SemaDeclCXX.cpp revision 80638c5e6395344c1e6096542b0ff3b8bfb2139e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1092                                       *MemberOrBase, SS.getRange());
1093          if (BaseType.isNull())
1094            return true;
1095
1096          R.clear();
1097        }
1098      }
1099
1100      // If no results were found, try to correct typos.
1101      if (R.empty() && BaseType.isNull() &&
1102          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1103        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1104          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1105            // We have found a non-static data member with a similar
1106            // name to what was typed; complain and initialize that
1107            // member.
1108            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1109              << MemberOrBase << true << R.getLookupName()
1110              << FixItHint::CreateReplacement(R.getNameLoc(),
1111                                              R.getLookupName().getAsString());
1112            Diag(Member->getLocation(), diag::note_previous_decl)
1113              << Member->getDeclName();
1114
1115            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1116                                          LParenLoc, RParenLoc);
1117          }
1118        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1119          const CXXBaseSpecifier *DirectBaseSpec;
1120          const CXXBaseSpecifier *VirtualBaseSpec;
1121          if (FindBaseInitializer(*this, ClassDecl,
1122                                  Context.getTypeDeclType(Type),
1123                                  DirectBaseSpec, VirtualBaseSpec)) {
1124            // We have found a direct or virtual base class with a
1125            // similar name to what was typed; complain and initialize
1126            // that base class.
1127            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1128              << MemberOrBase << false << R.getLookupName()
1129              << FixItHint::CreateReplacement(R.getNameLoc(),
1130                                              R.getLookupName().getAsString());
1131
1132            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1133                                                             : VirtualBaseSpec;
1134            Diag(BaseSpec->getSourceRange().getBegin(),
1135                 diag::note_base_class_specified_here)
1136              << BaseSpec->getType()
1137              << BaseSpec->getSourceRange();
1138
1139            TyD = Type;
1140          }
1141        }
1142      }
1143
1144      if (!TyD && BaseType.isNull()) {
1145        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1146          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1147        return true;
1148      }
1149    }
1150
1151    if (BaseType.isNull()) {
1152      BaseType = Context.getTypeDeclType(TyD);
1153      if (SS.isSet()) {
1154        NestedNameSpecifier *Qualifier =
1155          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1156
1157        // FIXME: preserve source range information
1158        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1159      }
1160    }
1161  }
1162
1163  if (!TInfo)
1164    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1165
1166  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1167                              LParenLoc, RParenLoc, ClassDecl);
1168}
1169
1170/// Checks an initializer expression for use of uninitialized fields, such as
1171/// containing the field that is being initialized. Returns true if there is an
1172/// uninitialized field was used an updates the SourceLocation parameter; false
1173/// otherwise.
1174static bool InitExprContainsUninitializedFields(const Stmt* S,
1175                                                const FieldDecl* LhsField,
1176                                                SourceLocation* L) {
1177  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1178  if (ME) {
1179    const NamedDecl* RhsField = ME->getMemberDecl();
1180    if (RhsField == LhsField) {
1181      // Initializing a field with itself. Throw a warning.
1182      // But wait; there are exceptions!
1183      // Exception #1:  The field may not belong to this record.
1184      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1185      const Expr* base = ME->getBase();
1186      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1187        // Even though the field matches, it does not belong to this record.
1188        return false;
1189      }
1190      // None of the exceptions triggered; return true to indicate an
1191      // uninitialized field was used.
1192      *L = ME->getMemberLoc();
1193      return true;
1194    }
1195  }
1196  bool found = false;
1197  for (Stmt::const_child_iterator it = S->child_begin();
1198       it != S->child_end() && found == false;
1199       ++it) {
1200    if (isa<CallExpr>(S)) {
1201      // Do not descend into function calls or constructors, as the use
1202      // of an uninitialized field may be valid. One would have to inspect
1203      // the contents of the function/ctor to determine if it is safe or not.
1204      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1205      // may be safe, depending on what the function/ctor does.
1206      continue;
1207    }
1208    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1209  }
1210  return found;
1211}
1212
1213Sema::MemInitResult
1214Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1215                             unsigned NumArgs, SourceLocation IdLoc,
1216                             SourceLocation LParenLoc,
1217                             SourceLocation RParenLoc) {
1218  // Diagnose value-uses of fields to initialize themselves, e.g.
1219  //   foo(foo)
1220  // where foo is not also a parameter to the constructor.
1221  // TODO: implement -Wuninitialized and fold this into that framework.
1222  for (unsigned i = 0; i < NumArgs; ++i) {
1223    SourceLocation L;
1224    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1225      // FIXME: Return true in the case when other fields are used before being
1226      // uninitialized. For example, let this field be the i'th field. When
1227      // initializing the i'th field, throw a warning if any of the >= i'th
1228      // fields are used, as they are not yet initialized.
1229      // Right now we are only handling the case where the i'th field uses
1230      // itself in its initializer.
1231      Diag(L, diag::warn_field_is_uninit);
1232    }
1233  }
1234
1235  bool HasDependentArg = false;
1236  for (unsigned i = 0; i < NumArgs; i++)
1237    HasDependentArg |= Args[i]->isTypeDependent();
1238
1239  QualType FieldType = Member->getType();
1240  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1241    FieldType = Array->getElementType();
1242  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1243  if (FieldType->isDependentType() || HasDependentArg) {
1244    // Can't check initialization for a member of dependent type or when
1245    // any of the arguments are type-dependent expressions.
1246    OwningExprResult Init
1247      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1248                                          RParenLoc));
1249
1250    // Erase any temporaries within this evaluation context; we're not
1251    // going to track them in the AST, since we'll be rebuilding the
1252    // ASTs during template instantiation.
1253    ExprTemporaries.erase(
1254              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1255                          ExprTemporaries.end());
1256
1257    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1258                                                    LParenLoc,
1259                                                    Init.takeAs<Expr>(),
1260                                                    RParenLoc);
1261
1262  }
1263
1264  if (Member->isInvalidDecl())
1265    return true;
1266
1267  // Initialize the member.
1268  InitializedEntity MemberEntity =
1269    InitializedEntity::InitializeMember(Member, 0);
1270  InitializationKind Kind =
1271    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1272
1273  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1274
1275  OwningExprResult MemberInit =
1276    InitSeq.Perform(*this, MemberEntity, Kind,
1277                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1278  if (MemberInit.isInvalid())
1279    return true;
1280
1281  // C++0x [class.base.init]p7:
1282  //   The initialization of each base and member constitutes a
1283  //   full-expression.
1284  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1285  if (MemberInit.isInvalid())
1286    return true;
1287
1288  // If we are in a dependent context, template instantiation will
1289  // perform this type-checking again. Just save the arguments that we
1290  // received in a ParenListExpr.
1291  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1292  // of the information that we have about the member
1293  // initializer. However, deconstructing the ASTs is a dicey process,
1294  // and this approach is far more likely to get the corner cases right.
1295  if (CurContext->isDependentContext()) {
1296    // Bump the reference count of all of the arguments.
1297    for (unsigned I = 0; I != NumArgs; ++I)
1298      Args[I]->Retain();
1299
1300    OwningExprResult Init
1301      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1302                                          RParenLoc));
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307  }
1308
1309  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                  LParenLoc,
1311                                                  MemberInit.takeAs<Expr>(),
1312                                                  RParenLoc);
1313}
1314
1315Sema::MemInitResult
1316Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1317                           Expr **Args, unsigned NumArgs,
1318                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1319                           CXXRecordDecl *ClassDecl) {
1320  bool HasDependentArg = false;
1321  for (unsigned i = 0; i < NumArgs; i++)
1322    HasDependentArg |= Args[i]->isTypeDependent();
1323
1324  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1325  if (BaseType->isDependentType() || HasDependentArg) {
1326    // Can't check initialization for a base of dependent type or when
1327    // any of the arguments are type-dependent expressions.
1328    OwningExprResult BaseInit
1329      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1330                                          RParenLoc));
1331
1332    // Erase any temporaries within this evaluation context; we're not
1333    // going to track them in the AST, since we'll be rebuilding the
1334    // ASTs during template instantiation.
1335    ExprTemporaries.erase(
1336              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1337                          ExprTemporaries.end());
1338
1339    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1340                                                    /*IsVirtual=*/false,
1341                                                    LParenLoc,
1342                                                    BaseInit.takeAs<Expr>(),
1343                                                    RParenLoc);
1344  }
1345
1346  if (!BaseType->isRecordType())
1347    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1348             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1349
1350  // C++ [class.base.init]p2:
1351  //   [...] Unless the mem-initializer-id names a nonstatic data
1352  //   member of the constructor’s class or a direct or virtual base
1353  //   of that class, the mem-initializer is ill-formed. A
1354  //   mem-initializer-list can initialize a base class using any
1355  //   name that denotes that base class type.
1356
1357  // Check for direct and virtual base classes.
1358  const CXXBaseSpecifier *DirectBaseSpec = 0;
1359  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1360  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1361                      VirtualBaseSpec);
1362
1363  // C++ [base.class.init]p2:
1364  //   If a mem-initializer-id is ambiguous because it designates both
1365  //   a direct non-virtual base class and an inherited virtual base
1366  //   class, the mem-initializer is ill-formed.
1367  if (DirectBaseSpec && VirtualBaseSpec)
1368    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1369      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1370  // C++ [base.class.init]p2:
1371  // Unless the mem-initializer-id names a nonstatic data membeer of the
1372  // constructor's class ot a direst or virtual base of that class, the
1373  // mem-initializer is ill-formed.
1374  if (!DirectBaseSpec && !VirtualBaseSpec)
1375    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1376      << BaseType << ClassDecl->getNameAsCString()
1377      << BaseTInfo->getTypeLoc().getSourceRange();
1378
1379  CXXBaseSpecifier *BaseSpec
1380    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1381  if (!BaseSpec)
1382    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1383
1384  // Initialize the base.
1385  InitializedEntity BaseEntity =
1386    InitializedEntity::InitializeBase(Context, BaseSpec);
1387  InitializationKind Kind =
1388    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1389
1390  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1391
1392  OwningExprResult BaseInit =
1393    InitSeq.Perform(*this, BaseEntity, Kind,
1394                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1395  if (BaseInit.isInvalid())
1396    return true;
1397
1398  // C++0x [class.base.init]p7:
1399  //   The initialization of each base and member constitutes a
1400  //   full-expression.
1401  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1402  if (BaseInit.isInvalid())
1403    return true;
1404
1405  // If we are in a dependent context, template instantiation will
1406  // perform this type-checking again. Just save the arguments that we
1407  // received in a ParenListExpr.
1408  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1409  // of the information that we have about the base
1410  // initializer. However, deconstructing the ASTs is a dicey process,
1411  // and this approach is far more likely to get the corner cases right.
1412  if (CurContext->isDependentContext()) {
1413    // Bump the reference count of all of the arguments.
1414    for (unsigned I = 0; I != NumArgs; ++I)
1415      Args[I]->Retain();
1416
1417    OwningExprResult Init
1418      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                          RParenLoc));
1420    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1421                                                    BaseSpec->isVirtual(),
1422                                                    LParenLoc,
1423                                                    Init.takeAs<Expr>(),
1424                                                    RParenLoc);
1425  }
1426
1427  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                  BaseSpec->isVirtual(),
1429                                                  LParenLoc,
1430                                                  BaseInit.takeAs<Expr>(),
1431                                                  RParenLoc);
1432}
1433
1434bool
1435Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1436                                  CXXBaseOrMemberInitializer **Initializers,
1437                                  unsigned NumInitializers,
1438                                  bool AnyErrors) {
1439  if (Constructor->getDeclContext()->isDependentContext()) {
1440    // Just store the initializers as written, they will be checked during
1441    // instantiation.
1442    if (NumInitializers > 0) {
1443      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1444      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1445        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1446      memcpy(baseOrMemberInitializers, Initializers,
1447             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1448      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1449    }
1450
1451    return false;
1452  }
1453
1454  // We need to build the initializer AST according to order of construction
1455  // and not what user specified in the Initializers list.
1456  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1457  if (!ClassDecl)
1458    return true;
1459
1460  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1461  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1462  bool HadError = false;
1463
1464  for (unsigned i = 0; i < NumInitializers; i++) {
1465    CXXBaseOrMemberInitializer *Member = Initializers[i];
1466
1467    if (Member->isBaseInitializer())
1468      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1469    else
1470      AllBaseFields[Member->getMember()] = Member;
1471  }
1472
1473  llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1474
1475  // Push virtual bases before others.
1476  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1477       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1478
1479    if (CXXBaseOrMemberInitializer *Value
1480        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1481      AllToInit.push_back(Value);
1482    } else if (!AnyErrors) {
1483      InitializedEntity InitEntity
1484        = InitializedEntity::InitializeBase(Context, VBase);
1485      InitializationKind InitKind
1486        = InitializationKind::CreateDefault(Constructor->getLocation());
1487      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1488      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1489                                                  MultiExprArg(*this, 0, 0));
1490      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1491      if (BaseInit.isInvalid()) {
1492        HadError = true;
1493        continue;
1494      }
1495
1496      CXXBaseOrMemberInitializer *CXXBaseInit =
1497        new (Context) CXXBaseOrMemberInitializer(Context,
1498                           Context.getTrivialTypeSourceInfo(VBase->getType(),
1499                                                            SourceLocation()),
1500                                                 /*IsVirtual=*/true,
1501                                                 SourceLocation(),
1502                                                 BaseInit.takeAs<Expr>(),
1503                                                 SourceLocation());
1504      AllToInit.push_back(CXXBaseInit);
1505    }
1506  }
1507
1508  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1509       E = ClassDecl->bases_end(); Base != E; ++Base) {
1510    // Virtuals are in the virtual base list and already constructed.
1511    if (Base->isVirtual())
1512      continue;
1513
1514    if (CXXBaseOrMemberInitializer *Value
1515          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1516      AllToInit.push_back(Value);
1517    } else if (!AnyErrors) {
1518      InitializedEntity InitEntity
1519        = InitializedEntity::InitializeBase(Context, Base);
1520      InitializationKind InitKind
1521        = InitializationKind::CreateDefault(Constructor->getLocation());
1522      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1523      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1524                                                  MultiExprArg(*this, 0, 0));
1525      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1526      if (BaseInit.isInvalid()) {
1527        HadError = true;
1528        continue;
1529      }
1530
1531      CXXBaseOrMemberInitializer *CXXBaseInit =
1532        new (Context) CXXBaseOrMemberInitializer(Context,
1533                           Context.getTrivialTypeSourceInfo(Base->getType(),
1534                                                            SourceLocation()),
1535                                                 /*IsVirtual=*/false,
1536                                                 SourceLocation(),
1537                                                 BaseInit.takeAs<Expr>(),
1538                                                 SourceLocation());
1539      AllToInit.push_back(CXXBaseInit);
1540    }
1541  }
1542
1543  // non-static data members.
1544  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1545       E = ClassDecl->field_end(); Field != E; ++Field) {
1546    if ((*Field)->isAnonymousStructOrUnion()) {
1547      if (const RecordType *FieldClassType =
1548          Field->getType()->getAs<RecordType>()) {
1549        CXXRecordDecl *FieldClassDecl
1550          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1551        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1552            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1553          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1554            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1555            // set to the anonymous union data member used in the initializer
1556            // list.
1557            Value->setMember(*Field);
1558            Value->setAnonUnionMember(*FA);
1559            AllToInit.push_back(Value);
1560            break;
1561          }
1562        }
1563      }
1564      continue;
1565    }
1566    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1567      AllToInit.push_back(Value);
1568      continue;
1569    }
1570
1571    if ((*Field)->getType()->isDependentType() || AnyErrors)
1572      continue;
1573
1574    QualType FT = Context.getBaseElementType((*Field)->getType());
1575    if (FT->getAs<RecordType>()) {
1576      InitializedEntity InitEntity
1577        = InitializedEntity::InitializeMember(*Field);
1578      InitializationKind InitKind
1579        = InitializationKind::CreateDefault(Constructor->getLocation());
1580
1581      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1582      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1583                                                    MultiExprArg(*this, 0, 0));
1584      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1585      if (MemberInit.isInvalid()) {
1586        HadError = true;
1587        continue;
1588      }
1589
1590      // Don't attach synthesized member initializers in a dependent
1591      // context; they'll be regenerated a template instantiation
1592      // time.
1593      if (CurContext->isDependentContext())
1594        continue;
1595
1596      CXXBaseOrMemberInitializer *Member =
1597        new (Context) CXXBaseOrMemberInitializer(Context,
1598                                                 *Field, SourceLocation(),
1599                                                 SourceLocation(),
1600                                                 MemberInit.takeAs<Expr>(),
1601                                                 SourceLocation());
1602
1603      AllToInit.push_back(Member);
1604    }
1605    else if (FT->isReferenceType()) {
1606      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1607        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1608        << 0 << (*Field)->getDeclName();
1609      Diag((*Field)->getLocation(), diag::note_declared_at);
1610      HadError = true;
1611    }
1612    else if (FT.isConstQualified()) {
1613      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1614        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1615        << 1 << (*Field)->getDeclName();
1616      Diag((*Field)->getLocation(), diag::note_declared_at);
1617      HadError = true;
1618    }
1619  }
1620
1621  NumInitializers = AllToInit.size();
1622  if (NumInitializers > 0) {
1623    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1624    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1625      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1626    memcpy(baseOrMemberInitializers, AllToInit.data(),
1627           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1628    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1629
1630    // Constructors implicitly reference the base and member
1631    // destructors.
1632    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1633                                           Constructor->getParent());
1634  }
1635
1636  return HadError;
1637}
1638
1639static void *GetKeyForTopLevelField(FieldDecl *Field) {
1640  // For anonymous unions, use the class declaration as the key.
1641  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1642    if (RT->getDecl()->isAnonymousStructOrUnion())
1643      return static_cast<void *>(RT->getDecl());
1644  }
1645  return static_cast<void *>(Field);
1646}
1647
1648static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1649  return Context.getCanonicalType(BaseType).getTypePtr();
1650}
1651
1652static void *GetKeyForMember(ASTContext &Context,
1653                             CXXBaseOrMemberInitializer *Member,
1654                             bool MemberMaybeAnon = false) {
1655  if (!Member->isMemberInitializer())
1656    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1657
1658  // For fields injected into the class via declaration of an anonymous union,
1659  // use its anonymous union class declaration as the unique key.
1660  FieldDecl *Field = Member->getMember();
1661
1662  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1663  // data member of the class. Data member used in the initializer list is
1664  // in AnonUnionMember field.
1665  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1666    Field = Member->getAnonUnionMember();
1667
1668  // If the field is a member of an anonymous struct or union, our key
1669  // is the anonymous record decl that's a direct child of the class.
1670  RecordDecl *RD = Field->getParent();
1671  if (RD->isAnonymousStructOrUnion()) {
1672    while (true) {
1673      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1674      if (Parent->isAnonymousStructOrUnion())
1675        RD = Parent;
1676      else
1677        break;
1678    }
1679
1680    return static_cast<void *>(RD);
1681  }
1682
1683  return static_cast<void *>(Field);
1684}
1685
1686static void
1687DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1688                                  const CXXConstructorDecl *Constructor,
1689                                  CXXBaseOrMemberInitializer **Inits,
1690                                  unsigned NumInits) {
1691  if (Constructor->getDeclContext()->isDependentContext())
1692    return;
1693
1694  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1695        == Diagnostic::Ignored)
1696    return;
1697
1698  // Build the list of bases and members in the order that they'll
1699  // actually be initialized.  The explicit initializers should be in
1700  // this same order but may be missing things.
1701  llvm::SmallVector<const void*, 32> IdealInitKeys;
1702
1703  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1704
1705  // 1. Virtual bases.
1706  for (CXXRecordDecl::base_class_const_iterator VBase =
1707       ClassDecl->vbases_begin(),
1708       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1709    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1710
1711  // 2. Non-virtual bases.
1712  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1713       E = ClassDecl->bases_end(); Base != E; ++Base) {
1714    if (Base->isVirtual())
1715      continue;
1716    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1717  }
1718
1719  // 3. Direct fields.
1720  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1721       E = ClassDecl->field_end(); Field != E; ++Field)
1722    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1723
1724  unsigned NumIdealInits = IdealInitKeys.size();
1725  unsigned IdealIndex = 0;
1726
1727  CXXBaseOrMemberInitializer *PrevInit = 0;
1728  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1729    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1730    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1731
1732    // Scan forward to try to find this initializer in the idealized
1733    // initializers list.
1734    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1735      if (InitKey == IdealInitKeys[IdealIndex])
1736        break;
1737
1738    // If we didn't find this initializer, it must be because we
1739    // scanned past it on a previous iteration.  That can only
1740    // happen if we're out of order;  emit a warning.
1741    if (IdealIndex == NumIdealInits) {
1742      assert(PrevInit && "initializer not found in initializer list");
1743
1744      Sema::SemaDiagnosticBuilder D =
1745        SemaRef.Diag(PrevInit->getSourceLocation(),
1746                     diag::warn_initializer_out_of_order);
1747
1748      if (PrevInit->isMemberInitializer())
1749        D << 0 << PrevInit->getMember()->getDeclName();
1750      else
1751        D << 1 << PrevInit->getBaseClassInfo()->getType();
1752
1753      if (Init->isMemberInitializer())
1754        D << 0 << Init->getMember()->getDeclName();
1755      else
1756        D << 1 << Init->getBaseClassInfo()->getType();
1757
1758      // Move back to the initializer's location in the ideal list.
1759      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1760        if (InitKey == IdealInitKeys[IdealIndex])
1761          break;
1762
1763      assert(IdealIndex != NumIdealInits &&
1764             "initializer not found in initializer list");
1765    }
1766
1767    PrevInit = Init;
1768  }
1769}
1770
1771namespace {
1772bool CheckRedundantInit(Sema &S,
1773                        CXXBaseOrMemberInitializer *Init,
1774                        CXXBaseOrMemberInitializer *&PrevInit) {
1775  if (!PrevInit) {
1776    PrevInit = Init;
1777    return false;
1778  }
1779
1780  if (FieldDecl *Field = Init->getMember())
1781    S.Diag(Init->getSourceLocation(),
1782           diag::err_multiple_mem_initialization)
1783      << Field->getDeclName()
1784      << Init->getSourceRange();
1785  else {
1786    Type *BaseClass = Init->getBaseClass();
1787    assert(BaseClass && "neither field nor base");
1788    S.Diag(Init->getSourceLocation(),
1789           diag::err_multiple_base_initialization)
1790      << QualType(BaseClass, 0)
1791      << Init->getSourceRange();
1792  }
1793  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1794    << 0 << PrevInit->getSourceRange();
1795
1796  return true;
1797}
1798
1799typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1800typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1801
1802bool CheckRedundantUnionInit(Sema &S,
1803                             CXXBaseOrMemberInitializer *Init,
1804                             RedundantUnionMap &Unions) {
1805  FieldDecl *Field = Init->getMember();
1806  RecordDecl *Parent = Field->getParent();
1807  if (!Parent->isAnonymousStructOrUnion())
1808    return false;
1809
1810  NamedDecl *Child = Field;
1811  do {
1812    if (Parent->isUnion()) {
1813      UnionEntry &En = Unions[Parent];
1814      if (En.first && En.first != Child) {
1815        S.Diag(Init->getSourceLocation(),
1816               diag::err_multiple_mem_union_initialization)
1817          << Field->getDeclName()
1818          << Init->getSourceRange();
1819        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1820          << 0 << En.second->getSourceRange();
1821        return true;
1822      } else if (!En.first) {
1823        En.first = Child;
1824        En.second = Init;
1825      }
1826    }
1827
1828    Child = Parent;
1829    Parent = cast<RecordDecl>(Parent->getDeclContext());
1830  } while (Parent->isAnonymousStructOrUnion());
1831
1832  return false;
1833}
1834}
1835
1836/// ActOnMemInitializers - Handle the member initializers for a constructor.
1837void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1838                                SourceLocation ColonLoc,
1839                                MemInitTy **meminits, unsigned NumMemInits,
1840                                bool AnyErrors) {
1841  if (!ConstructorDecl)
1842    return;
1843
1844  AdjustDeclIfTemplate(ConstructorDecl);
1845
1846  CXXConstructorDecl *Constructor
1847    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1848
1849  if (!Constructor) {
1850    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1851    return;
1852  }
1853
1854  CXXBaseOrMemberInitializer **MemInits =
1855    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1856
1857  // Mapping for the duplicate initializers check.
1858  // For member initializers, this is keyed with a FieldDecl*.
1859  // For base initializers, this is keyed with a Type*.
1860  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1861
1862  // Mapping for the inconsistent anonymous-union initializers check.
1863  RedundantUnionMap MemberUnions;
1864
1865  bool HadError = false;
1866  for (unsigned i = 0; i < NumMemInits; i++) {
1867    CXXBaseOrMemberInitializer *Init = MemInits[i];
1868
1869    if (Init->isMemberInitializer()) {
1870      FieldDecl *Field = Init->getMember();
1871      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1872          CheckRedundantUnionInit(*this, Init, MemberUnions))
1873        HadError = true;
1874    } else {
1875      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1876      if (CheckRedundantInit(*this, Init, Members[Key]))
1877        HadError = true;
1878    }
1879  }
1880
1881  if (HadError)
1882    return;
1883
1884  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1885
1886  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1887}
1888
1889void
1890Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1891                                             CXXRecordDecl *ClassDecl) {
1892  // Ignore dependent contexts.
1893  if (ClassDecl->isDependentContext())
1894    return;
1895
1896  // FIXME: all the access-control diagnostics are positioned on the
1897  // field/base declaration.  That's probably good; that said, the
1898  // user might reasonably want to know why the destructor is being
1899  // emitted, and we currently don't say.
1900
1901  // Non-static data members.
1902  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1903       E = ClassDecl->field_end(); I != E; ++I) {
1904    FieldDecl *Field = *I;
1905
1906    QualType FieldType = Context.getBaseElementType(Field->getType());
1907
1908    const RecordType* RT = FieldType->getAs<RecordType>();
1909    if (!RT)
1910      continue;
1911
1912    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1913    if (FieldClassDecl->hasTrivialDestructor())
1914      continue;
1915
1916    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1917    CheckDestructorAccess(Field->getLocation(), Dtor,
1918                          PDiag(diag::err_access_dtor_field)
1919                            << Field->getDeclName()
1920                            << FieldType);
1921
1922    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1923  }
1924
1925  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1926
1927  // Bases.
1928  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1929       E = ClassDecl->bases_end(); Base != E; ++Base) {
1930    // Bases are always records in a well-formed non-dependent class.
1931    const RecordType *RT = Base->getType()->getAs<RecordType>();
1932
1933    // Remember direct virtual bases.
1934    if (Base->isVirtual())
1935      DirectVirtualBases.insert(RT);
1936
1937    // Ignore trivial destructors.
1938    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1939    if (BaseClassDecl->hasTrivialDestructor())
1940      continue;
1941
1942    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1943
1944    // FIXME: caret should be on the start of the class name
1945    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1946                          PDiag(diag::err_access_dtor_base)
1947                            << Base->getType()
1948                            << Base->getSourceRange());
1949
1950    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1951  }
1952
1953  // Virtual bases.
1954  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1955       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1956
1957    // Bases are always records in a well-formed non-dependent class.
1958    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1959
1960    // Ignore direct virtual bases.
1961    if (DirectVirtualBases.count(RT))
1962      continue;
1963
1964    // Ignore trivial destructors.
1965    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1966    if (BaseClassDecl->hasTrivialDestructor())
1967      continue;
1968
1969    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1970    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1971                          PDiag(diag::err_access_dtor_vbase)
1972                            << VBase->getType());
1973
1974    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1975  }
1976}
1977
1978void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1979  if (!CDtorDecl)
1980    return;
1981
1982  if (CXXConstructorDecl *Constructor
1983      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1984    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1985}
1986
1987bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1988                                  unsigned DiagID, AbstractDiagSelID SelID,
1989                                  const CXXRecordDecl *CurrentRD) {
1990  if (SelID == -1)
1991    return RequireNonAbstractType(Loc, T,
1992                                  PDiag(DiagID), CurrentRD);
1993  else
1994    return RequireNonAbstractType(Loc, T,
1995                                  PDiag(DiagID) << SelID, CurrentRD);
1996}
1997
1998bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1999                                  const PartialDiagnostic &PD,
2000                                  const CXXRecordDecl *CurrentRD) {
2001  if (!getLangOptions().CPlusPlus)
2002    return false;
2003
2004  if (const ArrayType *AT = Context.getAsArrayType(T))
2005    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2006                                  CurrentRD);
2007
2008  if (const PointerType *PT = T->getAs<PointerType>()) {
2009    // Find the innermost pointer type.
2010    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2011      PT = T;
2012
2013    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2014      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2015  }
2016
2017  const RecordType *RT = T->getAs<RecordType>();
2018  if (!RT)
2019    return false;
2020
2021  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2022
2023  if (CurrentRD && CurrentRD != RD)
2024    return false;
2025
2026  // FIXME: is this reasonable?  It matches current behavior, but....
2027  if (!RD->getDefinition())
2028    return false;
2029
2030  if (!RD->isAbstract())
2031    return false;
2032
2033  Diag(Loc, PD) << RD->getDeclName();
2034
2035  // Check if we've already emitted the list of pure virtual functions for this
2036  // class.
2037  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2038    return true;
2039
2040  CXXFinalOverriderMap FinalOverriders;
2041  RD->getFinalOverriders(FinalOverriders);
2042
2043  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2044                                   MEnd = FinalOverriders.end();
2045       M != MEnd;
2046       ++M) {
2047    for (OverridingMethods::iterator SO = M->second.begin(),
2048                                  SOEnd = M->second.end();
2049         SO != SOEnd; ++SO) {
2050      // C++ [class.abstract]p4:
2051      //   A class is abstract if it contains or inherits at least one
2052      //   pure virtual function for which the final overrider is pure
2053      //   virtual.
2054
2055      //
2056      if (SO->second.size() != 1)
2057        continue;
2058
2059      if (!SO->second.front().Method->isPure())
2060        continue;
2061
2062      Diag(SO->second.front().Method->getLocation(),
2063           diag::note_pure_virtual_function)
2064        << SO->second.front().Method->getDeclName();
2065    }
2066  }
2067
2068  if (!PureVirtualClassDiagSet)
2069    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2070  PureVirtualClassDiagSet->insert(RD);
2071
2072  return true;
2073}
2074
2075namespace {
2076  class AbstractClassUsageDiagnoser
2077    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2078    Sema &SemaRef;
2079    CXXRecordDecl *AbstractClass;
2080
2081    bool VisitDeclContext(const DeclContext *DC) {
2082      bool Invalid = false;
2083
2084      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2085           E = DC->decls_end(); I != E; ++I)
2086        Invalid |= Visit(*I);
2087
2088      return Invalid;
2089    }
2090
2091  public:
2092    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2093      : SemaRef(SemaRef), AbstractClass(ac) {
2094        Visit(SemaRef.Context.getTranslationUnitDecl());
2095    }
2096
2097    bool VisitFunctionDecl(const FunctionDecl *FD) {
2098      if (FD->isThisDeclarationADefinition()) {
2099        // No need to do the check if we're in a definition, because it requires
2100        // that the return/param types are complete.
2101        // because that requires
2102        return VisitDeclContext(FD);
2103      }
2104
2105      // Check the return type.
2106      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2107      bool Invalid =
2108        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2109                                       diag::err_abstract_type_in_decl,
2110                                       Sema::AbstractReturnType,
2111                                       AbstractClass);
2112
2113      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2114           E = FD->param_end(); I != E; ++I) {
2115        const ParmVarDecl *VD = *I;
2116        Invalid |=
2117          SemaRef.RequireNonAbstractType(VD->getLocation(),
2118                                         VD->getOriginalType(),
2119                                         diag::err_abstract_type_in_decl,
2120                                         Sema::AbstractParamType,
2121                                         AbstractClass);
2122      }
2123
2124      return Invalid;
2125    }
2126
2127    bool VisitDecl(const Decl* D) {
2128      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2129        return VisitDeclContext(DC);
2130
2131      return false;
2132    }
2133  };
2134}
2135
2136/// \brief Perform semantic checks on a class definition that has been
2137/// completing, introducing implicitly-declared members, checking for
2138/// abstract types, etc.
2139void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2140  if (!Record || Record->isInvalidDecl())
2141    return;
2142
2143  if (!Record->isDependentType())
2144    AddImplicitlyDeclaredMembersToClass(Record);
2145
2146  if (Record->isInvalidDecl())
2147    return;
2148
2149  // Set access bits correctly on the directly-declared conversions.
2150  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2151  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2152    Convs->setAccess(I, (*I)->getAccess());
2153
2154  // Determine whether we need to check for final overriders. We do
2155  // this either when there are virtual base classes (in which case we
2156  // may end up finding multiple final overriders for a given virtual
2157  // function) or any of the base classes is abstract (in which case
2158  // we might detect that this class is abstract).
2159  bool CheckFinalOverriders = false;
2160  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2161      !Record->isDependentType()) {
2162    if (Record->getNumVBases())
2163      CheckFinalOverriders = true;
2164    else if (!Record->isAbstract()) {
2165      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2166                                                 BEnd = Record->bases_end();
2167           B != BEnd; ++B) {
2168        CXXRecordDecl *BaseDecl
2169          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2170        if (BaseDecl->isAbstract()) {
2171          CheckFinalOverriders = true;
2172          break;
2173        }
2174      }
2175    }
2176  }
2177
2178  if (CheckFinalOverriders) {
2179    CXXFinalOverriderMap FinalOverriders;
2180    Record->getFinalOverriders(FinalOverriders);
2181
2182    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2183                                     MEnd = FinalOverriders.end();
2184         M != MEnd; ++M) {
2185      for (OverridingMethods::iterator SO = M->second.begin(),
2186                                    SOEnd = M->second.end();
2187           SO != SOEnd; ++SO) {
2188        assert(SO->second.size() > 0 &&
2189               "All virtual functions have overridding virtual functions");
2190        if (SO->second.size() == 1) {
2191          // C++ [class.abstract]p4:
2192          //   A class is abstract if it contains or inherits at least one
2193          //   pure virtual function for which the final overrider is pure
2194          //   virtual.
2195          if (SO->second.front().Method->isPure())
2196            Record->setAbstract(true);
2197          continue;
2198        }
2199
2200        // C++ [class.virtual]p2:
2201        //   In a derived class, if a virtual member function of a base
2202        //   class subobject has more than one final overrider the
2203        //   program is ill-formed.
2204        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2205          << (NamedDecl *)M->first << Record;
2206        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2207        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2208                                                 OMEnd = SO->second.end();
2209             OM != OMEnd; ++OM)
2210          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2211            << (NamedDecl *)M->first << OM->Method->getParent();
2212
2213        Record->setInvalidDecl();
2214      }
2215    }
2216  }
2217
2218  if (Record->isAbstract() && !Record->isInvalidDecl())
2219    (void)AbstractClassUsageDiagnoser(*this, Record);
2220}
2221
2222void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2223                                             DeclPtrTy TagDecl,
2224                                             SourceLocation LBrac,
2225                                             SourceLocation RBrac,
2226                                             AttributeList *AttrList) {
2227  if (!TagDecl)
2228    return;
2229
2230  AdjustDeclIfTemplate(TagDecl);
2231
2232  ActOnFields(S, RLoc, TagDecl,
2233              (DeclPtrTy*)FieldCollector->getCurFields(),
2234              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2235
2236  CheckCompletedCXXClass(
2237                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2238}
2239
2240/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2241/// special functions, such as the default constructor, copy
2242/// constructor, or destructor, to the given C++ class (C++
2243/// [special]p1).  This routine can only be executed just before the
2244/// definition of the class is complete.
2245void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2246  CanQualType ClassType
2247    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2248
2249  // FIXME: Implicit declarations have exception specifications, which are
2250  // the union of the specifications of the implicitly called functions.
2251
2252  if (!ClassDecl->hasUserDeclaredConstructor()) {
2253    // C++ [class.ctor]p5:
2254    //   A default constructor for a class X is a constructor of class X
2255    //   that can be called without an argument. If there is no
2256    //   user-declared constructor for class X, a default constructor is
2257    //   implicitly declared. An implicitly-declared default constructor
2258    //   is an inline public member of its class.
2259    DeclarationName Name
2260      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2261    CXXConstructorDecl *DefaultCon =
2262      CXXConstructorDecl::Create(Context, ClassDecl,
2263                                 ClassDecl->getLocation(), Name,
2264                                 Context.getFunctionType(Context.VoidTy,
2265                                                         0, 0, false, 0,
2266                                                         /*FIXME*/false, false,
2267                                                         0, 0,
2268                                                       FunctionType::ExtInfo()),
2269                                 /*TInfo=*/0,
2270                                 /*isExplicit=*/false,
2271                                 /*isInline=*/true,
2272                                 /*isImplicitlyDeclared=*/true);
2273    DefaultCon->setAccess(AS_public);
2274    DefaultCon->setImplicit();
2275    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2276    ClassDecl->addDecl(DefaultCon);
2277  }
2278
2279  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2280    // C++ [class.copy]p4:
2281    //   If the class definition does not explicitly declare a copy
2282    //   constructor, one is declared implicitly.
2283
2284    // C++ [class.copy]p5:
2285    //   The implicitly-declared copy constructor for a class X will
2286    //   have the form
2287    //
2288    //       X::X(const X&)
2289    //
2290    //   if
2291    bool HasConstCopyConstructor = true;
2292
2293    //     -- each direct or virtual base class B of X has a copy
2294    //        constructor whose first parameter is of type const B& or
2295    //        const volatile B&, and
2296    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2297         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2298      const CXXRecordDecl *BaseClassDecl
2299        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2300      HasConstCopyConstructor
2301        = BaseClassDecl->hasConstCopyConstructor(Context);
2302    }
2303
2304    //     -- for all the nonstatic data members of X that are of a
2305    //        class type M (or array thereof), each such class type
2306    //        has a copy constructor whose first parameter is of type
2307    //        const M& or const volatile M&.
2308    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2309         HasConstCopyConstructor && Field != ClassDecl->field_end();
2310         ++Field) {
2311      QualType FieldType = (*Field)->getType();
2312      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2313        FieldType = Array->getElementType();
2314      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2315        const CXXRecordDecl *FieldClassDecl
2316          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2317        HasConstCopyConstructor
2318          = FieldClassDecl->hasConstCopyConstructor(Context);
2319      }
2320    }
2321
2322    //   Otherwise, the implicitly declared copy constructor will have
2323    //   the form
2324    //
2325    //       X::X(X&)
2326    QualType ArgType = ClassType;
2327    if (HasConstCopyConstructor)
2328      ArgType = ArgType.withConst();
2329    ArgType = Context.getLValueReferenceType(ArgType);
2330
2331    //   An implicitly-declared copy constructor is an inline public
2332    //   member of its class.
2333    DeclarationName Name
2334      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2335    CXXConstructorDecl *CopyConstructor
2336      = CXXConstructorDecl::Create(Context, ClassDecl,
2337                                   ClassDecl->getLocation(), Name,
2338                                   Context.getFunctionType(Context.VoidTy,
2339                                                           &ArgType, 1,
2340                                                           false, 0,
2341                                                           /*FIXME:*/false,
2342                                                           false, 0, 0,
2343                                                       FunctionType::ExtInfo()),
2344                                   /*TInfo=*/0,
2345                                   /*isExplicit=*/false,
2346                                   /*isInline=*/true,
2347                                   /*isImplicitlyDeclared=*/true);
2348    CopyConstructor->setAccess(AS_public);
2349    CopyConstructor->setImplicit();
2350    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2351
2352    // Add the parameter to the constructor.
2353    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2354                                                 ClassDecl->getLocation(),
2355                                                 /*IdentifierInfo=*/0,
2356                                                 ArgType, /*TInfo=*/0,
2357                                                 VarDecl::None, 0);
2358    CopyConstructor->setParams(&FromParam, 1);
2359    ClassDecl->addDecl(CopyConstructor);
2360  }
2361
2362  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2363    // Note: The following rules are largely analoguous to the copy
2364    // constructor rules. Note that virtual bases are not taken into account
2365    // for determining the argument type of the operator. Note also that
2366    // operators taking an object instead of a reference are allowed.
2367    //
2368    // C++ [class.copy]p10:
2369    //   If the class definition does not explicitly declare a copy
2370    //   assignment operator, one is declared implicitly.
2371    //   The implicitly-defined copy assignment operator for a class X
2372    //   will have the form
2373    //
2374    //       X& X::operator=(const X&)
2375    //
2376    //   if
2377    bool HasConstCopyAssignment = true;
2378
2379    //       -- each direct base class B of X has a copy assignment operator
2380    //          whose parameter is of type const B&, const volatile B& or B,
2381    //          and
2382    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2383         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2384      assert(!Base->getType()->isDependentType() &&
2385            "Cannot generate implicit members for class with dependent bases.");
2386      const CXXRecordDecl *BaseClassDecl
2387        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2388      const CXXMethodDecl *MD = 0;
2389      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2390                                                                     MD);
2391    }
2392
2393    //       -- for all the nonstatic data members of X that are of a class
2394    //          type M (or array thereof), each such class type has a copy
2395    //          assignment operator whose parameter is of type const M&,
2396    //          const volatile M& or M.
2397    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2398         HasConstCopyAssignment && Field != ClassDecl->field_end();
2399         ++Field) {
2400      QualType FieldType = (*Field)->getType();
2401      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2402        FieldType = Array->getElementType();
2403      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2404        const CXXRecordDecl *FieldClassDecl
2405          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2406        const CXXMethodDecl *MD = 0;
2407        HasConstCopyAssignment
2408          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2409      }
2410    }
2411
2412    //   Otherwise, the implicitly declared copy assignment operator will
2413    //   have the form
2414    //
2415    //       X& X::operator=(X&)
2416    QualType ArgType = ClassType;
2417    QualType RetType = Context.getLValueReferenceType(ArgType);
2418    if (HasConstCopyAssignment)
2419      ArgType = ArgType.withConst();
2420    ArgType = Context.getLValueReferenceType(ArgType);
2421
2422    //   An implicitly-declared copy assignment operator is an inline public
2423    //   member of its class.
2424    DeclarationName Name =
2425      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2426    CXXMethodDecl *CopyAssignment =
2427      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2428                            Context.getFunctionType(RetType, &ArgType, 1,
2429                                                    false, 0,
2430                                                    /*FIXME:*/false,
2431                                                    false, 0, 0,
2432                                                    FunctionType::ExtInfo()),
2433                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2434    CopyAssignment->setAccess(AS_public);
2435    CopyAssignment->setImplicit();
2436    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2437    CopyAssignment->setCopyAssignment(true);
2438
2439    // Add the parameter to the operator.
2440    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2441                                                 ClassDecl->getLocation(),
2442                                                 /*IdentifierInfo=*/0,
2443                                                 ArgType, /*TInfo=*/0,
2444                                                 VarDecl::None, 0);
2445    CopyAssignment->setParams(&FromParam, 1);
2446
2447    // Don't call addedAssignmentOperator. There is no way to distinguish an
2448    // implicit from an explicit assignment operator.
2449    ClassDecl->addDecl(CopyAssignment);
2450    AddOverriddenMethods(ClassDecl, CopyAssignment);
2451  }
2452
2453  if (!ClassDecl->hasUserDeclaredDestructor()) {
2454    // C++ [class.dtor]p2:
2455    //   If a class has no user-declared destructor, a destructor is
2456    //   declared implicitly. An implicitly-declared destructor is an
2457    //   inline public member of its class.
2458    QualType Ty = Context.getFunctionType(Context.VoidTy,
2459                                          0, 0, false, 0,
2460                                          /*FIXME:*/false,
2461                                          false, 0, 0, FunctionType::ExtInfo());
2462
2463    DeclarationName Name
2464      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2465    CXXDestructorDecl *Destructor
2466      = CXXDestructorDecl::Create(Context, ClassDecl,
2467                                  ClassDecl->getLocation(), Name, Ty,
2468                                  /*isInline=*/true,
2469                                  /*isImplicitlyDeclared=*/true);
2470    Destructor->setAccess(AS_public);
2471    Destructor->setImplicit();
2472    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2473    ClassDecl->addDecl(Destructor);
2474
2475    // This could be uniqued if it ever proves significant.
2476    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2477
2478    AddOverriddenMethods(ClassDecl, Destructor);
2479  }
2480}
2481
2482void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2483  Decl *D = TemplateD.getAs<Decl>();
2484  if (!D)
2485    return;
2486
2487  TemplateParameterList *Params = 0;
2488  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2489    Params = Template->getTemplateParameters();
2490  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2491           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2492    Params = PartialSpec->getTemplateParameters();
2493  else
2494    return;
2495
2496  for (TemplateParameterList::iterator Param = Params->begin(),
2497                                    ParamEnd = Params->end();
2498       Param != ParamEnd; ++Param) {
2499    NamedDecl *Named = cast<NamedDecl>(*Param);
2500    if (Named->getDeclName()) {
2501      S->AddDecl(DeclPtrTy::make(Named));
2502      IdResolver.AddDecl(Named);
2503    }
2504  }
2505}
2506
2507void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2508  if (!RecordD) return;
2509  AdjustDeclIfTemplate(RecordD);
2510  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2511  PushDeclContext(S, Record);
2512}
2513
2514void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2515  if (!RecordD) return;
2516  PopDeclContext();
2517}
2518
2519/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2520/// parsing a top-level (non-nested) C++ class, and we are now
2521/// parsing those parts of the given Method declaration that could
2522/// not be parsed earlier (C++ [class.mem]p2), such as default
2523/// arguments. This action should enter the scope of the given
2524/// Method declaration as if we had just parsed the qualified method
2525/// name. However, it should not bring the parameters into scope;
2526/// that will be performed by ActOnDelayedCXXMethodParameter.
2527void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2528}
2529
2530/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2531/// C++ method declaration. We're (re-)introducing the given
2532/// function parameter into scope for use in parsing later parts of
2533/// the method declaration. For example, we could see an
2534/// ActOnParamDefaultArgument event for this parameter.
2535void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2536  if (!ParamD)
2537    return;
2538
2539  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2540
2541  // If this parameter has an unparsed default argument, clear it out
2542  // to make way for the parsed default argument.
2543  if (Param->hasUnparsedDefaultArg())
2544    Param->setDefaultArg(0);
2545
2546  S->AddDecl(DeclPtrTy::make(Param));
2547  if (Param->getDeclName())
2548    IdResolver.AddDecl(Param);
2549}
2550
2551/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2552/// processing the delayed method declaration for Method. The method
2553/// declaration is now considered finished. There may be a separate
2554/// ActOnStartOfFunctionDef action later (not necessarily
2555/// immediately!) for this method, if it was also defined inside the
2556/// class body.
2557void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2558  if (!MethodD)
2559    return;
2560
2561  AdjustDeclIfTemplate(MethodD);
2562
2563  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2564
2565  // Now that we have our default arguments, check the constructor
2566  // again. It could produce additional diagnostics or affect whether
2567  // the class has implicitly-declared destructors, among other
2568  // things.
2569  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2570    CheckConstructor(Constructor);
2571
2572  // Check the default arguments, which we may have added.
2573  if (!Method->isInvalidDecl())
2574    CheckCXXDefaultArguments(Method);
2575}
2576
2577/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2578/// the well-formedness of the constructor declarator @p D with type @p
2579/// R. If there are any errors in the declarator, this routine will
2580/// emit diagnostics and set the invalid bit to true.  In any case, the type
2581/// will be updated to reflect a well-formed type for the constructor and
2582/// returned.
2583QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2584                                          FunctionDecl::StorageClass &SC) {
2585  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2586
2587  // C++ [class.ctor]p3:
2588  //   A constructor shall not be virtual (10.3) or static (9.4). A
2589  //   constructor can be invoked for a const, volatile or const
2590  //   volatile object. A constructor shall not be declared const,
2591  //   volatile, or const volatile (9.3.2).
2592  if (isVirtual) {
2593    if (!D.isInvalidType())
2594      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2595        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2596        << SourceRange(D.getIdentifierLoc());
2597    D.setInvalidType();
2598  }
2599  if (SC == FunctionDecl::Static) {
2600    if (!D.isInvalidType())
2601      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2602        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2603        << SourceRange(D.getIdentifierLoc());
2604    D.setInvalidType();
2605    SC = FunctionDecl::None;
2606  }
2607
2608  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2609  if (FTI.TypeQuals != 0) {
2610    if (FTI.TypeQuals & Qualifiers::Const)
2611      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2612        << "const" << SourceRange(D.getIdentifierLoc());
2613    if (FTI.TypeQuals & Qualifiers::Volatile)
2614      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2615        << "volatile" << SourceRange(D.getIdentifierLoc());
2616    if (FTI.TypeQuals & Qualifiers::Restrict)
2617      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2618        << "restrict" << SourceRange(D.getIdentifierLoc());
2619  }
2620
2621  // Rebuild the function type "R" without any type qualifiers (in
2622  // case any of the errors above fired) and with "void" as the
2623  // return type, since constructors don't have return types. We
2624  // *always* have to do this, because GetTypeForDeclarator will
2625  // put in a result type of "int" when none was specified.
2626  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2627  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2628                                 Proto->getNumArgs(),
2629                                 Proto->isVariadic(), 0,
2630                                 Proto->hasExceptionSpec(),
2631                                 Proto->hasAnyExceptionSpec(),
2632                                 Proto->getNumExceptions(),
2633                                 Proto->exception_begin(),
2634                                 Proto->getExtInfo());
2635}
2636
2637/// CheckConstructor - Checks a fully-formed constructor for
2638/// well-formedness, issuing any diagnostics required. Returns true if
2639/// the constructor declarator is invalid.
2640void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2641  CXXRecordDecl *ClassDecl
2642    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2643  if (!ClassDecl)
2644    return Constructor->setInvalidDecl();
2645
2646  // C++ [class.copy]p3:
2647  //   A declaration of a constructor for a class X is ill-formed if
2648  //   its first parameter is of type (optionally cv-qualified) X and
2649  //   either there are no other parameters or else all other
2650  //   parameters have default arguments.
2651  if (!Constructor->isInvalidDecl() &&
2652      ((Constructor->getNumParams() == 1) ||
2653       (Constructor->getNumParams() > 1 &&
2654        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2655      Constructor->getTemplateSpecializationKind()
2656                                              != TSK_ImplicitInstantiation) {
2657    QualType ParamType = Constructor->getParamDecl(0)->getType();
2658    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2659    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2660      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2661      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2662        << FixItHint::CreateInsertion(ParamLoc, " const &");
2663
2664      // FIXME: Rather that making the constructor invalid, we should endeavor
2665      // to fix the type.
2666      Constructor->setInvalidDecl();
2667    }
2668  }
2669
2670  // Notify the class that we've added a constructor.
2671  ClassDecl->addedConstructor(Context, Constructor);
2672}
2673
2674/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2675/// issuing any diagnostics required. Returns true on error.
2676bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2677  CXXRecordDecl *RD = Destructor->getParent();
2678
2679  if (Destructor->isVirtual()) {
2680    SourceLocation Loc;
2681
2682    if (!Destructor->isImplicit())
2683      Loc = Destructor->getLocation();
2684    else
2685      Loc = RD->getLocation();
2686
2687    // If we have a virtual destructor, look up the deallocation function
2688    FunctionDecl *OperatorDelete = 0;
2689    DeclarationName Name =
2690    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2691    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2692      return true;
2693
2694    Destructor->setOperatorDelete(OperatorDelete);
2695  }
2696
2697  return false;
2698}
2699
2700static inline bool
2701FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2702  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2703          FTI.ArgInfo[0].Param &&
2704          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2705}
2706
2707/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2708/// the well-formednes of the destructor declarator @p D with type @p
2709/// R. If there are any errors in the declarator, this routine will
2710/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2711/// will be updated to reflect a well-formed type for the destructor and
2712/// returned.
2713QualType Sema::CheckDestructorDeclarator(Declarator &D,
2714                                         FunctionDecl::StorageClass& SC) {
2715  // C++ [class.dtor]p1:
2716  //   [...] A typedef-name that names a class is a class-name
2717  //   (7.1.3); however, a typedef-name that names a class shall not
2718  //   be used as the identifier in the declarator for a destructor
2719  //   declaration.
2720  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2721  if (isa<TypedefType>(DeclaratorType)) {
2722    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2723      << DeclaratorType;
2724    D.setInvalidType();
2725  }
2726
2727  // C++ [class.dtor]p2:
2728  //   A destructor is used to destroy objects of its class type. A
2729  //   destructor takes no parameters, and no return type can be
2730  //   specified for it (not even void). The address of a destructor
2731  //   shall not be taken. A destructor shall not be static. A
2732  //   destructor can be invoked for a const, volatile or const
2733  //   volatile object. A destructor shall not be declared const,
2734  //   volatile or const volatile (9.3.2).
2735  if (SC == FunctionDecl::Static) {
2736    if (!D.isInvalidType())
2737      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2738        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2739        << SourceRange(D.getIdentifierLoc());
2740    SC = FunctionDecl::None;
2741    D.setInvalidType();
2742  }
2743  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2744    // Destructors don't have return types, but the parser will
2745    // happily parse something like:
2746    //
2747    //   class X {
2748    //     float ~X();
2749    //   };
2750    //
2751    // The return type will be eliminated later.
2752    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2753      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2754      << SourceRange(D.getIdentifierLoc());
2755  }
2756
2757  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2758  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2759    if (FTI.TypeQuals & Qualifiers::Const)
2760      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2761        << "const" << SourceRange(D.getIdentifierLoc());
2762    if (FTI.TypeQuals & Qualifiers::Volatile)
2763      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2764        << "volatile" << SourceRange(D.getIdentifierLoc());
2765    if (FTI.TypeQuals & Qualifiers::Restrict)
2766      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2767        << "restrict" << SourceRange(D.getIdentifierLoc());
2768    D.setInvalidType();
2769  }
2770
2771  // Make sure we don't have any parameters.
2772  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2773    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2774
2775    // Delete the parameters.
2776    FTI.freeArgs();
2777    D.setInvalidType();
2778  }
2779
2780  // Make sure the destructor isn't variadic.
2781  if (FTI.isVariadic) {
2782    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2783    D.setInvalidType();
2784  }
2785
2786  // Rebuild the function type "R" without any type qualifiers or
2787  // parameters (in case any of the errors above fired) and with
2788  // "void" as the return type, since destructors don't have return
2789  // types. We *always* have to do this, because GetTypeForDeclarator
2790  // will put in a result type of "int" when none was specified.
2791  // FIXME: Exceptions!
2792  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2793                                 false, false, 0, 0, FunctionType::ExtInfo());
2794}
2795
2796/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2797/// well-formednes of the conversion function declarator @p D with
2798/// type @p R. If there are any errors in the declarator, this routine
2799/// will emit diagnostics and return true. Otherwise, it will return
2800/// false. Either way, the type @p R will be updated to reflect a
2801/// well-formed type for the conversion operator.
2802void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2803                                     FunctionDecl::StorageClass& SC) {
2804  // C++ [class.conv.fct]p1:
2805  //   Neither parameter types nor return type can be specified. The
2806  //   type of a conversion function (8.3.5) is "function taking no
2807  //   parameter returning conversion-type-id."
2808  if (SC == FunctionDecl::Static) {
2809    if (!D.isInvalidType())
2810      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2811        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2812        << SourceRange(D.getIdentifierLoc());
2813    D.setInvalidType();
2814    SC = FunctionDecl::None;
2815  }
2816  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2817    // Conversion functions don't have return types, but the parser will
2818    // happily parse something like:
2819    //
2820    //   class X {
2821    //     float operator bool();
2822    //   };
2823    //
2824    // The return type will be changed later anyway.
2825    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2826      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2827      << SourceRange(D.getIdentifierLoc());
2828  }
2829
2830  // Make sure we don't have any parameters.
2831  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2832    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2833
2834    // Delete the parameters.
2835    D.getTypeObject(0).Fun.freeArgs();
2836    D.setInvalidType();
2837  }
2838
2839  // Make sure the conversion function isn't variadic.
2840  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2841    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2842    D.setInvalidType();
2843  }
2844
2845  // C++ [class.conv.fct]p4:
2846  //   The conversion-type-id shall not represent a function type nor
2847  //   an array type.
2848  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2849  if (ConvType->isArrayType()) {
2850    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2851    ConvType = Context.getPointerType(ConvType);
2852    D.setInvalidType();
2853  } else if (ConvType->isFunctionType()) {
2854    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2855    ConvType = Context.getPointerType(ConvType);
2856    D.setInvalidType();
2857  }
2858
2859  // Rebuild the function type "R" without any parameters (in case any
2860  // of the errors above fired) and with the conversion type as the
2861  // return type.
2862  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2863  R = Context.getFunctionType(ConvType, 0, 0, false,
2864                              Proto->getTypeQuals(),
2865                              Proto->hasExceptionSpec(),
2866                              Proto->hasAnyExceptionSpec(),
2867                              Proto->getNumExceptions(),
2868                              Proto->exception_begin(),
2869                              Proto->getExtInfo());
2870
2871  // C++0x explicit conversion operators.
2872  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2873    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2874         diag::warn_explicit_conversion_functions)
2875      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2876}
2877
2878/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2879/// the declaration of the given C++ conversion function. This routine
2880/// is responsible for recording the conversion function in the C++
2881/// class, if possible.
2882Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2883  assert(Conversion && "Expected to receive a conversion function declaration");
2884
2885  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2886
2887  // Make sure we aren't redeclaring the conversion function.
2888  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2889
2890  // C++ [class.conv.fct]p1:
2891  //   [...] A conversion function is never used to convert a
2892  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2893  //   same object type (or a reference to it), to a (possibly
2894  //   cv-qualified) base class of that type (or a reference to it),
2895  //   or to (possibly cv-qualified) void.
2896  // FIXME: Suppress this warning if the conversion function ends up being a
2897  // virtual function that overrides a virtual function in a base class.
2898  QualType ClassType
2899    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2900  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2901    ConvType = ConvTypeRef->getPointeeType();
2902  if (ConvType->isRecordType()) {
2903    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2904    if (ConvType == ClassType)
2905      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2906        << ClassType;
2907    else if (IsDerivedFrom(ClassType, ConvType))
2908      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2909        <<  ClassType << ConvType;
2910  } else if (ConvType->isVoidType()) {
2911    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2912      << ClassType << ConvType;
2913  }
2914
2915  if (Conversion->getPrimaryTemplate()) {
2916    // ignore specializations
2917  } else if (Conversion->getPreviousDeclaration()) {
2918    if (FunctionTemplateDecl *ConversionTemplate
2919                                  = Conversion->getDescribedFunctionTemplate()) {
2920      if (ClassDecl->replaceConversion(
2921                                   ConversionTemplate->getPreviousDeclaration(),
2922                                       ConversionTemplate))
2923        return DeclPtrTy::make(ConversionTemplate);
2924    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2925                                            Conversion))
2926      return DeclPtrTy::make(Conversion);
2927    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2928  } else if (FunctionTemplateDecl *ConversionTemplate
2929               = Conversion->getDescribedFunctionTemplate())
2930    ClassDecl->addConversionFunction(ConversionTemplate);
2931  else
2932    ClassDecl->addConversionFunction(Conversion);
2933
2934  return DeclPtrTy::make(Conversion);
2935}
2936
2937//===----------------------------------------------------------------------===//
2938// Namespace Handling
2939//===----------------------------------------------------------------------===//
2940
2941/// ActOnStartNamespaceDef - This is called at the start of a namespace
2942/// definition.
2943Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2944                                             SourceLocation IdentLoc,
2945                                             IdentifierInfo *II,
2946                                             SourceLocation LBrace,
2947                                             AttributeList *AttrList) {
2948  NamespaceDecl *Namespc =
2949      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2950  Namespc->setLBracLoc(LBrace);
2951
2952  Scope *DeclRegionScope = NamespcScope->getParent();
2953
2954  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2955
2956  if (II) {
2957    // C++ [namespace.def]p2:
2958    // The identifier in an original-namespace-definition shall not have been
2959    // previously defined in the declarative region in which the
2960    // original-namespace-definition appears. The identifier in an
2961    // original-namespace-definition is the name of the namespace. Subsequently
2962    // in that declarative region, it is treated as an original-namespace-name.
2963
2964    NamedDecl *PrevDecl
2965      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2966                         ForRedeclaration);
2967
2968    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2969      // This is an extended namespace definition.
2970      // Attach this namespace decl to the chain of extended namespace
2971      // definitions.
2972      OrigNS->setNextNamespace(Namespc);
2973      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2974
2975      // Remove the previous declaration from the scope.
2976      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2977        IdResolver.RemoveDecl(OrigNS);
2978        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2979      }
2980    } else if (PrevDecl) {
2981      // This is an invalid name redefinition.
2982      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2983       << Namespc->getDeclName();
2984      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2985      Namespc->setInvalidDecl();
2986      // Continue on to push Namespc as current DeclContext and return it.
2987    } else if (II->isStr("std") &&
2988               CurContext->getLookupContext()->isTranslationUnit()) {
2989      // This is the first "real" definition of the namespace "std", so update
2990      // our cache of the "std" namespace to point at this definition.
2991      if (StdNamespace) {
2992        // We had already defined a dummy namespace "std". Link this new
2993        // namespace definition to the dummy namespace "std".
2994        StdNamespace->setNextNamespace(Namespc);
2995        StdNamespace->setLocation(IdentLoc);
2996        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2997      }
2998
2999      // Make our StdNamespace cache point at the first real definition of the
3000      // "std" namespace.
3001      StdNamespace = Namespc;
3002    }
3003
3004    PushOnScopeChains(Namespc, DeclRegionScope);
3005  } else {
3006    // Anonymous namespaces.
3007    assert(Namespc->isAnonymousNamespace());
3008
3009    // Link the anonymous namespace into its parent.
3010    NamespaceDecl *PrevDecl;
3011    DeclContext *Parent = CurContext->getLookupContext();
3012    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3013      PrevDecl = TU->getAnonymousNamespace();
3014      TU->setAnonymousNamespace(Namespc);
3015    } else {
3016      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3017      PrevDecl = ND->getAnonymousNamespace();
3018      ND->setAnonymousNamespace(Namespc);
3019    }
3020
3021    // Link the anonymous namespace with its previous declaration.
3022    if (PrevDecl) {
3023      assert(PrevDecl->isAnonymousNamespace());
3024      assert(!PrevDecl->getNextNamespace());
3025      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3026      PrevDecl->setNextNamespace(Namespc);
3027    }
3028
3029    CurContext->addDecl(Namespc);
3030
3031    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3032    //   behaves as if it were replaced by
3033    //     namespace unique { /* empty body */ }
3034    //     using namespace unique;
3035    //     namespace unique { namespace-body }
3036    //   where all occurrences of 'unique' in a translation unit are
3037    //   replaced by the same identifier and this identifier differs
3038    //   from all other identifiers in the entire program.
3039
3040    // We just create the namespace with an empty name and then add an
3041    // implicit using declaration, just like the standard suggests.
3042    //
3043    // CodeGen enforces the "universally unique" aspect by giving all
3044    // declarations semantically contained within an anonymous
3045    // namespace internal linkage.
3046
3047    if (!PrevDecl) {
3048      UsingDirectiveDecl* UD
3049        = UsingDirectiveDecl::Create(Context, CurContext,
3050                                     /* 'using' */ LBrace,
3051                                     /* 'namespace' */ SourceLocation(),
3052                                     /* qualifier */ SourceRange(),
3053                                     /* NNS */ NULL,
3054                                     /* identifier */ SourceLocation(),
3055                                     Namespc,
3056                                     /* Ancestor */ CurContext);
3057      UD->setImplicit();
3058      CurContext->addDecl(UD);
3059    }
3060  }
3061
3062  // Although we could have an invalid decl (i.e. the namespace name is a
3063  // redefinition), push it as current DeclContext and try to continue parsing.
3064  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3065  // for the namespace has the declarations that showed up in that particular
3066  // namespace definition.
3067  PushDeclContext(NamespcScope, Namespc);
3068  return DeclPtrTy::make(Namespc);
3069}
3070
3071/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3072/// is a namespace alias, returns the namespace it points to.
3073static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3074  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3075    return AD->getNamespace();
3076  return dyn_cast_or_null<NamespaceDecl>(D);
3077}
3078
3079/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3080/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3081void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3082  Decl *Dcl = D.getAs<Decl>();
3083  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3084  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3085  Namespc->setRBracLoc(RBrace);
3086  PopDeclContext();
3087}
3088
3089Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3090                                          SourceLocation UsingLoc,
3091                                          SourceLocation NamespcLoc,
3092                                          CXXScopeSpec &SS,
3093                                          SourceLocation IdentLoc,
3094                                          IdentifierInfo *NamespcName,
3095                                          AttributeList *AttrList) {
3096  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3097  assert(NamespcName && "Invalid NamespcName.");
3098  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3099  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3100
3101  UsingDirectiveDecl *UDir = 0;
3102
3103  // Lookup namespace name.
3104  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3105  LookupParsedName(R, S, &SS);
3106  if (R.isAmbiguous())
3107    return DeclPtrTy();
3108
3109  if (!R.empty()) {
3110    NamedDecl *Named = R.getFoundDecl();
3111    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3112        && "expected namespace decl");
3113    // C++ [namespace.udir]p1:
3114    //   A using-directive specifies that the names in the nominated
3115    //   namespace can be used in the scope in which the
3116    //   using-directive appears after the using-directive. During
3117    //   unqualified name lookup (3.4.1), the names appear as if they
3118    //   were declared in the nearest enclosing namespace which
3119    //   contains both the using-directive and the nominated
3120    //   namespace. [Note: in this context, "contains" means "contains
3121    //   directly or indirectly". ]
3122
3123    // Find enclosing context containing both using-directive and
3124    // nominated namespace.
3125    NamespaceDecl *NS = getNamespaceDecl(Named);
3126    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3127    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3128      CommonAncestor = CommonAncestor->getParent();
3129
3130    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3131                                      SS.getRange(),
3132                                      (NestedNameSpecifier *)SS.getScopeRep(),
3133                                      IdentLoc, Named, CommonAncestor);
3134    PushUsingDirective(S, UDir);
3135  } else {
3136    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3137  }
3138
3139  // FIXME: We ignore attributes for now.
3140  delete AttrList;
3141  return DeclPtrTy::make(UDir);
3142}
3143
3144void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3145  // If scope has associated entity, then using directive is at namespace
3146  // or translation unit scope. We add UsingDirectiveDecls, into
3147  // it's lookup structure.
3148  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3149    Ctx->addDecl(UDir);
3150  else
3151    // Otherwise it is block-sope. using-directives will affect lookup
3152    // only to the end of scope.
3153    S->PushUsingDirective(DeclPtrTy::make(UDir));
3154}
3155
3156
3157Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3158                                            AccessSpecifier AS,
3159                                            bool HasUsingKeyword,
3160                                            SourceLocation UsingLoc,
3161                                            CXXScopeSpec &SS,
3162                                            UnqualifiedId &Name,
3163                                            AttributeList *AttrList,
3164                                            bool IsTypeName,
3165                                            SourceLocation TypenameLoc) {
3166  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3167
3168  switch (Name.getKind()) {
3169  case UnqualifiedId::IK_Identifier:
3170  case UnqualifiedId::IK_OperatorFunctionId:
3171  case UnqualifiedId::IK_LiteralOperatorId:
3172  case UnqualifiedId::IK_ConversionFunctionId:
3173    break;
3174
3175  case UnqualifiedId::IK_ConstructorName:
3176  case UnqualifiedId::IK_ConstructorTemplateId:
3177    // C++0x inherited constructors.
3178    if (getLangOptions().CPlusPlus0x) break;
3179
3180    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3181      << SS.getRange();
3182    return DeclPtrTy();
3183
3184  case UnqualifiedId::IK_DestructorName:
3185    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3186      << SS.getRange();
3187    return DeclPtrTy();
3188
3189  case UnqualifiedId::IK_TemplateId:
3190    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3191      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3192    return DeclPtrTy();
3193  }
3194
3195  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3196  if (!TargetName)
3197    return DeclPtrTy();
3198
3199  // Warn about using declarations.
3200  // TODO: store that the declaration was written without 'using' and
3201  // talk about access decls instead of using decls in the
3202  // diagnostics.
3203  if (!HasUsingKeyword) {
3204    UsingLoc = Name.getSourceRange().getBegin();
3205
3206    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3207      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3208  }
3209
3210  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3211                                        Name.getSourceRange().getBegin(),
3212                                        TargetName, AttrList,
3213                                        /* IsInstantiation */ false,
3214                                        IsTypeName, TypenameLoc);
3215  if (UD)
3216    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3217
3218  return DeclPtrTy::make(UD);
3219}
3220
3221/// Determines whether to create a using shadow decl for a particular
3222/// decl, given the set of decls existing prior to this using lookup.
3223bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3224                                const LookupResult &Previous) {
3225  // Diagnose finding a decl which is not from a base class of the
3226  // current class.  We do this now because there are cases where this
3227  // function will silently decide not to build a shadow decl, which
3228  // will pre-empt further diagnostics.
3229  //
3230  // We don't need to do this in C++0x because we do the check once on
3231  // the qualifier.
3232  //
3233  // FIXME: diagnose the following if we care enough:
3234  //   struct A { int foo; };
3235  //   struct B : A { using A::foo; };
3236  //   template <class T> struct C : A {};
3237  //   template <class T> struct D : C<T> { using B::foo; } // <---
3238  // This is invalid (during instantiation) in C++03 because B::foo
3239  // resolves to the using decl in B, which is not a base class of D<T>.
3240  // We can't diagnose it immediately because C<T> is an unknown
3241  // specialization.  The UsingShadowDecl in D<T> then points directly
3242  // to A::foo, which will look well-formed when we instantiate.
3243  // The right solution is to not collapse the shadow-decl chain.
3244  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3245    DeclContext *OrigDC = Orig->getDeclContext();
3246
3247    // Handle enums and anonymous structs.
3248    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3249    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3250    while (OrigRec->isAnonymousStructOrUnion())
3251      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3252
3253    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3254      if (OrigDC == CurContext) {
3255        Diag(Using->getLocation(),
3256             diag::err_using_decl_nested_name_specifier_is_current_class)
3257          << Using->getNestedNameRange();
3258        Diag(Orig->getLocation(), diag::note_using_decl_target);
3259        return true;
3260      }
3261
3262      Diag(Using->getNestedNameRange().getBegin(),
3263           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3264        << Using->getTargetNestedNameDecl()
3265        << cast<CXXRecordDecl>(CurContext)
3266        << Using->getNestedNameRange();
3267      Diag(Orig->getLocation(), diag::note_using_decl_target);
3268      return true;
3269    }
3270  }
3271
3272  if (Previous.empty()) return false;
3273
3274  NamedDecl *Target = Orig;
3275  if (isa<UsingShadowDecl>(Target))
3276    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3277
3278  // If the target happens to be one of the previous declarations, we
3279  // don't have a conflict.
3280  //
3281  // FIXME: but we might be increasing its access, in which case we
3282  // should redeclare it.
3283  NamedDecl *NonTag = 0, *Tag = 0;
3284  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3285         I != E; ++I) {
3286    NamedDecl *D = (*I)->getUnderlyingDecl();
3287    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3288      return false;
3289
3290    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3291  }
3292
3293  if (Target->isFunctionOrFunctionTemplate()) {
3294    FunctionDecl *FD;
3295    if (isa<FunctionTemplateDecl>(Target))
3296      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3297    else
3298      FD = cast<FunctionDecl>(Target);
3299
3300    NamedDecl *OldDecl = 0;
3301    switch (CheckOverload(FD, Previous, OldDecl)) {
3302    case Ovl_Overload:
3303      return false;
3304
3305    case Ovl_NonFunction:
3306      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3307      break;
3308
3309    // We found a decl with the exact signature.
3310    case Ovl_Match:
3311      if (isa<UsingShadowDecl>(OldDecl)) {
3312        // Silently ignore the possible conflict.
3313        return false;
3314      }
3315
3316      // If we're in a record, we want to hide the target, so we
3317      // return true (without a diagnostic) to tell the caller not to
3318      // build a shadow decl.
3319      if (CurContext->isRecord())
3320        return true;
3321
3322      // If we're not in a record, this is an error.
3323      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3324      break;
3325    }
3326
3327    Diag(Target->getLocation(), diag::note_using_decl_target);
3328    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3329    return true;
3330  }
3331
3332  // Target is not a function.
3333
3334  if (isa<TagDecl>(Target)) {
3335    // No conflict between a tag and a non-tag.
3336    if (!Tag) return false;
3337
3338    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3339    Diag(Target->getLocation(), diag::note_using_decl_target);
3340    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3341    return true;
3342  }
3343
3344  // No conflict between a tag and a non-tag.
3345  if (!NonTag) return false;
3346
3347  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3348  Diag(Target->getLocation(), diag::note_using_decl_target);
3349  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3350  return true;
3351}
3352
3353/// Builds a shadow declaration corresponding to a 'using' declaration.
3354UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3355                                            UsingDecl *UD,
3356                                            NamedDecl *Orig) {
3357
3358  // If we resolved to another shadow declaration, just coalesce them.
3359  NamedDecl *Target = Orig;
3360  if (isa<UsingShadowDecl>(Target)) {
3361    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3362    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3363  }
3364
3365  UsingShadowDecl *Shadow
3366    = UsingShadowDecl::Create(Context, CurContext,
3367                              UD->getLocation(), UD, Target);
3368  UD->addShadowDecl(Shadow);
3369
3370  if (S)
3371    PushOnScopeChains(Shadow, S);
3372  else
3373    CurContext->addDecl(Shadow);
3374  Shadow->setAccess(UD->getAccess());
3375
3376  // Register it as a conversion if appropriate.
3377  if (Shadow->getDeclName().getNameKind()
3378        == DeclarationName::CXXConversionFunctionName)
3379    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3380
3381  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3382    Shadow->setInvalidDecl();
3383
3384  return Shadow;
3385}
3386
3387/// Hides a using shadow declaration.  This is required by the current
3388/// using-decl implementation when a resolvable using declaration in a
3389/// class is followed by a declaration which would hide or override
3390/// one or more of the using decl's targets; for example:
3391///
3392///   struct Base { void foo(int); };
3393///   struct Derived : Base {
3394///     using Base::foo;
3395///     void foo(int);
3396///   };
3397///
3398/// The governing language is C++03 [namespace.udecl]p12:
3399///
3400///   When a using-declaration brings names from a base class into a
3401///   derived class scope, member functions in the derived class
3402///   override and/or hide member functions with the same name and
3403///   parameter types in a base class (rather than conflicting).
3404///
3405/// There are two ways to implement this:
3406///   (1) optimistically create shadow decls when they're not hidden
3407///       by existing declarations, or
3408///   (2) don't create any shadow decls (or at least don't make them
3409///       visible) until we've fully parsed/instantiated the class.
3410/// The problem with (1) is that we might have to retroactively remove
3411/// a shadow decl, which requires several O(n) operations because the
3412/// decl structures are (very reasonably) not designed for removal.
3413/// (2) avoids this but is very fiddly and phase-dependent.
3414void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3415  if (Shadow->getDeclName().getNameKind() ==
3416        DeclarationName::CXXConversionFunctionName)
3417    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3418
3419  // Remove it from the DeclContext...
3420  Shadow->getDeclContext()->removeDecl(Shadow);
3421
3422  // ...and the scope, if applicable...
3423  if (S) {
3424    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3425    IdResolver.RemoveDecl(Shadow);
3426  }
3427
3428  // ...and the using decl.
3429  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3430
3431  // TODO: complain somehow if Shadow was used.  It shouldn't
3432  // be possible for this to happen, because...?
3433}
3434
3435/// Builds a using declaration.
3436///
3437/// \param IsInstantiation - Whether this call arises from an
3438///   instantiation of an unresolved using declaration.  We treat
3439///   the lookup differently for these declarations.
3440NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3441                                       SourceLocation UsingLoc,
3442                                       CXXScopeSpec &SS,
3443                                       SourceLocation IdentLoc,
3444                                       DeclarationName Name,
3445                                       AttributeList *AttrList,
3446                                       bool IsInstantiation,
3447                                       bool IsTypeName,
3448                                       SourceLocation TypenameLoc) {
3449  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3450  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3451
3452  // FIXME: We ignore attributes for now.
3453  delete AttrList;
3454
3455  if (SS.isEmpty()) {
3456    Diag(IdentLoc, diag::err_using_requires_qualname);
3457    return 0;
3458  }
3459
3460  // Do the redeclaration lookup in the current scope.
3461  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3462                        ForRedeclaration);
3463  Previous.setHideTags(false);
3464  if (S) {
3465    LookupName(Previous, S);
3466
3467    // It is really dumb that we have to do this.
3468    LookupResult::Filter F = Previous.makeFilter();
3469    while (F.hasNext()) {
3470      NamedDecl *D = F.next();
3471      if (!isDeclInScope(D, CurContext, S))
3472        F.erase();
3473    }
3474    F.done();
3475  } else {
3476    assert(IsInstantiation && "no scope in non-instantiation");
3477    assert(CurContext->isRecord() && "scope not record in instantiation");
3478    LookupQualifiedName(Previous, CurContext);
3479  }
3480
3481  NestedNameSpecifier *NNS =
3482    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3483
3484  // Check for invalid redeclarations.
3485  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3486    return 0;
3487
3488  // Check for bad qualifiers.
3489  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3490    return 0;
3491
3492  DeclContext *LookupContext = computeDeclContext(SS);
3493  NamedDecl *D;
3494  if (!LookupContext) {
3495    if (IsTypeName) {
3496      // FIXME: not all declaration name kinds are legal here
3497      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3498                                              UsingLoc, TypenameLoc,
3499                                              SS.getRange(), NNS,
3500                                              IdentLoc, Name);
3501    } else {
3502      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3503                                           UsingLoc, SS.getRange(), NNS,
3504                                           IdentLoc, Name);
3505    }
3506  } else {
3507    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3508                          SS.getRange(), UsingLoc, NNS, Name,
3509                          IsTypeName);
3510  }
3511  D->setAccess(AS);
3512  CurContext->addDecl(D);
3513
3514  if (!LookupContext) return D;
3515  UsingDecl *UD = cast<UsingDecl>(D);
3516
3517  if (RequireCompleteDeclContext(SS)) {
3518    UD->setInvalidDecl();
3519    return UD;
3520  }
3521
3522  // Look up the target name.
3523
3524  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3525
3526  // Unlike most lookups, we don't always want to hide tag
3527  // declarations: tag names are visible through the using declaration
3528  // even if hidden by ordinary names, *except* in a dependent context
3529  // where it's important for the sanity of two-phase lookup.
3530  if (!IsInstantiation)
3531    R.setHideTags(false);
3532
3533  LookupQualifiedName(R, LookupContext);
3534
3535  if (R.empty()) {
3536    Diag(IdentLoc, diag::err_no_member)
3537      << Name << LookupContext << SS.getRange();
3538    UD->setInvalidDecl();
3539    return UD;
3540  }
3541
3542  if (R.isAmbiguous()) {
3543    UD->setInvalidDecl();
3544    return UD;
3545  }
3546
3547  if (IsTypeName) {
3548    // If we asked for a typename and got a non-type decl, error out.
3549    if (!R.getAsSingle<TypeDecl>()) {
3550      Diag(IdentLoc, diag::err_using_typename_non_type);
3551      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3552        Diag((*I)->getUnderlyingDecl()->getLocation(),
3553             diag::note_using_decl_target);
3554      UD->setInvalidDecl();
3555      return UD;
3556    }
3557  } else {
3558    // If we asked for a non-typename and we got a type, error out,
3559    // but only if this is an instantiation of an unresolved using
3560    // decl.  Otherwise just silently find the type name.
3561    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3562      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3563      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3564      UD->setInvalidDecl();
3565      return UD;
3566    }
3567  }
3568
3569  // C++0x N2914 [namespace.udecl]p6:
3570  // A using-declaration shall not name a namespace.
3571  if (R.getAsSingle<NamespaceDecl>()) {
3572    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3573      << SS.getRange();
3574    UD->setInvalidDecl();
3575    return UD;
3576  }
3577
3578  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3579    if (!CheckUsingShadowDecl(UD, *I, Previous))
3580      BuildUsingShadowDecl(S, UD, *I);
3581  }
3582
3583  return UD;
3584}
3585
3586/// Checks that the given using declaration is not an invalid
3587/// redeclaration.  Note that this is checking only for the using decl
3588/// itself, not for any ill-formedness among the UsingShadowDecls.
3589bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3590                                       bool isTypeName,
3591                                       const CXXScopeSpec &SS,
3592                                       SourceLocation NameLoc,
3593                                       const LookupResult &Prev) {
3594  // C++03 [namespace.udecl]p8:
3595  // C++0x [namespace.udecl]p10:
3596  //   A using-declaration is a declaration and can therefore be used
3597  //   repeatedly where (and only where) multiple declarations are
3598  //   allowed.
3599  // That's only in file contexts.
3600  if (CurContext->getLookupContext()->isFileContext())
3601    return false;
3602
3603  NestedNameSpecifier *Qual
3604    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3605
3606  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3607    NamedDecl *D = *I;
3608
3609    bool DTypename;
3610    NestedNameSpecifier *DQual;
3611    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3612      DTypename = UD->isTypeName();
3613      DQual = UD->getTargetNestedNameDecl();
3614    } else if (UnresolvedUsingValueDecl *UD
3615                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3616      DTypename = false;
3617      DQual = UD->getTargetNestedNameSpecifier();
3618    } else if (UnresolvedUsingTypenameDecl *UD
3619                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3620      DTypename = true;
3621      DQual = UD->getTargetNestedNameSpecifier();
3622    } else continue;
3623
3624    // using decls differ if one says 'typename' and the other doesn't.
3625    // FIXME: non-dependent using decls?
3626    if (isTypeName != DTypename) continue;
3627
3628    // using decls differ if they name different scopes (but note that
3629    // template instantiation can cause this check to trigger when it
3630    // didn't before instantiation).
3631    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3632        Context.getCanonicalNestedNameSpecifier(DQual))
3633      continue;
3634
3635    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3636    Diag(D->getLocation(), diag::note_using_decl) << 1;
3637    return true;
3638  }
3639
3640  return false;
3641}
3642
3643
3644/// Checks that the given nested-name qualifier used in a using decl
3645/// in the current context is appropriately related to the current
3646/// scope.  If an error is found, diagnoses it and returns true.
3647bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3648                                   const CXXScopeSpec &SS,
3649                                   SourceLocation NameLoc) {
3650  DeclContext *NamedContext = computeDeclContext(SS);
3651
3652  if (!CurContext->isRecord()) {
3653    // C++03 [namespace.udecl]p3:
3654    // C++0x [namespace.udecl]p8:
3655    //   A using-declaration for a class member shall be a member-declaration.
3656
3657    // If we weren't able to compute a valid scope, it must be a
3658    // dependent class scope.
3659    if (!NamedContext || NamedContext->isRecord()) {
3660      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3661        << SS.getRange();
3662      return true;
3663    }
3664
3665    // Otherwise, everything is known to be fine.
3666    return false;
3667  }
3668
3669  // The current scope is a record.
3670
3671  // If the named context is dependent, we can't decide much.
3672  if (!NamedContext) {
3673    // FIXME: in C++0x, we can diagnose if we can prove that the
3674    // nested-name-specifier does not refer to a base class, which is
3675    // still possible in some cases.
3676
3677    // Otherwise we have to conservatively report that things might be
3678    // okay.
3679    return false;
3680  }
3681
3682  if (!NamedContext->isRecord()) {
3683    // Ideally this would point at the last name in the specifier,
3684    // but we don't have that level of source info.
3685    Diag(SS.getRange().getBegin(),
3686         diag::err_using_decl_nested_name_specifier_is_not_class)
3687      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3688    return true;
3689  }
3690
3691  if (getLangOptions().CPlusPlus0x) {
3692    // C++0x [namespace.udecl]p3:
3693    //   In a using-declaration used as a member-declaration, the
3694    //   nested-name-specifier shall name a base class of the class
3695    //   being defined.
3696
3697    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3698                                 cast<CXXRecordDecl>(NamedContext))) {
3699      if (CurContext == NamedContext) {
3700        Diag(NameLoc,
3701             diag::err_using_decl_nested_name_specifier_is_current_class)
3702          << SS.getRange();
3703        return true;
3704      }
3705
3706      Diag(SS.getRange().getBegin(),
3707           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3708        << (NestedNameSpecifier*) SS.getScopeRep()
3709        << cast<CXXRecordDecl>(CurContext)
3710        << SS.getRange();
3711      return true;
3712    }
3713
3714    return false;
3715  }
3716
3717  // C++03 [namespace.udecl]p4:
3718  //   A using-declaration used as a member-declaration shall refer
3719  //   to a member of a base class of the class being defined [etc.].
3720
3721  // Salient point: SS doesn't have to name a base class as long as
3722  // lookup only finds members from base classes.  Therefore we can
3723  // diagnose here only if we can prove that that can't happen,
3724  // i.e. if the class hierarchies provably don't intersect.
3725
3726  // TODO: it would be nice if "definitely valid" results were cached
3727  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3728  // need to be repeated.
3729
3730  struct UserData {
3731    llvm::DenseSet<const CXXRecordDecl*> Bases;
3732
3733    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3734      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3735      Data->Bases.insert(Base);
3736      return true;
3737    }
3738
3739    bool hasDependentBases(const CXXRecordDecl *Class) {
3740      return !Class->forallBases(collect, this);
3741    }
3742
3743    /// Returns true if the base is dependent or is one of the
3744    /// accumulated base classes.
3745    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3746      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3747      return !Data->Bases.count(Base);
3748    }
3749
3750    bool mightShareBases(const CXXRecordDecl *Class) {
3751      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3752    }
3753  };
3754
3755  UserData Data;
3756
3757  // Returns false if we find a dependent base.
3758  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3759    return false;
3760
3761  // Returns false if the class has a dependent base or if it or one
3762  // of its bases is present in the base set of the current context.
3763  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3764    return false;
3765
3766  Diag(SS.getRange().getBegin(),
3767       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3768    << (NestedNameSpecifier*) SS.getScopeRep()
3769    << cast<CXXRecordDecl>(CurContext)
3770    << SS.getRange();
3771
3772  return true;
3773}
3774
3775Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3776                                             SourceLocation NamespaceLoc,
3777                                             SourceLocation AliasLoc,
3778                                             IdentifierInfo *Alias,
3779                                             CXXScopeSpec &SS,
3780                                             SourceLocation IdentLoc,
3781                                             IdentifierInfo *Ident) {
3782
3783  // Lookup the namespace name.
3784  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3785  LookupParsedName(R, S, &SS);
3786
3787  // Check if we have a previous declaration with the same name.
3788  if (NamedDecl *PrevDecl
3789        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3790    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3791      // We already have an alias with the same name that points to the same
3792      // namespace, so don't create a new one.
3793      // FIXME: At some point, we'll want to create the (redundant)
3794      // declaration to maintain better source information.
3795      if (!R.isAmbiguous() && !R.empty() &&
3796          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3797        return DeclPtrTy();
3798    }
3799
3800    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3801      diag::err_redefinition_different_kind;
3802    Diag(AliasLoc, DiagID) << Alias;
3803    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3804    return DeclPtrTy();
3805  }
3806
3807  if (R.isAmbiguous())
3808    return DeclPtrTy();
3809
3810  if (R.empty()) {
3811    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3812    return DeclPtrTy();
3813  }
3814
3815  NamespaceAliasDecl *AliasDecl =
3816    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3817                               Alias, SS.getRange(),
3818                               (NestedNameSpecifier *)SS.getScopeRep(),
3819                               IdentLoc, R.getFoundDecl());
3820
3821  PushOnScopeChains(AliasDecl, S);
3822  return DeclPtrTy::make(AliasDecl);
3823}
3824
3825void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3826                                            CXXConstructorDecl *Constructor) {
3827  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3828          !Constructor->isUsed()) &&
3829    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3830
3831  CXXRecordDecl *ClassDecl
3832    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3833  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3834
3835  DeclContext *PreviousContext = CurContext;
3836  CurContext = Constructor;
3837  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3838    Diag(CurrentLocation, diag::note_member_synthesized_at)
3839      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3840    Constructor->setInvalidDecl();
3841  } else {
3842    Constructor->setUsed();
3843  }
3844  CurContext = PreviousContext;
3845}
3846
3847void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3848                                    CXXDestructorDecl *Destructor) {
3849  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3850         "DefineImplicitDestructor - call it for implicit default dtor");
3851  CXXRecordDecl *ClassDecl = Destructor->getParent();
3852  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3853
3854  DeclContext *PreviousContext = CurContext;
3855  CurContext = Destructor;
3856
3857  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3858                                         Destructor->getParent());
3859
3860  // FIXME: If CheckDestructor fails, we should emit a note about where the
3861  // implicit destructor was needed.
3862  if (CheckDestructor(Destructor)) {
3863    Diag(CurrentLocation, diag::note_member_synthesized_at)
3864      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3865
3866    Destructor->setInvalidDecl();
3867    CurContext = PreviousContext;
3868
3869    return;
3870  }
3871  CurContext = PreviousContext;
3872
3873  Destructor->setUsed();
3874}
3875
3876void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3877                                          CXXMethodDecl *MethodDecl) {
3878  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3879          MethodDecl->getOverloadedOperator() == OO_Equal &&
3880          !MethodDecl->isUsed()) &&
3881         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3882
3883  CXXRecordDecl *ClassDecl
3884    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3885
3886  DeclContext *PreviousContext = CurContext;
3887  CurContext = MethodDecl;
3888
3889  // C++[class.copy] p12
3890  // Before the implicitly-declared copy assignment operator for a class is
3891  // implicitly defined, all implicitly-declared copy assignment operators
3892  // for its direct base classes and its nonstatic data members shall have
3893  // been implicitly defined.
3894  bool err = false;
3895  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3896       E = ClassDecl->bases_end(); Base != E; ++Base) {
3897    CXXRecordDecl *BaseClassDecl
3898      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3899    if (CXXMethodDecl *BaseAssignOpMethod =
3900          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3901                                  BaseClassDecl)) {
3902      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3903                              BaseAssignOpMethod,
3904                              PDiag(diag::err_access_assign_base)
3905                                << Base->getType());
3906
3907      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3908    }
3909  }
3910  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3911       E = ClassDecl->field_end(); Field != E; ++Field) {
3912    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3913    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3914      FieldType = Array->getElementType();
3915    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3916      CXXRecordDecl *FieldClassDecl
3917        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3918      if (CXXMethodDecl *FieldAssignOpMethod =
3919          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3920                                  FieldClassDecl)) {
3921        CheckDirectMemberAccess(Field->getLocation(),
3922                                FieldAssignOpMethod,
3923                                PDiag(diag::err_access_assign_field)
3924                                  << Field->getDeclName() << Field->getType());
3925
3926        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3927      }
3928    } else if (FieldType->isReferenceType()) {
3929      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3930      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3931      Diag(Field->getLocation(), diag::note_declared_at);
3932      Diag(CurrentLocation, diag::note_first_required_here);
3933      err = true;
3934    } else if (FieldType.isConstQualified()) {
3935      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3936      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3937      Diag(Field->getLocation(), diag::note_declared_at);
3938      Diag(CurrentLocation, diag::note_first_required_here);
3939      err = true;
3940    }
3941  }
3942  if (!err)
3943    MethodDecl->setUsed();
3944
3945  CurContext = PreviousContext;
3946}
3947
3948CXXMethodDecl *
3949Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3950                              ParmVarDecl *ParmDecl,
3951                              CXXRecordDecl *ClassDecl) {
3952  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3953  QualType RHSType(LHSType);
3954  // If class's assignment operator argument is const/volatile qualified,
3955  // look for operator = (const/volatile B&). Otherwise, look for
3956  // operator = (B&).
3957  RHSType = Context.getCVRQualifiedType(RHSType,
3958                                     ParmDecl->getType().getCVRQualifiers());
3959  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3960                                                           LHSType,
3961                                                           SourceLocation()));
3962  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3963                                                           RHSType,
3964                                                           CurrentLocation));
3965  Expr *Args[2] = { &*LHS, &*RHS };
3966  OverloadCandidateSet CandidateSet(CurrentLocation);
3967  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3968                              CandidateSet);
3969  OverloadCandidateSet::iterator Best;
3970  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3971    return cast<CXXMethodDecl>(Best->Function);
3972  assert(false &&
3973         "getAssignOperatorMethod - copy assignment operator method not found");
3974  return 0;
3975}
3976
3977void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3978                                   CXXConstructorDecl *CopyConstructor,
3979                                   unsigned TypeQuals) {
3980  assert((CopyConstructor->isImplicit() &&
3981          CopyConstructor->isCopyConstructor(TypeQuals) &&
3982          !CopyConstructor->isUsed()) &&
3983         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3984
3985  CXXRecordDecl *ClassDecl
3986    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3987  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3988
3989  DeclContext *PreviousContext = CurContext;
3990  CurContext = CopyConstructor;
3991
3992  // C++ [class.copy] p209
3993  // Before the implicitly-declared copy constructor for a class is
3994  // implicitly defined, all the implicitly-declared copy constructors
3995  // for its base class and its non-static data members shall have been
3996  // implicitly defined.
3997  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3998       Base != ClassDecl->bases_end(); ++Base) {
3999    CXXRecordDecl *BaseClassDecl
4000      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4001    if (CXXConstructorDecl *BaseCopyCtor =
4002        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4003      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4004                              BaseCopyCtor,
4005                              PDiag(diag::err_access_copy_base)
4006                                << Base->getType());
4007
4008      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4009    }
4010  }
4011  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4012                                  FieldEnd = ClassDecl->field_end();
4013       Field != FieldEnd; ++Field) {
4014    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4015    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4016      FieldType = Array->getElementType();
4017    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4018      CXXRecordDecl *FieldClassDecl
4019        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4020      if (CXXConstructorDecl *FieldCopyCtor =
4021          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4022        CheckDirectMemberAccess(Field->getLocation(),
4023                                FieldCopyCtor,
4024                                PDiag(diag::err_access_copy_field)
4025                                  << Field->getDeclName() << Field->getType());
4026
4027        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4028      }
4029    }
4030  }
4031  CopyConstructor->setUsed();
4032
4033  CurContext = PreviousContext;
4034}
4035
4036Sema::OwningExprResult
4037Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4038                            CXXConstructorDecl *Constructor,
4039                            MultiExprArg ExprArgs,
4040                            bool RequiresZeroInit,
4041                            bool BaseInitialization) {
4042  bool Elidable = false;
4043
4044  // C++0x [class.copy]p34:
4045  //   When certain criteria are met, an implementation is allowed to
4046  //   omit the copy/move construction of a class object, even if the
4047  //   copy/move constructor and/or destructor for the object have
4048  //   side effects. [...]
4049  //     - when a temporary class object that has not been bound to a
4050  //       reference (12.2) would be copied/moved to a class object
4051  //       with the same cv-unqualified type, the copy/move operation
4052  //       can be omitted by constructing the temporary object
4053  //       directly into the target of the omitted copy/move
4054  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4055    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4056    Elidable = SubExpr->isTemporaryObject() &&
4057      Context.hasSameUnqualifiedType(SubExpr->getType(),
4058                           Context.getTypeDeclType(Constructor->getParent()));
4059  }
4060
4061  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4062                               Elidable, move(ExprArgs), RequiresZeroInit,
4063                               BaseInitialization);
4064}
4065
4066/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4067/// including handling of its default argument expressions.
4068Sema::OwningExprResult
4069Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4070                            CXXConstructorDecl *Constructor, bool Elidable,
4071                            MultiExprArg ExprArgs,
4072                            bool RequiresZeroInit,
4073                            bool BaseInitialization) {
4074  unsigned NumExprs = ExprArgs.size();
4075  Expr **Exprs = (Expr **)ExprArgs.release();
4076
4077  MarkDeclarationReferenced(ConstructLoc, Constructor);
4078  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4079                                        Constructor, Elidable, Exprs, NumExprs,
4080                                        RequiresZeroInit, BaseInitialization));
4081}
4082
4083bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4084                                        CXXConstructorDecl *Constructor,
4085                                        MultiExprArg Exprs) {
4086  OwningExprResult TempResult =
4087    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4088                          move(Exprs));
4089  if (TempResult.isInvalid())
4090    return true;
4091
4092  Expr *Temp = TempResult.takeAs<Expr>();
4093  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4094  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4095  VD->setInit(Temp);
4096
4097  return false;
4098}
4099
4100void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4101  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4102  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4103      !ClassDecl->hasTrivialDestructor()) {
4104    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4105    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4106    CheckDestructorAccess(VD->getLocation(), Destructor,
4107                          PDiag(diag::err_access_dtor_var)
4108                            << VD->getDeclName()
4109                            << VD->getType());
4110  }
4111}
4112
4113/// AddCXXDirectInitializerToDecl - This action is called immediately after
4114/// ActOnDeclarator, when a C++ direct initializer is present.
4115/// e.g: "int x(1);"
4116void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4117                                         SourceLocation LParenLoc,
4118                                         MultiExprArg Exprs,
4119                                         SourceLocation *CommaLocs,
4120                                         SourceLocation RParenLoc) {
4121  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4122  Decl *RealDecl = Dcl.getAs<Decl>();
4123
4124  // If there is no declaration, there was an error parsing it.  Just ignore
4125  // the initializer.
4126  if (RealDecl == 0)
4127    return;
4128
4129  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4130  if (!VDecl) {
4131    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4132    RealDecl->setInvalidDecl();
4133    return;
4134  }
4135
4136  // We will represent direct-initialization similarly to copy-initialization:
4137  //    int x(1);  -as-> int x = 1;
4138  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4139  //
4140  // Clients that want to distinguish between the two forms, can check for
4141  // direct initializer using VarDecl::hasCXXDirectInitializer().
4142  // A major benefit is that clients that don't particularly care about which
4143  // exactly form was it (like the CodeGen) can handle both cases without
4144  // special case code.
4145
4146  // C++ 8.5p11:
4147  // The form of initialization (using parentheses or '=') is generally
4148  // insignificant, but does matter when the entity being initialized has a
4149  // class type.
4150  QualType DeclInitType = VDecl->getType();
4151  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4152    DeclInitType = Context.getBaseElementType(Array);
4153
4154  if (!VDecl->getType()->isDependentType() &&
4155      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4156                          diag::err_typecheck_decl_incomplete_type)) {
4157    VDecl->setInvalidDecl();
4158    return;
4159  }
4160
4161  // The variable can not have an abstract class type.
4162  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4163                             diag::err_abstract_type_in_decl,
4164                             AbstractVariableType))
4165    VDecl->setInvalidDecl();
4166
4167  const VarDecl *Def;
4168  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4169    Diag(VDecl->getLocation(), diag::err_redefinition)
4170    << VDecl->getDeclName();
4171    Diag(Def->getLocation(), diag::note_previous_definition);
4172    VDecl->setInvalidDecl();
4173    return;
4174  }
4175
4176  // If either the declaration has a dependent type or if any of the
4177  // expressions is type-dependent, we represent the initialization
4178  // via a ParenListExpr for later use during template instantiation.
4179  if (VDecl->getType()->isDependentType() ||
4180      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4181    // Let clients know that initialization was done with a direct initializer.
4182    VDecl->setCXXDirectInitializer(true);
4183
4184    // Store the initialization expressions as a ParenListExpr.
4185    unsigned NumExprs = Exprs.size();
4186    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4187                                               (Expr **)Exprs.release(),
4188                                               NumExprs, RParenLoc));
4189    return;
4190  }
4191
4192  // Capture the variable that is being initialized and the style of
4193  // initialization.
4194  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4195
4196  // FIXME: Poor source location information.
4197  InitializationKind Kind
4198    = InitializationKind::CreateDirect(VDecl->getLocation(),
4199                                       LParenLoc, RParenLoc);
4200
4201  InitializationSequence InitSeq(*this, Entity, Kind,
4202                                 (Expr**)Exprs.get(), Exprs.size());
4203  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4204  if (Result.isInvalid()) {
4205    VDecl->setInvalidDecl();
4206    return;
4207  }
4208
4209  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4210  VDecl->setInit(Result.takeAs<Expr>());
4211  VDecl->setCXXDirectInitializer(true);
4212
4213  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4214    FinalizeVarWithDestructor(VDecl, Record);
4215}
4216
4217/// \brief Add the applicable constructor candidates for an initialization
4218/// by constructor.
4219static void AddConstructorInitializationCandidates(Sema &SemaRef,
4220                                                   QualType ClassType,
4221                                                   Expr **Args,
4222                                                   unsigned NumArgs,
4223                                                   InitializationKind Kind,
4224                                           OverloadCandidateSet &CandidateSet) {
4225  // C++ [dcl.init]p14:
4226  //   If the initialization is direct-initialization, or if it is
4227  //   copy-initialization where the cv-unqualified version of the
4228  //   source type is the same class as, or a derived class of, the
4229  //   class of the destination, constructors are considered. The
4230  //   applicable constructors are enumerated (13.3.1.3), and the
4231  //   best one is chosen through overload resolution (13.3). The
4232  //   constructor so selected is called to initialize the object,
4233  //   with the initializer expression(s) as its argument(s). If no
4234  //   constructor applies, or the overload resolution is ambiguous,
4235  //   the initialization is ill-formed.
4236  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4237  assert(ClassRec && "Can only initialize a class type here");
4238
4239  // FIXME: When we decide not to synthesize the implicitly-declared
4240  // constructors, we'll need to make them appear here.
4241
4242  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4243  DeclarationName ConstructorName
4244    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4245              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4246  DeclContext::lookup_const_iterator Con, ConEnd;
4247  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4248       Con != ConEnd; ++Con) {
4249    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4250
4251    // Find the constructor (which may be a template).
4252    CXXConstructorDecl *Constructor = 0;
4253    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4254    if (ConstructorTmpl)
4255      Constructor
4256      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4257    else
4258      Constructor = cast<CXXConstructorDecl>(*Con);
4259
4260    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4261        (Kind.getKind() == InitializationKind::IK_Value) ||
4262        (Kind.getKind() == InitializationKind::IK_Copy &&
4263         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4264        ((Kind.getKind() == InitializationKind::IK_Default) &&
4265         Constructor->isDefaultConstructor())) {
4266      if (ConstructorTmpl)
4267        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4268                                             /*ExplicitArgs*/ 0,
4269                                             Args, NumArgs, CandidateSet);
4270      else
4271        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4272                                     Args, NumArgs, CandidateSet);
4273    }
4274  }
4275}
4276
4277/// \brief Attempt to perform initialization by constructor
4278/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4279/// copy-initialization.
4280///
4281/// This routine determines whether initialization by constructor is possible,
4282/// but it does not emit any diagnostics in the case where the initialization
4283/// is ill-formed.
4284///
4285/// \param ClassType the type of the object being initialized, which must have
4286/// class type.
4287///
4288/// \param Args the arguments provided to initialize the object
4289///
4290/// \param NumArgs the number of arguments provided to initialize the object
4291///
4292/// \param Kind the type of initialization being performed
4293///
4294/// \returns the constructor used to initialize the object, if successful.
4295/// Otherwise, emits a diagnostic and returns NULL.
4296CXXConstructorDecl *
4297Sema::TryInitializationByConstructor(QualType ClassType,
4298                                     Expr **Args, unsigned NumArgs,
4299                                     SourceLocation Loc,
4300                                     InitializationKind Kind) {
4301  // Build the overload candidate set
4302  OverloadCandidateSet CandidateSet(Loc);
4303  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4304                                         CandidateSet);
4305
4306  // Determine whether we found a constructor we can use.
4307  OverloadCandidateSet::iterator Best;
4308  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4309    case OR_Success:
4310    case OR_Deleted:
4311      // We found a constructor. Return it.
4312      return cast<CXXConstructorDecl>(Best->Function);
4313
4314    case OR_No_Viable_Function:
4315    case OR_Ambiguous:
4316      // Overload resolution failed. Return nothing.
4317      return 0;
4318  }
4319
4320  // Silence GCC warning
4321  return 0;
4322}
4323
4324/// \brief Given a constructor and the set of arguments provided for the
4325/// constructor, convert the arguments and add any required default arguments
4326/// to form a proper call to this constructor.
4327///
4328/// \returns true if an error occurred, false otherwise.
4329bool
4330Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4331                              MultiExprArg ArgsPtr,
4332                              SourceLocation Loc,
4333                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4334  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4335  unsigned NumArgs = ArgsPtr.size();
4336  Expr **Args = (Expr **)ArgsPtr.get();
4337
4338  const FunctionProtoType *Proto
4339    = Constructor->getType()->getAs<FunctionProtoType>();
4340  assert(Proto && "Constructor without a prototype?");
4341  unsigned NumArgsInProto = Proto->getNumArgs();
4342
4343  // If too few arguments are available, we'll fill in the rest with defaults.
4344  if (NumArgs < NumArgsInProto)
4345    ConvertedArgs.reserve(NumArgsInProto);
4346  else
4347    ConvertedArgs.reserve(NumArgs);
4348
4349  VariadicCallType CallType =
4350    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4351  llvm::SmallVector<Expr *, 8> AllArgs;
4352  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4353                                        Proto, 0, Args, NumArgs, AllArgs,
4354                                        CallType);
4355  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4356    ConvertedArgs.push_back(AllArgs[i]);
4357  return Invalid;
4358}
4359
4360/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4361/// determine whether they are reference-related,
4362/// reference-compatible, reference-compatible with added
4363/// qualification, or incompatible, for use in C++ initialization by
4364/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4365/// type, and the first type (T1) is the pointee type of the reference
4366/// type being initialized.
4367Sema::ReferenceCompareResult
4368Sema::CompareReferenceRelationship(SourceLocation Loc,
4369                                   QualType OrigT1, QualType OrigT2,
4370                                   bool& DerivedToBase) {
4371  assert(!OrigT1->isReferenceType() &&
4372    "T1 must be the pointee type of the reference type");
4373  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4374
4375  QualType T1 = Context.getCanonicalType(OrigT1);
4376  QualType T2 = Context.getCanonicalType(OrigT2);
4377  Qualifiers T1Quals, T2Quals;
4378  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4379  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4380
4381  // C++ [dcl.init.ref]p4:
4382  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4383  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4384  //   T1 is a base class of T2.
4385  if (UnqualT1 == UnqualT2)
4386    DerivedToBase = false;
4387  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4388           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4389           IsDerivedFrom(UnqualT2, UnqualT1))
4390    DerivedToBase = true;
4391  else
4392    return Ref_Incompatible;
4393
4394  // At this point, we know that T1 and T2 are reference-related (at
4395  // least).
4396
4397  // If the type is an array type, promote the element qualifiers to the type
4398  // for comparison.
4399  if (isa<ArrayType>(T1) && T1Quals)
4400    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4401  if (isa<ArrayType>(T2) && T2Quals)
4402    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4403
4404  // C++ [dcl.init.ref]p4:
4405  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4406  //   reference-related to T2 and cv1 is the same cv-qualification
4407  //   as, or greater cv-qualification than, cv2. For purposes of
4408  //   overload resolution, cases for which cv1 is greater
4409  //   cv-qualification than cv2 are identified as
4410  //   reference-compatible with added qualification (see 13.3.3.2).
4411  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4412    return Ref_Compatible;
4413  else if (T1.isMoreQualifiedThan(T2))
4414    return Ref_Compatible_With_Added_Qualification;
4415  else
4416    return Ref_Related;
4417}
4418
4419/// CheckReferenceInit - Check the initialization of a reference
4420/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4421/// the initializer (either a simple initializer or an initializer
4422/// list), and DeclType is the type of the declaration. When ICS is
4423/// non-null, this routine will compute the implicit conversion
4424/// sequence according to C++ [over.ics.ref] and will not produce any
4425/// diagnostics; when ICS is null, it will emit diagnostics when any
4426/// errors are found. Either way, a return value of true indicates
4427/// that there was a failure, a return value of false indicates that
4428/// the reference initialization succeeded.
4429///
4430/// When @p SuppressUserConversions, user-defined conversions are
4431/// suppressed.
4432/// When @p AllowExplicit, we also permit explicit user-defined
4433/// conversion functions.
4434/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4435/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4436/// This is used when this is called from a C-style cast.
4437bool
4438Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4439                         SourceLocation DeclLoc,
4440                         bool SuppressUserConversions,
4441                         bool AllowExplicit, bool ForceRValue,
4442                         ImplicitConversionSequence *ICS,
4443                         bool IgnoreBaseAccess) {
4444  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4445
4446  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4447  QualType T2 = Init->getType();
4448
4449  // If the initializer is the address of an overloaded function, try
4450  // to resolve the overloaded function. If all goes well, T2 is the
4451  // type of the resulting function.
4452  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4453    DeclAccessPair Found;
4454    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4455                                                          ICS != 0, Found);
4456    if (Fn) {
4457      // Since we're performing this reference-initialization for
4458      // real, update the initializer with the resulting function.
4459      if (!ICS) {
4460        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4461          return true;
4462
4463        CheckAddressOfMemberAccess(Init, Found);
4464        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4465      }
4466
4467      T2 = Fn->getType();
4468    }
4469  }
4470
4471  // Compute some basic properties of the types and the initializer.
4472  bool isRValRef = DeclType->isRValueReferenceType();
4473  bool DerivedToBase = false;
4474  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4475                                                  Init->isLvalue(Context);
4476  ReferenceCompareResult RefRelationship
4477    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4478
4479  // Most paths end in a failed conversion.
4480  if (ICS) {
4481    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4482  }
4483
4484  // C++ [dcl.init.ref]p5:
4485  //   A reference to type "cv1 T1" is initialized by an expression
4486  //   of type "cv2 T2" as follows:
4487
4488  //     -- If the initializer expression
4489
4490  // Rvalue references cannot bind to lvalues (N2812).
4491  // There is absolutely no situation where they can. In particular, note that
4492  // this is ill-formed, even if B has a user-defined conversion to A&&:
4493  //   B b;
4494  //   A&& r = b;
4495  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4496    if (!ICS)
4497      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4498        << Init->getSourceRange();
4499    return true;
4500  }
4501
4502  bool BindsDirectly = false;
4503  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4504  //          reference-compatible with "cv2 T2," or
4505  //
4506  // Note that the bit-field check is skipped if we are just computing
4507  // the implicit conversion sequence (C++ [over.best.ics]p2).
4508  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4509      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4510    BindsDirectly = true;
4511
4512    if (ICS) {
4513      // C++ [over.ics.ref]p1:
4514      //   When a parameter of reference type binds directly (8.5.3)
4515      //   to an argument expression, the implicit conversion sequence
4516      //   is the identity conversion, unless the argument expression
4517      //   has a type that is a derived class of the parameter type,
4518      //   in which case the implicit conversion sequence is a
4519      //   derived-to-base Conversion (13.3.3.1).
4520      ICS->setStandard();
4521      ICS->Standard.First = ICK_Identity;
4522      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4523      ICS->Standard.Third = ICK_Identity;
4524      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4525      ICS->Standard.setToType(0, T2);
4526      ICS->Standard.setToType(1, T1);
4527      ICS->Standard.setToType(2, T1);
4528      ICS->Standard.ReferenceBinding = true;
4529      ICS->Standard.DirectBinding = true;
4530      ICS->Standard.RRefBinding = false;
4531      ICS->Standard.CopyConstructor = 0;
4532
4533      // Nothing more to do: the inaccessibility/ambiguity check for
4534      // derived-to-base conversions is suppressed when we're
4535      // computing the implicit conversion sequence (C++
4536      // [over.best.ics]p2).
4537      return false;
4538    } else {
4539      // Perform the conversion.
4540      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4541      if (DerivedToBase)
4542        CK = CastExpr::CK_DerivedToBase;
4543      else if(CheckExceptionSpecCompatibility(Init, T1))
4544        return true;
4545      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4546    }
4547  }
4548
4549  //       -- has a class type (i.e., T2 is a class type) and can be
4550  //          implicitly converted to an lvalue of type "cv3 T3,"
4551  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4552  //          92) (this conversion is selected by enumerating the
4553  //          applicable conversion functions (13.3.1.6) and choosing
4554  //          the best one through overload resolution (13.3)),
4555  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4556      !RequireCompleteType(DeclLoc, T2, 0)) {
4557    CXXRecordDecl *T2RecordDecl
4558      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4559
4560    OverloadCandidateSet CandidateSet(DeclLoc);
4561    const UnresolvedSetImpl *Conversions
4562      = T2RecordDecl->getVisibleConversionFunctions();
4563    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4564           E = Conversions->end(); I != E; ++I) {
4565      NamedDecl *D = *I;
4566      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4567      if (isa<UsingShadowDecl>(D))
4568        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4569
4570      FunctionTemplateDecl *ConvTemplate
4571        = dyn_cast<FunctionTemplateDecl>(D);
4572      CXXConversionDecl *Conv;
4573      if (ConvTemplate)
4574        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4575      else
4576        Conv = cast<CXXConversionDecl>(D);
4577
4578      // If the conversion function doesn't return a reference type,
4579      // it can't be considered for this conversion.
4580      if (Conv->getConversionType()->isLValueReferenceType() &&
4581          (AllowExplicit || !Conv->isExplicit())) {
4582        if (ConvTemplate)
4583          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4584                                         Init, DeclType, CandidateSet);
4585        else
4586          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4587                                 DeclType, CandidateSet);
4588      }
4589    }
4590
4591    OverloadCandidateSet::iterator Best;
4592    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4593    case OR_Success:
4594      // C++ [over.ics.ref]p1:
4595      //
4596      //   [...] If the parameter binds directly to the result of
4597      //   applying a conversion function to the argument
4598      //   expression, the implicit conversion sequence is a
4599      //   user-defined conversion sequence (13.3.3.1.2), with the
4600      //   second standard conversion sequence either an identity
4601      //   conversion or, if the conversion function returns an
4602      //   entity of a type that is a derived class of the parameter
4603      //   type, a derived-to-base Conversion.
4604      if (!Best->FinalConversion.DirectBinding)
4605        break;
4606
4607      // This is a direct binding.
4608      BindsDirectly = true;
4609
4610      if (ICS) {
4611        ICS->setUserDefined();
4612        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4613        ICS->UserDefined.After = Best->FinalConversion;
4614        ICS->UserDefined.ConversionFunction = Best->Function;
4615        ICS->UserDefined.EllipsisConversion = false;
4616        assert(ICS->UserDefined.After.ReferenceBinding &&
4617               ICS->UserDefined.After.DirectBinding &&
4618               "Expected a direct reference binding!");
4619        return false;
4620      } else {
4621        OwningExprResult InitConversion =
4622          BuildCXXCastArgument(DeclLoc, QualType(),
4623                               CastExpr::CK_UserDefinedConversion,
4624                               cast<CXXMethodDecl>(Best->Function),
4625                               Owned(Init));
4626        Init = InitConversion.takeAs<Expr>();
4627
4628        if (CheckExceptionSpecCompatibility(Init, T1))
4629          return true;
4630        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4631                          /*isLvalue=*/true);
4632      }
4633      break;
4634
4635    case OR_Ambiguous:
4636      if (ICS) {
4637        ICS->setAmbiguous();
4638        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4639             Cand != CandidateSet.end(); ++Cand)
4640          if (Cand->Viable)
4641            ICS->Ambiguous.addConversion(Cand->Function);
4642        break;
4643      }
4644      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4645            << Init->getSourceRange();
4646      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4647      return true;
4648
4649    case OR_No_Viable_Function:
4650    case OR_Deleted:
4651      // There was no suitable conversion, or we found a deleted
4652      // conversion; continue with other checks.
4653      break;
4654    }
4655  }
4656
4657  if (BindsDirectly) {
4658    // C++ [dcl.init.ref]p4:
4659    //   [...] In all cases where the reference-related or
4660    //   reference-compatible relationship of two types is used to
4661    //   establish the validity of a reference binding, and T1 is a
4662    //   base class of T2, a program that necessitates such a binding
4663    //   is ill-formed if T1 is an inaccessible (clause 11) or
4664    //   ambiguous (10.2) base class of T2.
4665    //
4666    // Note that we only check this condition when we're allowed to
4667    // complain about errors, because we should not be checking for
4668    // ambiguity (or inaccessibility) unless the reference binding
4669    // actually happens.
4670    if (DerivedToBase)
4671      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4672                                          Init->getSourceRange(),
4673                                          IgnoreBaseAccess);
4674    else
4675      return false;
4676  }
4677
4678  //     -- Otherwise, the reference shall be to a non-volatile const
4679  //        type (i.e., cv1 shall be const), or the reference shall be an
4680  //        rvalue reference and the initializer expression shall be an rvalue.
4681  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4682    if (!ICS)
4683      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4684        << T1.isVolatileQualified()
4685        << T1 << int(InitLvalue != Expr::LV_Valid)
4686        << T2 << Init->getSourceRange();
4687    return true;
4688  }
4689
4690  //       -- If the initializer expression is an rvalue, with T2 a
4691  //          class type, and "cv1 T1" is reference-compatible with
4692  //          "cv2 T2," the reference is bound in one of the
4693  //          following ways (the choice is implementation-defined):
4694  //
4695  //          -- The reference is bound to the object represented by
4696  //             the rvalue (see 3.10) or to a sub-object within that
4697  //             object.
4698  //
4699  //          -- A temporary of type "cv1 T2" [sic] is created, and
4700  //             a constructor is called to copy the entire rvalue
4701  //             object into the temporary. The reference is bound to
4702  //             the temporary or to a sub-object within the
4703  //             temporary.
4704  //
4705  //          The constructor that would be used to make the copy
4706  //          shall be callable whether or not the copy is actually
4707  //          done.
4708  //
4709  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4710  // freedom, so we will always take the first option and never build
4711  // a temporary in this case. FIXME: We will, however, have to check
4712  // for the presence of a copy constructor in C++98/03 mode.
4713  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4714      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4715    if (ICS) {
4716      ICS->setStandard();
4717      ICS->Standard.First = ICK_Identity;
4718      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4719      ICS->Standard.Third = ICK_Identity;
4720      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4721      ICS->Standard.setToType(0, T2);
4722      ICS->Standard.setToType(1, T1);
4723      ICS->Standard.setToType(2, T1);
4724      ICS->Standard.ReferenceBinding = true;
4725      ICS->Standard.DirectBinding = false;
4726      ICS->Standard.RRefBinding = isRValRef;
4727      ICS->Standard.CopyConstructor = 0;
4728    } else {
4729      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4730      if (DerivedToBase)
4731        CK = CastExpr::CK_DerivedToBase;
4732      else if(CheckExceptionSpecCompatibility(Init, T1))
4733        return true;
4734      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4735    }
4736    return false;
4737  }
4738
4739  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4740  //          initialized from the initializer expression using the
4741  //          rules for a non-reference copy initialization (8.5). The
4742  //          reference is then bound to the temporary. If T1 is
4743  //          reference-related to T2, cv1 must be the same
4744  //          cv-qualification as, or greater cv-qualification than,
4745  //          cv2; otherwise, the program is ill-formed.
4746  if (RefRelationship == Ref_Related) {
4747    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4748    // we would be reference-compatible or reference-compatible with
4749    // added qualification. But that wasn't the case, so the reference
4750    // initialization fails.
4751    if (!ICS)
4752      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4753        << T1 << int(InitLvalue != Expr::LV_Valid)
4754        << T2 << Init->getSourceRange();
4755    return true;
4756  }
4757
4758  // If at least one of the types is a class type, the types are not
4759  // related, and we aren't allowed any user conversions, the
4760  // reference binding fails. This case is important for breaking
4761  // recursion, since TryImplicitConversion below will attempt to
4762  // create a temporary through the use of a copy constructor.
4763  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4764      (T1->isRecordType() || T2->isRecordType())) {
4765    if (!ICS)
4766      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4767        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4768    return true;
4769  }
4770
4771  // Actually try to convert the initializer to T1.
4772  if (ICS) {
4773    // C++ [over.ics.ref]p2:
4774    //
4775    //   When a parameter of reference type is not bound directly to
4776    //   an argument expression, the conversion sequence is the one
4777    //   required to convert the argument expression to the
4778    //   underlying type of the reference according to
4779    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4780    //   to copy-initializing a temporary of the underlying type with
4781    //   the argument expression. Any difference in top-level
4782    //   cv-qualification is subsumed by the initialization itself
4783    //   and does not constitute a conversion.
4784    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4785                                 /*AllowExplicit=*/false,
4786                                 /*ForceRValue=*/false,
4787                                 /*InOverloadResolution=*/false);
4788
4789    // Of course, that's still a reference binding.
4790    if (ICS->isStandard()) {
4791      ICS->Standard.ReferenceBinding = true;
4792      ICS->Standard.RRefBinding = isRValRef;
4793    } else if (ICS->isUserDefined()) {
4794      ICS->UserDefined.After.ReferenceBinding = true;
4795      ICS->UserDefined.After.RRefBinding = isRValRef;
4796    }
4797    return ICS->isBad();
4798  } else {
4799    ImplicitConversionSequence Conversions;
4800    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4801                                                   false, false,
4802                                                   Conversions);
4803    if (badConversion) {
4804      if (Conversions.isAmbiguous()) {
4805        Diag(DeclLoc,
4806             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4807        for (int j = Conversions.Ambiguous.conversions().size()-1;
4808             j >= 0; j--) {
4809          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4810          NoteOverloadCandidate(Func);
4811        }
4812      }
4813      else {
4814        if (isRValRef)
4815          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4816            << Init->getSourceRange();
4817        else
4818          Diag(DeclLoc, diag::err_invalid_initialization)
4819            << DeclType << Init->getType() << Init->getSourceRange();
4820      }
4821    }
4822    return badConversion;
4823  }
4824}
4825
4826static inline bool
4827CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4828                                       const FunctionDecl *FnDecl) {
4829  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4830  if (isa<NamespaceDecl>(DC)) {
4831    return SemaRef.Diag(FnDecl->getLocation(),
4832                        diag::err_operator_new_delete_declared_in_namespace)
4833      << FnDecl->getDeclName();
4834  }
4835
4836  if (isa<TranslationUnitDecl>(DC) &&
4837      FnDecl->getStorageClass() == FunctionDecl::Static) {
4838    return SemaRef.Diag(FnDecl->getLocation(),
4839                        diag::err_operator_new_delete_declared_static)
4840      << FnDecl->getDeclName();
4841  }
4842
4843  return false;
4844}
4845
4846static inline bool
4847CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4848                            CanQualType ExpectedResultType,
4849                            CanQualType ExpectedFirstParamType,
4850                            unsigned DependentParamTypeDiag,
4851                            unsigned InvalidParamTypeDiag) {
4852  QualType ResultType =
4853    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4854
4855  // Check that the result type is not dependent.
4856  if (ResultType->isDependentType())
4857    return SemaRef.Diag(FnDecl->getLocation(),
4858                        diag::err_operator_new_delete_dependent_result_type)
4859    << FnDecl->getDeclName() << ExpectedResultType;
4860
4861  // Check that the result type is what we expect.
4862  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4863    return SemaRef.Diag(FnDecl->getLocation(),
4864                        diag::err_operator_new_delete_invalid_result_type)
4865    << FnDecl->getDeclName() << ExpectedResultType;
4866
4867  // A function template must have at least 2 parameters.
4868  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4869    return SemaRef.Diag(FnDecl->getLocation(),
4870                      diag::err_operator_new_delete_template_too_few_parameters)
4871        << FnDecl->getDeclName();
4872
4873  // The function decl must have at least 1 parameter.
4874  if (FnDecl->getNumParams() == 0)
4875    return SemaRef.Diag(FnDecl->getLocation(),
4876                        diag::err_operator_new_delete_too_few_parameters)
4877      << FnDecl->getDeclName();
4878
4879  // Check the the first parameter type is not dependent.
4880  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4881  if (FirstParamType->isDependentType())
4882    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4883      << FnDecl->getDeclName() << ExpectedFirstParamType;
4884
4885  // Check that the first parameter type is what we expect.
4886  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4887      ExpectedFirstParamType)
4888    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4889    << FnDecl->getDeclName() << ExpectedFirstParamType;
4890
4891  return false;
4892}
4893
4894static bool
4895CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4896  // C++ [basic.stc.dynamic.allocation]p1:
4897  //   A program is ill-formed if an allocation function is declared in a
4898  //   namespace scope other than global scope or declared static in global
4899  //   scope.
4900  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4901    return true;
4902
4903  CanQualType SizeTy =
4904    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4905
4906  // C++ [basic.stc.dynamic.allocation]p1:
4907  //  The return type shall be void*. The first parameter shall have type
4908  //  std::size_t.
4909  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4910                                  SizeTy,
4911                                  diag::err_operator_new_dependent_param_type,
4912                                  diag::err_operator_new_param_type))
4913    return true;
4914
4915  // C++ [basic.stc.dynamic.allocation]p1:
4916  //  The first parameter shall not have an associated default argument.
4917  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4918    return SemaRef.Diag(FnDecl->getLocation(),
4919                        diag::err_operator_new_default_arg)
4920      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4921
4922  return false;
4923}
4924
4925static bool
4926CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4927  // C++ [basic.stc.dynamic.deallocation]p1:
4928  //   A program is ill-formed if deallocation functions are declared in a
4929  //   namespace scope other than global scope or declared static in global
4930  //   scope.
4931  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4932    return true;
4933
4934  // C++ [basic.stc.dynamic.deallocation]p2:
4935  //   Each deallocation function shall return void and its first parameter
4936  //   shall be void*.
4937  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4938                                  SemaRef.Context.VoidPtrTy,
4939                                 diag::err_operator_delete_dependent_param_type,
4940                                 diag::err_operator_delete_param_type))
4941    return true;
4942
4943  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4944  if (FirstParamType->isDependentType())
4945    return SemaRef.Diag(FnDecl->getLocation(),
4946                        diag::err_operator_delete_dependent_param_type)
4947    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4948
4949  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4950      SemaRef.Context.VoidPtrTy)
4951    return SemaRef.Diag(FnDecl->getLocation(),
4952                        diag::err_operator_delete_param_type)
4953      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4954
4955  return false;
4956}
4957
4958/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4959/// of this overloaded operator is well-formed. If so, returns false;
4960/// otherwise, emits appropriate diagnostics and returns true.
4961bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4962  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4963         "Expected an overloaded operator declaration");
4964
4965  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4966
4967  // C++ [over.oper]p5:
4968  //   The allocation and deallocation functions, operator new,
4969  //   operator new[], operator delete and operator delete[], are
4970  //   described completely in 3.7.3. The attributes and restrictions
4971  //   found in the rest of this subclause do not apply to them unless
4972  //   explicitly stated in 3.7.3.
4973  if (Op == OO_Delete || Op == OO_Array_Delete)
4974    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4975
4976  if (Op == OO_New || Op == OO_Array_New)
4977    return CheckOperatorNewDeclaration(*this, FnDecl);
4978
4979  // C++ [over.oper]p6:
4980  //   An operator function shall either be a non-static member
4981  //   function or be a non-member function and have at least one
4982  //   parameter whose type is a class, a reference to a class, an
4983  //   enumeration, or a reference to an enumeration.
4984  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4985    if (MethodDecl->isStatic())
4986      return Diag(FnDecl->getLocation(),
4987                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4988  } else {
4989    bool ClassOrEnumParam = false;
4990    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4991                                   ParamEnd = FnDecl->param_end();
4992         Param != ParamEnd; ++Param) {
4993      QualType ParamType = (*Param)->getType().getNonReferenceType();
4994      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4995          ParamType->isEnumeralType()) {
4996        ClassOrEnumParam = true;
4997        break;
4998      }
4999    }
5000
5001    if (!ClassOrEnumParam)
5002      return Diag(FnDecl->getLocation(),
5003                  diag::err_operator_overload_needs_class_or_enum)
5004        << FnDecl->getDeclName();
5005  }
5006
5007  // C++ [over.oper]p8:
5008  //   An operator function cannot have default arguments (8.3.6),
5009  //   except where explicitly stated below.
5010  //
5011  // Only the function-call operator allows default arguments
5012  // (C++ [over.call]p1).
5013  if (Op != OO_Call) {
5014    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5015         Param != FnDecl->param_end(); ++Param) {
5016      if ((*Param)->hasDefaultArg())
5017        return Diag((*Param)->getLocation(),
5018                    diag::err_operator_overload_default_arg)
5019          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5020    }
5021  }
5022
5023  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5024    { false, false, false }
5025#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5026    , { Unary, Binary, MemberOnly }
5027#include "clang/Basic/OperatorKinds.def"
5028  };
5029
5030  bool CanBeUnaryOperator = OperatorUses[Op][0];
5031  bool CanBeBinaryOperator = OperatorUses[Op][1];
5032  bool MustBeMemberOperator = OperatorUses[Op][2];
5033
5034  // C++ [over.oper]p8:
5035  //   [...] Operator functions cannot have more or fewer parameters
5036  //   than the number required for the corresponding operator, as
5037  //   described in the rest of this subclause.
5038  unsigned NumParams = FnDecl->getNumParams()
5039                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5040  if (Op != OO_Call &&
5041      ((NumParams == 1 && !CanBeUnaryOperator) ||
5042       (NumParams == 2 && !CanBeBinaryOperator) ||
5043       (NumParams < 1) || (NumParams > 2))) {
5044    // We have the wrong number of parameters.
5045    unsigned ErrorKind;
5046    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5047      ErrorKind = 2;  // 2 -> unary or binary.
5048    } else if (CanBeUnaryOperator) {
5049      ErrorKind = 0;  // 0 -> unary
5050    } else {
5051      assert(CanBeBinaryOperator &&
5052             "All non-call overloaded operators are unary or binary!");
5053      ErrorKind = 1;  // 1 -> binary
5054    }
5055
5056    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5057      << FnDecl->getDeclName() << NumParams << ErrorKind;
5058  }
5059
5060  // Overloaded operators other than operator() cannot be variadic.
5061  if (Op != OO_Call &&
5062      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5063    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5064      << FnDecl->getDeclName();
5065  }
5066
5067  // Some operators must be non-static member functions.
5068  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5069    return Diag(FnDecl->getLocation(),
5070                diag::err_operator_overload_must_be_member)
5071      << FnDecl->getDeclName();
5072  }
5073
5074  // C++ [over.inc]p1:
5075  //   The user-defined function called operator++ implements the
5076  //   prefix and postfix ++ operator. If this function is a member
5077  //   function with no parameters, or a non-member function with one
5078  //   parameter of class or enumeration type, it defines the prefix
5079  //   increment operator ++ for objects of that type. If the function
5080  //   is a member function with one parameter (which shall be of type
5081  //   int) or a non-member function with two parameters (the second
5082  //   of which shall be of type int), it defines the postfix
5083  //   increment operator ++ for objects of that type.
5084  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5085    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5086    bool ParamIsInt = false;
5087    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5088      ParamIsInt = BT->getKind() == BuiltinType::Int;
5089
5090    if (!ParamIsInt)
5091      return Diag(LastParam->getLocation(),
5092                  diag::err_operator_overload_post_incdec_must_be_int)
5093        << LastParam->getType() << (Op == OO_MinusMinus);
5094  }
5095
5096  // Notify the class if it got an assignment operator.
5097  if (Op == OO_Equal) {
5098    // Would have returned earlier otherwise.
5099    assert(isa<CXXMethodDecl>(FnDecl) &&
5100      "Overloaded = not member, but not filtered.");
5101    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5102    Method->getParent()->addedAssignmentOperator(Context, Method);
5103  }
5104
5105  return false;
5106}
5107
5108/// CheckLiteralOperatorDeclaration - Check whether the declaration
5109/// of this literal operator function is well-formed. If so, returns
5110/// false; otherwise, emits appropriate diagnostics and returns true.
5111bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5112  DeclContext *DC = FnDecl->getDeclContext();
5113  Decl::Kind Kind = DC->getDeclKind();
5114  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5115      Kind != Decl::LinkageSpec) {
5116    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5117      << FnDecl->getDeclName();
5118    return true;
5119  }
5120
5121  bool Valid = false;
5122
5123  // template <char...> type operator "" name() is the only valid template
5124  // signature, and the only valid signature with no parameters.
5125  if (FnDecl->param_size() == 0) {
5126    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5127      // Must have only one template parameter
5128      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5129      if (Params->size() == 1) {
5130        NonTypeTemplateParmDecl *PmDecl =
5131          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5132
5133        // The template parameter must be a char parameter pack.
5134        // FIXME: This test will always fail because non-type parameter packs
5135        //   have not been implemented.
5136        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5137            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5138          Valid = true;
5139      }
5140    }
5141  } else {
5142    // Check the first parameter
5143    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5144
5145    QualType T = (*Param)->getType();
5146
5147    // unsigned long long int, long double, and any character type are allowed
5148    // as the only parameters.
5149    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5150        Context.hasSameType(T, Context.LongDoubleTy) ||
5151        Context.hasSameType(T, Context.CharTy) ||
5152        Context.hasSameType(T, Context.WCharTy) ||
5153        Context.hasSameType(T, Context.Char16Ty) ||
5154        Context.hasSameType(T, Context.Char32Ty)) {
5155      if (++Param == FnDecl->param_end())
5156        Valid = true;
5157      goto FinishedParams;
5158    }
5159
5160    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5161    const PointerType *PT = T->getAs<PointerType>();
5162    if (!PT)
5163      goto FinishedParams;
5164    T = PT->getPointeeType();
5165    if (!T.isConstQualified())
5166      goto FinishedParams;
5167    T = T.getUnqualifiedType();
5168
5169    // Move on to the second parameter;
5170    ++Param;
5171
5172    // If there is no second parameter, the first must be a const char *
5173    if (Param == FnDecl->param_end()) {
5174      if (Context.hasSameType(T, Context.CharTy))
5175        Valid = true;
5176      goto FinishedParams;
5177    }
5178
5179    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5180    // are allowed as the first parameter to a two-parameter function
5181    if (!(Context.hasSameType(T, Context.CharTy) ||
5182          Context.hasSameType(T, Context.WCharTy) ||
5183          Context.hasSameType(T, Context.Char16Ty) ||
5184          Context.hasSameType(T, Context.Char32Ty)))
5185      goto FinishedParams;
5186
5187    // The second and final parameter must be an std::size_t
5188    T = (*Param)->getType().getUnqualifiedType();
5189    if (Context.hasSameType(T, Context.getSizeType()) &&
5190        ++Param == FnDecl->param_end())
5191      Valid = true;
5192  }
5193
5194  // FIXME: This diagnostic is absolutely terrible.
5195FinishedParams:
5196  if (!Valid) {
5197    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5198      << FnDecl->getDeclName();
5199    return true;
5200  }
5201
5202  return false;
5203}
5204
5205/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5206/// linkage specification, including the language and (if present)
5207/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5208/// the location of the language string literal, which is provided
5209/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5210/// the '{' brace. Otherwise, this linkage specification does not
5211/// have any braces.
5212Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5213                                                     SourceLocation ExternLoc,
5214                                                     SourceLocation LangLoc,
5215                                                     const char *Lang,
5216                                                     unsigned StrSize,
5217                                                     SourceLocation LBraceLoc) {
5218  LinkageSpecDecl::LanguageIDs Language;
5219  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5220    Language = LinkageSpecDecl::lang_c;
5221  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5222    Language = LinkageSpecDecl::lang_cxx;
5223  else {
5224    Diag(LangLoc, diag::err_bad_language);
5225    return DeclPtrTy();
5226  }
5227
5228  // FIXME: Add all the various semantics of linkage specifications
5229
5230  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5231                                               LangLoc, Language,
5232                                               LBraceLoc.isValid());
5233  CurContext->addDecl(D);
5234  PushDeclContext(S, D);
5235  return DeclPtrTy::make(D);
5236}
5237
5238/// ActOnFinishLinkageSpecification - Completely the definition of
5239/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5240/// valid, it's the position of the closing '}' brace in a linkage
5241/// specification that uses braces.
5242Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5243                                                      DeclPtrTy LinkageSpec,
5244                                                      SourceLocation RBraceLoc) {
5245  if (LinkageSpec)
5246    PopDeclContext();
5247  return LinkageSpec;
5248}
5249
5250/// \brief Perform semantic analysis for the variable declaration that
5251/// occurs within a C++ catch clause, returning the newly-created
5252/// variable.
5253VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5254                                         TypeSourceInfo *TInfo,
5255                                         IdentifierInfo *Name,
5256                                         SourceLocation Loc,
5257                                         SourceRange Range) {
5258  bool Invalid = false;
5259
5260  // Arrays and functions decay.
5261  if (ExDeclType->isArrayType())
5262    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5263  else if (ExDeclType->isFunctionType())
5264    ExDeclType = Context.getPointerType(ExDeclType);
5265
5266  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5267  // The exception-declaration shall not denote a pointer or reference to an
5268  // incomplete type, other than [cv] void*.
5269  // N2844 forbids rvalue references.
5270  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5271    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5272    Invalid = true;
5273  }
5274
5275  // GCC allows catching pointers and references to incomplete types
5276  // as an extension; so do we, but we warn by default.
5277
5278  QualType BaseType = ExDeclType;
5279  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5280  unsigned DK = diag::err_catch_incomplete;
5281  bool IncompleteCatchIsInvalid = true;
5282  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5283    BaseType = Ptr->getPointeeType();
5284    Mode = 1;
5285    DK = diag::ext_catch_incomplete_ptr;
5286    IncompleteCatchIsInvalid = false;
5287  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5288    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5289    BaseType = Ref->getPointeeType();
5290    Mode = 2;
5291    DK = diag::ext_catch_incomplete_ref;
5292    IncompleteCatchIsInvalid = false;
5293  }
5294  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5295      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5296      IncompleteCatchIsInvalid)
5297    Invalid = true;
5298
5299  if (!Invalid && !ExDeclType->isDependentType() &&
5300      RequireNonAbstractType(Loc, ExDeclType,
5301                             diag::err_abstract_type_in_decl,
5302                             AbstractVariableType))
5303    Invalid = true;
5304
5305  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5306                                    Name, ExDeclType, TInfo, VarDecl::None);
5307
5308  if (!Invalid) {
5309    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5310      // C++ [except.handle]p16:
5311      //   The object declared in an exception-declaration or, if the
5312      //   exception-declaration does not specify a name, a temporary (12.2) is
5313      //   copy-initialized (8.5) from the exception object. [...]
5314      //   The object is destroyed when the handler exits, after the destruction
5315      //   of any automatic objects initialized within the handler.
5316      //
5317      // We just pretend to initialize the object with itself, then make sure
5318      // it can be destroyed later.
5319      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5320      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5321                                            Loc, ExDeclType, 0);
5322      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5323                                                               SourceLocation());
5324      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5325      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5326                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5327      if (Result.isInvalid())
5328        Invalid = true;
5329      else
5330        FinalizeVarWithDestructor(ExDecl, RecordTy);
5331    }
5332  }
5333
5334  if (Invalid)
5335    ExDecl->setInvalidDecl();
5336
5337  return ExDecl;
5338}
5339
5340/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5341/// handler.
5342Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5343  TypeSourceInfo *TInfo = 0;
5344  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5345
5346  bool Invalid = D.isInvalidType();
5347  IdentifierInfo *II = D.getIdentifier();
5348  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5349    // The scope should be freshly made just for us. There is just no way
5350    // it contains any previous declaration.
5351    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5352    if (PrevDecl->isTemplateParameter()) {
5353      // Maybe we will complain about the shadowed template parameter.
5354      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5355    }
5356  }
5357
5358  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5359    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5360      << D.getCXXScopeSpec().getRange();
5361    Invalid = true;
5362  }
5363
5364  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5365                                              D.getIdentifier(),
5366                                              D.getIdentifierLoc(),
5367                                            D.getDeclSpec().getSourceRange());
5368
5369  if (Invalid)
5370    ExDecl->setInvalidDecl();
5371
5372  // Add the exception declaration into this scope.
5373  if (II)
5374    PushOnScopeChains(ExDecl, S);
5375  else
5376    CurContext->addDecl(ExDecl);
5377
5378  ProcessDeclAttributes(S, ExDecl, D);
5379  return DeclPtrTy::make(ExDecl);
5380}
5381
5382Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5383                                                   ExprArg assertexpr,
5384                                                   ExprArg assertmessageexpr) {
5385  Expr *AssertExpr = (Expr *)assertexpr.get();
5386  StringLiteral *AssertMessage =
5387    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5388
5389  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5390    llvm::APSInt Value(32);
5391    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5392      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5393        AssertExpr->getSourceRange();
5394      return DeclPtrTy();
5395    }
5396
5397    if (Value == 0) {
5398      Diag(AssertLoc, diag::err_static_assert_failed)
5399        << AssertMessage->getString() << AssertExpr->getSourceRange();
5400    }
5401  }
5402
5403  assertexpr.release();
5404  assertmessageexpr.release();
5405  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5406                                        AssertExpr, AssertMessage);
5407
5408  CurContext->addDecl(Decl);
5409  return DeclPtrTy::make(Decl);
5410}
5411
5412/// \brief Perform semantic analysis of the given friend type declaration.
5413///
5414/// \returns A friend declaration that.
5415FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5416                                      TypeSourceInfo *TSInfo) {
5417  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5418
5419  QualType T = TSInfo->getType();
5420  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5421
5422  if (!getLangOptions().CPlusPlus0x) {
5423    // C++03 [class.friend]p2:
5424    //   An elaborated-type-specifier shall be used in a friend declaration
5425    //   for a class.*
5426    //
5427    //   * The class-key of the elaborated-type-specifier is required.
5428    if (!ActiveTemplateInstantiations.empty()) {
5429      // Do not complain about the form of friend template types during
5430      // template instantiation; we will already have complained when the
5431      // template was declared.
5432    } else if (!T->isElaboratedTypeSpecifier()) {
5433      // If we evaluated the type to a record type, suggest putting
5434      // a tag in front.
5435      if (const RecordType *RT = T->getAs<RecordType>()) {
5436        RecordDecl *RD = RT->getDecl();
5437
5438        std::string InsertionText = std::string(" ") + RD->getKindName();
5439
5440        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5441          << (unsigned) RD->getTagKind()
5442          << T
5443          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5444                                        InsertionText);
5445      } else {
5446        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5447          << T
5448          << SourceRange(FriendLoc, TypeRange.getEnd());
5449      }
5450    } else if (T->getAs<EnumType>()) {
5451      Diag(FriendLoc, diag::ext_enum_friend)
5452        << T
5453        << SourceRange(FriendLoc, TypeRange.getEnd());
5454    }
5455  }
5456
5457  // C++0x [class.friend]p3:
5458  //   If the type specifier in a friend declaration designates a (possibly
5459  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5460  //   the friend declaration is ignored.
5461
5462  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5463  // in [class.friend]p3 that we do not implement.
5464
5465  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5466}
5467
5468/// Handle a friend type declaration.  This works in tandem with
5469/// ActOnTag.
5470///
5471/// Notes on friend class templates:
5472///
5473/// We generally treat friend class declarations as if they were
5474/// declaring a class.  So, for example, the elaborated type specifier
5475/// in a friend declaration is required to obey the restrictions of a
5476/// class-head (i.e. no typedefs in the scope chain), template
5477/// parameters are required to match up with simple template-ids, &c.
5478/// However, unlike when declaring a template specialization, it's
5479/// okay to refer to a template specialization without an empty
5480/// template parameter declaration, e.g.
5481///   friend class A<T>::B<unsigned>;
5482/// We permit this as a special case; if there are any template
5483/// parameters present at all, require proper matching, i.e.
5484///   template <> template <class T> friend class A<int>::B;
5485Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5486                                          MultiTemplateParamsArg TempParams) {
5487  SourceLocation Loc = DS.getSourceRange().getBegin();
5488
5489  assert(DS.isFriendSpecified());
5490  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5491
5492  // Try to convert the decl specifier to a type.  This works for
5493  // friend templates because ActOnTag never produces a ClassTemplateDecl
5494  // for a TUK_Friend.
5495  Declarator TheDeclarator(DS, Declarator::MemberContext);
5496  TypeSourceInfo *TSI;
5497  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5498  if (TheDeclarator.isInvalidType())
5499    return DeclPtrTy();
5500
5501  if (!TSI)
5502    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5503
5504  // This is definitely an error in C++98.  It's probably meant to
5505  // be forbidden in C++0x, too, but the specification is just
5506  // poorly written.
5507  //
5508  // The problem is with declarations like the following:
5509  //   template <T> friend A<T>::foo;
5510  // where deciding whether a class C is a friend or not now hinges
5511  // on whether there exists an instantiation of A that causes
5512  // 'foo' to equal C.  There are restrictions on class-heads
5513  // (which we declare (by fiat) elaborated friend declarations to
5514  // be) that makes this tractable.
5515  //
5516  // FIXME: handle "template <> friend class A<T>;", which
5517  // is possibly well-formed?  Who even knows?
5518  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5519    Diag(Loc, diag::err_tagless_friend_type_template)
5520      << DS.getSourceRange();
5521    return DeclPtrTy();
5522  }
5523
5524  // C++98 [class.friend]p1: A friend of a class is a function
5525  //   or class that is not a member of the class . . .
5526  // This is fixed in DR77, which just barely didn't make the C++03
5527  // deadline.  It's also a very silly restriction that seriously
5528  // affects inner classes and which nobody else seems to implement;
5529  // thus we never diagnose it, not even in -pedantic.
5530  //
5531  // But note that we could warn about it: it's always useless to
5532  // friend one of your own members (it's not, however, worthless to
5533  // friend a member of an arbitrary specialization of your template).
5534
5535  Decl *D;
5536  if (unsigned NumTempParamLists = TempParams.size())
5537    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5538                                   NumTempParamLists,
5539                                 (TemplateParameterList**) TempParams.release(),
5540                                   TSI,
5541                                   DS.getFriendSpecLoc());
5542  else
5543    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5544
5545  if (!D)
5546    return DeclPtrTy();
5547
5548  D->setAccess(AS_public);
5549  CurContext->addDecl(D);
5550
5551  return DeclPtrTy::make(D);
5552}
5553
5554Sema::DeclPtrTy
5555Sema::ActOnFriendFunctionDecl(Scope *S,
5556                              Declarator &D,
5557                              bool IsDefinition,
5558                              MultiTemplateParamsArg TemplateParams) {
5559  const DeclSpec &DS = D.getDeclSpec();
5560
5561  assert(DS.isFriendSpecified());
5562  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5563
5564  SourceLocation Loc = D.getIdentifierLoc();
5565  TypeSourceInfo *TInfo = 0;
5566  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5567
5568  // C++ [class.friend]p1
5569  //   A friend of a class is a function or class....
5570  // Note that this sees through typedefs, which is intended.
5571  // It *doesn't* see through dependent types, which is correct
5572  // according to [temp.arg.type]p3:
5573  //   If a declaration acquires a function type through a
5574  //   type dependent on a template-parameter and this causes
5575  //   a declaration that does not use the syntactic form of a
5576  //   function declarator to have a function type, the program
5577  //   is ill-formed.
5578  if (!T->isFunctionType()) {
5579    Diag(Loc, diag::err_unexpected_friend);
5580
5581    // It might be worthwhile to try to recover by creating an
5582    // appropriate declaration.
5583    return DeclPtrTy();
5584  }
5585
5586  // C++ [namespace.memdef]p3
5587  //  - If a friend declaration in a non-local class first declares a
5588  //    class or function, the friend class or function is a member
5589  //    of the innermost enclosing namespace.
5590  //  - The name of the friend is not found by simple name lookup
5591  //    until a matching declaration is provided in that namespace
5592  //    scope (either before or after the class declaration granting
5593  //    friendship).
5594  //  - If a friend function is called, its name may be found by the
5595  //    name lookup that considers functions from namespaces and
5596  //    classes associated with the types of the function arguments.
5597  //  - When looking for a prior declaration of a class or a function
5598  //    declared as a friend, scopes outside the innermost enclosing
5599  //    namespace scope are not considered.
5600
5601  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5602  DeclarationName Name = GetNameForDeclarator(D);
5603  assert(Name);
5604
5605  // The context we found the declaration in, or in which we should
5606  // create the declaration.
5607  DeclContext *DC;
5608
5609  // FIXME: handle local classes
5610
5611  // Recover from invalid scope qualifiers as if they just weren't there.
5612  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5613                        ForRedeclaration);
5614  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5615    // FIXME: RequireCompleteDeclContext
5616    DC = computeDeclContext(ScopeQual);
5617
5618    // FIXME: handle dependent contexts
5619    if (!DC) return DeclPtrTy();
5620
5621    LookupQualifiedName(Previous, DC);
5622
5623    // If searching in that context implicitly found a declaration in
5624    // a different context, treat it like it wasn't found at all.
5625    // TODO: better diagnostics for this case.  Suggesting the right
5626    // qualified scope would be nice...
5627    // FIXME: getRepresentativeDecl() is not right here at all
5628    if (Previous.empty() ||
5629        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5630      D.setInvalidType();
5631      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5632      return DeclPtrTy();
5633    }
5634
5635    // C++ [class.friend]p1: A friend of a class is a function or
5636    //   class that is not a member of the class . . .
5637    if (DC->Equals(CurContext))
5638      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5639
5640  // Otherwise walk out to the nearest namespace scope looking for matches.
5641  } else {
5642    // TODO: handle local class contexts.
5643
5644    DC = CurContext;
5645    while (true) {
5646      // Skip class contexts.  If someone can cite chapter and verse
5647      // for this behavior, that would be nice --- it's what GCC and
5648      // EDG do, and it seems like a reasonable intent, but the spec
5649      // really only says that checks for unqualified existing
5650      // declarations should stop at the nearest enclosing namespace,
5651      // not that they should only consider the nearest enclosing
5652      // namespace.
5653      while (DC->isRecord())
5654        DC = DC->getParent();
5655
5656      LookupQualifiedName(Previous, DC);
5657
5658      // TODO: decide what we think about using declarations.
5659      if (!Previous.empty())
5660        break;
5661
5662      if (DC->isFileContext()) break;
5663      DC = DC->getParent();
5664    }
5665
5666    // C++ [class.friend]p1: A friend of a class is a function or
5667    //   class that is not a member of the class . . .
5668    // C++0x changes this for both friend types and functions.
5669    // Most C++ 98 compilers do seem to give an error here, so
5670    // we do, too.
5671    if (!Previous.empty() && DC->Equals(CurContext)
5672        && !getLangOptions().CPlusPlus0x)
5673      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5674  }
5675
5676  if (DC->isFileContext()) {
5677    // This implies that it has to be an operator or function.
5678    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5679        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5680        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5681      Diag(Loc, diag::err_introducing_special_friend) <<
5682        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5683         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5684      return DeclPtrTy();
5685    }
5686  }
5687
5688  bool Redeclaration = false;
5689  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5690                                          move(TemplateParams),
5691                                          IsDefinition,
5692                                          Redeclaration);
5693  if (!ND) return DeclPtrTy();
5694
5695  assert(ND->getDeclContext() == DC);
5696  assert(ND->getLexicalDeclContext() == CurContext);
5697
5698  // Add the function declaration to the appropriate lookup tables,
5699  // adjusting the redeclarations list as necessary.  We don't
5700  // want to do this yet if the friending class is dependent.
5701  //
5702  // Also update the scope-based lookup if the target context's
5703  // lookup context is in lexical scope.
5704  if (!CurContext->isDependentContext()) {
5705    DC = DC->getLookupContext();
5706    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5707    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5708      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5709  }
5710
5711  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5712                                       D.getIdentifierLoc(), ND,
5713                                       DS.getFriendSpecLoc());
5714  FrD->setAccess(AS_public);
5715  CurContext->addDecl(FrD);
5716
5717  return DeclPtrTy::make(ND);
5718}
5719
5720void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5721  AdjustDeclIfTemplate(dcl);
5722
5723  Decl *Dcl = dcl.getAs<Decl>();
5724  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5725  if (!Fn) {
5726    Diag(DelLoc, diag::err_deleted_non_function);
5727    return;
5728  }
5729  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5730    Diag(DelLoc, diag::err_deleted_decl_not_first);
5731    Diag(Prev->getLocation(), diag::note_previous_declaration);
5732    // If the declaration wasn't the first, we delete the function anyway for
5733    // recovery.
5734  }
5735  Fn->setDeleted();
5736}
5737
5738static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5739  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5740       ++CI) {
5741    Stmt *SubStmt = *CI;
5742    if (!SubStmt)
5743      continue;
5744    if (isa<ReturnStmt>(SubStmt))
5745      Self.Diag(SubStmt->getSourceRange().getBegin(),
5746           diag::err_return_in_constructor_handler);
5747    if (!isa<Expr>(SubStmt))
5748      SearchForReturnInStmt(Self, SubStmt);
5749  }
5750}
5751
5752void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5753  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5754    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5755    SearchForReturnInStmt(*this, Handler);
5756  }
5757}
5758
5759bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5760                                             const CXXMethodDecl *Old) {
5761  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5762  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5763
5764  if (Context.hasSameType(NewTy, OldTy) ||
5765      NewTy->isDependentType() || OldTy->isDependentType())
5766    return false;
5767
5768  // Check if the return types are covariant
5769  QualType NewClassTy, OldClassTy;
5770
5771  /// Both types must be pointers or references to classes.
5772  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5773    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5774      NewClassTy = NewPT->getPointeeType();
5775      OldClassTy = OldPT->getPointeeType();
5776    }
5777  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5778    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5779      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5780        NewClassTy = NewRT->getPointeeType();
5781        OldClassTy = OldRT->getPointeeType();
5782      }
5783    }
5784  }
5785
5786  // The return types aren't either both pointers or references to a class type.
5787  if (NewClassTy.isNull()) {
5788    Diag(New->getLocation(),
5789         diag::err_different_return_type_for_overriding_virtual_function)
5790      << New->getDeclName() << NewTy << OldTy;
5791    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5792
5793    return true;
5794  }
5795
5796  // C++ [class.virtual]p6:
5797  //   If the return type of D::f differs from the return type of B::f, the
5798  //   class type in the return type of D::f shall be complete at the point of
5799  //   declaration of D::f or shall be the class type D.
5800  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5801    if (!RT->isBeingDefined() &&
5802        RequireCompleteType(New->getLocation(), NewClassTy,
5803                            PDiag(diag::err_covariant_return_incomplete)
5804                              << New->getDeclName()))
5805    return true;
5806  }
5807
5808  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5809    // Check if the new class derives from the old class.
5810    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5811      Diag(New->getLocation(),
5812           diag::err_covariant_return_not_derived)
5813      << New->getDeclName() << NewTy << OldTy;
5814      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5815      return true;
5816    }
5817
5818    // Check if we the conversion from derived to base is valid.
5819    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5820                      diag::err_covariant_return_inaccessible_base,
5821                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5822                      // FIXME: Should this point to the return type?
5823                      New->getLocation(), SourceRange(), New->getDeclName())) {
5824      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5825      return true;
5826    }
5827  }
5828
5829  // The qualifiers of the return types must be the same.
5830  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5831    Diag(New->getLocation(),
5832         diag::err_covariant_return_type_different_qualifications)
5833    << New->getDeclName() << NewTy << OldTy;
5834    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5835    return true;
5836  };
5837
5838
5839  // The new class type must have the same or less qualifiers as the old type.
5840  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5841    Diag(New->getLocation(),
5842         diag::err_covariant_return_type_class_type_more_qualified)
5843    << New->getDeclName() << NewTy << OldTy;
5844    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5845    return true;
5846  };
5847
5848  return false;
5849}
5850
5851bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5852                                             const CXXMethodDecl *Old)
5853{
5854  if (Old->hasAttr<FinalAttr>()) {
5855    Diag(New->getLocation(), diag::err_final_function_overridden)
5856      << New->getDeclName();
5857    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5858    return true;
5859  }
5860
5861  return false;
5862}
5863
5864/// \brief Mark the given method pure.
5865///
5866/// \param Method the method to be marked pure.
5867///
5868/// \param InitRange the source range that covers the "0" initializer.
5869bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5870  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5871    Method->setPure();
5872
5873    // A class is abstract if at least one function is pure virtual.
5874    Method->getParent()->setAbstract(true);
5875    return false;
5876  }
5877
5878  if (!Method->isInvalidDecl())
5879    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5880      << Method->getDeclName() << InitRange;
5881  return true;
5882}
5883
5884/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5885/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5886/// is a fresh scope pushed for just this purpose.
5887///
5888/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5889/// static data member of class X, names should be looked up in the scope of
5890/// class X.
5891void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5892  // If there is no declaration, there was an error parsing it.
5893  Decl *D = Dcl.getAs<Decl>();
5894  if (D == 0) return;
5895
5896  // We should only get called for declarations with scope specifiers, like:
5897  //   int foo::bar;
5898  assert(D->isOutOfLine());
5899  EnterDeclaratorContext(S, D->getDeclContext());
5900}
5901
5902/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5903/// initializer for the out-of-line declaration 'Dcl'.
5904void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5905  // If there is no declaration, there was an error parsing it.
5906  Decl *D = Dcl.getAs<Decl>();
5907  if (D == 0) return;
5908
5909  assert(D->isOutOfLine());
5910  ExitDeclaratorContext(S);
5911}
5912
5913/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5914/// C++ if/switch/while/for statement.
5915/// e.g: "if (int x = f()) {...}"
5916Action::DeclResult
5917Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5918  // C++ 6.4p2:
5919  // The declarator shall not specify a function or an array.
5920  // The type-specifier-seq shall not contain typedef and shall not declare a
5921  // new class or enumeration.
5922  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5923         "Parser allowed 'typedef' as storage class of condition decl.");
5924
5925  TypeSourceInfo *TInfo = 0;
5926  TagDecl *OwnedTag = 0;
5927  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5928
5929  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5930                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5931                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5932    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5933      << D.getSourceRange();
5934    return DeclResult();
5935  } else if (OwnedTag && OwnedTag->isDefinition()) {
5936    // The type-specifier-seq shall not declare a new class or enumeration.
5937    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5938  }
5939
5940  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5941  if (!Dcl)
5942    return DeclResult();
5943
5944  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5945  VD->setDeclaredInCondition(true);
5946  return Dcl;
5947}
5948
5949static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5950  // Ignore dependent types.
5951  if (MD->isDependentContext())
5952    return false;
5953
5954  // Ignore declarations that are not definitions.
5955  if (!MD->isThisDeclarationADefinition())
5956    return false;
5957
5958  CXXRecordDecl *RD = MD->getParent();
5959
5960  // Ignore classes without a vtable.
5961  if (!RD->isDynamicClass())
5962    return false;
5963
5964  switch (MD->getParent()->getTemplateSpecializationKind()) {
5965  case TSK_Undeclared:
5966  case TSK_ExplicitSpecialization:
5967    // Classes that aren't instantiations of templates don't need their
5968    // virtual methods marked until we see the definition of the key
5969    // function.
5970    break;
5971
5972  case TSK_ImplicitInstantiation:
5973    // This is a constructor of a class template; mark all of the virtual
5974    // members as referenced to ensure that they get instantiatied.
5975    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5976      return true;
5977    break;
5978
5979  case TSK_ExplicitInstantiationDeclaration:
5980    return false;
5981
5982  case TSK_ExplicitInstantiationDefinition:
5983    // This is method of a explicit instantiation; mark all of the virtual
5984    // members as referenced to ensure that they get instantiatied.
5985    return true;
5986  }
5987
5988  // Consider only out-of-line definitions of member functions. When we see
5989  // an inline definition, it's too early to compute the key function.
5990  if (!MD->isOutOfLine())
5991    return false;
5992
5993  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5994
5995  // If there is no key function, we will need a copy of the vtable.
5996  if (!KeyFunction)
5997    return true;
5998
5999  // If this is the key function, we need to mark virtual members.
6000  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
6001    return true;
6002
6003  return false;
6004}
6005
6006void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
6007                                             CXXMethodDecl *MD) {
6008  CXXRecordDecl *RD = MD->getParent();
6009
6010  // We will need to mark all of the virtual members as referenced to build the
6011  // vtable.
6012  if (!needsVtable(MD, Context))
6013    return;
6014
6015  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
6016  if (kind == TSK_ImplicitInstantiation)
6017    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
6018  else
6019    MarkVirtualMembersReferenced(Loc, RD);
6020}
6021
6022bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
6023  if (ClassesWithUnmarkedVirtualMembers.empty())
6024    return false;
6025
6026  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
6027    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
6028    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
6029    ClassesWithUnmarkedVirtualMembers.pop_back();
6030    MarkVirtualMembersReferenced(Loc, RD);
6031  }
6032
6033  return true;
6034}
6035
6036void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6037                                        const CXXRecordDecl *RD) {
6038  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6039       e = RD->method_end(); i != e; ++i) {
6040    CXXMethodDecl *MD = *i;
6041
6042    // C++ [basic.def.odr]p2:
6043    //   [...] A virtual member function is used if it is not pure. [...]
6044    if (MD->isVirtual() && !MD->isPure())
6045      MarkDeclarationReferenced(Loc, MD);
6046  }
6047
6048  // Only classes that have virtual bases need a VTT.
6049  if (RD->getNumVBases() == 0)
6050    return;
6051
6052  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6053           e = RD->bases_end(); i != e; ++i) {
6054    const CXXRecordDecl *Base =
6055        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6056    if (i->isVirtual())
6057      continue;
6058    if (Base->getNumVBases() == 0)
6059      continue;
6060    MarkVirtualMembersReferenced(Loc, Base);
6061  }
6062}
6063