from a different DeclContext. This
7928      // is questionable at best, but works out because the template depth in
7929      // both places is guaranteed to be 0.
7930      // FIXME: Rebuild the template parameters in the new context, and
7931      // transform the function type to refer to them.
7932    }
7933
7934    // Build type source info pointing at the using-declaration. This is
7935    // required by template instantiation.
7936    TypeSourceInfo *TInfo =
7937        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
7938    FunctionProtoTypeLoc ProtoLoc =
7939        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
7940
7941    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
7942        Context, Derived, UsingLoc, NameInfo, DerivedType,
7943        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
7944        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7945
7946    // Build an unevaluated exception specification for this constructor.
7947    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
7948    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7949    EPI.ExceptionSpecType = EST_Unevaluated;
7950    EPI.ExceptionSpecDecl = DerivedCtor;
7951    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
7952                                                 FPT->getArgTypes(), EPI));
7953
7954    // Build the parameter declarations.
7955    SmallVector<ParmVarDecl *, 16> ParamDecls;
7956    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
7957      TypeSourceInfo *TInfo =
7958          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
7959      ParmVarDecl *PD = ParmVarDecl::Create(
7960          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
7961          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
7962      PD->setScopeInfo(0, I);
7963      PD->setImplicit();
7964      ParamDecls.push_back(PD);
7965      ProtoLoc.setArg(I, PD);
7966    }
7967
7968    // Set up the new constructor.
7969    DerivedCtor->setAccess(BaseCtor->getAccess());
7970    DerivedCtor->setParams(ParamDecls);
7971    DerivedCtor->setInheritedConstructor(BaseCtor);
7972    if (BaseCtor->isDeleted())
7973      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
7974
7975    // If this is a constructor template, build the template declaration.
7976    if (TemplateParams) {
7977      FunctionTemplateDecl *DerivedTemplate =
7978          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
7979                                       TemplateParams, DerivedCtor);
7980      DerivedTemplate->setAccess(BaseCtor->getAccess());
7981      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
7982      Derived->addDecl(DerivedTemplate);
7983    } else {
7984      Derived->addDecl(DerivedCtor);
7985    }
7986
7987    Entry.BaseCtor = BaseCtor;
7988    Entry.DerivedCtor = DerivedCtor;
7989  }
7990
7991  Sema &SemaRef;
7992  CXXRecordDecl *Derived;
7993  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
7994  MapType Map;
7995};
7996}
7997
7998void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
7999  // Defer declaring the inheriting constructors until the class is
8000  // instantiated.
8001  if (ClassDecl->isDependentContext())
8002    return;
8003
8004  // Find base classes from which we might inherit constructors.
8005  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8006  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8007                                          BaseE = ClassDecl->bases_end();
8008       BaseIt != BaseE; ++BaseIt)
8009    if (BaseIt->getInheritConstructors())
8010      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8011
8012  // Go no further if we're not inheriting any constructors.
8013  if (InheritedBases.empty())
8014    return;
8015
8016  // Declare the inherited constructors.
8017  InheritingConstructorInfo ICI(*this, ClassDecl);
8018  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8019    ICI.inheritAll(InheritedBases[I]);
8020}
8021
8022void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8023                                       CXXConstructorDecl *Constructor) {
8024  CXXRecordDecl *ClassDecl = Constructor->getParent();
8025  assert(Constructor->getInheritedConstructor() &&
8026         !Constructor->doesThisDeclarationHaveABody() &&
8027         !Constructor->isDeleted());
8028
8029  SynthesizedFunctionScope Scope(*this, Constructor);
8030  DiagnosticErrorTrap Trap(Diags);
8031  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8032      Trap.hasErrorOccurred()) {
8033    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8034      << Context.getTagDeclType(ClassDecl);
8035    Constructor->setInvalidDecl();
8036    return;
8037  }
8038
8039  SourceLocation Loc = Constructor->getLocation();
8040  Constructor->setBody(new (Context) CompoundStmt(Loc));
8041
8042  Constructor->setUsed();
8043  MarkVTableUsed(CurrentLocation, ClassDecl);
8044
8045  if (ASTMutationListener *L = getASTMutationListener()) {
8046    L->CompletedImplicitDefinition(Constructor);
8047  }
8048}
8049
8050
8051Sema::ImplicitExceptionSpecification
8052Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8053  CXXRecordDecl *ClassDecl = MD->getParent();
8054
8055  // C++ [except.spec]p14:
8056  //   An implicitly declared special member function (Clause 12) shall have
8057  //   an exception-specification.
8058  ImplicitExceptionSpecification ExceptSpec(*this);
8059  if (ClassDecl->isInvalidDecl())
8060    return ExceptSpec;
8061
8062  // Direct base-class destructors.
8063  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8064                                       BEnd = ClassDecl->bases_end();
8065       B != BEnd; ++B) {
8066    if (B->isVirtual()) // Handled below.
8067      continue;
8068
8069    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8070      ExceptSpec.CalledDecl(B->getLocStart(),
8071                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8072  }
8073
8074  // Virtual base-class destructors.
8075  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8076                                       BEnd = ClassDecl->vbases_end();
8077       B != BEnd; ++B) {
8078    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8079      ExceptSpec.CalledDecl(B->getLocStart(),
8080                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8081  }
8082
8083  // Field destructors.
8084  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8085                               FEnd = ClassDecl->field_end();
8086       F != FEnd; ++F) {
8087    if (const RecordType *RecordTy
8088        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8089      ExceptSpec.CalledDecl(F->getLocation(),
8090                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8091  }
8092
8093  return ExceptSpec;
8094}
8095
8096CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8097  // C++ [class.dtor]p2:
8098  //   If a class has no user-declared destructor, a destructor is
8099  //   declared implicitly. An implicitly-declared destructor is an
8100  //   inline public member of its class.
8101  assert(ClassDecl->needsImplicitDestructor());
8102
8103  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8104  if (DSM.isAlreadyBeingDeclared())
8105    return 0;
8106
8107  // Create the actual destructor declaration.
8108  CanQualType ClassType
8109    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8110  SourceLocation ClassLoc = ClassDecl->getLocation();
8111  DeclarationName Name
8112    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8113  DeclarationNameInfo NameInfo(Name, ClassLoc);
8114  CXXDestructorDecl *Destructor
8115      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8116                                  QualType(), 0, /*isInline=*/true,
8117                                  /*isImplicitlyDeclared=*/true);
8118  Destructor->setAccess(AS_public);
8119  Destructor->setDefaulted();
8120  Destructor->setImplicit();
8121
8122  // Build an exception specification pointing back at this destructor.
8123  FunctionProtoType::ExtProtoInfo EPI;
8124  EPI.ExceptionSpecType = EST_Unevaluated;
8125  EPI.ExceptionSpecDecl = Destructor;
8126  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8127                                              ArrayRef<QualType>(),
8128                                              EPI));
8129
8130  AddOverriddenMethods(ClassDecl, Destructor);
8131
8132  // We don't need to use SpecialMemberIsTrivial here; triviality for
8133  // destructors is easy to compute.
8134  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8135
8136  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8137    SetDeclDeleted(Destructor, ClassLoc);
8138
8139  // Note that we have declared this destructor.
8140  ++ASTContext::NumImplicitDestructorsDeclared;
8141
8142  // Introduce this destructor into its scope.
8143  if (Scope *S = getScopeForContext(ClassDecl))
8144    PushOnScopeChains(Destructor, S, false);
8145  ClassDecl->addDecl(Destructor);
8146
8147  return Destructor;
8148}
8149
8150void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8151                                    CXXDestructorDecl *Destructor) {
8152  assert((Destructor->isDefaulted() &&
8153          !Destructor->doesThisDeclarationHaveABody() &&
8154          !Destructor->isDeleted()) &&
8155         "DefineImplicitDestructor - call it for implicit default dtor");
8156  CXXRecordDecl *ClassDecl = Destructor->getParent();
8157  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8158
8159  if (Destructor->isInvalidDecl())
8160    return;
8161
8162  SynthesizedFunctionScope Scope(*this, Destructor);
8163
8164  DiagnosticErrorTrap Trap(Diags);
8165  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8166                                         Destructor->getParent());
8167
8168  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8169    Diag(CurrentLocation, diag::note_member_synthesized_at)
8170      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8171
8172    Destructor->setInvalidDecl();
8173    return;
8174  }
8175
8176  SourceLocation Loc = Destructor->getLocation();
8177  Destructor->setBody(new (Context) CompoundStmt(Loc));
8178  Destructor->setImplicitlyDefined(true);
8179  Destructor->setUsed();
8180  MarkVTableUsed(CurrentLocation, ClassDecl);
8181
8182  if (ASTMutationListener *L = getASTMutationListener()) {
8183    L->CompletedImplicitDefinition(Destructor);
8184  }
8185}
8186
8187/// \brief Perform any semantic analysis which needs to be delayed until all
8188/// pending class member declarations have been parsed.
8189void Sema::ActOnFinishCXXMemberDecls() {
8190  // If the context is an invalid C++ class, just suppress these checks.
8191  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8192    if (Record->isInvalidDecl()) {
8193      DelayedDestructorExceptionSpecChecks.clear();
8194      return;
8195    }
8196  }
8197
8198  // Perform any deferred checking of exception specifications for virtual
8199  // destructors.
8200  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8201       i != e; ++i) {
8202    const CXXDestructorDecl *Dtor =
8203        DelayedDestructorExceptionSpecChecks[i].first;
8204    assert(!Dtor->getParent()->isDependentType() &&
8205           "Should not ever add destructors of templates into the list.");
8206    CheckOverridingFunctionExceptionSpec(Dtor,
8207        DelayedDestructorExceptionSpecChecks[i].second);
8208  }
8209  DelayedDestructorExceptionSpecChecks.clear();
8210}
8211
8212void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8213                                         CXXDestructorDecl *Destructor) {
8214  assert(getLangOpts().CPlusPlus11 &&
8215         "adjusting dtor exception specs was introduced in c++11");
8216
8217  // C++11 [class.dtor]p3:
8218  //   A declaration of a destructor that does not have an exception-
8219  //   specification is implicitly considered to have the same exception-
8220  //   specification as an implicit declaration.
8221  const FunctionProtoType *DtorType = Destructor->getType()->
8222                                        getAs<FunctionProtoType>();
8223  if (DtorType->hasExceptionSpec())
8224    return;
8225
8226  // Replace the destructor's type, building off the existing one. Fortunately,
8227  // the only thing of interest in the destructor type is its extended info.
8228  // The return and arguments are fixed.
8229  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8230  EPI.ExceptionSpecType = EST_Unevaluated;
8231  EPI.ExceptionSpecDecl = Destructor;
8232  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8233                                              ArrayRef<QualType>(),
8234                                              EPI));
8235
8236  // FIXME: If the destructor has a body that could throw, and the newly created
8237  // spec doesn't allow exceptions, we should emit a warning, because this
8238  // change in behavior can break conforming C++03 programs at runtime.
8239  // However, we don't have a body or an exception specification yet, so it
8240  // needs to be done somewhere else.
8241}
8242
8243/// When generating a defaulted copy or move assignment operator, if a field
8244/// should be copied with __builtin_memcpy rather than via explicit assignments,
8245/// do so. This optimization only applies for arrays of scalars, and for arrays
8246/// of class type where the selected copy/move-assignment operator is trivial.
8247static StmtResult
8248buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8249                           Expr *To, Expr *From) {
8250  // Compute the size of the memory buffer to be copied.
8251  QualType SizeType = S.Context.getSizeType();
8252  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8253                   S.Context.getTypeSizeInChars(T).getQuantity());
8254
8255  // Take the address of the field references for "from" and "to". We
8256  // directly construct UnaryOperators here because semantic analysis
8257  // does not permit us to take the address of an xvalue.
8258  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8259                         S.Context.getPointerType(From->getType()),
8260                         VK_RValue, OK_Ordinary, Loc);
8261  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8262                       S.Context.getPointerType(To->getType()),
8263                       VK_RValue, OK_Ordinary, Loc);
8264
8265  const Type *E = T->getBaseElementTypeUnsafe();
8266  bool NeedsCollectableMemCpy =
8267    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8268
8269  // Create a reference to the __builtin_objc_memmove_collectable function
8270  StringRef MemCpyName = NeedsCollectableMemCpy ?
8271    "__builtin_objc_memmove_collectable" :
8272    "__builtin_memcpy";
8273  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8274                 Sema::LookupOrdinaryName);
8275  S.LookupName(R, S.TUScope, true);
8276
8277  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8278  if (!MemCpy)
8279    // Something went horribly wrong earlier, and we will have complained
8280    // about it.
8281    return StmtError();
8282
8283  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8284                                            VK_RValue, Loc, 0);
8285  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8286
8287  Expr *CallArgs[] = {
8288    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8289  };
8290  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8291                                    Loc, CallArgs, Loc);
8292
8293  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8294  return S.Owned(Call.takeAs<Stmt>());
8295}
8296
8297/// \brief Builds a statement that copies/moves the given entity from \p From to
8298/// \c To.
8299///
8300/// This routine is used to copy/move the members of a class with an
8301/// implicitly-declared copy/move assignment operator. When the entities being
8302/// copied are arrays, this routine builds for loops to copy them.
8303///
8304/// \param S The Sema object used for type-checking.
8305///
8306/// \param Loc The location where the implicit copy/move is being generated.
8307///
8308/// \param T The type of the expressions being copied/moved. Both expressions
8309/// must have this type.
8310///
8311/// \param To The expression we are copying/moving to.
8312///
8313/// \param From The expression we are copying/moving from.
8314///
8315/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8316/// Otherwise, it's a non-static member subobject.
8317///
8318/// \param Copying Whether we're copying or moving.
8319///
8320/// \param Depth Internal parameter recording the depth of the recursion.
8321///
8322/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8323/// if a memcpy should be used instead.
8324static StmtResult
8325buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8326                                 Expr *To, Expr *From,
8327                                 bool CopyingBaseSubobject, bool Copying,
8328                                 unsigned Depth = 0) {
8329  // C++11 [class.copy]p28:
8330  //   Each subobject is assigned in the manner appropriate to its type:
8331  //
8332  //     - if the subobject is of class type, as if by a call to operator= with
8333  //       the subobject as the object expression and the corresponding
8334  //       subobject of x as a single function argument (as if by explicit
8335  //       qualification; that is, ignoring any possible virtual overriding
8336  //       functions in more derived classes);
8337  //
8338  // C++03 [class.copy]p13:
8339  //     - if the subobject is of class type, the copy assignment operator for
8340  //       the class is used (as if by explicit qualification; that is,
8341  //       ignoring any possible virtual overriding functions in more derived
8342  //       classes);
8343  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8344    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8345
8346    // Look for operator=.
8347    DeclarationName Name
8348      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8349    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8350    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8351
8352    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8353    // operator.
8354    if (!S.getLangOpts().CPlusPlus11) {
8355      LookupResult::Filter F = OpLookup.makeFilter();
8356      while (F.hasNext()) {
8357        NamedDecl *D = F.next();
8358        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8359          if (Method->isCopyAssignmentOperator() ||
8360              (!Copying && Method->isMoveAssignmentOperator()))
8361            continue;
8362
8363        F.erase();
8364      }
8365      F.done();
8366    }
8367
8368    // Suppress the protected check (C++ [class.protected]) for each of the
8369    // assignment operators we found. This strange dance is required when
8370    // we're assigning via a base classes's copy-assignment operator. To
8371    // ensure that we're getting the right base class subobject (without
8372    // ambiguities), we need to cast "this" to that subobject type; to
8373    // ensure that we don't go through the virtual call mechanism, we need
8374    // to qualify the operator= name with the base class (see below). However,
8375    // this means that if the base class has a protected copy assignment
8376    // operator, the protected member access check will fail. So, we
8377    // rewrite "protected" access to "public" access in this case, since we
8378    // know by construction that we're calling from a derived class.
8379    if (CopyingBaseSubobject) {
8380      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8381           L != LEnd; ++L) {
8382        if (L.getAccess() == AS_protected)
8383          L.setAccess(AS_public);
8384      }
8385    }
8386
8387    // Create the nested-name-specifier that will be used to qualify the
8388    // reference to operator=; this is required to suppress the virtual
8389    // call mechanism.
8390    CXXScopeSpec SS;
8391    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8392    SS.MakeTrivial(S.Context,
8393                   NestedNameSpecifier::Create(S.Context, 0, false,
8394                                               CanonicalT),
8395                   Loc);
8396
8397    // Create the reference to operator=.
8398    ExprResult OpEqualRef
8399      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8400                                   /*TemplateKWLoc=*/SourceLocation(),
8401                                   /*FirstQualifierInScope=*/0,
8402                                   OpLookup,
8403                                   /*TemplateArgs=*/0,
8404                                   /*SuppressQualifierCheck=*/true);
8405    if (OpEqualRef.isInvalid())
8406      return StmtError();
8407
8408    // Build the call to the assignment operator.
8409
8410    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8411                                                  OpEqualRef.takeAs<Expr>(),
8412                                                  Loc, &From, 1, Loc);
8413    if (Call.isInvalid())
8414      return StmtError();
8415
8416    // If we built a call to a trivial 'operator=' while copying an array,
8417    // bail out. We'll replace the whole shebang with a memcpy.
8418    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8419    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8420      return StmtResult((Stmt*)0);
8421
8422    // Convert to an expression-statement, and clean up any produced
8423    // temporaries.
8424    return S.ActOnExprStmt(Call);
8425  }
8426
8427  //     - if the subobject is of scalar type, the built-in assignment
8428  //       operator is used.
8429  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8430  if (!ArrayTy) {
8431    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8432    if (Assignment.isInvalid())
8433      return StmtError();
8434    return S.ActOnExprStmt(Assignment);
8435  }
8436
8437  //     - if the subobject is an array, each element is assigned, in the
8438  //       manner appropriate to the element type;
8439
8440  // Construct a loop over the array bounds, e.g.,
8441  //
8442  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8443  //
8444  // that will copy each of the array elements.
8445  QualType SizeType = S.Context.getSizeType();
8446
8447  // Create the iteration variable.
8448  IdentifierInfo *IterationVarName = 0;
8449  {
8450    SmallString<8> Str;
8451    llvm::raw_svector_ostream OS(Str);
8452    OS << "__i" << Depth;
8453    IterationVarName = &S.Context.Idents.get(OS.str());
8454  }
8455  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8456                                          IterationVarName, SizeType,
8457                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8458                                          SC_None);
8459
8460  // Initialize the iteration variable to zero.
8461  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8462  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8463
8464  // Create a reference to the iteration variable; we'll use this several
8465  // times throughout.
8466  Expr *IterationVarRef
8467    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8468  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8469  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8470  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8471
8472  // Create the DeclStmt that holds the iteration variable.
8473  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8474
8475  // Subscript the "from" and "to" expressions with the iteration variable.
8476  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8477                                                         IterationVarRefRVal,
8478                                                         Loc));
8479  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8480                                                       IterationVarRefRVal,
8481                                                       Loc));
8482  if (!Copying) // Cast to rvalue
8483    From = CastForMoving(S, From);
8484
8485  // Build the copy/move for an individual element of the array.
8486  StmtResult Copy =
8487    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8488                                     To, From, CopyingBaseSubobject,
8489                                     Copying, Depth + 1);
8490  // Bail out if copying fails or if we determined that we should use memcpy.
8491  if (Copy.isInvalid() || !Copy.get())
8492    return Copy;
8493
8494  // Create the comparison against the array bound.
8495  llvm::APInt Upper
8496    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8497  Expr *Comparison
8498    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8499                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8500                                     BO_NE, S.Context.BoolTy,
8501                                     VK_RValue, OK_Ordinary, Loc, false);
8502
8503  // Create the pre-increment of the iteration variable.
8504  Expr *Increment
8505    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8506                                    VK_LValue, OK_Ordinary, Loc);
8507
8508  // Construct the loop that copies all elements of this array.
8509  return S.ActOnForStmt(Loc, Loc, InitStmt,
8510                        S.MakeFullExpr(Comparison),
8511                        0, S.MakeFullDiscardedValueExpr(Increment),
8512                        Loc, Copy.take());
8513}
8514
8515static StmtResult
8516buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8517                      Expr *To, Expr *From,
8518                      bool CopyingBaseSubobject, bool Copying) {
8519  // Maybe we should use a memcpy?
8520  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8521      T.isTriviallyCopyableType(S.Context))
8522    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8523
8524  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8525                                                     CopyingBaseSubobject,
8526                                                     Copying, 0));
8527
8528  // If we ended up picking a trivial assignment operator for an array of a
8529  // non-trivially-copyable class type, just emit a memcpy.
8530  if (!Result.isInvalid() && !Result.get())
8531    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8532
8533  return Result;
8534}
8535
8536Sema::ImplicitExceptionSpecification
8537Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8538  CXXRecordDecl *ClassDecl = MD->getParent();
8539
8540  ImplicitExceptionSpecification ExceptSpec(*this);
8541  if (ClassDecl->isInvalidDecl())
8542    return ExceptSpec;
8543
8544  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8545  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8546  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8547
8548  // C++ [except.spec]p14:
8549  //   An implicitly declared special member function (Clause 12) shall have an
8550  //   exception-specification. [...]
8551
8552  // It is unspecified whether or not an implicit copy assignment operator
8553  // attempts to deduplicate calls to assignment operators of virtual bases are
8554  // made. As such, this exception specification is effectively unspecified.
8555  // Based on a similar decision made for constness in C++0x, we're erring on
8556  // the side of assuming such calls to be made regardless of whether they
8557  // actually happen.
8558  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8559                                       BaseEnd = ClassDecl->bases_end();
8560       Base != BaseEnd; ++Base) {
8561    if (Base->isVirtual())
8562      continue;
8563
8564    CXXRecordDecl *BaseClassDecl
8565      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8566    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8567                                                            ArgQuals, false, 0))
8568      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8569  }
8570
8571  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8572                                       BaseEnd = ClassDecl->vbases_end();
8573       Base != BaseEnd; ++Base) {
8574    CXXRecordDecl *BaseClassDecl
8575      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8576    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8577                                                            ArgQuals, false, 0))
8578      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8579  }
8580
8581  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8582                                  FieldEnd = ClassDecl->field_end();
8583       Field != FieldEnd;
8584       ++Field) {
8585    QualType FieldType = Context.getBaseElementType(Field->getType());
8586    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8587      if (CXXMethodDecl *CopyAssign =
8588          LookupCopyingAssignment(FieldClassDecl,
8589                                  ArgQuals | FieldType.getCVRQualifiers(),
8590                                  false, 0))
8591        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8592    }
8593  }
8594
8595  return ExceptSpec;
8596}
8597
8598CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8599  // Note: The following rules are largely analoguous to the copy
8600  // constructor rules. Note that virtual bases are not taken into account
8601  // for determining the argument type of the operator. Note also that
8602  // operators taking an object instead of a reference are allowed.
8603  assert(ClassDecl->needsImplicitCopyAssignment());
8604
8605  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8606  if (DSM.isAlreadyBeingDeclared())
8607    return 0;
8608
8609  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8610  QualType RetType = Context.getLValueReferenceType(ArgType);
8611  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8612    ArgType = ArgType.withConst();
8613  ArgType = Context.getLValueReferenceType(ArgType);
8614
8615  //   An implicitly-declared copy assignment operator is an inline public
8616  //   member of its class.
8617  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8618  SourceLocation ClassLoc = ClassDecl->getLocation();
8619  DeclarationNameInfo NameInfo(Name, ClassLoc);
8620  CXXMethodDecl *CopyAssignment
8621    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8622                            /*TInfo=*/0,
8623                            /*StorageClass=*/SC_None,
8624                            /*isInline=*/true, /*isConstexpr=*/false,
8625                            SourceLocation());
8626  CopyAssignment->setAccess(AS_public);
8627  CopyAssignment->setDefaulted();
8628  CopyAssignment->setImplicit();
8629
8630  // Build an exception specification pointing back at this member.
8631  FunctionProtoType::ExtProtoInfo EPI;
8632  EPI.ExceptionSpecType = EST_Unevaluated;
8633  EPI.ExceptionSpecDecl = CopyAssignment;
8634  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8635
8636  // Add the parameter to the operator.
8637  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8638                                               ClassLoc, ClassLoc, /*Id=*/0,
8639                                               ArgType, /*TInfo=*/0,
8640                                               SC_None, 0);
8641  CopyAssignment->setParams(FromParam);
8642
8643  AddOverriddenMethods(ClassDecl, CopyAssignment);
8644
8645  CopyAssignment->setTrivial(
8646    ClassDecl->needsOverloadResolutionForCopyAssignment()
8647      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8648      : ClassDecl->hasTrivialCopyAssignment());
8649
8650  // C++0x [class.copy]p19:
8651  //   ....  If the class definition does not explicitly declare a copy
8652  //   assignment operator, there is no user-declared move constructor, and
8653  //   there is no user-declared move assignment operator, a copy assignment
8654  //   operator is implicitly declared as defaulted.
8655  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8656    SetDeclDeleted(CopyAssignment, ClassLoc);
8657
8658  // Note that we have added this copy-assignment operator.
8659  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8660
8661  if (Scope *S = getScopeForContext(ClassDecl))
8662    PushOnScopeChains(CopyAssignment, S, false);
8663  ClassDecl->addDecl(CopyAssignment);
8664
8665  return CopyAssignment;
8666}
8667
8668void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8669                                        CXXMethodDecl *CopyAssignOperator) {
8670  assert((CopyAssignOperator->isDefaulted() &&
8671          CopyAssignOperator->isOverloadedOperator() &&
8672          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8673          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8674          !CopyAssignOperator->isDeleted()) &&
8675         "DefineImplicitCopyAssignment called for wrong function");
8676
8677  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8678
8679  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8680    CopyAssignOperator->setInvalidDecl();
8681    return;
8682  }
8683
8684  CopyAssignOperator->setUsed();
8685
8686  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8687  DiagnosticErrorTrap Trap(Diags);
8688
8689  // C++0x [class.copy]p30:
8690  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8691  //   for a non-union class X performs memberwise copy assignment of its
8692  //   subobjects. The direct base classes of X are assigned first, in the
8693  //   order of their declaration in the base-specifier-list, and then the
8694  //   immediate non-static data members of X are assigned, in the order in
8695  //   which they were declared in the class definition.
8696
8697  // The statements that form the synthesized function body.
8698  SmallVector<Stmt*, 8> Statements;
8699
8700  // The parameter for the "other" object, which we are copying from.
8701  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8702  Qualifiers OtherQuals = Other->getType().getQualifiers();
8703  QualType OtherRefType = Other->getType();
8704  if (const LValueReferenceType *OtherRef
8705                                = OtherRefType->getAs<LValueReferenceType>()) {
8706    OtherRefType = OtherRef->getPointeeType();
8707    OtherQuals = OtherRefType.getQualifiers();
8708  }
8709
8710  // Our location for everything implicitly-generated.
8711  SourceLocation Loc = CopyAssignOperator->getLocation();
8712
8713  // Construct a reference to the "other" object. We'll be using this
8714  // throughout the generated ASTs.
8715  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8716  assert(OtherRef && "Reference to parameter cannot fail!");
8717
8718  // Construct the "this" pointer. We'll be using this throughout the generated
8719  // ASTs.
8720  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8721  assert(This && "Reference to this cannot fail!");
8722
8723  // Assign base classes.
8724  bool Invalid = false;
8725  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8726       E = ClassDecl->bases_end(); Base != E; ++Base) {
8727    // Form the assignment:
8728    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8729    QualType BaseType = Base->getType().getUnqualifiedType();
8730    if (!BaseType->isRecordType()) {
8731      Invalid = true;
8732      continue;
8733    }
8734
8735    CXXCastPath BasePath;
8736    BasePath.push_back(Base);
8737
8738    // Construct the "from" expression, which is an implicit cast to the
8739    // appropriately-qualified base type.
8740    Expr *From = OtherRef;
8741    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8742                             CK_UncheckedDerivedToBase,
8743                             VK_LValue, &BasePath).take();
8744
8745    // Dereference "this".
8746    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8747
8748    // Implicitly cast "this" to the appropriately-qualified base type.
8749    To = ImpCastExprToType(To.take(),
8750                           Context.getCVRQualifiedType(BaseType,
8751                                     CopyAssignOperator->getTypeQualifiers()),
8752                           CK_UncheckedDerivedToBase,
8753                           VK_LValue, &BasePath);
8754
8755    // Build the copy.
8756    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8757                                            To.get(), From,
8758                                            /*CopyingBaseSubobject=*/true,
8759                                            /*Copying=*/true);
8760    if (Copy.isInvalid()) {
8761      Diag(CurrentLocation, diag::note_member_synthesized_at)
8762        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8763      CopyAssignOperator->setInvalidDecl();
8764      return;
8765    }
8766
8767    // Success! Record the copy.
8768    Statements.push_back(Copy.takeAs<Expr>());
8769  }
8770
8771  // Assign non-static members.
8772  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8773                                  FieldEnd = ClassDecl->field_end();
8774       Field != FieldEnd; ++Field) {
8775    if (Field->isUnnamedBitfield())
8776      continue;
8777
8778    // Check for members of reference type; we can't copy those.
8779    if (Field->getType()->isReferenceType()) {
8780      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8781        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8782      Diag(Field->getLocation(), diag::note_declared_at);
8783      Diag(CurrentLocation, diag::note_member_synthesized_at)
8784        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8785      Invalid = true;
8786      continue;
8787    }
8788
8789    // Check for members of const-qualified, non-class type.
8790    QualType BaseType = Context.getBaseElementType(Field->getType());
8791    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8792      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8793        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8794      Diag(Field->getLocation(), diag::note_declared_at);
8795      Diag(CurrentLocation, diag::note_member_synthesized_at)
8796        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8797      Invalid = true;
8798      continue;
8799    }
8800
8801    // Suppress assigning zero-width bitfields.
8802    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8803      continue;
8804
8805    QualType FieldType = Field->getType().getNonReferenceType();
8806    if (FieldType->isIncompleteArrayType()) {
8807      assert(ClassDecl->hasFlexibleArrayMember() &&
8808             "Incomplete array type is not valid");
8809      continue;
8810    }
8811
8812    // Build references to the field in the object we're copying from and to.
8813    CXXScopeSpec SS; // Intentionally empty
8814    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8815                              LookupMemberName);
8816    MemberLookup.addDecl(*Field);
8817    MemberLookup.resolveKind();
8818    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8819                                               Loc, /*IsArrow=*/false,
8820                                               SS, SourceLocation(), 0,
8821                                               MemberLookup, 0);
8822    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8823                                             Loc, /*IsArrow=*/true,
8824                                             SS, SourceLocation(), 0,
8825                                             MemberLookup, 0);
8826    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8827    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8828
8829    // Build the copy of this field.
8830    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8831                                            To.get(), From.get(),
8832                                            /*CopyingBaseSubobject=*/false,
8833                                            /*Copying=*/true);
8834    if (Copy.isInvalid()) {
8835      Diag(CurrentLocation, diag::note_member_synthesized_at)
8836        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8837      CopyAssignOperator->setInvalidDecl();
8838      return;
8839    }
8840
8841    // Success! Record the copy.
8842    Statements.push_back(Copy.takeAs<Stmt>());
8843  }
8844
8845  if (!Invalid) {
8846    // Add a "return *this;"
8847    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8848
8849    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8850    if (Return.isInvalid())
8851      Invalid = true;
8852    else {
8853      Statements.push_back(Return.takeAs<Stmt>());
8854
8855      if (Trap.hasErrorOccurred()) {
8856        Diag(CurrentLocation, diag::note_member_synthesized_at)
8857          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8858        Invalid = true;
8859      }
8860    }
8861  }
8862
8863  if (Invalid) {
8864    CopyAssignOperator->setInvalidDecl();
8865    return;
8866  }
8867
8868  StmtResult Body;
8869  {
8870    CompoundScopeRAII CompoundScope(*this);
8871    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8872                             /*isStmtExpr=*/false);
8873    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8874  }
8875  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8876
8877  if (ASTMutationListener *L = getASTMutationListener()) {
8878    L->CompletedImplicitDefinition(CopyAssignOperator);
8879  }
8880}
8881
8882Sema::ImplicitExceptionSpecification
8883Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8884  CXXRecordDecl *ClassDecl = MD->getParent();
8885
8886  ImplicitExceptionSpecification ExceptSpec(*this);
8887  if (ClassDecl->isInvalidDecl())
8888    return ExceptSpec;
8889
8890  // C++0x [except.spec]p14:
8891  //   An implicitly declared special member function (Clause 12) shall have an
8892  //   exception-specification. [...]
8893
8894  // It is unspecified whether or not an implicit move assignment operator
8895  // attempts to deduplicate calls to assignment operators of virtual bases are
8896  // made. As such, this exception specification is effectively unspecified.
8897  // Based on a similar decision made for constness in C++0x, we're erring on
8898  // the side of assuming such calls to be made regardless of whether they
8899  // actually happen.
8900  // Note that a move constructor is not implicitly declared when there are
8901  // virtual bases, but it can still be user-declared and explicitly defaulted.
8902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8903                                       BaseEnd = ClassDecl->bases_end();
8904       Base != BaseEnd; ++Base) {
8905    if (Base->isVirtual())
8906      continue;
8907
8908    CXXRecordDecl *BaseClassDecl
8909      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8910    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8911                                                           0, false, 0))
8912      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8913  }
8914
8915  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8916                                       BaseEnd = ClassDecl->vbases_end();
8917       Base != BaseEnd; ++Base) {
8918    CXXRecordDecl *BaseClassDecl
8919      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8920    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8921                                                           0, false, 0))
8922      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8923  }
8924
8925  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8926                                  FieldEnd = ClassDecl->field_end();
8927       Field != FieldEnd;
8928       ++Field) {
8929    QualType FieldType = Context.getBaseElementType(Field->getType());
8930    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8931      if (CXXMethodDecl *MoveAssign =
8932              LookupMovingAssignment(FieldClassDecl,
8933                                     FieldType.getCVRQualifiers(),
8934                                     false, 0))
8935        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8936    }
8937  }
8938
8939  return ExceptSpec;
8940}
8941
8942/// Determine whether the class type has any direct or indirect virtual base
8943/// classes which have a non-trivial move assignment operator.
8944static bool
8945hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8946  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8947                                          BaseEnd = ClassDecl->vbases_end();
8948       Base != BaseEnd; ++Base) {
8949    CXXRecordDecl *BaseClass =
8950        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8951
8952    // Try to declare the move assignment. If it would be deleted, then the
8953    // class does not have a non-trivial move assignment.
8954    if (BaseClass->needsImplicitMoveAssignment())
8955      S.DeclareImplicitMoveAssignment(BaseClass);
8956
8957    if (BaseClass->hasNonTrivialMoveAssignment())
8958      return true;
8959  }
8960
8961  return false;
8962}
8963
8964/// Determine whether the given type either has a move constructor or is
8965/// trivially copyable.
8966static bool
8967hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8968  Type = S.Context.getBaseElementType(Type);
8969
8970  // FIXME: Technically, non-trivially-copyable non-class types, such as
8971  // reference types, are supposed to return false here, but that appears
8972  // to be a standard defect.
8973  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8974  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8975    return true;
8976
8977  if (Type.isTriviallyCopyableType(S.Context))
8978    return true;
8979
8980  if (IsConstructor) {
8981    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8982    // give the right answer.
8983    if (ClassDecl->needsImplicitMoveConstructor())
8984      S.DeclareImplicitMoveConstructor(ClassDecl);
8985    return ClassDecl->hasMoveConstructor();
8986  }
8987
8988  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8989  // give the right answer.
8990  if (ClassDecl->needsImplicitMoveAssignment())
8991    S.DeclareImplicitMoveAssignment(ClassDecl);
8992  return ClassDecl->hasMoveAssignment();
8993}
8994
8995/// Determine whether all non-static data members and direct or virtual bases
8996/// of class \p ClassDecl have either a move operation, or are trivially
8997/// copyable.
8998static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8999                                            bool IsConstructor) {
9000  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9001                                          BaseEnd = ClassDecl->bases_end();
9002       Base != BaseEnd; ++Base) {
9003    if (Base->isVirtual())
9004      continue;
9005
9006    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9007      return false;
9008  }
9009
9010  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9011                                          BaseEnd = ClassDecl->vbases_end();
9012       Base != BaseEnd; ++Base) {
9013    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9014      return false;
9015  }
9016
9017  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9018                                     FieldEnd = ClassDecl->field_end();
9019       Field != FieldEnd; ++Field) {
9020    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9021      return false;
9022  }
9023
9024  return true;
9025}
9026
9027CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9028  // C++11 [class.copy]p20:
9029  //   If the definition of a class X does not explicitly declare a move
9030  //   assignment operator, one will be implicitly declared as defaulted
9031  //   if and only if:
9032  //
9033  //   - [first 4 bullets]
9034  assert(ClassDecl->needsImplicitMoveAssignment());
9035
9036  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9037  if (DSM.isAlreadyBeingDeclared())
9038    return 0;
9039
9040  // [Checked after we build the declaration]
9041  //   - the move assignment operator would not be implicitly defined as
9042  //     deleted,
9043
9044  // [DR1402]:
9045  //   - X has no direct or indirect virtual base class with a non-trivial
9046  //     move assignment operator, and
9047  //   - each of X's non-static data members and direct or virtual base classes
9048  //     has a type that either has a move assignment operator or is trivially
9049  //     copyable.
9050  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9051      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9052    ClassDecl->setFailedImplicitMoveAssignment();
9053    return 0;
9054  }
9055
9056  // Note: The following rules are largely analoguous to the move
9057  // constructor rules.
9058
9059  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9060  QualType RetType = Context.getLValueReferenceType(ArgType);
9061  ArgType = Context.getRValueReferenceType(ArgType);
9062
9063  //   An implicitly-declared move assignment operator is an inline public
9064  //   member of its class.
9065  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9066  SourceLocation ClassLoc = ClassDecl->getLocation();
9067  DeclarationNameInfo NameInfo(Name, ClassLoc);
9068  CXXMethodDecl *MoveAssignment
9069    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9070                            /*TInfo=*/0,
9071                            /*StorageClass=*/SC_None,
9072                            /*isInline=*/true,
9073                            /*isConstexpr=*/false,
9074                            SourceLocation());
9075  MoveAssignment->setAccess(AS_public);
9076  MoveAssignment->setDefaulted();
9077  MoveAssignment->setImplicit();
9078
9079  // Build an exception specification pointing back at this member.
9080  FunctionProtoType::ExtProtoInfo EPI;
9081  EPI.ExceptionSpecType = EST_Unevaluated;
9082  EPI.ExceptionSpecDecl = MoveAssignment;
9083  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9084
9085  // Add the parameter to the operator.
9086  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9087                                               ClassLoc, ClassLoc, /*Id=*/0,
9088                                               ArgType, /*TInfo=*/0,
9089                                               SC_None, 0);
9090  MoveAssignment->setParams(FromParam);
9091
9092  AddOverriddenMethods(ClassDecl, MoveAssignment);
9093
9094  MoveAssignment->setTrivial(
9095    ClassDecl->needsOverloadResolutionForMoveAssignment()
9096      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9097      : ClassDecl->hasTrivialMoveAssignment());
9098
9099  // C++0x [class.copy]p9:
9100  //   If the definition of a class X does not explicitly declare a move
9101  //   assignment operator, one will be implicitly declared as defaulted if and
9102  //   only if:
9103  //   [...]
9104  //   - the move assignment operator would not be implicitly defined as
9105  //     deleted.
9106  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9107    // Cache this result so that we don't try to generate this over and over
9108    // on every lookup, leaking memory and wasting time.
9109    ClassDecl->setFailedImplicitMoveAssignment();
9110    return 0;
9111  }
9112
9113  // Note that we have added this copy-assignment operator.
9114  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9115
9116  if (Scope *S = getScopeForContext(ClassDecl))
9117    PushOnScopeChains(MoveAssignment, S, false);
9118  ClassDecl->addDecl(MoveAssignment);
9119
9120  return MoveAssignment;
9121}
9122
9123void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9124                                        CXXMethodDecl *MoveAssignOperator) {
9125  assert((MoveAssignOperator->isDefaulted() &&
9126          MoveAssignOperator->isOverloadedOperator() &&
9127          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9128          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9129          !MoveAssignOperator->isDeleted()) &&
9130         "DefineImplicitMoveAssignment called for wrong function");
9131
9132  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9133
9134  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9135    MoveAssignOperator->setInvalidDecl();
9136    return;
9137  }
9138
9139  MoveAssignOperator->setUsed();
9140
9141  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9142  DiagnosticErrorTrap Trap(Diags);
9143
9144  // C++0x [class.copy]p28:
9145  //   The implicitly-defined or move assignment operator for a non-union class
9146  //   X performs memberwise move assignment of its subobjects. The direct base
9147  //   classes of X are assigned first, in the order of their declaration in the
9148  //   base-specifier-list, and then the immediate non-static data members of X
9149  //   are assigned, in the order in which they were declared in the class
9150  //   definition.
9151
9152  // The statements that form the synthesized function body.
9153  SmallVector<Stmt*, 8> Statements;
9154
9155  // The parameter for the "other" object, which we are move from.
9156  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9157  QualType OtherRefType = Other->getType()->
9158      getAs<RValueReferenceType>()->getPointeeType();
9159  assert(OtherRefType.getQualifiers() == 0 &&
9160         "Bad argument type of defaulted move assignment");
9161
9162  // Our location for everything implicitly-generated.
9163  SourceLocation Loc = MoveAssignOperator->getLocation();
9164
9165  // Construct a reference to the "other" object. We'll be using this
9166  // throughout the generated ASTs.
9167  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9168  assert(OtherRef && "Reference to parameter cannot fail!");
9169  // Cast to rvalue.
9170  OtherRef = CastForMoving(*this, OtherRef);
9171
9172  // Construct the "this" pointer. We'll be using this throughout the generated
9173  // ASTs.
9174  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9175  assert(This && "Reference to this cannot fail!");
9176
9177  // Assign base classes.
9178  bool Invalid = false;
9179  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9180       E = ClassDecl->bases_end(); Base != E; ++Base) {
9181    // Form the assignment:
9182    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9183    QualType BaseType = Base->getType().getUnqualifiedType();
9184    if (!BaseType->isRecordType()) {
9185      Invalid = true;
9186      continue;
9187    }
9188
9189    CXXCastPath BasePath;
9190    BasePath.push_back(Base);
9191
9192    // Construct the "from" expression, which is an implicit cast to the
9193    // appropriately-qualified base type.
9194    Expr *From = OtherRef;
9195    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9196                             VK_XValue, &BasePath).take();
9197
9198    // Dereference "this".
9199    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9200
9201    // Implicitly cast "this" to the appropriately-qualified base type.
9202    To = ImpCastExprToType(To.take(),
9203                           Context.getCVRQualifiedType(BaseType,
9204                                     MoveAssignOperator->getTypeQualifiers()),
9205                           CK_UncheckedDerivedToBase,
9206                           VK_LValue, &BasePath);
9207
9208    // Build the move.
9209    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9210                                            To.get(), From,
9211                                            /*CopyingBaseSubobject=*/true,
9212                                            /*Copying=*/false);
9213    if (Move.isInvalid()) {
9214      Diag(CurrentLocation, diag::note_member_synthesized_at)
9215        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9216      MoveAssignOperator->setInvalidDecl();
9217      return;
9218    }
9219
9220    // Success! Record the move.
9221    Statements.push_back(Move.takeAs<Expr>());
9222  }
9223
9224  // Assign non-static members.
9225  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9226                                  FieldEnd = ClassDecl->field_end();
9227       Field != FieldEnd; ++Field) {
9228    if (Field->isUnnamedBitfield())
9229      continue;
9230
9231    // Check for members of reference type; we can't move those.
9232    if (Field->getType()->isReferenceType()) {
9233      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9234        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9235      Diag(Field->getLocation(), diag::note_declared_at);
9236      Diag(CurrentLocation, diag::note_member_synthesized_at)
9237        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9238      Invalid = true;
9239      continue;
9240    }
9241
9242    // Check for members of const-qualified, non-class type.
9243    QualType BaseType = Context.getBaseElementType(Field->getType());
9244    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9245      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9246        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9247      Diag(Field->getLocation(), diag::note_declared_at);
9248      Diag(CurrentLocation, diag::note_member_synthesized_at)
9249        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9250      Invalid = true;
9251      continue;
9252    }
9253
9254    // Suppress assigning zero-width bitfields.
9255    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9256      continue;
9257
9258    QualType FieldType = Field->getType().getNonReferenceType();
9259    if (FieldType->isIncompleteArrayType()) {
9260      assert(ClassDecl->hasFlexibleArrayMember() &&
9261             "Incomplete array type is not valid");
9262      continue;
9263    }
9264
9265    // Build references to the field in the object we're copying from and to.
9266    CXXScopeSpec SS; // Intentionally empty
9267    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9268                              LookupMemberName);
9269    MemberLookup.addDecl(*Field);
9270    MemberLookup.resolveKind();
9271    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9272                                               Loc, /*IsArrow=*/false,
9273                                               SS, SourceLocation(), 0,
9274                                               MemberLookup, 0);
9275    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9276                                             Loc, /*IsArrow=*/true,
9277                                             SS, SourceLocation(), 0,
9278                                             MemberLookup, 0);
9279    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9280    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9281
9282    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9283        "Member reference with rvalue base must be rvalue except for reference "
9284        "members, which aren't allowed for move assignment.");
9285
9286    // Build the move of this field.
9287    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9288                                            To.get(), From.get(),
9289                                            /*CopyingBaseSubobject=*/false,
9290                                            /*Copying=*/false);
9291    if (Move.isInvalid()) {
9292      Diag(CurrentLocation, diag::note_member_synthesized_at)
9293        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9294      MoveAssignOperator->setInvalidDecl();
9295      return;
9296    }
9297
9298    // Success! Record the copy.
9299    Statements.push_back(Move.takeAs<Stmt>());
9300  }
9301
9302  if (!Invalid) {
9303    // Add a "return *this;"
9304    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9305
9306    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9307    if (Return.isInvalid())
9308      Invalid = true;
9309    else {
9310      Statements.push_back(Return.takeAs<Stmt>());
9311
9312      if (Trap.hasErrorOccurred()) {
9313        Diag(CurrentLocation, diag::note_member_synthesized_at)
9314          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9315        Invalid = true;
9316      }
9317    }
9318  }
9319
9320  if (Invalid) {
9321    MoveAssignOperator->setInvalidDecl();
9322    return;
9323  }
9324
9325  StmtResult Body;
9326  {
9327    CompoundScopeRAII CompoundScope(*this);
9328    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9329                             /*isStmtExpr=*/false);
9330    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9331  }
9332  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9333
9334  if (ASTMutationListener *L = getASTMutationListener()) {
9335    L->CompletedImplicitDefinition(MoveAssignOperator);
9336  }
9337}
9338
9339Sema::ImplicitExceptionSpecification
9340Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9341  CXXRecordDecl *ClassDecl = MD->getParent();
9342
9343  ImplicitExceptionSpecification ExceptSpec(*this);
9344  if (ClassDecl->isInvalidDecl())
9345    return ExceptSpec;
9346
9347  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9348  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9349  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9350
9351  // C++ [except.spec]p14:
9352  //   An implicitly declared special member function (Clause 12) shall have an
9353  //   exception-specification. [...]
9354  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9355                                       BaseEnd = ClassDecl->bases_end();
9356       Base != BaseEnd;
9357       ++Base) {
9358    // Virtual bases are handled below.
9359    if (Base->isVirtual())
9360      continue;
9361
9362    CXXRecordDecl *BaseClassDecl
9363      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9364    if (CXXConstructorDecl *CopyConstructor =
9365          LookupCopyingConstructor(BaseClassDecl, Quals))
9366      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9367  }
9368  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9369                                       BaseEnd = ClassDecl->vbases_end();
9370       Base != BaseEnd;
9371       ++Base) {
9372    CXXRecordDecl *BaseClassDecl
9373      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9374    if (CXXConstructorDecl *CopyConstructor =
9375          LookupCopyingConstructor(BaseClassDecl, Quals))
9376      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9377  }
9378  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9379                                  FieldEnd = ClassDecl->field_end();
9380       Field != FieldEnd;
9381       ++Field) {
9382    QualType FieldType = Context.getBaseElementType(Field->getType());
9383    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9384      if (CXXConstructorDecl *CopyConstructor =
9385              LookupCopyingConstructor(FieldClassDecl,
9386                                       Quals | FieldType.getCVRQualifiers()))
9387      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9388    }
9389  }
9390
9391  return ExceptSpec;
9392}
9393
9394CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9395                                                    CXXRecordDecl *ClassDecl) {
9396  // C++ [class.copy]p4:
9397  //   If the class definition does not explicitly declare a copy
9398  //   constructor, one is declared implicitly.
9399  assert(ClassDecl->needsImplicitCopyConstructor());
9400
9401  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9402  if (DSM.isAlreadyBeingDeclared())
9403    return 0;
9404
9405  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9406  QualType ArgType = ClassType;
9407  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9408  if (Const)
9409    ArgType = ArgType.withConst();
9410  ArgType = Context.getLValueReferenceType(ArgType);
9411
9412  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9413                                                     CXXCopyConstructor,
9414                                                     Const);
9415
9416  DeclarationName Name
9417    = Context.DeclarationNames.getCXXConstructorName(
9418                                           Context.getCanonicalType(ClassType));
9419  SourceLocation ClassLoc = ClassDecl->getLocation();
9420  DeclarationNameInfo NameInfo(Name, ClassLoc);
9421
9422  //   An implicitly-declared copy constructor is an inline public
9423  //   member of its class.
9424  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9425      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9426      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9427      Constexpr);
9428  CopyConstructor->setAccess(AS_public);
9429  CopyConstructor->setDefaulted();
9430
9431  // Build an exception specification pointing back at this member.
9432  FunctionProtoType::ExtProtoInfo EPI;
9433  EPI.ExceptionSpecType = EST_Unevaluated;
9434  EPI.ExceptionSpecDecl = CopyConstructor;
9435  CopyConstructor->setType(
9436      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9437
9438  // Add the parameter to the constructor.
9439  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9440                                               ClassLoc, ClassLoc,
9441                                               /*IdentifierInfo=*/0,
9442                                               ArgType, /*TInfo=*/0,
9443                                               SC_None, 0);
9444  CopyConstructor->setParams(FromParam);
9445
9446  CopyConstructor->setTrivial(
9447    ClassDecl->needsOverloadResolutionForCopyConstructor()
9448      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9449      : ClassDecl->hasTrivialCopyConstructor());
9450
9451  // C++11 [class.copy]p8:
9452  //   ... If the class definition does not explicitly declare a copy
9453  //   constructor, there is no user-declared move constructor, and there is no
9454  //   user-declared move assignment operator, a copy constructor is implicitly
9455  //   declared as defaulted.
9456  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9457    SetDeclDeleted(CopyConstructor, ClassLoc);
9458
9459  // Note that we have declared this constructor.
9460  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9461
9462  if (Scope *S = getScopeForContext(ClassDecl))
9463    PushOnScopeChains(CopyConstructor, S, false);
9464  ClassDecl->addDecl(CopyConstructor);
9465
9466  return CopyConstructor;
9467}
9468
9469void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9470                                   CXXConstructorDecl *CopyConstructor) {
9471  assert((CopyConstructor->isDefaulted() &&
9472          CopyConstructor->isCopyConstructor() &&
9473          !CopyConstructor->doesThisDeclarationHaveABody() &&
9474          !CopyConstructor->isDeleted()) &&
9475         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9476
9477  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9478  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9479
9480  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9481  DiagnosticErrorTrap Trap(Diags);
9482
9483  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9484      Trap.hasErrorOccurred()) {
9485    Diag(CurrentLocation, diag::note_member_synthesized_at)
9486      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9487    CopyConstructor->setInvalidDecl();
9488  }  else {
9489    Sema::CompoundScopeRAII CompoundScope(*this);
9490    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9491                                               CopyConstructor->getLocation(),
9492                                               MultiStmtArg(),
9493                                               /*isStmtExpr=*/false)
9494                                                              .takeAs<Stmt>());
9495    CopyConstructor->setImplicitlyDefined(true);
9496  }
9497
9498  CopyConstructor->setUsed();
9499  if (ASTMutationListener *L = getASTMutationListener()) {
9500    L->CompletedImplicitDefinition(CopyConstructor);
9501  }
9502}
9503
9504Sema::ImplicitExceptionSpecification
9505Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9506  CXXRecordDecl *ClassDecl = MD->getParent();
9507
9508  // C++ [except.spec]p14:
9509  //   An implicitly declared special member function (Clause 12) shall have an
9510  //   exception-specification. [...]
9511  ImplicitExceptionSpecification ExceptSpec(*this);
9512  if (ClassDecl->isInvalidDecl())
9513    return ExceptSpec;
9514
9515  // Direct base-class constructors.
9516  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9517                                       BEnd = ClassDecl->bases_end();
9518       B != BEnd; ++B) {
9519    if (B->isVirtual()) // Handled below.
9520      continue;
9521
9522    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9523      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9524      CXXConstructorDecl *Constructor =
9525          LookupMovingConstructor(BaseClassDecl, 0);
9526      // If this is a deleted function, add it anyway. This might be conformant
9527      // with the standard. This might not. I'm not sure. It might not matter.
9528      if (Constructor)
9529        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9530    }
9531  }
9532
9533  // Virtual base-class constructors.
9534  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9535                                       BEnd = ClassDecl->vbases_end();
9536       B != BEnd; ++B) {
9537    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9538      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9539      CXXConstructorDecl *Constructor =
9540          LookupMovingConstructor(BaseClassDecl, 0);
9541      // If this is a deleted function, add it anyway. This might be conformant
9542      // with the standard. This might not. I'm not sure. It might not matter.
9543      if (Constructor)
9544        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9545    }
9546  }
9547
9548  // Field constructors.
9549  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9550                               FEnd = ClassDecl->field_end();
9551       F != FEnd; ++F) {
9552    QualType FieldType = Context.getBaseElementType(F->getType());
9553    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9554      CXXConstructorDecl *Constructor =
9555          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9556      // If this is a deleted function, add it anyway. This might be conformant
9557      // with the standard. This might not. I'm not sure. It might not matter.
9558      // In particular, the problem is that this function never gets called. It
9559      // might just be ill-formed because this function attempts to refer to
9560      // a deleted function here.
9561      if (Constructor)
9562        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9563    }
9564  }
9565
9566  return ExceptSpec;
9567}
9568
9569CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9570                                                    CXXRecordDecl *ClassDecl) {
9571  // C++11 [class.copy]p9:
9572  //   If the definition of a class X does not explicitly declare a move
9573  //   constructor, one will be implicitly declared as defaulted if and only if:
9574  //
9575  //   - [first 4 bullets]
9576  assert(ClassDecl->needsImplicitMoveConstructor());
9577
9578  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9579  if (DSM.isAlreadyBeingDeclared())
9580    return 0;
9581
9582  // [Checked after we build the declaration]
9583  //   - the move assignment operator would not be implicitly defined as
9584  //     deleted,
9585
9586  // [DR1402]:
9587  //   - each of X's non-static data members and direct or virtual base classes
9588  //     has a type that either has a move constructor or is trivially copyable.
9589  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9590    ClassDecl->setFailedImplicitMoveConstructor();
9591    return 0;
9592  }
9593
9594  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9595  QualType ArgType = Context.getRValueReferenceType(ClassType);
9596
9597  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9598                                                     CXXMoveConstructor,
9599                                                     false);
9600
9601  DeclarationName Name
9602    = Context.DeclarationNames.getCXXConstructorName(
9603                                           Context.getCanonicalType(ClassType));
9604  SourceLocation ClassLoc = ClassDecl->getLocation();
9605  DeclarationNameInfo NameInfo(Name, ClassLoc);
9606
9607  // C++0x [class.copy]p11:
9608  //   An implicitly-declared copy/move constructor is an inline public
9609  //   member of its class.
9610  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9611      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9612      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9613      Constexpr);
9614  MoveConstructor->setAccess(AS_public);
9615  MoveConstructor->setDefaulted();
9616
9617  // Build an exception specification pointing back at this member.
9618  FunctionProtoType::ExtProtoInfo EPI;
9619  EPI.ExceptionSpecType = EST_Unevaluated;
9620  EPI.ExceptionSpecDecl = MoveConstructor;
9621  MoveConstructor->setType(
9622      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9623
9624  // Add the parameter to the constructor.
9625  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9626                                               ClassLoc, ClassLoc,
9627                                               /*IdentifierInfo=*/0,
9628                                               ArgType, /*TInfo=*/0,
9629                                               SC_None, 0);
9630  MoveConstructor->setParams(FromParam);
9631
9632  MoveConstructor->setTrivial(
9633    ClassDecl->needsOverloadResolutionForMoveConstructor()
9634      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9635      : ClassDecl->hasTrivialMoveConstructor());
9636
9637  // C++0x [class.copy]p9:
9638  //   If the definition of a class X does not explicitly declare a move
9639  //   constructor, one will be implicitly declared as defaulted if and only if:
9640  //   [...]
9641  //   - the move constructor would not be implicitly defined as deleted.
9642  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9643    // Cache this result so that we don't try to generate this over and over
9644    // on every lookup, leaking memory and wasting time.
9645    ClassDecl->setFailedImplicitMoveConstructor();
9646    return 0;
9647  }
9648
9649  // Note that we have declared this constructor.
9650  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9651
9652  if (Scope *S = getScopeForContext(ClassDecl))
9653    PushOnScopeChains(MoveConstructor, S, false);
9654  ClassDecl->addDecl(MoveConstructor);
9655
9656  return MoveConstructor;
9657}
9658
9659void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9660                                   CXXConstructorDecl *MoveConstructor) {
9661  assert((MoveConstructor->isDefaulted() &&
9662          MoveConstructor->isMoveConstructor() &&
9663          !MoveConstructor->doesThisDeclarationHaveABody() &&
9664          !MoveConstructor->isDeleted()) &&
9665         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9666
9667  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9668  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9669
9670  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9671  DiagnosticErrorTrap Trap(Diags);
9672
9673  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9674      Trap.hasErrorOccurred()) {
9675    Diag(CurrentLocation, diag::note_member_synthesized_at)
9676      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9677    MoveConstructor->setInvalidDecl();
9678  }  else {
9679    Sema::CompoundScopeRAII CompoundScope(*this);
9680    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9681                                               MoveConstructor->getLocation(),
9682                                               MultiStmtArg(),
9683                                               /*isStmtExpr=*/false)
9684                                                              .takeAs<Stmt>());
9685    MoveConstructor->setImplicitlyDefined(true);
9686  }
9687
9688  MoveConstructor->setUsed();
9689
9690  if (ASTMutationListener *L = getASTMutationListener()) {
9691    L->CompletedImplicitDefinition(MoveConstructor);
9692  }
9693}
9694
9695bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9696  return FD->isDeleted() &&
9697         (FD->isDefaulted() || FD->isImplicit()) &&
9698         isa<CXXMethodDecl>(FD);
9699}
9700
9701/// \brief Mark the call operator of the given lambda closure type as "used".
9702static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9703  CXXMethodDecl *CallOperator
9704    = cast<CXXMethodDecl>(
9705        Lambda->lookup(
9706          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9707  CallOperator->setReferenced();
9708  CallOperator->setUsed();
9709}
9710
9711void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9712       SourceLocation CurrentLocation,
9713       CXXConversionDecl *Conv)
9714{
9715  CXXRecordDecl *Lambda = Conv->getParent();
9716
9717  // Make sure that the lambda call operator is marked used.
9718  markLambdaCallOperatorUsed(*this, Lambda);
9719
9720  Conv->setUsed();
9721
9722  SynthesizedFunctionScope Scope(*this, Conv);
9723  DiagnosticErrorTrap Trap(Diags);
9724
9725  // Return the address of the __invoke function.
9726  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9727  CXXMethodDecl *Invoke
9728    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9729  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9730                                       VK_LValue, Conv->getLocation()).take();
9731  assert(FunctionRef && "Can't refer to __invoke function?");
9732  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9733  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9734                                           Conv->getLocation(),
9735                                           Conv->getLocation()));
9736
9737  // Fill in the __invoke function with a dummy implementation. IR generation
9738  // will fill in the actual details.
9739  Invoke->setUsed();
9740  Invoke->setReferenced();
9741  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9742
9743  if (ASTMutationListener *L = getASTMutationListener()) {
9744    L->CompletedImplicitDefinition(Conv);
9745    L->CompletedImplicitDefinition(Invoke);
9746  }
9747}
9748
9749void Sema::DefineImplicitLambdaToBlockPointerConversion(
9750       SourceLocation CurrentLocation,
9751       CXXConversionDecl *Conv)
9752{
9753  Conv->setUsed();
9754
9755  SynthesizedFunctionScope Scope(*this, Conv);
9756  DiagnosticErrorTrap Trap(Diags);
9757
9758  // Copy-initialize the lambda object as needed to capture it.
9759  Expr *This = ActOnCXXThis(CurrentLocation).take();
9760  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9761
9762  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9763                                                        Conv->getLocation(),
9764                                                        Conv, DerefThis);
9765
9766  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9767  // behavior.  Note that only the general conversion function does this
9768  // (since it's unusable otherwise); in the case where we inline the
9769  // block literal, it has block literal lifetime semantics.
9770  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9771    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9772                                          CK_CopyAndAutoreleaseBlockObject,
9773                                          BuildBlock.get(), 0, VK_RValue);
9774
9775  if (BuildBlock.isInvalid()) {
9776    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9777    Conv->setInvalidDecl();
9778    return;
9779  }
9780
9781  // Create the return statement that returns the block from the conversion
9782  // function.
9783  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9784  if (Return.isInvalid()) {
9785    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9786    Conv->setInvalidDecl();
9787    return;
9788  }
9789
9790  // Set the body of the conversion function.
9791  Stmt *ReturnS = Return.take();
9792  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9793                                           Conv->getLocation(),
9794                                           Conv->getLocation()));
9795
9796  // We're done; notify the mutation listener, if any.
9797  if (ASTMutationListener *L = getASTMutationListener()) {
9798    L->CompletedImplicitDefinition(Conv);
9799  }
9800}
9801
9802/// \brief Determine whether the given list arguments contains exactly one
9803/// "real" (non-default) argument.
9804static bool hasOneRealArgument(MultiExprArg Args) {
9805  switch (Args.size()) {
9806  case 0:
9807    return false;
9808
9809  default:
9810    if (!Args[1]->isDefaultArgument())
9811      return false;
9812
9813    // fall through
9814  case 1:
9815    return !Args[0]->isDefaultArgument();
9816  }
9817
9818  return false;
9819}
9820
9821ExprResult
9822Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9823                            CXXConstructorDecl *Constructor,
9824                            MultiExprArg ExprArgs,
9825                            bool HadMultipleCandidates,
9826                            bool IsListInitialization,
9827                            bool RequiresZeroInit,
9828                            unsigned ConstructKind,
9829                            SourceRange ParenRange) {
9830  bool Elidable = false;
9831
9832  // C++0x [class.copy]p34:
9833  //   When certain criteria are met, an implementation is allowed to
9834  //   omit the copy/move construction of a class object, even if the
9835  //   copy/move constructor and/or destructor for the object have
9836  //   side effects. [...]
9837  //     - when a temporary class object that has not been bound to a
9838  //       reference (12.2) would be copied/moved to a class object
9839  //       with the same cv-unqualified type, the copy/move operation
9840  //       can be omitted by constructing the temporary object
9841  //       directly into the target of the omitted copy/move
9842  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9843      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9844    Expr *SubExpr = ExprArgs[0];
9845    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9846  }
9847
9848  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9849                               Elidable, ExprArgs, HadMultipleCandidates,
9850                               IsListInitialization, RequiresZeroInit,
9851                               ConstructKind, ParenRange);
9852}
9853
9854/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9855/// including handling of its default argument expressions.
9856ExprResult
9857Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9858                            CXXConstructorDecl *Constructor, bool Elidable,
9859                            MultiExprArg ExprArgs,
9860                            bool HadMultipleCandidates,
9861                            bool IsListInitialization,
9862                            bool RequiresZeroInit,
9863                            unsigned ConstructKind,
9864                            SourceRange ParenRange) {
9865  MarkFunctionReferenced(ConstructLoc, Constructor);
9866  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9867                                        Constructor, Elidable, ExprArgs,
9868                                        HadMultipleCandidates,
9869                                        IsListInitialization, RequiresZeroInit,
9870              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9871                                        ParenRange));
9872}
9873
9874void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9875  if (VD->isInvalidDecl()) return;
9876
9877  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9878  if (ClassDecl->isInvalidDecl()) return;
9879  if (ClassDecl->hasIrrelevantDestructor()) return;
9880  if (ClassDecl->isDependentContext()) return;
9881
9882  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9883  MarkFunctionReferenced(VD->getLocation(), Destructor);
9884  CheckDestructorAccess(VD->getLocation(), Destructor,
9885                        PDiag(diag::err_access_dtor_var)
9886                        << VD->getDeclName()
9887                        << VD->getType());
9888  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9889
9890  if (!VD->hasGlobalStorage()) return;
9891
9892  // Emit warning for non-trivial dtor in global scope (a real global,
9893  // class-static, function-static).
9894  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9895
9896  // TODO: this should be re-enabled for static locals by !CXAAtExit
9897  if (!VD->isStaticLocal())
9898    Diag(VD->getLocation(), diag::warn_global_destructor);
9899}
9900
9901/// \brief Given a constructor and the set of arguments provided for the
9902/// constructor, convert the arguments and add any required default arguments
9903/// to form a proper call to this constructor.
9904///
9905/// \returns true if an error occurred, false otherwise.
9906bool
9907Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9908                              MultiExprArg ArgsPtr,
9909                              SourceLocation Loc,
9910                              SmallVectorImpl<Expr*> &ConvertedArgs,
9911                              bool AllowExplicit,
9912                              bool IsListInitialization) {
9913  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9914  unsigned NumArgs = ArgsPtr.size();
9915  Expr **Args = ArgsPtr.data();
9916
9917  const FunctionProtoType *Proto
9918    = Constructor->getType()->getAs<FunctionProtoType>();
9919  assert(Proto && "Constructor without a prototype?");
9920  unsigned NumArgsInProto = Proto->getNumArgs();
9921
9922  // If too few arguments are available, we'll fill in the rest with defaults.
9923  if (NumArgs < NumArgsInProto)
9924    ConvertedArgs.reserve(NumArgsInProto);
9925  else
9926    ConvertedArgs.reserve(NumArgs);
9927
9928  VariadicCallType CallType =
9929    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9930  SmallVector<Expr *, 8> AllArgs;
9931  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9932                                        Proto, 0, Args, NumArgs, AllArgs,
9933                                        CallType, AllowExplicit,
9934                                        IsListInitialization);
9935  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9936
9937  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9938
9939  CheckConstructorCall(Constructor,
9940                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9941                                                        AllArgs.size()),
9942                       Proto, Loc);
9943
9944  return Invalid;
9945}
9946
9947static inline bool
9948CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9949                                       const FunctionDecl *FnDecl) {
9950  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9951  if (isa<NamespaceDecl>(DC)) {
9952    return SemaRef.Diag(FnDecl->getLocation(),
9953                        diag::err_operator_new_delete_declared_in_namespace)
9954      << FnDecl->getDeclName();
9955  }
9956
9957  if (isa<TranslationUnitDecl>(DC) &&
9958      FnDecl->getStorageClass() == SC_Static) {
9959    return SemaRef.Diag(FnDecl->getLocation(),
9960                        diag::err_operator_new_delete_declared_static)
9961      << FnDecl->getDeclName();
9962  }
9963
9964  return false;
9965}
9966
9967static inline bool
9968CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9969                            CanQualType ExpectedResultType,
9970                            CanQualType ExpectedFirstParamType,
9971                            unsigned DependentParamTypeDiag,
9972                            unsigned InvalidParamTypeDiag) {
9973  QualType ResultType =
9974    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9975
9976  // Check that the result type is not dependent.
9977  if (ResultType->isDependentType())
9978    return SemaRef.Diag(FnDecl->getLocation(),
9979                        diag::err_operator_new_delete_dependent_result_type)
9980    << FnDecl->getDeclName() << ExpectedResultType;
9981
9982  // Check that the result type is what we expect.
9983  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9984    return SemaRef.Diag(FnDecl->getLocation(),
9985                        diag::err_operator_new_delete_invalid_result_type)
9986    << FnDecl->getDeclName() << ExpectedResultType;
9987
9988  // A function template must have at least 2 parameters.
9989  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9990    return SemaRef.Diag(FnDecl->getLocation(),
9991                      diag::err_operator_new_delete_template_too_few_parameters)
9992        << FnDecl->getDeclName();
9993
9994  // The function decl must have at least 1 parameter.
9995  if (FnDecl->getNumParams() == 0)
9996    return SemaRef.Diag(FnDecl->getLocation(),
9997                        diag::err_operator_new_delete_too_few_parameters)
9998      << FnDecl->getDeclName();
9999
10000  // Check the first parameter type is not dependent.
10001  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10002  if (FirstParamType->isDependentType())
10003    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10004      << FnDecl->getDeclName() << ExpectedFirstParamType;
10005
10006  // Check that the first parameter type is what we expect.
10007  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10008      ExpectedFirstParamType)
10009    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10010    << FnDecl->getDeclName() << ExpectedFirstParamType;
10011
10012  return false;
10013}
10014
10015static bool
10016CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10017  // C++ [basic.stc.dynamic.allocation]p1:
10018  //   A program is ill-formed if an allocation function is declared in a
10019  //   namespace scope other than global scope or declared static in global
10020  //   scope.
10021  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10022    return true;
10023
10024  CanQualType SizeTy =
10025    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10026
10027  // C++ [basic.stc.dynamic.allocation]p1:
10028  //  The return type shall be void*. The first parameter shall have type
10029  //  std::size_t.
10030  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10031                                  SizeTy,
10032                                  diag::err_operator_new_dependent_param_type,
10033                                  diag::err_operator_new_param_type))
10034    return true;
10035
10036  // C++ [basic.stc.dynamic.allocation]p1:
10037  //  The first parameter shall not have an associated default argument.
10038  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10039    return SemaRef.Diag(FnDecl->getLocation(),
10040                        diag::err_operator_new_default_arg)
10041      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10042
10043  return false;
10044}
10045
10046static bool
10047CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10048  // C++ [basic.stc.dynamic.deallocation]p1:
10049  //   A program is ill-formed if deallocation functions are declared in a
10050  //   namespace scope other than global scope or declared static in global
10051  //   scope.
10052  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10053    return true;
10054
10055  // C++ [basic.stc.dynamic.deallocation]p2:
10056  //   Each deallocation function shall return void and its first parameter
10057  //   shall be void*.
10058  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10059                                  SemaRef.Context.VoidPtrTy,
10060                                 diag::err_operator_delete_dependent_param_type,
10061                                 diag::err_operator_delete_param_type))
10062    return true;
10063
10064  return false;
10065}
10066
10067/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10068/// of this overloaded operator is well-formed. If so, returns false;
10069/// otherwise, emits appropriate diagnostics and returns true.
10070bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10071  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10072         "Expected an overloaded operator declaration");
10073
10074  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10075
10076  // C++ [over.oper]p5:
10077  //   The allocation and deallocation functions, operator new,
10078  //   operator new[], operator delete and operator delete[], are
10079  //   described completely in 3.7.3. The attributes and restrictions
10080  //   found in the rest of this subclause do not apply to them unless
10081  //   explicitly stated in 3.7.3.
10082  if (Op == OO_Delete || Op == OO_Array_Delete)
10083    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10084
10085  if (Op == OO_New || Op == OO_Array_New)
10086    return CheckOperatorNewDeclaration(*this, FnDecl);
10087
10088  // C++ [over.oper]p6:
10089  //   An operator function shall either be a non-static member
10090  //   function or be a non-member function and have at least one
10091  //   parameter whose type is a class, a reference to a class, an
10092  //   enumeration, or a reference to an enumeration.
10093  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10094    if (MethodDecl->isStatic())
10095      return Diag(FnDecl->getLocation(),
10096                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10097  } else {
10098    bool ClassOrEnumParam = false;
10099    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10100                                   ParamEnd = FnDecl->param_end();
10101         Param != ParamEnd; ++Param) {
10102      QualType ParamType = (*Param)->getType().getNonReferenceType();
10103      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10104          ParamType->isEnumeralType()) {
10105        ClassOrEnumParam = true;
10106        break;
10107      }
10108    }
10109
10110    if (!ClassOrEnumParam)
10111      return Diag(FnDecl->getLocation(),
10112                  diag::err_operator_overload_needs_class_or_enum)
10113        << FnDecl->getDeclName();
10114  }
10115
10116  // C++ [over.oper]p8:
10117  //   An operator function cannot have default arguments (8.3.6),
10118  //   except where explicitly stated below.
10119  //
10120  // Only the function-call operator allows default arguments
10121  // (C++ [over.call]p1).
10122  if (Op != OO_Call) {
10123    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10124         Param != FnDecl->param_end(); ++Param) {
10125      if ((*Param)->hasDefaultArg())
10126        return Diag((*Param)->getLocation(),
10127                    diag::err_operator_overload_default_arg)
10128          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10129    }
10130  }
10131
10132  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10133    { false, false, false }
10134#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10135    , { Unary, Binary, MemberOnly }
10136#include "clang/Basic/OperatorKinds.def"
10137  };
10138
10139  bool CanBeUnaryOperator = OperatorUses[Op][0];
10140  bool CanBeBinaryOperator = OperatorUses[Op][1];
10141  bool MustBeMemberOperator = OperatorUses[Op][2];
10142
10143  // C++ [over.oper]p8:
10144  //   [...] Operator functions cannot have more or fewer parameters
10145  //   than the number required for the corresponding operator, as
10146  //   described in the rest of this subclause.
10147  unsigned NumParams = FnDecl->getNumParams()
10148                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10149  if (Op != OO_Call &&
10150      ((NumParams == 1 && !CanBeUnaryOperator) ||
10151       (NumParams == 2 && !CanBeBinaryOperator) ||
10152       (NumParams < 1) || (NumParams > 2))) {
10153    // We have the wrong number of parameters.
10154    unsigned ErrorKind;
10155    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10156      ErrorKind = 2;  // 2 -> unary or binary.
10157    } else if (CanBeUnaryOperator) {
10158      ErrorKind = 0;  // 0 -> unary
10159    } else {
10160      assert(CanBeBinaryOperator &&
10161             "All non-call overloaded operators are unary or binary!");
10162      ErrorKind = 1;  // 1 -> binary
10163    }
10164
10165    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10166      << FnDecl->getDeclName() << NumParams << ErrorKind;
10167  }
10168
10169  // Overloaded operators other than operator() cannot be variadic.
10170  if (Op != OO_Call &&
10171      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10172    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10173      << FnDecl->getDeclName();
10174  }
10175
10176  // Some operators must be non-static member functions.
10177  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10178    return Diag(FnDecl->getLocation(),
10179                diag::err_operator_overload_must_be_member)
10180      << FnDecl->getDeclName();
10181  }
10182
10183  // C++ [over.inc]p1:
10184  //   The user-defined function called operator++ implements the
10185  //   prefix and postfix ++ operator. If this function is a member
10186  //   function with no parameters, or a non-member function with one
10187  //   parameter of class or enumeration type, it defines the prefix
10188  //   increment operator ++ for objects of that type. If the function
10189  //   is a member function with one parameter (which shall be of type
10190  //   int) or a non-member function with two parameters (the second
10191  //   of which shall be of type int), it defines the postfix
10192  //   increment operator ++ for objects of that type.
10193  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10194    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10195    bool ParamIsInt = false;
10196    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10197      ParamIsInt = BT->getKind() == BuiltinType::Int;
10198
10199    if (!ParamIsInt)
10200      return Diag(LastParam->getLocation(),
10201                  diag::err_operator_overload_post_incdec_must_be_int)
10202        << LastParam->getType() << (Op == OO_MinusMinus);
10203  }
10204
10205  return false;
10206}
10207
10208/// CheckLiteralOperatorDeclaration - Check whether the declaration
10209/// of this literal operator function is well-formed. If so, returns
10210/// false; otherwise, emits appropriate diagnostics and returns true.
10211bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10212  if (isa<CXXMethodDecl>(FnDecl)) {
10213    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10214      << FnDecl->getDeclName();
10215    return true;
10216  }
10217
10218  if (FnDecl->isExternC()) {
10219    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10220    return true;
10221  }
10222
10223  bool Valid = false;
10224
10225  // This might be the definition of a literal operator template.
10226  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10227  // This might be a specialization of a literal operator template.
10228  if (!TpDecl)
10229    TpDecl = FnDecl->getPrimaryTemplate();
10230
10231  // template <char...> type operator "" name() is the only valid template
10232  // signature, and the only valid signature with no parameters.
10233  if (TpDecl) {
10234    if (FnDecl->param_size() == 0) {
10235      // Must have only one template parameter
10236      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10237      if (Params->size() == 1) {
10238        NonTypeTemplateParmDecl *PmDecl =
10239          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10240
10241        // The template parameter must be a char parameter pack.
10242        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10243            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10244          Valid = true;
10245      }
10246    }
10247  } else if (FnDecl->param_size()) {
10248    // Check the first parameter
10249    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10250
10251    QualType T = (*Param)->getType().getUnqualifiedType();
10252
10253    // unsigned long long int, long double, and any character type are allowed
10254    // as the only parameters.
10255    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10256        Context.hasSameType(T, Context.LongDoubleTy) ||
10257        Context.hasSameType(T, Context.CharTy) ||
10258        Context.hasSameType(T, Context.WCharTy) ||
10259        Context.hasSameType(T, Context.Char16Ty) ||
10260        Context.hasSameType(T, Context.Char32Ty)) {
10261      if (++Param == FnDecl->param_end())
10262        Valid = true;
10263      goto FinishedParams;
10264    }
10265
10266    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10267    const PointerType *PT = T->getAs<PointerType>();
10268    if (!PT)
10269      goto FinishedParams;
10270    T = PT->getPointeeType();
10271    if (!T.isConstQualified() || T.isVolatileQualified())
10272      goto FinishedParams;
10273    T = T.getUnqualifiedType();
10274
10275    // Move on to the second parameter;
10276    ++Param;
10277
10278    // If there is no second parameter, the first must be a const char *
10279    if (Param == FnDecl->param_end()) {
10280      if (Context.hasSameType(T, Context.CharTy))
10281        Valid = true;
10282      goto FinishedParams;
10283    }
10284
10285    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10286    // are allowed as the first parameter to a two-parameter function
10287    if (!(Context.hasSameType(T, Context.CharTy) ||
10288          Context.hasSameType(T, Context.WCharTy) ||
10289          Context.hasSameType(T, Context.Char16Ty) ||
10290          Context.hasSameType(T, Context.Char32Ty)))
10291      goto FinishedParams;
10292
10293    // The second and final parameter must be an std::size_t
10294    T = (*Param)->getType().getUnqualifiedType();
10295    if (Context.hasSameType(T, Context.getSizeType()) &&
10296        ++Param == FnDecl->param_end())
10297      Valid = true;
10298  }
10299
10300  // FIXME: This diagnostic is absolutely terrible.
10301FinishedParams:
10302  if (!Valid) {
10303    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10304      << FnDecl->getDeclName();
10305    return true;
10306  }
10307
10308  // A parameter-declaration-clause containing a default argument is not
10309  // equivalent to any of the permitted forms.
10310  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10311                                    ParamEnd = FnDecl->param_end();
10312       Param != ParamEnd; ++Param) {
10313    if ((*Param)->hasDefaultArg()) {
10314      Diag((*Param)->getDefaultArgRange().getBegin(),
10315           diag::err_literal_operator_default_argument)
10316        << (*Param)->getDefaultArgRange();
10317      break;
10318    }
10319  }
10320
10321  StringRef LiteralName
10322    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10323  if (LiteralName[0] != '_') {
10324    // C++11 [usrlit.suffix]p1:
10325    //   Literal suffix identifiers that do not start with an underscore
10326    //   are reserved for future standardization.
10327    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10328  }
10329
10330  return false;
10331}
10332
10333/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10334/// linkage specification, including the language and (if present)
10335/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10336/// the location of the language string literal, which is provided
10337/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10338/// the '{' brace. Otherwise, this linkage specification does not
10339/// have any braces.
10340Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10341                                           SourceLocation LangLoc,
10342                                           StringRef Lang,
10343                                           SourceLocation LBraceLoc) {
10344  LinkageSpecDecl::LanguageIDs Language;
10345  if (Lang == "\"C\"")
10346    Language = LinkageSpecDecl::lang_c;
10347  else if (Lang == "\"C++\"")
10348    Language = LinkageSpecDecl::lang_cxx;
10349  else {
10350    Diag(LangLoc, diag::err_bad_language);
10351    return 0;
10352  }
10353
10354  // FIXME: Add all the various semantics of linkage specifications
10355
10356  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10357                                               ExternLoc, LangLoc, Language);
10358  CurContext->addDecl(D);
10359  PushDeclContext(S, D);
10360  return D;
10361}
10362
10363/// ActOnFinishLinkageSpecification - Complete the definition of
10364/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10365/// valid, it's the position of the closing '}' brace in a linkage
10366/// specification that uses braces.
10367Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10368                                            Decl *LinkageSpec,
10369                                            SourceLocation RBraceLoc) {
10370  if (LinkageSpec) {
10371    if (RBraceLoc.isValid()) {
10372      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10373      LSDecl->setRBraceLoc(RBraceLoc);
10374    }
10375    PopDeclContext();
10376  }
10377  return LinkageSpec;
10378}
10379
10380Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10381                                  AttributeList *AttrList,
10382                                  SourceLocation SemiLoc) {
10383  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10384  // Attribute declarations appertain to empty declaration so we handle
10385  // them here.
10386  if (AttrList)
10387    ProcessDeclAttributeList(S, ED, AttrList);
10388
10389  CurContext->addDecl(ED);
10390  return ED;
10391}
10392
10393/// \brief Perform semantic analysis for the variable declaration that
10394/// occurs within a C++ catch clause, returning the newly-created
10395/// variable.
10396VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10397                                         TypeSourceInfo *TInfo,
10398                                         SourceLocation StartLoc,
10399                                         SourceLocation Loc,
10400                                         IdentifierInfo *Name) {
10401  bool Invalid = false;
10402  QualType ExDeclType = TInfo->getType();
10403
10404  // Arrays and functions decay.
10405  if (ExDeclType->isArrayType())
10406    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10407  else if (ExDeclType->isFunctionType())
10408    ExDeclType = Context.getPointerType(ExDeclType);
10409
10410  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10411  // The exception-declaration shall not denote a pointer or reference to an
10412  // incomplete type, other than [cv] void*.
10413  // N2844 forbids rvalue references.
10414  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10415    Diag(Loc, diag::err_catch_rvalue_ref);
10416    Invalid = true;
10417  }
10418
10419  QualType BaseType = ExDeclType;
10420  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10421  unsigned DK = diag::err_catch_incomplete;
10422  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10423    BaseType = Ptr->getPointeeType();
10424    Mode = 1;
10425    DK = diag::err_catch_incomplete_ptr;
10426  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10427    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10428    BaseType = Ref->getPointeeType();
10429    Mode = 2;
10430    DK = diag::err_catch_incomplete_ref;
10431  }
10432  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10433      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10434    Invalid = true;
10435
10436  if (!Invalid && !ExDeclType->isDependentType() &&
10437      RequireNonAbstractType(Loc, ExDeclType,
10438                             diag::err_abstract_type_in_decl,
10439                             AbstractVariableType))
10440    Invalid = true;
10441
10442  // Only the non-fragile NeXT runtime currently supports C++ catches
10443  // of ObjC types, and no runtime supports catching ObjC types by value.
10444  if (!Invalid && getLangOpts().ObjC1) {
10445    QualType T = ExDeclType;
10446    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10447      T = RT->getPointeeType();
10448
10449    if (T->isObjCObjectType()) {
10450      Diag(Loc, diag::err_objc_object_catch);
10451      Invalid = true;
10452    } else if (T->isObjCObjectPointerType()) {
10453      // FIXME: should this be a test for macosx-fragile specifically?
10454      if (getLangOpts().ObjCRuntime.isFragile())
10455        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10456    }
10457  }
10458
10459  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10460                                    ExDeclType, TInfo, SC_None);
10461  ExDecl->setExceptionVariable(true);
10462
10463  // In ARC, infer 'retaining' for variables of retainable type.
10464  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10465    Invalid = true;
10466
10467  if (!Invalid && !ExDeclType->isDependentType()) {
10468    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10469      // Insulate this from anything else we might currently be parsing.
10470      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10471
10472      // C++ [except.handle]p16:
10473      //   The object declared in an exception-declaration or, if the
10474      //   exception-declaration does not specify a name, a temporary (12.2) is
10475      //   copy-initialized (8.5) from the exception object. [...]
10476      //   The object is destroyed when the handler exits, after the destruction
10477      //   of any automatic objects initialized within the handler.
10478      //
10479      // We just pretend to initialize the object with itself, then make sure
10480      // it can be destroyed later.
10481      QualType initType = ExDeclType;
10482
10483      InitializedEntity entity =
10484        InitializedEntity::InitializeVariable(ExDecl);
10485      InitializationKind initKind =
10486        InitializationKind::CreateCopy(Loc, SourceLocation());
10487
10488      Expr *opaqueValue =
10489        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10490      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10491      ExprResult result = sequence.Perform(*this, entity, initKind,
10492                                           MultiExprArg(&opaqueValue, 1));
10493      if (result.isInvalid())
10494        Invalid = true;
10495      else {
10496        // If the constructor used was non-trivial, set this as the
10497        // "initializer".
10498        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10499        if (!construct->getConstructor()->isTrivial()) {
10500          Expr *init = MaybeCreateExprWithCleanups(construct);
10501          ExDecl->setInit(init);
10502        }
10503
10504        // And make sure it's destructable.
10505        FinalizeVarWithDestructor(ExDecl, recordType);
10506      }
10507    }
10508  }
10509
10510  if (Invalid)
10511    ExDecl->setInvalidDecl();
10512
10513  return ExDecl;
10514}
10515
10516/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10517/// handler.
10518Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10519  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10520  bool Invalid = D.isInvalidType();
10521
10522  // Check for unexpanded parameter packs.
10523  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10524                                      UPPC_ExceptionType)) {
10525    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10526                                             D.getIdentifierLoc());
10527    Invalid = true;
10528  }
10529
10530  IdentifierInfo *II = D.getIdentifier();
10531  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10532                                             LookupOrdinaryName,
10533                                             ForRedeclaration)) {
10534    // The scope should be freshly made just for us. There is just no way
10535    // it contains any previous declaration.
10536    assert(!S->isDeclScope(PrevDecl));
10537    if (PrevDecl->isTemplateParameter()) {
10538      // Maybe we will complain about the shadowed template parameter.
10539      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10540      PrevDecl = 0;
10541    }
10542  }
10543
10544  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10545    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10546      << D.getCXXScopeSpec().getRange();
10547    Invalid = true;
10548  }
10549
10550  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10551                                              D.getLocStart(),
10552                                              D.getIdentifierLoc(),
10553                                              D.getIdentifier());
10554  if (Invalid)
10555    ExDecl->setInvalidDecl();
10556
10557  // Add the exception declaration into this scope.
10558  if (II)
10559    PushOnScopeChains(ExDecl, S);
10560  else
10561    CurContext->addDecl(ExDecl);
10562
10563  ProcessDeclAttributes(S, ExDecl, D);
10564  return ExDecl;
10565}
10566
10567Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10568                                         Expr *AssertExpr,
10569                                         Expr *AssertMessageExpr,
10570                                         SourceLocation RParenLoc) {
10571  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10572
10573  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10574    return 0;
10575
10576  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10577                                      AssertMessage, RParenLoc, false);
10578}
10579
10580Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10581                                         Expr *AssertExpr,
10582                                         StringLiteral *AssertMessage,
10583                                         SourceLocation RParenLoc,
10584                                         bool Failed) {
10585  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10586      !Failed) {
10587    // In a static_assert-declaration, the constant-expression shall be a
10588    // constant expression that can be contextually converted to bool.
10589    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10590    if (Converted.isInvalid())
10591      Failed = true;
10592
10593    llvm::APSInt Cond;
10594    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10595          diag::err_static_assert_expression_is_not_constant,
10596          /*AllowFold=*/false).isInvalid())
10597      Failed = true;
10598
10599    if (!Failed && !Cond) {
10600      SmallString<256> MsgBuffer;
10601      llvm::raw_svector_ostream Msg(MsgBuffer);
10602      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10603      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10604        << Msg.str() << AssertExpr->getSourceRange();
10605      Failed = true;
10606    }
10607  }
10608
10609  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10610                                        AssertExpr, AssertMessage, RParenLoc,
10611                                        Failed);
10612
10613  CurContext->addDecl(Decl);
10614  return Decl;
10615}
10616
10617/// \brief Perform semantic analysis of the given friend type declaration.
10618///
10619/// \returns A friend declaration that.
10620FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10621                                      SourceLocation FriendLoc,
10622                                      TypeSourceInfo *TSInfo) {
10623  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10624
10625  QualType T = TSInfo->getType();
10626  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10627
10628  // C++03 [class.friend]p2:
10629  //   An elaborated-type-specifier shall be used in a friend declaration
10630  //   for a class.*
10631  //
10632  //   * The class-key of the elaborated-type-specifier is required.
10633  if (!ActiveTemplateInstantiations.empty()) {
10634    // Do not complain about the form of friend template types during
10635    // template instantiation; we will already have complained when the
10636    // template was declared.
10637  } else {
10638    if (!T->isElaboratedTypeSpecifier()) {
10639      // If we evaluated the type to a record type, suggest putting
10640      // a tag in front.
10641      if (const RecordType *RT = T->getAs<RecordType>()) {
10642        RecordDecl *RD = RT->getDecl();
10643
10644        std::string InsertionText = std::string(" ") + RD->getKindName();
10645
10646        Diag(TypeRange.getBegin(),
10647             getLangOpts().CPlusPlus11 ?
10648               diag::warn_cxx98_compat_unelaborated_friend_type :
10649               diag::ext_unelaborated_friend_type)
10650          << (unsigned) RD->getTagKind()
10651          << T
10652          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10653                                        InsertionText);
10654      } else {
10655        Diag(FriendLoc,
10656             getLangOpts().CPlusPlus11 ?
10657               diag::warn_cxx98_compat_nonclass_type_friend :
10658               diag::ext_nonclass_type_friend)
10659          << T
10660          << TypeRange;
10661      }
10662    } else if (T->getAs<EnumType>()) {
10663      Diag(FriendLoc,
10664           getLangOpts().CPlusPlus11 ?
10665             diag::warn_cxx98_compat_enum_friend :
10666             diag::ext_enum_friend)
10667        << T
10668        << TypeRange;
10669    }
10670
10671    // C++11 [class.friend]p3:
10672    //   A friend declaration that does not declare a function shall have one
10673    //   of the following forms:
10674    //     friend elaborated-type-specifier ;
10675    //     friend simple-type-specifier ;
10676    //     friend typename-specifier ;
10677    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10678      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10679  }
10680
10681  //   If the type specifier in a friend declaration designates a (possibly
10682  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10683  //   the friend declaration is ignored.
10684  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10685}
10686
10687/// Handle a friend tag declaration where the scope specifier was
10688/// templated.
10689Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10690                                    unsigned TagSpec, SourceLocation TagLoc,
10691                                    CXXScopeSpec &SS,
10692                                    IdentifierInfo *Name,
10693                                    SourceLocation NameLoc,
10694                                    AttributeList *Attr,
10695                                    MultiTemplateParamsArg TempParamLists) {
10696  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10697
10698  bool isExplicitSpecialization = false;
10699  bool Invalid = false;
10700
10701  if (TemplateParameterList *TemplateParams
10702        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10703                                                  TempParamLists.data(),
10704                                                  TempParamLists.size(),
10705                                                  /*friend*/ true,
10706                                                  isExplicitSpecialization,
10707                                                  Invalid)) {
10708    if (TemplateParams->size() > 0) {
10709      // This is a declaration of a class template.
10710      if (Invalid)
10711        return 0;
10712
10713      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10714                                SS, Name, NameLoc, Attr,
10715                                TemplateParams, AS_public,
10716                                /*ModulePrivateLoc=*/SourceLocation(),
10717                                TempParamLists.size() - 1,
10718                                TempParamLists.data()).take();
10719    } else {
10720      // The "template<>" header is extraneous.
10721      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10722        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10723      isExplicitSpecialization = true;
10724    }
10725  }
10726
10727  if (Invalid) return 0;
10728
10729  bool isAllExplicitSpecializations = true;
10730  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10731    if (TempParamLists[I]->size()) {
10732      isAllExplicitSpecializations = false;
10733      break;
10734    }
10735  }
10736
10737  // FIXME: don't ignore attributes.
10738
10739  // If it's explicit specializations all the way down, just forget
10740  // about the template header and build an appropriate non-templated
10741  // friend.  TODO: for source fidelity, remember the headers.
10742  if (isAllExplicitSpecializations) {
10743    if (SS.isEmpty()) {
10744      bool Owned = false;
10745      bool IsDependent = false;
10746      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10747                      Attr, AS_public,
10748                      /*ModulePrivateLoc=*/SourceLocation(),
10749                      MultiTemplateParamsArg(), Owned, IsDependent,
10750                      /*ScopedEnumKWLoc=*/SourceLocation(),
10751                      /*ScopedEnumUsesClassTag=*/false,
10752                      /*UnderlyingType=*/TypeResult());
10753    }
10754
10755    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10756    ElaboratedTypeKeyword Keyword
10757      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10758    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10759                                   *Name, NameLoc);
10760    if (T.isNull())
10761      return 0;
10762
10763    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10764    if (isa<DependentNameType>(T)) {
10765      DependentNameTypeLoc TL =
10766          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10767      TL.setElaboratedKeywordLoc(TagLoc);
10768      TL.setQualifierLoc(QualifierLoc);
10769      TL.setNameLoc(NameLoc);
10770    } else {
10771      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10772      TL.setElaboratedKeywordLoc(TagLoc);
10773      TL.setQualifierLoc(QualifierLoc);
10774      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10775    }
10776
10777    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10778                                            TSI, FriendLoc, TempParamLists);
10779    Friend->setAccess(AS_public);
10780    CurContext->addDecl(Friend);
10781    return Friend;
10782  }
10783
10784  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10785
10786
10787
10788  // Handle the case of a templated-scope friend class.  e.g.
10789  //   template <class T> class A<T>::B;
10790  // FIXME: we don't support these right now.
10791  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10792  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10793  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10794  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10795  TL.setElaboratedKeywordLoc(TagLoc);
10796  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10797  TL.setNameLoc(NameLoc);
10798
10799  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10800                                          TSI, FriendLoc, TempParamLists);
10801  Friend->setAccess(AS_public);
10802  Friend->setUnsupportedFriend(true);
10803  CurContext->addDecl(Friend);
10804  return Friend;
10805}
10806
10807
10808/// Handle a friend type declaration.  This works in tandem with
10809/// ActOnTag.
10810///
10811/// Notes on friend class templates:
10812///
10813/// We generally treat friend class declarations as if they were
10814/// declaring a class.  So, for example, the elaborated type specifier
10815/// in a friend declaration is required to obey the restrictions of a
10816/// class-head (i.e. no typedefs in the scope chain), template
10817/// parameters are required to match up with simple template-ids, &c.
10818/// However, unlike when declaring a template specialization, it's
10819/// okay to refer to a template specialization without an empty
10820/// template parameter declaration, e.g.
10821///   friend class A<T>::B<unsigned>;
10822/// We permit this as a special case; if there are any template
10823/// parameters present at all, require proper matching, i.e.
10824///   template <> template \<class T> friend class A<int>::B;
10825Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10826                                MultiTemplateParamsArg TempParams) {
10827  SourceLocation Loc = DS.getLocStart();
10828
10829  assert(DS.isFriendSpecified());
10830  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10831
10832  // Try to convert the decl specifier to a type.  This works for
10833  // friend templates because ActOnTag never produces a ClassTemplateDecl
10834  // for a TUK_Friend.
10835  Declarator TheDeclarator(DS, Declarator::MemberContext);
10836  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10837  QualType T = TSI->getType();
10838  if (TheDeclarator.isInvalidType())
10839    return 0;
10840
10841  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10842    return 0;
10843
10844  // This is definitely an error in C++98.  It's probably meant to
10845  // be forbidden in C++0x, too, but the specification is just
10846  // poorly written.
10847  //
10848  // The problem is with declarations like the following:
10849  //   template <T> friend A<T>::foo;
10850  // where deciding whether a class C is a friend or not now hinges
10851  // on whether there exists an instantiation of A that causes
10852  // 'foo' to equal C.  There are restrictions on class-heads
10853  // (which we declare (by fiat) elaborated friend declarations to
10854  // be) that makes this tractable.
10855  //
10856  // FIXME: handle "template <> friend class A<T>;", which
10857  // is possibly well-formed?  Who even knows?
10858  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10859    Diag(Loc, diag::err_tagless_friend_type_template)
10860      << DS.getSourceRange();
10861    return 0;
10862  }
10863
10864  // C++98 [class.friend]p1: A friend of a class is a function
10865  //   or class that is not a member of the class . . .
10866  // This is fixed in DR77, which just barely didn't make the C++03
10867  // deadline.  It's also a very silly restriction that seriously
10868  // affects inner classes and which nobody else seems to implement;
10869  // thus we never diagnose it, not even in -pedantic.
10870  //
10871  // But note that we could warn about it: it's always useless to
10872  // friend one of your own members (it's not, however, worthless to
10873  // friend a member of an arbitrary specialization of your template).
10874
10875  Decl *D;
10876  if (unsigned NumTempParamLists = TempParams.size())
10877    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10878                                   NumTempParamLists,
10879                                   TempParams.data(),
10880                                   TSI,
10881                                   DS.getFriendSpecLoc());
10882  else
10883    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10884
10885  if (!D)
10886    return 0;
10887
10888  D->setAccess(AS_public);
10889  CurContext->addDecl(D);
10890
10891  return D;
10892}
10893
10894NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10895                                        MultiTemplateParamsArg TemplateParams) {
10896  const DeclSpec &DS = D.getDeclSpec();
10897
10898  assert(DS.isFriendSpecified());
10899  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10900
10901  SourceLocation Loc = D.getIdentifierLoc();
10902  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10903
10904  // C++ [class.friend]p1
10905  //   A friend of a class is a function or class....
10906  // Note that this sees through typedefs, which is intended.
10907  // It *doesn't* see through dependent types, which is correct
10908  // according to [temp.arg.type]p3:
10909  //   If a declaration acquires a function type through a
10910  //   type dependent on a template-parameter and this causes
10911  //   a declaration that does not use the syntactic form of a
10912  //   function declarator to have a function type, the program
10913  //   is ill-formed.
10914  if (!TInfo->getType()->isFunctionType()) {
10915    Diag(Loc, diag::err_unexpected_friend);
10916
10917    // It might be worthwhile to try to recover by creating an
10918    // appropriate declaration.
10919    return 0;
10920  }
10921
10922  // C++ [namespace.memdef]p3
10923  //  - If a friend declaration in a non-local class first declares a
10924  //    class or function, the friend class or function is a member
10925  //    of the innermost enclosing namespace.
10926  //  - The name of the friend is not found by simple name lookup
10927  //    until a matching declaration is provided in that namespace
10928  //    scope (either before or after the class declaration granting
10929  //    friendship).
10930  //  - If a friend function is called, its name may be found by the
10931  //    name lookup that considers functions from namespaces and
10932  //    classes associated with the types of the function arguments.
10933  //  - When looking for a prior declaration of a class or a function
10934  //    declared as a friend, scopes outside the innermost enclosing
10935  //    namespace scope are not considered.
10936
10937  CXXScopeSpec &SS = D.getCXXScopeSpec();
10938  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10939  DeclarationName Name = NameInfo.getName();
10940  assert(Name);
10941
10942  // Check for unexpanded parameter packs.
10943  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10944      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10945      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10946    return 0;
10947
10948  // The context we found the declaration in, or in which we should
10949  // create the declaration.
10950  DeclContext *DC;
10951  Scope *DCScope = S;
10952  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10953                        ForRedeclaration);
10954
10955  // FIXME: there are different rules in local classes
10956
10957  // There are four cases here.
10958  //   - There's no scope specifier, in which case we just go to the
10959  //     appropriate scope and look for a function or function template
10960  //     there as appropriate.
10961  // Recover from invalid scope qualifiers as if they just weren't there.
10962  if (SS.isInvalid() || !SS.isSet()) {
10963    // C++0x [namespace.memdef]p3:
10964    //   If the name in a friend declaration is neither qualified nor
10965    //   a template-id and the declaration is a function or an
10966    //   elaborated-type-specifier, the lookup to determine whether
10967    //   the entity has been previously declared shall not consider
10968    //   any scopes outside the innermost enclosing namespace.
10969    // C++0x [class.friend]p11:
10970    //   If a friend declaration appears in a local class and the name
10971    //   specified is an unqualified name, a prior declaration is
10972    //   looked up without considering scopes that are outside the
10973    //   innermost enclosing non-class scope. For a friend function
10974    //   declaration, if there is no prior declaration, the program is
10975    //   ill-formed.
10976    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10977    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10978
10979    // Find the appropriate context according to the above.
10980    DC = CurContext;
10981    while (true) {
10982      // Skip class contexts.  If someone can cite chapter and verse
10983      // for this behavior, that would be nice --- it's what GCC and
10984      // EDG do, and it seems like a reasonable intent, but the spec
10985      // really only says that checks for unqualified existing
10986      // declarations should stop at the nearest enclosing namespace,
10987      // not that they should only consider the nearest enclosing
10988      // namespace.
10989      while (DC->isRecord() || DC->isTransparentContext())
10990        DC = DC->getParent();
10991
10992      LookupQualifiedName(Previous, DC);
10993
10994      // TODO: decide what we think about using declarations.
10995      if (isLocal || !Previous.empty())
10996        break;
10997
10998      if (isTemplateId) {
10999        if (isa<TranslationUnitDecl>(DC)) break;
11000      } else {
11001        if (DC->isFileContext()) break;
11002      }
11003      DC = DC->getParent();
11004    }
11005
11006    DCScope = getScopeForDeclContext(S, DC);
11007
11008    // C++ [class.friend]p6:
11009    //   A function can be defined in a friend declaration of a class if and
11010    //   only if the class is a non-local class (9.8), the function name is
11011    //   unqualified, and the function has namespace scope.
11012    if (isLocal && D.isFunctionDefinition()) {
11013      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11014    }
11015
11016  //   - There's a non-dependent scope specifier, in which case we
11017  //     compute it and do a previous lookup there for a function
11018  //     or function template.
11019  } else if (!SS.getScopeRep()->isDependent()) {
11020    DC = computeDeclContext(SS);
11021    if (!DC) return 0;
11022
11023    if (RequireCompleteDeclContext(SS, DC)) return 0;
11024
11025    LookupQualifiedName(Previous, DC);
11026
11027    // Ignore things found implicitly in the wrong scope.
11028    // TODO: better diagnostics for this case.  Suggesting the right
11029    // qualified scope would be nice...
11030    LookupResult::Filter F = Previous.makeFilter();
11031    while (F.hasNext()) {
11032      NamedDecl *D = F.next();
11033      if (!DC->InEnclosingNamespaceSetOf(
11034              D->getDeclContext()->getRedeclContext()))
11035        F.erase();
11036    }
11037    F.done();
11038
11039    if (Previous.empty()) {
11040      D.setInvalidType();
11041      Diag(Loc, diag::err_qualified_friend_not_found)
11042          << Name << TInfo->getType();
11043      return 0;
11044    }
11045
11046    // C++ [class.friend]p1: A friend of a class is a function or
11047    //   class that is not a member of the class . . .
11048    if (DC->Equals(CurContext))
11049      Diag(DS.getFriendSpecLoc(),
11050           getLangOpts().CPlusPlus11 ?
11051             diag::warn_cxx98_compat_friend_is_member :
11052             diag::err_friend_is_member);
11053
11054    if (D.isFunctionDefinition()) {
11055      // C++ [class.friend]p6:
11056      //   A function can be defined in a friend declaration of a class if and
11057      //   only if the class is a non-local class (9.8), the function name is
11058      //   unqualified, and the function has namespace scope.
11059      SemaDiagnosticBuilder DB
11060        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11061
11062      DB << SS.getScopeRep();
11063      if (DC->isFileContext())
11064        DB << FixItHint::CreateRemoval(SS.getRange());
11065      SS.clear();
11066    }
11067
11068  //   - There's a scope specifier that does not match any template
11069  //     parameter lists, in which case we use some arbitrary context,
11070  //     create a method or method template, and wait for instantiation.
11071  //   - There's a scope specifier that does match some template
11072  //     parameter lists, which we don't handle right now.
11073  } else {
11074    if (D.isFunctionDefinition()) {
11075      // C++ [class.friend]p6:
11076      //   A function can be defined in a friend declaration of a class if and
11077      //   only if the class is a non-local class (9.8), the function name is
11078      //   unqualified, and the function has namespace scope.
11079      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11080        << SS.getScopeRep();
11081    }
11082
11083    DC = CurContext;
11084    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11085  }
11086
11087  if (!DC->isRecord()) {
11088    // This implies that it has to be an operator or function.
11089    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11090        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11091        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11092      Diag(Loc, diag::err_introducing_special_friend) <<
11093        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11094         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11095      return 0;
11096    }
11097  }
11098
11099  // FIXME: This is an egregious hack to cope with cases where the scope stack
11100  // does not contain the declaration context, i.e., in an out-of-line
11101  // definition of a class.
11102  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11103  if (!DCScope) {
11104    FakeDCScope.setEntity(DC);
11105    DCScope = &FakeDCScope;
11106  }
11107
11108  bool AddToScope = true;
11109  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11110                                          TemplateParams, AddToScope);
11111  if (!ND) return 0;
11112
11113  assert(ND->getDeclContext() == DC);
11114  assert(ND->getLexicalDeclContext() == CurContext);
11115
11116  // Add the function declaration to the appropriate lookup tables,
11117  // adjusting the redeclarations list as necessary.  We don't
11118  // want to do this yet if the friending class is dependent.
11119  //
11120  // Also update the scope-based lookup if the target context's
11121  // lookup context is in lexical scope.
11122  if (!CurContext->isDependentContext()) {
11123    DC = DC->getRedeclContext();
11124    DC->makeDeclVisibleInContext(ND);
11125    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11126      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11127  }
11128
11129  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11130                                       D.getIdentifierLoc(), ND,
11131                                       DS.getFriendSpecLoc());
11132  FrD->setAccess(AS_public);
11133  CurContext->addDecl(FrD);
11134
11135  if (ND->isInvalidDecl()) {
11136    FrD->setInvalidDecl();
11137  } else {
11138    if (DC->isRecord()) CheckFriendAccess(ND);
11139
11140    FunctionDecl *FD;
11141    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11142      FD = FTD->getTemplatedDecl();
11143    else
11144      FD = cast<FunctionDecl>(ND);
11145
11146    // Mark templated-scope function declarations as unsupported.
11147    if (FD->getNumTemplateParameterLists())
11148      FrD->setUnsupportedFriend(true);
11149  }
11150
11151  return ND;
11152}
11153
11154void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11155  AdjustDeclIfTemplate(Dcl);
11156
11157  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11158  if (!Fn) {
11159    Diag(DelLoc, diag::err_deleted_non_function);
11160    return;
11161  }
11162
11163  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11164    // Don't consider the implicit declaration we generate for explicit
11165    // specializations. FIXME: Do not generate these implicit declarations.
11166    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11167        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11168      Diag(DelLoc, diag::err_deleted_decl_not_first);
11169      Diag(Prev->getLocation(), diag::note_previous_declaration);
11170    }
11171    // If the declaration wasn't the first, we delete the function anyway for
11172    // recovery.
11173    Fn = Fn->getCanonicalDecl();
11174  }
11175
11176  if (Fn->isDeleted())
11177    return;
11178
11179  // See if we're deleting a function which is already known to override a
11180  // non-deleted virtual function.
11181  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11182    bool IssuedDiagnostic = false;
11183    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11184                                        E = MD->end_overridden_methods();
11185         I != E; ++I) {
11186      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11187        if (!IssuedDiagnostic) {
11188          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11189          IssuedDiagnostic = true;
11190        }
11191        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11192      }
11193    }
11194  }
11195
11196  Fn->setDeletedAsWritten();
11197}
11198
11199void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11200  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11201
11202  if (MD) {
11203    if (MD->getParent()->isDependentType()) {
11204      MD->setDefaulted();
11205      MD->setExplicitlyDefaulted();
11206      return;
11207    }
11208
11209    CXXSpecialMember Member = getSpecialMember(MD);
11210    if (Member == CXXInvalid) {
11211      Diag(DefaultLoc, diag::err_default_special_members);
11212      return;
11213    }
11214
11215    MD->setDefaulted();
11216    MD->setExplicitlyDefaulted();
11217
11218    // If this definition appears within the record, do the checking when
11219    // the record is complete.
11220    const FunctionDecl *Primary = MD;
11221    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11222      // Find the uninstantiated declaration that actually had the '= default'
11223      // on it.
11224      Pattern->isDefined(Primary);
11225
11226    // If the method was defaulted on its first declaration, we will have
11227    // already performed the checking in CheckCompletedCXXClass. Such a
11228    // declaration doesn't trigger an implicit definition.
11229    if (Primary == Primary->getCanonicalDecl())
11230      return;
11231
11232    CheckExplicitlyDefaultedSpecialMember(MD);
11233
11234    // The exception specification is needed because we are defining the
11235    // function.
11236    ResolveExceptionSpec(DefaultLoc,
11237                         MD->getType()->castAs<FunctionProtoType>());
11238
11239    switch (Member) {
11240    case CXXDefaultConstructor: {
11241      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11242      if (!CD->isInvalidDecl())
11243        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11244      break;
11245    }
11246
11247    case CXXCopyConstructor: {
11248      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11249      if (!CD->isInvalidDecl())
11250        DefineImplicitCopyConstructor(DefaultLoc, CD);
11251      break;
11252    }
11253
11254    case CXXCopyAssignment: {
11255      if (!MD->isInvalidDecl())
11256        DefineImplicitCopyAssignment(DefaultLoc, MD);
11257      break;
11258    }
11259
11260    case CXXDestructor: {
11261      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11262      if (!DD->isInvalidDecl())
11263        DefineImplicitDestructor(DefaultLoc, DD);
11264      break;
11265    }
11266
11267    case CXXMoveConstructor: {
11268      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11269      if (!CD->isInvalidDecl())
11270        DefineImplicitMoveConstructor(DefaultLoc, CD);
11271      break;
11272    }
11273
11274    case CXXMoveAssignment: {
11275      if (!MD->isInvalidDecl())
11276        DefineImplicitMoveAssignment(DefaultLoc, MD);
11277      break;
11278    }
11279
11280    case CXXInvalid:
11281      llvm_unreachable("Invalid special member.");
11282    }
11283  } else {
11284    Diag(DefaultLoc, diag::err_default_special_members);
11285  }
11286}
11287
11288static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11289  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11290    Stmt *SubStmt = *CI;
11291    if (!SubStmt)
11292      continue;
11293    if (isa<ReturnStmt>(SubStmt))
11294      Self.Diag(SubStmt->getLocStart(),
11295           diag::err_return_in_constructor_handler);
11296    if (!isa<Expr>(SubStmt))
11297      SearchForReturnInStmt(Self, SubStmt);
11298  }
11299}
11300
11301void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11302  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11303    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11304    SearchForReturnInStmt(*this, Handler);
11305  }
11306}
11307
11308bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11309                                             const CXXMethodDecl *Old) {
11310  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11311  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11312
11313  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11314
11315  // If the calling conventions match, everything is fine
11316  if (NewCC == OldCC)
11317    return false;
11318
11319  // If either of the calling conventions are set to "default", we need to pick
11320  // something more sensible based on the target. This supports code where the
11321  // one method explicitly sets thiscall, and another has no explicit calling
11322  // convention.
11323  CallingConv Default =
11324    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11325  if (NewCC == CC_Default)
11326    NewCC = Default;
11327  if (OldCC == CC_Default)
11328    OldCC = Default;
11329
11330  // If the calling conventions still don't match, then report the error
11331  if (NewCC != OldCC) {
11332    Diag(New->getLocation(),
11333         diag::err_conflicting_overriding_cc_attributes)
11334      << New->getDeclName() << New->getType() << Old->getType();
11335    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11336    return true;
11337  }
11338
11339  return false;
11340}
11341
11342bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11343                                             const CXXMethodDecl *Old) {
11344  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11345  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11346
11347  if (Context.hasSameType(NewTy, OldTy) ||
11348      NewTy->isDependentType() || OldTy->isDependentType())
11349    return false;
11350
11351  // Check if the return types are covariant
11352  QualType NewClassTy, OldClassTy;
11353
11354  /// Both types must be pointers or references to classes.
11355  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11356    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11357      NewClassTy = NewPT->getPointeeType();
11358      OldClassTy = OldPT->getPointeeType();
11359    }
11360  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11361    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11362      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11363        NewClassTy = NewRT->getPointeeType();
11364        OldClassTy = OldRT->getPointeeType();
11365      }
11366    }
11367  }
11368
11369  // The return types aren't either both pointers or references to a class type.
11370  if (NewClassTy.isNull()) {
11371    Diag(New->getLocation(),
11372         diag::err_different_return_type_for_overriding_virtual_function)
11373      << New->getDeclName() << NewTy << OldTy;
11374    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11375
11376    return true;
11377  }
11378
11379  // C++ [class.virtual]p6:
11380  //   If the return type of D::f differs from the return type of B::f, the
11381  //   class type in the return type of D::f shall be complete at the point of
11382  //   declaration of D::f or shall be the class type D.
11383  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11384    if (!RT->isBeingDefined() &&
11385        RequireCompleteType(New->getLocation(), NewClassTy,
11386                            diag::err_covariant_return_incomplete,
11387                            New->getDeclName()))
11388    return true;
11389  }
11390
11391  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11392    // Check if the new class derives from the old class.
11393    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11394      Diag(New->getLocation(),
11395           diag::err_covariant_return_not_derived)
11396      << New->getDeclName() << NewTy << OldTy;
11397      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11398      return true;
11399    }
11400
11401    // Check if we the conversion from derived to base is valid.
11402    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11403                    diag::err_covariant_return_inaccessible_base,
11404                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11405                    // FIXME: Should this point to the return type?
11406                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11407      // FIXME: this note won't trigger for delayed access control
11408      // diagnostics, and it's impossible to get an undelayed error
11409      // here from access control during the original parse because
11410      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11411      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11412      return true;
11413    }
11414  }
11415
11416  // The qualifiers of the return types must be the same.
11417  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11418    Diag(New->getLocation(),
11419         diag::err_covariant_return_type_different_qualifications)
11420    << New->getDeclName() << NewTy << OldTy;
11421    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11422    return true;
11423  };
11424
11425
11426  // The new class type must have the same or less qualifiers as the old type.
11427  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11428    Diag(New->getLocation(),
11429         diag::err_covariant_return_type_class_type_more_qualified)
11430    << New->getDeclName() << NewTy << OldTy;
11431    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11432    return true;
11433  };
11434
11435  return false;
11436}
11437
11438/// \brief Mark the given method pure.
11439///
11440/// \param Method the method to be marked pure.
11441///
11442/// \param InitRange the source range that covers the "0" initializer.
11443bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11444  SourceLocation EndLoc = InitRange.getEnd();
11445  if (EndLoc.isValid())
11446    Method->setRangeEnd(EndLoc);
11447
11448  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11449    Method->setPure();
11450    return false;
11451  }
11452
11453  if (!Method->isInvalidDecl())
11454    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11455      << Method->getDeclName() << InitRange;
11456  return true;
11457}
11458
11459/// \brief Determine whether the given declaration is a static data member.
11460static bool isStaticDataMember(Decl *D) {
11461  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11462  if (!Var)
11463    return false;
11464
11465  return Var->isStaticDataMember();
11466}
11467/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11468/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11469/// is a fresh scope pushed for just this purpose.
11470///
11471/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11472/// static data member of class X, names should be looked up in the scope of
11473/// class X.
11474void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11475  // If there is no declaration, there was an error parsing it.
11476  if (D == 0 || D->isInvalidDecl()) return;
11477
11478  // We should only get called for declarations with scope specifiers, like:
11479  //   int foo::bar;
11480  assert(D->isOutOfLine());
11481  EnterDeclaratorContext(S, D->getDeclContext());
11482
11483  // If we are parsing the initializer for a static data member, push a
11484  // new expression evaluation context that is associated with this static
11485  // data member.
11486  if (isStaticDataMember(D))
11487    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11488}
11489
11490/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11491/// initializer for the out-of-line declaration 'D'.
11492void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11493  // If there is no declaration, there was an error parsing it.
11494  if (D == 0 || D->isInvalidDecl()) return;
11495
11496  if (isStaticDataMember(D))
11497    PopExpressionEvaluationContext();
11498
11499  assert(D->isOutOfLine());
11500  ExitDeclaratorContext(S);
11501}
11502
11503/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11504/// C++ if/switch/while/for statement.
11505/// e.g: "if (int x = f()) {...}"
11506DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11507  // C++ 6.4p2:
11508  // The declarator shall not specify a function or an array.
11509  // The type-specifier-seq shall not contain typedef and shall not declare a
11510  // new class or enumeration.
11511  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11512         "Parser allowed 'typedef' as storage class of condition decl.");
11513
11514  Decl *Dcl = ActOnDeclarator(S, D);
11515  if (!Dcl)
11516    return true;
11517
11518  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11519    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11520      << D.getSourceRange();
11521    return true;
11522  }
11523
11524  return Dcl;
11525}
11526
11527void Sema::LoadExternalVTableUses() {
11528  if (!ExternalSource)
11529    return;
11530
11531  SmallVector<ExternalVTableUse, 4> VTables;
11532  ExternalSource->ReadUsedVTables(VTables);
11533  SmallVector<VTableUse, 4> NewUses;
11534  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11535    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11536      = VTablesUsed.find(VTables[I].Record);
11537    // Even if a definition wasn't required before, it may be required now.
11538    if (Pos != VTablesUsed.end()) {
11539      if (!Pos->second && VTables[I].DefinitionRequired)
11540        Pos->second = true;
11541      continue;
11542    }
11543
11544    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11545    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11546  }
11547
11548  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11549}
11550
11551void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11552                          bool DefinitionRequired) {
11553  // Ignore any vtable uses in unevaluated operands or for classes that do
11554  // not have a vtable.
11555  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11556      CurContext->isDependentContext() ||
11557      ExprEvalContexts.back().Context == Unevaluated)
11558    return;
11559
11560  // Try to insert this class into the map.
11561  LoadExternalVTableUses();
11562  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11563  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11564    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11565  if (!Pos.second) {
11566    // If we already had an entry, check to see if we are promoting this vtable
11567    // to required a definition. If so, we need to reappend to the VTableUses
11568    // list, since we may have already processed the first entry.
11569    if (DefinitionRequired && !Pos.first->second) {
11570      Pos.first->second = true;
11571    } else {
11572      // Otherwise, we can early exit.
11573      return;
11574    }
11575  }
11576
11577  // Local classes need to have their virtual members marked
11578  // immediately. For all other classes, we mark their virtual members
11579  // at the end of the translation unit.
11580  if (Class->isLocalClass())
11581    MarkVirtualMembersReferenced(Loc, Class);
11582  else
11583    VTableUses.push_back(std::make_pair(Class, Loc));
11584}
11585
11586bool Sema::DefineUsedVTables() {
11587  LoadExternalVTableUses();
11588  if (VTableUses.empty())
11589    return false;
11590
11591  // Note: The VTableUses vector could grow as a result of marking
11592  // the members of a class as "used", so we check the size each
11593  // time through the loop and prefer indices (which are stable) to
11594  // iterators (which are not).
11595  bool DefinedAnything = false;
11596  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11597    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11598    if (!Class)
11599      continue;
11600
11601    SourceLocation Loc = VTableUses[I].second;
11602
11603    bool DefineVTable = true;
11604
11605    // If this class has a key function, but that key function is
11606    // defined in another translation unit, we don't need to emit the
11607    // vtable even though we're using it.
11608    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11609    if (KeyFunction && !KeyFunction->hasBody()) {
11610      switch (KeyFunction->getTemplateSpecializationKind()) {
11611      case TSK_Undeclared:
11612      case TSK_ExplicitSpecialization:
11613      case TSK_ExplicitInstantiationDeclaration:
11614        // The key function is in another translation unit.
11615        DefineVTable = false;
11616        break;
11617
11618      case TSK_ExplicitInstantiationDefinition:
11619      case TSK_ImplicitInstantiation:
11620        // We will be instantiating the key function.
11621        break;
11622      }
11623    } else if (!KeyFunction) {
11624      // If we have a class with no key function that is the subject
11625      // of an explicit instantiation declaration, suppress the
11626      // vtable; it will live with the explicit instantiation
11627      // definition.
11628      bool IsExplicitInstantiationDeclaration
11629        = Class->getTemplateSpecializationKind()
11630                                      == TSK_ExplicitInstantiationDeclaration;
11631      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11632                                 REnd = Class->redecls_end();
11633           R != REnd; ++R) {
11634        TemplateSpecializationKind TSK
11635          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11636        if (TSK == TSK_ExplicitInstantiationDeclaration)
11637          IsExplicitInstantiationDeclaration = true;
11638        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11639          IsExplicitInstantiationDeclaration = false;
11640          break;
11641        }
11642      }
11643
11644      if (IsExplicitInstantiationDeclaration)
11645        DefineVTable = false;
11646    }
11647
11648    // The exception specifications for all virtual members may be needed even
11649    // if we are not providing an authoritative form of the vtable in this TU.
11650    // We may choose to emit it available_externally anyway.
11651    if (!DefineVTable) {
11652      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11653      continue;
11654    }
11655
11656    // Mark all of the virtual members of this class as referenced, so
11657    // that we can build a vtable. Then, tell the AST consumer that a
11658    // vtable for this class is required.
11659    DefinedAnything = true;
11660    MarkVirtualMembersReferenced(Loc, Class);
11661    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11662    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11663
11664    // Optionally warn if we're emitting a weak vtable.
11665    if (Class->hasExternalLinkage() &&
11666        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11667      const FunctionDecl *KeyFunctionDef = 0;
11668      if (!KeyFunction ||
11669          (KeyFunction->hasBody(KeyFunctionDef) &&
11670           KeyFunctionDef->isInlined()))
11671        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11672             TSK_ExplicitInstantiationDefinition
11673             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11674          << Class;
11675    }
11676  }
11677  VTableUses.clear();
11678
11679  return DefinedAnything;
11680}
11681
11682void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11683                                                 const CXXRecordDecl *RD) {
11684  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11685                                      E = RD->method_end(); I != E; ++I)
11686    if ((*I)->isVirtual() && !(*I)->isPure())
11687      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11688}
11689
11690void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11691                                        const CXXRecordDecl *RD) {
11692  // Mark all functions which will appear in RD's vtable as used.
11693  CXXFinalOverriderMap FinalOverriders;
11694  RD->getFinalOverriders(FinalOverriders);
11695  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11696                                            E = FinalOverriders.end();
11697       I != E; ++I) {
11698    for (OverridingMethods::const_iterator OI = I->second.begin(),
11699                                           OE = I->second.end();
11700         OI != OE; ++OI) {
11701      assert(OI->second.size() > 0 && "no final overrider");
11702      CXXMethodDecl *Overrider = OI->second.front().Method;
11703
11704      // C++ [basic.def.odr]p2:
11705      //   [...] A virtual member function is used if it is not pure. [...]
11706      if (!Overrider->isPure())
11707        MarkFunctionReferenced(Loc, Overrider);
11708    }
11709  }
11710
11711  // Only classes that have virtual bases need a VTT.
11712  if (RD->getNumVBases() == 0)
11713    return;
11714
11715  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11716           e = RD->bases_end(); i != e; ++i) {
11717    const CXXRecordDecl *Base =
11718        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11719    if (Base->getNumVBases() == 0)
11720      continue;
11721    MarkVirtualMembersReferenced(Loc, Base);
11722  }
11723}
11724
11725/// SetIvarInitializers - This routine builds initialization ASTs for the
11726/// Objective-C implementation whose ivars need be initialized.
11727void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11728  if (!getLangOpts().CPlusPlus)
11729    return;
11730  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11731    SmallVector<ObjCIvarDecl*, 8> ivars;
11732    CollectIvarsToConstructOrDestruct(OID, ivars);
11733    if (ivars.empty())
11734      return;
11735    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11736    for (unsigned i = 0; i < ivars.size(); i++) {
11737      FieldDecl *Field = ivars[i];
11738      if (Field->isInvalidDecl())
11739        continue;
11740
11741      CXXCtorInitializer *Member;
11742      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11743      InitializationKind InitKind =
11744        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11745
11746      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11747      ExprResult MemberInit =
11748        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11749      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11750      // Note, MemberInit could actually come back empty if no initialization
11751      // is required (e.g., because it would call a trivial default constructor)
11752      if (!MemberInit.get() || MemberInit.isInvalid())
11753        continue;
11754
11755      Member =
11756        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11757                                         SourceLocation(),
11758                                         MemberInit.takeAs<Expr>(),
11759                                         SourceLocation());
11760      AllToInit.push_back(Member);
11761
11762      // Be sure that the destructor is accessible and is marked as referenced.
11763      if (const RecordType *RecordTy
11764                  = Context.getBaseElementType(Field->getType())
11765                                                        ->getAs<RecordType>()) {
11766                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11767        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11768          MarkFunctionReferenced(Field->getLocation(), Destructor);
11769          CheckDestructorAccess(Field->getLocation(), Destructor,
11770                            PDiag(diag::err_access_dtor_ivar)
11771                              << Context.getBaseElementType(Field->getType()));
11772        }
11773      }
11774    }
11775    ObjCImplementation->setIvarInitializers(Context,
11776                                            AllToInit.data(), AllToInit.size());
11777  }
11778}
11779
11780static
11781void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11782                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11783                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11784                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11785                           Sema &S) {
11786  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11787                                                   CE = Current.end();
11788  if (Ctor->isInvalidDecl())
11789    return;
11790
11791  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11792
11793  // Target may not be determinable yet, for instance if this is a dependent
11794  // call in an uninstantiated template.
11795  if (Target) {
11796    const FunctionDecl *FNTarget = 0;
11797    (void)Target->hasBody(FNTarget);
11798    Target = const_cast<CXXConstructorDecl*>(
11799      cast_or_null<CXXConstructorDecl>(FNTarget));
11800  }
11801
11802  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11803                     // Avoid dereferencing a null pointer here.
11804                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11805
11806  if (!Current.insert(Canonical))
11807    return;
11808
11809  // We know that beyond here, we aren't chaining into a cycle.
11810  if (!Target || !Target->isDelegatingConstructor() ||
11811      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11812    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11813      Valid.insert(*CI);
11814    Current.clear();
11815  // We've hit a cycle.
11816  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11817             Current.count(TCanonical)) {
11818    // If we haven't diagnosed this cycle yet, do so now.
11819    if (!Invalid.count(TCanonical)) {
11820      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11821             diag::warn_delegating_ctor_cycle)
11822        << Ctor;
11823
11824      // Don't add a note for a function delegating directly to itself.
11825      if (TCanonical != Canonical)
11826        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11827
11828      CXXConstructorDecl *C = Target;
11829      while (C->getCanonicalDecl() != Canonical) {
11830        const FunctionDecl *FNTarget = 0;
11831        (void)C->getTargetConstructor()->hasBody(FNTarget);
11832        assert(FNTarget && "Ctor cycle through bodiless function");
11833
11834        C = const_cast<CXXConstructorDecl*>(
11835          cast<CXXConstructorDecl>(FNTarget));
11836        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11837      }
11838    }
11839
11840    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11841      Invalid.insert(*CI);
11842    Current.clear();
11843  } else {
11844    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11845  }
11846}
11847
11848
11849void Sema::CheckDelegatingCtorCycles() {
11850  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11851
11852  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11853                                                   CE = Current.end();
11854
11855  for (DelegatingCtorDeclsType::iterator
11856         I = DelegatingCtorDecls.begin(ExternalSource),
11857         E = DelegatingCtorDecls.end();
11858       I != E; ++I)
11859    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11860
11861  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11862    (*CI)->setInvalidDecl();
11863}
11864
11865namespace {
11866  /// \brief AST visitor that finds references to the 'this' expression.
11867  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11868    Sema &S;
11869
11870  public:
11871    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11872
11873    bool VisitCXXThisExpr(CXXThisExpr *E) {
11874      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11875        << E->isImplicit();
11876      return false;
11877    }
11878  };
11879}
11880
11881bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11882  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11883  if (!TSInfo)
11884    return false;
11885
11886  TypeLoc TL = TSInfo->getTypeLoc();
11887  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11888  if (!ProtoTL)
11889    return false;
11890
11891  // C++11 [expr.prim.general]p3:
11892  //   [The expression this] shall not appear before the optional
11893  //   cv-qualifier-seq and it shall not appear within the declaration of a
11894  //   static member function (although its type and value category are defined
11895  //   within a static member function as they are within a non-static member
11896  //   function). [ Note: this is because declaration matching does not occur
11897  //  until the complete declarator is known. - end note ]
11898  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11899  FindCXXThisExpr Finder(*this);
11900
11901  // If the return type came after the cv-qualifier-seq, check it now.
11902  if (Proto->hasTrailingReturn() &&
11903      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11904    return true;
11905
11906  // Check the exception specification.
11907  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11908    return true;
11909
11910  return checkThisInStaticMemberFunctionAttributes(Method);
11911}
11912
11913bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11914  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11915  if (!TSInfo)
11916    return false;
11917
11918  TypeLoc TL = TSInfo->getTypeLoc();
11919  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11920  if (!ProtoTL)
11921    return false;
11922
11923  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11924  FindCXXThisExpr Finder(*this);
11925
11926  switch (Proto->getExceptionSpecType()) {
11927  case EST_Uninstantiated:
11928  case EST_Unevaluated:
11929  case EST_BasicNoexcept:
11930  case EST_DynamicNone:
11931  case EST_MSAny:
11932  case EST_None:
11933    break;
11934
11935  case EST_ComputedNoexcept:
11936    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11937      return true;
11938
11939  case EST_Dynamic:
11940    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11941         EEnd = Proto->exception_end();
11942         E != EEnd; ++E) {
11943      if (!Finder.TraverseType(*E))
11944        return true;
11945    }
11946    break;
11947  }
11948
11949  return false;
11950}
11951
11952bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11953  FindCXXThisExpr Finder(*this);
11954
11955  // Check attributes.
11956  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11957       A != AEnd; ++A) {
11958    // FIXME: This should be emitted by tblgen.
11959    Expr *Arg = 0;
11960    ArrayRef<Expr *> Args;
11961    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11962      Arg = G->getArg();
11963    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11964      Arg = G->getArg();
11965    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11966      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11967    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11968      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11969    else if (ExclusiveLockFunctionAttr *ELF
11970               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11971      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11972    else if (SharedLockFunctionAttr *SLF
11973               = dyn_cast<SharedLockFunctionAttr>(*A))
11974      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11975    else if (ExclusiveTrylockFunctionAttr *ETLF
11976               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11977      Arg = ETLF->getSuccessValue();
11978      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11979    } else if (SharedTrylockFunctionAttr *STLF
11980                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11981      Arg = STLF->getSuccessValue();
11982      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11983    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11984      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11985    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11986      Arg = LR->getArg();
11987    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11988      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11989    else if (ExclusiveLocksRequiredAttr *ELR
11990               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11991      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11992    else if (SharedLocksRequiredAttr *SLR
11993               = dyn_cast<SharedLocksRequiredAttr>(*A))
11994      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11995
11996    if (Arg && !Finder.TraverseStmt(Arg))
11997      return true;
11998
11999    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12000      if (!Finder.TraverseStmt(Args[I]))
12001        return true;
12002    }
12003  }
12004
12005  return false;
12006}
12007
12008void
12009Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12010                                  ArrayRef<ParsedType> DynamicExceptions,
12011                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12012                                  Expr *NoexceptExpr,
12013                                  SmallVectorImpl<QualType> &Exceptions,
12014                                  FunctionProtoType::ExtProtoInfo &EPI) {
12015  Exceptions.clear();
12016  EPI.ExceptionSpecType = EST;
12017  if (EST == EST_Dynamic) {
12018    Exceptions.reserve(DynamicExceptions.size());
12019    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12020      // FIXME: Preserve type source info.
12021      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12022
12023      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12024      collectUnexpandedParameterPacks(ET, Unexpanded);
12025      if (!Unexpanded.empty()) {
12026        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12027                                         UPPC_ExceptionType,
12028                                         Unexpanded);
12029        continue;
12030      }
12031
12032      // Check that the type is valid for an exception spec, and
12033      // drop it if not.
12034      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12035        Exceptions.push_back(ET);
12036    }
12037    EPI.NumExceptions = Exceptions.size();
12038    EPI.Exceptions = Exceptions.data();
12039    return;
12040  }
12041
12042  if (EST == EST_ComputedNoexcept) {
12043    // If an error occurred, there's no expression here.
12044    if (NoexceptExpr) {
12045      assert((NoexceptExpr->isTypeDependent() ||
12046              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12047              Context.BoolTy) &&
12048             "Parser should have made sure that the expression is boolean");
12049      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12050        EPI.ExceptionSpecType = EST_BasicNoexcept;
12051        return;
12052      }
12053
12054      if (!NoexceptExpr->isValueDependent())
12055        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12056                         diag::err_noexcept_needs_constant_expression,
12057                         /*AllowFold*/ false).take();
12058      EPI.NoexceptExpr = NoexceptExpr;
12059    }
12060    return;
12061  }
12062}
12063
12064/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12065Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12066  // Implicitly declared functions (e.g. copy constructors) are
12067  // __host__ __device__
12068  if (D->isImplicit())
12069    return CFT_HostDevice;
12070
12071  if (D->hasAttr<CUDAGlobalAttr>())
12072    return CFT_Global;
12073
12074  if (D->hasAttr<CUDADeviceAttr>()) {
12075    if (D->hasAttr<CUDAHostAttr>())
12076      return CFT_HostDevice;
12077    else
12078      return CFT_Device;
12079  }
12080
12081  return CFT_Host;
12082}
12083
12084bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12085                           CUDAFunctionTarget CalleeTarget) {
12086  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12087  // Callable from the device only."
12088  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12089    return true;
12090
12091  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12092  // Callable from the host only."
12093  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12094  // Callable from the host only."
12095  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12096      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12097    return true;
12098
12099  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12100    return true;
12101
12102  return false;
12103}
12104
12105/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12106///
12107MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12108                                       SourceLocation DeclStart,
12109                                       Declarator &D, Expr *BitWidth,
12110                                       InClassInitStyle InitStyle,
12111                                       AccessSpecifier AS,
12112                                       AttributeList *MSPropertyAttr) {
12113  IdentifierInfo *II = D.getIdentifier();
12114  if (!II) {
12115    Diag(DeclStart, diag::err_anonymous_property);
12116    return NULL;
12117  }
12118  SourceLocation Loc = D.getIdentifierLoc();
12119
12120  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12121  QualType T = TInfo->getType();
12122  if (getLangOpts().CPlusPlus) {
12123    CheckExtraCXXDefaultArguments(D);
12124
12125    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12126                                        UPPC_DataMemberType)) {
12127      D.setInvalidType();
12128      T = Context.IntTy;
12129      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12130    }
12131  }
12132
12133  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12134
12135  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12136    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12137         diag::err_invalid_thread)
12138      << DeclSpec::getSpecifierName(TSCS);
12139
12140  // Check to see if this name was declared as a member previously
12141  NamedDecl *PrevDecl = 0;
12142  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12143  LookupName(Previous, S);
12144  switch (Previous.getResultKind()) {
12145  case LookupResult::Found:
12146  case LookupResult::FoundUnresolvedValue:
12147    PrevDecl = Previous.getAsSingle<NamedDecl>();
12148    break;
12149
12150  case LookupResult::FoundOverloaded:
12151    PrevDecl = Previous.getRepresentativeDecl();
12152    break;
12153
12154  case LookupResult::NotFound:
12155  case LookupResult::NotFoundInCurrentInstantiation:
12156  case LookupResult::Ambiguous:
12157    break;
12158  }
12159
12160  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12161    // Maybe we will complain about the shadowed template parameter.
12162    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12163    // Just pretend that we didn't see the previous declaration.
12164    PrevDecl = 0;
12165  }
12166
12167  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12168    PrevDecl = 0;
12169
12170  SourceLocation TSSL = D.getLocStart();
12171  MSPropertyDecl *NewPD;
12172  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12173  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12174                                       II, T, TInfo, TSSL,
12175                                       Data.GetterId, Data.SetterId);
12176  ProcessDeclAttributes(TUScope, NewPD, D);
12177  NewPD->setAccess(AS);
12178
12179  if (NewPD->isInvalidDecl())
12180    Record->setInvalidDecl();
12181
12182  if (D.getDeclSpec().isModulePrivateSpecified())
12183    NewPD->setModulePrivate();
12184
12185  if (NewPD->isInvalidDecl() && PrevDecl) {
12186    // Don't introduce NewFD into scope; there's already something
12187    // with the same name in the same scope.
12188  } else if (II) {
12189    PushOnScopeChains(NewPD, S);
12190  } else
12191    Record->addDecl(NewPD);
12192
12193  return NewPD;
12194}
12195