SemaDeclCXX.cpp revision 7f27d92006936b16a29ca0a5c442476b4f585b21
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  assert(!DS.isFriendSpecified());
554
555  // C++ 9.2p6: A member shall not be declared to have automatic storage
556  // duration (auto, register) or with the extern storage-class-specifier.
557  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
558  // data members and cannot be applied to names declared const or static,
559  // and cannot be applied to reference members.
560  switch (DS.getStorageClassSpec()) {
561    case DeclSpec::SCS_unspecified:
562    case DeclSpec::SCS_typedef:
563    case DeclSpec::SCS_static:
564      // FALL THROUGH.
565      break;
566    case DeclSpec::SCS_mutable:
567      if (isFunc) {
568        if (DS.getStorageClassSpecLoc().isValid())
569          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
570        else
571          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
572
573        // FIXME: It would be nicer if the keyword was ignored only for this
574        // declarator. Otherwise we could get follow-up errors.
575        D.getMutableDeclSpec().ClearStorageClassSpecs();
576      } else {
577        QualType T = GetTypeForDeclarator(D, S);
578        diag::kind err = static_cast<diag::kind>(0);
579        if (T->isReferenceType())
580          err = diag::err_mutable_reference;
581        else if (T.isConstQualified())
582          err = diag::err_mutable_const;
583        if (err != 0) {
584          if (DS.getStorageClassSpecLoc().isValid())
585            Diag(DS.getStorageClassSpecLoc(), err);
586          else
587            Diag(DS.getThreadSpecLoc(), err);
588          // FIXME: It would be nicer if the keyword was ignored only for this
589          // declarator. Otherwise we could get follow-up errors.
590          D.getMutableDeclSpec().ClearStorageClassSpecs();
591        }
592      }
593      break;
594    default:
595      if (DS.getStorageClassSpecLoc().isValid())
596        Diag(DS.getStorageClassSpecLoc(),
597             diag::err_storageclass_invalid_for_member);
598      else
599        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
600      D.getMutableDeclSpec().ClearStorageClassSpecs();
601  }
602
603  if (!isFunc &&
604      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
605      D.getNumTypeObjects() == 0) {
606    // Check also for this case:
607    //
608    // typedef int f();
609    // f a;
610    //
611    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
612    isFunc = TDType->isFunctionType();
613  }
614
615  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
616                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
617                      !isFunc);
618
619  Decl *Member;
620  if (isInstField) {
621    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
622                         AS);
623    assert(Member && "HandleField never returns null");
624  } else {
625    Member = ActOnDeclarator(S, D).getAs<Decl>();
626    if (!Member) {
627      if (BitWidth) DeleteExpr(BitWidth);
628      return DeclPtrTy();
629    }
630
631    // Non-instance-fields can't have a bitfield.
632    if (BitWidth) {
633      if (Member->isInvalidDecl()) {
634        // don't emit another diagnostic.
635      } else if (isa<VarDecl>(Member)) {
636        // C++ 9.6p3: A bit-field shall not be a static member.
637        // "static member 'A' cannot be a bit-field"
638        Diag(Loc, diag::err_static_not_bitfield)
639          << Name << BitWidth->getSourceRange();
640      } else if (isa<TypedefDecl>(Member)) {
641        // "typedef member 'x' cannot be a bit-field"
642        Diag(Loc, diag::err_typedef_not_bitfield)
643          << Name << BitWidth->getSourceRange();
644      } else {
645        // A function typedef ("typedef int f(); f a;").
646        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
647        Diag(Loc, diag::err_not_integral_type_bitfield)
648          << Name << cast<ValueDecl>(Member)->getType()
649          << BitWidth->getSourceRange();
650      }
651
652      DeleteExpr(BitWidth);
653      BitWidth = 0;
654      Member->setInvalidDecl();
655    }
656
657    Member->setAccess(AS);
658  }
659
660  assert((Name || isInstField) && "No identifier for non-field ?");
661
662  if (Init)
663    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
664  if (Deleted) // FIXME: Source location is not very good.
665    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
666
667  if (isInstField) {
668    FieldCollector->Add(cast<FieldDecl>(Member));
669    return DeclPtrTy();
670  }
671  return DeclPtrTy::make(Member);
672}
673
674/// ActOnMemInitializer - Handle a C++ member initializer.
675Sema::MemInitResult
676Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
677                          Scope *S,
678                          const CXXScopeSpec &SS,
679                          IdentifierInfo *MemberOrBase,
680                          TypeTy *TemplateTypeTy,
681                          SourceLocation IdLoc,
682                          SourceLocation LParenLoc,
683                          ExprTy **Args, unsigned NumArgs,
684                          SourceLocation *CommaLocs,
685                          SourceLocation RParenLoc) {
686  if (!ConstructorD)
687    return true;
688
689  CXXConstructorDecl *Constructor
690    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
691  if (!Constructor) {
692    // The user wrote a constructor initializer on a function that is
693    // not a C++ constructor. Ignore the error for now, because we may
694    // have more member initializers coming; we'll diagnose it just
695    // once in ActOnMemInitializers.
696    return true;
697  }
698
699  CXXRecordDecl *ClassDecl = Constructor->getParent();
700
701  // C++ [class.base.init]p2:
702  //   Names in a mem-initializer-id are looked up in the scope of the
703  //   constructor’s class and, if not found in that scope, are looked
704  //   up in the scope containing the constructor’s
705  //   definition. [Note: if the constructor’s class contains a member
706  //   with the same name as a direct or virtual base class of the
707  //   class, a mem-initializer-id naming the member or base class and
708  //   composed of a single identifier refers to the class member. A
709  //   mem-initializer-id for the hidden base class may be specified
710  //   using a qualified name. ]
711  if (!SS.getScopeRep() && !TemplateTypeTy) {
712    // Look for a member, first.
713    FieldDecl *Member = 0;
714    DeclContext::lookup_result Result
715      = ClassDecl->lookup(MemberOrBase);
716    if (Result.first != Result.second)
717      Member = dyn_cast<FieldDecl>(*Result.first);
718
719    // FIXME: Handle members of an anonymous union.
720
721    if (Member)
722      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
723                                    RParenLoc);
724  }
725  // It didn't name a member, so see if it names a class.
726  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
727                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
728  if (!BaseTy)
729    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
730      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
731
732  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
733
734  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
735                              RParenLoc, ClassDecl);
736}
737
738Sema::MemInitResult
739Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
740                             unsigned NumArgs, SourceLocation IdLoc,
741                             SourceLocation RParenLoc) {
742  bool HasDependentArg = false;
743  for (unsigned i = 0; i < NumArgs; i++)
744    HasDependentArg |= Args[i]->isTypeDependent();
745
746  CXXConstructorDecl *C = 0;
747  QualType FieldType = Member->getType();
748  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
749    FieldType = Array->getElementType();
750  if (FieldType->isDependentType()) {
751    // Can't check init for dependent type.
752  } else if (FieldType->getAs<RecordType>()) {
753    if (!HasDependentArg)
754      C = PerformInitializationByConstructor(
755            FieldType, (Expr **)Args, NumArgs, IdLoc,
756            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
757  } else if (NumArgs != 1) {
758    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
759                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
760  } else if (!HasDependentArg) {
761    Expr *NewExp = (Expr*)Args[0];
762    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
763      return true;
764    Args[0] = NewExp;
765  }
766  // FIXME: Perform direct initialization of the member.
767  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
768                                                  NumArgs, C, IdLoc);
769}
770
771Sema::MemInitResult
772Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
773                           unsigned NumArgs, SourceLocation IdLoc,
774                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
775  bool HasDependentArg = false;
776  for (unsigned i = 0; i < NumArgs; i++)
777    HasDependentArg |= Args[i]->isTypeDependent();
778
779  if (!BaseType->isDependentType()) {
780    if (!BaseType->isRecordType())
781      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
782        << BaseType << SourceRange(IdLoc, RParenLoc);
783
784    // C++ [class.base.init]p2:
785    //   [...] Unless the mem-initializer-id names a nonstatic data
786    //   member of the constructor’s class or a direct or virtual base
787    //   of that class, the mem-initializer is ill-formed. A
788    //   mem-initializer-list can initialize a base class using any
789    //   name that denotes that base class type.
790
791    // First, check for a direct base class.
792    const CXXBaseSpecifier *DirectBaseSpec = 0;
793    for (CXXRecordDecl::base_class_const_iterator Base =
794         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
795      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
796          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
797        // We found a direct base of this type. That's what we're
798        // initializing.
799        DirectBaseSpec = &*Base;
800        break;
801      }
802    }
803
804    // Check for a virtual base class.
805    // FIXME: We might be able to short-circuit this if we know in advance that
806    // there are no virtual bases.
807    const CXXBaseSpecifier *VirtualBaseSpec = 0;
808    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
809      // We haven't found a base yet; search the class hierarchy for a
810      // virtual base class.
811      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
812                      /*DetectVirtual=*/false);
813      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
814        for (BasePaths::paths_iterator Path = Paths.begin();
815             Path != Paths.end(); ++Path) {
816          if (Path->back().Base->isVirtual()) {
817            VirtualBaseSpec = Path->back().Base;
818            break;
819          }
820        }
821      }
822    }
823
824    // C++ [base.class.init]p2:
825    //   If a mem-initializer-id is ambiguous because it designates both
826    //   a direct non-virtual base class and an inherited virtual base
827    //   class, the mem-initializer is ill-formed.
828    if (DirectBaseSpec && VirtualBaseSpec)
829      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
830        << BaseType << SourceRange(IdLoc, RParenLoc);
831    // C++ [base.class.init]p2:
832    // Unless the mem-initializer-id names a nonstatic data membeer of the
833    // constructor's class ot a direst or virtual base of that class, the
834    // mem-initializer is ill-formed.
835    if (!DirectBaseSpec && !VirtualBaseSpec)
836      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
837      << BaseType << ClassDecl->getNameAsCString()
838      << SourceRange(IdLoc, RParenLoc);
839  }
840
841  CXXConstructorDecl *C = 0;
842  if (!BaseType->isDependentType() && !HasDependentArg) {
843    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
844                                            Context.getCanonicalType(BaseType));
845    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
846                                           IdLoc, SourceRange(IdLoc, RParenLoc),
847                                           Name, IK_Direct);
848  }
849
850  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
851                                                  NumArgs, C, IdLoc);
852}
853
854void
855Sema::BuildBaseOrMemberInitializers(ASTContext &C,
856                                 CXXConstructorDecl *Constructor,
857                                 CXXBaseOrMemberInitializer **Initializers,
858                                 unsigned NumInitializers
859                                 ) {
860  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
861  llvm::SmallVector<FieldDecl *, 4>Members;
862
863  Constructor->setBaseOrMemberInitializers(C,
864                                           Initializers, NumInitializers,
865                                           Bases, Members);
866  for (unsigned int i = 0; i < Bases.size(); i++)
867    Diag(Bases[i]->getSourceRange().getBegin(),
868         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
869  for (unsigned int i = 0; i < Members.size(); i++)
870    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
871          << 1 << Members[i]->getType();
872}
873
874static void *GetKeyForTopLevelField(FieldDecl *Field) {
875  // For anonymous unions, use the class declaration as the key.
876  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
877    if (RT->getDecl()->isAnonymousStructOrUnion())
878      return static_cast<void *>(RT->getDecl());
879  }
880  return static_cast<void *>(Field);
881}
882
883static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
884  // For fields injected into the class via declaration of an anonymous union,
885  // use its anonymous union class declaration as the unique key.
886  if (FieldDecl *Field = Member->getMember()) {
887    if (Field->getDeclContext()->isRecord()) {
888      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
889      if (RD->isAnonymousStructOrUnion())
890        return static_cast<void *>(RD);
891    }
892    return static_cast<void *>(Field);
893  }
894  return static_cast<RecordType *>(Member->getBaseClass());
895}
896
897void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
898                                SourceLocation ColonLoc,
899                                MemInitTy **MemInits, unsigned NumMemInits) {
900  if (!ConstructorDecl)
901    return;
902
903  CXXConstructorDecl *Constructor
904    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
905
906  if (!Constructor) {
907    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
908    return;
909  }
910  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
911  bool err = false;
912  for (unsigned i = 0; i < NumMemInits; i++) {
913    CXXBaseOrMemberInitializer *Member =
914      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
915    void *KeyToMember = GetKeyForMember(Member);
916    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
917    if (!PrevMember) {
918      PrevMember = Member;
919      continue;
920    }
921    if (FieldDecl *Field = Member->getMember())
922      Diag(Member->getSourceLocation(),
923           diag::error_multiple_mem_initialization)
924      << Field->getNameAsString();
925    else {
926      Type *BaseClass = Member->getBaseClass();
927      assert(BaseClass && "ActOnMemInitializers - neither field or base");
928      Diag(Member->getSourceLocation(),
929           diag::error_multiple_base_initialization)
930        << BaseClass->getDesugaredType(true);
931    }
932    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
933      << 0;
934    err = true;
935  }
936  if (!err)
937    BuildBaseOrMemberInitializers(Context, Constructor,
938                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
939                      NumMemInits);
940
941  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
942               != Diagnostic::Ignored ||
943               Diags.getDiagnosticLevel(diag::warn_field_initialized)
944               != Diagnostic::Ignored)) {
945    // Also issue warning if order of ctor-initializer list does not match order
946    // of 1) base class declarations and 2) order of non-static data members.
947    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
948
949    CXXRecordDecl *ClassDecl
950      = cast<CXXRecordDecl>(Constructor->getDeclContext());
951    // Push virtual bases before others.
952    for (CXXRecordDecl::base_class_iterator VBase =
953         ClassDecl->vbases_begin(),
954         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
955      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
956
957    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
958         E = ClassDecl->bases_end(); Base != E; ++Base) {
959      // Virtuals are alread in the virtual base list and are constructed
960      // first.
961      if (Base->isVirtual())
962        continue;
963      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
964    }
965
966    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
967         E = ClassDecl->field_end(); Field != E; ++Field)
968      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
969
970    int Last = AllBaseOrMembers.size();
971    int curIndex = 0;
972    CXXBaseOrMemberInitializer *PrevMember = 0;
973    for (unsigned i = 0; i < NumMemInits; i++) {
974      CXXBaseOrMemberInitializer *Member =
975        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
976      void *MemberInCtorList = GetKeyForMember(Member);
977
978      for (; curIndex < Last; curIndex++)
979        if (MemberInCtorList == AllBaseOrMembers[curIndex])
980          break;
981      if (curIndex == Last) {
982        assert(PrevMember && "Member not in member list?!");
983        // Initializer as specified in ctor-initializer list is out of order.
984        // Issue a warning diagnostic.
985        if (PrevMember->isBaseInitializer()) {
986          // Diagnostics is for an initialized base class.
987          Type *BaseClass = PrevMember->getBaseClass();
988          Diag(PrevMember->getSourceLocation(),
989               diag::warn_base_initialized)
990                << BaseClass->getDesugaredType(true);
991        } else {
992          FieldDecl *Field = PrevMember->getMember();
993          Diag(PrevMember->getSourceLocation(),
994               diag::warn_field_initialized)
995            << Field->getNameAsString();
996        }
997        // Also the note!
998        if (FieldDecl *Field = Member->getMember())
999          Diag(Member->getSourceLocation(),
1000               diag::note_fieldorbase_initialized_here) << 0
1001            << Field->getNameAsString();
1002        else {
1003          Type *BaseClass = Member->getBaseClass();
1004          Diag(Member->getSourceLocation(),
1005               diag::note_fieldorbase_initialized_here) << 1
1006            << BaseClass->getDesugaredType(true);
1007        }
1008        for (curIndex = 0; curIndex < Last; curIndex++)
1009          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1010            break;
1011      }
1012      PrevMember = Member;
1013    }
1014  }
1015}
1016
1017void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1018  if (!CDtorDecl)
1019    return;
1020
1021  if (CXXConstructorDecl *Constructor
1022      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1023    BuildBaseOrMemberInitializers(Context,
1024                                     Constructor,
1025                                     (CXXBaseOrMemberInitializer **)0, 0);
1026}
1027
1028namespace {
1029  /// PureVirtualMethodCollector - traverses a class and its superclasses
1030  /// and determines if it has any pure virtual methods.
1031  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1032    ASTContext &Context;
1033
1034  public:
1035    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1036
1037  private:
1038    MethodList Methods;
1039
1040    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1041
1042  public:
1043    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1044      : Context(Ctx) {
1045
1046      MethodList List;
1047      Collect(RD, List);
1048
1049      // Copy the temporary list to methods, and make sure to ignore any
1050      // null entries.
1051      for (size_t i = 0, e = List.size(); i != e; ++i) {
1052        if (List[i])
1053          Methods.push_back(List[i]);
1054      }
1055    }
1056
1057    bool empty() const { return Methods.empty(); }
1058
1059    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1060    MethodList::const_iterator methods_end() { return Methods.end(); }
1061  };
1062
1063  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1064                                           MethodList& Methods) {
1065    // First, collect the pure virtual methods for the base classes.
1066    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1067         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1068      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1069        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1070        if (BaseDecl && BaseDecl->isAbstract())
1071          Collect(BaseDecl, Methods);
1072      }
1073    }
1074
1075    // Next, zero out any pure virtual methods that this class overrides.
1076    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1077
1078    MethodSetTy OverriddenMethods;
1079    size_t MethodsSize = Methods.size();
1080
1081    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1082         i != e; ++i) {
1083      // Traverse the record, looking for methods.
1084      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1085        // If the method is pure virtual, add it to the methods vector.
1086        if (MD->isPure()) {
1087          Methods.push_back(MD);
1088          continue;
1089        }
1090
1091        // Otherwise, record all the overridden methods in our set.
1092        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1093             E = MD->end_overridden_methods(); I != E; ++I) {
1094          // Keep track of the overridden methods.
1095          OverriddenMethods.insert(*I);
1096        }
1097      }
1098    }
1099
1100    // Now go through the methods and zero out all the ones we know are
1101    // overridden.
1102    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1103      if (OverriddenMethods.count(Methods[i]))
1104        Methods[i] = 0;
1105    }
1106
1107  }
1108}
1109
1110bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1111                                  unsigned DiagID, AbstractDiagSelID SelID,
1112                                  const CXXRecordDecl *CurrentRD) {
1113
1114  if (!getLangOptions().CPlusPlus)
1115    return false;
1116
1117  if (const ArrayType *AT = Context.getAsArrayType(T))
1118    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1119                                  CurrentRD);
1120
1121  if (const PointerType *PT = T->getAs<PointerType>()) {
1122    // Find the innermost pointer type.
1123    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1124      PT = T;
1125
1126    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1127      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1128                                    CurrentRD);
1129  }
1130
1131  const RecordType *RT = T->getAs<RecordType>();
1132  if (!RT)
1133    return false;
1134
1135  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1136  if (!RD)
1137    return false;
1138
1139  if (CurrentRD && CurrentRD != RD)
1140    return false;
1141
1142  if (!RD->isAbstract())
1143    return false;
1144
1145  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1146
1147  // Check if we've already emitted the list of pure virtual functions for this
1148  // class.
1149  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1150    return true;
1151
1152  PureVirtualMethodCollector Collector(Context, RD);
1153
1154  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1155       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1156    const CXXMethodDecl *MD = *I;
1157
1158    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1159      MD->getDeclName();
1160  }
1161
1162  if (!PureVirtualClassDiagSet)
1163    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1164  PureVirtualClassDiagSet->insert(RD);
1165
1166  return true;
1167}
1168
1169namespace {
1170  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1171    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1172    Sema &SemaRef;
1173    CXXRecordDecl *AbstractClass;
1174
1175    bool VisitDeclContext(const DeclContext *DC) {
1176      bool Invalid = false;
1177
1178      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1179           E = DC->decls_end(); I != E; ++I)
1180        Invalid |= Visit(*I);
1181
1182      return Invalid;
1183    }
1184
1185  public:
1186    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1187      : SemaRef(SemaRef), AbstractClass(ac) {
1188        Visit(SemaRef.Context.getTranslationUnitDecl());
1189    }
1190
1191    bool VisitFunctionDecl(const FunctionDecl *FD) {
1192      if (FD->isThisDeclarationADefinition()) {
1193        // No need to do the check if we're in a definition, because it requires
1194        // that the return/param types are complete.
1195        // because that requires
1196        return VisitDeclContext(FD);
1197      }
1198
1199      // Check the return type.
1200      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1201      bool Invalid =
1202        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1203                                       diag::err_abstract_type_in_decl,
1204                                       Sema::AbstractReturnType,
1205                                       AbstractClass);
1206
1207      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1208           E = FD->param_end(); I != E; ++I) {
1209        const ParmVarDecl *VD = *I;
1210        Invalid |=
1211          SemaRef.RequireNonAbstractType(VD->getLocation(),
1212                                         VD->getOriginalType(),
1213                                         diag::err_abstract_type_in_decl,
1214                                         Sema::AbstractParamType,
1215                                         AbstractClass);
1216      }
1217
1218      return Invalid;
1219    }
1220
1221    bool VisitDecl(const Decl* D) {
1222      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1223        return VisitDeclContext(DC);
1224
1225      return false;
1226    }
1227  };
1228}
1229
1230void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1231                                             DeclPtrTy TagDecl,
1232                                             SourceLocation LBrac,
1233                                             SourceLocation RBrac) {
1234  if (!TagDecl)
1235    return;
1236
1237  AdjustDeclIfTemplate(TagDecl);
1238  ActOnFields(S, RLoc, TagDecl,
1239              (DeclPtrTy*)FieldCollector->getCurFields(),
1240              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1241
1242  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1243  if (!RD->isAbstract()) {
1244    // Collect all the pure virtual methods and see if this is an abstract
1245    // class after all.
1246    PureVirtualMethodCollector Collector(Context, RD);
1247    if (!Collector.empty())
1248      RD->setAbstract(true);
1249  }
1250
1251  if (RD->isAbstract())
1252    AbstractClassUsageDiagnoser(*this, RD);
1253
1254  if (!RD->isDependentType())
1255    AddImplicitlyDeclaredMembersToClass(RD);
1256}
1257
1258/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1259/// special functions, such as the default constructor, copy
1260/// constructor, or destructor, to the given C++ class (C++
1261/// [special]p1).  This routine can only be executed just before the
1262/// definition of the class is complete.
1263void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1264  CanQualType ClassType
1265    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1266
1267  // FIXME: Implicit declarations have exception specifications, which are
1268  // the union of the specifications of the implicitly called functions.
1269
1270  if (!ClassDecl->hasUserDeclaredConstructor()) {
1271    // C++ [class.ctor]p5:
1272    //   A default constructor for a class X is a constructor of class X
1273    //   that can be called without an argument. If there is no
1274    //   user-declared constructor for class X, a default constructor is
1275    //   implicitly declared. An implicitly-declared default constructor
1276    //   is an inline public member of its class.
1277    DeclarationName Name
1278      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1279    CXXConstructorDecl *DefaultCon =
1280      CXXConstructorDecl::Create(Context, ClassDecl,
1281                                 ClassDecl->getLocation(), Name,
1282                                 Context.getFunctionType(Context.VoidTy,
1283                                                         0, 0, false, 0),
1284                                 /*isExplicit=*/false,
1285                                 /*isInline=*/true,
1286                                 /*isImplicitlyDeclared=*/true);
1287    DefaultCon->setAccess(AS_public);
1288    DefaultCon->setImplicit();
1289    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1290    ClassDecl->addDecl(DefaultCon);
1291  }
1292
1293  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1294    // C++ [class.copy]p4:
1295    //   If the class definition does not explicitly declare a copy
1296    //   constructor, one is declared implicitly.
1297
1298    // C++ [class.copy]p5:
1299    //   The implicitly-declared copy constructor for a class X will
1300    //   have the form
1301    //
1302    //       X::X(const X&)
1303    //
1304    //   if
1305    bool HasConstCopyConstructor = true;
1306
1307    //     -- each direct or virtual base class B of X has a copy
1308    //        constructor whose first parameter is of type const B& or
1309    //        const volatile B&, and
1310    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1311         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1312      const CXXRecordDecl *BaseClassDecl
1313        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1314      HasConstCopyConstructor
1315        = BaseClassDecl->hasConstCopyConstructor(Context);
1316    }
1317
1318    //     -- for all the nonstatic data members of X that are of a
1319    //        class type M (or array thereof), each such class type
1320    //        has a copy constructor whose first parameter is of type
1321    //        const M& or const volatile M&.
1322    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1323         HasConstCopyConstructor && Field != ClassDecl->field_end();
1324         ++Field) {
1325      QualType FieldType = (*Field)->getType();
1326      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1327        FieldType = Array->getElementType();
1328      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1329        const CXXRecordDecl *FieldClassDecl
1330          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1331        HasConstCopyConstructor
1332          = FieldClassDecl->hasConstCopyConstructor(Context);
1333      }
1334    }
1335
1336    //   Otherwise, the implicitly declared copy constructor will have
1337    //   the form
1338    //
1339    //       X::X(X&)
1340    QualType ArgType = ClassType;
1341    if (HasConstCopyConstructor)
1342      ArgType = ArgType.withConst();
1343    ArgType = Context.getLValueReferenceType(ArgType);
1344
1345    //   An implicitly-declared copy constructor is an inline public
1346    //   member of its class.
1347    DeclarationName Name
1348      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1349    CXXConstructorDecl *CopyConstructor
1350      = CXXConstructorDecl::Create(Context, ClassDecl,
1351                                   ClassDecl->getLocation(), Name,
1352                                   Context.getFunctionType(Context.VoidTy,
1353                                                           &ArgType, 1,
1354                                                           false, 0),
1355                                   /*isExplicit=*/false,
1356                                   /*isInline=*/true,
1357                                   /*isImplicitlyDeclared=*/true);
1358    CopyConstructor->setAccess(AS_public);
1359    CopyConstructor->setImplicit();
1360    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1361
1362    // Add the parameter to the constructor.
1363    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1364                                                 ClassDecl->getLocation(),
1365                                                 /*IdentifierInfo=*/0,
1366                                                 ArgType, VarDecl::None, 0);
1367    CopyConstructor->setParams(Context, &FromParam, 1);
1368    ClassDecl->addDecl(CopyConstructor);
1369  }
1370
1371  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1372    // Note: The following rules are largely analoguous to the copy
1373    // constructor rules. Note that virtual bases are not taken into account
1374    // for determining the argument type of the operator. Note also that
1375    // operators taking an object instead of a reference are allowed.
1376    //
1377    // C++ [class.copy]p10:
1378    //   If the class definition does not explicitly declare a copy
1379    //   assignment operator, one is declared implicitly.
1380    //   The implicitly-defined copy assignment operator for a class X
1381    //   will have the form
1382    //
1383    //       X& X::operator=(const X&)
1384    //
1385    //   if
1386    bool HasConstCopyAssignment = true;
1387
1388    //       -- each direct base class B of X has a copy assignment operator
1389    //          whose parameter is of type const B&, const volatile B& or B,
1390    //          and
1391    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1392         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1393      const CXXRecordDecl *BaseClassDecl
1394        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1395      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1396    }
1397
1398    //       -- for all the nonstatic data members of X that are of a class
1399    //          type M (or array thereof), each such class type has a copy
1400    //          assignment operator whose parameter is of type const M&,
1401    //          const volatile M& or M.
1402    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1403         HasConstCopyAssignment && Field != ClassDecl->field_end();
1404         ++Field) {
1405      QualType FieldType = (*Field)->getType();
1406      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1407        FieldType = Array->getElementType();
1408      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1409        const CXXRecordDecl *FieldClassDecl
1410          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1411        HasConstCopyAssignment
1412          = FieldClassDecl->hasConstCopyAssignment(Context);
1413      }
1414    }
1415
1416    //   Otherwise, the implicitly declared copy assignment operator will
1417    //   have the form
1418    //
1419    //       X& X::operator=(X&)
1420    QualType ArgType = ClassType;
1421    QualType RetType = Context.getLValueReferenceType(ArgType);
1422    if (HasConstCopyAssignment)
1423      ArgType = ArgType.withConst();
1424    ArgType = Context.getLValueReferenceType(ArgType);
1425
1426    //   An implicitly-declared copy assignment operator is an inline public
1427    //   member of its class.
1428    DeclarationName Name =
1429      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1430    CXXMethodDecl *CopyAssignment =
1431      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1432                            Context.getFunctionType(RetType, &ArgType, 1,
1433                                                    false, 0),
1434                            /*isStatic=*/false, /*isInline=*/true);
1435    CopyAssignment->setAccess(AS_public);
1436    CopyAssignment->setImplicit();
1437    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1438
1439    // Add the parameter to the operator.
1440    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1441                                                 ClassDecl->getLocation(),
1442                                                 /*IdentifierInfo=*/0,
1443                                                 ArgType, VarDecl::None, 0);
1444    CopyAssignment->setParams(Context, &FromParam, 1);
1445
1446    // Don't call addedAssignmentOperator. There is no way to distinguish an
1447    // implicit from an explicit assignment operator.
1448    ClassDecl->addDecl(CopyAssignment);
1449  }
1450
1451  if (!ClassDecl->hasUserDeclaredDestructor()) {
1452    // C++ [class.dtor]p2:
1453    //   If a class has no user-declared destructor, a destructor is
1454    //   declared implicitly. An implicitly-declared destructor is an
1455    //   inline public member of its class.
1456    DeclarationName Name
1457      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1458    CXXDestructorDecl *Destructor
1459      = CXXDestructorDecl::Create(Context, ClassDecl,
1460                                  ClassDecl->getLocation(), Name,
1461                                  Context.getFunctionType(Context.VoidTy,
1462                                                          0, 0, false, 0),
1463                                  /*isInline=*/true,
1464                                  /*isImplicitlyDeclared=*/true);
1465    Destructor->setAccess(AS_public);
1466    Destructor->setImplicit();
1467    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1468    ClassDecl->addDecl(Destructor);
1469  }
1470}
1471
1472void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1473  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1474  if (!Template)
1475    return;
1476
1477  TemplateParameterList *Params = Template->getTemplateParameters();
1478  for (TemplateParameterList::iterator Param = Params->begin(),
1479                                    ParamEnd = Params->end();
1480       Param != ParamEnd; ++Param) {
1481    NamedDecl *Named = cast<NamedDecl>(*Param);
1482    if (Named->getDeclName()) {
1483      S->AddDecl(DeclPtrTy::make(Named));
1484      IdResolver.AddDecl(Named);
1485    }
1486  }
1487}
1488
1489/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1490/// parsing a top-level (non-nested) C++ class, and we are now
1491/// parsing those parts of the given Method declaration that could
1492/// not be parsed earlier (C++ [class.mem]p2), such as default
1493/// arguments. This action should enter the scope of the given
1494/// Method declaration as if we had just parsed the qualified method
1495/// name. However, it should not bring the parameters into scope;
1496/// that will be performed by ActOnDelayedCXXMethodParameter.
1497void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1498  if (!MethodD)
1499    return;
1500
1501  CXXScopeSpec SS;
1502  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1503  QualType ClassTy
1504    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1505  SS.setScopeRep(
1506    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1507  ActOnCXXEnterDeclaratorScope(S, SS);
1508}
1509
1510/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1511/// C++ method declaration. We're (re-)introducing the given
1512/// function parameter into scope for use in parsing later parts of
1513/// the method declaration. For example, we could see an
1514/// ActOnParamDefaultArgument event for this parameter.
1515void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1516  if (!ParamD)
1517    return;
1518
1519  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1520
1521  // If this parameter has an unparsed default argument, clear it out
1522  // to make way for the parsed default argument.
1523  if (Param->hasUnparsedDefaultArg())
1524    Param->setDefaultArg(0);
1525
1526  S->AddDecl(DeclPtrTy::make(Param));
1527  if (Param->getDeclName())
1528    IdResolver.AddDecl(Param);
1529}
1530
1531/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1532/// processing the delayed method declaration for Method. The method
1533/// declaration is now considered finished. There may be a separate
1534/// ActOnStartOfFunctionDef action later (not necessarily
1535/// immediately!) for this method, if it was also defined inside the
1536/// class body.
1537void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1538  if (!MethodD)
1539    return;
1540
1541  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1542  CXXScopeSpec SS;
1543  QualType ClassTy
1544    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1545  SS.setScopeRep(
1546    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1547  ActOnCXXExitDeclaratorScope(S, SS);
1548
1549  // Now that we have our default arguments, check the constructor
1550  // again. It could produce additional diagnostics or affect whether
1551  // the class has implicitly-declared destructors, among other
1552  // things.
1553  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1554    CheckConstructor(Constructor);
1555
1556  // Check the default arguments, which we may have added.
1557  if (!Method->isInvalidDecl())
1558    CheckCXXDefaultArguments(Method);
1559}
1560
1561/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1562/// the well-formedness of the constructor declarator @p D with type @p
1563/// R. If there are any errors in the declarator, this routine will
1564/// emit diagnostics and set the invalid bit to true.  In any case, the type
1565/// will be updated to reflect a well-formed type for the constructor and
1566/// returned.
1567QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1568                                          FunctionDecl::StorageClass &SC) {
1569  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1570
1571  // C++ [class.ctor]p3:
1572  //   A constructor shall not be virtual (10.3) or static (9.4). A
1573  //   constructor can be invoked for a const, volatile or const
1574  //   volatile object. A constructor shall not be declared const,
1575  //   volatile, or const volatile (9.3.2).
1576  if (isVirtual) {
1577    if (!D.isInvalidType())
1578      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1579        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1580        << SourceRange(D.getIdentifierLoc());
1581    D.setInvalidType();
1582  }
1583  if (SC == FunctionDecl::Static) {
1584    if (!D.isInvalidType())
1585      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1586        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1587        << SourceRange(D.getIdentifierLoc());
1588    D.setInvalidType();
1589    SC = FunctionDecl::None;
1590  }
1591
1592  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1593  if (FTI.TypeQuals != 0) {
1594    if (FTI.TypeQuals & QualType::Const)
1595      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1596        << "const" << SourceRange(D.getIdentifierLoc());
1597    if (FTI.TypeQuals & QualType::Volatile)
1598      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1599        << "volatile" << SourceRange(D.getIdentifierLoc());
1600    if (FTI.TypeQuals & QualType::Restrict)
1601      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1602        << "restrict" << SourceRange(D.getIdentifierLoc());
1603  }
1604
1605  // Rebuild the function type "R" without any type qualifiers (in
1606  // case any of the errors above fired) and with "void" as the
1607  // return type, since constructors don't have return types. We
1608  // *always* have to do this, because GetTypeForDeclarator will
1609  // put in a result type of "int" when none was specified.
1610  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1611  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1612                                 Proto->getNumArgs(),
1613                                 Proto->isVariadic(), 0);
1614}
1615
1616/// CheckConstructor - Checks a fully-formed constructor for
1617/// well-formedness, issuing any diagnostics required. Returns true if
1618/// the constructor declarator is invalid.
1619void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1620  CXXRecordDecl *ClassDecl
1621    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1622  if (!ClassDecl)
1623    return Constructor->setInvalidDecl();
1624
1625  // C++ [class.copy]p3:
1626  //   A declaration of a constructor for a class X is ill-formed if
1627  //   its first parameter is of type (optionally cv-qualified) X and
1628  //   either there are no other parameters or else all other
1629  //   parameters have default arguments.
1630  if (!Constructor->isInvalidDecl() &&
1631      ((Constructor->getNumParams() == 1) ||
1632       (Constructor->getNumParams() > 1 &&
1633        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1634    QualType ParamType = Constructor->getParamDecl(0)->getType();
1635    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1636    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1637      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1638      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1639        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1640      Constructor->setInvalidDecl();
1641    }
1642  }
1643
1644  // Notify the class that we've added a constructor.
1645  ClassDecl->addedConstructor(Context, Constructor);
1646}
1647
1648static inline bool
1649FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1650  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1651          FTI.ArgInfo[0].Param &&
1652          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1653}
1654
1655/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1656/// the well-formednes of the destructor declarator @p D with type @p
1657/// R. If there are any errors in the declarator, this routine will
1658/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1659/// will be updated to reflect a well-formed type for the destructor and
1660/// returned.
1661QualType Sema::CheckDestructorDeclarator(Declarator &D,
1662                                         FunctionDecl::StorageClass& SC) {
1663  // C++ [class.dtor]p1:
1664  //   [...] A typedef-name that names a class is a class-name
1665  //   (7.1.3); however, a typedef-name that names a class shall not
1666  //   be used as the identifier in the declarator for a destructor
1667  //   declaration.
1668  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1669  if (isa<TypedefType>(DeclaratorType)) {
1670    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1671      << DeclaratorType;
1672    D.setInvalidType();
1673  }
1674
1675  // C++ [class.dtor]p2:
1676  //   A destructor is used to destroy objects of its class type. A
1677  //   destructor takes no parameters, and no return type can be
1678  //   specified for it (not even void). The address of a destructor
1679  //   shall not be taken. A destructor shall not be static. A
1680  //   destructor can be invoked for a const, volatile or const
1681  //   volatile object. A destructor shall not be declared const,
1682  //   volatile or const volatile (9.3.2).
1683  if (SC == FunctionDecl::Static) {
1684    if (!D.isInvalidType())
1685      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1686        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1687        << SourceRange(D.getIdentifierLoc());
1688    SC = FunctionDecl::None;
1689    D.setInvalidType();
1690  }
1691  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1692    // Destructors don't have return types, but the parser will
1693    // happily parse something like:
1694    //
1695    //   class X {
1696    //     float ~X();
1697    //   };
1698    //
1699    // The return type will be eliminated later.
1700    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1701      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1702      << SourceRange(D.getIdentifierLoc());
1703  }
1704
1705  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1706  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1707    if (FTI.TypeQuals & QualType::Const)
1708      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1709        << "const" << SourceRange(D.getIdentifierLoc());
1710    if (FTI.TypeQuals & QualType::Volatile)
1711      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1712        << "volatile" << SourceRange(D.getIdentifierLoc());
1713    if (FTI.TypeQuals & QualType::Restrict)
1714      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1715        << "restrict" << SourceRange(D.getIdentifierLoc());
1716    D.setInvalidType();
1717  }
1718
1719  // Make sure we don't have any parameters.
1720  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1721    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1722
1723    // Delete the parameters.
1724    FTI.freeArgs();
1725    D.setInvalidType();
1726  }
1727
1728  // Make sure the destructor isn't variadic.
1729  if (FTI.isVariadic) {
1730    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1731    D.setInvalidType();
1732  }
1733
1734  // Rebuild the function type "R" without any type qualifiers or
1735  // parameters (in case any of the errors above fired) and with
1736  // "void" as the return type, since destructors don't have return
1737  // types. We *always* have to do this, because GetTypeForDeclarator
1738  // will put in a result type of "int" when none was specified.
1739  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1740}
1741
1742/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1743/// well-formednes of the conversion function declarator @p D with
1744/// type @p R. If there are any errors in the declarator, this routine
1745/// will emit diagnostics and return true. Otherwise, it will return
1746/// false. Either way, the type @p R will be updated to reflect a
1747/// well-formed type for the conversion operator.
1748void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1749                                     FunctionDecl::StorageClass& SC) {
1750  // C++ [class.conv.fct]p1:
1751  //   Neither parameter types nor return type can be specified. The
1752  //   type of a conversion function (8.3.5) is "function taking no
1753  //   parameter returning conversion-type-id."
1754  if (SC == FunctionDecl::Static) {
1755    if (!D.isInvalidType())
1756      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1757        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1758        << SourceRange(D.getIdentifierLoc());
1759    D.setInvalidType();
1760    SC = FunctionDecl::None;
1761  }
1762  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1763    // Conversion functions don't have return types, but the parser will
1764    // happily parse something like:
1765    //
1766    //   class X {
1767    //     float operator bool();
1768    //   };
1769    //
1770    // The return type will be changed later anyway.
1771    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1772      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1773      << SourceRange(D.getIdentifierLoc());
1774  }
1775
1776  // Make sure we don't have any parameters.
1777  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1778    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1779
1780    // Delete the parameters.
1781    D.getTypeObject(0).Fun.freeArgs();
1782    D.setInvalidType();
1783  }
1784
1785  // Make sure the conversion function isn't variadic.
1786  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1787    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1788    D.setInvalidType();
1789  }
1790
1791  // C++ [class.conv.fct]p4:
1792  //   The conversion-type-id shall not represent a function type nor
1793  //   an array type.
1794  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1795  if (ConvType->isArrayType()) {
1796    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1797    ConvType = Context.getPointerType(ConvType);
1798    D.setInvalidType();
1799  } else if (ConvType->isFunctionType()) {
1800    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1801    ConvType = Context.getPointerType(ConvType);
1802    D.setInvalidType();
1803  }
1804
1805  // Rebuild the function type "R" without any parameters (in case any
1806  // of the errors above fired) and with the conversion type as the
1807  // return type.
1808  R = Context.getFunctionType(ConvType, 0, 0, false,
1809                              R->getAsFunctionProtoType()->getTypeQuals());
1810
1811  // C++0x explicit conversion operators.
1812  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1813    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1814         diag::warn_explicit_conversion_functions)
1815      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1816}
1817
1818/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1819/// the declaration of the given C++ conversion function. This routine
1820/// is responsible for recording the conversion function in the C++
1821/// class, if possible.
1822Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1823  assert(Conversion && "Expected to receive a conversion function declaration");
1824
1825  // Set the lexical context of this conversion function
1826  Conversion->setLexicalDeclContext(CurContext);
1827
1828  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1829
1830  // Make sure we aren't redeclaring the conversion function.
1831  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1832
1833  // C++ [class.conv.fct]p1:
1834  //   [...] A conversion function is never used to convert a
1835  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1836  //   same object type (or a reference to it), to a (possibly
1837  //   cv-qualified) base class of that type (or a reference to it),
1838  //   or to (possibly cv-qualified) void.
1839  // FIXME: Suppress this warning if the conversion function ends up being a
1840  // virtual function that overrides a virtual function in a base class.
1841  QualType ClassType
1842    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1843  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1844    ConvType = ConvTypeRef->getPointeeType();
1845  if (ConvType->isRecordType()) {
1846    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1847    if (ConvType == ClassType)
1848      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1849        << ClassType;
1850    else if (IsDerivedFrom(ClassType, ConvType))
1851      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1852        <<  ClassType << ConvType;
1853  } else if (ConvType->isVoidType()) {
1854    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1855      << ClassType << ConvType;
1856  }
1857
1858  if (Conversion->getPreviousDeclaration()) {
1859    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1860    for (OverloadedFunctionDecl::function_iterator
1861           Conv = Conversions->function_begin(),
1862           ConvEnd = Conversions->function_end();
1863         Conv != ConvEnd; ++Conv) {
1864      if (*Conv
1865            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1866        *Conv = Conversion;
1867        return DeclPtrTy::make(Conversion);
1868      }
1869    }
1870    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1871  } else
1872    ClassDecl->addConversionFunction(Context, Conversion);
1873
1874  return DeclPtrTy::make(Conversion);
1875}
1876
1877//===----------------------------------------------------------------------===//
1878// Namespace Handling
1879//===----------------------------------------------------------------------===//
1880
1881/// ActOnStartNamespaceDef - This is called at the start of a namespace
1882/// definition.
1883Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1884                                             SourceLocation IdentLoc,
1885                                             IdentifierInfo *II,
1886                                             SourceLocation LBrace) {
1887  NamespaceDecl *Namespc =
1888      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1889  Namespc->setLBracLoc(LBrace);
1890
1891  Scope *DeclRegionScope = NamespcScope->getParent();
1892
1893  if (II) {
1894    // C++ [namespace.def]p2:
1895    // The identifier in an original-namespace-definition shall not have been
1896    // previously defined in the declarative region in which the
1897    // original-namespace-definition appears. The identifier in an
1898    // original-namespace-definition is the name of the namespace. Subsequently
1899    // in that declarative region, it is treated as an original-namespace-name.
1900
1901    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1902                                     true);
1903
1904    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1905      // This is an extended namespace definition.
1906      // Attach this namespace decl to the chain of extended namespace
1907      // definitions.
1908      OrigNS->setNextNamespace(Namespc);
1909      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1910
1911      // Remove the previous declaration from the scope.
1912      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1913        IdResolver.RemoveDecl(OrigNS);
1914        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1915      }
1916    } else if (PrevDecl) {
1917      // This is an invalid name redefinition.
1918      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1919       << Namespc->getDeclName();
1920      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1921      Namespc->setInvalidDecl();
1922      // Continue on to push Namespc as current DeclContext and return it.
1923    }
1924
1925    PushOnScopeChains(Namespc, DeclRegionScope);
1926  } else {
1927    // FIXME: Handle anonymous namespaces
1928  }
1929
1930  // Although we could have an invalid decl (i.e. the namespace name is a
1931  // redefinition), push it as current DeclContext and try to continue parsing.
1932  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1933  // for the namespace has the declarations that showed up in that particular
1934  // namespace definition.
1935  PushDeclContext(NamespcScope, Namespc);
1936  return DeclPtrTy::make(Namespc);
1937}
1938
1939/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1940/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1941void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1942  Decl *Dcl = D.getAs<Decl>();
1943  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1944  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1945  Namespc->setRBracLoc(RBrace);
1946  PopDeclContext();
1947}
1948
1949Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1950                                          SourceLocation UsingLoc,
1951                                          SourceLocation NamespcLoc,
1952                                          const CXXScopeSpec &SS,
1953                                          SourceLocation IdentLoc,
1954                                          IdentifierInfo *NamespcName,
1955                                          AttributeList *AttrList) {
1956  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1957  assert(NamespcName && "Invalid NamespcName.");
1958  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1959  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1960
1961  UsingDirectiveDecl *UDir = 0;
1962
1963  // Lookup namespace name.
1964  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1965                                    LookupNamespaceName, false);
1966  if (R.isAmbiguous()) {
1967    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1968    return DeclPtrTy();
1969  }
1970  if (NamedDecl *NS = R) {
1971    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1972    // C++ [namespace.udir]p1:
1973    //   A using-directive specifies that the names in the nominated
1974    //   namespace can be used in the scope in which the
1975    //   using-directive appears after the using-directive. During
1976    //   unqualified name lookup (3.4.1), the names appear as if they
1977    //   were declared in the nearest enclosing namespace which
1978    //   contains both the using-directive and the nominated
1979    //   namespace. [Note: in this context, "contains" means "contains
1980    //   directly or indirectly". ]
1981
1982    // Find enclosing context containing both using-directive and
1983    // nominated namespace.
1984    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1985    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1986      CommonAncestor = CommonAncestor->getParent();
1987
1988    UDir = UsingDirectiveDecl::Create(Context,
1989                                      CurContext, UsingLoc,
1990                                      NamespcLoc,
1991                                      SS.getRange(),
1992                                      (NestedNameSpecifier *)SS.getScopeRep(),
1993                                      IdentLoc,
1994                                      cast<NamespaceDecl>(NS),
1995                                      CommonAncestor);
1996    PushUsingDirective(S, UDir);
1997  } else {
1998    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1999  }
2000
2001  // FIXME: We ignore attributes for now.
2002  delete AttrList;
2003  return DeclPtrTy::make(UDir);
2004}
2005
2006void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2007  // If scope has associated entity, then using directive is at namespace
2008  // or translation unit scope. We add UsingDirectiveDecls, into
2009  // it's lookup structure.
2010  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2011    Ctx->addDecl(UDir);
2012  else
2013    // Otherwise it is block-sope. using-directives will affect lookup
2014    // only to the end of scope.
2015    S->PushUsingDirective(DeclPtrTy::make(UDir));
2016}
2017
2018
2019Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2020                                          SourceLocation UsingLoc,
2021                                          const CXXScopeSpec &SS,
2022                                          SourceLocation IdentLoc,
2023                                          IdentifierInfo *TargetName,
2024                                          OverloadedOperatorKind Op,
2025                                          AttributeList *AttrList,
2026                                          bool IsTypeName) {
2027  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2028  assert((TargetName || Op) && "Invalid TargetName.");
2029  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2030  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2031
2032  UsingDecl *UsingAlias = 0;
2033
2034  DeclarationName Name;
2035  if (TargetName)
2036    Name = TargetName;
2037  else
2038    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2039
2040  // Lookup target name.
2041  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2042
2043  if (NamedDecl *NS = R) {
2044    if (IsTypeName && !isa<TypeDecl>(NS)) {
2045      Diag(IdentLoc, diag::err_using_typename_non_type);
2046    }
2047    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2048        NS->getLocation(), UsingLoc, NS,
2049        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2050        IsTypeName);
2051    PushOnScopeChains(UsingAlias, S);
2052  } else {
2053    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2054  }
2055
2056  // FIXME: We ignore attributes for now.
2057  delete AttrList;
2058  return DeclPtrTy::make(UsingAlias);
2059}
2060
2061/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2062/// is a namespace alias, returns the namespace it points to.
2063static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2064  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2065    return AD->getNamespace();
2066  return dyn_cast_or_null<NamespaceDecl>(D);
2067}
2068
2069Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2070                                             SourceLocation NamespaceLoc,
2071                                             SourceLocation AliasLoc,
2072                                             IdentifierInfo *Alias,
2073                                             const CXXScopeSpec &SS,
2074                                             SourceLocation IdentLoc,
2075                                             IdentifierInfo *Ident) {
2076
2077  // Lookup the namespace name.
2078  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2079
2080  // Check if we have a previous declaration with the same name.
2081  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2082    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2083      // We already have an alias with the same name that points to the same
2084      // namespace, so don't create a new one.
2085      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2086        return DeclPtrTy();
2087    }
2088
2089    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2090      diag::err_redefinition_different_kind;
2091    Diag(AliasLoc, DiagID) << Alias;
2092    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2093    return DeclPtrTy();
2094  }
2095
2096  if (R.isAmbiguous()) {
2097    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2098    return DeclPtrTy();
2099  }
2100
2101  if (!R) {
2102    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2103    return DeclPtrTy();
2104  }
2105
2106  NamespaceAliasDecl *AliasDecl =
2107    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2108                               Alias, SS.getRange(),
2109                               (NestedNameSpecifier *)SS.getScopeRep(),
2110                               IdentLoc, R);
2111
2112  CurContext->addDecl(AliasDecl);
2113  return DeclPtrTy::make(AliasDecl);
2114}
2115
2116void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2117                                            CXXConstructorDecl *Constructor) {
2118  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2119          !Constructor->isUsed()) &&
2120    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2121
2122  CXXRecordDecl *ClassDecl
2123    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2124  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2125  // Before the implicitly-declared default constructor for a class is
2126  // implicitly defined, all the implicitly-declared default constructors
2127  // for its base class and its non-static data members shall have been
2128  // implicitly defined.
2129  bool err = false;
2130  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2131       E = ClassDecl->bases_end(); Base != E; ++Base) {
2132    CXXRecordDecl *BaseClassDecl
2133      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2134    if (!BaseClassDecl->hasTrivialConstructor()) {
2135      if (CXXConstructorDecl *BaseCtor =
2136            BaseClassDecl->getDefaultConstructor(Context))
2137        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2138      else {
2139        Diag(CurrentLocation, diag::err_defining_default_ctor)
2140          << Context.getTagDeclType(ClassDecl) << 1
2141          << Context.getTagDeclType(BaseClassDecl);
2142        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2143              << Context.getTagDeclType(BaseClassDecl);
2144        err = true;
2145      }
2146    }
2147  }
2148  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2149       E = ClassDecl->field_end(); Field != E; ++Field) {
2150    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2151    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2152      FieldType = Array->getElementType();
2153    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2154      CXXRecordDecl *FieldClassDecl
2155        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2156      if (!FieldClassDecl->hasTrivialConstructor()) {
2157        if (CXXConstructorDecl *FieldCtor =
2158            FieldClassDecl->getDefaultConstructor(Context))
2159          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2160        else {
2161          Diag(CurrentLocation, diag::err_defining_default_ctor)
2162          << Context.getTagDeclType(ClassDecl) << 0 <<
2163              Context.getTagDeclType(FieldClassDecl);
2164          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2165          << Context.getTagDeclType(FieldClassDecl);
2166          err = true;
2167        }
2168      }
2169    } else if (FieldType->isReferenceType()) {
2170      Diag(CurrentLocation, diag::err_unintialized_member)
2171        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2172      Diag((*Field)->getLocation(), diag::note_declared_at);
2173      err = true;
2174    } else if (FieldType.isConstQualified()) {
2175      Diag(CurrentLocation, diag::err_unintialized_member)
2176        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2177       Diag((*Field)->getLocation(), diag::note_declared_at);
2178      err = true;
2179    }
2180  }
2181  if (!err)
2182    Constructor->setUsed();
2183  else
2184    Constructor->setInvalidDecl();
2185}
2186
2187void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2188                                            CXXDestructorDecl *Destructor) {
2189  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2190         "DefineImplicitDestructor - call it for implicit default dtor");
2191
2192  CXXRecordDecl *ClassDecl
2193  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2194  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2195  // C++ [class.dtor] p5
2196  // Before the implicitly-declared default destructor for a class is
2197  // implicitly defined, all the implicitly-declared default destructors
2198  // for its base class and its non-static data members shall have been
2199  // implicitly defined.
2200  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2201       E = ClassDecl->bases_end(); Base != E; ++Base) {
2202    CXXRecordDecl *BaseClassDecl
2203      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2204    if (!BaseClassDecl->hasTrivialDestructor()) {
2205      if (CXXDestructorDecl *BaseDtor =
2206          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2207        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2208      else
2209        assert(false &&
2210               "DefineImplicitDestructor - missing dtor in a base class");
2211    }
2212  }
2213
2214  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2215       E = ClassDecl->field_end(); Field != E; ++Field) {
2216    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2217    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2218      FieldType = Array->getElementType();
2219    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2220      CXXRecordDecl *FieldClassDecl
2221        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2222      if (!FieldClassDecl->hasTrivialDestructor()) {
2223        if (CXXDestructorDecl *FieldDtor =
2224            const_cast<CXXDestructorDecl*>(
2225                                        FieldClassDecl->getDestructor(Context)))
2226          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2227        else
2228          assert(false &&
2229          "DefineImplicitDestructor - missing dtor in class of a data member");
2230      }
2231    }
2232  }
2233  Destructor->setUsed();
2234}
2235
2236void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2237                                          CXXMethodDecl *MethodDecl) {
2238  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2239          MethodDecl->getOverloadedOperator() == OO_Equal &&
2240          !MethodDecl->isUsed()) &&
2241         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2242
2243  CXXRecordDecl *ClassDecl
2244    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2245
2246  // C++[class.copy] p12
2247  // Before the implicitly-declared copy assignment operator for a class is
2248  // implicitly defined, all implicitly-declared copy assignment operators
2249  // for its direct base classes and its nonstatic data members shall have
2250  // been implicitly defined.
2251  bool err = false;
2252  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2253       E = ClassDecl->bases_end(); Base != E; ++Base) {
2254    CXXRecordDecl *BaseClassDecl
2255      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2256    if (CXXMethodDecl *BaseAssignOpMethod =
2257          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2258      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2259  }
2260  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2261       E = ClassDecl->field_end(); Field != E; ++Field) {
2262    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2263    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2264      FieldType = Array->getElementType();
2265    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2266      CXXRecordDecl *FieldClassDecl
2267        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2268      if (CXXMethodDecl *FieldAssignOpMethod =
2269          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2270        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2271    } else if (FieldType->isReferenceType()) {
2272      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2273      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2274      Diag(Field->getLocation(), diag::note_declared_at);
2275      Diag(CurrentLocation, diag::note_first_required_here);
2276      err = true;
2277    } else if (FieldType.isConstQualified()) {
2278      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2279      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2280      Diag(Field->getLocation(), diag::note_declared_at);
2281      Diag(CurrentLocation, diag::note_first_required_here);
2282      err = true;
2283    }
2284  }
2285  if (!err)
2286    MethodDecl->setUsed();
2287}
2288
2289CXXMethodDecl *
2290Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2291                              CXXRecordDecl *ClassDecl) {
2292  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2293  QualType RHSType(LHSType);
2294  // If class's assignment operator argument is const/volatile qualified,
2295  // look for operator = (const/volatile B&). Otherwise, look for
2296  // operator = (B&).
2297  if (ParmDecl->getType().isConstQualified())
2298    RHSType.addConst();
2299  if (ParmDecl->getType().isVolatileQualified())
2300    RHSType.addVolatile();
2301  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2302                                                          LHSType,
2303                                                          SourceLocation()));
2304  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2305                                                          RHSType,
2306                                                          SourceLocation()));
2307  Expr *Args[2] = { &*LHS, &*RHS };
2308  OverloadCandidateSet CandidateSet;
2309  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2310                              CandidateSet);
2311  OverloadCandidateSet::iterator Best;
2312  if (BestViableFunction(CandidateSet,
2313                         ClassDecl->getLocation(), Best) == OR_Success)
2314    return cast<CXXMethodDecl>(Best->Function);
2315  assert(false &&
2316         "getAssignOperatorMethod - copy assignment operator method not found");
2317  return 0;
2318}
2319
2320void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2321                                   CXXConstructorDecl *CopyConstructor,
2322                                   unsigned TypeQuals) {
2323  assert((CopyConstructor->isImplicit() &&
2324          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2325          !CopyConstructor->isUsed()) &&
2326         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2327
2328  CXXRecordDecl *ClassDecl
2329    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2330  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2331  // C++ [class.copy] p209
2332  // Before the implicitly-declared copy constructor for a class is
2333  // implicitly defined, all the implicitly-declared copy constructors
2334  // for its base class and its non-static data members shall have been
2335  // implicitly defined.
2336  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2337       Base != ClassDecl->bases_end(); ++Base) {
2338    CXXRecordDecl *BaseClassDecl
2339      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2340    if (CXXConstructorDecl *BaseCopyCtor =
2341        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2342      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2343  }
2344  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2345                                  FieldEnd = ClassDecl->field_end();
2346       Field != FieldEnd; ++Field) {
2347    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2348    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2349      FieldType = Array->getElementType();
2350    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2351      CXXRecordDecl *FieldClassDecl
2352        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2353      if (CXXConstructorDecl *FieldCopyCtor =
2354          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2355        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2356    }
2357  }
2358  CopyConstructor->setUsed();
2359}
2360
2361/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2362/// including handling of its default argument expressions.
2363Expr *Sema::BuildCXXConstructExpr(ASTContext &C,
2364                                  QualType DeclInitType,
2365                                  CXXConstructorDecl *Constructor,
2366                                  bool Elidable,
2367                                  Expr **Exprs, unsigned NumExprs) {
2368  CXXConstructExpr *Temp = CXXConstructExpr::Create(C, DeclInitType,
2369                                                    Constructor,
2370                                                    Elidable, Exprs, NumExprs);
2371  // default arguments must be added to constructor call expression.
2372  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2373  unsigned NumArgsInProto = FDecl->param_size();
2374  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2375    Expr *DefaultExpr = FDecl->getParamDecl(j)->getDefaultArg();
2376
2377    // If the default expression creates temporaries, we need to
2378    // push them to the current stack of expression temporaries so they'll
2379    // be properly destroyed.
2380    if (CXXExprWithTemporaries *E
2381        = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2382      assert(!E->shouldDestroyTemporaries() &&
2383             "Can't destroy temporaries in a default argument expr!");
2384      for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2385        ExprTemporaries.push_back(E->getTemporary(I));
2386    }
2387    Expr *Arg = new (C) CXXDefaultArgExpr(FDecl->getParamDecl(j));
2388    Temp->setArg(j, Arg);
2389  }
2390  return Temp;
2391}
2392
2393void Sema::InitializeVarWithConstructor(VarDecl *VD,
2394                                        CXXConstructorDecl *Constructor,
2395                                        QualType DeclInitType,
2396                                        Expr **Exprs, unsigned NumExprs) {
2397  Expr *Temp = BuildCXXConstructExpr(Context,
2398                                     DeclInitType, Constructor,
2399                                     false, Exprs, NumExprs);
2400  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2401  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2402  VD->setInit(Context, Temp);
2403}
2404
2405void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2406{
2407  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2408                                  DeclInitType->getAs<RecordType>()->getDecl());
2409  if (!ClassDecl->hasTrivialDestructor())
2410    if (CXXDestructorDecl *Destructor =
2411        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2412      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2413}
2414
2415/// AddCXXDirectInitializerToDecl - This action is called immediately after
2416/// ActOnDeclarator, when a C++ direct initializer is present.
2417/// e.g: "int x(1);"
2418void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2419                                         SourceLocation LParenLoc,
2420                                         MultiExprArg Exprs,
2421                                         SourceLocation *CommaLocs,
2422                                         SourceLocation RParenLoc) {
2423  unsigned NumExprs = Exprs.size();
2424  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2425  Decl *RealDecl = Dcl.getAs<Decl>();
2426
2427  // If there is no declaration, there was an error parsing it.  Just ignore
2428  // the initializer.
2429  if (RealDecl == 0)
2430    return;
2431
2432  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2433  if (!VDecl) {
2434    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2435    RealDecl->setInvalidDecl();
2436    return;
2437  }
2438
2439  // FIXME: Need to handle dependent types and expressions here.
2440
2441  // We will treat direct-initialization as a copy-initialization:
2442  //    int x(1);  -as-> int x = 1;
2443  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2444  //
2445  // Clients that want to distinguish between the two forms, can check for
2446  // direct initializer using VarDecl::hasCXXDirectInitializer().
2447  // A major benefit is that clients that don't particularly care about which
2448  // exactly form was it (like the CodeGen) can handle both cases without
2449  // special case code.
2450
2451  // C++ 8.5p11:
2452  // The form of initialization (using parentheses or '=') is generally
2453  // insignificant, but does matter when the entity being initialized has a
2454  // class type.
2455  QualType DeclInitType = VDecl->getType();
2456  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2457    DeclInitType = Array->getElementType();
2458
2459  // FIXME: This isn't the right place to complete the type.
2460  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2461                          diag::err_typecheck_decl_incomplete_type)) {
2462    VDecl->setInvalidDecl();
2463    return;
2464  }
2465
2466  if (VDecl->getType()->isRecordType()) {
2467    CXXConstructorDecl *Constructor
2468      = PerformInitializationByConstructor(DeclInitType,
2469                                           (Expr **)Exprs.get(), NumExprs,
2470                                           VDecl->getLocation(),
2471                                           SourceRange(VDecl->getLocation(),
2472                                                       RParenLoc),
2473                                           VDecl->getDeclName(),
2474                                           IK_Direct);
2475    if (!Constructor)
2476      RealDecl->setInvalidDecl();
2477    else {
2478      VDecl->setCXXDirectInitializer(true);
2479      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2480                                   (Expr**)Exprs.release(), NumExprs);
2481      FinalizeVarWithDestructor(VDecl, DeclInitType);
2482    }
2483    return;
2484  }
2485
2486  if (NumExprs > 1) {
2487    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2488      << SourceRange(VDecl->getLocation(), RParenLoc);
2489    RealDecl->setInvalidDecl();
2490    return;
2491  }
2492
2493  // Let clients know that initialization was done with a direct initializer.
2494  VDecl->setCXXDirectInitializer(true);
2495
2496  assert(NumExprs == 1 && "Expected 1 expression");
2497  // Set the init expression, handles conversions.
2498  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2499                       /*DirectInit=*/true);
2500}
2501
2502/// PerformInitializationByConstructor - Perform initialization by
2503/// constructor (C++ [dcl.init]p14), which may occur as part of
2504/// direct-initialization or copy-initialization. We are initializing
2505/// an object of type @p ClassType with the given arguments @p
2506/// Args. @p Loc is the location in the source code where the
2507/// initializer occurs (e.g., a declaration, member initializer,
2508/// functional cast, etc.) while @p Range covers the whole
2509/// initialization. @p InitEntity is the entity being initialized,
2510/// which may by the name of a declaration or a type. @p Kind is the
2511/// kind of initialization we're performing, which affects whether
2512/// explicit constructors will be considered. When successful, returns
2513/// the constructor that will be used to perform the initialization;
2514/// when the initialization fails, emits a diagnostic and returns
2515/// null.
2516CXXConstructorDecl *
2517Sema::PerformInitializationByConstructor(QualType ClassType,
2518                                         Expr **Args, unsigned NumArgs,
2519                                         SourceLocation Loc, SourceRange Range,
2520                                         DeclarationName InitEntity,
2521                                         InitializationKind Kind) {
2522  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2523  assert(ClassRec && "Can only initialize a class type here");
2524
2525  // C++ [dcl.init]p14:
2526  //
2527  //   If the initialization is direct-initialization, or if it is
2528  //   copy-initialization where the cv-unqualified version of the
2529  //   source type is the same class as, or a derived class of, the
2530  //   class of the destination, constructors are considered. The
2531  //   applicable constructors are enumerated (13.3.1.3), and the
2532  //   best one is chosen through overload resolution (13.3). The
2533  //   constructor so selected is called to initialize the object,
2534  //   with the initializer expression(s) as its argument(s). If no
2535  //   constructor applies, or the overload resolution is ambiguous,
2536  //   the initialization is ill-formed.
2537  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2538  OverloadCandidateSet CandidateSet;
2539
2540  // Add constructors to the overload set.
2541  DeclarationName ConstructorName
2542    = Context.DeclarationNames.getCXXConstructorName(
2543                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2544  DeclContext::lookup_const_iterator Con, ConEnd;
2545  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2546       Con != ConEnd; ++Con) {
2547    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2548    if ((Kind == IK_Direct) ||
2549        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2550        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2551      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2552  }
2553
2554  // FIXME: When we decide not to synthesize the implicitly-declared
2555  // constructors, we'll need to make them appear here.
2556
2557  OverloadCandidateSet::iterator Best;
2558  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2559  case OR_Success:
2560    // We found a constructor. Return it.
2561    return cast<CXXConstructorDecl>(Best->Function);
2562
2563  case OR_No_Viable_Function:
2564    if (InitEntity)
2565      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2566        << InitEntity << Range;
2567    else
2568      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2569        << ClassType << Range;
2570    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2571    return 0;
2572
2573  case OR_Ambiguous:
2574    if (InitEntity)
2575      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2576    else
2577      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2578    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2579    return 0;
2580
2581  case OR_Deleted:
2582    if (InitEntity)
2583      Diag(Loc, diag::err_ovl_deleted_init)
2584        << Best->Function->isDeleted()
2585        << InitEntity << Range;
2586    else
2587      Diag(Loc, diag::err_ovl_deleted_init)
2588        << Best->Function->isDeleted()
2589        << InitEntity << Range;
2590    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2591    return 0;
2592  }
2593
2594  return 0;
2595}
2596
2597/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2598/// determine whether they are reference-related,
2599/// reference-compatible, reference-compatible with added
2600/// qualification, or incompatible, for use in C++ initialization by
2601/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2602/// type, and the first type (T1) is the pointee type of the reference
2603/// type being initialized.
2604Sema::ReferenceCompareResult
2605Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2606                                   bool& DerivedToBase) {
2607  assert(!T1->isReferenceType() &&
2608    "T1 must be the pointee type of the reference type");
2609  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2610
2611  T1 = Context.getCanonicalType(T1);
2612  T2 = Context.getCanonicalType(T2);
2613  QualType UnqualT1 = T1.getUnqualifiedType();
2614  QualType UnqualT2 = T2.getUnqualifiedType();
2615
2616  // C++ [dcl.init.ref]p4:
2617  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2618  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2619  //   T1 is a base class of T2.
2620  if (UnqualT1 == UnqualT2)
2621    DerivedToBase = false;
2622  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2623    DerivedToBase = true;
2624  else
2625    return Ref_Incompatible;
2626
2627  // At this point, we know that T1 and T2 are reference-related (at
2628  // least).
2629
2630  // C++ [dcl.init.ref]p4:
2631  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2632  //   reference-related to T2 and cv1 is the same cv-qualification
2633  //   as, or greater cv-qualification than, cv2. For purposes of
2634  //   overload resolution, cases for which cv1 is greater
2635  //   cv-qualification than cv2 are identified as
2636  //   reference-compatible with added qualification (see 13.3.3.2).
2637  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2638    return Ref_Compatible;
2639  else if (T1.isMoreQualifiedThan(T2))
2640    return Ref_Compatible_With_Added_Qualification;
2641  else
2642    return Ref_Related;
2643}
2644
2645/// CheckReferenceInit - Check the initialization of a reference
2646/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2647/// the initializer (either a simple initializer or an initializer
2648/// list), and DeclType is the type of the declaration. When ICS is
2649/// non-null, this routine will compute the implicit conversion
2650/// sequence according to C++ [over.ics.ref] and will not produce any
2651/// diagnostics; when ICS is null, it will emit diagnostics when any
2652/// errors are found. Either way, a return value of true indicates
2653/// that there was a failure, a return value of false indicates that
2654/// the reference initialization succeeded.
2655///
2656/// When @p SuppressUserConversions, user-defined conversions are
2657/// suppressed.
2658/// When @p AllowExplicit, we also permit explicit user-defined
2659/// conversion functions.
2660/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2661bool
2662Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2663                         ImplicitConversionSequence *ICS,
2664                         bool SuppressUserConversions,
2665                         bool AllowExplicit, bool ForceRValue) {
2666  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2667
2668  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2669  QualType T2 = Init->getType();
2670
2671  // If the initializer is the address of an overloaded function, try
2672  // to resolve the overloaded function. If all goes well, T2 is the
2673  // type of the resulting function.
2674  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2675    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2676                                                          ICS != 0);
2677    if (Fn) {
2678      // Since we're performing this reference-initialization for
2679      // real, update the initializer with the resulting function.
2680      if (!ICS) {
2681        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2682          return true;
2683
2684        FixOverloadedFunctionReference(Init, Fn);
2685      }
2686
2687      T2 = Fn->getType();
2688    }
2689  }
2690
2691  // Compute some basic properties of the types and the initializer.
2692  bool isRValRef = DeclType->isRValueReferenceType();
2693  bool DerivedToBase = false;
2694  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2695                                                  Init->isLvalue(Context);
2696  ReferenceCompareResult RefRelationship
2697    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2698
2699  // Most paths end in a failed conversion.
2700  if (ICS)
2701    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2702
2703  // C++ [dcl.init.ref]p5:
2704  //   A reference to type "cv1 T1" is initialized by an expression
2705  //   of type "cv2 T2" as follows:
2706
2707  //     -- If the initializer expression
2708
2709  // Rvalue references cannot bind to lvalues (N2812).
2710  // There is absolutely no situation where they can. In particular, note that
2711  // this is ill-formed, even if B has a user-defined conversion to A&&:
2712  //   B b;
2713  //   A&& r = b;
2714  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2715    if (!ICS)
2716      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2717        << Init->getSourceRange();
2718    return true;
2719  }
2720
2721  bool BindsDirectly = false;
2722  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2723  //          reference-compatible with "cv2 T2," or
2724  //
2725  // Note that the bit-field check is skipped if we are just computing
2726  // the implicit conversion sequence (C++ [over.best.ics]p2).
2727  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2728      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2729    BindsDirectly = true;
2730
2731    if (ICS) {
2732      // C++ [over.ics.ref]p1:
2733      //   When a parameter of reference type binds directly (8.5.3)
2734      //   to an argument expression, the implicit conversion sequence
2735      //   is the identity conversion, unless the argument expression
2736      //   has a type that is a derived class of the parameter type,
2737      //   in which case the implicit conversion sequence is a
2738      //   derived-to-base Conversion (13.3.3.1).
2739      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2740      ICS->Standard.First = ICK_Identity;
2741      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2742      ICS->Standard.Third = ICK_Identity;
2743      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2744      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2745      ICS->Standard.ReferenceBinding = true;
2746      ICS->Standard.DirectBinding = true;
2747      ICS->Standard.RRefBinding = false;
2748      ICS->Standard.CopyConstructor = 0;
2749
2750      // Nothing more to do: the inaccessibility/ambiguity check for
2751      // derived-to-base conversions is suppressed when we're
2752      // computing the implicit conversion sequence (C++
2753      // [over.best.ics]p2).
2754      return false;
2755    } else {
2756      // Perform the conversion.
2757      // FIXME: Binding to a subobject of the lvalue is going to require more
2758      // AST annotation than this.
2759      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2760    }
2761  }
2762
2763  //       -- has a class type (i.e., T2 is a class type) and can be
2764  //          implicitly converted to an lvalue of type "cv3 T3,"
2765  //          where "cv1 T1" is reference-compatible with "cv3 T3"
2766  //          92) (this conversion is selected by enumerating the
2767  //          applicable conversion functions (13.3.1.6) and choosing
2768  //          the best one through overload resolution (13.3)),
2769  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2770    // FIXME: Look for conversions in base classes!
2771    CXXRecordDecl *T2RecordDecl
2772      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2773
2774    OverloadCandidateSet CandidateSet;
2775    OverloadedFunctionDecl *Conversions
2776      = T2RecordDecl->getConversionFunctions();
2777    for (OverloadedFunctionDecl::function_iterator Func
2778           = Conversions->function_begin();
2779         Func != Conversions->function_end(); ++Func) {
2780      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2781
2782      // If the conversion function doesn't return a reference type,
2783      // it can't be considered for this conversion.
2784      if (Conv->getConversionType()->isLValueReferenceType() &&
2785          (AllowExplicit || !Conv->isExplicit()))
2786        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2787    }
2788
2789    OverloadCandidateSet::iterator Best;
2790    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2791    case OR_Success:
2792      // This is a direct binding.
2793      BindsDirectly = true;
2794
2795      if (ICS) {
2796        // C++ [over.ics.ref]p1:
2797        //
2798        //   [...] If the parameter binds directly to the result of
2799        //   applying a conversion function to the argument
2800        //   expression, the implicit conversion sequence is a
2801        //   user-defined conversion sequence (13.3.3.1.2), with the
2802        //   second standard conversion sequence either an identity
2803        //   conversion or, if the conversion function returns an
2804        //   entity of a type that is a derived class of the parameter
2805        //   type, a derived-to-base Conversion.
2806        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2807        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2808        ICS->UserDefined.After = Best->FinalConversion;
2809        ICS->UserDefined.ConversionFunction = Best->Function;
2810        assert(ICS->UserDefined.After.ReferenceBinding &&
2811               ICS->UserDefined.After.DirectBinding &&
2812               "Expected a direct reference binding!");
2813        return false;
2814      } else {
2815        // Perform the conversion.
2816        // FIXME: Binding to a subobject of the lvalue is going to require more
2817        // AST annotation than this.
2818        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2819      }
2820      break;
2821
2822    case OR_Ambiguous:
2823      assert(false && "Ambiguous reference binding conversions not implemented.");
2824      return true;
2825
2826    case OR_No_Viable_Function:
2827    case OR_Deleted:
2828      // There was no suitable conversion, or we found a deleted
2829      // conversion; continue with other checks.
2830      break;
2831    }
2832  }
2833
2834  if (BindsDirectly) {
2835    // C++ [dcl.init.ref]p4:
2836    //   [...] In all cases where the reference-related or
2837    //   reference-compatible relationship of two types is used to
2838    //   establish the validity of a reference binding, and T1 is a
2839    //   base class of T2, a program that necessitates such a binding
2840    //   is ill-formed if T1 is an inaccessible (clause 11) or
2841    //   ambiguous (10.2) base class of T2.
2842    //
2843    // Note that we only check this condition when we're allowed to
2844    // complain about errors, because we should not be checking for
2845    // ambiguity (or inaccessibility) unless the reference binding
2846    // actually happens.
2847    if (DerivedToBase)
2848      return CheckDerivedToBaseConversion(T2, T1,
2849                                          Init->getSourceRange().getBegin(),
2850                                          Init->getSourceRange());
2851    else
2852      return false;
2853  }
2854
2855  //     -- Otherwise, the reference shall be to a non-volatile const
2856  //        type (i.e., cv1 shall be const), or the reference shall be an
2857  //        rvalue reference and the initializer expression shall be an rvalue.
2858  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2859    if (!ICS)
2860      Diag(Init->getSourceRange().getBegin(),
2861           diag::err_not_reference_to_const_init)
2862        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2863        << T2 << Init->getSourceRange();
2864    return true;
2865  }
2866
2867  //       -- If the initializer expression is an rvalue, with T2 a
2868  //          class type, and "cv1 T1" is reference-compatible with
2869  //          "cv2 T2," the reference is bound in one of the
2870  //          following ways (the choice is implementation-defined):
2871  //
2872  //          -- The reference is bound to the object represented by
2873  //             the rvalue (see 3.10) or to a sub-object within that
2874  //             object.
2875  //
2876  //          -- A temporary of type "cv1 T2" [sic] is created, and
2877  //             a constructor is called to copy the entire rvalue
2878  //             object into the temporary. The reference is bound to
2879  //             the temporary or to a sub-object within the
2880  //             temporary.
2881  //
2882  //          The constructor that would be used to make the copy
2883  //          shall be callable whether or not the copy is actually
2884  //          done.
2885  //
2886  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2887  // freedom, so we will always take the first option and never build
2888  // a temporary in this case. FIXME: We will, however, have to check
2889  // for the presence of a copy constructor in C++98/03 mode.
2890  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2891      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2892    if (ICS) {
2893      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2894      ICS->Standard.First = ICK_Identity;
2895      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2896      ICS->Standard.Third = ICK_Identity;
2897      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2898      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2899      ICS->Standard.ReferenceBinding = true;
2900      ICS->Standard.DirectBinding = false;
2901      ICS->Standard.RRefBinding = isRValRef;
2902      ICS->Standard.CopyConstructor = 0;
2903    } else {
2904      // FIXME: Binding to a subobject of the rvalue is going to require more
2905      // AST annotation than this.
2906      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2907    }
2908    return false;
2909  }
2910
2911  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2912  //          initialized from the initializer expression using the
2913  //          rules for a non-reference copy initialization (8.5). The
2914  //          reference is then bound to the temporary. If T1 is
2915  //          reference-related to T2, cv1 must be the same
2916  //          cv-qualification as, or greater cv-qualification than,
2917  //          cv2; otherwise, the program is ill-formed.
2918  if (RefRelationship == Ref_Related) {
2919    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2920    // we would be reference-compatible or reference-compatible with
2921    // added qualification. But that wasn't the case, so the reference
2922    // initialization fails.
2923    if (!ICS)
2924      Diag(Init->getSourceRange().getBegin(),
2925           diag::err_reference_init_drops_quals)
2926        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2927        << T2 << Init->getSourceRange();
2928    return true;
2929  }
2930
2931  // If at least one of the types is a class type, the types are not
2932  // related, and we aren't allowed any user conversions, the
2933  // reference binding fails. This case is important for breaking
2934  // recursion, since TryImplicitConversion below will attempt to
2935  // create a temporary through the use of a copy constructor.
2936  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2937      (T1->isRecordType() || T2->isRecordType())) {
2938    if (!ICS)
2939      Diag(Init->getSourceRange().getBegin(),
2940           diag::err_typecheck_convert_incompatible)
2941        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2942    return true;
2943  }
2944
2945  // Actually try to convert the initializer to T1.
2946  if (ICS) {
2947    // C++ [over.ics.ref]p2:
2948    //
2949    //   When a parameter of reference type is not bound directly to
2950    //   an argument expression, the conversion sequence is the one
2951    //   required to convert the argument expression to the
2952    //   underlying type of the reference according to
2953    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2954    //   to copy-initializing a temporary of the underlying type with
2955    //   the argument expression. Any difference in top-level
2956    //   cv-qualification is subsumed by the initialization itself
2957    //   and does not constitute a conversion.
2958    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2959    // Of course, that's still a reference binding.
2960    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2961      ICS->Standard.ReferenceBinding = true;
2962      ICS->Standard.RRefBinding = isRValRef;
2963    } else if(ICS->ConversionKind ==
2964              ImplicitConversionSequence::UserDefinedConversion) {
2965      ICS->UserDefined.After.ReferenceBinding = true;
2966      ICS->UserDefined.After.RRefBinding = isRValRef;
2967    }
2968    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2969  } else {
2970    return PerformImplicitConversion(Init, T1, "initializing");
2971  }
2972}
2973
2974/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2975/// of this overloaded operator is well-formed. If so, returns false;
2976/// otherwise, emits appropriate diagnostics and returns true.
2977bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2978  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2979         "Expected an overloaded operator declaration");
2980
2981  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2982
2983  // C++ [over.oper]p5:
2984  //   The allocation and deallocation functions, operator new,
2985  //   operator new[], operator delete and operator delete[], are
2986  //   described completely in 3.7.3. The attributes and restrictions
2987  //   found in the rest of this subclause do not apply to them unless
2988  //   explicitly stated in 3.7.3.
2989  // FIXME: Write a separate routine for checking this. For now, just allow it.
2990  if (Op == OO_New || Op == OO_Array_New ||
2991      Op == OO_Delete || Op == OO_Array_Delete)
2992    return false;
2993
2994  // C++ [over.oper]p6:
2995  //   An operator function shall either be a non-static member
2996  //   function or be a non-member function and have at least one
2997  //   parameter whose type is a class, a reference to a class, an
2998  //   enumeration, or a reference to an enumeration.
2999  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3000    if (MethodDecl->isStatic())
3001      return Diag(FnDecl->getLocation(),
3002                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3003  } else {
3004    bool ClassOrEnumParam = false;
3005    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3006                                   ParamEnd = FnDecl->param_end();
3007         Param != ParamEnd; ++Param) {
3008      QualType ParamType = (*Param)->getType().getNonReferenceType();
3009      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3010          ParamType->isEnumeralType()) {
3011        ClassOrEnumParam = true;
3012        break;
3013      }
3014    }
3015
3016    if (!ClassOrEnumParam)
3017      return Diag(FnDecl->getLocation(),
3018                  diag::err_operator_overload_needs_class_or_enum)
3019        << FnDecl->getDeclName();
3020  }
3021
3022  // C++ [over.oper]p8:
3023  //   An operator function cannot have default arguments (8.3.6),
3024  //   except where explicitly stated below.
3025  //
3026  // Only the function-call operator allows default arguments
3027  // (C++ [over.call]p1).
3028  if (Op != OO_Call) {
3029    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3030         Param != FnDecl->param_end(); ++Param) {
3031      if ((*Param)->hasUnparsedDefaultArg())
3032        return Diag((*Param)->getLocation(),
3033                    diag::err_operator_overload_default_arg)
3034          << FnDecl->getDeclName();
3035      else if (Expr *DefArg = (*Param)->getDefaultArg())
3036        return Diag((*Param)->getLocation(),
3037                    diag::err_operator_overload_default_arg)
3038          << FnDecl->getDeclName() << DefArg->getSourceRange();
3039    }
3040  }
3041
3042  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3043    { false, false, false }
3044#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3045    , { Unary, Binary, MemberOnly }
3046#include "clang/Basic/OperatorKinds.def"
3047  };
3048
3049  bool CanBeUnaryOperator = OperatorUses[Op][0];
3050  bool CanBeBinaryOperator = OperatorUses[Op][1];
3051  bool MustBeMemberOperator = OperatorUses[Op][2];
3052
3053  // C++ [over.oper]p8:
3054  //   [...] Operator functions cannot have more or fewer parameters
3055  //   than the number required for the corresponding operator, as
3056  //   described in the rest of this subclause.
3057  unsigned NumParams = FnDecl->getNumParams()
3058                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3059  if (Op != OO_Call &&
3060      ((NumParams == 1 && !CanBeUnaryOperator) ||
3061       (NumParams == 2 && !CanBeBinaryOperator) ||
3062       (NumParams < 1) || (NumParams > 2))) {
3063    // We have the wrong number of parameters.
3064    unsigned ErrorKind;
3065    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3066      ErrorKind = 2;  // 2 -> unary or binary.
3067    } else if (CanBeUnaryOperator) {
3068      ErrorKind = 0;  // 0 -> unary
3069    } else {
3070      assert(CanBeBinaryOperator &&
3071             "All non-call overloaded operators are unary or binary!");
3072      ErrorKind = 1;  // 1 -> binary
3073    }
3074
3075    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3076      << FnDecl->getDeclName() << NumParams << ErrorKind;
3077  }
3078
3079  // Overloaded operators other than operator() cannot be variadic.
3080  if (Op != OO_Call &&
3081      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3082    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3083      << FnDecl->getDeclName();
3084  }
3085
3086  // Some operators must be non-static member functions.
3087  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3088    return Diag(FnDecl->getLocation(),
3089                diag::err_operator_overload_must_be_member)
3090      << FnDecl->getDeclName();
3091  }
3092
3093  // C++ [over.inc]p1:
3094  //   The user-defined function called operator++ implements the
3095  //   prefix and postfix ++ operator. If this function is a member
3096  //   function with no parameters, or a non-member function with one
3097  //   parameter of class or enumeration type, it defines the prefix
3098  //   increment operator ++ for objects of that type. If the function
3099  //   is a member function with one parameter (which shall be of type
3100  //   int) or a non-member function with two parameters (the second
3101  //   of which shall be of type int), it defines the postfix
3102  //   increment operator ++ for objects of that type.
3103  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3104    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3105    bool ParamIsInt = false;
3106    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3107      ParamIsInt = BT->getKind() == BuiltinType::Int;
3108
3109    if (!ParamIsInt)
3110      return Diag(LastParam->getLocation(),
3111                  diag::err_operator_overload_post_incdec_must_be_int)
3112        << LastParam->getType() << (Op == OO_MinusMinus);
3113  }
3114
3115  // Notify the class if it got an assignment operator.
3116  if (Op == OO_Equal) {
3117    // Would have returned earlier otherwise.
3118    assert(isa<CXXMethodDecl>(FnDecl) &&
3119      "Overloaded = not member, but not filtered.");
3120    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3121    Method->getParent()->addedAssignmentOperator(Context, Method);
3122  }
3123
3124  return false;
3125}
3126
3127/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3128/// linkage specification, including the language and (if present)
3129/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3130/// the location of the language string literal, which is provided
3131/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3132/// the '{' brace. Otherwise, this linkage specification does not
3133/// have any braces.
3134Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3135                                                     SourceLocation ExternLoc,
3136                                                     SourceLocation LangLoc,
3137                                                     const char *Lang,
3138                                                     unsigned StrSize,
3139                                                     SourceLocation LBraceLoc) {
3140  LinkageSpecDecl::LanguageIDs Language;
3141  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3142    Language = LinkageSpecDecl::lang_c;
3143  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3144    Language = LinkageSpecDecl::lang_cxx;
3145  else {
3146    Diag(LangLoc, diag::err_bad_language);
3147    return DeclPtrTy();
3148  }
3149
3150  // FIXME: Add all the various semantics of linkage specifications
3151
3152  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3153                                               LangLoc, Language,
3154                                               LBraceLoc.isValid());
3155  CurContext->addDecl(D);
3156  PushDeclContext(S, D);
3157  return DeclPtrTy::make(D);
3158}
3159
3160/// ActOnFinishLinkageSpecification - Completely the definition of
3161/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3162/// valid, it's the position of the closing '}' brace in a linkage
3163/// specification that uses braces.
3164Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3165                                                      DeclPtrTy LinkageSpec,
3166                                                      SourceLocation RBraceLoc) {
3167  if (LinkageSpec)
3168    PopDeclContext();
3169  return LinkageSpec;
3170}
3171
3172/// \brief Perform semantic analysis for the variable declaration that
3173/// occurs within a C++ catch clause, returning the newly-created
3174/// variable.
3175VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3176                                         IdentifierInfo *Name,
3177                                         SourceLocation Loc,
3178                                         SourceRange Range) {
3179  bool Invalid = false;
3180
3181  // Arrays and functions decay.
3182  if (ExDeclType->isArrayType())
3183    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3184  else if (ExDeclType->isFunctionType())
3185    ExDeclType = Context.getPointerType(ExDeclType);
3186
3187  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3188  // The exception-declaration shall not denote a pointer or reference to an
3189  // incomplete type, other than [cv] void*.
3190  // N2844 forbids rvalue references.
3191  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3192    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3193    Invalid = true;
3194  }
3195
3196  QualType BaseType = ExDeclType;
3197  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3198  unsigned DK = diag::err_catch_incomplete;
3199  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3200    BaseType = Ptr->getPointeeType();
3201    Mode = 1;
3202    DK = diag::err_catch_incomplete_ptr;
3203  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3204    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3205    BaseType = Ref->getPointeeType();
3206    Mode = 2;
3207    DK = diag::err_catch_incomplete_ref;
3208  }
3209  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3210      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3211    Invalid = true;
3212
3213  if (!Invalid && !ExDeclType->isDependentType() &&
3214      RequireNonAbstractType(Loc, ExDeclType,
3215                             diag::err_abstract_type_in_decl,
3216                             AbstractVariableType))
3217    Invalid = true;
3218
3219  // FIXME: Need to test for ability to copy-construct and destroy the
3220  // exception variable.
3221
3222  // FIXME: Need to check for abstract classes.
3223
3224  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3225                                    Name, ExDeclType, VarDecl::None,
3226                                    Range.getBegin());
3227
3228  if (Invalid)
3229    ExDecl->setInvalidDecl();
3230
3231  return ExDecl;
3232}
3233
3234/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3235/// handler.
3236Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3237  QualType ExDeclType = GetTypeForDeclarator(D, S);
3238
3239  bool Invalid = D.isInvalidType();
3240  IdentifierInfo *II = D.getIdentifier();
3241  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3242    // The scope should be freshly made just for us. There is just no way
3243    // it contains any previous declaration.
3244    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3245    if (PrevDecl->isTemplateParameter()) {
3246      // Maybe we will complain about the shadowed template parameter.
3247      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3248    }
3249  }
3250
3251  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3252    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3253      << D.getCXXScopeSpec().getRange();
3254    Invalid = true;
3255  }
3256
3257  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3258                                              D.getIdentifier(),
3259                                              D.getIdentifierLoc(),
3260                                            D.getDeclSpec().getSourceRange());
3261
3262  if (Invalid)
3263    ExDecl->setInvalidDecl();
3264
3265  // Add the exception declaration into this scope.
3266  if (II)
3267    PushOnScopeChains(ExDecl, S);
3268  else
3269    CurContext->addDecl(ExDecl);
3270
3271  ProcessDeclAttributes(S, ExDecl, D);
3272  return DeclPtrTy::make(ExDecl);
3273}
3274
3275Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3276                                                   ExprArg assertexpr,
3277                                                   ExprArg assertmessageexpr) {
3278  Expr *AssertExpr = (Expr *)assertexpr.get();
3279  StringLiteral *AssertMessage =
3280    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3281
3282  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3283    llvm::APSInt Value(32);
3284    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3285      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3286        AssertExpr->getSourceRange();
3287      return DeclPtrTy();
3288    }
3289
3290    if (Value == 0) {
3291      std::string str(AssertMessage->getStrData(),
3292                      AssertMessage->getByteLength());
3293      Diag(AssertLoc, diag::err_static_assert_failed)
3294        << str << AssertExpr->getSourceRange();
3295    }
3296  }
3297
3298  assertexpr.release();
3299  assertmessageexpr.release();
3300  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3301                                        AssertExpr, AssertMessage);
3302
3303  CurContext->addDecl(Decl);
3304  return DeclPtrTy::make(Decl);
3305}
3306
3307Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3308                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU) {
3309  Declarator *D = DU.dyn_cast<Declarator*>();
3310  const DeclSpec &DS = (D ? D->getDeclSpec() : *DU.get<const DeclSpec*>());
3311
3312  assert(DS.isFriendSpecified());
3313  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3314
3315  // If there's no declarator, then this can only be a friend class
3316  // declaration (or else it's just invalid).
3317  if (!D) {
3318
3319    // C++ [class.friend]p2:
3320    //   An elaborated-type-specifier shall be used in a friend declaration
3321    //   for a class.*
3322    //   * The class-key of the elaborated-type-specifier is required.
3323    CXXRecordDecl *RD = 0;
3324
3325    switch (DS.getTypeSpecType()) {
3326    case DeclSpec::TST_class:
3327    case DeclSpec::TST_struct:
3328    case DeclSpec::TST_union:
3329      RD = dyn_cast_or_null<CXXRecordDecl>(static_cast<Decl*>(DS.getTypeRep()));
3330      if (!RD) return DeclPtrTy();
3331      break;
3332
3333    case DeclSpec::TST_typename:
3334      if (const RecordType *RT =
3335          ((const Type*) DS.getTypeRep())->getAs<RecordType>())
3336        RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3337      // fallthrough
3338    default:
3339      if (RD) {
3340        Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3341          << (RD->isUnion())
3342          << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3343                                      RD->isUnion() ? " union" : " class");
3344        return DeclPtrTy::make(RD);
3345      }
3346
3347      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3348        << DS.getSourceRange();
3349      return DeclPtrTy();
3350    }
3351
3352    // The record declaration we get from friend declarations is not
3353    // canonicalized; see ActOnTag.
3354    assert(RD);
3355
3356    // C++ [class.friend]p2: A class shall not be defined inside
3357    //   a friend declaration.
3358    if (RD->isDefinition())
3359      Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3360        << RD->getSourceRange();
3361
3362    // C++98 [class.friend]p1: A friend of a class is a function
3363    //   or class that is not a member of the class . . .
3364    // But that's a silly restriction which nobody implements for
3365    // inner classes, and C++0x removes it anyway, so we only report
3366    // this
3367    // But no-one implements it that way, and C++0x removes this
3368    // restriction, so we only report it (as a warning) if we're being
3369    // pedantic.  Ideally this would real -pedantic mode
3370    //
3371    // Also, definitions currently get treated in a way that causes
3372    // this error, so only report it if we didn't see a definition.
3373    else if (RD->getDeclContext() == CurContext &&
3374             !(getLangOptions().CPlusPlus0x || getLangOptions().GNUMode))
3375      Diag(DS.getFriendSpecLoc(), diag::extwarn_friend_inner_class);
3376
3377    return DeclPtrTy::make(RD);
3378  }
3379
3380  // We have a declarator.
3381  assert(D);
3382
3383  SourceLocation Loc = D->getIdentifierLoc();
3384  QualType T = GetTypeForDeclarator(*D, S);
3385
3386  // C++ [class.friend]p1
3387  //   A friend of a class is a function or class....
3388  // Note that this sees through typedefs, which is intended.
3389  if (!T->isFunctionType()) {
3390    Diag(Loc, diag::err_unexpected_friend);
3391
3392    // It might be worthwhile to try to recover by creating an
3393    // appropriate declaration.
3394    return DeclPtrTy();
3395  }
3396
3397  // C++ [namespace.memdef]p3
3398  //  - If a friend declaration in a non-local class first declares a
3399  //    class or function, the friend class or function is a member
3400  //    of the innermost enclosing namespace.
3401  //  - The name of the friend is not found by simple name lookup
3402  //    until a matching declaration is provided in that namespace
3403  //    scope (either before or after the class declaration granting
3404  //    friendship).
3405  //  - If a friend function is called, its name may be found by the
3406  //    name lookup that considers functions from namespaces and
3407  //    classes associated with the types of the function arguments.
3408  //  - When looking for a prior declaration of a class or a function
3409  //    declared as a friend, scopes outside the innermost enclosing
3410  //    namespace scope are not considered.
3411
3412  CXXScopeSpec &ScopeQual = D->getCXXScopeSpec();
3413  DeclarationName Name = GetNameForDeclarator(*D);
3414  assert(Name);
3415
3416  // The existing declaration we found.
3417  FunctionDecl *FD = NULL;
3418
3419  // The context we found the declaration in, or in which we should
3420  // create the declaration.
3421  DeclContext *DC;
3422
3423  // FIXME: handle local classes
3424
3425  // Recover from invalid scope qualifiers as if they just weren't there.
3426  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3427    DC = computeDeclContext(ScopeQual);
3428
3429    // FIXME: handle dependent contexts
3430    if (!DC) return DeclPtrTy();
3431
3432    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3433
3434    // If searching in that context implicitly found a declaration in
3435    // a different context, treat it like it wasn't found at all.
3436    // TODO: better diagnostics for this case.  Suggesting the right
3437    // qualified scope would be nice...
3438    if (!Dec || Dec->getDeclContext() != DC) {
3439      D->setInvalidType();
3440      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3441      return DeclPtrTy();
3442    }
3443
3444    // C++ [class.friend]p1: A friend of a class is a function or
3445    //   class that is not a member of the class . . .
3446    if (DC == CurContext)
3447      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3448
3449    FD = cast<FunctionDecl>(Dec);
3450
3451  // Otherwise walk out to the nearest namespace scope looking for matches.
3452  } else {
3453    // TODO: handle local class contexts.
3454
3455    DC = CurContext;
3456    while (true) {
3457      // Skip class contexts.  If someone can cite chapter and verse
3458      // for this behavior, that would be nice --- it's what GCC and
3459      // EDG do, and it seems like a reasonable intent, but the spec
3460      // really only says that checks for unqualified existing
3461      // declarations should stop at the nearest enclosing namespace,
3462      // not that they should only consider the nearest enclosing
3463      // namespace.
3464      while (DC->isRecord()) DC = DC->getParent();
3465
3466      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3467
3468      // TODO: decide what we think about using declarations.
3469      if (Dec) {
3470        FD = cast<FunctionDecl>(Dec);
3471        break;
3472      }
3473      if (DC->isFileContext()) break;
3474      DC = DC->getParent();
3475    }
3476
3477    // C++ [class.friend]p1: A friend of a class is a function or
3478    //   class that is not a member of the class . . .
3479    // C++0x changes this for both friend types and functions.
3480    // Most C++ 98 compilers do seem to give an error here, so
3481    // we do, too.
3482    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3483      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3484  }
3485
3486  // If we didn't find something matching the type exactly, create
3487  // a declaration.  This declaration should only be findable via
3488  // argument-dependent lookup.
3489  if (!FD) {
3490    assert(DC->isFileContext());
3491
3492    // This implies that it has to be an operator or function.
3493    if (D->getKind() == Declarator::DK_Constructor ||
3494        D->getKind() == Declarator::DK_Destructor ||
3495        D->getKind() == Declarator::DK_Conversion) {
3496      Diag(Loc, diag::err_introducing_special_friend) <<
3497        (D->getKind() == Declarator::DK_Constructor ? 0 :
3498         D->getKind() == Declarator::DK_Destructor ? 1 : 2);
3499      return DeclPtrTy();
3500    }
3501
3502    bool Redeclaration = false;
3503    NamedDecl *ND = ActOnFunctionDeclarator(S, *D, DC, T,
3504                                            /* PrevDecl = */ NULL,
3505                                            MultiTemplateParamsArg(*this),
3506                                            /* isFunctionDef */ false,
3507                                            Redeclaration);
3508
3509    FD = cast_or_null<FunctionDecl>(ND);
3510
3511    // Note that we're creating a declaration but *not* pushing
3512    // it onto the scope chains.
3513
3514    // TODO: make accessible via argument-dependent lookup.
3515  }
3516
3517  // TODO: actually register the function as a friend.
3518
3519  return DeclPtrTy::make(FD);
3520}
3521
3522void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3523  Decl *Dcl = dcl.getAs<Decl>();
3524  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3525  if (!Fn) {
3526    Diag(DelLoc, diag::err_deleted_non_function);
3527    return;
3528  }
3529  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3530    Diag(DelLoc, diag::err_deleted_decl_not_first);
3531    Diag(Prev->getLocation(), diag::note_previous_declaration);
3532    // If the declaration wasn't the first, we delete the function anyway for
3533    // recovery.
3534  }
3535  Fn->setDeleted();
3536}
3537
3538static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3539  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3540       ++CI) {
3541    Stmt *SubStmt = *CI;
3542    if (!SubStmt)
3543      continue;
3544    if (isa<ReturnStmt>(SubStmt))
3545      Self.Diag(SubStmt->getSourceRange().getBegin(),
3546           diag::err_return_in_constructor_handler);
3547    if (!isa<Expr>(SubStmt))
3548      SearchForReturnInStmt(Self, SubStmt);
3549  }
3550}
3551
3552void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3553  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3554    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3555    SearchForReturnInStmt(*this, Handler);
3556  }
3557}
3558
3559bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3560                                             const CXXMethodDecl *Old) {
3561  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3562  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3563
3564  QualType CNewTy = Context.getCanonicalType(NewTy);
3565  QualType COldTy = Context.getCanonicalType(OldTy);
3566
3567  if (CNewTy == COldTy &&
3568      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3569    return false;
3570
3571  // Check if the return types are covariant
3572  QualType NewClassTy, OldClassTy;
3573
3574  /// Both types must be pointers or references to classes.
3575  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3576    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3577      NewClassTy = NewPT->getPointeeType();
3578      OldClassTy = OldPT->getPointeeType();
3579    }
3580  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3581    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3582      NewClassTy = NewRT->getPointeeType();
3583      OldClassTy = OldRT->getPointeeType();
3584    }
3585  }
3586
3587  // The return types aren't either both pointers or references to a class type.
3588  if (NewClassTy.isNull()) {
3589    Diag(New->getLocation(),
3590         diag::err_different_return_type_for_overriding_virtual_function)
3591      << New->getDeclName() << NewTy << OldTy;
3592    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3593
3594    return true;
3595  }
3596
3597  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3598    // Check if the new class derives from the old class.
3599    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3600      Diag(New->getLocation(),
3601           diag::err_covariant_return_not_derived)
3602      << New->getDeclName() << NewTy << OldTy;
3603      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3604      return true;
3605    }
3606
3607    // Check if we the conversion from derived to base is valid.
3608    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3609                      diag::err_covariant_return_inaccessible_base,
3610                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3611                      // FIXME: Should this point to the return type?
3612                      New->getLocation(), SourceRange(), New->getDeclName())) {
3613      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3614      return true;
3615    }
3616  }
3617
3618  // The qualifiers of the return types must be the same.
3619  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3620    Diag(New->getLocation(),
3621         diag::err_covariant_return_type_different_qualifications)
3622    << New->getDeclName() << NewTy << OldTy;
3623    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3624    return true;
3625  };
3626
3627
3628  // The new class type must have the same or less qualifiers as the old type.
3629  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3630    Diag(New->getLocation(),
3631         diag::err_covariant_return_type_class_type_more_qualified)
3632    << New->getDeclName() << NewTy << OldTy;
3633    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3634    return true;
3635  };
3636
3637  return false;
3638}
3639
3640bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3641                                                const CXXMethodDecl *Old)
3642{
3643  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3644                                  diag::note_overridden_virtual_function,
3645                                  Old->getType()->getAsFunctionProtoType(),
3646                                  Old->getLocation(),
3647                                  New->getType()->getAsFunctionProtoType(),
3648                                  New->getLocation());
3649}
3650
3651/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3652/// initializer for the declaration 'Dcl'.
3653/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3654/// static data member of class X, names should be looked up in the scope of
3655/// class X.
3656void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3657  Decl *D = Dcl.getAs<Decl>();
3658  // If there is no declaration, there was an error parsing it.
3659  if (D == 0)
3660    return;
3661
3662  // Check whether it is a declaration with a nested name specifier like
3663  // int foo::bar;
3664  if (!D->isOutOfLine())
3665    return;
3666
3667  // C++ [basic.lookup.unqual]p13
3668  //
3669  // A name used in the definition of a static data member of class X
3670  // (after the qualified-id of the static member) is looked up as if the name
3671  // was used in a member function of X.
3672
3673  // Change current context into the context of the initializing declaration.
3674  EnterDeclaratorContext(S, D->getDeclContext());
3675}
3676
3677/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3678/// initializer for the declaration 'Dcl'.
3679void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3680  Decl *D = Dcl.getAs<Decl>();
3681  // If there is no declaration, there was an error parsing it.
3682  if (D == 0)
3683    return;
3684
3685  // Check whether it is a declaration with a nested name specifier like
3686  // int foo::bar;
3687  if (!D->isOutOfLine())
3688    return;
3689
3690  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3691  ExitDeclaratorContext(S);
3692}
3693