SemaDeclCXX.cpp revision 8150da3796300bdc876775e1782331f0e43d2d94
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  // Find first parameter with a default argument
637  for (p = 0; p < NumParams; ++p) {
638    ParmVarDecl *Param = FD->getParamDecl(p);
639    if (Param->hasDefaultArg())
640      break;
641  }
642
643  // C++ [dcl.fct.default]p4:
644  //   In a given function declaration, all parameters
645  //   subsequent to a parameter with a default argument shall
646  //   have default arguments supplied in this or previous
647  //   declarations. A default argument shall not be redefined
648  //   by a later declaration (not even to the same value).
649  unsigned LastMissingDefaultArg = 0;
650  for (; p < NumParams; ++p) {
651    ParmVarDecl *Param = FD->getParamDecl(p);
652    if (!Param->hasDefaultArg()) {
653      if (Param->isInvalidDecl())
654        /* We already complained about this parameter. */;
655      else if (Param->getIdentifier())
656        Diag(Param->getLocation(),
657             diag::err_param_default_argument_missing_name)
658          << Param->getIdentifier();
659      else
660        Diag(Param->getLocation(),
661             diag::err_param_default_argument_missing);
662
663      LastMissingDefaultArg = p;
664    }
665  }
666
667  if (LastMissingDefaultArg > 0) {
668    // Some default arguments were missing. Clear out all of the
669    // default arguments up to (and including) the last missing
670    // default argument, so that we leave the function parameters
671    // in a semantically valid state.
672    for (p = 0; p <= LastMissingDefaultArg; ++p) {
673      ParmVarDecl *Param = FD->getParamDecl(p);
674      if (Param->hasDefaultArg()) {
675        Param->setDefaultArg(0);
676      }
677    }
678  }
679}
680
681// CheckConstexprParameterTypes - Check whether a function's parameter types
682// are all literal types. If so, return true. If not, produce a suitable
683// diagnostic and return false.
684static bool CheckConstexprParameterTypes(Sema &SemaRef,
685                                         const FunctionDecl *FD) {
686  unsigned ArgIndex = 0;
687  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
688  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
689       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
690    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
691    SourceLocation ParamLoc = PD->getLocation();
692    if (!(*i)->isDependentType() &&
693        SemaRef.RequireLiteralType(ParamLoc, *i,
694                                   diag::err_constexpr_non_literal_param,
695                                   ArgIndex+1, PD->getSourceRange(),
696                                   isa<CXXConstructorDecl>(FD)))
697      return false;
698  }
699  return true;
700}
701
702/// \brief Get diagnostic %select index for tag kind for
703/// record diagnostic message.
704/// WARNING: Indexes apply to particular diagnostics only!
705///
706/// \returns diagnostic %select index.
707static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
708  switch (Tag) {
709  case TTK_Struct: return 0;
710  case TTK_Interface: return 1;
711  case TTK_Class:  return 2;
712  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
713  }
714}
715
716// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
717// the requirements of a constexpr function definition or a constexpr
718// constructor definition. If so, return true. If not, produce appropriate
719// diagnostics and return false.
720//
721// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
722bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
723  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
724  if (MD && MD->isInstance()) {
725    // C++11 [dcl.constexpr]p4:
726    //  The definition of a constexpr constructor shall satisfy the following
727    //  constraints:
728    //  - the class shall not have any virtual base classes;
729    const CXXRecordDecl *RD = MD->getParent();
730    if (RD->getNumVBases()) {
731      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
732        << isa<CXXConstructorDecl>(NewFD)
733        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
734      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
735             E = RD->vbases_end(); I != E; ++I)
736        Diag(I->getLocStart(),
737             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
738      return false;
739    }
740  }
741
742  if (!isa<CXXConstructorDecl>(NewFD)) {
743    // C++11 [dcl.constexpr]p3:
744    //  The definition of a constexpr function shall satisfy the following
745    //  constraints:
746    // - it shall not be virtual;
747    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
748    if (Method && Method->isVirtual()) {
749      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
750
751      // If it's not obvious why this function is virtual, find an overridden
752      // function which uses the 'virtual' keyword.
753      const CXXMethodDecl *WrittenVirtual = Method;
754      while (!WrittenVirtual->isVirtualAsWritten())
755        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
756      if (WrittenVirtual != Method)
757        Diag(WrittenVirtual->getLocation(),
758             diag::note_overridden_virtual_function);
759      return false;
760    }
761
762    // - its return type shall be a literal type;
763    QualType RT = NewFD->getResultType();
764    if (!RT->isDependentType() &&
765        RequireLiteralType(NewFD->getLocation(), RT,
766                           diag::err_constexpr_non_literal_return))
767      return false;
768  }
769
770  // - each of its parameter types shall be a literal type;
771  if (!CheckConstexprParameterTypes(*this, NewFD))
772    return false;
773
774  return true;
775}
776
777/// Check the given declaration statement is legal within a constexpr function
778/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
779///
780/// \return true if the body is OK (maybe only as an extension), false if we
781///         have diagnosed a problem.
782static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
783                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
784  // C++11 [dcl.constexpr]p3 and p4:
785  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
786  //  contain only
787  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
788         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
789    switch ((*DclIt)->getKind()) {
790    case Decl::StaticAssert:
791    case Decl::Using:
792    case Decl::UsingShadow:
793    case Decl::UsingDirective:
794    case Decl::UnresolvedUsingTypename:
795    case Decl::UnresolvedUsingValue:
796      //   - static_assert-declarations
797      //   - using-declarations,
798      //   - using-directives,
799      continue;
800
801    case Decl::Typedef:
802    case Decl::TypeAlias: {
803      //   - typedef declarations and alias-declarations that do not define
804      //     classes or enumerations,
805      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
806      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
807        // Don't allow variably-modified types in constexpr functions.
808        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
809        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
810          << TL.getSourceRange() << TL.getType()
811          << isa<CXXConstructorDecl>(Dcl);
812        return false;
813      }
814      continue;
815    }
816
817    case Decl::Enum:
818    case Decl::CXXRecord:
819      // C++1y allows types to be defined, not just declared.
820      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
821        SemaRef.Diag(DS->getLocStart(),
822                     SemaRef.getLangOpts().CPlusPlus1y
823                       ? diag::warn_cxx11_compat_constexpr_type_definition
824                       : diag::ext_constexpr_type_definition)
825          << isa<CXXConstructorDecl>(Dcl);
826      continue;
827
828    case Decl::EnumConstant:
829    case Decl::IndirectField:
830    case Decl::ParmVar:
831      // These can only appear with other declarations which are banned in
832      // C++11 and permitted in C++1y, so ignore them.
833      continue;
834
835    case Decl::Var: {
836      // C++1y [dcl.constexpr]p3 allows anything except:
837      //   a definition of a variable of non-literal type or of static or
838      //   thread storage duration or for which no initialization is performed.
839      VarDecl *VD = cast<VarDecl>(*DclIt);
840      if (VD->isThisDeclarationADefinition()) {
841        if (VD->isStaticLocal()) {
842          SemaRef.Diag(VD->getLocation(),
843                       diag::err_constexpr_local_var_static)
844            << isa<CXXConstructorDecl>(Dcl)
845            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
846          return false;
847        }
848        if (!VD->getType()->isDependentType() &&
849            SemaRef.RequireLiteralType(
850              VD->getLocation(), VD->getType(),
851              diag::err_constexpr_local_var_non_literal_type,
852              isa<CXXConstructorDecl>(Dcl)))
853          return false;
854        if (!VD->hasInit()) {
855          SemaRef.Diag(VD->getLocation(),
856                       diag::err_constexpr_local_var_no_init)
857            << isa<CXXConstructorDecl>(Dcl);
858          return false;
859        }
860      }
861      SemaRef.Diag(VD->getLocation(),
862                   SemaRef.getLangOpts().CPlusPlus1y
863                    ? diag::warn_cxx11_compat_constexpr_local_var
864                    : diag::ext_constexpr_local_var)
865        << isa<CXXConstructorDecl>(Dcl);
866      continue;
867    }
868
869    case Decl::NamespaceAlias:
870    case Decl::Function:
871      // These are disallowed in C++11 and permitted in C++1y. Allow them
872      // everywhere as an extension.
873      if (!Cxx1yLoc.isValid())
874        Cxx1yLoc = DS->getLocStart();
875      continue;
876
877    default:
878      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
879        << isa<CXXConstructorDecl>(Dcl);
880      return false;
881    }
882  }
883
884  return true;
885}
886
887/// Check that the given field is initialized within a constexpr constructor.
888///
889/// \param Dcl The constexpr constructor being checked.
890/// \param Field The field being checked. This may be a member of an anonymous
891///        struct or union nested within the class being checked.
892/// \param Inits All declarations, including anonymous struct/union members and
893///        indirect members, for which any initialization was provided.
894/// \param Diagnosed Set to true if an error is produced.
895static void CheckConstexprCtorInitializer(Sema &SemaRef,
896                                          const FunctionDecl *Dcl,
897                                          FieldDecl *Field,
898                                          llvm::SmallSet<Decl*, 16> &Inits,
899                                          bool &Diagnosed) {
900  if (Field->isUnnamedBitfield())
901    return;
902
903  if (Field->isAnonymousStructOrUnion() &&
904      Field->getType()->getAsCXXRecordDecl()->isEmpty())
905    return;
906
907  if (!Inits.count(Field)) {
908    if (!Diagnosed) {
909      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
910      Diagnosed = true;
911    }
912    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
913  } else if (Field->isAnonymousStructOrUnion()) {
914    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
915    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
916         I != E; ++I)
917      // If an anonymous union contains an anonymous struct of which any member
918      // is initialized, all members must be initialized.
919      if (!RD->isUnion() || Inits.count(*I))
920        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
921  }
922}
923
924/// Check the provided statement is allowed in a constexpr function
925/// definition.
926static bool
927CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
928                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
929                           SourceLocation &Cxx1yLoc) {
930  // - its function-body shall be [...] a compound-statement that contains only
931  switch (S->getStmtClass()) {
932  case Stmt::NullStmtClass:
933    //   - null statements,
934    return true;
935
936  case Stmt::DeclStmtClass:
937    //   - static_assert-declarations
938    //   - using-declarations,
939    //   - using-directives,
940    //   - typedef declarations and alias-declarations that do not define
941    //     classes or enumerations,
942    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
943      return false;
944    return true;
945
946  case Stmt::ReturnStmtClass:
947    //   - and exactly one return statement;
948    if (isa<CXXConstructorDecl>(Dcl)) {
949      // C++1y allows return statements in constexpr constructors.
950      if (!Cxx1yLoc.isValid())
951        Cxx1yLoc = S->getLocStart();
952      return true;
953    }
954
955    ReturnStmts.push_back(S->getLocStart());
956    return true;
957
958  case Stmt::CompoundStmtClass: {
959    // C++1y allows compound-statements.
960    if (!Cxx1yLoc.isValid())
961      Cxx1yLoc = S->getLocStart();
962
963    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
964    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
965           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
966      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
967                                      Cxx1yLoc))
968        return false;
969    }
970    return true;
971  }
972
973  case Stmt::AttributedStmtClass:
974    if (!Cxx1yLoc.isValid())
975      Cxx1yLoc = S->getLocStart();
976    return true;
977
978  case Stmt::IfStmtClass: {
979    // C++1y allows if-statements.
980    if (!Cxx1yLoc.isValid())
981      Cxx1yLoc = S->getLocStart();
982
983    IfStmt *If = cast<IfStmt>(S);
984    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
985                                    Cxx1yLoc))
986      return false;
987    if (If->getElse() &&
988        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
989                                    Cxx1yLoc))
990      return false;
991    return true;
992  }
993
994  case Stmt::WhileStmtClass:
995  case Stmt::DoStmtClass:
996  case Stmt::ForStmtClass:
997  case Stmt::CXXForRangeStmtClass:
998  case Stmt::ContinueStmtClass:
999    // C++1y allows all of these. We don't allow them as extensions in C++11,
1000    // because they don't make sense without variable mutation.
1001    if (!SemaRef.getLangOpts().CPlusPlus1y)
1002      break;
1003    if (!Cxx1yLoc.isValid())
1004      Cxx1yLoc = S->getLocStart();
1005    for (Stmt::child_range Children = S->children(); Children; ++Children)
1006      if (*Children &&
1007          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1008                                      Cxx1yLoc))
1009        return false;
1010    return true;
1011
1012  case Stmt::SwitchStmtClass:
1013  case Stmt::CaseStmtClass:
1014  case Stmt::DefaultStmtClass:
1015  case Stmt::BreakStmtClass:
1016    // C++1y allows switch-statements, and since they don't need variable
1017    // mutation, we can reasonably allow them in C++11 as an extension.
1018    if (!Cxx1yLoc.isValid())
1019      Cxx1yLoc = S->getLocStart();
1020    for (Stmt::child_range Children = S->children(); Children; ++Children)
1021      if (*Children &&
1022          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1023                                      Cxx1yLoc))
1024        return false;
1025    return true;
1026
1027  default:
1028    if (!isa<Expr>(S))
1029      break;
1030
1031    // C++1y allows expression-statements.
1032    if (!Cxx1yLoc.isValid())
1033      Cxx1yLoc = S->getLocStart();
1034    return true;
1035  }
1036
1037  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1038    << isa<CXXConstructorDecl>(Dcl);
1039  return false;
1040}
1041
1042/// Check the body for the given constexpr function declaration only contains
1043/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1044///
1045/// \return true if the body is OK, false if we have diagnosed a problem.
1046bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1047  if (isa<CXXTryStmt>(Body)) {
1048    // C++11 [dcl.constexpr]p3:
1049    //  The definition of a constexpr function shall satisfy the following
1050    //  constraints: [...]
1051    // - its function-body shall be = delete, = default, or a
1052    //   compound-statement
1053    //
1054    // C++11 [dcl.constexpr]p4:
1055    //  In the definition of a constexpr constructor, [...]
1056    // - its function-body shall not be a function-try-block;
1057    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1058      << isa<CXXConstructorDecl>(Dcl);
1059    return false;
1060  }
1061
1062  SmallVector<SourceLocation, 4> ReturnStmts;
1063
1064  // - its function-body shall be [...] a compound-statement that contains only
1065  //   [... list of cases ...]
1066  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1067  SourceLocation Cxx1yLoc;
1068  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1069         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1070    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1071      return false;
1072  }
1073
1074  if (Cxx1yLoc.isValid())
1075    Diag(Cxx1yLoc,
1076         getLangOpts().CPlusPlus1y
1077           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1078           : diag::ext_constexpr_body_invalid_stmt)
1079      << isa<CXXConstructorDecl>(Dcl);
1080
1081  if (const CXXConstructorDecl *Constructor
1082        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1083    const CXXRecordDecl *RD = Constructor->getParent();
1084    // DR1359:
1085    // - every non-variant non-static data member and base class sub-object
1086    //   shall be initialized;
1087    // - if the class is a non-empty union, or for each non-empty anonymous
1088    //   union member of a non-union class, exactly one non-static data member
1089    //   shall be initialized;
1090    if (RD->isUnion()) {
1091      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1092        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1093        return false;
1094      }
1095    } else if (!Constructor->isDependentContext() &&
1096               !Constructor->isDelegatingConstructor()) {
1097      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1098
1099      // Skip detailed checking if we have enough initializers, and we would
1100      // allow at most one initializer per member.
1101      bool AnyAnonStructUnionMembers = false;
1102      unsigned Fields = 0;
1103      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1104           E = RD->field_end(); I != E; ++I, ++Fields) {
1105        if (I->isAnonymousStructOrUnion()) {
1106          AnyAnonStructUnionMembers = true;
1107          break;
1108        }
1109      }
1110      if (AnyAnonStructUnionMembers ||
1111          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1112        // Check initialization of non-static data members. Base classes are
1113        // always initialized so do not need to be checked. Dependent bases
1114        // might not have initializers in the member initializer list.
1115        llvm::SmallSet<Decl*, 16> Inits;
1116        for (CXXConstructorDecl::init_const_iterator
1117               I = Constructor->init_begin(), E = Constructor->init_end();
1118             I != E; ++I) {
1119          if (FieldDecl *FD = (*I)->getMember())
1120            Inits.insert(FD);
1121          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1122            Inits.insert(ID->chain_begin(), ID->chain_end());
1123        }
1124
1125        bool Diagnosed = false;
1126        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1127             E = RD->field_end(); I != E; ++I)
1128          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1129        if (Diagnosed)
1130          return false;
1131      }
1132    }
1133  } else {
1134    if (ReturnStmts.empty()) {
1135      // C++1y doesn't require constexpr functions to contain a 'return'
1136      // statement. We still do, unless the return type is void, because
1137      // otherwise if there's no return statement, the function cannot
1138      // be used in a core constant expression.
1139      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1140      Diag(Dcl->getLocation(),
1141           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1142              : diag::err_constexpr_body_no_return);
1143      return OK;
1144    }
1145    if (ReturnStmts.size() > 1) {
1146      Diag(ReturnStmts.back(),
1147           getLangOpts().CPlusPlus1y
1148             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1149             : diag::ext_constexpr_body_multiple_return);
1150      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1151        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1152    }
1153  }
1154
1155  // C++11 [dcl.constexpr]p5:
1156  //   if no function argument values exist such that the function invocation
1157  //   substitution would produce a constant expression, the program is
1158  //   ill-formed; no diagnostic required.
1159  // C++11 [dcl.constexpr]p3:
1160  //   - every constructor call and implicit conversion used in initializing the
1161  //     return value shall be one of those allowed in a constant expression.
1162  // C++11 [dcl.constexpr]p4:
1163  //   - every constructor involved in initializing non-static data members and
1164  //     base class sub-objects shall be a constexpr constructor.
1165  SmallVector<PartialDiagnosticAt, 8> Diags;
1166  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1167    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1168      << isa<CXXConstructorDecl>(Dcl);
1169    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1170      Diag(Diags[I].first, Diags[I].second);
1171    // Don't return false here: we allow this for compatibility in
1172    // system headers.
1173  }
1174
1175  return true;
1176}
1177
1178/// isCurrentClassName - Determine whether the identifier II is the
1179/// name of the class type currently being defined. In the case of
1180/// nested classes, this will only return true if II is the name of
1181/// the innermost class.
1182bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1183                              const CXXScopeSpec *SS) {
1184  assert(getLangOpts().CPlusPlus && "No class names in C!");
1185
1186  CXXRecordDecl *CurDecl;
1187  if (SS && SS->isSet() && !SS->isInvalid()) {
1188    DeclContext *DC = computeDeclContext(*SS, true);
1189    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1190  } else
1191    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1192
1193  if (CurDecl && CurDecl->getIdentifier())
1194    return &II == CurDecl->getIdentifier();
1195  else
1196    return false;
1197}
1198
1199/// \brief Determine whether the given class is a base class of the given
1200/// class, including looking at dependent bases.
1201static bool findCircularInheritance(const CXXRecordDecl *Class,
1202                                    const CXXRecordDecl *Current) {
1203  SmallVector<const CXXRecordDecl*, 8> Queue;
1204
1205  Class = Class->getCanonicalDecl();
1206  while (true) {
1207    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1208                                                  E = Current->bases_end();
1209         I != E; ++I) {
1210      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1211      if (!Base)
1212        continue;
1213
1214      Base = Base->getDefinition();
1215      if (!Base)
1216        continue;
1217
1218      if (Base->getCanonicalDecl() == Class)
1219        return true;
1220
1221      Queue.push_back(Base);
1222    }
1223
1224    if (Queue.empty())
1225      return false;
1226
1227    Current = Queue.back();
1228    Queue.pop_back();
1229  }
1230
1231  return false;
1232}
1233
1234/// \brief Check the validity of a C++ base class specifier.
1235///
1236/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1237/// and returns NULL otherwise.
1238CXXBaseSpecifier *
1239Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1240                         SourceRange SpecifierRange,
1241                         bool Virtual, AccessSpecifier Access,
1242                         TypeSourceInfo *TInfo,
1243                         SourceLocation EllipsisLoc) {
1244  QualType BaseType = TInfo->getType();
1245
1246  // C++ [class.union]p1:
1247  //   A union shall not have base classes.
1248  if (Class->isUnion()) {
1249    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1250      << SpecifierRange;
1251    return 0;
1252  }
1253
1254  if (EllipsisLoc.isValid() &&
1255      !TInfo->getType()->containsUnexpandedParameterPack()) {
1256    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1257      << TInfo->getTypeLoc().getSourceRange();
1258    EllipsisLoc = SourceLocation();
1259  }
1260
1261  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1262
1263  if (BaseType->isDependentType()) {
1264    // Make sure that we don't have circular inheritance among our dependent
1265    // bases. For non-dependent bases, the check for completeness below handles
1266    // this.
1267    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1268      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1269          ((BaseDecl = BaseDecl->getDefinition()) &&
1270           findCircularInheritance(Class, BaseDecl))) {
1271        Diag(BaseLoc, diag::err_circular_inheritance)
1272          << BaseType << Context.getTypeDeclType(Class);
1273
1274        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1275          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1276            << BaseType;
1277
1278        return 0;
1279      }
1280    }
1281
1282    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1283                                          Class->getTagKind() == TTK_Class,
1284                                          Access, TInfo, EllipsisLoc);
1285  }
1286
1287  // Base specifiers must be record types.
1288  if (!BaseType->isRecordType()) {
1289    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1290    return 0;
1291  }
1292
1293  // C++ [class.union]p1:
1294  //   A union shall not be used as a base class.
1295  if (BaseType->isUnionType()) {
1296    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1297    return 0;
1298  }
1299
1300  // C++ [class.derived]p2:
1301  //   The class-name in a base-specifier shall not be an incompletely
1302  //   defined class.
1303  if (RequireCompleteType(BaseLoc, BaseType,
1304                          diag::err_incomplete_base_class, SpecifierRange)) {
1305    Class->setInvalidDecl();
1306    return 0;
1307  }
1308
1309  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1310  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1311  assert(BaseDecl && "Record type has no declaration");
1312  BaseDecl = BaseDecl->getDefinition();
1313  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1314  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1315  assert(CXXBaseDecl && "Base type is not a C++ type");
1316
1317  // C++ [class]p3:
1318  //   If a class is marked final and it appears as a base-type-specifier in
1319  //   base-clause, the program is ill-formed.
1320  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1321    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1322      << CXXBaseDecl->getDeclName();
1323    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1324      << CXXBaseDecl->getDeclName();
1325    return 0;
1326  }
1327
1328  if (BaseDecl->isInvalidDecl())
1329    Class->setInvalidDecl();
1330
1331  // Create the base specifier.
1332  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1333                                        Class->getTagKind() == TTK_Class,
1334                                        Access, TInfo, EllipsisLoc);
1335}
1336
1337/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1338/// one entry in the base class list of a class specifier, for
1339/// example:
1340///    class foo : public bar, virtual private baz {
1341/// 'public bar' and 'virtual private baz' are each base-specifiers.
1342BaseResult
1343Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1344                         ParsedAttributes &Attributes,
1345                         bool Virtual, AccessSpecifier Access,
1346                         ParsedType basetype, SourceLocation BaseLoc,
1347                         SourceLocation EllipsisLoc) {
1348  if (!classdecl)
1349    return true;
1350
1351  AdjustDeclIfTemplate(classdecl);
1352  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1353  if (!Class)
1354    return true;
1355
1356  // We do not support any C++11 attributes on base-specifiers yet.
1357  // Diagnose any attributes we see.
1358  if (!Attributes.empty()) {
1359    for (AttributeList *Attr = Attributes.getList(); Attr;
1360         Attr = Attr->getNext()) {
1361      if (Attr->isInvalid() ||
1362          Attr->getKind() == AttributeList::IgnoredAttribute)
1363        continue;
1364      Diag(Attr->getLoc(),
1365           Attr->getKind() == AttributeList::UnknownAttribute
1366             ? diag::warn_unknown_attribute_ignored
1367             : diag::err_base_specifier_attribute)
1368        << Attr->getName();
1369    }
1370  }
1371
1372  TypeSourceInfo *TInfo = 0;
1373  GetTypeFromParser(basetype, &TInfo);
1374
1375  if (EllipsisLoc.isInvalid() &&
1376      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1377                                      UPPC_BaseType))
1378    return true;
1379
1380  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1381                                                      Virtual, Access, TInfo,
1382                                                      EllipsisLoc))
1383    return BaseSpec;
1384  else
1385    Class->setInvalidDecl();
1386
1387  return true;
1388}
1389
1390/// \brief Performs the actual work of attaching the given base class
1391/// specifiers to a C++ class.
1392bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1393                                unsigned NumBases) {
1394 if (NumBases == 0)
1395    return false;
1396
1397  // Used to keep track of which base types we have already seen, so
1398  // that we can properly diagnose redundant direct base types. Note
1399  // that the key is always the unqualified canonical type of the base
1400  // class.
1401  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1402
1403  // Copy non-redundant base specifiers into permanent storage.
1404  unsigned NumGoodBases = 0;
1405  bool Invalid = false;
1406  for (unsigned idx = 0; idx < NumBases; ++idx) {
1407    QualType NewBaseType
1408      = Context.getCanonicalType(Bases[idx]->getType());
1409    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1410
1411    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1412    if (KnownBase) {
1413      // C++ [class.mi]p3:
1414      //   A class shall not be specified as a direct base class of a
1415      //   derived class more than once.
1416      Diag(Bases[idx]->getLocStart(),
1417           diag::err_duplicate_base_class)
1418        << KnownBase->getType()
1419        << Bases[idx]->getSourceRange();
1420
1421      // Delete the duplicate base class specifier; we're going to
1422      // overwrite its pointer later.
1423      Context.Deallocate(Bases[idx]);
1424
1425      Invalid = true;
1426    } else {
1427      // Okay, add this new base class.
1428      KnownBase = Bases[idx];
1429      Bases[NumGoodBases++] = Bases[idx];
1430      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1431        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1432        if (Class->isInterface() &&
1433              (!RD->isInterface() ||
1434               KnownBase->getAccessSpecifier() != AS_public)) {
1435          // The Microsoft extension __interface does not permit bases that
1436          // are not themselves public interfaces.
1437          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1438            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1439            << RD->getSourceRange();
1440          Invalid = true;
1441        }
1442        if (RD->hasAttr<WeakAttr>())
1443          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1444      }
1445    }
1446  }
1447
1448  // Attach the remaining base class specifiers to the derived class.
1449  Class->setBases(Bases, NumGoodBases);
1450
1451  // Delete the remaining (good) base class specifiers, since their
1452  // data has been copied into the CXXRecordDecl.
1453  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1454    Context.Deallocate(Bases[idx]);
1455
1456  return Invalid;
1457}
1458
1459/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1460/// class, after checking whether there are any duplicate base
1461/// classes.
1462void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1463                               unsigned NumBases) {
1464  if (!ClassDecl || !Bases || !NumBases)
1465    return;
1466
1467  AdjustDeclIfTemplate(ClassDecl);
1468  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1469                       (CXXBaseSpecifier**)(Bases), NumBases);
1470}
1471
1472/// \brief Determine whether the type \p Derived is a C++ class that is
1473/// derived from the type \p Base.
1474bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1475  if (!getLangOpts().CPlusPlus)
1476    return false;
1477
1478  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1479  if (!DerivedRD)
1480    return false;
1481
1482  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1483  if (!BaseRD)
1484    return false;
1485
1486  // If either the base or the derived type is invalid, don't try to
1487  // check whether one is derived from the other.
1488  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1489    return false;
1490
1491  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1492  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1493}
1494
1495/// \brief Determine whether the type \p Derived is a C++ class that is
1496/// derived from the type \p Base.
1497bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1498  if (!getLangOpts().CPlusPlus)
1499    return false;
1500
1501  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1502  if (!DerivedRD)
1503    return false;
1504
1505  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1506  if (!BaseRD)
1507    return false;
1508
1509  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1510}
1511
1512void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1513                              CXXCastPath &BasePathArray) {
1514  assert(BasePathArray.empty() && "Base path array must be empty!");
1515  assert(Paths.isRecordingPaths() && "Must record paths!");
1516
1517  const CXXBasePath &Path = Paths.front();
1518
1519  // We first go backward and check if we have a virtual base.
1520  // FIXME: It would be better if CXXBasePath had the base specifier for
1521  // the nearest virtual base.
1522  unsigned Start = 0;
1523  for (unsigned I = Path.size(); I != 0; --I) {
1524    if (Path[I - 1].Base->isVirtual()) {
1525      Start = I - 1;
1526      break;
1527    }
1528  }
1529
1530  // Now add all bases.
1531  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1532    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1533}
1534
1535/// \brief Determine whether the given base path includes a virtual
1536/// base class.
1537bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1538  for (CXXCastPath::const_iterator B = BasePath.begin(),
1539                                BEnd = BasePath.end();
1540       B != BEnd; ++B)
1541    if ((*B)->isVirtual())
1542      return true;
1543
1544  return false;
1545}
1546
1547/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1548/// conversion (where Derived and Base are class types) is
1549/// well-formed, meaning that the conversion is unambiguous (and
1550/// that all of the base classes are accessible). Returns true
1551/// and emits a diagnostic if the code is ill-formed, returns false
1552/// otherwise. Loc is the location where this routine should point to
1553/// if there is an error, and Range is the source range to highlight
1554/// if there is an error.
1555bool
1556Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1557                                   unsigned InaccessibleBaseID,
1558                                   unsigned AmbigiousBaseConvID,
1559                                   SourceLocation Loc, SourceRange Range,
1560                                   DeclarationName Name,
1561                                   CXXCastPath *BasePath) {
1562  // First, determine whether the path from Derived to Base is
1563  // ambiguous. This is slightly more expensive than checking whether
1564  // the Derived to Base conversion exists, because here we need to
1565  // explore multiple paths to determine if there is an ambiguity.
1566  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1567                     /*DetectVirtual=*/false);
1568  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1569  assert(DerivationOkay &&
1570         "Can only be used with a derived-to-base conversion");
1571  (void)DerivationOkay;
1572
1573  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1574    if (InaccessibleBaseID) {
1575      // Check that the base class can be accessed.
1576      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1577                                   InaccessibleBaseID)) {
1578        case AR_inaccessible:
1579          return true;
1580        case AR_accessible:
1581        case AR_dependent:
1582        case AR_delayed:
1583          break;
1584      }
1585    }
1586
1587    // Build a base path if necessary.
1588    if (BasePath)
1589      BuildBasePathArray(Paths, *BasePath);
1590    return false;
1591  }
1592
1593  // We know that the derived-to-base conversion is ambiguous, and
1594  // we're going to produce a diagnostic. Perform the derived-to-base
1595  // search just one more time to compute all of the possible paths so
1596  // that we can print them out. This is more expensive than any of
1597  // the previous derived-to-base checks we've done, but at this point
1598  // performance isn't as much of an issue.
1599  Paths.clear();
1600  Paths.setRecordingPaths(true);
1601  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1602  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1603  (void)StillOkay;
1604
1605  // Build up a textual representation of the ambiguous paths, e.g.,
1606  // D -> B -> A, that will be used to illustrate the ambiguous
1607  // conversions in the diagnostic. We only print one of the paths
1608  // to each base class subobject.
1609  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1610
1611  Diag(Loc, AmbigiousBaseConvID)
1612  << Derived << Base << PathDisplayStr << Range << Name;
1613  return true;
1614}
1615
1616bool
1617Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1618                                   SourceLocation Loc, SourceRange Range,
1619                                   CXXCastPath *BasePath,
1620                                   bool IgnoreAccess) {
1621  return CheckDerivedToBaseConversion(Derived, Base,
1622                                      IgnoreAccess ? 0
1623                                       : diag::err_upcast_to_inaccessible_base,
1624                                      diag::err_ambiguous_derived_to_base_conv,
1625                                      Loc, Range, DeclarationName(),
1626                                      BasePath);
1627}
1628
1629
1630/// @brief Builds a string representing ambiguous paths from a
1631/// specific derived class to different subobjects of the same base
1632/// class.
1633///
1634/// This function builds a string that can be used in error messages
1635/// to show the different paths that one can take through the
1636/// inheritance hierarchy to go from the derived class to different
1637/// subobjects of a base class. The result looks something like this:
1638/// @code
1639/// struct D -> struct B -> struct A
1640/// struct D -> struct C -> struct A
1641/// @endcode
1642std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1643  std::string PathDisplayStr;
1644  std::set<unsigned> DisplayedPaths;
1645  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1646       Path != Paths.end(); ++Path) {
1647    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1648      // We haven't displayed a path to this particular base
1649      // class subobject yet.
1650      PathDisplayStr += "\n    ";
1651      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1652      for (CXXBasePath::const_iterator Element = Path->begin();
1653           Element != Path->end(); ++Element)
1654        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1655    }
1656  }
1657
1658  return PathDisplayStr;
1659}
1660
1661//===----------------------------------------------------------------------===//
1662// C++ class member Handling
1663//===----------------------------------------------------------------------===//
1664
1665/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1666bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1667                                SourceLocation ASLoc,
1668                                SourceLocation ColonLoc,
1669                                AttributeList *Attrs) {
1670  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1671  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1672                                                  ASLoc, ColonLoc);
1673  CurContext->addHiddenDecl(ASDecl);
1674  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1675}
1676
1677/// CheckOverrideControl - Check C++11 override control semantics.
1678void Sema::CheckOverrideControl(Decl *D) {
1679  if (D->isInvalidDecl())
1680    return;
1681
1682  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1683
1684  // Do we know which functions this declaration might be overriding?
1685  bool OverridesAreKnown = !MD ||
1686      (!MD->getParent()->hasAnyDependentBases() &&
1687       !MD->getType()->isDependentType());
1688
1689  if (!MD || !MD->isVirtual()) {
1690    if (OverridesAreKnown) {
1691      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1692        Diag(OA->getLocation(),
1693             diag::override_keyword_only_allowed_on_virtual_member_functions)
1694          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1695        D->dropAttr<OverrideAttr>();
1696      }
1697      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1698        Diag(FA->getLocation(),
1699             diag::override_keyword_only_allowed_on_virtual_member_functions)
1700          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1701        D->dropAttr<FinalAttr>();
1702      }
1703    }
1704    return;
1705  }
1706
1707  if (!OverridesAreKnown)
1708    return;
1709
1710  // C++11 [class.virtual]p5:
1711  //   If a virtual function is marked with the virt-specifier override and
1712  //   does not override a member function of a base class, the program is
1713  //   ill-formed.
1714  bool HasOverriddenMethods =
1715    MD->begin_overridden_methods() != MD->end_overridden_methods();
1716  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1717    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1718      << MD->getDeclName();
1719}
1720
1721/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1722/// function overrides a virtual member function marked 'final', according to
1723/// C++11 [class.virtual]p4.
1724bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1725                                                  const CXXMethodDecl *Old) {
1726  if (!Old->hasAttr<FinalAttr>())
1727    return false;
1728
1729  Diag(New->getLocation(), diag::err_final_function_overridden)
1730    << New->getDeclName();
1731  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1732  return true;
1733}
1734
1735static bool InitializationHasSideEffects(const FieldDecl &FD) {
1736  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1737  // FIXME: Destruction of ObjC lifetime types has side-effects.
1738  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1739    return !RD->isCompleteDefinition() ||
1740           !RD->hasTrivialDefaultConstructor() ||
1741           !RD->hasTrivialDestructor();
1742  return false;
1743}
1744
1745static AttributeList *getMSPropertyAttr(AttributeList *list) {
1746  for (AttributeList* it = list; it != 0; it = it->getNext())
1747    if (it->isDeclspecPropertyAttribute())
1748      return it;
1749  return 0;
1750}
1751
1752/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1753/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1754/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1755/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1756/// present (but parsing it has been deferred).
1757NamedDecl *
1758Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1759                               MultiTemplateParamsArg TemplateParameterLists,
1760                               Expr *BW, const VirtSpecifiers &VS,
1761                               InClassInitStyle InitStyle) {
1762  const DeclSpec &DS = D.getDeclSpec();
1763  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1764  DeclarationName Name = NameInfo.getName();
1765  SourceLocation Loc = NameInfo.getLoc();
1766
1767  // For anonymous bitfields, the location should point to the type.
1768  if (Loc.isInvalid())
1769    Loc = D.getLocStart();
1770
1771  Expr *BitWidth = static_cast<Expr*>(BW);
1772
1773  assert(isa<CXXRecordDecl>(CurContext));
1774  assert(!DS.isFriendSpecified());
1775
1776  bool isFunc = D.isDeclarationOfFunction();
1777
1778  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1779    // The Microsoft extension __interface only permits public member functions
1780    // and prohibits constructors, destructors, operators, non-public member
1781    // functions, static methods and data members.
1782    unsigned InvalidDecl;
1783    bool ShowDeclName = true;
1784    if (!isFunc)
1785      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1786    else if (AS != AS_public)
1787      InvalidDecl = 2;
1788    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1789      InvalidDecl = 3;
1790    else switch (Name.getNameKind()) {
1791      case DeclarationName::CXXConstructorName:
1792        InvalidDecl = 4;
1793        ShowDeclName = false;
1794        break;
1795
1796      case DeclarationName::CXXDestructorName:
1797        InvalidDecl = 5;
1798        ShowDeclName = false;
1799        break;
1800
1801      case DeclarationName::CXXOperatorName:
1802      case DeclarationName::CXXConversionFunctionName:
1803        InvalidDecl = 6;
1804        break;
1805
1806      default:
1807        InvalidDecl = 0;
1808        break;
1809    }
1810
1811    if (InvalidDecl) {
1812      if (ShowDeclName)
1813        Diag(Loc, diag::err_invalid_member_in_interface)
1814          << (InvalidDecl-1) << Name;
1815      else
1816        Diag(Loc, diag::err_invalid_member_in_interface)
1817          << (InvalidDecl-1) << "";
1818      return 0;
1819    }
1820  }
1821
1822  // C++ 9.2p6: A member shall not be declared to have automatic storage
1823  // duration (auto, register) or with the extern storage-class-specifier.
1824  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1825  // data members and cannot be applied to names declared const or static,
1826  // and cannot be applied to reference members.
1827  switch (DS.getStorageClassSpec()) {
1828  case DeclSpec::SCS_unspecified:
1829  case DeclSpec::SCS_typedef:
1830  case DeclSpec::SCS_static:
1831    break;
1832  case DeclSpec::SCS_mutable:
1833    if (isFunc) {
1834      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1835
1836      // FIXME: It would be nicer if the keyword was ignored only for this
1837      // declarator. Otherwise we could get follow-up errors.
1838      D.getMutableDeclSpec().ClearStorageClassSpecs();
1839    }
1840    break;
1841  default:
1842    Diag(DS.getStorageClassSpecLoc(),
1843         diag::err_storageclass_invalid_for_member);
1844    D.getMutableDeclSpec().ClearStorageClassSpecs();
1845    break;
1846  }
1847
1848  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1849                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1850                      !isFunc);
1851
1852  if (DS.isConstexprSpecified() && isInstField) {
1853    SemaDiagnosticBuilder B =
1854        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1855    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1856    if (InitStyle == ICIS_NoInit) {
1857      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1858      D.getMutableDeclSpec().ClearConstexprSpec();
1859      const char *PrevSpec;
1860      unsigned DiagID;
1861      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1862                                         PrevSpec, DiagID, getLangOpts());
1863      (void)Failed;
1864      assert(!Failed && "Making a constexpr member const shouldn't fail");
1865    } else {
1866      B << 1;
1867      const char *PrevSpec;
1868      unsigned DiagID;
1869      if (D.getMutableDeclSpec().SetStorageClassSpec(
1870          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1871        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1872               "This is the only DeclSpec that should fail to be applied");
1873        B << 1;
1874      } else {
1875        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1876        isInstField = false;
1877      }
1878    }
1879  }
1880
1881  NamedDecl *Member;
1882  if (isInstField) {
1883    CXXScopeSpec &SS = D.getCXXScopeSpec();
1884
1885    // Data members must have identifiers for names.
1886    if (!Name.isIdentifier()) {
1887      Diag(Loc, diag::err_bad_variable_name)
1888        << Name;
1889      return 0;
1890    }
1891
1892    IdentifierInfo *II = Name.getAsIdentifierInfo();
1893
1894    // Member field could not be with "template" keyword.
1895    // So TemplateParameterLists should be empty in this case.
1896    if (TemplateParameterLists.size()) {
1897      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1898      if (TemplateParams->size()) {
1899        // There is no such thing as a member field template.
1900        Diag(D.getIdentifierLoc(), diag::err_template_member)
1901            << II
1902            << SourceRange(TemplateParams->getTemplateLoc(),
1903                TemplateParams->getRAngleLoc());
1904      } else {
1905        // There is an extraneous 'template<>' for this member.
1906        Diag(TemplateParams->getTemplateLoc(),
1907            diag::err_template_member_noparams)
1908            << II
1909            << SourceRange(TemplateParams->getTemplateLoc(),
1910                TemplateParams->getRAngleLoc());
1911      }
1912      return 0;
1913    }
1914
1915    if (SS.isSet() && !SS.isInvalid()) {
1916      // The user provided a superfluous scope specifier inside a class
1917      // definition:
1918      //
1919      // class X {
1920      //   int X::member;
1921      // };
1922      if (DeclContext *DC = computeDeclContext(SS, false))
1923        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1924      else
1925        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1926          << Name << SS.getRange();
1927
1928      SS.clear();
1929    }
1930
1931    AttributeList *MSPropertyAttr =
1932      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1933    if (MSPropertyAttr) {
1934      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1935                                BitWidth, InitStyle, AS, MSPropertyAttr);
1936      isInstField = false;
1937    } else {
1938      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1939                                BitWidth, InitStyle, AS);
1940    }
1941    assert(Member && "HandleField never returns null");
1942  } else {
1943    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1944
1945    Member = HandleDeclarator(S, D, TemplateParameterLists);
1946    if (!Member) {
1947      return 0;
1948    }
1949
1950    // Non-instance-fields can't have a bitfield.
1951    if (BitWidth) {
1952      if (Member->isInvalidDecl()) {
1953        // don't emit another diagnostic.
1954      } else if (isa<VarDecl>(Member)) {
1955        // C++ 9.6p3: A bit-field shall not be a static member.
1956        // "static member 'A' cannot be a bit-field"
1957        Diag(Loc, diag::err_static_not_bitfield)
1958          << Name << BitWidth->getSourceRange();
1959      } else if (isa<TypedefDecl>(Member)) {
1960        // "typedef member 'x' cannot be a bit-field"
1961        Diag(Loc, diag::err_typedef_not_bitfield)
1962          << Name << BitWidth->getSourceRange();
1963      } else {
1964        // A function typedef ("typedef int f(); f a;").
1965        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1966        Diag(Loc, diag::err_not_integral_type_bitfield)
1967          << Name << cast<ValueDecl>(Member)->getType()
1968          << BitWidth->getSourceRange();
1969      }
1970
1971      BitWidth = 0;
1972      Member->setInvalidDecl();
1973    }
1974
1975    Member->setAccess(AS);
1976
1977    // If we have declared a member function template, set the access of the
1978    // templated declaration as well.
1979    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1980      FunTmpl->getTemplatedDecl()->setAccess(AS);
1981  }
1982
1983  if (VS.isOverrideSpecified())
1984    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1985  if (VS.isFinalSpecified())
1986    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1987
1988  if (VS.getLastLocation().isValid()) {
1989    // Update the end location of a method that has a virt-specifiers.
1990    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1991      MD->setRangeEnd(VS.getLastLocation());
1992  }
1993
1994  CheckOverrideControl(Member);
1995
1996  assert((Name || isInstField) && "No identifier for non-field ?");
1997
1998  if (isInstField) {
1999    FieldDecl *FD = cast<FieldDecl>(Member);
2000    FieldCollector->Add(FD);
2001
2002    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2003                                 FD->getLocation())
2004          != DiagnosticsEngine::Ignored) {
2005      // Remember all explicit private FieldDecls that have a name, no side
2006      // effects and are not part of a dependent type declaration.
2007      if (!FD->isImplicit() && FD->getDeclName() &&
2008          FD->getAccess() == AS_private &&
2009          !FD->hasAttr<UnusedAttr>() &&
2010          !FD->getParent()->isDependentContext() &&
2011          !InitializationHasSideEffects(*FD))
2012        UnusedPrivateFields.insert(FD);
2013    }
2014  }
2015
2016  return Member;
2017}
2018
2019namespace {
2020  class UninitializedFieldVisitor
2021      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2022    Sema &S;
2023    ValueDecl *VD;
2024  public:
2025    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2026    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2027                                                        S(S) {
2028      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2029        this->VD = IFD->getAnonField();
2030      else
2031        this->VD = VD;
2032    }
2033
2034    void HandleExpr(Expr *E) {
2035      if (!E) return;
2036
2037      // Expressions like x(x) sometimes lack the surrounding expressions
2038      // but need to be checked anyways.
2039      HandleValue(E);
2040      Visit(E);
2041    }
2042
2043    void HandleValue(Expr *E) {
2044      E = E->IgnoreParens();
2045
2046      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2047        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2048          return;
2049
2050        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2051        // or union.
2052        MemberExpr *FieldME = ME;
2053
2054        Expr *Base = E;
2055        while (isa<MemberExpr>(Base)) {
2056          ME = cast<MemberExpr>(Base);
2057
2058          if (isa<VarDecl>(ME->getMemberDecl()))
2059            return;
2060
2061          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2062            if (!FD->isAnonymousStructOrUnion())
2063              FieldME = ME;
2064
2065          Base = ME->getBase();
2066        }
2067
2068        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2069          unsigned diag = VD->getType()->isReferenceType()
2070              ? diag::warn_reference_field_is_uninit
2071              : diag::warn_field_is_uninit;
2072          S.Diag(FieldME->getExprLoc(), diag) << VD;
2073        }
2074        return;
2075      }
2076
2077      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2078        HandleValue(CO->getTrueExpr());
2079        HandleValue(CO->getFalseExpr());
2080        return;
2081      }
2082
2083      if (BinaryConditionalOperator *BCO =
2084              dyn_cast<BinaryConditionalOperator>(E)) {
2085        HandleValue(BCO->getCommon());
2086        HandleValue(BCO->getFalseExpr());
2087        return;
2088      }
2089
2090      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2091        switch (BO->getOpcode()) {
2092        default:
2093          return;
2094        case(BO_PtrMemD):
2095        case(BO_PtrMemI):
2096          HandleValue(BO->getLHS());
2097          return;
2098        case(BO_Comma):
2099          HandleValue(BO->getRHS());
2100          return;
2101        }
2102      }
2103    }
2104
2105    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2106      if (E->getCastKind() == CK_LValueToRValue)
2107        HandleValue(E->getSubExpr());
2108
2109      Inherited::VisitImplicitCastExpr(E);
2110    }
2111
2112    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2113      Expr *Callee = E->getCallee();
2114      if (isa<MemberExpr>(Callee))
2115        HandleValue(Callee);
2116
2117      Inherited::VisitCXXMemberCallExpr(E);
2118    }
2119  };
2120  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2121                                                       ValueDecl *VD) {
2122    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2123  }
2124} // namespace
2125
2126/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2127/// in-class initializer for a non-static C++ class member, and after
2128/// instantiating an in-class initializer in a class template. Such actions
2129/// are deferred until the class is complete.
2130void
2131Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2132                                       Expr *InitExpr) {
2133  FieldDecl *FD = cast<FieldDecl>(D);
2134  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2135         "must set init style when field is created");
2136
2137  if (!InitExpr) {
2138    FD->setInvalidDecl();
2139    FD->removeInClassInitializer();
2140    return;
2141  }
2142
2143  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2144    FD->setInvalidDecl();
2145    FD->removeInClassInitializer();
2146    return;
2147  }
2148
2149  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2150      != DiagnosticsEngine::Ignored) {
2151    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2152  }
2153
2154  ExprResult Init = InitExpr;
2155  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2156    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2157      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2158        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2159    }
2160    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2161    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2162        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2163        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2164    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2165    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2166    if (Init.isInvalid()) {
2167      FD->setInvalidDecl();
2168      return;
2169    }
2170  }
2171
2172  // C++11 [class.base.init]p7:
2173  //   The initialization of each base and member constitutes a
2174  //   full-expression.
2175  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2176  if (Init.isInvalid()) {
2177    FD->setInvalidDecl();
2178    return;
2179  }
2180
2181  InitExpr = Init.release();
2182
2183  FD->setInClassInitializer(InitExpr);
2184}
2185
2186/// \brief Find the direct and/or virtual base specifiers that
2187/// correspond to the given base type, for use in base initialization
2188/// within a constructor.
2189static bool FindBaseInitializer(Sema &SemaRef,
2190                                CXXRecordDecl *ClassDecl,
2191                                QualType BaseType,
2192                                const CXXBaseSpecifier *&DirectBaseSpec,
2193                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2194  // First, check for a direct base class.
2195  DirectBaseSpec = 0;
2196  for (CXXRecordDecl::base_class_const_iterator Base
2197         = ClassDecl->bases_begin();
2198       Base != ClassDecl->bases_end(); ++Base) {
2199    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2200      // We found a direct base of this type. That's what we're
2201      // initializing.
2202      DirectBaseSpec = &*Base;
2203      break;
2204    }
2205  }
2206
2207  // Check for a virtual base class.
2208  // FIXME: We might be able to short-circuit this if we know in advance that
2209  // there are no virtual bases.
2210  VirtualBaseSpec = 0;
2211  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2212    // We haven't found a base yet; search the class hierarchy for a
2213    // virtual base class.
2214    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2215                       /*DetectVirtual=*/false);
2216    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2217                              BaseType, Paths)) {
2218      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2219           Path != Paths.end(); ++Path) {
2220        if (Path->back().Base->isVirtual()) {
2221          VirtualBaseSpec = Path->back().Base;
2222          break;
2223        }
2224      }
2225    }
2226  }
2227
2228  return DirectBaseSpec || VirtualBaseSpec;
2229}
2230
2231/// \brief Handle a C++ member initializer using braced-init-list syntax.
2232MemInitResult
2233Sema::ActOnMemInitializer(Decl *ConstructorD,
2234                          Scope *S,
2235                          CXXScopeSpec &SS,
2236                          IdentifierInfo *MemberOrBase,
2237                          ParsedType TemplateTypeTy,
2238                          const DeclSpec &DS,
2239                          SourceLocation IdLoc,
2240                          Expr *InitList,
2241                          SourceLocation EllipsisLoc) {
2242  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2243                             DS, IdLoc, InitList,
2244                             EllipsisLoc);
2245}
2246
2247/// \brief Handle a C++ member initializer using parentheses syntax.
2248MemInitResult
2249Sema::ActOnMemInitializer(Decl *ConstructorD,
2250                          Scope *S,
2251                          CXXScopeSpec &SS,
2252                          IdentifierInfo *MemberOrBase,
2253                          ParsedType TemplateTypeTy,
2254                          const DeclSpec &DS,
2255                          SourceLocation IdLoc,
2256                          SourceLocation LParenLoc,
2257                          ArrayRef<Expr *> Args,
2258                          SourceLocation RParenLoc,
2259                          SourceLocation EllipsisLoc) {
2260  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2261                                           Args, RParenLoc);
2262  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2263                             DS, IdLoc, List, EllipsisLoc);
2264}
2265
2266namespace {
2267
2268// Callback to only accept typo corrections that can be a valid C++ member
2269// intializer: either a non-static field member or a base class.
2270class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2271 public:
2272  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2273      : ClassDecl(ClassDecl) {}
2274
2275  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2276    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2277      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2278        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2279      else
2280        return isa<TypeDecl>(ND);
2281    }
2282    return false;
2283  }
2284
2285 private:
2286  CXXRecordDecl *ClassDecl;
2287};
2288
2289}
2290
2291/// \brief Handle a C++ member initializer.
2292MemInitResult
2293Sema::BuildMemInitializer(Decl *ConstructorD,
2294                          Scope *S,
2295                          CXXScopeSpec &SS,
2296                          IdentifierInfo *MemberOrBase,
2297                          ParsedType TemplateTypeTy,
2298                          const DeclSpec &DS,
2299                          SourceLocation IdLoc,
2300                          Expr *Init,
2301                          SourceLocation EllipsisLoc) {
2302  if (!ConstructorD)
2303    return true;
2304
2305  AdjustDeclIfTemplate(ConstructorD);
2306
2307  CXXConstructorDecl *Constructor
2308    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2309  if (!Constructor) {
2310    // The user wrote a constructor initializer on a function that is
2311    // not a C++ constructor. Ignore the error for now, because we may
2312    // have more member initializers coming; we'll diagnose it just
2313    // once in ActOnMemInitializers.
2314    return true;
2315  }
2316
2317  CXXRecordDecl *ClassDecl = Constructor->getParent();
2318
2319  // C++ [class.base.init]p2:
2320  //   Names in a mem-initializer-id are looked up in the scope of the
2321  //   constructor's class and, if not found in that scope, are looked
2322  //   up in the scope containing the constructor's definition.
2323  //   [Note: if the constructor's class contains a member with the
2324  //   same name as a direct or virtual base class of the class, a
2325  //   mem-initializer-id naming the member or base class and composed
2326  //   of a single identifier refers to the class member. A
2327  //   mem-initializer-id for the hidden base class may be specified
2328  //   using a qualified name. ]
2329  if (!SS.getScopeRep() && !TemplateTypeTy) {
2330    // Look for a member, first.
2331    DeclContext::lookup_result Result
2332      = ClassDecl->lookup(MemberOrBase);
2333    if (!Result.empty()) {
2334      ValueDecl *Member;
2335      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2336          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2337        if (EllipsisLoc.isValid())
2338          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2339            << MemberOrBase
2340            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2341
2342        return BuildMemberInitializer(Member, Init, IdLoc);
2343      }
2344    }
2345  }
2346  // It didn't name a member, so see if it names a class.
2347  QualType BaseType;
2348  TypeSourceInfo *TInfo = 0;
2349
2350  if (TemplateTypeTy) {
2351    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2352  } else if (DS.getTypeSpecType() == TST_decltype) {
2353    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2354  } else {
2355    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2356    LookupParsedName(R, S, &SS);
2357
2358    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2359    if (!TyD) {
2360      if (R.isAmbiguous()) return true;
2361
2362      // We don't want access-control diagnostics here.
2363      R.suppressDiagnostics();
2364
2365      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2366        bool NotUnknownSpecialization = false;
2367        DeclContext *DC = computeDeclContext(SS, false);
2368        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2369          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2370
2371        if (!NotUnknownSpecialization) {
2372          // When the scope specifier can refer to a member of an unknown
2373          // specialization, we take it as a type name.
2374          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2375                                       SS.getWithLocInContext(Context),
2376                                       *MemberOrBase, IdLoc);
2377          if (BaseType.isNull())
2378            return true;
2379
2380          R.clear();
2381          R.setLookupName(MemberOrBase);
2382        }
2383      }
2384
2385      // If no results were found, try to correct typos.
2386      TypoCorrection Corr;
2387      MemInitializerValidatorCCC Validator(ClassDecl);
2388      if (R.empty() && BaseType.isNull() &&
2389          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2390                              Validator, ClassDecl))) {
2391        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2392        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2393        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2394          // We have found a non-static data member with a similar
2395          // name to what was typed; complain and initialize that
2396          // member.
2397          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2398            << MemberOrBase << true << CorrectedQuotedStr
2399            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2400          Diag(Member->getLocation(), diag::note_previous_decl)
2401            << CorrectedQuotedStr;
2402
2403          return BuildMemberInitializer(Member, Init, IdLoc);
2404        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2405          const CXXBaseSpecifier *DirectBaseSpec;
2406          const CXXBaseSpecifier *VirtualBaseSpec;
2407          if (FindBaseInitializer(*this, ClassDecl,
2408                                  Context.getTypeDeclType(Type),
2409                                  DirectBaseSpec, VirtualBaseSpec)) {
2410            // We have found a direct or virtual base class with a
2411            // similar name to what was typed; complain and initialize
2412            // that base class.
2413            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2414              << MemberOrBase << false << CorrectedQuotedStr
2415              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2416
2417            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2418                                                             : VirtualBaseSpec;
2419            Diag(BaseSpec->getLocStart(),
2420                 diag::note_base_class_specified_here)
2421              << BaseSpec->getType()
2422              << BaseSpec->getSourceRange();
2423
2424            TyD = Type;
2425          }
2426        }
2427      }
2428
2429      if (!TyD && BaseType.isNull()) {
2430        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2431          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2432        return true;
2433      }
2434    }
2435
2436    if (BaseType.isNull()) {
2437      BaseType = Context.getTypeDeclType(TyD);
2438      if (SS.isSet()) {
2439        NestedNameSpecifier *Qualifier =
2440          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2441
2442        // FIXME: preserve source range information
2443        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2444      }
2445    }
2446  }
2447
2448  if (!TInfo)
2449    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2450
2451  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2452}
2453
2454/// Checks a member initializer expression for cases where reference (or
2455/// pointer) members are bound to by-value parameters (or their addresses).
2456static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2457                                               Expr *Init,
2458                                               SourceLocation IdLoc) {
2459  QualType MemberTy = Member->getType();
2460
2461  // We only handle pointers and references currently.
2462  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2463  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2464    return;
2465
2466  const bool IsPointer = MemberTy->isPointerType();
2467  if (IsPointer) {
2468    if (const UnaryOperator *Op
2469          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2470      // The only case we're worried about with pointers requires taking the
2471      // address.
2472      if (Op->getOpcode() != UO_AddrOf)
2473        return;
2474
2475      Init = Op->getSubExpr();
2476    } else {
2477      // We only handle address-of expression initializers for pointers.
2478      return;
2479    }
2480  }
2481
2482  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2483    // Taking the address of a temporary will be diagnosed as a hard error.
2484    if (IsPointer)
2485      return;
2486
2487    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2488      << Member << Init->getSourceRange();
2489  } else if (const DeclRefExpr *DRE
2490               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2491    // We only warn when referring to a non-reference parameter declaration.
2492    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2493    if (!Parameter || Parameter->getType()->isReferenceType())
2494      return;
2495
2496    S.Diag(Init->getExprLoc(),
2497           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2498                     : diag::warn_bind_ref_member_to_parameter)
2499      << Member << Parameter << Init->getSourceRange();
2500  } else {
2501    // Other initializers are fine.
2502    return;
2503  }
2504
2505  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2506    << (unsigned)IsPointer;
2507}
2508
2509MemInitResult
2510Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2511                             SourceLocation IdLoc) {
2512  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2513  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2514  assert((DirectMember || IndirectMember) &&
2515         "Member must be a FieldDecl or IndirectFieldDecl");
2516
2517  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2518    return true;
2519
2520  if (Member->isInvalidDecl())
2521    return true;
2522
2523  // Diagnose value-uses of fields to initialize themselves, e.g.
2524  //   foo(foo)
2525  // where foo is not also a parameter to the constructor.
2526  // TODO: implement -Wuninitialized and fold this into that framework.
2527  MultiExprArg Args;
2528  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2529    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2530  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2531    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2532  } else {
2533    // Template instantiation doesn't reconstruct ParenListExprs for us.
2534    Args = Init;
2535  }
2536
2537  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2538        != DiagnosticsEngine::Ignored)
2539    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2540      // FIXME: Warn about the case when other fields are used before being
2541      // initialized. For example, let this field be the i'th field. When
2542      // initializing the i'th field, throw a warning if any of the >= i'th
2543      // fields are used, as they are not yet initialized.
2544      // Right now we are only handling the case where the i'th field uses
2545      // itself in its initializer.
2546      // Also need to take into account that some fields may be initialized by
2547      // in-class initializers, see C++11 [class.base.init]p9.
2548      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2549
2550  SourceRange InitRange = Init->getSourceRange();
2551
2552  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2553    // Can't check initialization for a member of dependent type or when
2554    // any of the arguments are type-dependent expressions.
2555    DiscardCleanupsInEvaluationContext();
2556  } else {
2557    bool InitList = false;
2558    if (isa<InitListExpr>(Init)) {
2559      InitList = true;
2560      Args = Init;
2561
2562      if (isStdInitializerList(Member->getType(), 0)) {
2563        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2564            << /*at end of ctor*/1 << InitRange;
2565      }
2566    }
2567
2568    // Initialize the member.
2569    InitializedEntity MemberEntity =
2570      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2571                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2572    InitializationKind Kind =
2573      InitList ? InitializationKind::CreateDirectList(IdLoc)
2574               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2575                                                  InitRange.getEnd());
2576
2577    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2578    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2579    if (MemberInit.isInvalid())
2580      return true;
2581
2582    // C++11 [class.base.init]p7:
2583    //   The initialization of each base and member constitutes a
2584    //   full-expression.
2585    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2586    if (MemberInit.isInvalid())
2587      return true;
2588
2589    Init = MemberInit.get();
2590    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2591  }
2592
2593  if (DirectMember) {
2594    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2595                                            InitRange.getBegin(), Init,
2596                                            InitRange.getEnd());
2597  } else {
2598    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2599                                            InitRange.getBegin(), Init,
2600                                            InitRange.getEnd());
2601  }
2602}
2603
2604MemInitResult
2605Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2606                                 CXXRecordDecl *ClassDecl) {
2607  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2608  if (!LangOpts.CPlusPlus11)
2609    return Diag(NameLoc, diag::err_delegating_ctor)
2610      << TInfo->getTypeLoc().getLocalSourceRange();
2611  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2612
2613  bool InitList = true;
2614  MultiExprArg Args = Init;
2615  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2616    InitList = false;
2617    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2618  }
2619
2620  SourceRange InitRange = Init->getSourceRange();
2621  // Initialize the object.
2622  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2623                                     QualType(ClassDecl->getTypeForDecl(), 0));
2624  InitializationKind Kind =
2625    InitList ? InitializationKind::CreateDirectList(NameLoc)
2626             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2627                                                InitRange.getEnd());
2628  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2629  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2630                                              Args, 0);
2631  if (DelegationInit.isInvalid())
2632    return true;
2633
2634  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2635         "Delegating constructor with no target?");
2636
2637  // C++11 [class.base.init]p7:
2638  //   The initialization of each base and member constitutes a
2639  //   full-expression.
2640  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2641                                       InitRange.getBegin());
2642  if (DelegationInit.isInvalid())
2643    return true;
2644
2645  // If we are in a dependent context, template instantiation will
2646  // perform this type-checking again. Just save the arguments that we
2647  // received in a ParenListExpr.
2648  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2649  // of the information that we have about the base
2650  // initializer. However, deconstructing the ASTs is a dicey process,
2651  // and this approach is far more likely to get the corner cases right.
2652  if (CurContext->isDependentContext())
2653    DelegationInit = Owned(Init);
2654
2655  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2656                                          DelegationInit.takeAs<Expr>(),
2657                                          InitRange.getEnd());
2658}
2659
2660MemInitResult
2661Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2662                           Expr *Init, CXXRecordDecl *ClassDecl,
2663                           SourceLocation EllipsisLoc) {
2664  SourceLocation BaseLoc
2665    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2666
2667  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2668    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2669             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2670
2671  // C++ [class.base.init]p2:
2672  //   [...] Unless the mem-initializer-id names a nonstatic data
2673  //   member of the constructor's class or a direct or virtual base
2674  //   of that class, the mem-initializer is ill-formed. A
2675  //   mem-initializer-list can initialize a base class using any
2676  //   name that denotes that base class type.
2677  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2678
2679  SourceRange InitRange = Init->getSourceRange();
2680  if (EllipsisLoc.isValid()) {
2681    // This is a pack expansion.
2682    if (!BaseType->containsUnexpandedParameterPack())  {
2683      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2684        << SourceRange(BaseLoc, InitRange.getEnd());
2685
2686      EllipsisLoc = SourceLocation();
2687    }
2688  } else {
2689    // Check for any unexpanded parameter packs.
2690    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2691      return true;
2692
2693    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2694      return true;
2695  }
2696
2697  // Check for direct and virtual base classes.
2698  const CXXBaseSpecifier *DirectBaseSpec = 0;
2699  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2700  if (!Dependent) {
2701    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2702                                       BaseType))
2703      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2704
2705    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2706                        VirtualBaseSpec);
2707
2708    // C++ [base.class.init]p2:
2709    // Unless the mem-initializer-id names a nonstatic data member of the
2710    // constructor's class or a direct or virtual base of that class, the
2711    // mem-initializer is ill-formed.
2712    if (!DirectBaseSpec && !VirtualBaseSpec) {
2713      // If the class has any dependent bases, then it's possible that
2714      // one of those types will resolve to the same type as
2715      // BaseType. Therefore, just treat this as a dependent base
2716      // class initialization.  FIXME: Should we try to check the
2717      // initialization anyway? It seems odd.
2718      if (ClassDecl->hasAnyDependentBases())
2719        Dependent = true;
2720      else
2721        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2722          << BaseType << Context.getTypeDeclType(ClassDecl)
2723          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2724    }
2725  }
2726
2727  if (Dependent) {
2728    DiscardCleanupsInEvaluationContext();
2729
2730    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2731                                            /*IsVirtual=*/false,
2732                                            InitRange.getBegin(), Init,
2733                                            InitRange.getEnd(), EllipsisLoc);
2734  }
2735
2736  // C++ [base.class.init]p2:
2737  //   If a mem-initializer-id is ambiguous because it designates both
2738  //   a direct non-virtual base class and an inherited virtual base
2739  //   class, the mem-initializer is ill-formed.
2740  if (DirectBaseSpec && VirtualBaseSpec)
2741    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2742      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2743
2744  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2745  if (!BaseSpec)
2746    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2747
2748  // Initialize the base.
2749  bool InitList = true;
2750  MultiExprArg Args = Init;
2751  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2752    InitList = false;
2753    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2754  }
2755
2756  InitializedEntity BaseEntity =
2757    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2758  InitializationKind Kind =
2759    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2760             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2761                                                InitRange.getEnd());
2762  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2763  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2764  if (BaseInit.isInvalid())
2765    return true;
2766
2767  // C++11 [class.base.init]p7:
2768  //   The initialization of each base and member constitutes a
2769  //   full-expression.
2770  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2771  if (BaseInit.isInvalid())
2772    return true;
2773
2774  // If we are in a dependent context, template instantiation will
2775  // perform this type-checking again. Just save the arguments that we
2776  // received in a ParenListExpr.
2777  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2778  // of the information that we have about the base
2779  // initializer. However, deconstructing the ASTs is a dicey process,
2780  // and this approach is far more likely to get the corner cases right.
2781  if (CurContext->isDependentContext())
2782    BaseInit = Owned(Init);
2783
2784  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2785                                          BaseSpec->isVirtual(),
2786                                          InitRange.getBegin(),
2787                                          BaseInit.takeAs<Expr>(),
2788                                          InitRange.getEnd(), EllipsisLoc);
2789}
2790
2791// Create a static_cast\<T&&>(expr).
2792static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2793  if (T.isNull()) T = E->getType();
2794  QualType TargetType = SemaRef.BuildReferenceType(
2795      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2796  SourceLocation ExprLoc = E->getLocStart();
2797  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2798      TargetType, ExprLoc);
2799
2800  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2801                                   SourceRange(ExprLoc, ExprLoc),
2802                                   E->getSourceRange()).take();
2803}
2804
2805/// ImplicitInitializerKind - How an implicit base or member initializer should
2806/// initialize its base or member.
2807enum ImplicitInitializerKind {
2808  IIK_Default,
2809  IIK_Copy,
2810  IIK_Move,
2811  IIK_Inherit
2812};
2813
2814static bool
2815BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2816                             ImplicitInitializerKind ImplicitInitKind,
2817                             CXXBaseSpecifier *BaseSpec,
2818                             bool IsInheritedVirtualBase,
2819                             CXXCtorInitializer *&CXXBaseInit) {
2820  InitializedEntity InitEntity
2821    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2822                                        IsInheritedVirtualBase);
2823
2824  ExprResult BaseInit;
2825
2826  switch (ImplicitInitKind) {
2827  case IIK_Inherit: {
2828    const CXXRecordDecl *Inherited =
2829        Constructor->getInheritedConstructor()->getParent();
2830    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2831    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2832      // C++11 [class.inhctor]p8:
2833      //   Each expression in the expression-list is of the form
2834      //   static_cast<T&&>(p), where p is the name of the corresponding
2835      //   constructor parameter and T is the declared type of p.
2836      SmallVector<Expr*, 16> Args;
2837      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2838        ParmVarDecl *PD = Constructor->getParamDecl(I);
2839        ExprResult ArgExpr =
2840            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2841                                     VK_LValue, SourceLocation());
2842        if (ArgExpr.isInvalid())
2843          return true;
2844        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2845      }
2846
2847      InitializationKind InitKind = InitializationKind::CreateDirect(
2848          Constructor->getLocation(), SourceLocation(), SourceLocation());
2849      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2850      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2851      break;
2852    }
2853  }
2854  // Fall through.
2855  case IIK_Default: {
2856    InitializationKind InitKind
2857      = InitializationKind::CreateDefault(Constructor->getLocation());
2858    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2859    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2860    break;
2861  }
2862
2863  case IIK_Move:
2864  case IIK_Copy: {
2865    bool Moving = ImplicitInitKind == IIK_Move;
2866    ParmVarDecl *Param = Constructor->getParamDecl(0);
2867    QualType ParamType = Param->getType().getNonReferenceType();
2868
2869    Expr *CopyCtorArg =
2870      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2871                          SourceLocation(), Param, false,
2872                          Constructor->getLocation(), ParamType,
2873                          VK_LValue, 0);
2874
2875    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2876
2877    // Cast to the base class to avoid ambiguities.
2878    QualType ArgTy =
2879      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2880                                       ParamType.getQualifiers());
2881
2882    if (Moving) {
2883      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2884    }
2885
2886    CXXCastPath BasePath;
2887    BasePath.push_back(BaseSpec);
2888    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2889                                            CK_UncheckedDerivedToBase,
2890                                            Moving ? VK_XValue : VK_LValue,
2891                                            &BasePath).take();
2892
2893    InitializationKind InitKind
2894      = InitializationKind::CreateDirect(Constructor->getLocation(),
2895                                         SourceLocation(), SourceLocation());
2896    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2897    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2898    break;
2899  }
2900  }
2901
2902  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2903  if (BaseInit.isInvalid())
2904    return true;
2905
2906  CXXBaseInit =
2907    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2908               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2909                                                        SourceLocation()),
2910                                             BaseSpec->isVirtual(),
2911                                             SourceLocation(),
2912                                             BaseInit.takeAs<Expr>(),
2913                                             SourceLocation(),
2914                                             SourceLocation());
2915
2916  return false;
2917}
2918
2919static bool RefersToRValueRef(Expr *MemRef) {
2920  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2921  return Referenced->getType()->isRValueReferenceType();
2922}
2923
2924static bool
2925BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2926                               ImplicitInitializerKind ImplicitInitKind,
2927                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2928                               CXXCtorInitializer *&CXXMemberInit) {
2929  if (Field->isInvalidDecl())
2930    return true;
2931
2932  SourceLocation Loc = Constructor->getLocation();
2933
2934  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2935    bool Moving = ImplicitInitKind == IIK_Move;
2936    ParmVarDecl *Param = Constructor->getParamDecl(0);
2937    QualType ParamType = Param->getType().getNonReferenceType();
2938
2939    // Suppress copying zero-width bitfields.
2940    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2941      return false;
2942
2943    Expr *MemberExprBase =
2944      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2945                          SourceLocation(), Param, false,
2946                          Loc, ParamType, VK_LValue, 0);
2947
2948    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2949
2950    if (Moving) {
2951      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2952    }
2953
2954    // Build a reference to this field within the parameter.
2955    CXXScopeSpec SS;
2956    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2957                              Sema::LookupMemberName);
2958    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2959                                  : cast<ValueDecl>(Field), AS_public);
2960    MemberLookup.resolveKind();
2961    ExprResult CtorArg
2962      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2963                                         ParamType, Loc,
2964                                         /*IsArrow=*/false,
2965                                         SS,
2966                                         /*TemplateKWLoc=*/SourceLocation(),
2967                                         /*FirstQualifierInScope=*/0,
2968                                         MemberLookup,
2969                                         /*TemplateArgs=*/0);
2970    if (CtorArg.isInvalid())
2971      return true;
2972
2973    // C++11 [class.copy]p15:
2974    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2975    //     with static_cast<T&&>(x.m);
2976    if (RefersToRValueRef(CtorArg.get())) {
2977      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2978    }
2979
2980    // When the field we are copying is an array, create index variables for
2981    // each dimension of the array. We use these index variables to subscript
2982    // the source array, and other clients (e.g., CodeGen) will perform the
2983    // necessary iteration with these index variables.
2984    SmallVector<VarDecl *, 4> IndexVariables;
2985    QualType BaseType = Field->getType();
2986    QualType SizeType = SemaRef.Context.getSizeType();
2987    bool InitializingArray = false;
2988    while (const ConstantArrayType *Array
2989                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2990      InitializingArray = true;
2991      // Create the iteration variable for this array index.
2992      IdentifierInfo *IterationVarName = 0;
2993      {
2994        SmallString<8> Str;
2995        llvm::raw_svector_ostream OS(Str);
2996        OS << "__i" << IndexVariables.size();
2997        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2998      }
2999      VarDecl *IterationVar
3000        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3001                          IterationVarName, SizeType,
3002                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3003                          SC_None);
3004      IndexVariables.push_back(IterationVar);
3005
3006      // Create a reference to the iteration variable.
3007      ExprResult IterationVarRef
3008        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3009      assert(!IterationVarRef.isInvalid() &&
3010             "Reference to invented variable cannot fail!");
3011      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3012      assert(!IterationVarRef.isInvalid() &&
3013             "Conversion of invented variable cannot fail!");
3014
3015      // Subscript the array with this iteration variable.
3016      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3017                                                        IterationVarRef.take(),
3018                                                        Loc);
3019      if (CtorArg.isInvalid())
3020        return true;
3021
3022      BaseType = Array->getElementType();
3023    }
3024
3025    // The array subscript expression is an lvalue, which is wrong for moving.
3026    if (Moving && InitializingArray)
3027      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3028
3029    // Construct the entity that we will be initializing. For an array, this
3030    // will be first element in the array, which may require several levels
3031    // of array-subscript entities.
3032    SmallVector<InitializedEntity, 4> Entities;
3033    Entities.reserve(1 + IndexVariables.size());
3034    if (Indirect)
3035      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3036    else
3037      Entities.push_back(InitializedEntity::InitializeMember(Field));
3038    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3039      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3040                                                              0,
3041                                                              Entities.back()));
3042
3043    // Direct-initialize to use the copy constructor.
3044    InitializationKind InitKind =
3045      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3046
3047    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3048    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3049
3050    ExprResult MemberInit
3051      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3052                        MultiExprArg(&CtorArgE, 1));
3053    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3054    if (MemberInit.isInvalid())
3055      return true;
3056
3057    if (Indirect) {
3058      assert(IndexVariables.size() == 0 &&
3059             "Indirect field improperly initialized");
3060      CXXMemberInit
3061        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3062                                                   Loc, Loc,
3063                                                   MemberInit.takeAs<Expr>(),
3064                                                   Loc);
3065    } else
3066      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3067                                                 Loc, MemberInit.takeAs<Expr>(),
3068                                                 Loc,
3069                                                 IndexVariables.data(),
3070                                                 IndexVariables.size());
3071    return false;
3072  }
3073
3074  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3075         "Unhandled implicit init kind!");
3076
3077  QualType FieldBaseElementType =
3078    SemaRef.Context.getBaseElementType(Field->getType());
3079
3080  if (FieldBaseElementType->isRecordType()) {
3081    InitializedEntity InitEntity
3082      = Indirect? InitializedEntity::InitializeMember(Indirect)
3083                : InitializedEntity::InitializeMember(Field);
3084    InitializationKind InitKind =
3085      InitializationKind::CreateDefault(Loc);
3086
3087    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3088    ExprResult MemberInit =
3089      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3090
3091    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3092    if (MemberInit.isInvalid())
3093      return true;
3094
3095    if (Indirect)
3096      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3097                                                               Indirect, Loc,
3098                                                               Loc,
3099                                                               MemberInit.get(),
3100                                                               Loc);
3101    else
3102      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3103                                                               Field, Loc, Loc,
3104                                                               MemberInit.get(),
3105                                                               Loc);
3106    return false;
3107  }
3108
3109  if (!Field->getParent()->isUnion()) {
3110    if (FieldBaseElementType->isReferenceType()) {
3111      SemaRef.Diag(Constructor->getLocation(),
3112                   diag::err_uninitialized_member_in_ctor)
3113      << (int)Constructor->isImplicit()
3114      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3115      << 0 << Field->getDeclName();
3116      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3117      return true;
3118    }
3119
3120    if (FieldBaseElementType.isConstQualified()) {
3121      SemaRef.Diag(Constructor->getLocation(),
3122                   diag::err_uninitialized_member_in_ctor)
3123      << (int)Constructor->isImplicit()
3124      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3125      << 1 << Field->getDeclName();
3126      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3127      return true;
3128    }
3129  }
3130
3131  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3132      FieldBaseElementType->isObjCRetainableType() &&
3133      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3134      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3135    // ARC:
3136    //   Default-initialize Objective-C pointers to NULL.
3137    CXXMemberInit
3138      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3139                                                 Loc, Loc,
3140                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3141                                                 Loc);
3142    return false;
3143  }
3144
3145  // Nothing to initialize.
3146  CXXMemberInit = 0;
3147  return false;
3148}
3149
3150namespace {
3151struct BaseAndFieldInfo {
3152  Sema &S;
3153  CXXConstructorDecl *Ctor;
3154  bool AnyErrorsInInits;
3155  ImplicitInitializerKind IIK;
3156  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3157  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3158
3159  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3160    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3161    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3162    if (Generated && Ctor->isCopyConstructor())
3163      IIK = IIK_Copy;
3164    else if (Generated && Ctor->isMoveConstructor())
3165      IIK = IIK_Move;
3166    else if (Ctor->getInheritedConstructor())
3167      IIK = IIK_Inherit;
3168    else
3169      IIK = IIK_Default;
3170  }
3171
3172  bool isImplicitCopyOrMove() const {
3173    switch (IIK) {
3174    case IIK_Copy:
3175    case IIK_Move:
3176      return true;
3177
3178    case IIK_Default:
3179    case IIK_Inherit:
3180      return false;
3181    }
3182
3183    llvm_unreachable("Invalid ImplicitInitializerKind!");
3184  }
3185
3186  bool addFieldInitializer(CXXCtorInitializer *Init) {
3187    AllToInit.push_back(Init);
3188
3189    // Check whether this initializer makes the field "used".
3190    if (Init->getInit()->HasSideEffects(S.Context))
3191      S.UnusedPrivateFields.remove(Init->getAnyMember());
3192
3193    return false;
3194  }
3195};
3196}
3197
3198/// \brief Determine whether the given indirect field declaration is somewhere
3199/// within an anonymous union.
3200static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3201  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3202                                      CEnd = F->chain_end();
3203       C != CEnd; ++C)
3204    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3205      if (Record->isUnion())
3206        return true;
3207
3208  return false;
3209}
3210
3211/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3212/// array type.
3213static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3214  if (T->isIncompleteArrayType())
3215    return true;
3216
3217  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3218    if (!ArrayT->getSize())
3219      return true;
3220
3221    T = ArrayT->getElementType();
3222  }
3223
3224  return false;
3225}
3226
3227static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3228                                    FieldDecl *Field,
3229                                    IndirectFieldDecl *Indirect = 0) {
3230
3231  // Overwhelmingly common case: we have a direct initializer for this field.
3232  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3233    return Info.addFieldInitializer(Init);
3234
3235  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3236  // has a brace-or-equal-initializer, the entity is initialized as specified
3237  // in [dcl.init].
3238  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3239    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3240                                           Info.Ctor->getLocation(), Field);
3241    CXXCtorInitializer *Init;
3242    if (Indirect)
3243      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3244                                                      SourceLocation(),
3245                                                      SourceLocation(), DIE,
3246                                                      SourceLocation());
3247    else
3248      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3249                                                      SourceLocation(),
3250                                                      SourceLocation(), DIE,
3251                                                      SourceLocation());
3252    return Info.addFieldInitializer(Init);
3253  }
3254
3255  // Don't build an implicit initializer for union members if none was
3256  // explicitly specified.
3257  if (Field->getParent()->isUnion() ||
3258      (Indirect && isWithinAnonymousUnion(Indirect)))
3259    return false;
3260
3261  // Don't initialize incomplete or zero-length arrays.
3262  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3263    return false;
3264
3265  // Don't try to build an implicit initializer if there were semantic
3266  // errors in any of the initializers (and therefore we might be
3267  // missing some that the user actually wrote).
3268  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3269    return false;
3270
3271  CXXCtorInitializer *Init = 0;
3272  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3273                                     Indirect, Init))
3274    return true;
3275
3276  if (!Init)
3277    return false;
3278
3279  return Info.addFieldInitializer(Init);
3280}
3281
3282bool
3283Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3284                               CXXCtorInitializer *Initializer) {
3285  assert(Initializer->isDelegatingInitializer());
3286  Constructor->setNumCtorInitializers(1);
3287  CXXCtorInitializer **initializer =
3288    new (Context) CXXCtorInitializer*[1];
3289  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3290  Constructor->setCtorInitializers(initializer);
3291
3292  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3293    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3294    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3295  }
3296
3297  DelegatingCtorDecls.push_back(Constructor);
3298
3299  return false;
3300}
3301
3302bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3303                               ArrayRef<CXXCtorInitializer *> Initializers) {
3304  if (Constructor->isDependentContext()) {
3305    // Just store the initializers as written, they will be checked during
3306    // instantiation.
3307    if (!Initializers.empty()) {
3308      Constructor->setNumCtorInitializers(Initializers.size());
3309      CXXCtorInitializer **baseOrMemberInitializers =
3310        new (Context) CXXCtorInitializer*[Initializers.size()];
3311      memcpy(baseOrMemberInitializers, Initializers.data(),
3312             Initializers.size() * sizeof(CXXCtorInitializer*));
3313      Constructor->setCtorInitializers(baseOrMemberInitializers);
3314    }
3315
3316    // Let template instantiation know whether we had errors.
3317    if (AnyErrors)
3318      Constructor->setInvalidDecl();
3319
3320    return false;
3321  }
3322
3323  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3324
3325  // We need to build the initializer AST according to order of construction
3326  // and not what user specified in the Initializers list.
3327  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3328  if (!ClassDecl)
3329    return true;
3330
3331  bool HadError = false;
3332
3333  for (unsigned i = 0; i < Initializers.size(); i++) {
3334    CXXCtorInitializer *Member = Initializers[i];
3335
3336    if (Member->isBaseInitializer())
3337      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3338    else
3339      Info.AllBaseFields[Member->getAnyMember()] = Member;
3340  }
3341
3342  // Keep track of the direct virtual bases.
3343  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3344  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3345       E = ClassDecl->bases_end(); I != E; ++I) {
3346    if (I->isVirtual())
3347      DirectVBases.insert(I);
3348  }
3349
3350  // Push virtual bases before others.
3351  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3352       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3353
3354    if (CXXCtorInitializer *Value
3355        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3356      Info.AllToInit.push_back(Value);
3357    } else if (!AnyErrors) {
3358      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3359      CXXCtorInitializer *CXXBaseInit;
3360      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3361                                       VBase, IsInheritedVirtualBase,
3362                                       CXXBaseInit)) {
3363        HadError = true;
3364        continue;
3365      }
3366
3367      Info.AllToInit.push_back(CXXBaseInit);
3368    }
3369  }
3370
3371  // Non-virtual bases.
3372  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3373       E = ClassDecl->bases_end(); Base != E; ++Base) {
3374    // Virtuals are in the virtual base list and already constructed.
3375    if (Base->isVirtual())
3376      continue;
3377
3378    if (CXXCtorInitializer *Value
3379          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3380      Info.AllToInit.push_back(Value);
3381    } else if (!AnyErrors) {
3382      CXXCtorInitializer *CXXBaseInit;
3383      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3384                                       Base, /*IsInheritedVirtualBase=*/false,
3385                                       CXXBaseInit)) {
3386        HadError = true;
3387        continue;
3388      }
3389
3390      Info.AllToInit.push_back(CXXBaseInit);
3391    }
3392  }
3393
3394  // Fields.
3395  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3396                               MemEnd = ClassDecl->decls_end();
3397       Mem != MemEnd; ++Mem) {
3398    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3399      // C++ [class.bit]p2:
3400      //   A declaration for a bit-field that omits the identifier declares an
3401      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3402      //   initialized.
3403      if (F->isUnnamedBitfield())
3404        continue;
3405
3406      // If we're not generating the implicit copy/move constructor, then we'll
3407      // handle anonymous struct/union fields based on their individual
3408      // indirect fields.
3409      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3410        continue;
3411
3412      if (CollectFieldInitializer(*this, Info, F))
3413        HadError = true;
3414      continue;
3415    }
3416
3417    // Beyond this point, we only consider default initialization.
3418    if (Info.isImplicitCopyOrMove())
3419      continue;
3420
3421    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3422      if (F->getType()->isIncompleteArrayType()) {
3423        assert(ClassDecl->hasFlexibleArrayMember() &&
3424               "Incomplete array type is not valid");
3425        continue;
3426      }
3427
3428      // Initialize each field of an anonymous struct individually.
3429      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3430        HadError = true;
3431
3432      continue;
3433    }
3434  }
3435
3436  unsigned NumInitializers = Info.AllToInit.size();
3437  if (NumInitializers > 0) {
3438    Constructor->setNumCtorInitializers(NumInitializers);
3439    CXXCtorInitializer **baseOrMemberInitializers =
3440      new (Context) CXXCtorInitializer*[NumInitializers];
3441    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3442           NumInitializers * sizeof(CXXCtorInitializer*));
3443    Constructor->setCtorInitializers(baseOrMemberInitializers);
3444
3445    // Constructors implicitly reference the base and member
3446    // destructors.
3447    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3448                                           Constructor->getParent());
3449  }
3450
3451  return HadError;
3452}
3453
3454static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3455  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3456    const RecordDecl *RD = RT->getDecl();
3457    if (RD->isAnonymousStructOrUnion()) {
3458      for (RecordDecl::field_iterator Field = RD->field_begin(),
3459          E = RD->field_end(); Field != E; ++Field)
3460        PopulateKeysForFields(*Field, IdealInits);
3461      return;
3462    }
3463  }
3464  IdealInits.push_back(Field);
3465}
3466
3467static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3468  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3469}
3470
3471static void *GetKeyForMember(ASTContext &Context,
3472                             CXXCtorInitializer *Member) {
3473  if (!Member->isAnyMemberInitializer())
3474    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3475
3476  return Member->getAnyMember();
3477}
3478
3479static void DiagnoseBaseOrMemInitializerOrder(
3480    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3481    ArrayRef<CXXCtorInitializer *> Inits) {
3482  if (Constructor->getDeclContext()->isDependentContext())
3483    return;
3484
3485  // Don't check initializers order unless the warning is enabled at the
3486  // location of at least one initializer.
3487  bool ShouldCheckOrder = false;
3488  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3489    CXXCtorInitializer *Init = Inits[InitIndex];
3490    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3491                                         Init->getSourceLocation())
3492          != DiagnosticsEngine::Ignored) {
3493      ShouldCheckOrder = true;
3494      break;
3495    }
3496  }
3497  if (!ShouldCheckOrder)
3498    return;
3499
3500  // Build the list of bases and members in the order that they'll
3501  // actually be initialized.  The explicit initializers should be in
3502  // this same order but may be missing things.
3503  SmallVector<const void*, 32> IdealInitKeys;
3504
3505  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3506
3507  // 1. Virtual bases.
3508  for (CXXRecordDecl::base_class_const_iterator VBase =
3509       ClassDecl->vbases_begin(),
3510       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3511    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3512
3513  // 2. Non-virtual bases.
3514  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3515       E = ClassDecl->bases_end(); Base != E; ++Base) {
3516    if (Base->isVirtual())
3517      continue;
3518    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3519  }
3520
3521  // 3. Direct fields.
3522  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3523       E = ClassDecl->field_end(); Field != E; ++Field) {
3524    if (Field->isUnnamedBitfield())
3525      continue;
3526
3527    PopulateKeysForFields(*Field, IdealInitKeys);
3528  }
3529
3530  unsigned NumIdealInits = IdealInitKeys.size();
3531  unsigned IdealIndex = 0;
3532
3533  CXXCtorInitializer *PrevInit = 0;
3534  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3535    CXXCtorInitializer *Init = Inits[InitIndex];
3536    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3537
3538    // Scan forward to try to find this initializer in the idealized
3539    // initializers list.
3540    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3541      if (InitKey == IdealInitKeys[IdealIndex])
3542        break;
3543
3544    // If we didn't find this initializer, it must be because we
3545    // scanned past it on a previous iteration.  That can only
3546    // happen if we're out of order;  emit a warning.
3547    if (IdealIndex == NumIdealInits && PrevInit) {
3548      Sema::SemaDiagnosticBuilder D =
3549        SemaRef.Diag(PrevInit->getSourceLocation(),
3550                     diag::warn_initializer_out_of_order);
3551
3552      if (PrevInit->isAnyMemberInitializer())
3553        D << 0 << PrevInit->getAnyMember()->getDeclName();
3554      else
3555        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3556
3557      if (Init->isAnyMemberInitializer())
3558        D << 0 << Init->getAnyMember()->getDeclName();
3559      else
3560        D << 1 << Init->getTypeSourceInfo()->getType();
3561
3562      // Move back to the initializer's location in the ideal list.
3563      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3564        if (InitKey == IdealInitKeys[IdealIndex])
3565          break;
3566
3567      assert(IdealIndex != NumIdealInits &&
3568             "initializer not found in initializer list");
3569    }
3570
3571    PrevInit = Init;
3572  }
3573}
3574
3575namespace {
3576bool CheckRedundantInit(Sema &S,
3577                        CXXCtorInitializer *Init,
3578                        CXXCtorInitializer *&PrevInit) {
3579  if (!PrevInit) {
3580    PrevInit = Init;
3581    return false;
3582  }
3583
3584  if (FieldDecl *Field = Init->getAnyMember())
3585    S.Diag(Init->getSourceLocation(),
3586           diag::err_multiple_mem_initialization)
3587      << Field->getDeclName()
3588      << Init->getSourceRange();
3589  else {
3590    const Type *BaseClass = Init->getBaseClass();
3591    assert(BaseClass && "neither field nor base");
3592    S.Diag(Init->getSourceLocation(),
3593           diag::err_multiple_base_initialization)
3594      << QualType(BaseClass, 0)
3595      << Init->getSourceRange();
3596  }
3597  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3598    << 0 << PrevInit->getSourceRange();
3599
3600  return true;
3601}
3602
3603typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3604typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3605
3606bool CheckRedundantUnionInit(Sema &S,
3607                             CXXCtorInitializer *Init,
3608                             RedundantUnionMap &Unions) {
3609  FieldDecl *Field = Init->getAnyMember();
3610  RecordDecl *Parent = Field->getParent();
3611  NamedDecl *Child = Field;
3612
3613  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3614    if (Parent->isUnion()) {
3615      UnionEntry &En = Unions[Parent];
3616      if (En.first && En.first != Child) {
3617        S.Diag(Init->getSourceLocation(),
3618               diag::err_multiple_mem_union_initialization)
3619          << Field->getDeclName()
3620          << Init->getSourceRange();
3621        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3622          << 0 << En.second->getSourceRange();
3623        return true;
3624      }
3625      if (!En.first) {
3626        En.first = Child;
3627        En.second = Init;
3628      }
3629      if (!Parent->isAnonymousStructOrUnion())
3630        return false;
3631    }
3632
3633    Child = Parent;
3634    Parent = cast<RecordDecl>(Parent->getDeclContext());
3635  }
3636
3637  return false;
3638}
3639}
3640
3641/// ActOnMemInitializers - Handle the member initializers for a constructor.
3642void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3643                                SourceLocation ColonLoc,
3644                                ArrayRef<CXXCtorInitializer*> MemInits,
3645                                bool AnyErrors) {
3646  if (!ConstructorDecl)
3647    return;
3648
3649  AdjustDeclIfTemplate(ConstructorDecl);
3650
3651  CXXConstructorDecl *Constructor
3652    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3653
3654  if (!Constructor) {
3655    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3656    return;
3657  }
3658
3659  // Mapping for the duplicate initializers check.
3660  // For member initializers, this is keyed with a FieldDecl*.
3661  // For base initializers, this is keyed with a Type*.
3662  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3663
3664  // Mapping for the inconsistent anonymous-union initializers check.
3665  RedundantUnionMap MemberUnions;
3666
3667  bool HadError = false;
3668  for (unsigned i = 0; i < MemInits.size(); i++) {
3669    CXXCtorInitializer *Init = MemInits[i];
3670
3671    // Set the source order index.
3672    Init->setSourceOrder(i);
3673
3674    if (Init->isAnyMemberInitializer()) {
3675      FieldDecl *Field = Init->getAnyMember();
3676      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3677          CheckRedundantUnionInit(*this, Init, MemberUnions))
3678        HadError = true;
3679    } else if (Init->isBaseInitializer()) {
3680      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3681      if (CheckRedundantInit(*this, Init, Members[Key]))
3682        HadError = true;
3683    } else {
3684      assert(Init->isDelegatingInitializer());
3685      // This must be the only initializer
3686      if (MemInits.size() != 1) {
3687        Diag(Init->getSourceLocation(),
3688             diag::err_delegating_initializer_alone)
3689          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3690        // We will treat this as being the only initializer.
3691      }
3692      SetDelegatingInitializer(Constructor, MemInits[i]);
3693      // Return immediately as the initializer is set.
3694      return;
3695    }
3696  }
3697
3698  if (HadError)
3699    return;
3700
3701  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3702
3703  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3704}
3705
3706void
3707Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3708                                             CXXRecordDecl *ClassDecl) {
3709  // Ignore dependent contexts. Also ignore unions, since their members never
3710  // have destructors implicitly called.
3711  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3712    return;
3713
3714  // FIXME: all the access-control diagnostics are positioned on the
3715  // field/base declaration.  That's probably good; that said, the
3716  // user might reasonably want to know why the destructor is being
3717  // emitted, and we currently don't say.
3718
3719  // Non-static data members.
3720  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3721       E = ClassDecl->field_end(); I != E; ++I) {
3722    FieldDecl *Field = *I;
3723    if (Field->isInvalidDecl())
3724      continue;
3725
3726    // Don't destroy incomplete or zero-length arrays.
3727    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3728      continue;
3729
3730    QualType FieldType = Context.getBaseElementType(Field->getType());
3731
3732    const RecordType* RT = FieldType->getAs<RecordType>();
3733    if (!RT)
3734      continue;
3735
3736    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3737    if (FieldClassDecl->isInvalidDecl())
3738      continue;
3739    if (FieldClassDecl->hasIrrelevantDestructor())
3740      continue;
3741    // The destructor for an implicit anonymous union member is never invoked.
3742    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3743      continue;
3744
3745    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3746    assert(Dtor && "No dtor found for FieldClassDecl!");
3747    CheckDestructorAccess(Field->getLocation(), Dtor,
3748                          PDiag(diag::err_access_dtor_field)
3749                            << Field->getDeclName()
3750                            << FieldType);
3751
3752    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3753    DiagnoseUseOfDecl(Dtor, Location);
3754  }
3755
3756  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3757
3758  // Bases.
3759  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3760       E = ClassDecl->bases_end(); Base != E; ++Base) {
3761    // Bases are always records in a well-formed non-dependent class.
3762    const RecordType *RT = Base->getType()->getAs<RecordType>();
3763
3764    // Remember direct virtual bases.
3765    if (Base->isVirtual())
3766      DirectVirtualBases.insert(RT);
3767
3768    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3769    // If our base class is invalid, we probably can't get its dtor anyway.
3770    if (BaseClassDecl->isInvalidDecl())
3771      continue;
3772    if (BaseClassDecl->hasIrrelevantDestructor())
3773      continue;
3774
3775    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3776    assert(Dtor && "No dtor found for BaseClassDecl!");
3777
3778    // FIXME: caret should be on the start of the class name
3779    CheckDestructorAccess(Base->getLocStart(), Dtor,
3780                          PDiag(diag::err_access_dtor_base)
3781                            << Base->getType()
3782                            << Base->getSourceRange(),
3783                          Context.getTypeDeclType(ClassDecl));
3784
3785    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3786    DiagnoseUseOfDecl(Dtor, Location);
3787  }
3788
3789  // Virtual bases.
3790  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3791       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3792
3793    // Bases are always records in a well-formed non-dependent class.
3794    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3795
3796    // Ignore direct virtual bases.
3797    if (DirectVirtualBases.count(RT))
3798      continue;
3799
3800    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3801    // If our base class is invalid, we probably can't get its dtor anyway.
3802    if (BaseClassDecl->isInvalidDecl())
3803      continue;
3804    if (BaseClassDecl->hasIrrelevantDestructor())
3805      continue;
3806
3807    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3808    assert(Dtor && "No dtor found for BaseClassDecl!");
3809    if (CheckDestructorAccess(
3810            ClassDecl->getLocation(), Dtor,
3811            PDiag(diag::err_access_dtor_vbase)
3812                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3813            Context.getTypeDeclType(ClassDecl)) ==
3814        AR_accessible) {
3815      CheckDerivedToBaseConversion(
3816          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3817          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3818          SourceRange(), DeclarationName(), 0);
3819    }
3820
3821    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3822    DiagnoseUseOfDecl(Dtor, Location);
3823  }
3824}
3825
3826void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3827  if (!CDtorDecl)
3828    return;
3829
3830  if (CXXConstructorDecl *Constructor
3831      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3832    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3833}
3834
3835bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3836                                  unsigned DiagID, AbstractDiagSelID SelID) {
3837  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3838    unsigned DiagID;
3839    AbstractDiagSelID SelID;
3840
3841  public:
3842    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3843      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3844
3845    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3846      if (Suppressed) return;
3847      if (SelID == -1)
3848        S.Diag(Loc, DiagID) << T;
3849      else
3850        S.Diag(Loc, DiagID) << SelID << T;
3851    }
3852  } Diagnoser(DiagID, SelID);
3853
3854  return RequireNonAbstractType(Loc, T, Diagnoser);
3855}
3856
3857bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3858                                  TypeDiagnoser &Diagnoser) {
3859  if (!getLangOpts().CPlusPlus)
3860    return false;
3861
3862  if (const ArrayType *AT = Context.getAsArrayType(T))
3863    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3864
3865  if (const PointerType *PT = T->getAs<PointerType>()) {
3866    // Find the innermost pointer type.
3867    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3868      PT = T;
3869
3870    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3871      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3872  }
3873
3874  const RecordType *RT = T->getAs<RecordType>();
3875  if (!RT)
3876    return false;
3877
3878  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3879
3880  // We can't answer whether something is abstract until it has a
3881  // definition.  If it's currently being defined, we'll walk back
3882  // over all the declarations when we have a full definition.
3883  const CXXRecordDecl *Def = RD->getDefinition();
3884  if (!Def || Def->isBeingDefined())
3885    return false;
3886
3887  if (!RD->isAbstract())
3888    return false;
3889
3890  Diagnoser.diagnose(*this, Loc, T);
3891  DiagnoseAbstractType(RD);
3892
3893  return true;
3894}
3895
3896void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3897  // Check if we've already emitted the list of pure virtual functions
3898  // for this class.
3899  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3900    return;
3901
3902  CXXFinalOverriderMap FinalOverriders;
3903  RD->getFinalOverriders(FinalOverriders);
3904
3905  // Keep a set of seen pure methods so we won't diagnose the same method
3906  // more than once.
3907  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3908
3909  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3910                                   MEnd = FinalOverriders.end();
3911       M != MEnd;
3912       ++M) {
3913    for (OverridingMethods::iterator SO = M->second.begin(),
3914                                  SOEnd = M->second.end();
3915         SO != SOEnd; ++SO) {
3916      // C++ [class.abstract]p4:
3917      //   A class is abstract if it contains or inherits at least one
3918      //   pure virtual function for which the final overrider is pure
3919      //   virtual.
3920
3921      //
3922      if (SO->second.size() != 1)
3923        continue;
3924
3925      if (!SO->second.front().Method->isPure())
3926        continue;
3927
3928      if (!SeenPureMethods.insert(SO->second.front().Method))
3929        continue;
3930
3931      Diag(SO->second.front().Method->getLocation(),
3932           diag::note_pure_virtual_function)
3933        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3934    }
3935  }
3936
3937  if (!PureVirtualClassDiagSet)
3938    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3939  PureVirtualClassDiagSet->insert(RD);
3940}
3941
3942namespace {
3943struct AbstractUsageInfo {
3944  Sema &S;
3945  CXXRecordDecl *Record;
3946  CanQualType AbstractType;
3947  bool Invalid;
3948
3949  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3950    : S(S), Record(Record),
3951      AbstractType(S.Context.getCanonicalType(
3952                   S.Context.getTypeDeclType(Record))),
3953      Invalid(false) {}
3954
3955  void DiagnoseAbstractType() {
3956    if (Invalid) return;
3957    S.DiagnoseAbstractType(Record);
3958    Invalid = true;
3959  }
3960
3961  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3962};
3963
3964struct CheckAbstractUsage {
3965  AbstractUsageInfo &Info;
3966  const NamedDecl *Ctx;
3967
3968  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3969    : Info(Info), Ctx(Ctx) {}
3970
3971  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3972    switch (TL.getTypeLocClass()) {
3973#define ABSTRACT_TYPELOC(CLASS, PARENT)
3974#define TYPELOC(CLASS, PARENT) \
3975    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3976#include "clang/AST/TypeLocNodes.def"
3977    }
3978  }
3979
3980  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3981    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3982    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3983      if (!TL.getArg(I))
3984        continue;
3985
3986      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3987      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3988    }
3989  }
3990
3991  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3992    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3993  }
3994
3995  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3996    // Visit the type parameters from a permissive context.
3997    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3998      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3999      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4000        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4001          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4002      // TODO: other template argument types?
4003    }
4004  }
4005
4006  // Visit pointee types from a permissive context.
4007#define CheckPolymorphic(Type) \
4008  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4009    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4010  }
4011  CheckPolymorphic(PointerTypeLoc)
4012  CheckPolymorphic(ReferenceTypeLoc)
4013  CheckPolymorphic(MemberPointerTypeLoc)
4014  CheckPolymorphic(BlockPointerTypeLoc)
4015  CheckPolymorphic(AtomicTypeLoc)
4016
4017  /// Handle all the types we haven't given a more specific
4018  /// implementation for above.
4019  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4020    // Every other kind of type that we haven't called out already
4021    // that has an inner type is either (1) sugar or (2) contains that
4022    // inner type in some way as a subobject.
4023    if (TypeLoc Next = TL.getNextTypeLoc())
4024      return Visit(Next, Sel);
4025
4026    // If there's no inner type and we're in a permissive context,
4027    // don't diagnose.
4028    if (Sel == Sema::AbstractNone) return;
4029
4030    // Check whether the type matches the abstract type.
4031    QualType T = TL.getType();
4032    if (T->isArrayType()) {
4033      Sel = Sema::AbstractArrayType;
4034      T = Info.S.Context.getBaseElementType(T);
4035    }
4036    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4037    if (CT != Info.AbstractType) return;
4038
4039    // It matched; do some magic.
4040    if (Sel == Sema::AbstractArrayType) {
4041      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4042        << T << TL.getSourceRange();
4043    } else {
4044      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4045        << Sel << T << TL.getSourceRange();
4046    }
4047    Info.DiagnoseAbstractType();
4048  }
4049};
4050
4051void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4052                                  Sema::AbstractDiagSelID Sel) {
4053  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4054}
4055
4056}
4057
4058/// Check for invalid uses of an abstract type in a method declaration.
4059static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4060                                    CXXMethodDecl *MD) {
4061  // No need to do the check on definitions, which require that
4062  // the return/param types be complete.
4063  if (MD->doesThisDeclarationHaveABody())
4064    return;
4065
4066  // For safety's sake, just ignore it if we don't have type source
4067  // information.  This should never happen for non-implicit methods,
4068  // but...
4069  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4070    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4071}
4072
4073/// Check for invalid uses of an abstract type within a class definition.
4074static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4075                                    CXXRecordDecl *RD) {
4076  for (CXXRecordDecl::decl_iterator
4077         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4078    Decl *D = *I;
4079    if (D->isImplicit()) continue;
4080
4081    // Methods and method templates.
4082    if (isa<CXXMethodDecl>(D)) {
4083      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4084    } else if (isa<FunctionTemplateDecl>(D)) {
4085      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4086      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4087
4088    // Fields and static variables.
4089    } else if (isa<FieldDecl>(D)) {
4090      FieldDecl *FD = cast<FieldDecl>(D);
4091      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4092        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4093    } else if (isa<VarDecl>(D)) {
4094      VarDecl *VD = cast<VarDecl>(D);
4095      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4096        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4097
4098    // Nested classes and class templates.
4099    } else if (isa<CXXRecordDecl>(D)) {
4100      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4101    } else if (isa<ClassTemplateDecl>(D)) {
4102      CheckAbstractClassUsage(Info,
4103                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4104    }
4105  }
4106}
4107
4108/// \brief Perform semantic checks on a class definition that has been
4109/// completing, introducing implicitly-declared members, checking for
4110/// abstract types, etc.
4111void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4112  if (!Record)
4113    return;
4114
4115  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4116    AbstractUsageInfo Info(*this, Record);
4117    CheckAbstractClassUsage(Info, Record);
4118  }
4119
4120  // If this is not an aggregate type and has no user-declared constructor,
4121  // complain about any non-static data members of reference or const scalar
4122  // type, since they will never get initializers.
4123  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4124      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4125      !Record->isLambda()) {
4126    bool Complained = false;
4127    for (RecordDecl::field_iterator F = Record->field_begin(),
4128                                 FEnd = Record->field_end();
4129         F != FEnd; ++F) {
4130      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4131        continue;
4132
4133      if (F->getType()->isReferenceType() ||
4134          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4135        if (!Complained) {
4136          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4137            << Record->getTagKind() << Record;
4138          Complained = true;
4139        }
4140
4141        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4142          << F->getType()->isReferenceType()
4143          << F->getDeclName();
4144      }
4145    }
4146  }
4147
4148  if (Record->isDynamicClass() && !Record->isDependentType())
4149    DynamicClasses.push_back(Record);
4150
4151  if (Record->getIdentifier()) {
4152    // C++ [class.mem]p13:
4153    //   If T is the name of a class, then each of the following shall have a
4154    //   name different from T:
4155    //     - every member of every anonymous union that is a member of class T.
4156    //
4157    // C++ [class.mem]p14:
4158    //   In addition, if class T has a user-declared constructor (12.1), every
4159    //   non-static data member of class T shall have a name different from T.
4160    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4161    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4162         ++I) {
4163      NamedDecl *D = *I;
4164      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4165          isa<IndirectFieldDecl>(D)) {
4166        Diag(D->getLocation(), diag::err_member_name_of_class)
4167          << D->getDeclName();
4168        break;
4169      }
4170    }
4171  }
4172
4173  // Warn if the class has virtual methods but non-virtual public destructor.
4174  if (Record->isPolymorphic() && !Record->isDependentType()) {
4175    CXXDestructorDecl *dtor = Record->getDestructor();
4176    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4177      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4178           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4179  }
4180
4181  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4182    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4183    DiagnoseAbstractType(Record);
4184  }
4185
4186  if (!Record->isDependentType()) {
4187    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4188                                     MEnd = Record->method_end();
4189         M != MEnd; ++M) {
4190      // See if a method overloads virtual methods in a base
4191      // class without overriding any.
4192      if (!M->isStatic())
4193        DiagnoseHiddenVirtualMethods(Record, *M);
4194
4195      // Check whether the explicitly-defaulted special members are valid.
4196      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4197        CheckExplicitlyDefaultedSpecialMember(*M);
4198
4199      // For an explicitly defaulted or deleted special member, we defer
4200      // determining triviality until the class is complete. That time is now!
4201      if (!M->isImplicit() && !M->isUserProvided()) {
4202        CXXSpecialMember CSM = getSpecialMember(*M);
4203        if (CSM != CXXInvalid) {
4204          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4205
4206          // Inform the class that we've finished declaring this member.
4207          Record->finishedDefaultedOrDeletedMember(*M);
4208        }
4209      }
4210    }
4211  }
4212
4213  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4214  // function that is not a constructor declares that member function to be
4215  // const. [...] The class of which that function is a member shall be
4216  // a literal type.
4217  //
4218  // If the class has virtual bases, any constexpr members will already have
4219  // been diagnosed by the checks performed on the member declaration, so
4220  // suppress this (less useful) diagnostic.
4221  //
4222  // We delay this until we know whether an explicitly-defaulted (or deleted)
4223  // destructor for the class is trivial.
4224  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4225      !Record->isLiteral() && !Record->getNumVBases()) {
4226    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4227                                     MEnd = Record->method_end();
4228         M != MEnd; ++M) {
4229      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4230        switch (Record->getTemplateSpecializationKind()) {
4231        case TSK_ImplicitInstantiation:
4232        case TSK_ExplicitInstantiationDeclaration:
4233        case TSK_ExplicitInstantiationDefinition:
4234          // If a template instantiates to a non-literal type, but its members
4235          // instantiate to constexpr functions, the template is technically
4236          // ill-formed, but we allow it for sanity.
4237          continue;
4238
4239        case TSK_Undeclared:
4240        case TSK_ExplicitSpecialization:
4241          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4242                             diag::err_constexpr_method_non_literal);
4243          break;
4244        }
4245
4246        // Only produce one error per class.
4247        break;
4248      }
4249    }
4250  }
4251
4252  // Declare inheriting constructors. We do this eagerly here because:
4253  // - The standard requires an eager diagnostic for conflicting inheriting
4254  //   constructors from different classes.
4255  // - The lazy declaration of the other implicit constructors is so as to not
4256  //   waste space and performance on classes that are not meant to be
4257  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4258  //   have inheriting constructors.
4259  DeclareInheritingConstructors(Record);
4260}
4261
4262/// Is the special member function which would be selected to perform the
4263/// specified operation on the specified class type a constexpr constructor?
4264static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4265                                     Sema::CXXSpecialMember CSM,
4266                                     bool ConstArg) {
4267  Sema::SpecialMemberOverloadResult *SMOR =
4268      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4269                            false, false, false, false);
4270  if (!SMOR || !SMOR->getMethod())
4271    // A constructor we wouldn't select can't be "involved in initializing"
4272    // anything.
4273    return true;
4274  return SMOR->getMethod()->isConstexpr();
4275}
4276
4277/// Determine whether the specified special member function would be constexpr
4278/// if it were implicitly defined.
4279static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4280                                              Sema::CXXSpecialMember CSM,
4281                                              bool ConstArg) {
4282  if (!S.getLangOpts().CPlusPlus11)
4283    return false;
4284
4285  // C++11 [dcl.constexpr]p4:
4286  // In the definition of a constexpr constructor [...]
4287  bool Ctor = true;
4288  switch (CSM) {
4289  case Sema::CXXDefaultConstructor:
4290    // Since default constructor lookup is essentially trivial (and cannot
4291    // involve, for instance, template instantiation), we compute whether a
4292    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4293    //
4294    // This is important for performance; we need to know whether the default
4295    // constructor is constexpr to determine whether the type is a literal type.
4296    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4297
4298  case Sema::CXXCopyConstructor:
4299  case Sema::CXXMoveConstructor:
4300    // For copy or move constructors, we need to perform overload resolution.
4301    break;
4302
4303  case Sema::CXXCopyAssignment:
4304  case Sema::CXXMoveAssignment:
4305    if (!S.getLangOpts().CPlusPlus1y)
4306      return false;
4307    // In C++1y, we need to perform overload resolution.
4308    Ctor = false;
4309    break;
4310
4311  case Sema::CXXDestructor:
4312  case Sema::CXXInvalid:
4313    return false;
4314  }
4315
4316  //   -- if the class is a non-empty union, or for each non-empty anonymous
4317  //      union member of a non-union class, exactly one non-static data member
4318  //      shall be initialized; [DR1359]
4319  //
4320  // If we squint, this is guaranteed, since exactly one non-static data member
4321  // will be initialized (if the constructor isn't deleted), we just don't know
4322  // which one.
4323  if (Ctor && ClassDecl->isUnion())
4324    return true;
4325
4326  //   -- the class shall not have any virtual base classes;
4327  if (Ctor && ClassDecl->getNumVBases())
4328    return false;
4329
4330  // C++1y [class.copy]p26:
4331  //   -- [the class] is a literal type, and
4332  if (!Ctor && !ClassDecl->isLiteral())
4333    return false;
4334
4335  //   -- every constructor involved in initializing [...] base class
4336  //      sub-objects shall be a constexpr constructor;
4337  //   -- the assignment operator selected to copy/move each direct base
4338  //      class is a constexpr function, and
4339  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4340                                       BEnd = ClassDecl->bases_end();
4341       B != BEnd; ++B) {
4342    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4343    if (!BaseType) continue;
4344
4345    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4346    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4347      return false;
4348  }
4349
4350  //   -- every constructor involved in initializing non-static data members
4351  //      [...] shall be a constexpr constructor;
4352  //   -- every non-static data member and base class sub-object shall be
4353  //      initialized
4354  //   -- for each non-stastic data member of X that is of class type (or array
4355  //      thereof), the assignment operator selected to copy/move that member is
4356  //      a constexpr function
4357  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4358                               FEnd = ClassDecl->field_end();
4359       F != FEnd; ++F) {
4360    if (F->isInvalidDecl())
4361      continue;
4362    if (const RecordType *RecordTy =
4363            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4364      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4365      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4366        return false;
4367    }
4368  }
4369
4370  // All OK, it's constexpr!
4371  return true;
4372}
4373
4374static Sema::ImplicitExceptionSpecification
4375computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4376  switch (S.getSpecialMember(MD)) {
4377  case Sema::CXXDefaultConstructor:
4378    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4379  case Sema::CXXCopyConstructor:
4380    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4381  case Sema::CXXCopyAssignment:
4382    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4383  case Sema::CXXMoveConstructor:
4384    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4385  case Sema::CXXMoveAssignment:
4386    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4387  case Sema::CXXDestructor:
4388    return S.ComputeDefaultedDtorExceptionSpec(MD);
4389  case Sema::CXXInvalid:
4390    break;
4391  }
4392  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4393         "only special members have implicit exception specs");
4394  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4395}
4396
4397static void
4398updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4399                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4400  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4401  ExceptSpec.getEPI(EPI);
4402  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4403                                        FPT->getArgTypes(), EPI));
4404}
4405
4406void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4407  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4408  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4409    return;
4410
4411  // Evaluate the exception specification.
4412  ImplicitExceptionSpecification ExceptSpec =
4413      computeImplicitExceptionSpec(*this, Loc, MD);
4414
4415  // Update the type of the special member to use it.
4416  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4417
4418  // A user-provided destructor can be defined outside the class. When that
4419  // happens, be sure to update the exception specification on both
4420  // declarations.
4421  const FunctionProtoType *CanonicalFPT =
4422    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4423  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4424    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4425                        CanonicalFPT, ExceptSpec);
4426}
4427
4428void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4429  CXXRecordDecl *RD = MD->getParent();
4430  CXXSpecialMember CSM = getSpecialMember(MD);
4431
4432  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4433         "not an explicitly-defaulted special member");
4434
4435  // Whether this was the first-declared instance of the constructor.
4436  // This affects whether we implicitly add an exception spec and constexpr.
4437  bool First = MD == MD->getCanonicalDecl();
4438
4439  bool HadError = false;
4440
4441  // C++11 [dcl.fct.def.default]p1:
4442  //   A function that is explicitly defaulted shall
4443  //     -- be a special member function (checked elsewhere),
4444  //     -- have the same type (except for ref-qualifiers, and except that a
4445  //        copy operation can take a non-const reference) as an implicit
4446  //        declaration, and
4447  //     -- not have default arguments.
4448  unsigned ExpectedParams = 1;
4449  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4450    ExpectedParams = 0;
4451  if (MD->getNumParams() != ExpectedParams) {
4452    // This also checks for default arguments: a copy or move constructor with a
4453    // default argument is classified as a default constructor, and assignment
4454    // operations and destructors can't have default arguments.
4455    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4456      << CSM << MD->getSourceRange();
4457    HadError = true;
4458  } else if (MD->isVariadic()) {
4459    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4460      << CSM << MD->getSourceRange();
4461    HadError = true;
4462  }
4463
4464  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4465
4466  bool CanHaveConstParam = false;
4467  if (CSM == CXXCopyConstructor)
4468    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4469  else if (CSM == CXXCopyAssignment)
4470    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4471
4472  QualType ReturnType = Context.VoidTy;
4473  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4474    // Check for return type matching.
4475    ReturnType = Type->getResultType();
4476    QualType ExpectedReturnType =
4477        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4478    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4479      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4480        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4481      HadError = true;
4482    }
4483
4484    // A defaulted special member cannot have cv-qualifiers.
4485    if (Type->getTypeQuals()) {
4486      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4487        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4488      HadError = true;
4489    }
4490  }
4491
4492  // Check for parameter type matching.
4493  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4494  bool HasConstParam = false;
4495  if (ExpectedParams && ArgType->isReferenceType()) {
4496    // Argument must be reference to possibly-const T.
4497    QualType ReferentType = ArgType->getPointeeType();
4498    HasConstParam = ReferentType.isConstQualified();
4499
4500    if (ReferentType.isVolatileQualified()) {
4501      Diag(MD->getLocation(),
4502           diag::err_defaulted_special_member_volatile_param) << CSM;
4503      HadError = true;
4504    }
4505
4506    if (HasConstParam && !CanHaveConstParam) {
4507      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4508        Diag(MD->getLocation(),
4509             diag::err_defaulted_special_member_copy_const_param)
4510          << (CSM == CXXCopyAssignment);
4511        // FIXME: Explain why this special member can't be const.
4512      } else {
4513        Diag(MD->getLocation(),
4514             diag::err_defaulted_special_member_move_const_param)
4515          << (CSM == CXXMoveAssignment);
4516      }
4517      HadError = true;
4518    }
4519  } else if (ExpectedParams) {
4520    // A copy assignment operator can take its argument by value, but a
4521    // defaulted one cannot.
4522    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4523    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4524    HadError = true;
4525  }
4526
4527  // C++11 [dcl.fct.def.default]p2:
4528  //   An explicitly-defaulted function may be declared constexpr only if it
4529  //   would have been implicitly declared as constexpr,
4530  // Do not apply this rule to members of class templates, since core issue 1358
4531  // makes such functions always instantiate to constexpr functions. For
4532  // functions which cannot be constexpr (for non-constructors in C++11 and for
4533  // destructors in C++1y), this is checked elsewhere.
4534  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4535                                                     HasConstParam);
4536  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4537                                 : isa<CXXConstructorDecl>(MD)) &&
4538      MD->isConstexpr() && !Constexpr &&
4539      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4540    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4541    // FIXME: Explain why the special member can't be constexpr.
4542    HadError = true;
4543  }
4544
4545  //   and may have an explicit exception-specification only if it is compatible
4546  //   with the exception-specification on the implicit declaration.
4547  if (Type->hasExceptionSpec()) {
4548    // Delay the check if this is the first declaration of the special member,
4549    // since we may not have parsed some necessary in-class initializers yet.
4550    if (First) {
4551      // If the exception specification needs to be instantiated, do so now,
4552      // before we clobber it with an EST_Unevaluated specification below.
4553      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4554        InstantiateExceptionSpec(MD->getLocStart(), MD);
4555        Type = MD->getType()->getAs<FunctionProtoType>();
4556      }
4557      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4558    } else
4559      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4560  }
4561
4562  //   If a function is explicitly defaulted on its first declaration,
4563  if (First) {
4564    //  -- it is implicitly considered to be constexpr if the implicit
4565    //     definition would be,
4566    MD->setConstexpr(Constexpr);
4567
4568    //  -- it is implicitly considered to have the same exception-specification
4569    //     as if it had been implicitly declared,
4570    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4571    EPI.ExceptionSpecType = EST_Unevaluated;
4572    EPI.ExceptionSpecDecl = MD;
4573    MD->setType(Context.getFunctionType(ReturnType,
4574                                        ArrayRef<QualType>(&ArgType,
4575                                                           ExpectedParams),
4576                                        EPI));
4577  }
4578
4579  if (ShouldDeleteSpecialMember(MD, CSM)) {
4580    if (First) {
4581      SetDeclDeleted(MD, MD->getLocation());
4582    } else {
4583      // C++11 [dcl.fct.def.default]p4:
4584      //   [For a] user-provided explicitly-defaulted function [...] if such a
4585      //   function is implicitly defined as deleted, the program is ill-formed.
4586      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4587      HadError = true;
4588    }
4589  }
4590
4591  if (HadError)
4592    MD->setInvalidDecl();
4593}
4594
4595/// Check whether the exception specification provided for an
4596/// explicitly-defaulted special member matches the exception specification
4597/// that would have been generated for an implicit special member, per
4598/// C++11 [dcl.fct.def.default]p2.
4599void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4600    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4601  // Compute the implicit exception specification.
4602  FunctionProtoType::ExtProtoInfo EPI;
4603  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4604  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4605    Context.getFunctionType(Context.VoidTy, None, EPI));
4606
4607  // Ensure that it matches.
4608  CheckEquivalentExceptionSpec(
4609    PDiag(diag::err_incorrect_defaulted_exception_spec)
4610      << getSpecialMember(MD), PDiag(),
4611    ImplicitType, SourceLocation(),
4612    SpecifiedType, MD->getLocation());
4613}
4614
4615void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4616  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4617       I != N; ++I)
4618    CheckExplicitlyDefaultedMemberExceptionSpec(
4619      DelayedDefaultedMemberExceptionSpecs[I].first,
4620      DelayedDefaultedMemberExceptionSpecs[I].second);
4621
4622  DelayedDefaultedMemberExceptionSpecs.clear();
4623}
4624
4625namespace {
4626struct SpecialMemberDeletionInfo {
4627  Sema &S;
4628  CXXMethodDecl *MD;
4629  Sema::CXXSpecialMember CSM;
4630  bool Diagnose;
4631
4632  // Properties of the special member, computed for convenience.
4633  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4634  SourceLocation Loc;
4635
4636  bool AllFieldsAreConst;
4637
4638  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4639                            Sema::CXXSpecialMember CSM, bool Diagnose)
4640    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4641      IsConstructor(false), IsAssignment(false), IsMove(false),
4642      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4643      AllFieldsAreConst(true) {
4644    switch (CSM) {
4645      case Sema::CXXDefaultConstructor:
4646      case Sema::CXXCopyConstructor:
4647        IsConstructor = true;
4648        break;
4649      case Sema::CXXMoveConstructor:
4650        IsConstructor = true;
4651        IsMove = true;
4652        break;
4653      case Sema::CXXCopyAssignment:
4654        IsAssignment = true;
4655        break;
4656      case Sema::CXXMoveAssignment:
4657        IsAssignment = true;
4658        IsMove = true;
4659        break;
4660      case Sema::CXXDestructor:
4661        break;
4662      case Sema::CXXInvalid:
4663        llvm_unreachable("invalid special member kind");
4664    }
4665
4666    if (MD->getNumParams()) {
4667      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4668      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4669    }
4670  }
4671
4672  bool inUnion() const { return MD->getParent()->isUnion(); }
4673
4674  /// Look up the corresponding special member in the given class.
4675  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4676                                              unsigned Quals) {
4677    unsigned TQ = MD->getTypeQualifiers();
4678    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4679    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4680      Quals = 0;
4681    return S.LookupSpecialMember(Class, CSM,
4682                                 ConstArg || (Quals & Qualifiers::Const),
4683                                 VolatileArg || (Quals & Qualifiers::Volatile),
4684                                 MD->getRefQualifier() == RQ_RValue,
4685                                 TQ & Qualifiers::Const,
4686                                 TQ & Qualifiers::Volatile);
4687  }
4688
4689  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4690
4691  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4692  bool shouldDeleteForField(FieldDecl *FD);
4693  bool shouldDeleteForAllConstMembers();
4694
4695  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4696                                     unsigned Quals);
4697  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4698                                    Sema::SpecialMemberOverloadResult *SMOR,
4699                                    bool IsDtorCallInCtor);
4700
4701  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4702};
4703}
4704
4705/// Is the given special member inaccessible when used on the given
4706/// sub-object.
4707bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4708                                             CXXMethodDecl *target) {
4709  /// If we're operating on a base class, the object type is the
4710  /// type of this special member.
4711  QualType objectTy;
4712  AccessSpecifier access = target->getAccess();
4713  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4714    objectTy = S.Context.getTypeDeclType(MD->getParent());
4715    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4716
4717  // If we're operating on a field, the object type is the type of the field.
4718  } else {
4719    objectTy = S.Context.getTypeDeclType(target->getParent());
4720  }
4721
4722  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4723}
4724
4725/// Check whether we should delete a special member due to the implicit
4726/// definition containing a call to a special member of a subobject.
4727bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4728    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4729    bool IsDtorCallInCtor) {
4730  CXXMethodDecl *Decl = SMOR->getMethod();
4731  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4732
4733  int DiagKind = -1;
4734
4735  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4736    DiagKind = !Decl ? 0 : 1;
4737  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4738    DiagKind = 2;
4739  else if (!isAccessible(Subobj, Decl))
4740    DiagKind = 3;
4741  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4742           !Decl->isTrivial()) {
4743    // A member of a union must have a trivial corresponding special member.
4744    // As a weird special case, a destructor call from a union's constructor
4745    // must be accessible and non-deleted, but need not be trivial. Such a
4746    // destructor is never actually called, but is semantically checked as
4747    // if it were.
4748    DiagKind = 4;
4749  }
4750
4751  if (DiagKind == -1)
4752    return false;
4753
4754  if (Diagnose) {
4755    if (Field) {
4756      S.Diag(Field->getLocation(),
4757             diag::note_deleted_special_member_class_subobject)
4758        << CSM << MD->getParent() << /*IsField*/true
4759        << Field << DiagKind << IsDtorCallInCtor;
4760    } else {
4761      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4762      S.Diag(Base->getLocStart(),
4763             diag::note_deleted_special_member_class_subobject)
4764        << CSM << MD->getParent() << /*IsField*/false
4765        << Base->getType() << DiagKind << IsDtorCallInCtor;
4766    }
4767
4768    if (DiagKind == 1)
4769      S.NoteDeletedFunction(Decl);
4770    // FIXME: Explain inaccessibility if DiagKind == 3.
4771  }
4772
4773  return true;
4774}
4775
4776/// Check whether we should delete a special member function due to having a
4777/// direct or virtual base class or non-static data member of class type M.
4778bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4779    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4780  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4781
4782  // C++11 [class.ctor]p5:
4783  // -- any direct or virtual base class, or non-static data member with no
4784  //    brace-or-equal-initializer, has class type M (or array thereof) and
4785  //    either M has no default constructor or overload resolution as applied
4786  //    to M's default constructor results in an ambiguity or in a function
4787  //    that is deleted or inaccessible
4788  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4789  // -- a direct or virtual base class B that cannot be copied/moved because
4790  //    overload resolution, as applied to B's corresponding special member,
4791  //    results in an ambiguity or a function that is deleted or inaccessible
4792  //    from the defaulted special member
4793  // C++11 [class.dtor]p5:
4794  // -- any direct or virtual base class [...] has a type with a destructor
4795  //    that is deleted or inaccessible
4796  if (!(CSM == Sema::CXXDefaultConstructor &&
4797        Field && Field->hasInClassInitializer()) &&
4798      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4799    return true;
4800
4801  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4802  // -- any direct or virtual base class or non-static data member has a
4803  //    type with a destructor that is deleted or inaccessible
4804  if (IsConstructor) {
4805    Sema::SpecialMemberOverloadResult *SMOR =
4806        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4807                              false, false, false, false, false);
4808    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4809      return true;
4810  }
4811
4812  return false;
4813}
4814
4815/// Check whether we should delete a special member function due to the class
4816/// having a particular direct or virtual base class.
4817bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4818  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4819  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4820}
4821
4822/// Check whether we should delete a special member function due to the class
4823/// having a particular non-static data member.
4824bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4825  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4826  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4827
4828  if (CSM == Sema::CXXDefaultConstructor) {
4829    // For a default constructor, all references must be initialized in-class
4830    // and, if a union, it must have a non-const member.
4831    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4832      if (Diagnose)
4833        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4834          << MD->getParent() << FD << FieldType << /*Reference*/0;
4835      return true;
4836    }
4837    // C++11 [class.ctor]p5: any non-variant non-static data member of
4838    // const-qualified type (or array thereof) with no
4839    // brace-or-equal-initializer does not have a user-provided default
4840    // constructor.
4841    if (!inUnion() && FieldType.isConstQualified() &&
4842        !FD->hasInClassInitializer() &&
4843        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4844      if (Diagnose)
4845        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4846          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4847      return true;
4848    }
4849
4850    if (inUnion() && !FieldType.isConstQualified())
4851      AllFieldsAreConst = false;
4852  } else if (CSM == Sema::CXXCopyConstructor) {
4853    // For a copy constructor, data members must not be of rvalue reference
4854    // type.
4855    if (FieldType->isRValueReferenceType()) {
4856      if (Diagnose)
4857        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4858          << MD->getParent() << FD << FieldType;
4859      return true;
4860    }
4861  } else if (IsAssignment) {
4862    // For an assignment operator, data members must not be of reference type.
4863    if (FieldType->isReferenceType()) {
4864      if (Diagnose)
4865        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4866          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4867      return true;
4868    }
4869    if (!FieldRecord && FieldType.isConstQualified()) {
4870      // C++11 [class.copy]p23:
4871      // -- a non-static data member of const non-class type (or array thereof)
4872      if (Diagnose)
4873        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4874          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4875      return true;
4876    }
4877  }
4878
4879  if (FieldRecord) {
4880    // Some additional restrictions exist on the variant members.
4881    if (!inUnion() && FieldRecord->isUnion() &&
4882        FieldRecord->isAnonymousStructOrUnion()) {
4883      bool AllVariantFieldsAreConst = true;
4884
4885      // FIXME: Handle anonymous unions declared within anonymous unions.
4886      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4887                                         UE = FieldRecord->field_end();
4888           UI != UE; ++UI) {
4889        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4890
4891        if (!UnionFieldType.isConstQualified())
4892          AllVariantFieldsAreConst = false;
4893
4894        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4895        if (UnionFieldRecord &&
4896            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4897                                          UnionFieldType.getCVRQualifiers()))
4898          return true;
4899      }
4900
4901      // At least one member in each anonymous union must be non-const
4902      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4903          FieldRecord->field_begin() != FieldRecord->field_end()) {
4904        if (Diagnose)
4905          S.Diag(FieldRecord->getLocation(),
4906                 diag::note_deleted_default_ctor_all_const)
4907            << MD->getParent() << /*anonymous union*/1;
4908        return true;
4909      }
4910
4911      // Don't check the implicit member of the anonymous union type.
4912      // This is technically non-conformant, but sanity demands it.
4913      return false;
4914    }
4915
4916    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4917                                      FieldType.getCVRQualifiers()))
4918      return true;
4919  }
4920
4921  return false;
4922}
4923
4924/// C++11 [class.ctor] p5:
4925///   A defaulted default constructor for a class X is defined as deleted if
4926/// X is a union and all of its variant members are of const-qualified type.
4927bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4928  // This is a silly definition, because it gives an empty union a deleted
4929  // default constructor. Don't do that.
4930  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4931      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4932    if (Diagnose)
4933      S.Diag(MD->getParent()->getLocation(),
4934             diag::note_deleted_default_ctor_all_const)
4935        << MD->getParent() << /*not anonymous union*/0;
4936    return true;
4937  }
4938  return false;
4939}
4940
4941/// Determine whether a defaulted special member function should be defined as
4942/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4943/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4944bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4945                                     bool Diagnose) {
4946  if (MD->isInvalidDecl())
4947    return false;
4948  CXXRecordDecl *RD = MD->getParent();
4949  assert(!RD->isDependentType() && "do deletion after instantiation");
4950  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4951    return false;
4952
4953  // C++11 [expr.lambda.prim]p19:
4954  //   The closure type associated with a lambda-expression has a
4955  //   deleted (8.4.3) default constructor and a deleted copy
4956  //   assignment operator.
4957  if (RD->isLambda() &&
4958      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4959    if (Diagnose)
4960      Diag(RD->getLocation(), diag::note_lambda_decl);
4961    return true;
4962  }
4963
4964  // For an anonymous struct or union, the copy and assignment special members
4965  // will never be used, so skip the check. For an anonymous union declared at
4966  // namespace scope, the constructor and destructor are used.
4967  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4968      RD->isAnonymousStructOrUnion())
4969    return false;
4970
4971  // C++11 [class.copy]p7, p18:
4972  //   If the class definition declares a move constructor or move assignment
4973  //   operator, an implicitly declared copy constructor or copy assignment
4974  //   operator is defined as deleted.
4975  if (MD->isImplicit() &&
4976      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4977    CXXMethodDecl *UserDeclaredMove = 0;
4978
4979    // In Microsoft mode, a user-declared move only causes the deletion of the
4980    // corresponding copy operation, not both copy operations.
4981    if (RD->hasUserDeclaredMoveConstructor() &&
4982        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4983      if (!Diagnose) return true;
4984
4985      // Find any user-declared move constructor.
4986      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4987                                        E = RD->ctor_end(); I != E; ++I) {
4988        if (I->isMoveConstructor()) {
4989          UserDeclaredMove = *I;
4990          break;
4991        }
4992      }
4993      assert(UserDeclaredMove);
4994    } else if (RD->hasUserDeclaredMoveAssignment() &&
4995               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4996      if (!Diagnose) return true;
4997
4998      // Find any user-declared move assignment operator.
4999      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5000                                          E = RD->method_end(); I != E; ++I) {
5001        if (I->isMoveAssignmentOperator()) {
5002          UserDeclaredMove = *I;
5003          break;
5004        }
5005      }
5006      assert(UserDeclaredMove);
5007    }
5008
5009    if (UserDeclaredMove) {
5010      Diag(UserDeclaredMove->getLocation(),
5011           diag::note_deleted_copy_user_declared_move)
5012        << (CSM == CXXCopyAssignment) << RD
5013        << UserDeclaredMove->isMoveAssignmentOperator();
5014      return true;
5015    }
5016  }
5017
5018  // Do access control from the special member function
5019  ContextRAII MethodContext(*this, MD);
5020
5021  // C++11 [class.dtor]p5:
5022  // -- for a virtual destructor, lookup of the non-array deallocation function
5023  //    results in an ambiguity or in a function that is deleted or inaccessible
5024  if (CSM == CXXDestructor && MD->isVirtual()) {
5025    FunctionDecl *OperatorDelete = 0;
5026    DeclarationName Name =
5027      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5028    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5029                                 OperatorDelete, false)) {
5030      if (Diagnose)
5031        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5032      return true;
5033    }
5034  }
5035
5036  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5037
5038  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5039                                          BE = RD->bases_end(); BI != BE; ++BI)
5040    if (!BI->isVirtual() &&
5041        SMI.shouldDeleteForBase(BI))
5042      return true;
5043
5044  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5045                                          BE = RD->vbases_end(); BI != BE; ++BI)
5046    if (SMI.shouldDeleteForBase(BI))
5047      return true;
5048
5049  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5050                                     FE = RD->field_end(); FI != FE; ++FI)
5051    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5052        SMI.shouldDeleteForField(*FI))
5053      return true;
5054
5055  if (SMI.shouldDeleteForAllConstMembers())
5056    return true;
5057
5058  return false;
5059}
5060
5061/// Perform lookup for a special member of the specified kind, and determine
5062/// whether it is trivial. If the triviality can be determined without the
5063/// lookup, skip it. This is intended for use when determining whether a
5064/// special member of a containing object is trivial, and thus does not ever
5065/// perform overload resolution for default constructors.
5066///
5067/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5068/// member that was most likely to be intended to be trivial, if any.
5069static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5070                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5071                                     CXXMethodDecl **Selected) {
5072  if (Selected)
5073    *Selected = 0;
5074
5075  switch (CSM) {
5076  case Sema::CXXInvalid:
5077    llvm_unreachable("not a special member");
5078
5079  case Sema::CXXDefaultConstructor:
5080    // C++11 [class.ctor]p5:
5081    //   A default constructor is trivial if:
5082    //    - all the [direct subobjects] have trivial default constructors
5083    //
5084    // Note, no overload resolution is performed in this case.
5085    if (RD->hasTrivialDefaultConstructor())
5086      return true;
5087
5088    if (Selected) {
5089      // If there's a default constructor which could have been trivial, dig it
5090      // out. Otherwise, if there's any user-provided default constructor, point
5091      // to that as an example of why there's not a trivial one.
5092      CXXConstructorDecl *DefCtor = 0;
5093      if (RD->needsImplicitDefaultConstructor())
5094        S.DeclareImplicitDefaultConstructor(RD);
5095      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5096                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5097        if (!CI->isDefaultConstructor())
5098          continue;
5099        DefCtor = *CI;
5100        if (!DefCtor->isUserProvided())
5101          break;
5102      }
5103
5104      *Selected = DefCtor;
5105    }
5106
5107    return false;
5108
5109  case Sema::CXXDestructor:
5110    // C++11 [class.dtor]p5:
5111    //   A destructor is trivial if:
5112    //    - all the direct [subobjects] have trivial destructors
5113    if (RD->hasTrivialDestructor())
5114      return true;
5115
5116    if (Selected) {
5117      if (RD->needsImplicitDestructor())
5118        S.DeclareImplicitDestructor(RD);
5119      *Selected = RD->getDestructor();
5120    }
5121
5122    return false;
5123
5124  case Sema::CXXCopyConstructor:
5125    // C++11 [class.copy]p12:
5126    //   A copy constructor is trivial if:
5127    //    - the constructor selected to copy each direct [subobject] is trivial
5128    if (RD->hasTrivialCopyConstructor()) {
5129      if (Quals == Qualifiers::Const)
5130        // We must either select the trivial copy constructor or reach an
5131        // ambiguity; no need to actually perform overload resolution.
5132        return true;
5133    } else if (!Selected) {
5134      return false;
5135    }
5136    // In C++98, we are not supposed to perform overload resolution here, but we
5137    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5138    // cases like B as having a non-trivial copy constructor:
5139    //   struct A { template<typename T> A(T&); };
5140    //   struct B { mutable A a; };
5141    goto NeedOverloadResolution;
5142
5143  case Sema::CXXCopyAssignment:
5144    // C++11 [class.copy]p25:
5145    //   A copy assignment operator is trivial if:
5146    //    - the assignment operator selected to copy each direct [subobject] is
5147    //      trivial
5148    if (RD->hasTrivialCopyAssignment()) {
5149      if (Quals == Qualifiers::Const)
5150        return true;
5151    } else if (!Selected) {
5152      return false;
5153    }
5154    // In C++98, we are not supposed to perform overload resolution here, but we
5155    // treat that as a language defect.
5156    goto NeedOverloadResolution;
5157
5158  case Sema::CXXMoveConstructor:
5159  case Sema::CXXMoveAssignment:
5160  NeedOverloadResolution:
5161    Sema::SpecialMemberOverloadResult *SMOR =
5162      S.LookupSpecialMember(RD, CSM,
5163                            Quals & Qualifiers::Const,
5164                            Quals & Qualifiers::Volatile,
5165                            /*RValueThis*/false, /*ConstThis*/false,
5166                            /*VolatileThis*/false);
5167
5168    // The standard doesn't describe how to behave if the lookup is ambiguous.
5169    // We treat it as not making the member non-trivial, just like the standard
5170    // mandates for the default constructor. This should rarely matter, because
5171    // the member will also be deleted.
5172    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5173      return true;
5174
5175    if (!SMOR->getMethod()) {
5176      assert(SMOR->getKind() ==
5177             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5178      return false;
5179    }
5180
5181    // We deliberately don't check if we found a deleted special member. We're
5182    // not supposed to!
5183    if (Selected)
5184      *Selected = SMOR->getMethod();
5185    return SMOR->getMethod()->isTrivial();
5186  }
5187
5188  llvm_unreachable("unknown special method kind");
5189}
5190
5191static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5192  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5193       CI != CE; ++CI)
5194    if (!CI->isImplicit())
5195      return *CI;
5196
5197  // Look for constructor templates.
5198  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5199  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5200    if (CXXConstructorDecl *CD =
5201          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5202      return CD;
5203  }
5204
5205  return 0;
5206}
5207
5208/// The kind of subobject we are checking for triviality. The values of this
5209/// enumeration are used in diagnostics.
5210enum TrivialSubobjectKind {
5211  /// The subobject is a base class.
5212  TSK_BaseClass,
5213  /// The subobject is a non-static data member.
5214  TSK_Field,
5215  /// The object is actually the complete object.
5216  TSK_CompleteObject
5217};
5218
5219/// Check whether the special member selected for a given type would be trivial.
5220static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5221                                      QualType SubType,
5222                                      Sema::CXXSpecialMember CSM,
5223                                      TrivialSubobjectKind Kind,
5224                                      bool Diagnose) {
5225  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5226  if (!SubRD)
5227    return true;
5228
5229  CXXMethodDecl *Selected;
5230  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5231                               Diagnose ? &Selected : 0))
5232    return true;
5233
5234  if (Diagnose) {
5235    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5236      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5237        << Kind << SubType.getUnqualifiedType();
5238      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5239        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5240    } else if (!Selected)
5241      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5242        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5243    else if (Selected->isUserProvided()) {
5244      if (Kind == TSK_CompleteObject)
5245        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5246          << Kind << SubType.getUnqualifiedType() << CSM;
5247      else {
5248        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5249          << Kind << SubType.getUnqualifiedType() << CSM;
5250        S.Diag(Selected->getLocation(), diag::note_declared_at);
5251      }
5252    } else {
5253      if (Kind != TSK_CompleteObject)
5254        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5255          << Kind << SubType.getUnqualifiedType() << CSM;
5256
5257      // Explain why the defaulted or deleted special member isn't trivial.
5258      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5259    }
5260  }
5261
5262  return false;
5263}
5264
5265/// Check whether the members of a class type allow a special member to be
5266/// trivial.
5267static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5268                                     Sema::CXXSpecialMember CSM,
5269                                     bool ConstArg, bool Diagnose) {
5270  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5271                                     FE = RD->field_end(); FI != FE; ++FI) {
5272    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5273      continue;
5274
5275    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5276
5277    // Pretend anonymous struct or union members are members of this class.
5278    if (FI->isAnonymousStructOrUnion()) {
5279      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5280                                    CSM, ConstArg, Diagnose))
5281        return false;
5282      continue;
5283    }
5284
5285    // C++11 [class.ctor]p5:
5286    //   A default constructor is trivial if [...]
5287    //    -- no non-static data member of its class has a
5288    //       brace-or-equal-initializer
5289    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5290      if (Diagnose)
5291        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5292      return false;
5293    }
5294
5295    // Objective C ARC 4.3.5:
5296    //   [...] nontrivally ownership-qualified types are [...] not trivially
5297    //   default constructible, copy constructible, move constructible, copy
5298    //   assignable, move assignable, or destructible [...]
5299    if (S.getLangOpts().ObjCAutoRefCount &&
5300        FieldType.hasNonTrivialObjCLifetime()) {
5301      if (Diagnose)
5302        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5303          << RD << FieldType.getObjCLifetime();
5304      return false;
5305    }
5306
5307    if (ConstArg && !FI->isMutable())
5308      FieldType.addConst();
5309    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5310                                   TSK_Field, Diagnose))
5311      return false;
5312  }
5313
5314  return true;
5315}
5316
5317/// Diagnose why the specified class does not have a trivial special member of
5318/// the given kind.
5319void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5320  QualType Ty = Context.getRecordType(RD);
5321  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5322    Ty.addConst();
5323
5324  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5325                            TSK_CompleteObject, /*Diagnose*/true);
5326}
5327
5328/// Determine whether a defaulted or deleted special member function is trivial,
5329/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5330/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5331bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5332                                  bool Diagnose) {
5333  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5334
5335  CXXRecordDecl *RD = MD->getParent();
5336
5337  bool ConstArg = false;
5338
5339  // C++11 [class.copy]p12, p25:
5340  //   A [special member] is trivial if its declared parameter type is the same
5341  //   as if it had been implicitly declared [...]
5342  switch (CSM) {
5343  case CXXDefaultConstructor:
5344  case CXXDestructor:
5345    // Trivial default constructors and destructors cannot have parameters.
5346    break;
5347
5348  case CXXCopyConstructor:
5349  case CXXCopyAssignment: {
5350    // Trivial copy operations always have const, non-volatile parameter types.
5351    ConstArg = true;
5352    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5353    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5354    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5355      if (Diagnose)
5356        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5357          << Param0->getSourceRange() << Param0->getType()
5358          << Context.getLValueReferenceType(
5359               Context.getRecordType(RD).withConst());
5360      return false;
5361    }
5362    break;
5363  }
5364
5365  case CXXMoveConstructor:
5366  case CXXMoveAssignment: {
5367    // Trivial move operations always have non-cv-qualified parameters.
5368    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5369    const RValueReferenceType *RT =
5370      Param0->getType()->getAs<RValueReferenceType>();
5371    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5372      if (Diagnose)
5373        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5374          << Param0->getSourceRange() << Param0->getType()
5375          << Context.getRValueReferenceType(Context.getRecordType(RD));
5376      return false;
5377    }
5378    break;
5379  }
5380
5381  case CXXInvalid:
5382    llvm_unreachable("not a special member");
5383  }
5384
5385  // FIXME: We require that the parameter-declaration-clause is equivalent to
5386  // that of an implicit declaration, not just that the declared parameter type
5387  // matches, in order to prevent absuridities like a function simultaneously
5388  // being a trivial copy constructor and a non-trivial default constructor.
5389  // This issue has not yet been assigned a core issue number.
5390  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5391    if (Diagnose)
5392      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5393           diag::note_nontrivial_default_arg)
5394        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5395    return false;
5396  }
5397  if (MD->isVariadic()) {
5398    if (Diagnose)
5399      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5400    return false;
5401  }
5402
5403  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5404  //   A copy/move [constructor or assignment operator] is trivial if
5405  //    -- the [member] selected to copy/move each direct base class subobject
5406  //       is trivial
5407  //
5408  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5409  //   A [default constructor or destructor] is trivial if
5410  //    -- all the direct base classes have trivial [default constructors or
5411  //       destructors]
5412  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5413                                          BE = RD->bases_end(); BI != BE; ++BI)
5414    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5415                                   ConstArg ? BI->getType().withConst()
5416                                            : BI->getType(),
5417                                   CSM, TSK_BaseClass, Diagnose))
5418      return false;
5419
5420  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5421  //   A copy/move [constructor or assignment operator] for a class X is
5422  //   trivial if
5423  //    -- for each non-static data member of X that is of class type (or array
5424  //       thereof), the constructor selected to copy/move that member is
5425  //       trivial
5426  //
5427  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5428  //   A [default constructor or destructor] is trivial if
5429  //    -- for all of the non-static data members of its class that are of class
5430  //       type (or array thereof), each such class has a trivial [default
5431  //       constructor or destructor]
5432  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5433    return false;
5434
5435  // C++11 [class.dtor]p5:
5436  //   A destructor is trivial if [...]
5437  //    -- the destructor is not virtual
5438  if (CSM == CXXDestructor && MD->isVirtual()) {
5439    if (Diagnose)
5440      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5441    return false;
5442  }
5443
5444  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5445  //   A [special member] for class X is trivial if [...]
5446  //    -- class X has no virtual functions and no virtual base classes
5447  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5448    if (!Diagnose)
5449      return false;
5450
5451    if (RD->getNumVBases()) {
5452      // Check for virtual bases. We already know that the corresponding
5453      // member in all bases is trivial, so vbases must all be direct.
5454      CXXBaseSpecifier &BS = *RD->vbases_begin();
5455      assert(BS.isVirtual());
5456      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5457      return false;
5458    }
5459
5460    // Must have a virtual method.
5461    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5462                                        ME = RD->method_end(); MI != ME; ++MI) {
5463      if (MI->isVirtual()) {
5464        SourceLocation MLoc = MI->getLocStart();
5465        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5466        return false;
5467      }
5468    }
5469
5470    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5471  }
5472
5473  // Looks like it's trivial!
5474  return true;
5475}
5476
5477/// \brief Data used with FindHiddenVirtualMethod
5478namespace {
5479  struct FindHiddenVirtualMethodData {
5480    Sema *S;
5481    CXXMethodDecl *Method;
5482    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5483    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5484  };
5485}
5486
5487/// \brief Check whether any most overriden method from MD in Methods
5488static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5489                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5490  if (MD->size_overridden_methods() == 0)
5491    return Methods.count(MD->getCanonicalDecl());
5492  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5493                                      E = MD->end_overridden_methods();
5494       I != E; ++I)
5495    if (CheckMostOverridenMethods(*I, Methods))
5496      return true;
5497  return false;
5498}
5499
5500/// \brief Member lookup function that determines whether a given C++
5501/// method overloads virtual methods in a base class without overriding any,
5502/// to be used with CXXRecordDecl::lookupInBases().
5503static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5504                                    CXXBasePath &Path,
5505                                    void *UserData) {
5506  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5507
5508  FindHiddenVirtualMethodData &Data
5509    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5510
5511  DeclarationName Name = Data.Method->getDeclName();
5512  assert(Name.getNameKind() == DeclarationName::Identifier);
5513
5514  bool foundSameNameMethod = false;
5515  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5516  for (Path.Decls = BaseRecord->lookup(Name);
5517       !Path.Decls.empty();
5518       Path.Decls = Path.Decls.slice(1)) {
5519    NamedDecl *D = Path.Decls.front();
5520    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5521      MD = MD->getCanonicalDecl();
5522      foundSameNameMethod = true;
5523      // Interested only in hidden virtual methods.
5524      if (!MD->isVirtual())
5525        continue;
5526      // If the method we are checking overrides a method from its base
5527      // don't warn about the other overloaded methods.
5528      if (!Data.S->IsOverload(Data.Method, MD, false))
5529        return true;
5530      // Collect the overload only if its hidden.
5531      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5532        overloadedMethods.push_back(MD);
5533    }
5534  }
5535
5536  if (foundSameNameMethod)
5537    Data.OverloadedMethods.append(overloadedMethods.begin(),
5538                                   overloadedMethods.end());
5539  return foundSameNameMethod;
5540}
5541
5542/// \brief Add the most overriden methods from MD to Methods
5543static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5544                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5545  if (MD->size_overridden_methods() == 0)
5546    Methods.insert(MD->getCanonicalDecl());
5547  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5548                                      E = MD->end_overridden_methods();
5549       I != E; ++I)
5550    AddMostOverridenMethods(*I, Methods);
5551}
5552
5553/// \brief See if a method overloads virtual methods in a base class without
5554/// overriding any.
5555void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5556  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5557                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5558    return;
5559  if (!MD->getDeclName().isIdentifier())
5560    return;
5561
5562  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5563                     /*bool RecordPaths=*/false,
5564                     /*bool DetectVirtual=*/false);
5565  FindHiddenVirtualMethodData Data;
5566  Data.Method = MD;
5567  Data.S = this;
5568
5569  // Keep the base methods that were overriden or introduced in the subclass
5570  // by 'using' in a set. A base method not in this set is hidden.
5571  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5572  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5573    NamedDecl *ND = *I;
5574    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5575      ND = shad->getTargetDecl();
5576    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5577      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5578  }
5579
5580  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5581      !Data.OverloadedMethods.empty()) {
5582    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5583      << MD << (Data.OverloadedMethods.size() > 1);
5584
5585    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5586      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5587      PartialDiagnostic PD = PDiag(
5588           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5589      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5590      Diag(overloadedMD->getLocation(), PD);
5591    }
5592  }
5593}
5594
5595void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5596                                             Decl *TagDecl,
5597                                             SourceLocation LBrac,
5598                                             SourceLocation RBrac,
5599                                             AttributeList *AttrList) {
5600  if (!TagDecl)
5601    return;
5602
5603  AdjustDeclIfTemplate(TagDecl);
5604
5605  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5606    if (l->getKind() != AttributeList::AT_Visibility)
5607      continue;
5608    l->setInvalid();
5609    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5610      l->getName();
5611  }
5612
5613  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5614              // strict aliasing violation!
5615              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5616              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5617
5618  CheckCompletedCXXClass(
5619                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5620}
5621
5622/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5623/// special functions, such as the default constructor, copy
5624/// constructor, or destructor, to the given C++ class (C++
5625/// [special]p1).  This routine can only be executed just before the
5626/// definition of the class is complete.
5627void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5628  if (!ClassDecl->hasUserDeclaredConstructor())
5629    ++ASTContext::NumImplicitDefaultConstructors;
5630
5631  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5632    ++ASTContext::NumImplicitCopyConstructors;
5633
5634    // If the properties or semantics of the copy constructor couldn't be
5635    // determined while the class was being declared, force a declaration
5636    // of it now.
5637    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5638      DeclareImplicitCopyConstructor(ClassDecl);
5639  }
5640
5641  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5642    ++ASTContext::NumImplicitMoveConstructors;
5643
5644    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5645      DeclareImplicitMoveConstructor(ClassDecl);
5646  }
5647
5648  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5649    ++ASTContext::NumImplicitCopyAssignmentOperators;
5650
5651    // If we have a dynamic class, then the copy assignment operator may be
5652    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5653    // it shows up in the right place in the vtable and that we diagnose
5654    // problems with the implicit exception specification.
5655    if (ClassDecl->isDynamicClass() ||
5656        ClassDecl->needsOverloadResolutionForCopyAssignment())
5657      DeclareImplicitCopyAssignment(ClassDecl);
5658  }
5659
5660  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5661    ++ASTContext::NumImplicitMoveAssignmentOperators;
5662
5663    // Likewise for the move assignment operator.
5664    if (ClassDecl->isDynamicClass() ||
5665        ClassDecl->needsOverloadResolutionForMoveAssignment())
5666      DeclareImplicitMoveAssignment(ClassDecl);
5667  }
5668
5669  if (!ClassDecl->hasUserDeclaredDestructor()) {
5670    ++ASTContext::NumImplicitDestructors;
5671
5672    // If we have a dynamic class, then the destructor may be virtual, so we
5673    // have to declare the destructor immediately. This ensures that, e.g., it
5674    // shows up in the right place in the vtable and that we diagnose problems
5675    // with the implicit exception specification.
5676    if (ClassDecl->isDynamicClass() ||
5677        ClassDecl->needsOverloadResolutionForDestructor())
5678      DeclareImplicitDestructor(ClassDecl);
5679  }
5680}
5681
5682void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5683  if (!D)
5684    return;
5685
5686  int NumParamList = D->getNumTemplateParameterLists();
5687  for (int i = 0; i < NumParamList; i++) {
5688    TemplateParameterList* Params = D->getTemplateParameterList(i);
5689    for (TemplateParameterList::iterator Param = Params->begin(),
5690                                      ParamEnd = Params->end();
5691          Param != ParamEnd; ++Param) {
5692      NamedDecl *Named = cast<NamedDecl>(*Param);
5693      if (Named->getDeclName()) {
5694        S->AddDecl(Named);
5695        IdResolver.AddDecl(Named);
5696      }
5697    }
5698  }
5699}
5700
5701void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5702  if (!D)
5703    return;
5704
5705  TemplateParameterList *Params = 0;
5706  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5707    Params = Template->getTemplateParameters();
5708  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5709           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5710    Params = PartialSpec->getTemplateParameters();
5711  else
5712    return;
5713
5714  for (TemplateParameterList::iterator Param = Params->begin(),
5715                                    ParamEnd = Params->end();
5716       Param != ParamEnd; ++Param) {
5717    NamedDecl *Named = cast<NamedDecl>(*Param);
5718    if (Named->getDeclName()) {
5719      S->AddDecl(Named);
5720      IdResolver.AddDecl(Named);
5721    }
5722  }
5723}
5724
5725void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5726  if (!RecordD) return;
5727  AdjustDeclIfTemplate(RecordD);
5728  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5729  PushDeclContext(S, Record);
5730}
5731
5732void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5733  if (!RecordD) return;
5734  PopDeclContext();
5735}
5736
5737/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5738/// parsing a top-level (non-nested) C++ class, and we are now
5739/// parsing those parts of the given Method declaration that could
5740/// not be parsed earlier (C++ [class.mem]p2), such as default
5741/// arguments. This action should enter the scope of the given
5742/// Method declaration as if we had just parsed the qualified method
5743/// name. However, it should not bring the parameters into scope;
5744/// that will be performed by ActOnDelayedCXXMethodParameter.
5745void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5746}
5747
5748/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5749/// C++ method declaration. We're (re-)introducing the given
5750/// function parameter into scope for use in parsing later parts of
5751/// the method declaration. For example, we could see an
5752/// ActOnParamDefaultArgument event for this parameter.
5753void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5754  if (!ParamD)
5755    return;
5756
5757  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5758
5759  // If this parameter has an unparsed default argument, clear it out
5760  // to make way for the parsed default argument.
5761  if (Param->hasUnparsedDefaultArg())
5762    Param->setDefaultArg(0);
5763
5764  S->AddDecl(Param);
5765  if (Param->getDeclName())
5766    IdResolver.AddDecl(Param);
5767}
5768
5769/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5770/// processing the delayed method declaration for Method. The method
5771/// declaration is now considered finished. There may be a separate
5772/// ActOnStartOfFunctionDef action later (not necessarily
5773/// immediately!) for this method, if it was also defined inside the
5774/// class body.
5775void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5776  if (!MethodD)
5777    return;
5778
5779  AdjustDeclIfTemplate(MethodD);
5780
5781  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5782
5783  // Now that we have our default arguments, check the constructor
5784  // again. It could produce additional diagnostics or affect whether
5785  // the class has implicitly-declared destructors, among other
5786  // things.
5787  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5788    CheckConstructor(Constructor);
5789
5790  // Check the default arguments, which we may have added.
5791  if (!Method->isInvalidDecl())
5792    CheckCXXDefaultArguments(Method);
5793}
5794
5795/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5796/// the well-formedness of the constructor declarator @p D with type @p
5797/// R. If there are any errors in the declarator, this routine will
5798/// emit diagnostics and set the invalid bit to true.  In any case, the type
5799/// will be updated to reflect a well-formed type for the constructor and
5800/// returned.
5801QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5802                                          StorageClass &SC) {
5803  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5804
5805  // C++ [class.ctor]p3:
5806  //   A constructor shall not be virtual (10.3) or static (9.4). A
5807  //   constructor can be invoked for a const, volatile or const
5808  //   volatile object. A constructor shall not be declared const,
5809  //   volatile, or const volatile (9.3.2).
5810  if (isVirtual) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5813        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5814        << SourceRange(D.getIdentifierLoc());
5815    D.setInvalidType();
5816  }
5817  if (SC == SC_Static) {
5818    if (!D.isInvalidType())
5819      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5820        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5821        << SourceRange(D.getIdentifierLoc());
5822    D.setInvalidType();
5823    SC = SC_None;
5824  }
5825
5826  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5827  if (FTI.TypeQuals != 0) {
5828    if (FTI.TypeQuals & Qualifiers::Const)
5829      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5830        << "const" << SourceRange(D.getIdentifierLoc());
5831    if (FTI.TypeQuals & Qualifiers::Volatile)
5832      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5833        << "volatile" << SourceRange(D.getIdentifierLoc());
5834    if (FTI.TypeQuals & Qualifiers::Restrict)
5835      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5836        << "restrict" << SourceRange(D.getIdentifierLoc());
5837    D.setInvalidType();
5838  }
5839
5840  // C++0x [class.ctor]p4:
5841  //   A constructor shall not be declared with a ref-qualifier.
5842  if (FTI.hasRefQualifier()) {
5843    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5844      << FTI.RefQualifierIsLValueRef
5845      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5846    D.setInvalidType();
5847  }
5848
5849  // Rebuild the function type "R" without any type qualifiers (in
5850  // case any of the errors above fired) and with "void" as the
5851  // return type, since constructors don't have return types.
5852  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5853  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5854    return R;
5855
5856  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5857  EPI.TypeQuals = 0;
5858  EPI.RefQualifier = RQ_None;
5859
5860  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5861}
5862
5863/// CheckConstructor - Checks a fully-formed constructor for
5864/// well-formedness, issuing any diagnostics required. Returns true if
5865/// the constructor declarator is invalid.
5866void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5867  CXXRecordDecl *ClassDecl
5868    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5869  if (!ClassDecl)
5870    return Constructor->setInvalidDecl();
5871
5872  // C++ [class.copy]p3:
5873  //   A declaration of a constructor for a class X is ill-formed if
5874  //   its first parameter is of type (optionally cv-qualified) X and
5875  //   either there are no other parameters or else all other
5876  //   parameters have default arguments.
5877  if (!Constructor->isInvalidDecl() &&
5878      ((Constructor->getNumParams() == 1) ||
5879       (Constructor->getNumParams() > 1 &&
5880        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5881      Constructor->getTemplateSpecializationKind()
5882                                              != TSK_ImplicitInstantiation) {
5883    QualType ParamType = Constructor->getParamDecl(0)->getType();
5884    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5885    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5886      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5887      const char *ConstRef
5888        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5889                                                        : " const &";
5890      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5891        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5892
5893      // FIXME: Rather that making the constructor invalid, we should endeavor
5894      // to fix the type.
5895      Constructor->setInvalidDecl();
5896    }
5897  }
5898}
5899
5900/// CheckDestructor - Checks a fully-formed destructor definition for
5901/// well-formedness, issuing any diagnostics required.  Returns true
5902/// on error.
5903bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5904  CXXRecordDecl *RD = Destructor->getParent();
5905
5906  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5907    SourceLocation Loc;
5908
5909    if (!Destructor->isImplicit())
5910      Loc = Destructor->getLocation();
5911    else
5912      Loc = RD->getLocation();
5913
5914    // If we have a virtual destructor, look up the deallocation function
5915    FunctionDecl *OperatorDelete = 0;
5916    DeclarationName Name =
5917    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5918    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5919      return true;
5920
5921    MarkFunctionReferenced(Loc, OperatorDelete);
5922
5923    Destructor->setOperatorDelete(OperatorDelete);
5924  }
5925
5926  return false;
5927}
5928
5929static inline bool
5930FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5931  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5932          FTI.ArgInfo[0].Param &&
5933          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5934}
5935
5936/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5937/// the well-formednes of the destructor declarator @p D with type @p
5938/// R. If there are any errors in the declarator, this routine will
5939/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5940/// will be updated to reflect a well-formed type for the destructor and
5941/// returned.
5942QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5943                                         StorageClass& SC) {
5944  // C++ [class.dtor]p1:
5945  //   [...] A typedef-name that names a class is a class-name
5946  //   (7.1.3); however, a typedef-name that names a class shall not
5947  //   be used as the identifier in the declarator for a destructor
5948  //   declaration.
5949  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5950  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5951    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5952      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5953  else if (const TemplateSpecializationType *TST =
5954             DeclaratorType->getAs<TemplateSpecializationType>())
5955    if (TST->isTypeAlias())
5956      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5957        << DeclaratorType << 1;
5958
5959  // C++ [class.dtor]p2:
5960  //   A destructor is used to destroy objects of its class type. A
5961  //   destructor takes no parameters, and no return type can be
5962  //   specified for it (not even void). The address of a destructor
5963  //   shall not be taken. A destructor shall not be static. A
5964  //   destructor can be invoked for a const, volatile or const
5965  //   volatile object. A destructor shall not be declared const,
5966  //   volatile or const volatile (9.3.2).
5967  if (SC == SC_Static) {
5968    if (!D.isInvalidType())
5969      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5970        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5971        << SourceRange(D.getIdentifierLoc())
5972        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5973
5974    SC = SC_None;
5975  }
5976  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5977    // Destructors don't have return types, but the parser will
5978    // happily parse something like:
5979    //
5980    //   class X {
5981    //     float ~X();
5982    //   };
5983    //
5984    // The return type will be eliminated later.
5985    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5986      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5987      << SourceRange(D.getIdentifierLoc());
5988  }
5989
5990  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5991  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5992    if (FTI.TypeQuals & Qualifiers::Const)
5993      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5994        << "const" << SourceRange(D.getIdentifierLoc());
5995    if (FTI.TypeQuals & Qualifiers::Volatile)
5996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5997        << "volatile" << SourceRange(D.getIdentifierLoc());
5998    if (FTI.TypeQuals & Qualifiers::Restrict)
5999      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6000        << "restrict" << SourceRange(D.getIdentifierLoc());
6001    D.setInvalidType();
6002  }
6003
6004  // C++0x [class.dtor]p2:
6005  //   A destructor shall not be declared with a ref-qualifier.
6006  if (FTI.hasRefQualifier()) {
6007    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6008      << FTI.RefQualifierIsLValueRef
6009      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6010    D.setInvalidType();
6011  }
6012
6013  // Make sure we don't have any parameters.
6014  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6015    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6016
6017    // Delete the parameters.
6018    FTI.freeArgs();
6019    D.setInvalidType();
6020  }
6021
6022  // Make sure the destructor isn't variadic.
6023  if (FTI.isVariadic) {
6024    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6025    D.setInvalidType();
6026  }
6027
6028  // Rebuild the function type "R" without any type qualifiers or
6029  // parameters (in case any of the errors above fired) and with
6030  // "void" as the return type, since destructors don't have return
6031  // types.
6032  if (!D.isInvalidType())
6033    return R;
6034
6035  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6036  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6037  EPI.Variadic = false;
6038  EPI.TypeQuals = 0;
6039  EPI.RefQualifier = RQ_None;
6040  return Context.getFunctionType(Context.VoidTy, None, EPI);
6041}
6042
6043/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6044/// well-formednes of the conversion function declarator @p D with
6045/// type @p R. If there are any errors in the declarator, this routine
6046/// will emit diagnostics and return true. Otherwise, it will return
6047/// false. Either way, the type @p R will be updated to reflect a
6048/// well-formed type for the conversion operator.
6049void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6050                                     StorageClass& SC) {
6051  // C++ [class.conv.fct]p1:
6052  //   Neither parameter types nor return type can be specified. The
6053  //   type of a conversion function (8.3.5) is "function taking no
6054  //   parameter returning conversion-type-id."
6055  if (SC == SC_Static) {
6056    if (!D.isInvalidType())
6057      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6058        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6059        << SourceRange(D.getIdentifierLoc());
6060    D.setInvalidType();
6061    SC = SC_None;
6062  }
6063
6064  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6065
6066  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6067    // Conversion functions don't have return types, but the parser will
6068    // happily parse something like:
6069    //
6070    //   class X {
6071    //     float operator bool();
6072    //   };
6073    //
6074    // The return type will be changed later anyway.
6075    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6076      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6077      << SourceRange(D.getIdentifierLoc());
6078    D.setInvalidType();
6079  }
6080
6081  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6082
6083  // Make sure we don't have any parameters.
6084  if (Proto->getNumArgs() > 0) {
6085    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6086
6087    // Delete the parameters.
6088    D.getFunctionTypeInfo().freeArgs();
6089    D.setInvalidType();
6090  } else if (Proto->isVariadic()) {
6091    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6092    D.setInvalidType();
6093  }
6094
6095  // Diagnose "&operator bool()" and other such nonsense.  This
6096  // is actually a gcc extension which we don't support.
6097  if (Proto->getResultType() != ConvType) {
6098    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6099      << Proto->getResultType();
6100    D.setInvalidType();
6101    ConvType = Proto->getResultType();
6102  }
6103
6104  // C++ [class.conv.fct]p4:
6105  //   The conversion-type-id shall not represent a function type nor
6106  //   an array type.
6107  if (ConvType->isArrayType()) {
6108    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6109    ConvType = Context.getPointerType(ConvType);
6110    D.setInvalidType();
6111  } else if (ConvType->isFunctionType()) {
6112    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6113    ConvType = Context.getPointerType(ConvType);
6114    D.setInvalidType();
6115  }
6116
6117  // Rebuild the function type "R" without any parameters (in case any
6118  // of the errors above fired) and with the conversion type as the
6119  // return type.
6120  if (D.isInvalidType())
6121    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6122
6123  // C++0x explicit conversion operators.
6124  if (D.getDeclSpec().isExplicitSpecified())
6125    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6126         getLangOpts().CPlusPlus11 ?
6127           diag::warn_cxx98_compat_explicit_conversion_functions :
6128           diag::ext_explicit_conversion_functions)
6129      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6130}
6131
6132/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6133/// the declaration of the given C++ conversion function. This routine
6134/// is responsible for recording the conversion function in the C++
6135/// class, if possible.
6136Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6137  assert(Conversion && "Expected to receive a conversion function declaration");
6138
6139  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6140
6141  // Make sure we aren't redeclaring the conversion function.
6142  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6143
6144  // C++ [class.conv.fct]p1:
6145  //   [...] A conversion function is never used to convert a
6146  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6147  //   same object type (or a reference to it), to a (possibly
6148  //   cv-qualified) base class of that type (or a reference to it),
6149  //   or to (possibly cv-qualified) void.
6150  // FIXME: Suppress this warning if the conversion function ends up being a
6151  // virtual function that overrides a virtual function in a base class.
6152  QualType ClassType
6153    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6154  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6155    ConvType = ConvTypeRef->getPointeeType();
6156  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6157      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6158    /* Suppress diagnostics for instantiations. */;
6159  else if (ConvType->isRecordType()) {
6160    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6161    if (ConvType == ClassType)
6162      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6163        << ClassType;
6164    else if (IsDerivedFrom(ClassType, ConvType))
6165      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6166        <<  ClassType << ConvType;
6167  } else if (ConvType->isVoidType()) {
6168    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6169      << ClassType << ConvType;
6170  }
6171
6172  if (FunctionTemplateDecl *ConversionTemplate
6173                                = Conversion->getDescribedFunctionTemplate())
6174    return ConversionTemplate;
6175
6176  return Conversion;
6177}
6178
6179//===----------------------------------------------------------------------===//
6180// Namespace Handling
6181//===----------------------------------------------------------------------===//
6182
6183/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6184/// reopened.
6185static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6186                                            SourceLocation Loc,
6187                                            IdentifierInfo *II, bool *IsInline,
6188                                            NamespaceDecl *PrevNS) {
6189  assert(*IsInline != PrevNS->isInline());
6190
6191  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6192  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6193  // inline namespaces, with the intention of bringing names into namespace std.
6194  //
6195  // We support this just well enough to get that case working; this is not
6196  // sufficient to support reopening namespaces as inline in general.
6197  if (*IsInline && II && II->getName().startswith("__atomic") &&
6198      S.getSourceManager().isInSystemHeader(Loc)) {
6199    // Mark all prior declarations of the namespace as inline.
6200    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6201         NS = NS->getPreviousDecl())
6202      NS->setInline(*IsInline);
6203    // Patch up the lookup table for the containing namespace. This isn't really
6204    // correct, but it's good enough for this particular case.
6205    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6206                                    E = PrevNS->decls_end(); I != E; ++I)
6207      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6208        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6209    return;
6210  }
6211
6212  if (PrevNS->isInline())
6213    // The user probably just forgot the 'inline', so suggest that it
6214    // be added back.
6215    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6216      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6217  else
6218    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6219      << IsInline;
6220
6221  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6222  *IsInline = PrevNS->isInline();
6223}
6224
6225/// ActOnStartNamespaceDef - This is called at the start of a namespace
6226/// definition.
6227Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6228                                   SourceLocation InlineLoc,
6229                                   SourceLocation NamespaceLoc,
6230                                   SourceLocation IdentLoc,
6231                                   IdentifierInfo *II,
6232                                   SourceLocation LBrace,
6233                                   AttributeList *AttrList) {
6234  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6235  // For anonymous namespace, take the location of the left brace.
6236  SourceLocation Loc = II ? IdentLoc : LBrace;
6237  bool IsInline = InlineLoc.isValid();
6238  bool IsInvalid = false;
6239  bool IsStd = false;
6240  bool AddToKnown = false;
6241  Scope *DeclRegionScope = NamespcScope->getParent();
6242
6243  NamespaceDecl *PrevNS = 0;
6244  if (II) {
6245    // C++ [namespace.def]p2:
6246    //   The identifier in an original-namespace-definition shall not
6247    //   have been previously defined in the declarative region in
6248    //   which the original-namespace-definition appears. The
6249    //   identifier in an original-namespace-definition is the name of
6250    //   the namespace. Subsequently in that declarative region, it is
6251    //   treated as an original-namespace-name.
6252    //
6253    // Since namespace names are unique in their scope, and we don't
6254    // look through using directives, just look for any ordinary names.
6255
6256    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6257    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6258    Decl::IDNS_Namespace;
6259    NamedDecl *PrevDecl = 0;
6260    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6261    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6262         ++I) {
6263      if ((*I)->getIdentifierNamespace() & IDNS) {
6264        PrevDecl = *I;
6265        break;
6266      }
6267    }
6268
6269    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6270
6271    if (PrevNS) {
6272      // This is an extended namespace definition.
6273      if (IsInline != PrevNS->isInline())
6274        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6275                                        &IsInline, PrevNS);
6276    } else if (PrevDecl) {
6277      // This is an invalid name redefinition.
6278      Diag(Loc, diag::err_redefinition_different_kind)
6279        << II;
6280      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6281      IsInvalid = true;
6282      // Continue on to push Namespc as current DeclContext and return it.
6283    } else if (II->isStr("std") &&
6284               CurContext->getRedeclContext()->isTranslationUnit()) {
6285      // This is the first "real" definition of the namespace "std", so update
6286      // our cache of the "std" namespace to point at this definition.
6287      PrevNS = getStdNamespace();
6288      IsStd = true;
6289      AddToKnown = !IsInline;
6290    } else {
6291      // We've seen this namespace for the first time.
6292      AddToKnown = !IsInline;
6293    }
6294  } else {
6295    // Anonymous namespaces.
6296
6297    // Determine whether the parent already has an anonymous namespace.
6298    DeclContext *Parent = CurContext->getRedeclContext();
6299    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6300      PrevNS = TU->getAnonymousNamespace();
6301    } else {
6302      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6303      PrevNS = ND->getAnonymousNamespace();
6304    }
6305
6306    if (PrevNS && IsInline != PrevNS->isInline())
6307      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6308                                      &IsInline, PrevNS);
6309  }
6310
6311  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6312                                                 StartLoc, Loc, II, PrevNS);
6313  if (IsInvalid)
6314    Namespc->setInvalidDecl();
6315
6316  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6317
6318  // FIXME: Should we be merging attributes?
6319  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6320    PushNamespaceVisibilityAttr(Attr, Loc);
6321
6322  if (IsStd)
6323    StdNamespace = Namespc;
6324  if (AddToKnown)
6325    KnownNamespaces[Namespc] = false;
6326
6327  if (II) {
6328    PushOnScopeChains(Namespc, DeclRegionScope);
6329  } else {
6330    // Link the anonymous namespace into its parent.
6331    DeclContext *Parent = CurContext->getRedeclContext();
6332    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6333      TU->setAnonymousNamespace(Namespc);
6334    } else {
6335      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6336    }
6337
6338    CurContext->addDecl(Namespc);
6339
6340    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6341    //   behaves as if it were replaced by
6342    //     namespace unique { /* empty body */ }
6343    //     using namespace unique;
6344    //     namespace unique { namespace-body }
6345    //   where all occurrences of 'unique' in a translation unit are
6346    //   replaced by the same identifier and this identifier differs
6347    //   from all other identifiers in the entire program.
6348
6349    // We just create the namespace with an empty name and then add an
6350    // implicit using declaration, just like the standard suggests.
6351    //
6352    // CodeGen enforces the "universally unique" aspect by giving all
6353    // declarations semantically contained within an anonymous
6354    // namespace internal linkage.
6355
6356    if (!PrevNS) {
6357      UsingDirectiveDecl* UD
6358        = UsingDirectiveDecl::Create(Context, Parent,
6359                                     /* 'using' */ LBrace,
6360                                     /* 'namespace' */ SourceLocation(),
6361                                     /* qualifier */ NestedNameSpecifierLoc(),
6362                                     /* identifier */ SourceLocation(),
6363                                     Namespc,
6364                                     /* Ancestor */ Parent);
6365      UD->setImplicit();
6366      Parent->addDecl(UD);
6367    }
6368  }
6369
6370  ActOnDocumentableDecl(Namespc);
6371
6372  // Although we could have an invalid decl (i.e. the namespace name is a
6373  // redefinition), push it as current DeclContext and try to continue parsing.
6374  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6375  // for the namespace has the declarations that showed up in that particular
6376  // namespace definition.
6377  PushDeclContext(NamespcScope, Namespc);
6378  return Namespc;
6379}
6380
6381/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6382/// is a namespace alias, returns the namespace it points to.
6383static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6384  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6385    return AD->getNamespace();
6386  return dyn_cast_or_null<NamespaceDecl>(D);
6387}
6388
6389/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6390/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6391void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6392  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6393  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6394  Namespc->setRBraceLoc(RBrace);
6395  PopDeclContext();
6396  if (Namespc->hasAttr<VisibilityAttr>())
6397    PopPragmaVisibility(true, RBrace);
6398}
6399
6400CXXRecordDecl *Sema::getStdBadAlloc() const {
6401  return cast_or_null<CXXRecordDecl>(
6402                                  StdBadAlloc.get(Context.getExternalSource()));
6403}
6404
6405NamespaceDecl *Sema::getStdNamespace() const {
6406  return cast_or_null<NamespaceDecl>(
6407                                 StdNamespace.get(Context.getExternalSource()));
6408}
6409
6410/// \brief Retrieve the special "std" namespace, which may require us to
6411/// implicitly define the namespace.
6412NamespaceDecl *Sema::getOrCreateStdNamespace() {
6413  if (!StdNamespace) {
6414    // The "std" namespace has not yet been defined, so build one implicitly.
6415    StdNamespace = NamespaceDecl::Create(Context,
6416                                         Context.getTranslationUnitDecl(),
6417                                         /*Inline=*/false,
6418                                         SourceLocation(), SourceLocation(),
6419                                         &PP.getIdentifierTable().get("std"),
6420                                         /*PrevDecl=*/0);
6421    getStdNamespace()->setImplicit(true);
6422  }
6423
6424  return getStdNamespace();
6425}
6426
6427bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6428  assert(getLangOpts().CPlusPlus &&
6429         "Looking for std::initializer_list outside of C++.");
6430
6431  // We're looking for implicit instantiations of
6432  // template <typename E> class std::initializer_list.
6433
6434  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6435    return false;
6436
6437  ClassTemplateDecl *Template = 0;
6438  const TemplateArgument *Arguments = 0;
6439
6440  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6441
6442    ClassTemplateSpecializationDecl *Specialization =
6443        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6444    if (!Specialization)
6445      return false;
6446
6447    Template = Specialization->getSpecializedTemplate();
6448    Arguments = Specialization->getTemplateArgs().data();
6449  } else if (const TemplateSpecializationType *TST =
6450                 Ty->getAs<TemplateSpecializationType>()) {
6451    Template = dyn_cast_or_null<ClassTemplateDecl>(
6452        TST->getTemplateName().getAsTemplateDecl());
6453    Arguments = TST->getArgs();
6454  }
6455  if (!Template)
6456    return false;
6457
6458  if (!StdInitializerList) {
6459    // Haven't recognized std::initializer_list yet, maybe this is it.
6460    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6461    if (TemplateClass->getIdentifier() !=
6462            &PP.getIdentifierTable().get("initializer_list") ||
6463        !getStdNamespace()->InEnclosingNamespaceSetOf(
6464            TemplateClass->getDeclContext()))
6465      return false;
6466    // This is a template called std::initializer_list, but is it the right
6467    // template?
6468    TemplateParameterList *Params = Template->getTemplateParameters();
6469    if (Params->getMinRequiredArguments() != 1)
6470      return false;
6471    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6472      return false;
6473
6474    // It's the right template.
6475    StdInitializerList = Template;
6476  }
6477
6478  if (Template != StdInitializerList)
6479    return false;
6480
6481  // This is an instance of std::initializer_list. Find the argument type.
6482  if (Element)
6483    *Element = Arguments[0].getAsType();
6484  return true;
6485}
6486
6487static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6488  NamespaceDecl *Std = S.getStdNamespace();
6489  if (!Std) {
6490    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6491    return 0;
6492  }
6493
6494  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6495                      Loc, Sema::LookupOrdinaryName);
6496  if (!S.LookupQualifiedName(Result, Std)) {
6497    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6498    return 0;
6499  }
6500  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6501  if (!Template) {
6502    Result.suppressDiagnostics();
6503    // We found something weird. Complain about the first thing we found.
6504    NamedDecl *Found = *Result.begin();
6505    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6506    return 0;
6507  }
6508
6509  // We found some template called std::initializer_list. Now verify that it's
6510  // correct.
6511  TemplateParameterList *Params = Template->getTemplateParameters();
6512  if (Params->getMinRequiredArguments() != 1 ||
6513      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6514    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6515    return 0;
6516  }
6517
6518  return Template;
6519}
6520
6521QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6522  if (!StdInitializerList) {
6523    StdInitializerList = LookupStdInitializerList(*this, Loc);
6524    if (!StdInitializerList)
6525      return QualType();
6526  }
6527
6528  TemplateArgumentListInfo Args(Loc, Loc);
6529  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6530                                       Context.getTrivialTypeSourceInfo(Element,
6531                                                                        Loc)));
6532  return Context.getCanonicalType(
6533      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6534}
6535
6536bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6537  // C++ [dcl.init.list]p2:
6538  //   A constructor is an initializer-list constructor if its first parameter
6539  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6540  //   std::initializer_list<E> for some type E, and either there are no other
6541  //   parameters or else all other parameters have default arguments.
6542  if (Ctor->getNumParams() < 1 ||
6543      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6544    return false;
6545
6546  QualType ArgType = Ctor->getParamDecl(0)->getType();
6547  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6548    ArgType = RT->getPointeeType().getUnqualifiedType();
6549
6550  return isStdInitializerList(ArgType, 0);
6551}
6552
6553/// \brief Determine whether a using statement is in a context where it will be
6554/// apply in all contexts.
6555static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6556  switch (CurContext->getDeclKind()) {
6557    case Decl::TranslationUnit:
6558      return true;
6559    case Decl::LinkageSpec:
6560      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6561    default:
6562      return false;
6563  }
6564}
6565
6566namespace {
6567
6568// Callback to only accept typo corrections that are namespaces.
6569class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6570 public:
6571  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6572    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6573      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6574    }
6575    return false;
6576  }
6577};
6578
6579}
6580
6581static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6582                                       CXXScopeSpec &SS,
6583                                       SourceLocation IdentLoc,
6584                                       IdentifierInfo *Ident) {
6585  NamespaceValidatorCCC Validator;
6586  R.clear();
6587  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6588                                               R.getLookupKind(), Sc, &SS,
6589                                               Validator)) {
6590    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6591    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6592    if (DeclContext *DC = S.computeDeclContext(SS, false))
6593      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6594        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6595        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6596                                        CorrectedStr);
6597    else
6598      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6599        << Ident << CorrectedQuotedStr
6600        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6601
6602    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6603         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6604
6605    R.addDecl(Corrected.getCorrectionDecl());
6606    return true;
6607  }
6608  return false;
6609}
6610
6611Decl *Sema::ActOnUsingDirective(Scope *S,
6612                                          SourceLocation UsingLoc,
6613                                          SourceLocation NamespcLoc,
6614                                          CXXScopeSpec &SS,
6615                                          SourceLocation IdentLoc,
6616                                          IdentifierInfo *NamespcName,
6617                                          AttributeList *AttrList) {
6618  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6619  assert(NamespcName && "Invalid NamespcName.");
6620  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6621
6622  // This can only happen along a recovery path.
6623  while (S->getFlags() & Scope::TemplateParamScope)
6624    S = S->getParent();
6625  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6626
6627  UsingDirectiveDecl *UDir = 0;
6628  NestedNameSpecifier *Qualifier = 0;
6629  if (SS.isSet())
6630    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6631
6632  // Lookup namespace name.
6633  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6634  LookupParsedName(R, S, &SS);
6635  if (R.isAmbiguous())
6636    return 0;
6637
6638  if (R.empty()) {
6639    R.clear();
6640    // Allow "using namespace std;" or "using namespace ::std;" even if
6641    // "std" hasn't been defined yet, for GCC compatibility.
6642    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6643        NamespcName->isStr("std")) {
6644      Diag(IdentLoc, diag::ext_using_undefined_std);
6645      R.addDecl(getOrCreateStdNamespace());
6646      R.resolveKind();
6647    }
6648    // Otherwise, attempt typo correction.
6649    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6650  }
6651
6652  if (!R.empty()) {
6653    NamedDecl *Named = R.getFoundDecl();
6654    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6655        && "expected namespace decl");
6656    // C++ [namespace.udir]p1:
6657    //   A using-directive specifies that the names in the nominated
6658    //   namespace can be used in the scope in which the
6659    //   using-directive appears after the using-directive. During
6660    //   unqualified name lookup (3.4.1), the names appear as if they
6661    //   were declared in the nearest enclosing namespace which
6662    //   contains both the using-directive and the nominated
6663    //   namespace. [Note: in this context, "contains" means "contains
6664    //   directly or indirectly". ]
6665
6666    // Find enclosing context containing both using-directive and
6667    // nominated namespace.
6668    NamespaceDecl *NS = getNamespaceDecl(Named);
6669    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6670    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6671      CommonAncestor = CommonAncestor->getParent();
6672
6673    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6674                                      SS.getWithLocInContext(Context),
6675                                      IdentLoc, Named, CommonAncestor);
6676
6677    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6678        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6679      Diag(IdentLoc, diag::warn_using_directive_in_header);
6680    }
6681
6682    PushUsingDirective(S, UDir);
6683  } else {
6684    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6685  }
6686
6687  if (UDir)
6688    ProcessDeclAttributeList(S, UDir, AttrList);
6689
6690  return UDir;
6691}
6692
6693void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6694  // If the scope has an associated entity and the using directive is at
6695  // namespace or translation unit scope, add the UsingDirectiveDecl into
6696  // its lookup structure so qualified name lookup can find it.
6697  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6698  if (Ctx && !Ctx->isFunctionOrMethod())
6699    Ctx->addDecl(UDir);
6700  else
6701    // Otherwise, it is at block sope. The using-directives will affect lookup
6702    // only to the end of the scope.
6703    S->PushUsingDirective(UDir);
6704}
6705
6706
6707Decl *Sema::ActOnUsingDeclaration(Scope *S,
6708                                  AccessSpecifier AS,
6709                                  bool HasUsingKeyword,
6710                                  SourceLocation UsingLoc,
6711                                  CXXScopeSpec &SS,
6712                                  UnqualifiedId &Name,
6713                                  AttributeList *AttrList,
6714                                  bool IsTypeName,
6715                                  SourceLocation TypenameLoc) {
6716  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6717
6718  switch (Name.getKind()) {
6719  case UnqualifiedId::IK_ImplicitSelfParam:
6720  case UnqualifiedId::IK_Identifier:
6721  case UnqualifiedId::IK_OperatorFunctionId:
6722  case UnqualifiedId::IK_LiteralOperatorId:
6723  case UnqualifiedId::IK_ConversionFunctionId:
6724    break;
6725
6726  case UnqualifiedId::IK_ConstructorName:
6727  case UnqualifiedId::IK_ConstructorTemplateId:
6728    // C++11 inheriting constructors.
6729    Diag(Name.getLocStart(),
6730         getLangOpts().CPlusPlus11 ?
6731           diag::warn_cxx98_compat_using_decl_constructor :
6732           diag::err_using_decl_constructor)
6733      << SS.getRange();
6734
6735    if (getLangOpts().CPlusPlus11) break;
6736
6737    return 0;
6738
6739  case UnqualifiedId::IK_DestructorName:
6740    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6741      << SS.getRange();
6742    return 0;
6743
6744  case UnqualifiedId::IK_TemplateId:
6745    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6746      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6747    return 0;
6748  }
6749
6750  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6751  DeclarationName TargetName = TargetNameInfo.getName();
6752  if (!TargetName)
6753    return 0;
6754
6755  // Warn about access declarations.
6756  // TODO: store that the declaration was written without 'using' and
6757  // talk about access decls instead of using decls in the
6758  // diagnostics.
6759  if (!HasUsingKeyword) {
6760    UsingLoc = Name.getLocStart();
6761
6762    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6763      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6764  }
6765
6766  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6767      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6768    return 0;
6769
6770  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6771                                        TargetNameInfo, AttrList,
6772                                        /* IsInstantiation */ false,
6773                                        IsTypeName, TypenameLoc);
6774  if (UD)
6775    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6776
6777  return UD;
6778}
6779
6780/// \brief Determine whether a using declaration considers the given
6781/// declarations as "equivalent", e.g., if they are redeclarations of
6782/// the same entity or are both typedefs of the same type.
6783static bool
6784IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6785                         bool &SuppressRedeclaration) {
6786  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6787    SuppressRedeclaration = false;
6788    return true;
6789  }
6790
6791  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6792    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6793      SuppressRedeclaration = true;
6794      return Context.hasSameType(TD1->getUnderlyingType(),
6795                                 TD2->getUnderlyingType());
6796    }
6797
6798  return false;
6799}
6800
6801
6802/// Determines whether to create a using shadow decl for a particular
6803/// decl, given the set of decls existing prior to this using lookup.
6804bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6805                                const LookupResult &Previous) {
6806  // Diagnose finding a decl which is not from a base class of the
6807  // current class.  We do this now because there are cases where this
6808  // function will silently decide not to build a shadow decl, which
6809  // will pre-empt further diagnostics.
6810  //
6811  // We don't need to do this in C++0x because we do the check once on
6812  // the qualifier.
6813  //
6814  // FIXME: diagnose the following if we care enough:
6815  //   struct A { int foo; };
6816  //   struct B : A { using A::foo; };
6817  //   template <class T> struct C : A {};
6818  //   template <class T> struct D : C<T> { using B::foo; } // <---
6819  // This is invalid (during instantiation) in C++03 because B::foo
6820  // resolves to the using decl in B, which is not a base class of D<T>.
6821  // We can't diagnose it immediately because C<T> is an unknown
6822  // specialization.  The UsingShadowDecl in D<T> then points directly
6823  // to A::foo, which will look well-formed when we instantiate.
6824  // The right solution is to not collapse the shadow-decl chain.
6825  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6826    DeclContext *OrigDC = Orig->getDeclContext();
6827
6828    // Handle enums and anonymous structs.
6829    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6830    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6831    while (OrigRec->isAnonymousStructOrUnion())
6832      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6833
6834    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6835      if (OrigDC == CurContext) {
6836        Diag(Using->getLocation(),
6837             diag::err_using_decl_nested_name_specifier_is_current_class)
6838          << Using->getQualifierLoc().getSourceRange();
6839        Diag(Orig->getLocation(), diag::note_using_decl_target);
6840        return true;
6841      }
6842
6843      Diag(Using->getQualifierLoc().getBeginLoc(),
6844           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6845        << Using->getQualifier()
6846        << cast<CXXRecordDecl>(CurContext)
6847        << Using->getQualifierLoc().getSourceRange();
6848      Diag(Orig->getLocation(), diag::note_using_decl_target);
6849      return true;
6850    }
6851  }
6852
6853  if (Previous.empty()) return false;
6854
6855  NamedDecl *Target = Orig;
6856  if (isa<UsingShadowDecl>(Target))
6857    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6858
6859  // If the target happens to be one of the previous declarations, we
6860  // don't have a conflict.
6861  //
6862  // FIXME: but we might be increasing its access, in which case we
6863  // should redeclare it.
6864  NamedDecl *NonTag = 0, *Tag = 0;
6865  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6866         I != E; ++I) {
6867    NamedDecl *D = (*I)->getUnderlyingDecl();
6868    bool Result;
6869    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6870      return Result;
6871
6872    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6873  }
6874
6875  if (Target->isFunctionOrFunctionTemplate()) {
6876    FunctionDecl *FD;
6877    if (isa<FunctionTemplateDecl>(Target))
6878      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6879    else
6880      FD = cast<FunctionDecl>(Target);
6881
6882    NamedDecl *OldDecl = 0;
6883    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6884    case Ovl_Overload:
6885      return false;
6886
6887    case Ovl_NonFunction:
6888      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6889      break;
6890
6891    // We found a decl with the exact signature.
6892    case Ovl_Match:
6893      // If we're in a record, we want to hide the target, so we
6894      // return true (without a diagnostic) to tell the caller not to
6895      // build a shadow decl.
6896      if (CurContext->isRecord())
6897        return true;
6898
6899      // If we're not in a record, this is an error.
6900      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6901      break;
6902    }
6903
6904    Diag(Target->getLocation(), diag::note_using_decl_target);
6905    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6906    return true;
6907  }
6908
6909  // Target is not a function.
6910
6911  if (isa<TagDecl>(Target)) {
6912    // No conflict between a tag and a non-tag.
6913    if (!Tag) return false;
6914
6915    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6916    Diag(Target->getLocation(), diag::note_using_decl_target);
6917    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6918    return true;
6919  }
6920
6921  // No conflict between a tag and a non-tag.
6922  if (!NonTag) return false;
6923
6924  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6925  Diag(Target->getLocation(), diag::note_using_decl_target);
6926  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6927  return true;
6928}
6929
6930/// Builds a shadow declaration corresponding to a 'using' declaration.
6931UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6932                                            UsingDecl *UD,
6933                                            NamedDecl *Orig) {
6934
6935  // If we resolved to another shadow declaration, just coalesce them.
6936  NamedDecl *Target = Orig;
6937  if (isa<UsingShadowDecl>(Target)) {
6938    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6939    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6940  }
6941
6942  UsingShadowDecl *Shadow
6943    = UsingShadowDecl::Create(Context, CurContext,
6944                              UD->getLocation(), UD, Target);
6945  UD->addShadowDecl(Shadow);
6946
6947  Shadow->setAccess(UD->getAccess());
6948  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6949    Shadow->setInvalidDecl();
6950
6951  if (S)
6952    PushOnScopeChains(Shadow, S);
6953  else
6954    CurContext->addDecl(Shadow);
6955
6956
6957  return Shadow;
6958}
6959
6960/// Hides a using shadow declaration.  This is required by the current
6961/// using-decl implementation when a resolvable using declaration in a
6962/// class is followed by a declaration which would hide or override
6963/// one or more of the using decl's targets; for example:
6964///
6965///   struct Base { void foo(int); };
6966///   struct Derived : Base {
6967///     using Base::foo;
6968///     void foo(int);
6969///   };
6970///
6971/// The governing language is C++03 [namespace.udecl]p12:
6972///
6973///   When a using-declaration brings names from a base class into a
6974///   derived class scope, member functions in the derived class
6975///   override and/or hide member functions with the same name and
6976///   parameter types in a base class (rather than conflicting).
6977///
6978/// There are two ways to implement this:
6979///   (1) optimistically create shadow decls when they're not hidden
6980///       by existing declarations, or
6981///   (2) don't create any shadow decls (or at least don't make them
6982///       visible) until we've fully parsed/instantiated the class.
6983/// The problem with (1) is that we might have to retroactively remove
6984/// a shadow decl, which requires several O(n) operations because the
6985/// decl structures are (very reasonably) not designed for removal.
6986/// (2) avoids this but is very fiddly and phase-dependent.
6987void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6988  if (Shadow->getDeclName().getNameKind() ==
6989        DeclarationName::CXXConversionFunctionName)
6990    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6991
6992  // Remove it from the DeclContext...
6993  Shadow->getDeclContext()->removeDecl(Shadow);
6994
6995  // ...and the scope, if applicable...
6996  if (S) {
6997    S->RemoveDecl(Shadow);
6998    IdResolver.RemoveDecl(Shadow);
6999  }
7000
7001  // ...and the using decl.
7002  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7003
7004  // TODO: complain somehow if Shadow was used.  It shouldn't
7005  // be possible for this to happen, because...?
7006}
7007
7008/// Builds a using declaration.
7009///
7010/// \param IsInstantiation - Whether this call arises from an
7011///   instantiation of an unresolved using declaration.  We treat
7012///   the lookup differently for these declarations.
7013NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7014                                       SourceLocation UsingLoc,
7015                                       CXXScopeSpec &SS,
7016                                       const DeclarationNameInfo &NameInfo,
7017                                       AttributeList *AttrList,
7018                                       bool IsInstantiation,
7019                                       bool IsTypeName,
7020                                       SourceLocation TypenameLoc) {
7021  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7022  SourceLocation IdentLoc = NameInfo.getLoc();
7023  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7024
7025  // FIXME: We ignore attributes for now.
7026
7027  if (SS.isEmpty()) {
7028    Diag(IdentLoc, diag::err_using_requires_qualname);
7029    return 0;
7030  }
7031
7032  // Do the redeclaration lookup in the current scope.
7033  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7034                        ForRedeclaration);
7035  Previous.setHideTags(false);
7036  if (S) {
7037    LookupName(Previous, S);
7038
7039    // It is really dumb that we have to do this.
7040    LookupResult::Filter F = Previous.makeFilter();
7041    while (F.hasNext()) {
7042      NamedDecl *D = F.next();
7043      if (!isDeclInScope(D, CurContext, S))
7044        F.erase();
7045    }
7046    F.done();
7047  } else {
7048    assert(IsInstantiation && "no scope in non-instantiation");
7049    assert(CurContext->isRecord() && "scope not record in instantiation");
7050    LookupQualifiedName(Previous, CurContext);
7051  }
7052
7053  // Check for invalid redeclarations.
7054  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
7055    return 0;
7056
7057  // Check for bad qualifiers.
7058  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7059    return 0;
7060
7061  DeclContext *LookupContext = computeDeclContext(SS);
7062  NamedDecl *D;
7063  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7064  if (!LookupContext) {
7065    if (IsTypeName) {
7066      // FIXME: not all declaration name kinds are legal here
7067      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7068                                              UsingLoc, TypenameLoc,
7069                                              QualifierLoc,
7070                                              IdentLoc, NameInfo.getName());
7071    } else {
7072      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7073                                           QualifierLoc, NameInfo);
7074    }
7075  } else {
7076    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7077                          NameInfo, IsTypeName);
7078  }
7079  D->setAccess(AS);
7080  CurContext->addDecl(D);
7081
7082  if (!LookupContext) return D;
7083  UsingDecl *UD = cast<UsingDecl>(D);
7084
7085  if (RequireCompleteDeclContext(SS, LookupContext)) {
7086    UD->setInvalidDecl();
7087    return UD;
7088  }
7089
7090  // The normal rules do not apply to inheriting constructor declarations.
7091  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7092    if (CheckInheritingConstructorUsingDecl(UD))
7093      UD->setInvalidDecl();
7094    return UD;
7095  }
7096
7097  // Otherwise, look up the target name.
7098
7099  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7100
7101  // Unlike most lookups, we don't always want to hide tag
7102  // declarations: tag names are visible through the using declaration
7103  // even if hidden by ordinary names, *except* in a dependent context
7104  // where it's important for the sanity of two-phase lookup.
7105  if (!IsInstantiation)
7106    R.setHideTags(false);
7107
7108  // For the purposes of this lookup, we have a base object type
7109  // equal to that of the current context.
7110  if (CurContext->isRecord()) {
7111    R.setBaseObjectType(
7112                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7113  }
7114
7115  LookupQualifiedName(R, LookupContext);
7116
7117  if (R.empty()) {
7118    Diag(IdentLoc, diag::err_no_member)
7119      << NameInfo.getName() << LookupContext << SS.getRange();
7120    UD->setInvalidDecl();
7121    return UD;
7122  }
7123
7124  if (R.isAmbiguous()) {
7125    UD->setInvalidDecl();
7126    return UD;
7127  }
7128
7129  if (IsTypeName) {
7130    // If we asked for a typename and got a non-type decl, error out.
7131    if (!R.getAsSingle<TypeDecl>()) {
7132      Diag(IdentLoc, diag::err_using_typename_non_type);
7133      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7134        Diag((*I)->getUnderlyingDecl()->getLocation(),
7135             diag::note_using_decl_target);
7136      UD->setInvalidDecl();
7137      return UD;
7138    }
7139  } else {
7140    // If we asked for a non-typename and we got a type, error out,
7141    // but only if this is an instantiation of an unresolved using
7142    // decl.  Otherwise just silently find the type name.
7143    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7144      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7145      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7146      UD->setInvalidDecl();
7147      return UD;
7148    }
7149  }
7150
7151  // C++0x N2914 [namespace.udecl]p6:
7152  // A using-declaration shall not name a namespace.
7153  if (R.getAsSingle<NamespaceDecl>()) {
7154    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7155      << SS.getRange();
7156    UD->setInvalidDecl();
7157    return UD;
7158  }
7159
7160  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7161    if (!CheckUsingShadowDecl(UD, *I, Previous))
7162      BuildUsingShadowDecl(S, UD, *I);
7163  }
7164
7165  return UD;
7166}
7167
7168/// Additional checks for a using declaration referring to a constructor name.
7169bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7170  assert(!UD->isTypeName() && "expecting a constructor name");
7171
7172  const Type *SourceType = UD->getQualifier()->getAsType();
7173  assert(SourceType &&
7174         "Using decl naming constructor doesn't have type in scope spec.");
7175  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7176
7177  // Check whether the named type is a direct base class.
7178  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7179  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7180  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7181       BaseIt != BaseE; ++BaseIt) {
7182    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7183    if (CanonicalSourceType == BaseType)
7184      break;
7185    if (BaseIt->getType()->isDependentType())
7186      break;
7187  }
7188
7189  if (BaseIt == BaseE) {
7190    // Did not find SourceType in the bases.
7191    Diag(UD->getUsingLocation(),
7192         diag::err_using_decl_constructor_not_in_direct_base)
7193      << UD->getNameInfo().getSourceRange()
7194      << QualType(SourceType, 0) << TargetClass;
7195    return true;
7196  }
7197
7198  if (!CurContext->isDependentContext())
7199    BaseIt->setInheritConstructors();
7200
7201  return false;
7202}
7203
7204/// Checks that the given using declaration is not an invalid
7205/// redeclaration.  Note that this is checking only for the using decl
7206/// itself, not for any ill-formedness among the UsingShadowDecls.
7207bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7208                                       bool isTypeName,
7209                                       const CXXScopeSpec &SS,
7210                                       SourceLocation NameLoc,
7211                                       const LookupResult &Prev) {
7212  // C++03 [namespace.udecl]p8:
7213  // C++0x [namespace.udecl]p10:
7214  //   A using-declaration is a declaration and can therefore be used
7215  //   repeatedly where (and only where) multiple declarations are
7216  //   allowed.
7217  //
7218  // That's in non-member contexts.
7219  if (!CurContext->getRedeclContext()->isRecord())
7220    return false;
7221
7222  NestedNameSpecifier *Qual
7223    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7224
7225  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7226    NamedDecl *D = *I;
7227
7228    bool DTypename;
7229    NestedNameSpecifier *DQual;
7230    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7231      DTypename = UD->isTypeName();
7232      DQual = UD->getQualifier();
7233    } else if (UnresolvedUsingValueDecl *UD
7234                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7235      DTypename = false;
7236      DQual = UD->getQualifier();
7237    } else if (UnresolvedUsingTypenameDecl *UD
7238                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7239      DTypename = true;
7240      DQual = UD->getQualifier();
7241    } else continue;
7242
7243    // using decls differ if one says 'typename' and the other doesn't.
7244    // FIXME: non-dependent using decls?
7245    if (isTypeName != DTypename) continue;
7246
7247    // using decls differ if they name different scopes (but note that
7248    // template instantiation can cause this check to trigger when it
7249    // didn't before instantiation).
7250    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7251        Context.getCanonicalNestedNameSpecifier(DQual))
7252      continue;
7253
7254    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7255    Diag(D->getLocation(), diag::note_using_decl) << 1;
7256    return true;
7257  }
7258
7259  return false;
7260}
7261
7262
7263/// Checks that the given nested-name qualifier used in a using decl
7264/// in the current context is appropriately related to the current
7265/// scope.  If an error is found, diagnoses it and returns true.
7266bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7267                                   const CXXScopeSpec &SS,
7268                                   SourceLocation NameLoc) {
7269  DeclContext *NamedContext = computeDeclContext(SS);
7270
7271  if (!CurContext->isRecord()) {
7272    // C++03 [namespace.udecl]p3:
7273    // C++0x [namespace.udecl]p8:
7274    //   A using-declaration for a class member shall be a member-declaration.
7275
7276    // If we weren't able to compute a valid scope, it must be a
7277    // dependent class scope.
7278    if (!NamedContext || NamedContext->isRecord()) {
7279      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7280        << SS.getRange();
7281      return true;
7282    }
7283
7284    // Otherwise, everything is known to be fine.
7285    return false;
7286  }
7287
7288  // The current scope is a record.
7289
7290  // If the named context is dependent, we can't decide much.
7291  if (!NamedContext) {
7292    // FIXME: in C++0x, we can diagnose if we can prove that the
7293    // nested-name-specifier does not refer to a base class, which is
7294    // still possible in some cases.
7295
7296    // Otherwise we have to conservatively report that things might be
7297    // okay.
7298    return false;
7299  }
7300
7301  if (!NamedContext->isRecord()) {
7302    // Ideally this would point at the last name in the specifier,
7303    // but we don't have that level of source info.
7304    Diag(SS.getRange().getBegin(),
7305         diag::err_using_decl_nested_name_specifier_is_not_class)
7306      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7307    return true;
7308  }
7309
7310  if (!NamedContext->isDependentContext() &&
7311      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7312    return true;
7313
7314  if (getLangOpts().CPlusPlus11) {
7315    // C++0x [namespace.udecl]p3:
7316    //   In a using-declaration used as a member-declaration, the
7317    //   nested-name-specifier shall name a base class of the class
7318    //   being defined.
7319
7320    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7321                                 cast<CXXRecordDecl>(NamedContext))) {
7322      if (CurContext == NamedContext) {
7323        Diag(NameLoc,
7324             diag::err_using_decl_nested_name_specifier_is_current_class)
7325          << SS.getRange();
7326        return true;
7327      }
7328
7329      Diag(SS.getRange().getBegin(),
7330           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7331        << (NestedNameSpecifier*) SS.getScopeRep()
7332        << cast<CXXRecordDecl>(CurContext)
7333        << SS.getRange();
7334      return true;
7335    }
7336
7337    return false;
7338  }
7339
7340  // C++03 [namespace.udecl]p4:
7341  //   A using-declaration used as a member-declaration shall refer
7342  //   to a member of a base class of the class being defined [etc.].
7343
7344  // Salient point: SS doesn't have to name a base class as long as
7345  // lookup only finds members from base classes.  Therefore we can
7346  // diagnose here only if we can prove that that can't happen,
7347  // i.e. if the class hierarchies provably don't intersect.
7348
7349  // TODO: it would be nice if "definitely valid" results were cached
7350  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7351  // need to be repeated.
7352
7353  struct UserData {
7354    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7355
7356    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7357      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7358      Data->Bases.insert(Base);
7359      return true;
7360    }
7361
7362    bool hasDependentBases(const CXXRecordDecl *Class) {
7363      return !Class->forallBases(collect, this);
7364    }
7365
7366    /// Returns true if the base is dependent or is one of the
7367    /// accumulated base classes.
7368    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7369      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7370      return !Data->Bases.count(Base);
7371    }
7372
7373    bool mightShareBases(const CXXRecordDecl *Class) {
7374      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7375    }
7376  };
7377
7378  UserData Data;
7379
7380  // Returns false if we find a dependent base.
7381  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7382    return false;
7383
7384  // Returns false if the class has a dependent base or if it or one
7385  // of its bases is present in the base set of the current context.
7386  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7387    return false;
7388
7389  Diag(SS.getRange().getBegin(),
7390       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7391    << (NestedNameSpecifier*) SS.getScopeRep()
7392    << cast<CXXRecordDecl>(CurContext)
7393    << SS.getRange();
7394
7395  return true;
7396}
7397
7398Decl *Sema::ActOnAliasDeclaration(Scope *S,
7399                                  AccessSpecifier AS,
7400                                  MultiTemplateParamsArg TemplateParamLists,
7401                                  SourceLocation UsingLoc,
7402                                  UnqualifiedId &Name,
7403                                  AttributeList *AttrList,
7404                                  TypeResult Type) {
7405  // Skip up to the relevant declaration scope.
7406  while (S->getFlags() & Scope::TemplateParamScope)
7407    S = S->getParent();
7408  assert((S->getFlags() & Scope::DeclScope) &&
7409         "got alias-declaration outside of declaration scope");
7410
7411  if (Type.isInvalid())
7412    return 0;
7413
7414  bool Invalid = false;
7415  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7416  TypeSourceInfo *TInfo = 0;
7417  GetTypeFromParser(Type.get(), &TInfo);
7418
7419  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7420    return 0;
7421
7422  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7423                                      UPPC_DeclarationType)) {
7424    Invalid = true;
7425    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7426                                             TInfo->getTypeLoc().getBeginLoc());
7427  }
7428
7429  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7430  LookupName(Previous, S);
7431
7432  // Warn about shadowing the name of a template parameter.
7433  if (Previous.isSingleResult() &&
7434      Previous.getFoundDecl()->isTemplateParameter()) {
7435    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7436    Previous.clear();
7437  }
7438
7439  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7440         "name in alias declaration must be an identifier");
7441  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7442                                               Name.StartLocation,
7443                                               Name.Identifier, TInfo);
7444
7445  NewTD->setAccess(AS);
7446
7447  if (Invalid)
7448    NewTD->setInvalidDecl();
7449
7450  ProcessDeclAttributeList(S, NewTD, AttrList);
7451
7452  CheckTypedefForVariablyModifiedType(S, NewTD);
7453  Invalid |= NewTD->isInvalidDecl();
7454
7455  bool Redeclaration = false;
7456
7457  NamedDecl *NewND;
7458  if (TemplateParamLists.size()) {
7459    TypeAliasTemplateDecl *OldDecl = 0;
7460    TemplateParameterList *OldTemplateParams = 0;
7461
7462    if (TemplateParamLists.size() != 1) {
7463      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7464        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7465         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7466    }
7467    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7468
7469    // Only consider previous declarations in the same scope.
7470    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7471                         /*ExplicitInstantiationOrSpecialization*/false);
7472    if (!Previous.empty()) {
7473      Redeclaration = true;
7474
7475      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7476      if (!OldDecl && !Invalid) {
7477        Diag(UsingLoc, diag::err_redefinition_different_kind)
7478          << Name.Identifier;
7479
7480        NamedDecl *OldD = Previous.getRepresentativeDecl();
7481        if (OldD->getLocation().isValid())
7482          Diag(OldD->getLocation(), diag::note_previous_definition);
7483
7484        Invalid = true;
7485      }
7486
7487      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7488        if (TemplateParameterListsAreEqual(TemplateParams,
7489                                           OldDecl->getTemplateParameters(),
7490                                           /*Complain=*/true,
7491                                           TPL_TemplateMatch))
7492          OldTemplateParams = OldDecl->getTemplateParameters();
7493        else
7494          Invalid = true;
7495
7496        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7497        if (!Invalid &&
7498            !Context.hasSameType(OldTD->getUnderlyingType(),
7499                                 NewTD->getUnderlyingType())) {
7500          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7501          // but we can't reasonably accept it.
7502          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7503            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7504          if (OldTD->getLocation().isValid())
7505            Diag(OldTD->getLocation(), diag::note_previous_definition);
7506          Invalid = true;
7507        }
7508      }
7509    }
7510
7511    // Merge any previous default template arguments into our parameters,
7512    // and check the parameter list.
7513    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7514                                   TPC_TypeAliasTemplate))
7515      return 0;
7516
7517    TypeAliasTemplateDecl *NewDecl =
7518      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7519                                    Name.Identifier, TemplateParams,
7520                                    NewTD);
7521
7522    NewDecl->setAccess(AS);
7523
7524    if (Invalid)
7525      NewDecl->setInvalidDecl();
7526    else if (OldDecl)
7527      NewDecl->setPreviousDeclaration(OldDecl);
7528
7529    NewND = NewDecl;
7530  } else {
7531    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7532    NewND = NewTD;
7533  }
7534
7535  if (!Redeclaration)
7536    PushOnScopeChains(NewND, S);
7537
7538  ActOnDocumentableDecl(NewND);
7539  return NewND;
7540}
7541
7542Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7543                                             SourceLocation NamespaceLoc,
7544                                             SourceLocation AliasLoc,
7545                                             IdentifierInfo *Alias,
7546                                             CXXScopeSpec &SS,
7547                                             SourceLocation IdentLoc,
7548                                             IdentifierInfo *Ident) {
7549
7550  // Lookup the namespace name.
7551  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7552  LookupParsedName(R, S, &SS);
7553
7554  // Check if we have a previous declaration with the same name.
7555  NamedDecl *PrevDecl
7556    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7557                       ForRedeclaration);
7558  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7559    PrevDecl = 0;
7560
7561  if (PrevDecl) {
7562    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7563      // We already have an alias with the same name that points to the same
7564      // namespace, so don't create a new one.
7565      // FIXME: At some point, we'll want to create the (redundant)
7566      // declaration to maintain better source information.
7567      if (!R.isAmbiguous() && !R.empty() &&
7568          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7569        return 0;
7570    }
7571
7572    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7573      diag::err_redefinition_different_kind;
7574    Diag(AliasLoc, DiagID) << Alias;
7575    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7576    return 0;
7577  }
7578
7579  if (R.isAmbiguous())
7580    return 0;
7581
7582  if (R.empty()) {
7583    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7584      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7585      return 0;
7586    }
7587  }
7588
7589  NamespaceAliasDecl *AliasDecl =
7590    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7591                               Alias, SS.getWithLocInContext(Context),
7592                               IdentLoc, R.getFoundDecl());
7593
7594  PushOnScopeChains(AliasDecl, S);
7595  return AliasDecl;
7596}
7597
7598Sema::ImplicitExceptionSpecification
7599Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7600                                               CXXMethodDecl *MD) {
7601  CXXRecordDecl *ClassDecl = MD->getParent();
7602
7603  // C++ [except.spec]p14:
7604  //   An implicitly declared special member function (Clause 12) shall have an
7605  //   exception-specification. [...]
7606  ImplicitExceptionSpecification ExceptSpec(*this);
7607  if (ClassDecl->isInvalidDecl())
7608    return ExceptSpec;
7609
7610  // Direct base-class constructors.
7611  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7612                                       BEnd = ClassDecl->bases_end();
7613       B != BEnd; ++B) {
7614    if (B->isVirtual()) // Handled below.
7615      continue;
7616
7617    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7618      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7619      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7620      // If this is a deleted function, add it anyway. This might be conformant
7621      // with the standard. This might not. I'm not sure. It might not matter.
7622      if (Constructor)
7623        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7624    }
7625  }
7626
7627  // Virtual base-class constructors.
7628  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7629                                       BEnd = ClassDecl->vbases_end();
7630       B != BEnd; ++B) {
7631    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7632      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7633      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7634      // If this is a deleted function, add it anyway. This might be conformant
7635      // with the standard. This might not. I'm not sure. It might not matter.
7636      if (Constructor)
7637        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7638    }
7639  }
7640
7641  // Field constructors.
7642  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7643                               FEnd = ClassDecl->field_end();
7644       F != FEnd; ++F) {
7645    if (F->hasInClassInitializer()) {
7646      if (Expr *E = F->getInClassInitializer())
7647        ExceptSpec.CalledExpr(E);
7648      else if (!F->isInvalidDecl())
7649        // DR1351:
7650        //   If the brace-or-equal-initializer of a non-static data member
7651        //   invokes a defaulted default constructor of its class or of an
7652        //   enclosing class in a potentially evaluated subexpression, the
7653        //   program is ill-formed.
7654        //
7655        // This resolution is unworkable: the exception specification of the
7656        // default constructor can be needed in an unevaluated context, in
7657        // particular, in the operand of a noexcept-expression, and we can be
7658        // unable to compute an exception specification for an enclosed class.
7659        //
7660        // We do not allow an in-class initializer to require the evaluation
7661        // of the exception specification for any in-class initializer whose
7662        // definition is not lexically complete.
7663        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7664    } else if (const RecordType *RecordTy
7665              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7666      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7667      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7668      // If this is a deleted function, add it anyway. This might be conformant
7669      // with the standard. This might not. I'm not sure. It might not matter.
7670      // In particular, the problem is that this function never gets called. It
7671      // might just be ill-formed because this function attempts to refer to
7672      // a deleted function here.
7673      if (Constructor)
7674        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7675    }
7676  }
7677
7678  return ExceptSpec;
7679}
7680
7681Sema::ImplicitExceptionSpecification
7682Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7683  CXXRecordDecl *ClassDecl = CD->getParent();
7684
7685  // C++ [except.spec]p14:
7686  //   An inheriting constructor [...] shall have an exception-specification. [...]
7687  ImplicitExceptionSpecification ExceptSpec(*this);
7688  if (ClassDecl->isInvalidDecl())
7689    return ExceptSpec;
7690
7691  // Inherited constructor.
7692  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7693  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7694  // FIXME: Copying or moving the parameters could add extra exceptions to the
7695  // set, as could the default arguments for the inherited constructor. This
7696  // will be addressed when we implement the resolution of core issue 1351.
7697  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7698
7699  // Direct base-class constructors.
7700  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7701                                       BEnd = ClassDecl->bases_end();
7702       B != BEnd; ++B) {
7703    if (B->isVirtual()) // Handled below.
7704      continue;
7705
7706    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7707      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7708      if (BaseClassDecl == InheritedDecl)
7709        continue;
7710      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7711      if (Constructor)
7712        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7713    }
7714  }
7715
7716  // Virtual base-class constructors.
7717  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7718                                       BEnd = ClassDecl->vbases_end();
7719       B != BEnd; ++B) {
7720    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7721      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7722      if (BaseClassDecl == InheritedDecl)
7723        continue;
7724      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7725      if (Constructor)
7726        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7727    }
7728  }
7729
7730  // Field constructors.
7731  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7732                               FEnd = ClassDecl->field_end();
7733       F != FEnd; ++F) {
7734    if (F->hasInClassInitializer()) {
7735      if (Expr *E = F->getInClassInitializer())
7736        ExceptSpec.CalledExpr(E);
7737      else if (!F->isInvalidDecl())
7738        Diag(CD->getLocation(),
7739             diag::err_in_class_initializer_references_def_ctor) << CD;
7740    } else if (const RecordType *RecordTy
7741              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7742      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7743      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7744      if (Constructor)
7745        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7746    }
7747  }
7748
7749  return ExceptSpec;
7750}
7751
7752namespace {
7753/// RAII object to register a special member as being currently declared.
7754struct DeclaringSpecialMember {
7755  Sema &S;
7756  Sema::SpecialMemberDecl D;
7757  bool WasAlreadyBeingDeclared;
7758
7759  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7760    : S(S), D(RD, CSM) {
7761    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7762    if (WasAlreadyBeingDeclared)
7763      // This almost never happens, but if it does, ensure that our cache
7764      // doesn't contain a stale result.
7765      S.SpecialMemberCache.clear();
7766
7767    // FIXME: Register a note to be produced if we encounter an error while
7768    // declaring the special member.
7769  }
7770  ~DeclaringSpecialMember() {
7771    if (!WasAlreadyBeingDeclared)
7772      S.SpecialMembersBeingDeclared.erase(D);
7773  }
7774
7775  /// \brief Are we already trying to declare this special member?
7776  bool isAlreadyBeingDeclared() const {
7777    return WasAlreadyBeingDeclared;
7778  }
7779};
7780}
7781
7782CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7783                                                     CXXRecordDecl *ClassDecl) {
7784  // C++ [class.ctor]p5:
7785  //   A default constructor for a class X is a constructor of class X
7786  //   that can be called without an argument. If there is no
7787  //   user-declared constructor for class X, a default constructor is
7788  //   implicitly declared. An implicitly-declared default constructor
7789  //   is an inline public member of its class.
7790  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7791         "Should not build implicit default constructor!");
7792
7793  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7794  if (DSM.isAlreadyBeingDeclared())
7795    return 0;
7796
7797  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7798                                                     CXXDefaultConstructor,
7799                                                     false);
7800
7801  // Create the actual constructor declaration.
7802  CanQualType ClassType
7803    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7804  SourceLocation ClassLoc = ClassDecl->getLocation();
7805  DeclarationName Name
7806    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7807  DeclarationNameInfo NameInfo(Name, ClassLoc);
7808  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7809      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7810      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7811      Constexpr);
7812  DefaultCon->setAccess(AS_public);
7813  DefaultCon->setDefaulted();
7814  DefaultCon->setImplicit();
7815
7816  // Build an exception specification pointing back at this constructor.
7817  FunctionProtoType::ExtProtoInfo EPI;
7818  EPI.ExceptionSpecType = EST_Unevaluated;
7819  EPI.ExceptionSpecDecl = DefaultCon;
7820  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7821
7822  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7823  // constructors is easy to compute.
7824  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7825
7826  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7827    SetDeclDeleted(DefaultCon, ClassLoc);
7828
7829  // Note that we have declared this constructor.
7830  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7831
7832  if (Scope *S = getScopeForContext(ClassDecl))
7833    PushOnScopeChains(DefaultCon, S, false);
7834  ClassDecl->addDecl(DefaultCon);
7835
7836  return DefaultCon;
7837}
7838
7839void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7840                                            CXXConstructorDecl *Constructor) {
7841  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7842          !Constructor->doesThisDeclarationHaveABody() &&
7843          !Constructor->isDeleted()) &&
7844    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7845
7846  CXXRecordDecl *ClassDecl = Constructor->getParent();
7847  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7848
7849  SynthesizedFunctionScope Scope(*this, Constructor);
7850  DiagnosticErrorTrap Trap(Diags);
7851  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7852      Trap.hasErrorOccurred()) {
7853    Diag(CurrentLocation, diag::note_member_synthesized_at)
7854      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7855    Constructor->setInvalidDecl();
7856    return;
7857  }
7858
7859  SourceLocation Loc = Constructor->getLocation();
7860  Constructor->setBody(new (Context) CompoundStmt(Loc));
7861
7862  Constructor->setUsed();
7863  MarkVTableUsed(CurrentLocation, ClassDecl);
7864
7865  if (ASTMutationListener *L = getASTMutationListener()) {
7866    L->CompletedImplicitDefinition(Constructor);
7867  }
7868}
7869
7870void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7871  // Check that any explicitly-defaulted methods have exception specifications
7872  // compatible with their implicit exception specifications.
7873  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7874}
7875
7876namespace {
7877/// Information on inheriting constructors to declare.
7878class InheritingConstructorInfo {
7879public:
7880  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7881      : SemaRef(SemaRef), Derived(Derived) {
7882    // Mark the constructors that we already have in the derived class.
7883    //
7884    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7885    //   unless there is a user-declared constructor with the same signature in
7886    //   the class where the using-declaration appears.
7887    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7888  }
7889
7890  void inheritAll(CXXRecordDecl *RD) {
7891    visitAll(RD, &InheritingConstructorInfo::inherit);
7892  }
7893
7894private:
7895  /// Information about an inheriting constructor.
7896  struct InheritingConstructor {
7897    InheritingConstructor()
7898      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7899
7900    /// If \c true, a constructor with this signature is already declared
7901    /// in the derived class.
7902    bool DeclaredInDerived;
7903
7904    /// The constructor which is inherited.
7905    const CXXConstructorDecl *BaseCtor;
7906
7907    /// The derived constructor we declared.
7908    CXXConstructorDecl *DerivedCtor;
7909  };
7910
7911  /// Inheriting constructors with a given canonical type. There can be at
7912  /// most one such non-template constructor, and any number of templated
7913  /// constructors.
7914  struct InheritingConstructorsForType {
7915    InheritingConstructor NonTemplate;
7916    llvm::SmallVector<
7917      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7918
7919    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7920      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7921        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7922        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7923          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7924                                               false, S.TPL_TemplateMatch))
7925            return Templates[I].second;
7926        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7927        return Templates.back().second;
7928      }
7929
7930      return NonTemplate;
7931    }
7932  };
7933
7934  /// Get or create the inheriting constructor record for a constructor.
7935  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7936                                  QualType CtorType) {
7937    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7938        .getEntry(SemaRef, Ctor);
7939  }
7940
7941  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7942
7943  /// Process all constructors for a class.
7944  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7945    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7946                                      CtorE = RD->ctor_end();
7947         CtorIt != CtorE; ++CtorIt)
7948      (this->*Callback)(*CtorIt);
7949    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7950             I(RD->decls_begin()), E(RD->decls_end());
7951         I != E; ++I) {
7952      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7953      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7954        (this->*Callback)(CD);
7955    }
7956  }
7957
7958  /// Note that a constructor (or constructor template) was declared in Derived.
7959  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7960    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7961  }
7962
7963  /// Inherit a single constructor.
7964  void inherit(const CXXConstructorDecl *Ctor) {
7965    const FunctionProtoType *CtorType =
7966        Ctor->getType()->castAs<FunctionProtoType>();
7967    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7968    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7969
7970    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7971
7972    // Core issue (no number yet): the ellipsis is always discarded.
7973    if (EPI.Variadic) {
7974      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7975      SemaRef.Diag(Ctor->getLocation(),
7976                   diag::note_using_decl_constructor_ellipsis);
7977      EPI.Variadic = false;
7978    }
7979
7980    // Declare a constructor for each number of parameters.
7981    //
7982    // C++11 [class.inhctor]p1:
7983    //   The candidate set of inherited constructors from the class X named in
7984    //   the using-declaration consists of [... modulo defects ...] for each
7985    //   constructor or constructor template of X, the set of constructors or
7986    //   constructor templates that results from omitting any ellipsis parameter
7987    //   specification and successively omitting parameters with a default
7988    //   argument from the end of the parameter-type-list
7989    unsigned MinParams = minParamsToInherit(Ctor);
7990    unsigned Params = Ctor->getNumParams();
7991    if (Params >= MinParams) {
7992      do
7993        declareCtor(UsingLoc, Ctor,
7994                    SemaRef.Context.getFunctionType(
7995                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7996      while (Params > MinParams &&
7997             Ctor->getParamDecl(--Params)->hasDefaultArg());
7998    }
7999  }
8000
8001  /// Find the using-declaration which specified that we should inherit the
8002  /// constructors of \p Base.
8003  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8004    // No fancy lookup required; just look for the base constructor name
8005    // directly within the derived class.
8006    ASTContext &Context = SemaRef.Context;
8007    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8008        Context.getCanonicalType(Context.getRecordType(Base)));
8009    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8010    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8011  }
8012
8013  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8014    // C++11 [class.inhctor]p3:
8015    //   [F]or each constructor template in the candidate set of inherited
8016    //   constructors, a constructor template is implicitly declared
8017    if (Ctor->getDescribedFunctionTemplate())
8018      return 0;
8019
8020    //   For each non-template constructor in the candidate set of inherited
8021    //   constructors other than a constructor having no parameters or a
8022    //   copy/move constructor having a single parameter, a constructor is
8023    //   implicitly declared [...]
8024    if (Ctor->getNumParams() == 0)
8025      return 1;
8026    if (Ctor->isCopyOrMoveConstructor())
8027      return 2;
8028
8029    // Per discussion on core reflector, never inherit a constructor which
8030    // would become a default, copy, or move constructor of Derived either.
8031    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8032    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8033    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8034  }
8035
8036  /// Declare a single inheriting constructor, inheriting the specified
8037  /// constructor, with the given type.
8038  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8039                   QualType DerivedType) {
8040    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8041
8042    // C++11 [class.inhctor]p3:
8043    //   ... a constructor is implicitly declared with the same constructor
8044    //   characteristics unless there is a user-declared constructor with
8045    //   the same signature in the class where the using-declaration appears
8046    if (Entry.DeclaredInDerived)
8047      return;
8048
8049    // C++11 [class.inhctor]p7:
8050    //   If two using-declarations declare inheriting constructors with the
8051    //   same signature, the program is ill-formed
8052    if (Entry.DerivedCtor) {
8053      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8054        // Only diagnose this once per constructor.
8055        if (Entry.DerivedCtor->isInvalidDecl())
8056          return;
8057        Entry.DerivedCtor->setInvalidDecl();
8058
8059        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8060        SemaRef.Diag(BaseCtor->getLocation(),
8061                     diag::note_using_decl_constructor_conflict_current_ctor);
8062        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8063                     diag::note_using_decl_constructor_conflict_previous_ctor);
8064        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8065                     diag::note_using_decl_constructor_conflict_previous_using);
8066      } else {
8067        // Core issue (no number): if the same inheriting constructor is
8068        // produced by multiple base class constructors from the same base
8069        // class, the inheriting constructor is defined as deleted.
8070        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8071      }
8072
8073      return;
8074    }
8075
8076    ASTContext &Context = SemaRef.Context;
8077    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8078        Context.getCanonicalType(Context.getRecordType(Derived)));
8079    DeclarationNameInfo NameInfo(Name, UsingLoc);
8080
8081    TemplateParameterList *TemplateParams = 0;
8082    if (const FunctionTemplateDecl *FTD =
8083            BaseCtor->getDescribedFunctionTemplate()) {
8084      TemplateParams = FTD->getTemplateParameters();
8085      // We're reusing template parameters from a different DeclContext. This
8086      // is questionable at best, but works out because the template depth in
8087      // both places is guaranteed to be 0.
8088      // FIXME: Rebuild the template parameters in the new context, and
8089      // transform the function type to refer to them.
8090    }
8091
8092    // Build type source info pointing at the using-declaration. This is
8093    // required by template instantiation.
8094    TypeSourceInfo *TInfo =
8095        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8096    FunctionProtoTypeLoc ProtoLoc =
8097        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8098
8099    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8100        Context, Derived, UsingLoc, NameInfo, DerivedType,
8101        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8102        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8103
8104    // Build an unevaluated exception specification for this constructor.
8105    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8106    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8107    EPI.ExceptionSpecType = EST_Unevaluated;
8108    EPI.ExceptionSpecDecl = DerivedCtor;
8109    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8110                                                 FPT->getArgTypes(), EPI));
8111
8112    // Build the parameter declarations.
8113    SmallVector<ParmVarDecl *, 16> ParamDecls;
8114    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8115      TypeSourceInfo *TInfo =
8116          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8117      ParmVarDecl *PD = ParmVarDecl::Create(
8118          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8119          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8120      PD->setScopeInfo(0, I);
8121      PD->setImplicit();
8122      ParamDecls.push_back(PD);
8123      ProtoLoc.setArg(I, PD);
8124    }
8125
8126    // Set up the new constructor.
8127    DerivedCtor->setAccess(BaseCtor->getAccess());
8128    DerivedCtor->setParams(ParamDecls);
8129    DerivedCtor->setInheritedConstructor(BaseCtor);
8130    if (BaseCtor->isDeleted())
8131      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8132
8133    // If this is a constructor template, build the template declaration.
8134    if (TemplateParams) {
8135      FunctionTemplateDecl *DerivedTemplate =
8136          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8137                                       TemplateParams, DerivedCtor);
8138      DerivedTemplate->setAccess(BaseCtor->getAccess());
8139      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8140      Derived->addDecl(DerivedTemplate);
8141    } else {
8142      Derived->addDecl(DerivedCtor);
8143    }
8144
8145    Entry.BaseCtor = BaseCtor;
8146    Entry.DerivedCtor = DerivedCtor;
8147  }
8148
8149  Sema &SemaRef;
8150  CXXRecordDecl *Derived;
8151  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8152  MapType Map;
8153};
8154}
8155
8156void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8157  // Defer declaring the inheriting constructors until the class is
8158  // instantiated.
8159  if (ClassDecl->isDependentContext())
8160    return;
8161
8162  // Find base classes from which we might inherit constructors.
8163  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8164  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8165                                          BaseE = ClassDecl->bases_end();
8166       BaseIt != BaseE; ++BaseIt)
8167    if (BaseIt->getInheritConstructors())
8168      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8169
8170  // Go no further if we're not inheriting any constructors.
8171  if (InheritedBases.empty())
8172    return;
8173
8174  // Declare the inherited constructors.
8175  InheritingConstructorInfo ICI(*this, ClassDecl);
8176  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8177    ICI.inheritAll(InheritedBases[I]);
8178}
8179
8180void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8181                                       CXXConstructorDecl *Constructor) {
8182  CXXRecordDecl *ClassDecl = Constructor->getParent();
8183  assert(Constructor->getInheritedConstructor() &&
8184         !Constructor->doesThisDeclarationHaveABody() &&
8185         !Constructor->isDeleted());
8186
8187  SynthesizedFunctionScope Scope(*this, Constructor);
8188  DiagnosticErrorTrap Trap(Diags);
8189  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8190      Trap.hasErrorOccurred()) {
8191    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8192      << Context.getTagDeclType(ClassDecl);
8193    Constructor->setInvalidDecl();
8194    return;
8195  }
8196
8197  SourceLocation Loc = Constructor->getLocation();
8198  Constructor->setBody(new (Context) CompoundStmt(Loc));
8199
8200  Constructor->setUsed();
8201  MarkVTableUsed(CurrentLocation, ClassDecl);
8202
8203  if (ASTMutationListener *L = getASTMutationListener()) {
8204    L->CompletedImplicitDefinition(Constructor);
8205  }
8206}
8207
8208
8209Sema::ImplicitExceptionSpecification
8210Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8211  CXXRecordDecl *ClassDecl = MD->getParent();
8212
8213  // C++ [except.spec]p14:
8214  //   An implicitly declared special member function (Clause 12) shall have
8215  //   an exception-specification.
8216  ImplicitExceptionSpecification ExceptSpec(*this);
8217  if (ClassDecl->isInvalidDecl())
8218    return ExceptSpec;
8219
8220  // Direct base-class destructors.
8221  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8222                                       BEnd = ClassDecl->bases_end();
8223       B != BEnd; ++B) {
8224    if (B->isVirtual()) // Handled below.
8225      continue;
8226
8227    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8228      ExceptSpec.CalledDecl(B->getLocStart(),
8229                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8230  }
8231
8232  // Virtual base-class destructors.
8233  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8234                                       BEnd = ClassDecl->vbases_end();
8235       B != BEnd; ++B) {
8236    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8237      ExceptSpec.CalledDecl(B->getLocStart(),
8238                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8239  }
8240
8241  // Field destructors.
8242  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8243                               FEnd = ClassDecl->field_end();
8244       F != FEnd; ++F) {
8245    if (const RecordType *RecordTy
8246        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8247      ExceptSpec.CalledDecl(F->getLocation(),
8248                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8249  }
8250
8251  return ExceptSpec;
8252}
8253
8254CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8255  // C++ [class.dtor]p2:
8256  //   If a class has no user-declared destructor, a destructor is
8257  //   declared implicitly. An implicitly-declared destructor is an
8258  //   inline public member of its class.
8259  assert(ClassDecl->needsImplicitDestructor());
8260
8261  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8262  if (DSM.isAlreadyBeingDeclared())
8263    return 0;
8264
8265  // Create the actual destructor declaration.
8266  CanQualType ClassType
8267    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8268  SourceLocation ClassLoc = ClassDecl->getLocation();
8269  DeclarationName Name
8270    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8271  DeclarationNameInfo NameInfo(Name, ClassLoc);
8272  CXXDestructorDecl *Destructor
8273      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8274                                  QualType(), 0, /*isInline=*/true,
8275                                  /*isImplicitlyDeclared=*/true);
8276  Destructor->setAccess(AS_public);
8277  Destructor->setDefaulted();
8278  Destructor->setImplicit();
8279
8280  // Build an exception specification pointing back at this destructor.
8281  FunctionProtoType::ExtProtoInfo EPI;
8282  EPI.ExceptionSpecType = EST_Unevaluated;
8283  EPI.ExceptionSpecDecl = Destructor;
8284  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8285
8286  AddOverriddenMethods(ClassDecl, Destructor);
8287
8288  // We don't need to use SpecialMemberIsTrivial here; triviality for
8289  // destructors is easy to compute.
8290  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8291
8292  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8293    SetDeclDeleted(Destructor, ClassLoc);
8294
8295  // Note that we have declared this destructor.
8296  ++ASTContext::NumImplicitDestructorsDeclared;
8297
8298  // Introduce this destructor into its scope.
8299  if (Scope *S = getScopeForContext(ClassDecl))
8300    PushOnScopeChains(Destructor, S, false);
8301  ClassDecl->addDecl(Destructor);
8302
8303  return Destructor;
8304}
8305
8306void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8307                                    CXXDestructorDecl *Destructor) {
8308  assert((Destructor->isDefaulted() &&
8309          !Destructor->doesThisDeclarationHaveABody() &&
8310          !Destructor->isDeleted()) &&
8311         "DefineImplicitDestructor - call it for implicit default dtor");
8312  CXXRecordDecl *ClassDecl = Destructor->getParent();
8313  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8314
8315  if (Destructor->isInvalidDecl())
8316    return;
8317
8318  SynthesizedFunctionScope Scope(*this, Destructor);
8319
8320  DiagnosticErrorTrap Trap(Diags);
8321  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8322                                         Destructor->getParent());
8323
8324  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8325    Diag(CurrentLocation, diag::note_member_synthesized_at)
8326      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8327
8328    Destructor->setInvalidDecl();
8329    return;
8330  }
8331
8332  SourceLocation Loc = Destructor->getLocation();
8333  Destructor->setBody(new (Context) CompoundStmt(Loc));
8334  Destructor->setImplicitlyDefined(true);
8335  Destructor->setUsed();
8336  MarkVTableUsed(CurrentLocation, ClassDecl);
8337
8338  if (ASTMutationListener *L = getASTMutationListener()) {
8339    L->CompletedImplicitDefinition(Destructor);
8340  }
8341}
8342
8343/// \brief Perform any semantic analysis which needs to be delayed until all
8344/// pending class member declarations have been parsed.
8345void Sema::ActOnFinishCXXMemberDecls() {
8346  // If the context is an invalid C++ class, just suppress these checks.
8347  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8348    if (Record->isInvalidDecl()) {
8349      DelayedDestructorExceptionSpecChecks.clear();
8350      return;
8351    }
8352  }
8353
8354  // Perform any deferred checking of exception specifications for virtual
8355  // destructors.
8356  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8357       i != e; ++i) {
8358    const CXXDestructorDecl *Dtor =
8359        DelayedDestructorExceptionSpecChecks[i].first;
8360    assert(!Dtor->getParent()->isDependentType() &&
8361           "Should not ever add destructors of templates into the list.");
8362    CheckOverridingFunctionExceptionSpec(Dtor,
8363        DelayedDestructorExceptionSpecChecks[i].second);
8364  }
8365  DelayedDestructorExceptionSpecChecks.clear();
8366}
8367
8368void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8369                                         CXXDestructorDecl *Destructor) {
8370  assert(getLangOpts().CPlusPlus11 &&
8371         "adjusting dtor exception specs was introduced in c++11");
8372
8373  // C++11 [class.dtor]p3:
8374  //   A declaration of a destructor that does not have an exception-
8375  //   specification is implicitly considered to have the same exception-
8376  //   specification as an implicit declaration.
8377  const FunctionProtoType *DtorType = Destructor->getType()->
8378                                        getAs<FunctionProtoType>();
8379  if (DtorType->hasExceptionSpec())
8380    return;
8381
8382  // Replace the destructor's type, building off the existing one. Fortunately,
8383  // the only thing of interest in the destructor type is its extended info.
8384  // The return and arguments are fixed.
8385  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8386  EPI.ExceptionSpecType = EST_Unevaluated;
8387  EPI.ExceptionSpecDecl = Destructor;
8388  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8389
8390  // FIXME: If the destructor has a body that could throw, and the newly created
8391  // spec doesn't allow exceptions, we should emit a warning, because this
8392  // change in behavior can break conforming C++03 programs at runtime.
8393  // However, we don't have a body or an exception specification yet, so it
8394  // needs to be done somewhere else.
8395}
8396
8397/// When generating a defaulted copy or move assignment operator, if a field
8398/// should be copied with __builtin_memcpy rather than via explicit assignments,
8399/// do so. This optimization only applies for arrays of scalars, and for arrays
8400/// of class type where the selected copy/move-assignment operator is trivial.
8401static StmtResult
8402buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8403                           Expr *To, Expr *From) {
8404  // Compute the size of the memory buffer to be copied.
8405  QualType SizeType = S.Context.getSizeType();
8406  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8407                   S.Context.getTypeSizeInChars(T).getQuantity());
8408
8409  // Take the address of the field references for "from" and "to". We
8410  // directly construct UnaryOperators here because semantic analysis
8411  // does not permit us to take the address of an xvalue.
8412  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8413                         S.Context.getPointerType(From->getType()),
8414                         VK_RValue, OK_Ordinary, Loc);
8415  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8416                       S.Context.getPointerType(To->getType()),
8417                       VK_RValue, OK_Ordinary, Loc);
8418
8419  const Type *E = T->getBaseElementTypeUnsafe();
8420  bool NeedsCollectableMemCpy =
8421    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8422
8423  // Create a reference to the __builtin_objc_memmove_collectable function
8424  StringRef MemCpyName = NeedsCollectableMemCpy ?
8425    "__builtin_objc_memmove_collectable" :
8426    "__builtin_memcpy";
8427  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8428                 Sema::LookupOrdinaryName);
8429  S.LookupName(R, S.TUScope, true);
8430
8431  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8432  if (!MemCpy)
8433    // Something went horribly wrong earlier, and we will have complained
8434    // about it.
8435    return StmtError();
8436
8437  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8438                                            VK_RValue, Loc, 0);
8439  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8440
8441  Expr *CallArgs[] = {
8442    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8443  };
8444  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8445                                    Loc, CallArgs, Loc);
8446
8447  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8448  return S.Owned(Call.takeAs<Stmt>());
8449}
8450
8451/// \brief Builds a statement that copies/moves the given entity from \p From to
8452/// \c To.
8453///
8454/// This routine is used to copy/move the members of a class with an
8455/// implicitly-declared copy/move assignment operator. When the entities being
8456/// copied are arrays, this routine builds for loops to copy them.
8457///
8458/// \param S The Sema object used for type-checking.
8459///
8460/// \param Loc The location where the implicit copy/move is being generated.
8461///
8462/// \param T The type of the expressions being copied/moved. Both expressions
8463/// must have this type.
8464///
8465/// \param To The expression we are copying/moving to.
8466///
8467/// \param From The expression we are copying/moving from.
8468///
8469/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8470/// Otherwise, it's a non-static member subobject.
8471///
8472/// \param Copying Whether we're copying or moving.
8473///
8474/// \param Depth Internal parameter recording the depth of the recursion.
8475///
8476/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8477/// if a memcpy should be used instead.
8478static StmtResult
8479buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8480                                 Expr *To, Expr *From,
8481                                 bool CopyingBaseSubobject, bool Copying,
8482                                 unsigned Depth = 0) {
8483  // C++11 [class.copy]p28:
8484  //   Each subobject is assigned in the manner appropriate to its type:
8485  //
8486  //     - if the subobject is of class type, as if by a call to operator= with
8487  //       the subobject as the object expression and the corresponding
8488  //       subobject of x as a single function argument (as if by explicit
8489  //       qualification; that is, ignoring any possible virtual overriding
8490  //       functions in more derived classes);
8491  //
8492  // C++03 [class.copy]p13:
8493  //     - if the subobject is of class type, the copy assignment operator for
8494  //       the class is used (as if by explicit qualification; that is,
8495  //       ignoring any possible virtual overriding functions in more derived
8496  //       classes);
8497  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8498    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8499
8500    // Look for operator=.
8501    DeclarationName Name
8502      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8503    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8504    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8505
8506    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8507    // operator.
8508    if (!S.getLangOpts().CPlusPlus11) {
8509      LookupResult::Filter F = OpLookup.makeFilter();
8510      while (F.hasNext()) {
8511        NamedDecl *D = F.next();
8512        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8513          if (Method->isCopyAssignmentOperator() ||
8514              (!Copying && Method->isMoveAssignmentOperator()))
8515            continue;
8516
8517        F.erase();
8518      }
8519      F.done();
8520    }
8521
8522    // Suppress the protected check (C++ [class.protected]) for each of the
8523    // assignment operators we found. This strange dance is required when
8524    // we're assigning via a base classes's copy-assignment operator. To
8525    // ensure that we're getting the right base class subobject (without
8526    // ambiguities), we need to cast "this" to that subobject type; to
8527    // ensure that we don't go through the virtual call mechanism, we need
8528    // to qualify the operator= name with the base class (see below). However,
8529    // this means that if the base class has a protected copy assignment
8530    // operator, the protected member access check will fail. So, we
8531    // rewrite "protected" access to "public" access in this case, since we
8532    // know by construction that we're calling from a derived class.
8533    if (CopyingBaseSubobject) {
8534      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8535           L != LEnd; ++L) {
8536        if (L.getAccess() == AS_protected)
8537          L.setAccess(AS_public);
8538      }
8539    }
8540
8541    // Create the nested-name-specifier that will be used to qualify the
8542    // reference to operator=; this is required to suppress the virtual
8543    // call mechanism.
8544    CXXScopeSpec SS;
8545    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8546    SS.MakeTrivial(S.Context,
8547                   NestedNameSpecifier::Create(S.Context, 0, false,
8548                                               CanonicalT),
8549                   Loc);
8550
8551    // Create the reference to operator=.
8552    ExprResult OpEqualRef
8553      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8554                                   /*TemplateKWLoc=*/SourceLocation(),
8555                                   /*FirstQualifierInScope=*/0,
8556                                   OpLookup,
8557                                   /*TemplateArgs=*/0,
8558                                   /*SuppressQualifierCheck=*/true);
8559    if (OpEqualRef.isInvalid())
8560      return StmtError();
8561
8562    // Build the call to the assignment operator.
8563
8564    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8565                                                  OpEqualRef.takeAs<Expr>(),
8566                                                  Loc, From, Loc);
8567    if (Call.isInvalid())
8568      return StmtError();
8569
8570    // If we built a call to a trivial 'operator=' while copying an array,
8571    // bail out. We'll replace the whole shebang with a memcpy.
8572    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8573    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8574      return StmtResult((Stmt*)0);
8575
8576    // Convert to an expression-statement, and clean up any produced
8577    // temporaries.
8578    return S.ActOnExprStmt(Call);
8579  }
8580
8581  //     - if the subobject is of scalar type, the built-in assignment
8582  //       operator is used.
8583  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8584  if (!ArrayTy) {
8585    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8586    if (Assignment.isInvalid())
8587      return StmtError();
8588    return S.ActOnExprStmt(Assignment);
8589  }
8590
8591  //     - if the subobject is an array, each element is assigned, in the
8592  //       manner appropriate to the element type;
8593
8594  // Construct a loop over the array bounds, e.g.,
8595  //
8596  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8597  //
8598  // that will copy each of the array elements.
8599  QualType SizeType = S.Context.getSizeType();
8600
8601  // Create the iteration variable.
8602  IdentifierInfo *IterationVarName = 0;
8603  {
8604    SmallString<8> Str;
8605    llvm::raw_svector_ostream OS(Str);
8606    OS << "__i" << Depth;
8607    IterationVarName = &S.Context.Idents.get(OS.str());
8608  }
8609  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8610                                          IterationVarName, SizeType,
8611                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8612                                          SC_None);
8613
8614  // Initialize the iteration variable to zero.
8615  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8616  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8617
8618  // Create a reference to the iteration variable; we'll use this several
8619  // times throughout.
8620  Expr *IterationVarRef
8621    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8622  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8623  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8624  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8625
8626  // Create the DeclStmt that holds the iteration variable.
8627  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8628
8629  // Subscript the "from" and "to" expressions with the iteration variable.
8630  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8631                                                         IterationVarRefRVal,
8632                                                         Loc));
8633  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8634                                                       IterationVarRefRVal,
8635                                                       Loc));
8636  if (!Copying) // Cast to rvalue
8637    From = CastForMoving(S, From);
8638
8639  // Build the copy/move for an individual element of the array.
8640  StmtResult Copy =
8641    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8642                                     To, From, CopyingBaseSubobject,
8643                                     Copying, Depth + 1);
8644  // Bail out if copying fails or if we determined that we should use memcpy.
8645  if (Copy.isInvalid() || !Copy.get())
8646    return Copy;
8647
8648  // Create the comparison against the array bound.
8649  llvm::APInt Upper
8650    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8651  Expr *Comparison
8652    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8653                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8654                                     BO_NE, S.Context.BoolTy,
8655                                     VK_RValue, OK_Ordinary, Loc, false);
8656
8657  // Create the pre-increment of the iteration variable.
8658  Expr *Increment
8659    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8660                                    VK_LValue, OK_Ordinary, Loc);
8661
8662  // Construct the loop that copies all elements of this array.
8663  return S.ActOnForStmt(Loc, Loc, InitStmt,
8664                        S.MakeFullExpr(Comparison),
8665                        0, S.MakeFullDiscardedValueExpr(Increment),
8666                        Loc, Copy.take());
8667}
8668
8669static StmtResult
8670buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8671                      Expr *To, Expr *From,
8672                      bool CopyingBaseSubobject, bool Copying) {
8673  // Maybe we should use a memcpy?
8674  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8675      T.isTriviallyCopyableType(S.Context))
8676    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8677
8678  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8679                                                     CopyingBaseSubobject,
8680                                                     Copying, 0));
8681
8682  // If we ended up picking a trivial assignment operator for an array of a
8683  // non-trivially-copyable class type, just emit a memcpy.
8684  if (!Result.isInvalid() && !Result.get())
8685    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8686
8687  return Result;
8688}
8689
8690Sema::ImplicitExceptionSpecification
8691Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8692  CXXRecordDecl *ClassDecl = MD->getParent();
8693
8694  ImplicitExceptionSpecification ExceptSpec(*this);
8695  if (ClassDecl->isInvalidDecl())
8696    return ExceptSpec;
8697
8698  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8699  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8700  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8701
8702  // C++ [except.spec]p14:
8703  //   An implicitly declared special member function (Clause 12) shall have an
8704  //   exception-specification. [...]
8705
8706  // It is unspecified whether or not an implicit copy assignment operator
8707  // attempts to deduplicate calls to assignment operators of virtual bases are
8708  // made. As such, this exception specification is effectively unspecified.
8709  // Based on a similar decision made for constness in C++0x, we're erring on
8710  // the side of assuming such calls to be made regardless of whether they
8711  // actually happen.
8712  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8713                                       BaseEnd = ClassDecl->bases_end();
8714       Base != BaseEnd; ++Base) {
8715    if (Base->isVirtual())
8716      continue;
8717
8718    CXXRecordDecl *BaseClassDecl
8719      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8720    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8721                                                            ArgQuals, false, 0))
8722      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8723  }
8724
8725  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8726                                       BaseEnd = ClassDecl->vbases_end();
8727       Base != BaseEnd; ++Base) {
8728    CXXRecordDecl *BaseClassDecl
8729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8730    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8731                                                            ArgQuals, false, 0))
8732      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8733  }
8734
8735  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8736                                  FieldEnd = ClassDecl->field_end();
8737       Field != FieldEnd;
8738       ++Field) {
8739    QualType FieldType = Context.getBaseElementType(Field->getType());
8740    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8741      if (CXXMethodDecl *CopyAssign =
8742          LookupCopyingAssignment(FieldClassDecl,
8743                                  ArgQuals | FieldType.getCVRQualifiers(),
8744                                  false, 0))
8745        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8746    }
8747  }
8748
8749  return ExceptSpec;
8750}
8751
8752CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8753  // Note: The following rules are largely analoguous to the copy
8754  // constructor rules. Note that virtual bases are not taken into account
8755  // for determining the argument type of the operator. Note also that
8756  // operators taking an object instead of a reference are allowed.
8757  assert(ClassDecl->needsImplicitCopyAssignment());
8758
8759  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8760  if (DSM.isAlreadyBeingDeclared())
8761    return 0;
8762
8763  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8764  QualType RetType = Context.getLValueReferenceType(ArgType);
8765  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8766  if (Const)
8767    ArgType = ArgType.withConst();
8768  ArgType = Context.getLValueReferenceType(ArgType);
8769
8770  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8771                                                     CXXCopyAssignment,
8772                                                     Const);
8773
8774  //   An implicitly-declared copy assignment operator is an inline public
8775  //   member of its class.
8776  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8777  SourceLocation ClassLoc = ClassDecl->getLocation();
8778  DeclarationNameInfo NameInfo(Name, ClassLoc);
8779  CXXMethodDecl *CopyAssignment =
8780      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8781                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8782                            /*isInline=*/ true, Constexpr, SourceLocation());
8783  CopyAssignment->setAccess(AS_public);
8784  CopyAssignment->setDefaulted();
8785  CopyAssignment->setImplicit();
8786
8787  // Build an exception specification pointing back at this member.
8788  FunctionProtoType::ExtProtoInfo EPI;
8789  EPI.ExceptionSpecType = EST_Unevaluated;
8790  EPI.ExceptionSpecDecl = CopyAssignment;
8791  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8792
8793  // Add the parameter to the operator.
8794  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8795                                               ClassLoc, ClassLoc, /*Id=*/0,
8796                                               ArgType, /*TInfo=*/0,
8797                                               SC_None, 0);
8798  CopyAssignment->setParams(FromParam);
8799
8800  AddOverriddenMethods(ClassDecl, CopyAssignment);
8801
8802  CopyAssignment->setTrivial(
8803    ClassDecl->needsOverloadResolutionForCopyAssignment()
8804      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8805      : ClassDecl->hasTrivialCopyAssignment());
8806
8807  // C++11 [class.copy]p19:
8808  //   ....  If the class definition does not explicitly declare a copy
8809  //   assignment operator, there is no user-declared move constructor, and
8810  //   there is no user-declared move assignment operator, a copy assignment
8811  //   operator is implicitly declared as defaulted.
8812  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8813    SetDeclDeleted(CopyAssignment, ClassLoc);
8814
8815  // Note that we have added this copy-assignment operator.
8816  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8817
8818  if (Scope *S = getScopeForContext(ClassDecl))
8819    PushOnScopeChains(CopyAssignment, S, false);
8820  ClassDecl->addDecl(CopyAssignment);
8821
8822  return CopyAssignment;
8823}
8824
8825void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8826                                        CXXMethodDecl *CopyAssignOperator) {
8827  assert((CopyAssignOperator->isDefaulted() &&
8828          CopyAssignOperator->isOverloadedOperator() &&
8829          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8830          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8831          !CopyAssignOperator->isDeleted()) &&
8832         "DefineImplicitCopyAssignment called for wrong function");
8833
8834  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8835
8836  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8837    CopyAssignOperator->setInvalidDecl();
8838    return;
8839  }
8840
8841  CopyAssignOperator->setUsed();
8842
8843  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8844  DiagnosticErrorTrap Trap(Diags);
8845
8846  // C++0x [class.copy]p30:
8847  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8848  //   for a non-union class X performs memberwise copy assignment of its
8849  //   subobjects. The direct base classes of X are assigned first, in the
8850  //   order of their declaration in the base-specifier-list, and then the
8851  //   immediate non-static data members of X are assigned, in the order in
8852  //   which they were declared in the class definition.
8853
8854  // The statements that form the synthesized function body.
8855  SmallVector<Stmt*, 8> Statements;
8856
8857  // The parameter for the "other" object, which we are copying from.
8858  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8859  Qualifiers OtherQuals = Other->getType().getQualifiers();
8860  QualType OtherRefType = Other->getType();
8861  if (const LValueReferenceType *OtherRef
8862                                = OtherRefType->getAs<LValueReferenceType>()) {
8863    OtherRefType = OtherRef->getPointeeType();
8864    OtherQuals = OtherRefType.getQualifiers();
8865  }
8866
8867  // Our location for everything implicitly-generated.
8868  SourceLocation Loc = CopyAssignOperator->getLocation();
8869
8870  // Construct a reference to the "other" object. We'll be using this
8871  // throughout the generated ASTs.
8872  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8873  assert(OtherRef && "Reference to parameter cannot fail!");
8874
8875  // Construct the "this" pointer. We'll be using this throughout the generated
8876  // ASTs.
8877  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8878  assert(This && "Reference to this cannot fail!");
8879
8880  // Assign base classes.
8881  bool Invalid = false;
8882  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8883       E = ClassDecl->bases_end(); Base != E; ++Base) {
8884    // Form the assignment:
8885    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8886    QualType BaseType = Base->getType().getUnqualifiedType();
8887    if (!BaseType->isRecordType()) {
8888      Invalid = true;
8889      continue;
8890    }
8891
8892    CXXCastPath BasePath;
8893    BasePath.push_back(Base);
8894
8895    // Construct the "from" expression, which is an implicit cast to the
8896    // appropriately-qualified base type.
8897    Expr *From = OtherRef;
8898    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8899                             CK_UncheckedDerivedToBase,
8900                             VK_LValue, &BasePath).take();
8901
8902    // Dereference "this".
8903    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8904
8905    // Implicitly cast "this" to the appropriately-qualified base type.
8906    To = ImpCastExprToType(To.take(),
8907                           Context.getCVRQualifiedType(BaseType,
8908                                     CopyAssignOperator->getTypeQualifiers()),
8909                           CK_UncheckedDerivedToBase,
8910                           VK_LValue, &BasePath);
8911
8912    // Build the copy.
8913    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8914                                            To.get(), From,
8915                                            /*CopyingBaseSubobject=*/true,
8916                                            /*Copying=*/true);
8917    if (Copy.isInvalid()) {
8918      Diag(CurrentLocation, diag::note_member_synthesized_at)
8919        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8920      CopyAssignOperator->setInvalidDecl();
8921      return;
8922    }
8923
8924    // Success! Record the copy.
8925    Statements.push_back(Copy.takeAs<Expr>());
8926  }
8927
8928  // Assign non-static members.
8929  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8930                                  FieldEnd = ClassDecl->field_end();
8931       Field != FieldEnd; ++Field) {
8932    if (Field->isUnnamedBitfield())
8933      continue;
8934
8935    if (Field->isInvalidDecl()) {
8936      Invalid = true;
8937      continue;
8938    }
8939
8940    // Check for members of reference type; we can't copy those.
8941    if (Field->getType()->isReferenceType()) {
8942      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8943        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8944      Diag(Field->getLocation(), diag::note_declared_at);
8945      Diag(CurrentLocation, diag::note_member_synthesized_at)
8946        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8947      Invalid = true;
8948      continue;
8949    }
8950
8951    // Check for members of const-qualified, non-class type.
8952    QualType BaseType = Context.getBaseElementType(Field->getType());
8953    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8954      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8955        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8956      Diag(Field->getLocation(), diag::note_declared_at);
8957      Diag(CurrentLocation, diag::note_member_synthesized_at)
8958        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8959      Invalid = true;
8960      continue;
8961    }
8962
8963    // Suppress assigning zero-width bitfields.
8964    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8965      continue;
8966
8967    QualType FieldType = Field->getType().getNonReferenceType();
8968    if (FieldType->isIncompleteArrayType()) {
8969      assert(ClassDecl->hasFlexibleArrayMember() &&
8970             "Incomplete array type is not valid");
8971      continue;
8972    }
8973
8974    // Build references to the field in the object we're copying from and to.
8975    CXXScopeSpec SS; // Intentionally empty
8976    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8977                              LookupMemberName);
8978    MemberLookup.addDecl(*Field);
8979    MemberLookup.resolveKind();
8980    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8981                                               Loc, /*IsArrow=*/false,
8982                                               SS, SourceLocation(), 0,
8983                                               MemberLookup, 0);
8984    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8985                                             Loc, /*IsArrow=*/true,
8986                                             SS, SourceLocation(), 0,
8987                                             MemberLookup, 0);
8988    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8989    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8990
8991    // Build the copy of this field.
8992    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8993                                            To.get(), From.get(),
8994                                            /*CopyingBaseSubobject=*/false,
8995                                            /*Copying=*/true);
8996    if (Copy.isInvalid()) {
8997      Diag(CurrentLocation, diag::note_member_synthesized_at)
8998        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8999      CopyAssignOperator->setInvalidDecl();
9000      return;
9001    }
9002
9003    // Success! Record the copy.
9004    Statements.push_back(Copy.takeAs<Stmt>());
9005  }
9006
9007  if (!Invalid) {
9008    // Add a "return *this;"
9009    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9010
9011    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9012    if (Return.isInvalid())
9013      Invalid = true;
9014    else {
9015      Statements.push_back(Return.takeAs<Stmt>());
9016
9017      if (Trap.hasErrorOccurred()) {
9018        Diag(CurrentLocation, diag::note_member_synthesized_at)
9019          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9020        Invalid = true;
9021      }
9022    }
9023  }
9024
9025  if (Invalid) {
9026    CopyAssignOperator->setInvalidDecl();
9027    return;
9028  }
9029
9030  StmtResult Body;
9031  {
9032    CompoundScopeRAII CompoundScope(*this);
9033    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9034                             /*isStmtExpr=*/false);
9035    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9036  }
9037  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9038
9039  if (ASTMutationListener *L = getASTMutationListener()) {
9040    L->CompletedImplicitDefinition(CopyAssignOperator);
9041  }
9042}
9043
9044Sema::ImplicitExceptionSpecification
9045Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9046  CXXRecordDecl *ClassDecl = MD->getParent();
9047
9048  ImplicitExceptionSpecification ExceptSpec(*this);
9049  if (ClassDecl->isInvalidDecl())
9050    return ExceptSpec;
9051
9052  // C++0x [except.spec]p14:
9053  //   An implicitly declared special member function (Clause 12) shall have an
9054  //   exception-specification. [...]
9055
9056  // It is unspecified whether or not an implicit move assignment operator
9057  // attempts to deduplicate calls to assignment operators of virtual bases are
9058  // made. As such, this exception specification is effectively unspecified.
9059  // Based on a similar decision made for constness in C++0x, we're erring on
9060  // the side of assuming such calls to be made regardless of whether they
9061  // actually happen.
9062  // Note that a move constructor is not implicitly declared when there are
9063  // virtual bases, but it can still be user-declared and explicitly defaulted.
9064  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9065                                       BaseEnd = ClassDecl->bases_end();
9066       Base != BaseEnd; ++Base) {
9067    if (Base->isVirtual())
9068      continue;
9069
9070    CXXRecordDecl *BaseClassDecl
9071      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9072    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9073                                                           0, false, 0))
9074      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9075  }
9076
9077  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9078                                       BaseEnd = ClassDecl->vbases_end();
9079       Base != BaseEnd; ++Base) {
9080    CXXRecordDecl *BaseClassDecl
9081      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9082    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9083                                                           0, false, 0))
9084      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9085  }
9086
9087  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9088                                  FieldEnd = ClassDecl->field_end();
9089       Field != FieldEnd;
9090       ++Field) {
9091    QualType FieldType = Context.getBaseElementType(Field->getType());
9092    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9093      if (CXXMethodDecl *MoveAssign =
9094              LookupMovingAssignment(FieldClassDecl,
9095                                     FieldType.getCVRQualifiers(),
9096                                     false, 0))
9097        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9098    }
9099  }
9100
9101  return ExceptSpec;
9102}
9103
9104/// Determine whether the class type has any direct or indirect virtual base
9105/// classes which have a non-trivial move assignment operator.
9106static bool
9107hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9108  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9109                                          BaseEnd = ClassDecl->vbases_end();
9110       Base != BaseEnd; ++Base) {
9111    CXXRecordDecl *BaseClass =
9112        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9113
9114    // Try to declare the move assignment. If it would be deleted, then the
9115    // class does not have a non-trivial move assignment.
9116    if (BaseClass->needsImplicitMoveAssignment())
9117      S.DeclareImplicitMoveAssignment(BaseClass);
9118
9119    if (BaseClass->hasNonTrivialMoveAssignment())
9120      return true;
9121  }
9122
9123  return false;
9124}
9125
9126/// Determine whether the given type either has a move constructor or is
9127/// trivially copyable.
9128static bool
9129hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9130  Type = S.Context.getBaseElementType(Type);
9131
9132  // FIXME: Technically, non-trivially-copyable non-class types, such as
9133  // reference types, are supposed to return false here, but that appears
9134  // to be a standard defect.
9135  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9136  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9137    return true;
9138
9139  if (Type.isTriviallyCopyableType(S.Context))
9140    return true;
9141
9142  if (IsConstructor) {
9143    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9144    // give the right answer.
9145    if (ClassDecl->needsImplicitMoveConstructor())
9146      S.DeclareImplicitMoveConstructor(ClassDecl);
9147    return ClassDecl->hasMoveConstructor();
9148  }
9149
9150  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9151  // give the right answer.
9152  if (ClassDecl->needsImplicitMoveAssignment())
9153    S.DeclareImplicitMoveAssignment(ClassDecl);
9154  return ClassDecl->hasMoveAssignment();
9155}
9156
9157/// Determine whether all non-static data members and direct or virtual bases
9158/// of class \p ClassDecl have either a move operation, or are trivially
9159/// copyable.
9160static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9161                                            bool IsConstructor) {
9162  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9163                                          BaseEnd = ClassDecl->bases_end();
9164       Base != BaseEnd; ++Base) {
9165    if (Base->isVirtual())
9166      continue;
9167
9168    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9169      return false;
9170  }
9171
9172  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9173                                          BaseEnd = ClassDecl->vbases_end();
9174       Base != BaseEnd; ++Base) {
9175    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9176      return false;
9177  }
9178
9179  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9180                                     FieldEnd = ClassDecl->field_end();
9181       Field != FieldEnd; ++Field) {
9182    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9183      return false;
9184  }
9185
9186  return true;
9187}
9188
9189CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9190  // C++11 [class.copy]p20:
9191  //   If the definition of a class X does not explicitly declare a move
9192  //   assignment operator, one will be implicitly declared as defaulted
9193  //   if and only if:
9194  //
9195  //   - [first 4 bullets]
9196  assert(ClassDecl->needsImplicitMoveAssignment());
9197
9198  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9199  if (DSM.isAlreadyBeingDeclared())
9200    return 0;
9201
9202  // [Checked after we build the declaration]
9203  //   - the move assignment operator would not be implicitly defined as
9204  //     deleted,
9205
9206  // [DR1402]:
9207  //   - X has no direct or indirect virtual base class with a non-trivial
9208  //     move assignment operator, and
9209  //   - each of X's non-static data members and direct or virtual base classes
9210  //     has a type that either has a move assignment operator or is trivially
9211  //     copyable.
9212  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9213      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9214    ClassDecl->setFailedImplicitMoveAssignment();
9215    return 0;
9216  }
9217
9218  // Note: The following rules are largely analoguous to the move
9219  // constructor rules.
9220
9221  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9222  QualType RetType = Context.getLValueReferenceType(ArgType);
9223  ArgType = Context.getRValueReferenceType(ArgType);
9224
9225  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9226                                                     CXXMoveAssignment,
9227                                                     false);
9228
9229  //   An implicitly-declared move assignment operator is an inline public
9230  //   member of its class.
9231  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9232  SourceLocation ClassLoc = ClassDecl->getLocation();
9233  DeclarationNameInfo NameInfo(Name, ClassLoc);
9234  CXXMethodDecl *MoveAssignment =
9235      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9236                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9237                            /*isInline=*/true, Constexpr, SourceLocation());
9238  MoveAssignment->setAccess(AS_public);
9239  MoveAssignment->setDefaulted();
9240  MoveAssignment->setImplicit();
9241
9242  // Build an exception specification pointing back at this member.
9243  FunctionProtoType::ExtProtoInfo EPI;
9244  EPI.ExceptionSpecType = EST_Unevaluated;
9245  EPI.ExceptionSpecDecl = MoveAssignment;
9246  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9247
9248  // Add the parameter to the operator.
9249  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9250                                               ClassLoc, ClassLoc, /*Id=*/0,
9251                                               ArgType, /*TInfo=*/0,
9252                                               SC_None, 0);
9253  MoveAssignment->setParams(FromParam);
9254
9255  AddOverriddenMethods(ClassDecl, MoveAssignment);
9256
9257  MoveAssignment->setTrivial(
9258    ClassDecl->needsOverloadResolutionForMoveAssignment()
9259      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9260      : ClassDecl->hasTrivialMoveAssignment());
9261
9262  // C++0x [class.copy]p9:
9263  //   If the definition of a class X does not explicitly declare a move
9264  //   assignment operator, one will be implicitly declared as defaulted if and
9265  //   only if:
9266  //   [...]
9267  //   - the move assignment operator would not be implicitly defined as
9268  //     deleted.
9269  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9270    // Cache this result so that we don't try to generate this over and over
9271    // on every lookup, leaking memory and wasting time.
9272    ClassDecl->setFailedImplicitMoveAssignment();
9273    return 0;
9274  }
9275
9276  // Note that we have added this copy-assignment operator.
9277  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9278
9279  if (Scope *S = getScopeForContext(ClassDecl))
9280    PushOnScopeChains(MoveAssignment, S, false);
9281  ClassDecl->addDecl(MoveAssignment);
9282
9283  return MoveAssignment;
9284}
9285
9286void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9287                                        CXXMethodDecl *MoveAssignOperator) {
9288  assert((MoveAssignOperator->isDefaulted() &&
9289          MoveAssignOperator->isOverloadedOperator() &&
9290          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9291          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9292          !MoveAssignOperator->isDeleted()) &&
9293         "DefineImplicitMoveAssignment called for wrong function");
9294
9295  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9296
9297  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9298    MoveAssignOperator->setInvalidDecl();
9299    return;
9300  }
9301
9302  MoveAssignOperator->setUsed();
9303
9304  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9305  DiagnosticErrorTrap Trap(Diags);
9306
9307  // C++0x [class.copy]p28:
9308  //   The implicitly-defined or move assignment operator for a non-union class
9309  //   X performs memberwise move assignment of its subobjects. The direct base
9310  //   classes of X are assigned first, in the order of their declaration in the
9311  //   base-specifier-list, and then the immediate non-static data members of X
9312  //   are assigned, in the order in which they were declared in the class
9313  //   definition.
9314
9315  // The statements that form the synthesized function body.
9316  SmallVector<Stmt*, 8> Statements;
9317
9318  // The parameter for the "other" object, which we are move from.
9319  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9320  QualType OtherRefType = Other->getType()->
9321      getAs<RValueReferenceType>()->getPointeeType();
9322  assert(!OtherRefType.getQualifiers() &&
9323         "Bad argument type of defaulted move assignment");
9324
9325  // Our location for everything implicitly-generated.
9326  SourceLocation Loc = MoveAssignOperator->getLocation();
9327
9328  // Construct a reference to the "other" object. We'll be using this
9329  // throughout the generated ASTs.
9330  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9331  assert(OtherRef && "Reference to parameter cannot fail!");
9332  // Cast to rvalue.
9333  OtherRef = CastForMoving(*this, OtherRef);
9334
9335  // Construct the "this" pointer. We'll be using this throughout the generated
9336  // ASTs.
9337  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9338  assert(This && "Reference to this cannot fail!");
9339
9340  // Assign base classes.
9341  bool Invalid = false;
9342  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9343       E = ClassDecl->bases_end(); Base != E; ++Base) {
9344    // Form the assignment:
9345    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9346    QualType BaseType = Base->getType().getUnqualifiedType();
9347    if (!BaseType->isRecordType()) {
9348      Invalid = true;
9349      continue;
9350    }
9351
9352    CXXCastPath BasePath;
9353    BasePath.push_back(Base);
9354
9355    // Construct the "from" expression, which is an implicit cast to the
9356    // appropriately-qualified base type.
9357    Expr *From = OtherRef;
9358    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9359                             VK_XValue, &BasePath).take();
9360
9361    // Dereference "this".
9362    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9363
9364    // Implicitly cast "this" to the appropriately-qualified base type.
9365    To = ImpCastExprToType(To.take(),
9366                           Context.getCVRQualifiedType(BaseType,
9367                                     MoveAssignOperator->getTypeQualifiers()),
9368                           CK_UncheckedDerivedToBase,
9369                           VK_LValue, &BasePath);
9370
9371    // Build the move.
9372    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9373                                            To.get(), From,
9374                                            /*CopyingBaseSubobject=*/true,
9375                                            /*Copying=*/false);
9376    if (Move.isInvalid()) {
9377      Diag(CurrentLocation, diag::note_member_synthesized_at)
9378        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9379      MoveAssignOperator->setInvalidDecl();
9380      return;
9381    }
9382
9383    // Success! Record the move.
9384    Statements.push_back(Move.takeAs<Expr>());
9385  }
9386
9387  // Assign non-static members.
9388  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9389                                  FieldEnd = ClassDecl->field_end();
9390       Field != FieldEnd; ++Field) {
9391    if (Field->isUnnamedBitfield())
9392      continue;
9393
9394    if (Field->isInvalidDecl()) {
9395      Invalid = true;
9396      continue;
9397    }
9398
9399    // Check for members of reference type; we can't move those.
9400    if (Field->getType()->isReferenceType()) {
9401      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9402        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9403      Diag(Field->getLocation(), diag::note_declared_at);
9404      Diag(CurrentLocation, diag::note_member_synthesized_at)
9405        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9406      Invalid = true;
9407      continue;
9408    }
9409
9410    // Check for members of const-qualified, non-class type.
9411    QualType BaseType = Context.getBaseElementType(Field->getType());
9412    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9413      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9414        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9415      Diag(Field->getLocation(), diag::note_declared_at);
9416      Diag(CurrentLocation, diag::note_member_synthesized_at)
9417        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9418      Invalid = true;
9419      continue;
9420    }
9421
9422    // Suppress assigning zero-width bitfields.
9423    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9424      continue;
9425
9426    QualType FieldType = Field->getType().getNonReferenceType();
9427    if (FieldType->isIncompleteArrayType()) {
9428      assert(ClassDecl->hasFlexibleArrayMember() &&
9429             "Incomplete array type is not valid");
9430      continue;
9431    }
9432
9433    // Build references to the field in the object we're copying from and to.
9434    CXXScopeSpec SS; // Intentionally empty
9435    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9436                              LookupMemberName);
9437    MemberLookup.addDecl(*Field);
9438    MemberLookup.resolveKind();
9439    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9440                                               Loc, /*IsArrow=*/false,
9441                                               SS, SourceLocation(), 0,
9442                                               MemberLookup, 0);
9443    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9444                                             Loc, /*IsArrow=*/true,
9445                                             SS, SourceLocation(), 0,
9446                                             MemberLookup, 0);
9447    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9448    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9449
9450    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9451        "Member reference with rvalue base must be rvalue except for reference "
9452        "members, which aren't allowed for move assignment.");
9453
9454    // Build the move of this field.
9455    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9456                                            To.get(), From.get(),
9457                                            /*CopyingBaseSubobject=*/false,
9458                                            /*Copying=*/false);
9459    if (Move.isInvalid()) {
9460      Diag(CurrentLocation, diag::note_member_synthesized_at)
9461        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9462      MoveAssignOperator->setInvalidDecl();
9463      return;
9464    }
9465
9466    // Success! Record the copy.
9467    Statements.push_back(Move.takeAs<Stmt>());
9468  }
9469
9470  if (!Invalid) {
9471    // Add a "return *this;"
9472    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9473
9474    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9475    if (Return.isInvalid())
9476      Invalid = true;
9477    else {
9478      Statements.push_back(Return.takeAs<Stmt>());
9479
9480      if (Trap.hasErrorOccurred()) {
9481        Diag(CurrentLocation, diag::note_member_synthesized_at)
9482          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9483        Invalid = true;
9484      }
9485    }
9486  }
9487
9488  if (Invalid) {
9489    MoveAssignOperator->setInvalidDecl();
9490    return;
9491  }
9492
9493  StmtResult Body;
9494  {
9495    CompoundScopeRAII CompoundScope(*this);
9496    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9497                             /*isStmtExpr=*/false);
9498    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9499  }
9500  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9501
9502  if (ASTMutationListener *L = getASTMutationListener()) {
9503    L->CompletedImplicitDefinition(MoveAssignOperator);
9504  }
9505}
9506
9507Sema::ImplicitExceptionSpecification
9508Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9509  CXXRecordDecl *ClassDecl = MD->getParent();
9510
9511  ImplicitExceptionSpecification ExceptSpec(*this);
9512  if (ClassDecl->isInvalidDecl())
9513    return ExceptSpec;
9514
9515  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9516  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9517  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9518
9519  // C++ [except.spec]p14:
9520  //   An implicitly declared special member function (Clause 12) shall have an
9521  //   exception-specification. [...]
9522  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9523                                       BaseEnd = ClassDecl->bases_end();
9524       Base != BaseEnd;
9525       ++Base) {
9526    // Virtual bases are handled below.
9527    if (Base->isVirtual())
9528      continue;
9529
9530    CXXRecordDecl *BaseClassDecl
9531      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9532    if (CXXConstructorDecl *CopyConstructor =
9533          LookupCopyingConstructor(BaseClassDecl, Quals))
9534      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9535  }
9536  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9537                                       BaseEnd = ClassDecl->vbases_end();
9538       Base != BaseEnd;
9539       ++Base) {
9540    CXXRecordDecl *BaseClassDecl
9541      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9542    if (CXXConstructorDecl *CopyConstructor =
9543          LookupCopyingConstructor(BaseClassDecl, Quals))
9544      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9545  }
9546  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9547                                  FieldEnd = ClassDecl->field_end();
9548       Field != FieldEnd;
9549       ++Field) {
9550    QualType FieldType = Context.getBaseElementType(Field->getType());
9551    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9552      if (CXXConstructorDecl *CopyConstructor =
9553              LookupCopyingConstructor(FieldClassDecl,
9554                                       Quals | FieldType.getCVRQualifiers()))
9555      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9556    }
9557  }
9558
9559  return ExceptSpec;
9560}
9561
9562CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9563                                                    CXXRecordDecl *ClassDecl) {
9564  // C++ [class.copy]p4:
9565  //   If the class definition does not explicitly declare a copy
9566  //   constructor, one is declared implicitly.
9567  assert(ClassDecl->needsImplicitCopyConstructor());
9568
9569  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9570  if (DSM.isAlreadyBeingDeclared())
9571    return 0;
9572
9573  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9574  QualType ArgType = ClassType;
9575  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9576  if (Const)
9577    ArgType = ArgType.withConst();
9578  ArgType = Context.getLValueReferenceType(ArgType);
9579
9580  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9581                                                     CXXCopyConstructor,
9582                                                     Const);
9583
9584  DeclarationName Name
9585    = Context.DeclarationNames.getCXXConstructorName(
9586                                           Context.getCanonicalType(ClassType));
9587  SourceLocation ClassLoc = ClassDecl->getLocation();
9588  DeclarationNameInfo NameInfo(Name, ClassLoc);
9589
9590  //   An implicitly-declared copy constructor is an inline public
9591  //   member of its class.
9592  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9593      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9594      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9595      Constexpr);
9596  CopyConstructor->setAccess(AS_public);
9597  CopyConstructor->setDefaulted();
9598
9599  // Build an exception specification pointing back at this member.
9600  FunctionProtoType::ExtProtoInfo EPI;
9601  EPI.ExceptionSpecType = EST_Unevaluated;
9602  EPI.ExceptionSpecDecl = CopyConstructor;
9603  CopyConstructor->setType(
9604      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9605
9606  // Add the parameter to the constructor.
9607  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9608                                               ClassLoc, ClassLoc,
9609                                               /*IdentifierInfo=*/0,
9610                                               ArgType, /*TInfo=*/0,
9611                                               SC_None, 0);
9612  CopyConstructor->setParams(FromParam);
9613
9614  CopyConstructor->setTrivial(
9615    ClassDecl->needsOverloadResolutionForCopyConstructor()
9616      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9617      : ClassDecl->hasTrivialCopyConstructor());
9618
9619  // C++11 [class.copy]p8:
9620  //   ... If the class definition does not explicitly declare a copy
9621  //   constructor, there is no user-declared move constructor, and there is no
9622  //   user-declared move assignment operator, a copy constructor is implicitly
9623  //   declared as defaulted.
9624  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9625    SetDeclDeleted(CopyConstructor, ClassLoc);
9626
9627  // Note that we have declared this constructor.
9628  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9629
9630  if (Scope *S = getScopeForContext(ClassDecl))
9631    PushOnScopeChains(CopyConstructor, S, false);
9632  ClassDecl->addDecl(CopyConstructor);
9633
9634  return CopyConstructor;
9635}
9636
9637void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9638                                   CXXConstructorDecl *CopyConstructor) {
9639  assert((CopyConstructor->isDefaulted() &&
9640          CopyConstructor->isCopyConstructor() &&
9641          !CopyConstructor->doesThisDeclarationHaveABody() &&
9642          !CopyConstructor->isDeleted()) &&
9643         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9644
9645  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9646  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9647
9648  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9649  DiagnosticErrorTrap Trap(Diags);
9650
9651  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9652      Trap.hasErrorOccurred()) {
9653    Diag(CurrentLocation, diag::note_member_synthesized_at)
9654      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9655    CopyConstructor->setInvalidDecl();
9656  }  else {
9657    Sema::CompoundScopeRAII CompoundScope(*this);
9658    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9659                                               CopyConstructor->getLocation(),
9660                                               MultiStmtArg(),
9661                                               /*isStmtExpr=*/false)
9662                                                              .takeAs<Stmt>());
9663    CopyConstructor->setImplicitlyDefined(true);
9664  }
9665
9666  CopyConstructor->setUsed();
9667  if (ASTMutationListener *L = getASTMutationListener()) {
9668    L->CompletedImplicitDefinition(CopyConstructor);
9669  }
9670}
9671
9672Sema::ImplicitExceptionSpecification
9673Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9674  CXXRecordDecl *ClassDecl = MD->getParent();
9675
9676  // C++ [except.spec]p14:
9677  //   An implicitly declared special member function (Clause 12) shall have an
9678  //   exception-specification. [...]
9679  ImplicitExceptionSpecification ExceptSpec(*this);
9680  if (ClassDecl->isInvalidDecl())
9681    return ExceptSpec;
9682
9683  // Direct base-class constructors.
9684  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9685                                       BEnd = ClassDecl->bases_end();
9686       B != BEnd; ++B) {
9687    if (B->isVirtual()) // Handled below.
9688      continue;
9689
9690    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9691      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9692      CXXConstructorDecl *Constructor =
9693          LookupMovingConstructor(BaseClassDecl, 0);
9694      // If this is a deleted function, add it anyway. This might be conformant
9695      // with the standard. This might not. I'm not sure. It might not matter.
9696      if (Constructor)
9697        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9698    }
9699  }
9700
9701  // Virtual base-class constructors.
9702  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9703                                       BEnd = ClassDecl->vbases_end();
9704       B != BEnd; ++B) {
9705    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9706      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9707      CXXConstructorDecl *Constructor =
9708          LookupMovingConstructor(BaseClassDecl, 0);
9709      // If this is a deleted function, add it anyway. This might be conformant
9710      // with the standard. This might not. I'm not sure. It might not matter.
9711      if (Constructor)
9712        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9713    }
9714  }
9715
9716  // Field constructors.
9717  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9718                               FEnd = ClassDecl->field_end();
9719       F != FEnd; ++F) {
9720    QualType FieldType = Context.getBaseElementType(F->getType());
9721    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9722      CXXConstructorDecl *Constructor =
9723          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9724      // If this is a deleted function, add it anyway. This might be conformant
9725      // with the standard. This might not. I'm not sure. It might not matter.
9726      // In particular, the problem is that this function never gets called. It
9727      // might just be ill-formed because this function attempts to refer to
9728      // a deleted function here.
9729      if (Constructor)
9730        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9731    }
9732  }
9733
9734  return ExceptSpec;
9735}
9736
9737CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9738                                                    CXXRecordDecl *ClassDecl) {
9739  // C++11 [class.copy]p9:
9740  //   If the definition of a class X does not explicitly declare a move
9741  //   constructor, one will be implicitly declared as defaulted if and only if:
9742  //
9743  //   - [first 4 bullets]
9744  assert(ClassDecl->needsImplicitMoveConstructor());
9745
9746  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9747  if (DSM.isAlreadyBeingDeclared())
9748    return 0;
9749
9750  // [Checked after we build the declaration]
9751  //   - the move assignment operator would not be implicitly defined as
9752  //     deleted,
9753
9754  // [DR1402]:
9755  //   - each of X's non-static data members and direct or virtual base classes
9756  //     has a type that either has a move constructor or is trivially copyable.
9757  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9758    ClassDecl->setFailedImplicitMoveConstructor();
9759    return 0;
9760  }
9761
9762  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9763  QualType ArgType = Context.getRValueReferenceType(ClassType);
9764
9765  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9766                                                     CXXMoveConstructor,
9767                                                     false);
9768
9769  DeclarationName Name
9770    = Context.DeclarationNames.getCXXConstructorName(
9771                                           Context.getCanonicalType(ClassType));
9772  SourceLocation ClassLoc = ClassDecl->getLocation();
9773  DeclarationNameInfo NameInfo(Name, ClassLoc);
9774
9775  // C++11 [class.copy]p11:
9776  //   An implicitly-declared copy/move constructor is an inline public
9777  //   member of its class.
9778  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9779      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9780      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9781      Constexpr);
9782  MoveConstructor->setAccess(AS_public);
9783  MoveConstructor->setDefaulted();
9784
9785  // Build an exception specification pointing back at this member.
9786  FunctionProtoType::ExtProtoInfo EPI;
9787  EPI.ExceptionSpecType = EST_Unevaluated;
9788  EPI.ExceptionSpecDecl = MoveConstructor;
9789  MoveConstructor->setType(
9790      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9791
9792  // Add the parameter to the constructor.
9793  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9794                                               ClassLoc, ClassLoc,
9795                                               /*IdentifierInfo=*/0,
9796                                               ArgType, /*TInfo=*/0,
9797                                               SC_None, 0);
9798  MoveConstructor->setParams(FromParam);
9799
9800  MoveConstructor->setTrivial(
9801    ClassDecl->needsOverloadResolutionForMoveConstructor()
9802      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9803      : ClassDecl->hasTrivialMoveConstructor());
9804
9805  // C++0x [class.copy]p9:
9806  //   If the definition of a class X does not explicitly declare a move
9807  //   constructor, one will be implicitly declared as defaulted if and only if:
9808  //   [...]
9809  //   - the move constructor would not be implicitly defined as deleted.
9810  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9811    // Cache this result so that we don't try to generate this over and over
9812    // on every lookup, leaking memory and wasting time.
9813    ClassDecl->setFailedImplicitMoveConstructor();
9814    return 0;
9815  }
9816
9817  // Note that we have declared this constructor.
9818  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9819
9820  if (Scope *S = getScopeForContext(ClassDecl))
9821    PushOnScopeChains(MoveConstructor, S, false);
9822  ClassDecl->addDecl(MoveConstructor);
9823
9824  return MoveConstructor;
9825}
9826
9827void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9828                                   CXXConstructorDecl *MoveConstructor) {
9829  assert((MoveConstructor->isDefaulted() &&
9830          MoveConstructor->isMoveConstructor() &&
9831          !MoveConstructor->doesThisDeclarationHaveABody() &&
9832          !MoveConstructor->isDeleted()) &&
9833         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9834
9835  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9836  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9837
9838  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9839  DiagnosticErrorTrap Trap(Diags);
9840
9841  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9842      Trap.hasErrorOccurred()) {
9843    Diag(CurrentLocation, diag::note_member_synthesized_at)
9844      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9845    MoveConstructor->setInvalidDecl();
9846  }  else {
9847    Sema::CompoundScopeRAII CompoundScope(*this);
9848    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9849                                               MoveConstructor->getLocation(),
9850                                               MultiStmtArg(),
9851                                               /*isStmtExpr=*/false)
9852                                                              .takeAs<Stmt>());
9853    MoveConstructor->setImplicitlyDefined(true);
9854  }
9855
9856  MoveConstructor->setUsed();
9857
9858  if (ASTMutationListener *L = getASTMutationListener()) {
9859    L->CompletedImplicitDefinition(MoveConstructor);
9860  }
9861}
9862
9863bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9864  return FD->isDeleted() &&
9865         (FD->isDefaulted() || FD->isImplicit()) &&
9866         isa<CXXMethodDecl>(FD);
9867}
9868
9869/// \brief Mark the call operator of the given lambda closure type as "used".
9870static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9871  CXXMethodDecl *CallOperator
9872    = cast<CXXMethodDecl>(
9873        Lambda->lookup(
9874          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9875  CallOperator->setReferenced();
9876  CallOperator->setUsed();
9877}
9878
9879void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9880       SourceLocation CurrentLocation,
9881       CXXConversionDecl *Conv)
9882{
9883  CXXRecordDecl *Lambda = Conv->getParent();
9884
9885  // Make sure that the lambda call operator is marked used.
9886  markLambdaCallOperatorUsed(*this, Lambda);
9887
9888  Conv->setUsed();
9889
9890  SynthesizedFunctionScope Scope(*this, Conv);
9891  DiagnosticErrorTrap Trap(Diags);
9892
9893  // Return the address of the __invoke function.
9894  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9895  CXXMethodDecl *Invoke
9896    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9897  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9898                                       VK_LValue, Conv->getLocation()).take();
9899  assert(FunctionRef && "Can't refer to __invoke function?");
9900  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9901  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9902                                           Conv->getLocation(),
9903                                           Conv->getLocation()));
9904
9905  // Fill in the __invoke function with a dummy implementation. IR generation
9906  // will fill in the actual details.
9907  Invoke->setUsed();
9908  Invoke->setReferenced();
9909  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9910
9911  if (ASTMutationListener *L = getASTMutationListener()) {
9912    L->CompletedImplicitDefinition(Conv);
9913    L->CompletedImplicitDefinition(Invoke);
9914  }
9915}
9916
9917void Sema::DefineImplicitLambdaToBlockPointerConversion(
9918       SourceLocation CurrentLocation,
9919       CXXConversionDecl *Conv)
9920{
9921  Conv->setUsed();
9922
9923  SynthesizedFunctionScope Scope(*this, Conv);
9924  DiagnosticErrorTrap Trap(Diags);
9925
9926  // Copy-initialize the lambda object as needed to capture it.
9927  Expr *This = ActOnCXXThis(CurrentLocation).take();
9928  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9929
9930  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9931                                                        Conv->getLocation(),
9932                                                        Conv, DerefThis);
9933
9934  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9935  // behavior.  Note that only the general conversion function does this
9936  // (since it's unusable otherwise); in the case where we inline the
9937  // block literal, it has block literal lifetime semantics.
9938  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9939    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9940                                          CK_CopyAndAutoreleaseBlockObject,
9941                                          BuildBlock.get(), 0, VK_RValue);
9942
9943  if (BuildBlock.isInvalid()) {
9944    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9945    Conv->setInvalidDecl();
9946    return;
9947  }
9948
9949  // Create the return statement that returns the block from the conversion
9950  // function.
9951  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9952  if (Return.isInvalid()) {
9953    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9954    Conv->setInvalidDecl();
9955    return;
9956  }
9957
9958  // Set the body of the conversion function.
9959  Stmt *ReturnS = Return.take();
9960  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9961                                           Conv->getLocation(),
9962                                           Conv->getLocation()));
9963
9964  // We're done; notify the mutation listener, if any.
9965  if (ASTMutationListener *L = getASTMutationListener()) {
9966    L->CompletedImplicitDefinition(Conv);
9967  }
9968}
9969
9970/// \brief Determine whether the given list arguments contains exactly one
9971/// "real" (non-default) argument.
9972static bool hasOneRealArgument(MultiExprArg Args) {
9973  switch (Args.size()) {
9974  case 0:
9975    return false;
9976
9977  default:
9978    if (!Args[1]->isDefaultArgument())
9979      return false;
9980
9981    // fall through
9982  case 1:
9983    return !Args[0]->isDefaultArgument();
9984  }
9985
9986  return false;
9987}
9988
9989ExprResult
9990Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9991                            CXXConstructorDecl *Constructor,
9992                            MultiExprArg ExprArgs,
9993                            bool HadMultipleCandidates,
9994                            bool IsListInitialization,
9995                            bool RequiresZeroInit,
9996                            unsigned ConstructKind,
9997                            SourceRange ParenRange) {
9998  bool Elidable = false;
9999
10000  // C++0x [class.copy]p34:
10001  //   When certain criteria are met, an implementation is allowed to
10002  //   omit the copy/move construction of a class object, even if the
10003  //   copy/move constructor and/or destructor for the object have
10004  //   side effects. [...]
10005  //     - when a temporary class object that has not been bound to a
10006  //       reference (12.2) would be copied/moved to a class object
10007  //       with the same cv-unqualified type, the copy/move operation
10008  //       can be omitted by constructing the temporary object
10009  //       directly into the target of the omitted copy/move
10010  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10011      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10012    Expr *SubExpr = ExprArgs[0];
10013    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10014  }
10015
10016  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10017                               Elidable, ExprArgs, HadMultipleCandidates,
10018                               IsListInitialization, RequiresZeroInit,
10019                               ConstructKind, ParenRange);
10020}
10021
10022/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10023/// including handling of its default argument expressions.
10024ExprResult
10025Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10026                            CXXConstructorDecl *Constructor, bool Elidable,
10027                            MultiExprArg ExprArgs,
10028                            bool HadMultipleCandidates,
10029                            bool IsListInitialization,
10030                            bool RequiresZeroInit,
10031                            unsigned ConstructKind,
10032                            SourceRange ParenRange) {
10033  MarkFunctionReferenced(ConstructLoc, Constructor);
10034  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10035                                        Constructor, Elidable, ExprArgs,
10036                                        HadMultipleCandidates,
10037                                        IsListInitialization, RequiresZeroInit,
10038              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10039                                        ParenRange));
10040}
10041
10042void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10043  if (VD->isInvalidDecl()) return;
10044
10045  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10046  if (ClassDecl->isInvalidDecl()) return;
10047  if (ClassDecl->hasIrrelevantDestructor()) return;
10048  if (ClassDecl->isDependentContext()) return;
10049
10050  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10051  MarkFunctionReferenced(VD->getLocation(), Destructor);
10052  CheckDestructorAccess(VD->getLocation(), Destructor,
10053                        PDiag(diag::err_access_dtor_var)
10054                        << VD->getDeclName()
10055                        << VD->getType());
10056  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10057
10058  if (!VD->hasGlobalStorage()) return;
10059
10060  // Emit warning for non-trivial dtor in global scope (a real global,
10061  // class-static, function-static).
10062  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10063
10064  // TODO: this should be re-enabled for static locals by !CXAAtExit
10065  if (!VD->isStaticLocal())
10066    Diag(VD->getLocation(), diag::warn_global_destructor);
10067}
10068
10069/// \brief Given a constructor and the set of arguments provided for the
10070/// constructor, convert the arguments and add any required default arguments
10071/// to form a proper call to this constructor.
10072///
10073/// \returns true if an error occurred, false otherwise.
10074bool
10075Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10076                              MultiExprArg ArgsPtr,
10077                              SourceLocation Loc,
10078                              SmallVectorImpl<Expr*> &ConvertedArgs,
10079                              bool AllowExplicit,
10080                              bool IsListInitialization) {
10081  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10082  unsigned NumArgs = ArgsPtr.size();
10083  Expr **Args = ArgsPtr.data();
10084
10085  const FunctionProtoType *Proto
10086    = Constructor->getType()->getAs<FunctionProtoType>();
10087  assert(Proto && "Constructor without a prototype?");
10088  unsigned NumArgsInProto = Proto->getNumArgs();
10089
10090  // If too few arguments are available, we'll fill in the rest with defaults.
10091  if (NumArgs < NumArgsInProto)
10092    ConvertedArgs.reserve(NumArgsInProto);
10093  else
10094    ConvertedArgs.reserve(NumArgs);
10095
10096  VariadicCallType CallType =
10097    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10098  SmallVector<Expr *, 8> AllArgs;
10099  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10100                                        Proto, 0,
10101                                        llvm::makeArrayRef(Args, NumArgs),
10102                                        AllArgs,
10103                                        CallType, AllowExplicit,
10104                                        IsListInitialization);
10105  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10106
10107  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10108
10109  CheckConstructorCall(Constructor,
10110                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10111                                                        AllArgs.size()),
10112                       Proto, Loc);
10113
10114  return Invalid;
10115}
10116
10117static inline bool
10118CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10119                                       const FunctionDecl *FnDecl) {
10120  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10121  if (isa<NamespaceDecl>(DC)) {
10122    return SemaRef.Diag(FnDecl->getLocation(),
10123                        diag::err_operator_new_delete_declared_in_namespace)
10124      << FnDecl->getDeclName();
10125  }
10126
10127  if (isa<TranslationUnitDecl>(DC) &&
10128      FnDecl->getStorageClass() == SC_Static) {
10129    return SemaRef.Diag(FnDecl->getLocation(),
10130                        diag::err_operator_new_delete_declared_static)
10131      << FnDecl->getDeclName();
10132  }
10133
10134  return false;
10135}
10136
10137static inline bool
10138CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10139                            CanQualType ExpectedResultType,
10140                            CanQualType ExpectedFirstParamType,
10141                            unsigned DependentParamTypeDiag,
10142                            unsigned InvalidParamTypeDiag) {
10143  QualType ResultType =
10144    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10145
10146  // Check that the result type is not dependent.
10147  if (ResultType->isDependentType())
10148    return SemaRef.Diag(FnDecl->getLocation(),
10149                        diag::err_operator_new_delete_dependent_result_type)
10150    << FnDecl->getDeclName() << ExpectedResultType;
10151
10152  // Check that the result type is what we expect.
10153  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10154    return SemaRef.Diag(FnDecl->getLocation(),
10155                        diag::err_operator_new_delete_invalid_result_type)
10156    << FnDecl->getDeclName() << ExpectedResultType;
10157
10158  // A function template must have at least 2 parameters.
10159  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10160    return SemaRef.Diag(FnDecl->getLocation(),
10161                      diag::err_operator_new_delete_template_too_few_parameters)
10162        << FnDecl->getDeclName();
10163
10164  // The function decl must have at least 1 parameter.
10165  if (FnDecl->getNumParams() == 0)
10166    return SemaRef.Diag(FnDecl->getLocation(),
10167                        diag::err_operator_new_delete_too_few_parameters)
10168      << FnDecl->getDeclName();
10169
10170  // Check the first parameter type is not dependent.
10171  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10172  if (FirstParamType->isDependentType())
10173    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10174      << FnDecl->getDeclName() << ExpectedFirstParamType;
10175
10176  // Check that the first parameter type is what we expect.
10177  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10178      ExpectedFirstParamType)
10179    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10180    << FnDecl->getDeclName() << ExpectedFirstParamType;
10181
10182  return false;
10183}
10184
10185static bool
10186CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10187  // C++ [basic.stc.dynamic.allocation]p1:
10188  //   A program is ill-formed if an allocation function is declared in a
10189  //   namespace scope other than global scope or declared static in global
10190  //   scope.
10191  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10192    return true;
10193
10194  CanQualType SizeTy =
10195    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10196
10197  // C++ [basic.stc.dynamic.allocation]p1:
10198  //  The return type shall be void*. The first parameter shall have type
10199  //  std::size_t.
10200  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10201                                  SizeTy,
10202                                  diag::err_operator_new_dependent_param_type,
10203                                  diag::err_operator_new_param_type))
10204    return true;
10205
10206  // C++ [basic.stc.dynamic.allocation]p1:
10207  //  The first parameter shall not have an associated default argument.
10208  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10209    return SemaRef.Diag(FnDecl->getLocation(),
10210                        diag::err_operator_new_default_arg)
10211      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10212
10213  return false;
10214}
10215
10216static bool
10217CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10218  // C++ [basic.stc.dynamic.deallocation]p1:
10219  //   A program is ill-formed if deallocation functions are declared in a
10220  //   namespace scope other than global scope or declared static in global
10221  //   scope.
10222  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10223    return true;
10224
10225  // C++ [basic.stc.dynamic.deallocation]p2:
10226  //   Each deallocation function shall return void and its first parameter
10227  //   shall be void*.
10228  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10229                                  SemaRef.Context.VoidPtrTy,
10230                                 diag::err_operator_delete_dependent_param_type,
10231                                 diag::err_operator_delete_param_type))
10232    return true;
10233
10234  return false;
10235}
10236
10237/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10238/// of this overloaded operator is well-formed. If so, returns false;
10239/// otherwise, emits appropriate diagnostics and returns true.
10240bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10241  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10242         "Expected an overloaded operator declaration");
10243
10244  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10245
10246  // C++ [over.oper]p5:
10247  //   The allocation and deallocation functions, operator new,
10248  //   operator new[], operator delete and operator delete[], are
10249  //   described completely in 3.7.3. The attributes and restrictions
10250  //   found in the rest of this subclause do not apply to them unless
10251  //   explicitly stated in 3.7.3.
10252  if (Op == OO_Delete || Op == OO_Array_Delete)
10253    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10254
10255  if (Op == OO_New || Op == OO_Array_New)
10256    return CheckOperatorNewDeclaration(*this, FnDecl);
10257
10258  // C++ [over.oper]p6:
10259  //   An operator function shall either be a non-static member
10260  //   function or be a non-member function and have at least one
10261  //   parameter whose type is a class, a reference to a class, an
10262  //   enumeration, or a reference to an enumeration.
10263  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10264    if (MethodDecl->isStatic())
10265      return Diag(FnDecl->getLocation(),
10266                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10267  } else {
10268    bool ClassOrEnumParam = false;
10269    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10270                                   ParamEnd = FnDecl->param_end();
10271         Param != ParamEnd; ++Param) {
10272      QualType ParamType = (*Param)->getType().getNonReferenceType();
10273      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10274          ParamType->isEnumeralType()) {
10275        ClassOrEnumParam = true;
10276        break;
10277      }
10278    }
10279
10280    if (!ClassOrEnumParam)
10281      return Diag(FnDecl->getLocation(),
10282                  diag::err_operator_overload_needs_class_or_enum)
10283        << FnDecl->getDeclName();
10284  }
10285
10286  // C++ [over.oper]p8:
10287  //   An operator function cannot have default arguments (8.3.6),
10288  //   except where explicitly stated below.
10289  //
10290  // Only the function-call operator allows default arguments
10291  // (C++ [over.call]p1).
10292  if (Op != OO_Call) {
10293    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10294         Param != FnDecl->param_end(); ++Param) {
10295      if ((*Param)->hasDefaultArg())
10296        return Diag((*Param)->getLocation(),
10297                    diag::err_operator_overload_default_arg)
10298          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10299    }
10300  }
10301
10302  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10303    { false, false, false }
10304#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10305    , { Unary, Binary, MemberOnly }
10306#include "clang/Basic/OperatorKinds.def"
10307  };
10308
10309  bool CanBeUnaryOperator = OperatorUses[Op][0];
10310  bool CanBeBinaryOperator = OperatorUses[Op][1];
10311  bool MustBeMemberOperator = OperatorUses[Op][2];
10312
10313  // C++ [over.oper]p8:
10314  //   [...] Operator functions cannot have more or fewer parameters
10315  //   than the number required for the corresponding operator, as
10316  //   described in the rest of this subclause.
10317  unsigned NumParams = FnDecl->getNumParams()
10318                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10319  if (Op != OO_Call &&
10320      ((NumParams == 1 && !CanBeUnaryOperator) ||
10321       (NumParams == 2 && !CanBeBinaryOperator) ||
10322       (NumParams < 1) || (NumParams > 2))) {
10323    // We have the wrong number of parameters.
10324    unsigned ErrorKind;
10325    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10326      ErrorKind = 2;  // 2 -> unary or binary.
10327    } else if (CanBeUnaryOperator) {
10328      ErrorKind = 0;  // 0 -> unary
10329    } else {
10330      assert(CanBeBinaryOperator &&
10331             "All non-call overloaded operators are unary or binary!");
10332      ErrorKind = 1;  // 1 -> binary
10333    }
10334
10335    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10336      << FnDecl->getDeclName() << NumParams << ErrorKind;
10337  }
10338
10339  // Overloaded operators other than operator() cannot be variadic.
10340  if (Op != OO_Call &&
10341      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10342    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10343      << FnDecl->getDeclName();
10344  }
10345
10346  // Some operators must be non-static member functions.
10347  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10348    return Diag(FnDecl->getLocation(),
10349                diag::err_operator_overload_must_be_member)
10350      << FnDecl->getDeclName();
10351  }
10352
10353  // C++ [over.inc]p1:
10354  //   The user-defined function called operator++ implements the
10355  //   prefix and postfix ++ operator. If this function is a member
10356  //   function with no parameters, or a non-member function with one
10357  //   parameter of class or enumeration type, it defines the prefix
10358  //   increment operator ++ for objects of that type. If the function
10359  //   is a member function with one parameter (which shall be of type
10360  //   int) or a non-member function with two parameters (the second
10361  //   of which shall be of type int), it defines the postfix
10362  //   increment operator ++ for objects of that type.
10363  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10364    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10365    bool ParamIsInt = false;
10366    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10367      ParamIsInt = BT->getKind() == BuiltinType::Int;
10368
10369    if (!ParamIsInt)
10370      return Diag(LastParam->getLocation(),
10371                  diag::err_operator_overload_post_incdec_must_be_int)
10372        << LastParam->getType() << (Op == OO_MinusMinus);
10373  }
10374
10375  return false;
10376}
10377
10378/// CheckLiteralOperatorDeclaration - Check whether the declaration
10379/// of this literal operator function is well-formed. If so, returns
10380/// false; otherwise, emits appropriate diagnostics and returns true.
10381bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10382  if (isa<CXXMethodDecl>(FnDecl)) {
10383    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10384      << FnDecl->getDeclName();
10385    return true;
10386  }
10387
10388  if (FnDecl->isExternC()) {
10389    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10390    return true;
10391  }
10392
10393  bool Valid = false;
10394
10395  // This might be the definition of a literal operator template.
10396  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10397  // This might be a specialization of a literal operator template.
10398  if (!TpDecl)
10399    TpDecl = FnDecl->getPrimaryTemplate();
10400
10401  // template <char...> type operator "" name() is the only valid template
10402  // signature, and the only valid signature with no parameters.
10403  if (TpDecl) {
10404    if (FnDecl->param_size() == 0) {
10405      // Must have only one template parameter
10406      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10407      if (Params->size() == 1) {
10408        NonTypeTemplateParmDecl *PmDecl =
10409          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10410
10411        // The template parameter must be a char parameter pack.
10412        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10413            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10414          Valid = true;
10415      }
10416    }
10417  } else if (FnDecl->param_size()) {
10418    // Check the first parameter
10419    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10420
10421    QualType T = (*Param)->getType().getUnqualifiedType();
10422
10423    // unsigned long long int, long double, and any character type are allowed
10424    // as the only parameters.
10425    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10426        Context.hasSameType(T, Context.LongDoubleTy) ||
10427        Context.hasSameType(T, Context.CharTy) ||
10428        Context.hasSameType(T, Context.WideCharTy) ||
10429        Context.hasSameType(T, Context.Char16Ty) ||
10430        Context.hasSameType(T, Context.Char32Ty)) {
10431      if (++Param == FnDecl->param_end())
10432        Valid = true;
10433      goto FinishedParams;
10434    }
10435
10436    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10437    const PointerType *PT = T->getAs<PointerType>();
10438    if (!PT)
10439      goto FinishedParams;
10440    T = PT->getPointeeType();
10441    if (!T.isConstQualified() || T.isVolatileQualified())
10442      goto FinishedParams;
10443    T = T.getUnqualifiedType();
10444
10445    // Move on to the second parameter;
10446    ++Param;
10447
10448    // If there is no second parameter, the first must be a const char *
10449    if (Param == FnDecl->param_end()) {
10450      if (Context.hasSameType(T, Context.CharTy))
10451        Valid = true;
10452      goto FinishedParams;
10453    }
10454
10455    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10456    // are allowed as the first parameter to a two-parameter function
10457    if (!(Context.hasSameType(T, Context.CharTy) ||
10458          Context.hasSameType(T, Context.WideCharTy) ||
10459          Context.hasSameType(T, Context.Char16Ty) ||
10460          Context.hasSameType(T, Context.Char32Ty)))
10461      goto FinishedParams;
10462
10463    // The second and final parameter must be an std::size_t
10464    T = (*Param)->getType().getUnqualifiedType();
10465    if (Context.hasSameType(T, Context.getSizeType()) &&
10466        ++Param == FnDecl->param_end())
10467      Valid = true;
10468  }
10469
10470  // FIXME: This diagnostic is absolutely terrible.
10471FinishedParams:
10472  if (!Valid) {
10473    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10474      << FnDecl->getDeclName();
10475    return true;
10476  }
10477
10478  // A parameter-declaration-clause containing a default argument is not
10479  // equivalent to any of the permitted forms.
10480  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10481                                    ParamEnd = FnDecl->param_end();
10482       Param != ParamEnd; ++Param) {
10483    if ((*Param)->hasDefaultArg()) {
10484      Diag((*Param)->getDefaultArgRange().getBegin(),
10485           diag::err_literal_operator_default_argument)
10486        << (*Param)->getDefaultArgRange();
10487      break;
10488    }
10489  }
10490
10491  StringRef LiteralName
10492    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10493  if (LiteralName[0] != '_') {
10494    // C++11 [usrlit.suffix]p1:
10495    //   Literal suffix identifiers that do not start with an underscore
10496    //   are reserved for future standardization.
10497    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10498  }
10499
10500  return false;
10501}
10502
10503/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10504/// linkage specification, including the language and (if present)
10505/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10506/// the location of the language string literal, which is provided
10507/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10508/// the '{' brace. Otherwise, this linkage specification does not
10509/// have any braces.
10510Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10511                                           SourceLocation LangLoc,
10512                                           StringRef Lang,
10513                                           SourceLocation LBraceLoc) {
10514  LinkageSpecDecl::LanguageIDs Language;
10515  if (Lang == "\"C\"")
10516    Language = LinkageSpecDecl::lang_c;
10517  else if (Lang == "\"C++\"")
10518    Language = LinkageSpecDecl::lang_cxx;
10519  else {
10520    Diag(LangLoc, diag::err_bad_language);
10521    return 0;
10522  }
10523
10524  // FIXME: Add all the various semantics of linkage specifications
10525
10526  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10527                                               ExternLoc, LangLoc, Language,
10528                                               LBraceLoc.isValid());
10529  CurContext->addDecl(D);
10530  PushDeclContext(S, D);
10531  return D;
10532}
10533
10534/// ActOnFinishLinkageSpecification - Complete the definition of
10535/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10536/// valid, it's the position of the closing '}' brace in a linkage
10537/// specification that uses braces.
10538Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10539                                            Decl *LinkageSpec,
10540                                            SourceLocation RBraceLoc) {
10541  if (LinkageSpec) {
10542    if (RBraceLoc.isValid()) {
10543      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10544      LSDecl->setRBraceLoc(RBraceLoc);
10545    }
10546    PopDeclContext();
10547  }
10548  return LinkageSpec;
10549}
10550
10551Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10552                                  AttributeList *AttrList,
10553                                  SourceLocation SemiLoc) {
10554  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10555  // Attribute declarations appertain to empty declaration so we handle
10556  // them here.
10557  if (AttrList)
10558    ProcessDeclAttributeList(S, ED, AttrList);
10559
10560  CurContext->addDecl(ED);
10561  return ED;
10562}
10563
10564/// \brief Perform semantic analysis for the variable declaration that
10565/// occurs within a C++ catch clause, returning the newly-created
10566/// variable.
10567VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10568                                         TypeSourceInfo *TInfo,
10569                                         SourceLocation StartLoc,
10570                                         SourceLocation Loc,
10571                                         IdentifierInfo *Name) {
10572  bool Invalid = false;
10573  QualType ExDeclType = TInfo->getType();
10574
10575  // Arrays and functions decay.
10576  if (ExDeclType->isArrayType())
10577    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10578  else if (ExDeclType->isFunctionType())
10579    ExDeclType = Context.getPointerType(ExDeclType);
10580
10581  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10582  // The exception-declaration shall not denote a pointer or reference to an
10583  // incomplete type, other than [cv] void*.
10584  // N2844 forbids rvalue references.
10585  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10586    Diag(Loc, diag::err_catch_rvalue_ref);
10587    Invalid = true;
10588  }
10589
10590  QualType BaseType = ExDeclType;
10591  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10592  unsigned DK = diag::err_catch_incomplete;
10593  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10594    BaseType = Ptr->getPointeeType();
10595    Mode = 1;
10596    DK = diag::err_catch_incomplete_ptr;
10597  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10598    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10599    BaseType = Ref->getPointeeType();
10600    Mode = 2;
10601    DK = diag::err_catch_incomplete_ref;
10602  }
10603  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10604      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10605    Invalid = true;
10606
10607  if (!Invalid && !ExDeclType->isDependentType() &&
10608      RequireNonAbstractType(Loc, ExDeclType,
10609                             diag::err_abstract_type_in_decl,
10610                             AbstractVariableType))
10611    Invalid = true;
10612
10613  // Only the non-fragile NeXT runtime currently supports C++ catches
10614  // of ObjC types, and no runtime supports catching ObjC types by value.
10615  if (!Invalid && getLangOpts().ObjC1) {
10616    QualType T = ExDeclType;
10617    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10618      T = RT->getPointeeType();
10619
10620    if (T->isObjCObjectType()) {
10621      Diag(Loc, diag::err_objc_object_catch);
10622      Invalid = true;
10623    } else if (T->isObjCObjectPointerType()) {
10624      // FIXME: should this be a test for macosx-fragile specifically?
10625      if (getLangOpts().ObjCRuntime.isFragile())
10626        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10627    }
10628  }
10629
10630  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10631                                    ExDeclType, TInfo, SC_None);
10632  ExDecl->setExceptionVariable(true);
10633
10634  // In ARC, infer 'retaining' for variables of retainable type.
10635  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10636    Invalid = true;
10637
10638  if (!Invalid && !ExDeclType->isDependentType()) {
10639    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10640      // Insulate this from anything else we might currently be parsing.
10641      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10642
10643      // C++ [except.handle]p16:
10644      //   The object declared in an exception-declaration or, if the
10645      //   exception-declaration does not specify a name, a temporary (12.2) is
10646      //   copy-initialized (8.5) from the exception object. [...]
10647      //   The object is destroyed when the handler exits, after the destruction
10648      //   of any automatic objects initialized within the handler.
10649      //
10650      // We just pretend to initialize the object with itself, then make sure
10651      // it can be destroyed later.
10652      QualType initType = ExDeclType;
10653
10654      InitializedEntity entity =
10655        InitializedEntity::InitializeVariable(ExDecl);
10656      InitializationKind initKind =
10657        InitializationKind::CreateCopy(Loc, SourceLocation());
10658
10659      Expr *opaqueValue =
10660        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10661      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10662      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10663      if (result.isInvalid())
10664        Invalid = true;
10665      else {
10666        // If the constructor used was non-trivial, set this as the
10667        // "initializer".
10668        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10669        if (!construct->getConstructor()->isTrivial()) {
10670          Expr *init = MaybeCreateExprWithCleanups(construct);
10671          ExDecl->setInit(init);
10672        }
10673
10674        // And make sure it's destructable.
10675        FinalizeVarWithDestructor(ExDecl, recordType);
10676      }
10677    }
10678  }
10679
10680  if (Invalid)
10681    ExDecl->setInvalidDecl();
10682
10683  return ExDecl;
10684}
10685
10686/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10687/// handler.
10688Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10689  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10690  bool Invalid = D.isInvalidType();
10691
10692  // Check for unexpanded parameter packs.
10693  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10694                                      UPPC_ExceptionType)) {
10695    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10696                                             D.getIdentifierLoc());
10697    Invalid = true;
10698  }
10699
10700  IdentifierInfo *II = D.getIdentifier();
10701  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10702                                             LookupOrdinaryName,
10703                                             ForRedeclaration)) {
10704    // The scope should be freshly made just for us. There is just no way
10705    // it contains any previous declaration.
10706    assert(!S->isDeclScope(PrevDecl));
10707    if (PrevDecl->isTemplateParameter()) {
10708      // Maybe we will complain about the shadowed template parameter.
10709      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10710      PrevDecl = 0;
10711    }
10712  }
10713
10714  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10715    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10716      << D.getCXXScopeSpec().getRange();
10717    Invalid = true;
10718  }
10719
10720  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10721                                              D.getLocStart(),
10722                                              D.getIdentifierLoc(),
10723                                              D.getIdentifier());
10724  if (Invalid)
10725    ExDecl->setInvalidDecl();
10726
10727  // Add the exception declaration into this scope.
10728  if (II)
10729    PushOnScopeChains(ExDecl, S);
10730  else
10731    CurContext->addDecl(ExDecl);
10732
10733  ProcessDeclAttributes(S, ExDecl, D);
10734  return ExDecl;
10735}
10736
10737Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10738                                         Expr *AssertExpr,
10739                                         Expr *AssertMessageExpr,
10740                                         SourceLocation RParenLoc) {
10741  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10742
10743  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10744    return 0;
10745
10746  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10747                                      AssertMessage, RParenLoc, false);
10748}
10749
10750Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10751                                         Expr *AssertExpr,
10752                                         StringLiteral *AssertMessage,
10753                                         SourceLocation RParenLoc,
10754                                         bool Failed) {
10755  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10756      !Failed) {
10757    // In a static_assert-declaration, the constant-expression shall be a
10758    // constant expression that can be contextually converted to bool.
10759    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10760    if (Converted.isInvalid())
10761      Failed = true;
10762
10763    llvm::APSInt Cond;
10764    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10765          diag::err_static_assert_expression_is_not_constant,
10766          /*AllowFold=*/false).isInvalid())
10767      Failed = true;
10768
10769    if (!Failed && !Cond) {
10770      SmallString<256> MsgBuffer;
10771      llvm::raw_svector_ostream Msg(MsgBuffer);
10772      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10773      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10774        << Msg.str() << AssertExpr->getSourceRange();
10775      Failed = true;
10776    }
10777  }
10778
10779  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10780                                        AssertExpr, AssertMessage, RParenLoc,
10781                                        Failed);
10782
10783  CurContext->addDecl(Decl);
10784  return Decl;
10785}
10786
10787/// \brief Perform semantic analysis of the given friend type declaration.
10788///
10789/// \returns A friend declaration that.
10790FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10791                                      SourceLocation FriendLoc,
10792                                      TypeSourceInfo *TSInfo) {
10793  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10794
10795  QualType T = TSInfo->getType();
10796  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10797
10798  // C++03 [class.friend]p2:
10799  //   An elaborated-type-specifier shall be used in a friend declaration
10800  //   for a class.*
10801  //
10802  //   * The class-key of the elaborated-type-specifier is required.
10803  if (!ActiveTemplateInstantiations.empty()) {
10804    // Do not complain about the form of friend template types during
10805    // template instantiation; we will already have complained when the
10806    // template was declared.
10807  } else {
10808    if (!T->isElaboratedTypeSpecifier()) {
10809      // If we evaluated the type to a record type, suggest putting
10810      // a tag in front.
10811      if (const RecordType *RT = T->getAs<RecordType>()) {
10812        RecordDecl *RD = RT->getDecl();
10813
10814        std::string InsertionText = std::string(" ") + RD->getKindName();
10815
10816        Diag(TypeRange.getBegin(),
10817             getLangOpts().CPlusPlus11 ?
10818               diag::warn_cxx98_compat_unelaborated_friend_type :
10819               diag::ext_unelaborated_friend_type)
10820          << (unsigned) RD->getTagKind()
10821          << T
10822          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10823                                        InsertionText);
10824      } else {
10825        Diag(FriendLoc,
10826             getLangOpts().CPlusPlus11 ?
10827               diag::warn_cxx98_compat_nonclass_type_friend :
10828               diag::ext_nonclass_type_friend)
10829          << T
10830          << TypeRange;
10831      }
10832    } else if (T->getAs<EnumType>()) {
10833      Diag(FriendLoc,
10834           getLangOpts().CPlusPlus11 ?
10835             diag::warn_cxx98_compat_enum_friend :
10836             diag::ext_enum_friend)
10837        << T
10838        << TypeRange;
10839    }
10840
10841    // C++11 [class.friend]p3:
10842    //   A friend declaration that does not declare a function shall have one
10843    //   of the following forms:
10844    //     friend elaborated-type-specifier ;
10845    //     friend simple-type-specifier ;
10846    //     friend typename-specifier ;
10847    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10848      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10849  }
10850
10851  //   If the type specifier in a friend declaration designates a (possibly
10852  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10853  //   the friend declaration is ignored.
10854  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10855}
10856
10857/// Handle a friend tag declaration where the scope specifier was
10858/// templated.
10859Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10860                                    unsigned TagSpec, SourceLocation TagLoc,
10861                                    CXXScopeSpec &SS,
10862                                    IdentifierInfo *Name,
10863                                    SourceLocation NameLoc,
10864                                    AttributeList *Attr,
10865                                    MultiTemplateParamsArg TempParamLists) {
10866  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10867
10868  bool isExplicitSpecialization = false;
10869  bool Invalid = false;
10870
10871  if (TemplateParameterList *TemplateParams
10872        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10873                                                  TempParamLists.data(),
10874                                                  TempParamLists.size(),
10875                                                  /*friend*/ true,
10876                                                  isExplicitSpecialization,
10877                                                  Invalid)) {
10878    if (TemplateParams->size() > 0) {
10879      // This is a declaration of a class template.
10880      if (Invalid)
10881        return 0;
10882
10883      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10884                                SS, Name, NameLoc, Attr,
10885                                TemplateParams, AS_public,
10886                                /*ModulePrivateLoc=*/SourceLocation(),
10887                                TempParamLists.size() - 1,
10888                                TempParamLists.data()).take();
10889    } else {
10890      // The "template<>" header is extraneous.
10891      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10892        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10893      isExplicitSpecialization = true;
10894    }
10895  }
10896
10897  if (Invalid) return 0;
10898
10899  bool isAllExplicitSpecializations = true;
10900  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10901    if (TempParamLists[I]->size()) {
10902      isAllExplicitSpecializations = false;
10903      break;
10904    }
10905  }
10906
10907  // FIXME: don't ignore attributes.
10908
10909  // If it's explicit specializations all the way down, just forget
10910  // about the template header and build an appropriate non-templated
10911  // friend.  TODO: for source fidelity, remember the headers.
10912  if (isAllExplicitSpecializations) {
10913    if (SS.isEmpty()) {
10914      bool Owned = false;
10915      bool IsDependent = false;
10916      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10917                      Attr, AS_public,
10918                      /*ModulePrivateLoc=*/SourceLocation(),
10919                      MultiTemplateParamsArg(), Owned, IsDependent,
10920                      /*ScopedEnumKWLoc=*/SourceLocation(),
10921                      /*ScopedEnumUsesClassTag=*/false,
10922                      /*UnderlyingType=*/TypeResult());
10923    }
10924
10925    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10926    ElaboratedTypeKeyword Keyword
10927      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10928    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10929                                   *Name, NameLoc);
10930    if (T.isNull())
10931      return 0;
10932
10933    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10934    if (isa<DependentNameType>(T)) {
10935      DependentNameTypeLoc TL =
10936          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10937      TL.setElaboratedKeywordLoc(TagLoc);
10938      TL.setQualifierLoc(QualifierLoc);
10939      TL.setNameLoc(NameLoc);
10940    } else {
10941      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10942      TL.setElaboratedKeywordLoc(TagLoc);
10943      TL.setQualifierLoc(QualifierLoc);
10944      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10945    }
10946
10947    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10948                                            TSI, FriendLoc, TempParamLists);
10949    Friend->setAccess(AS_public);
10950    CurContext->addDecl(Friend);
10951    return Friend;
10952  }
10953
10954  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10955
10956
10957
10958  // Handle the case of a templated-scope friend class.  e.g.
10959  //   template <class T> class A<T>::B;
10960  // FIXME: we don't support these right now.
10961  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10962  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10963  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10964  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10965  TL.setElaboratedKeywordLoc(TagLoc);
10966  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10967  TL.setNameLoc(NameLoc);
10968
10969  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10970                                          TSI, FriendLoc, TempParamLists);
10971  Friend->setAccess(AS_public);
10972  Friend->setUnsupportedFriend(true);
10973  CurContext->addDecl(Friend);
10974  return Friend;
10975}
10976
10977
10978/// Handle a friend type declaration.  This works in tandem with
10979/// ActOnTag.
10980///
10981/// Notes on friend class templates:
10982///
10983/// We generally treat friend class declarations as if they were
10984/// declaring a class.  So, for example, the elaborated type specifier
10985/// in a friend declaration is required to obey the restrictions of a
10986/// class-head (i.e. no typedefs in the scope chain), template
10987/// parameters are required to match up with simple template-ids, &c.
10988/// However, unlike when declaring a template specialization, it's
10989/// okay to refer to a template specialization without an empty
10990/// template parameter declaration, e.g.
10991///   friend class A<T>::B<unsigned>;
10992/// We permit this as a special case; if there are any template
10993/// parameters present at all, require proper matching, i.e.
10994///   template <> template \<class T> friend class A<int>::B;
10995Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10996                                MultiTemplateParamsArg TempParams) {
10997  SourceLocation Loc = DS.getLocStart();
10998
10999  assert(DS.isFriendSpecified());
11000  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11001
11002  // Try to convert the decl specifier to a type.  This works for
11003  // friend templates because ActOnTag never produces a ClassTemplateDecl
11004  // for a TUK_Friend.
11005  Declarator TheDeclarator(DS, Declarator::MemberContext);
11006  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11007  QualType T = TSI->getType();
11008  if (TheDeclarator.isInvalidType())
11009    return 0;
11010
11011  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11012    return 0;
11013
11014  // This is definitely an error in C++98.  It's probably meant to
11015  // be forbidden in C++0x, too, but the specification is just
11016  // poorly written.
11017  //
11018  // The problem is with declarations like the following:
11019  //   template <T> friend A<T>::foo;
11020  // where deciding whether a class C is a friend or not now hinges
11021  // on whether there exists an instantiation of A that causes
11022  // 'foo' to equal C.  There are restrictions on class-heads
11023  // (which we declare (by fiat) elaborated friend declarations to
11024  // be) that makes this tractable.
11025  //
11026  // FIXME: handle "template <> friend class A<T>;", which
11027  // is possibly well-formed?  Who even knows?
11028  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11029    Diag(Loc, diag::err_tagless_friend_type_template)
11030      << DS.getSourceRange();
11031    return 0;
11032  }
11033
11034  // C++98 [class.friend]p1: A friend of a class is a function
11035  //   or class that is not a member of the class . . .
11036  // This is fixed in DR77, which just barely didn't make the C++03
11037  // deadline.  It's also a very silly restriction that seriously
11038  // affects inner classes and which nobody else seems to implement;
11039  // thus we never diagnose it, not even in -pedantic.
11040  //
11041  // But note that we could warn about it: it's always useless to
11042  // friend one of your own members (it's not, however, worthless to
11043  // friend a member of an arbitrary specialization of your template).
11044
11045  Decl *D;
11046  if (unsigned NumTempParamLists = TempParams.size())
11047    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11048                                   NumTempParamLists,
11049                                   TempParams.data(),
11050                                   TSI,
11051                                   DS.getFriendSpecLoc());
11052  else
11053    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11054
11055  if (!D)
11056    return 0;
11057
11058  D->setAccess(AS_public);
11059  CurContext->addDecl(D);
11060
11061  return D;
11062}
11063
11064NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11065                                        MultiTemplateParamsArg TemplateParams) {
11066  const DeclSpec &DS = D.getDeclSpec();
11067
11068  assert(DS.isFriendSpecified());
11069  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11070
11071  SourceLocation Loc = D.getIdentifierLoc();
11072  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11073
11074  // C++ [class.friend]p1
11075  //   A friend of a class is a function or class....
11076  // Note that this sees through typedefs, which is intended.
11077  // It *doesn't* see through dependent types, which is correct
11078  // according to [temp.arg.type]p3:
11079  //   If a declaration acquires a function type through a
11080  //   type dependent on a template-parameter and this causes
11081  //   a declaration that does not use the syntactic form of a
11082  //   function declarator to have a function type, the program
11083  //   is ill-formed.
11084  if (!TInfo->getType()->isFunctionType()) {
11085    Diag(Loc, diag::err_unexpected_friend);
11086
11087    // It might be worthwhile to try to recover by creating an
11088    // appropriate declaration.
11089    return 0;
11090  }
11091
11092  // C++ [namespace.memdef]p3
11093  //  - If a friend declaration in a non-local class first declares a
11094  //    class or function, the friend class or function is a member
11095  //    of the innermost enclosing namespace.
11096  //  - The name of the friend is not found by simple name lookup
11097  //    until a matching declaration is provided in that namespace
11098  //    scope (either before or after the class declaration granting
11099  //    friendship).
11100  //  - If a friend function is called, its name may be found by the
11101  //    name lookup that considers functions from namespaces and
11102  //    classes associated with the types of the function arguments.
11103  //  - When looking for a prior declaration of a class or a function
11104  //    declared as a friend, scopes outside the innermost enclosing
11105  //    namespace scope are not considered.
11106
11107  CXXScopeSpec &SS = D.getCXXScopeSpec();
11108  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11109  DeclarationName Name = NameInfo.getName();
11110  assert(Name);
11111
11112  // Check for unexpanded parameter packs.
11113  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11114      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11115      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11116    return 0;
11117
11118  // The context we found the declaration in, or in which we should
11119  // create the declaration.
11120  DeclContext *DC;
11121  Scope *DCScope = S;
11122  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11123                        ForRedeclaration);
11124
11125  // FIXME: there are different rules in local classes
11126
11127  // There are four cases here.
11128  //   - There's no scope specifier, in which case we just go to the
11129  //     appropriate scope and look for a function or function template
11130  //     there as appropriate.
11131  // Recover from invalid scope qualifiers as if they just weren't there.
11132  if (SS.isInvalid() || !SS.isSet()) {
11133    // C++0x [namespace.memdef]p3:
11134    //   If the name in a friend declaration is neither qualified nor
11135    //   a template-id and the declaration is a function or an
11136    //   elaborated-type-specifier, the lookup to determine whether
11137    //   the entity has been previously declared shall not consider
11138    //   any scopes outside the innermost enclosing namespace.
11139    // C++0x [class.friend]p11:
11140    //   If a friend declaration appears in a local class and the name
11141    //   specified is an unqualified name, a prior declaration is
11142    //   looked up without considering scopes that are outside the
11143    //   innermost enclosing non-class scope. For a friend function
11144    //   declaration, if there is no prior declaration, the program is
11145    //   ill-formed.
11146    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11147    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11148
11149    // Find the appropriate context according to the above.
11150    DC = CurContext;
11151
11152    // Skip class contexts.  If someone can cite chapter and verse
11153    // for this behavior, that would be nice --- it's what GCC and
11154    // EDG do, and it seems like a reasonable intent, but the spec
11155    // really only says that checks for unqualified existing
11156    // declarations should stop at the nearest enclosing namespace,
11157    // not that they should only consider the nearest enclosing
11158    // namespace.
11159    while (DC->isRecord())
11160      DC = DC->getParent();
11161
11162    DeclContext *LookupDC = DC;
11163    while (LookupDC->isTransparentContext())
11164      LookupDC = LookupDC->getParent();
11165
11166    while (true) {
11167      LookupQualifiedName(Previous, LookupDC);
11168
11169      // TODO: decide what we think about using declarations.
11170      if (isLocal)
11171        break;
11172
11173      if (!Previous.empty()) {
11174        DC = LookupDC;
11175        break;
11176      }
11177
11178      if (isTemplateId) {
11179        if (isa<TranslationUnitDecl>(LookupDC)) break;
11180      } else {
11181        if (LookupDC->isFileContext()) break;
11182      }
11183      LookupDC = LookupDC->getParent();
11184    }
11185
11186    DCScope = getScopeForDeclContext(S, DC);
11187
11188    // C++ [class.friend]p6:
11189    //   A function can be defined in a friend declaration of a class if and
11190    //   only if the class is a non-local class (9.8), the function name is
11191    //   unqualified, and the function has namespace scope.
11192    if (isLocal && D.isFunctionDefinition()) {
11193      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11194    }
11195
11196  //   - There's a non-dependent scope specifier, in which case we
11197  //     compute it and do a previous lookup there for a function
11198  //     or function template.
11199  } else if (!SS.getScopeRep()->isDependent()) {
11200    DC = computeDeclContext(SS);
11201    if (!DC) return 0;
11202
11203    if (RequireCompleteDeclContext(SS, DC)) return 0;
11204
11205    LookupQualifiedName(Previous, DC);
11206
11207    // Ignore things found implicitly in the wrong scope.
11208    // TODO: better diagnostics for this case.  Suggesting the right
11209    // qualified scope would be nice...
11210    LookupResult::Filter F = Previous.makeFilter();
11211    while (F.hasNext()) {
11212      NamedDecl *D = F.next();
11213      if (!DC->InEnclosingNamespaceSetOf(
11214              D->getDeclContext()->getRedeclContext()))
11215        F.erase();
11216    }
11217    F.done();
11218
11219    if (Previous.empty()) {
11220      D.setInvalidType();
11221      Diag(Loc, diag::err_qualified_friend_not_found)
11222          << Name << TInfo->getType();
11223      return 0;
11224    }
11225
11226    // C++ [class.friend]p1: A friend of a class is a function or
11227    //   class that is not a member of the class . . .
11228    if (DC->Equals(CurContext))
11229      Diag(DS.getFriendSpecLoc(),
11230           getLangOpts().CPlusPlus11 ?
11231             diag::warn_cxx98_compat_friend_is_member :
11232             diag::err_friend_is_member);
11233
11234    if (D.isFunctionDefinition()) {
11235      // C++ [class.friend]p6:
11236      //   A function can be defined in a friend declaration of a class if and
11237      //   only if the class is a non-local class (9.8), the function name is
11238      //   unqualified, and the function has namespace scope.
11239      SemaDiagnosticBuilder DB
11240        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11241
11242      DB << SS.getScopeRep();
11243      if (DC->isFileContext())
11244        DB << FixItHint::CreateRemoval(SS.getRange());
11245      SS.clear();
11246    }
11247
11248  //   - There's a scope specifier that does not match any template
11249  //     parameter lists, in which case we use some arbitrary context,
11250  //     create a method or method template, and wait for instantiation.
11251  //   - There's a scope specifier that does match some template
11252  //     parameter lists, which we don't handle right now.
11253  } else {
11254    if (D.isFunctionDefinition()) {
11255      // C++ [class.friend]p6:
11256      //   A function can be defined in a friend declaration of a class if and
11257      //   only if the class is a non-local class (9.8), the function name is
11258      //   unqualified, and the function has namespace scope.
11259      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11260        << SS.getScopeRep();
11261    }
11262
11263    DC = CurContext;
11264    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11265  }
11266
11267  if (!DC->isRecord()) {
11268    // This implies that it has to be an operator or function.
11269    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11270        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11271        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11272      Diag(Loc, diag::err_introducing_special_friend) <<
11273        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11274         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11275      return 0;
11276    }
11277  }
11278
11279  // FIXME: This is an egregious hack to cope with cases where the scope stack
11280  // does not contain the declaration context, i.e., in an out-of-line
11281  // definition of a class.
11282  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11283  if (!DCScope) {
11284    FakeDCScope.setEntity(DC);
11285    DCScope = &FakeDCScope;
11286  }
11287
11288  bool AddToScope = true;
11289  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11290                                          TemplateParams, AddToScope);
11291  if (!ND) return 0;
11292
11293  assert(ND->getDeclContext() == DC);
11294  assert(ND->getLexicalDeclContext() == CurContext);
11295
11296  // Add the function declaration to the appropriate lookup tables,
11297  // adjusting the redeclarations list as necessary.  We don't
11298  // want to do this yet if the friending class is dependent.
11299  //
11300  // Also update the scope-based lookup if the target context's
11301  // lookup context is in lexical scope.
11302  if (!CurContext->isDependentContext()) {
11303    DC = DC->getRedeclContext();
11304    DC->makeDeclVisibleInContext(ND);
11305    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11306      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11307  }
11308
11309  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11310                                       D.getIdentifierLoc(), ND,
11311                                       DS.getFriendSpecLoc());
11312  FrD->setAccess(AS_public);
11313  CurContext->addDecl(FrD);
11314
11315  if (ND->isInvalidDecl()) {
11316    FrD->setInvalidDecl();
11317  } else {
11318    if (DC->isRecord()) CheckFriendAccess(ND);
11319
11320    FunctionDecl *FD;
11321    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11322      FD = FTD->getTemplatedDecl();
11323    else
11324      FD = cast<FunctionDecl>(ND);
11325
11326    // Mark templated-scope function declarations as unsupported.
11327    if (FD->getNumTemplateParameterLists())
11328      FrD->setUnsupportedFriend(true);
11329  }
11330
11331  return ND;
11332}
11333
11334void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11335  AdjustDeclIfTemplate(Dcl);
11336
11337  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11338  if (!Fn) {
11339    Diag(DelLoc, diag::err_deleted_non_function);
11340    return;
11341  }
11342
11343  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11344    // Don't consider the implicit declaration we generate for explicit
11345    // specializations. FIXME: Do not generate these implicit declarations.
11346    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11347        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11348      Diag(DelLoc, diag::err_deleted_decl_not_first);
11349      Diag(Prev->getLocation(), diag::note_previous_declaration);
11350    }
11351    // If the declaration wasn't the first, we delete the function anyway for
11352    // recovery.
11353    Fn = Fn->getCanonicalDecl();
11354  }
11355
11356  if (Fn->isDeleted())
11357    return;
11358
11359  // See if we're deleting a function which is already known to override a
11360  // non-deleted virtual function.
11361  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11362    bool IssuedDiagnostic = false;
11363    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11364                                        E = MD->end_overridden_methods();
11365         I != E; ++I) {
11366      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11367        if (!IssuedDiagnostic) {
11368          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11369          IssuedDiagnostic = true;
11370        }
11371        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11372      }
11373    }
11374  }
11375
11376  Fn->setDeletedAsWritten();
11377}
11378
11379void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11380  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11381
11382  if (MD) {
11383    if (MD->getParent()->isDependentType()) {
11384      MD->setDefaulted();
11385      MD->setExplicitlyDefaulted();
11386      return;
11387    }
11388
11389    CXXSpecialMember Member = getSpecialMember(MD);
11390    if (Member == CXXInvalid) {
11391      Diag(DefaultLoc, diag::err_default_special_members);
11392      return;
11393    }
11394
11395    MD->setDefaulted();
11396    MD->setExplicitlyDefaulted();
11397
11398    // If this definition appears within the record, do the checking when
11399    // the record is complete.
11400    const FunctionDecl *Primary = MD;
11401    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11402      // Find the uninstantiated declaration that actually had the '= default'
11403      // on it.
11404      Pattern->isDefined(Primary);
11405
11406    // If the method was defaulted on its first declaration, we will have
11407    // already performed the checking in CheckCompletedCXXClass. Such a
11408    // declaration doesn't trigger an implicit definition.
11409    if (Primary == Primary->getCanonicalDecl())
11410      return;
11411
11412    CheckExplicitlyDefaultedSpecialMember(MD);
11413
11414    // The exception specification is needed because we are defining the
11415    // function.
11416    ResolveExceptionSpec(DefaultLoc,
11417                         MD->getType()->castAs<FunctionProtoType>());
11418
11419    switch (Member) {
11420    case CXXDefaultConstructor: {
11421      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11422      if (!CD->isInvalidDecl())
11423        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11424      break;
11425    }
11426
11427    case CXXCopyConstructor: {
11428      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11429      if (!CD->isInvalidDecl())
11430        DefineImplicitCopyConstructor(DefaultLoc, CD);
11431      break;
11432    }
11433
11434    case CXXCopyAssignment: {
11435      if (!MD->isInvalidDecl())
11436        DefineImplicitCopyAssignment(DefaultLoc, MD);
11437      break;
11438    }
11439
11440    case CXXDestructor: {
11441      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11442      if (!DD->isInvalidDecl())
11443        DefineImplicitDestructor(DefaultLoc, DD);
11444      break;
11445    }
11446
11447    case CXXMoveConstructor: {
11448      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11449      if (!CD->isInvalidDecl())
11450        DefineImplicitMoveConstructor(DefaultLoc, CD);
11451      break;
11452    }
11453
11454    case CXXMoveAssignment: {
11455      if (!MD->isInvalidDecl())
11456        DefineImplicitMoveAssignment(DefaultLoc, MD);
11457      break;
11458    }
11459
11460    case CXXInvalid:
11461      llvm_unreachable("Invalid special member.");
11462    }
11463  } else {
11464    Diag(DefaultLoc, diag::err_default_special_members);
11465  }
11466}
11467
11468static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11469  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11470    Stmt *SubStmt = *CI;
11471    if (!SubStmt)
11472      continue;
11473    if (isa<ReturnStmt>(SubStmt))
11474      Self.Diag(SubStmt->getLocStart(),
11475           diag::err_return_in_constructor_handler);
11476    if (!isa<Expr>(SubStmt))
11477      SearchForReturnInStmt(Self, SubStmt);
11478  }
11479}
11480
11481void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11482  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11483    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11484    SearchForReturnInStmt(*this, Handler);
11485  }
11486}
11487
11488bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11489                                             const CXXMethodDecl *Old) {
11490  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11491  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11492
11493  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11494
11495  // If the calling conventions match, everything is fine
11496  if (NewCC == OldCC)
11497    return false;
11498
11499  // If either of the calling conventions are set to "default", we need to pick
11500  // something more sensible based on the target. This supports code where the
11501  // one method explicitly sets thiscall, and another has no explicit calling
11502  // convention.
11503  CallingConv Default =
11504    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11505  if (NewCC == CC_Default)
11506    NewCC = Default;
11507  if (OldCC == CC_Default)
11508    OldCC = Default;
11509
11510  // If the calling conventions still don't match, then report the error
11511  if (NewCC != OldCC) {
11512    Diag(New->getLocation(),
11513         diag::err_conflicting_overriding_cc_attributes)
11514      << New->getDeclName() << New->getType() << Old->getType();
11515    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11516    return true;
11517  }
11518
11519  return false;
11520}
11521
11522bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11523                                             const CXXMethodDecl *Old) {
11524  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11525  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11526
11527  if (Context.hasSameType(NewTy, OldTy) ||
11528      NewTy->isDependentType() || OldTy->isDependentType())
11529    return false;
11530
11531  // Check if the return types are covariant
11532  QualType NewClassTy, OldClassTy;
11533
11534  /// Both types must be pointers or references to classes.
11535  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11536    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11537      NewClassTy = NewPT->getPointeeType();
11538      OldClassTy = OldPT->getPointeeType();
11539    }
11540  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11541    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11542      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11543        NewClassTy = NewRT->getPointeeType();
11544        OldClassTy = OldRT->getPointeeType();
11545      }
11546    }
11547  }
11548
11549  // The return types aren't either both pointers or references to a class type.
11550  if (NewClassTy.isNull()) {
11551    Diag(New->getLocation(),
11552         diag::err_different_return_type_for_overriding_virtual_function)
11553      << New->getDeclName() << NewTy << OldTy;
11554    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11555
11556    return true;
11557  }
11558
11559  // C++ [class.virtual]p6:
11560  //   If the return type of D::f differs from the return type of B::f, the
11561  //   class type in the return type of D::f shall be complete at the point of
11562  //   declaration of D::f or shall be the class type D.
11563  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11564    if (!RT->isBeingDefined() &&
11565        RequireCompleteType(New->getLocation(), NewClassTy,
11566                            diag::err_covariant_return_incomplete,
11567                            New->getDeclName()))
11568    return true;
11569  }
11570
11571  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11572    // Check if the new class derives from the old class.
11573    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11574      Diag(New->getLocation(),
11575           diag::err_covariant_return_not_derived)
11576      << New->getDeclName() << NewTy << OldTy;
11577      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11578      return true;
11579    }
11580
11581    // Check if we the conversion from derived to base is valid.
11582    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11583                    diag::err_covariant_return_inaccessible_base,
11584                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11585                    // FIXME: Should this point to the return type?
11586                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11587      // FIXME: this note won't trigger for delayed access control
11588      // diagnostics, and it's impossible to get an undelayed error
11589      // here from access control during the original parse because
11590      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11591      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11592      return true;
11593    }
11594  }
11595
11596  // The qualifiers of the return types must be the same.
11597  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11598    Diag(New->getLocation(),
11599         diag::err_covariant_return_type_different_qualifications)
11600    << New->getDeclName() << NewTy << OldTy;
11601    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11602    return true;
11603  };
11604
11605
11606  // The new class type must have the same or less qualifiers as the old type.
11607  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11608    Diag(New->getLocation(),
11609         diag::err_covariant_return_type_class_type_more_qualified)
11610    << New->getDeclName() << NewTy << OldTy;
11611    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11612    return true;
11613  };
11614
11615  return false;
11616}
11617
11618/// \brief Mark the given method pure.
11619///
11620/// \param Method the method to be marked pure.
11621///
11622/// \param InitRange the source range that covers the "0" initializer.
11623bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11624  SourceLocation EndLoc = InitRange.getEnd();
11625  if (EndLoc.isValid())
11626    Method->setRangeEnd(EndLoc);
11627
11628  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11629    Method->setPure();
11630    return false;
11631  }
11632
11633  if (!Method->isInvalidDecl())
11634    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11635      << Method->getDeclName() << InitRange;
11636  return true;
11637}
11638
11639/// \brief Determine whether the given declaration is a static data member.
11640static bool isStaticDataMember(Decl *D) {
11641  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11642  if (!Var)
11643    return false;
11644
11645  return Var->isStaticDataMember();
11646}
11647/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11648/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11649/// is a fresh scope pushed for just this purpose.
11650///
11651/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11652/// static data member of class X, names should be looked up in the scope of
11653/// class X.
11654void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11655  // If there is no declaration, there was an error parsing it.
11656  if (D == 0 || D->isInvalidDecl()) return;
11657
11658  // We should only get called for declarations with scope specifiers, like:
11659  //   int foo::bar;
11660  assert(D->isOutOfLine());
11661  EnterDeclaratorContext(S, D->getDeclContext());
11662
11663  // If we are parsing the initializer for a static data member, push a
11664  // new expression evaluation context that is associated with this static
11665  // data member.
11666  if (isStaticDataMember(D))
11667    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11668}
11669
11670/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11671/// initializer for the out-of-line declaration 'D'.
11672void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11673  // If there is no declaration, there was an error parsing it.
11674  if (D == 0 || D->isInvalidDecl()) return;
11675
11676  if (isStaticDataMember(D))
11677    PopExpressionEvaluationContext();
11678
11679  assert(D->isOutOfLine());
11680  ExitDeclaratorContext(S);
11681}
11682
11683/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11684/// C++ if/switch/while/for statement.
11685/// e.g: "if (int x = f()) {...}"
11686DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11687  // C++ 6.4p2:
11688  // The declarator shall not specify a function or an array.
11689  // The type-specifier-seq shall not contain typedef and shall not declare a
11690  // new class or enumeration.
11691  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11692         "Parser allowed 'typedef' as storage class of condition decl.");
11693
11694  Decl *Dcl = ActOnDeclarator(S, D);
11695  if (!Dcl)
11696    return true;
11697
11698  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11699    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11700      << D.getSourceRange();
11701    return true;
11702  }
11703
11704  return Dcl;
11705}
11706
11707void Sema::LoadExternalVTableUses() {
11708  if (!ExternalSource)
11709    return;
11710
11711  SmallVector<ExternalVTableUse, 4> VTables;
11712  ExternalSource->ReadUsedVTables(VTables);
11713  SmallVector<VTableUse, 4> NewUses;
11714  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11715    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11716      = VTablesUsed.find(VTables[I].Record);
11717    // Even if a definition wasn't required before, it may be required now.
11718    if (Pos != VTablesUsed.end()) {
11719      if (!Pos->second && VTables[I].DefinitionRequired)
11720        Pos->second = true;
11721      continue;
11722    }
11723
11724    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11725    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11726  }
11727
11728  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11729}
11730
11731void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11732                          bool DefinitionRequired) {
11733  // Ignore any vtable uses in unevaluated operands or for classes that do
11734  // not have a vtable.
11735  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11736      CurContext->isDependentContext() || isUnevaluatedContext())
11737    return;
11738
11739  // Try to insert this class into the map.
11740  LoadExternalVTableUses();
11741  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11742  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11743    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11744  if (!Pos.second) {
11745    // If we already had an entry, check to see if we are promoting this vtable
11746    // to required a definition. If so, we need to reappend to the VTableUses
11747    // list, since we may have already processed the first entry.
11748    if (DefinitionRequired && !Pos.first->second) {
11749      Pos.first->second = true;
11750    } else {
11751      // Otherwise, we can early exit.
11752      return;
11753    }
11754  }
11755
11756  // Local classes need to have their virtual members marked
11757  // immediately. For all other classes, we mark their virtual members
11758  // at the end of the translation unit.
11759  if (Class->isLocalClass())
11760    MarkVirtualMembersReferenced(Loc, Class);
11761  else
11762    VTableUses.push_back(std::make_pair(Class, Loc));
11763}
11764
11765bool Sema::DefineUsedVTables() {
11766  LoadExternalVTableUses();
11767  if (VTableUses.empty())
11768    return false;
11769
11770  // Note: The VTableUses vector could grow as a result of marking
11771  // the members of a class as "used", so we check the size each
11772  // time through the loop and prefer indices (which are stable) to
11773  // iterators (which are not).
11774  bool DefinedAnything = false;
11775  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11776    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11777    if (!Class)
11778      continue;
11779
11780    SourceLocation Loc = VTableUses[I].second;
11781
11782    bool DefineVTable = true;
11783
11784    // If this class has a key function, but that key function is
11785    // defined in another translation unit, we don't need to emit the
11786    // vtable even though we're using it.
11787    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11788    if (KeyFunction && !KeyFunction->hasBody()) {
11789      switch (KeyFunction->getTemplateSpecializationKind()) {
11790      case TSK_Undeclared:
11791      case TSK_ExplicitSpecialization:
11792      case TSK_ExplicitInstantiationDeclaration:
11793        // The key function is in another translation unit.
11794        DefineVTable = false;
11795        break;
11796
11797      case TSK_ExplicitInstantiationDefinition:
11798      case TSK_ImplicitInstantiation:
11799        // We will be instantiating the key function.
11800        break;
11801      }
11802    } else if (!KeyFunction) {
11803      // If we have a class with no key function that is the subject
11804      // of an explicit instantiation declaration, suppress the
11805      // vtable; it will live with the explicit instantiation
11806      // definition.
11807      bool IsExplicitInstantiationDeclaration
11808        = Class->getTemplateSpecializationKind()
11809                                      == TSK_ExplicitInstantiationDeclaration;
11810      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11811                                 REnd = Class->redecls_end();
11812           R != REnd; ++R) {
11813        TemplateSpecializationKind TSK
11814          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11815        if (TSK == TSK_ExplicitInstantiationDeclaration)
11816          IsExplicitInstantiationDeclaration = true;
11817        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11818          IsExplicitInstantiationDeclaration = false;
11819          break;
11820        }
11821      }
11822
11823      if (IsExplicitInstantiationDeclaration)
11824        DefineVTable = false;
11825    }
11826
11827    // The exception specifications for all virtual members may be needed even
11828    // if we are not providing an authoritative form of the vtable in this TU.
11829    // We may choose to emit it available_externally anyway.
11830    if (!DefineVTable) {
11831      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11832      continue;
11833    }
11834
11835    // Mark all of the virtual members of this class as referenced, so
11836    // that we can build a vtable. Then, tell the AST consumer that a
11837    // vtable for this class is required.
11838    DefinedAnything = true;
11839    MarkVirtualMembersReferenced(Loc, Class);
11840    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11841    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11842
11843    // Optionally warn if we're emitting a weak vtable.
11844    if (Class->isExternallyVisible() &&
11845        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11846      const FunctionDecl *KeyFunctionDef = 0;
11847      if (!KeyFunction ||
11848          (KeyFunction->hasBody(KeyFunctionDef) &&
11849           KeyFunctionDef->isInlined()))
11850        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11851             TSK_ExplicitInstantiationDefinition
11852             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11853          << Class;
11854    }
11855  }
11856  VTableUses.clear();
11857
11858  return DefinedAnything;
11859}
11860
11861void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11862                                                 const CXXRecordDecl *RD) {
11863  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11864                                      E = RD->method_end(); I != E; ++I)
11865    if ((*I)->isVirtual() && !(*I)->isPure())
11866      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11867}
11868
11869void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11870                                        const CXXRecordDecl *RD) {
11871  // Mark all functions which will appear in RD's vtable as used.
11872  CXXFinalOverriderMap FinalOverriders;
11873  RD->getFinalOverriders(FinalOverriders);
11874  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11875                                            E = FinalOverriders.end();
11876       I != E; ++I) {
11877    for (OverridingMethods::const_iterator OI = I->second.begin(),
11878                                           OE = I->second.end();
11879         OI != OE; ++OI) {
11880      assert(OI->second.size() > 0 && "no final overrider");
11881      CXXMethodDecl *Overrider = OI->second.front().Method;
11882
11883      // C++ [basic.def.odr]p2:
11884      //   [...] A virtual member function is used if it is not pure. [...]
11885      if (!Overrider->isPure())
11886        MarkFunctionReferenced(Loc, Overrider);
11887    }
11888  }
11889
11890  // Only classes that have virtual bases need a VTT.
11891  if (RD->getNumVBases() == 0)
11892    return;
11893
11894  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11895           e = RD->bases_end(); i != e; ++i) {
11896    const CXXRecordDecl *Base =
11897        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11898    if (Base->getNumVBases() == 0)
11899      continue;
11900    MarkVirtualMembersReferenced(Loc, Base);
11901  }
11902}
11903
11904/// SetIvarInitializers - This routine builds initialization ASTs for the
11905/// Objective-C implementation whose ivars need be initialized.
11906void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11907  if (!getLangOpts().CPlusPlus)
11908    return;
11909  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11910    SmallVector<ObjCIvarDecl*, 8> ivars;
11911    CollectIvarsToConstructOrDestruct(OID, ivars);
11912    if (ivars.empty())
11913      return;
11914    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11915    for (unsigned i = 0; i < ivars.size(); i++) {
11916      FieldDecl *Field = ivars[i];
11917      if (Field->isInvalidDecl())
11918        continue;
11919
11920      CXXCtorInitializer *Member;
11921      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11922      InitializationKind InitKind =
11923        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11924
11925      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
11926      ExprResult MemberInit =
11927        InitSeq.Perform(*this, InitEntity, InitKind, None);
11928      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11929      // Note, MemberInit could actually come back empty if no initialization
11930      // is required (e.g., because it would call a trivial default constructor)
11931      if (!MemberInit.get() || MemberInit.isInvalid())
11932        continue;
11933
11934      Member =
11935        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11936                                         SourceLocation(),
11937                                         MemberInit.takeAs<Expr>(),
11938                                         SourceLocation());
11939      AllToInit.push_back(Member);
11940
11941      // Be sure that the destructor is accessible and is marked as referenced.
11942      if (const RecordType *RecordTy
11943                  = Context.getBaseElementType(Field->getType())
11944                                                        ->getAs<RecordType>()) {
11945                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11946        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11947          MarkFunctionReferenced(Field->getLocation(), Destructor);
11948          CheckDestructorAccess(Field->getLocation(), Destructor,
11949                            PDiag(diag::err_access_dtor_ivar)
11950                              << Context.getBaseElementType(Field->getType()));
11951        }
11952      }
11953    }
11954    ObjCImplementation->setIvarInitializers(Context,
11955                                            AllToInit.data(), AllToInit.size());
11956  }
11957}
11958
11959static
11960void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11961                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11962                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11963                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11964                           Sema &S) {
11965  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11966                                                   CE = Current.end();
11967  if (Ctor->isInvalidDecl())
11968    return;
11969
11970  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11971
11972  // Target may not be determinable yet, for instance if this is a dependent
11973  // call in an uninstantiated template.
11974  if (Target) {
11975    const FunctionDecl *FNTarget = 0;
11976    (void)Target->hasBody(FNTarget);
11977    Target = const_cast<CXXConstructorDecl*>(
11978      cast_or_null<CXXConstructorDecl>(FNTarget));
11979  }
11980
11981  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11982                     // Avoid dereferencing a null pointer here.
11983                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11984
11985  if (!Current.insert(Canonical))
11986    return;
11987
11988  // We know that beyond here, we aren't chaining into a cycle.
11989  if (!Target || !Target->isDelegatingConstructor() ||
11990      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11991    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11992      Valid.insert(*CI);
11993    Current.clear();
11994  // We've hit a cycle.
11995  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11996             Current.count(TCanonical)) {
11997    // If we haven't diagnosed this cycle yet, do so now.
11998    if (!Invalid.count(TCanonical)) {
11999      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12000             diag::warn_delegating_ctor_cycle)
12001        << Ctor;
12002
12003      // Don't add a note for a function delegating directly to itself.
12004      if (TCanonical != Canonical)
12005        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12006
12007      CXXConstructorDecl *C = Target;
12008      while (C->getCanonicalDecl() != Canonical) {
12009        const FunctionDecl *FNTarget = 0;
12010        (void)C->getTargetConstructor()->hasBody(FNTarget);
12011        assert(FNTarget && "Ctor cycle through bodiless function");
12012
12013        C = const_cast<CXXConstructorDecl*>(
12014          cast<CXXConstructorDecl>(FNTarget));
12015        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12016      }
12017    }
12018
12019    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12020      Invalid.insert(*CI);
12021    Current.clear();
12022  } else {
12023    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12024  }
12025}
12026
12027
12028void Sema::CheckDelegatingCtorCycles() {
12029  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12030
12031  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12032                                                   CE = Current.end();
12033
12034  for (DelegatingCtorDeclsType::iterator
12035         I = DelegatingCtorDecls.begin(ExternalSource),
12036         E = DelegatingCtorDecls.end();
12037       I != E; ++I)
12038    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12039
12040  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
12041    (*CI)->setInvalidDecl();
12042}
12043
12044namespace {
12045  /// \brief AST visitor that finds references to the 'this' expression.
12046  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12047    Sema &S;
12048
12049  public:
12050    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12051
12052    bool VisitCXXThisExpr(CXXThisExpr *E) {
12053      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12054        << E->isImplicit();
12055      return false;
12056    }
12057  };
12058}
12059
12060bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12061  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12062  if (!TSInfo)
12063    return false;
12064
12065  TypeLoc TL = TSInfo->getTypeLoc();
12066  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12067  if (!ProtoTL)
12068    return false;
12069
12070  // C++11 [expr.prim.general]p3:
12071  //   [The expression this] shall not appear before the optional
12072  //   cv-qualifier-seq and it shall not appear within the declaration of a
12073  //   static member function (although its type and value category are defined
12074  //   within a static member function as they are within a non-static member
12075  //   function). [ Note: this is because declaration matching does not occur
12076  //  until the complete declarator is known. - end note ]
12077  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12078  FindCXXThisExpr Finder(*this);
12079
12080  // If the return type came after the cv-qualifier-seq, check it now.
12081  if (Proto->hasTrailingReturn() &&
12082      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12083    return true;
12084
12085  // Check the exception specification.
12086  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12087    return true;
12088
12089  return checkThisInStaticMemberFunctionAttributes(Method);
12090}
12091
12092bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12093  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12094  if (!TSInfo)
12095    return false;
12096
12097  TypeLoc TL = TSInfo->getTypeLoc();
12098  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12099  if (!ProtoTL)
12100    return false;
12101
12102  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12103  FindCXXThisExpr Finder(*this);
12104
12105  switch (Proto->getExceptionSpecType()) {
12106  case EST_Uninstantiated:
12107  case EST_Unevaluated:
12108  case EST_BasicNoexcept:
12109  case EST_DynamicNone:
12110  case EST_MSAny:
12111  case EST_None:
12112    break;
12113
12114  case EST_ComputedNoexcept:
12115    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12116      return true;
12117
12118  case EST_Dynamic:
12119    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12120         EEnd = Proto->exception_end();
12121         E != EEnd; ++E) {
12122      if (!Finder.TraverseType(*E))
12123        return true;
12124    }
12125    break;
12126  }
12127
12128  return false;
12129}
12130
12131bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12132  FindCXXThisExpr Finder(*this);
12133
12134  // Check attributes.
12135  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12136       A != AEnd; ++A) {
12137    // FIXME: This should be emitted by tblgen.
12138    Expr *Arg = 0;
12139    ArrayRef<Expr *> Args;
12140    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12141      Arg = G->getArg();
12142    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12143      Arg = G->getArg();
12144    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12145      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12146    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12147      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12148    else if (ExclusiveLockFunctionAttr *ELF
12149               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12150      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12151    else if (SharedLockFunctionAttr *SLF
12152               = dyn_cast<SharedLockFunctionAttr>(*A))
12153      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12154    else if (ExclusiveTrylockFunctionAttr *ETLF
12155               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12156      Arg = ETLF->getSuccessValue();
12157      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12158    } else if (SharedTrylockFunctionAttr *STLF
12159                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12160      Arg = STLF->getSuccessValue();
12161      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12162    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12163      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12164    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12165      Arg = LR->getArg();
12166    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12167      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12168    else if (ExclusiveLocksRequiredAttr *ELR
12169               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12170      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12171    else if (SharedLocksRequiredAttr *SLR
12172               = dyn_cast<SharedLocksRequiredAttr>(*A))
12173      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12174
12175    if (Arg && !Finder.TraverseStmt(Arg))
12176      return true;
12177
12178    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12179      if (!Finder.TraverseStmt(Args[I]))
12180        return true;
12181    }
12182  }
12183
12184  return false;
12185}
12186
12187void
12188Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12189                                  ArrayRef<ParsedType> DynamicExceptions,
12190                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12191                                  Expr *NoexceptExpr,
12192                                  SmallVectorImpl<QualType> &Exceptions,
12193                                  FunctionProtoType::ExtProtoInfo &EPI) {
12194  Exceptions.clear();
12195  EPI.ExceptionSpecType = EST;
12196  if (EST == EST_Dynamic) {
12197    Exceptions.reserve(DynamicExceptions.size());
12198    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12199      // FIXME: Preserve type source info.
12200      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12201
12202      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12203      collectUnexpandedParameterPacks(ET, Unexpanded);
12204      if (!Unexpanded.empty()) {
12205        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12206                                         UPPC_ExceptionType,
12207                                         Unexpanded);
12208        continue;
12209      }
12210
12211      // Check that the type is valid for an exception spec, and
12212      // drop it if not.
12213      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12214        Exceptions.push_back(ET);
12215    }
12216    EPI.NumExceptions = Exceptions.size();
12217    EPI.Exceptions = Exceptions.data();
12218    return;
12219  }
12220
12221  if (EST == EST_ComputedNoexcept) {
12222    // If an error occurred, there's no expression here.
12223    if (NoexceptExpr) {
12224      assert((NoexceptExpr->isTypeDependent() ||
12225              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12226              Context.BoolTy) &&
12227             "Parser should have made sure that the expression is boolean");
12228      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12229        EPI.ExceptionSpecType = EST_BasicNoexcept;
12230        return;
12231      }
12232
12233      if (!NoexceptExpr->isValueDependent())
12234        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12235                         diag::err_noexcept_needs_constant_expression,
12236                         /*AllowFold*/ false).take();
12237      EPI.NoexceptExpr = NoexceptExpr;
12238    }
12239    return;
12240  }
12241}
12242
12243/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12244Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12245  // Implicitly declared functions (e.g. copy constructors) are
12246  // __host__ __device__
12247  if (D->isImplicit())
12248    return CFT_HostDevice;
12249
12250  if (D->hasAttr<CUDAGlobalAttr>())
12251    return CFT_Global;
12252
12253  if (D->hasAttr<CUDADeviceAttr>()) {
12254    if (D->hasAttr<CUDAHostAttr>())
12255      return CFT_HostDevice;
12256    else
12257      return CFT_Device;
12258  }
12259
12260  return CFT_Host;
12261}
12262
12263bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12264                           CUDAFunctionTarget CalleeTarget) {
12265  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12266  // Callable from the device only."
12267  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12268    return true;
12269
12270  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12271  // Callable from the host only."
12272  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12273  // Callable from the host only."
12274  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12275      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12276    return true;
12277
12278  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12279    return true;
12280
12281  return false;
12282}
12283
12284/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12285///
12286MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12287                                       SourceLocation DeclStart,
12288                                       Declarator &D, Expr *BitWidth,
12289                                       InClassInitStyle InitStyle,
12290                                       AccessSpecifier AS,
12291                                       AttributeList *MSPropertyAttr) {
12292  IdentifierInfo *II = D.getIdentifier();
12293  if (!II) {
12294    Diag(DeclStart, diag::err_anonymous_property);
12295    return NULL;
12296  }
12297  SourceLocation Loc = D.getIdentifierLoc();
12298
12299  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12300  QualType T = TInfo->getType();
12301  if (getLangOpts().CPlusPlus) {
12302    CheckExtraCXXDefaultArguments(D);
12303
12304    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12305                                        UPPC_DataMemberType)) {
12306      D.setInvalidType();
12307      T = Context.IntTy;
12308      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12309    }
12310  }
12311
12312  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12313
12314  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12315    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12316         diag::err_invalid_thread)
12317      << DeclSpec::getSpecifierName(TSCS);
12318
12319  // Check to see if this name was declared as a member previously
12320  NamedDecl *PrevDecl = 0;
12321  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12322  LookupName(Previous, S);
12323  switch (Previous.getResultKind()) {
12324  case LookupResult::Found:
12325  case LookupResult::FoundUnresolvedValue:
12326    PrevDecl = Previous.getAsSingle<NamedDecl>();
12327    break;
12328
12329  case LookupResult::FoundOverloaded:
12330    PrevDecl = Previous.getRepresentativeDecl();
12331    break;
12332
12333  case LookupResult::NotFound:
12334  case LookupResult::NotFoundInCurrentInstantiation:
12335  case LookupResult::Ambiguous:
12336    break;
12337  }
12338
12339  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12340    // Maybe we will complain about the shadowed template parameter.
12341    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12342    // Just pretend that we didn't see the previous declaration.
12343    PrevDecl = 0;
12344  }
12345
12346  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12347    PrevDecl = 0;
12348
12349  SourceLocation TSSL = D.getLocStart();
12350  MSPropertyDecl *NewPD;
12351  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12352  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12353                                       II, T, TInfo, TSSL,
12354                                       Data.GetterId, Data.SetterId);
12355  ProcessDeclAttributes(TUScope, NewPD, D);
12356  NewPD->setAccess(AS);
12357
12358  if (NewPD->isInvalidDecl())
12359    Record->setInvalidDecl();
12360
12361  if (D.getDeclSpec().isModulePrivateSpecified())
12362    NewPD->setModulePrivate();
12363
12364  if (NewPD->isInvalidDecl() && PrevDecl) {
12365    // Don't introduce NewFD into scope; there's already something
12366    // with the same name in the same scope.
12367  } else if (II) {
12368    PushOnScopeChains(NewPD, S);
12369  } else
12370    Record->addDecl(NewPD);
12371
12372  return NewPD;
12373}
12374